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1.0 SUMMARY

In this project, several fundamental research topics have been carried out for developing multiagent
task coordination strategies under a distributed optimization framework. The proposed subjects are
critical to the development of engineered multiagent systems such as robotic networks, sensor net-
works, and computer networks, and they are important to both military and civilian applications.
The objectives of the proposed research are three-folds: perform systematic controllability analy-
sis for multiagent networks which may have nonlinear dynamics, design distributed optimal and
adaptive coordination protocols in the presence of various model and communication uncertain-
ties, and conduct computer simulation and experimental validation of the proposed designs using
mobile robotic platforms.

The project renders novel methods for discontinuous cooperative control under least restrictive
sensing/communications and communication delays, approximate dynamic programming based
optimal cooperative control, adaptive cooperative control of uncertain multiagent systems, and
distributed formation control and coverage controls of multiple mobile robots with kinematic con-
straints. In particular, the following three sets of results have been obtained:

• By analyzing the least restrictive condition for sensing/communication among multiagents,
it is revealed that network consensus may not be achieved in the presence of discontinuous
system dynamics. To address the issue, a new discontinuous cooperative law was proposed
to achieve the task coordination of multiagent systems under directed and switching sens-
ing/communication topologies [26]. In particular, we have shown the resilience of the pro-
posed nominal cooperative control to certain extent in terms of communication link failures
and time-delays.

• The optimal and adaptive task coordination for multiagent systems was thoroughly studied
from three aspects. First, a practically implementable valued function approximation-based
multiagent policy iteration algorithm was proposed for the optimal cooperative control of a
class of nonlinear systems [31]. In the design, system behaviors are quantized using indi-
vidual cost functions in order to direct the optimal operation of multiagent systems. Second,
to further relax condition for the requirement of system dynamics, approximate Q function-
based multiagent coordination algorithm was proposed. Third, the adaptive coordination of
multiagent systems with uncertainties was studied. A new distributed adaptive cooperative
control was proposed to deal with model uncertainties using neural network approximation
and adaptive estimation of unknown parameters.

• Simulation and experimental study was conducted to test the robustness of the proposed
coordination controls for multiagents based on case studies for formation control and cov-
erage control of multiple mobile robots [27, 8, 30]. Specifically, for formation control of
multiple mobile robots, both linearization-based design and nonlinear model-based design
were proposed by assuming that only limited information of a desired trajectory is available.
For coverage control, we proposed a distributed deployment algorithm for mobile robots to
cover a convex region. The proposed deployment algorithm iteratively updates the Voronoi
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partition through local information exchange, and then moves toward its centroid based on
centroid-driven control algorithms.

Technical discussions of these three topics and research results are provided in the following sec-
tions.

2.0 INTRODUCTION

Multiagent systems are generically defined as a group of dynamical systems in which certain emer-
gent behaviors are exhibited through local interactions of group members that individually have
the capability of self-operating [18][13][2][19]. The fundamental issues in the study of multiagent
systems are the analysis of network controllability and the design of coordination control protocol
in order to achieve autonomous and optimal tasking allocation. For network controllability, the
objective is to figure out the connectivity conditions on sensor/communication topologies among
agents (including human operators) to achieve desired behaviors. Recent results on connectiv-
ity conditions for multiagent systems mostly assume perfect communication conditions, while in
practice there often exist communication uncertainties and bandwidth limitations. For coordina-
tion control protocol design, the objective is to develop the proper control protocol to perform the
coordinated tasks. The existing results in literature may not be directly applicable to multiagent
task allocation due to possible link errors, long communication delays, and system uncertainties.
More importantly, considering the possible dynamic task evolution for multiagent networks, the
individual agent may exhibit multi-modal dynamics under different running circumstances or due
to uncertainties and disturbances. All of these pose challenges in the design of performance guar-
anteed distributed coordination protocols that explicitly take into consideration system dynamics
and uncertainties.

The proposed research have been centered on addressing the aforementioned fundamental issues
by targeting the following objectives: perform systematic controllability analysis for multiagent
networks which may have nonlinear dynamics, design distributed optimal and adaptive coordi-
nation protocols in the presence of various model and communication uncertainties, and conduct
computer simulation and experimental validation of the proposed designs using mobile robotic
platforms.

The project has rendered several significant results in the development of distributed optimal, adap-
tive and robust cooperative control protocols for the task coordination of multiagent systems. These
results have reported and published in a number of IEEE conferences [26, 31, 27, 8, 30], and jour-
nal versions are under preparation for submission. The overall contributions of this project lie in
two aspects: 1) the learning approaches borrowed from rich results in artificial intelligence re-
search are effectively integrated with the rigorous control systems analysis tools, and produced
novel approximate dynamic programming based optimal cooperative control and adaptive cooper-
ative control for uncertain multiagent networks; 2) the research outcome on new task coordination
algorithms for multiple agents operating in complex environments are a manifestation of robust
intelligence.

2
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The rest of the report is organized as follows. Section 3.0 presents the basic methods, assumptions
and procedures in this research, and formulates the general multiagent coordination problem. Sec-
tions 4.0, 5.0, and 6.0 present the technical results and discussions on three sets of results in term
of optimal and adaptive cooperative control design and applications, respectively. In each section,
simulation and experimental results are given to illustrate the effectiveness of the proposed designs.
Section 7.0 concludes the report.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Multiagent Dynamics and Assumptions

This research builds upon rigorous methods ranging from systems and controls theory, distributed
reinforcement learning, adaptive learning to neural network approximation. We consider a set of
agents Q = {1, · · · , N}, where N is the number of agents in the group and assume that each agent
evolves according to the general system dynamics described by{

ξ̇i(t) = fi(ξi, ui, t) + ∆fi(ξi, t) + wi(t),
yi(t) = hi(ξi, ξj) + vi(t)

(1)

where i = 1, · · · , N , ξi(t) ∈ <ni is the state vector, ui ∈ <mi is the input vector, mi < ni, yi ∈ <pi
is the output (measurement) vector, wi(t) ∈ <ni and vi(t) ∈ <pi are Gaussian noises with zero
mean, fi(·) and hi(·) are piecewise continuous vector-valued functions of ξi on<ni , and ∆fi(·) and
∆gi(·) denote model uncertainties. Agent dynamics considered in (1) are given by the first-order
differential equations in continuous time. The analog of (1) in discrete time can be defined by a
system of first-order discrete time equations of the following form{

ξi(k + 1) = fi(ξi(k), ui(k), k) + ∆fi(ξi(k), k) + wi(k),
yi(k) = hi(ξi(k), ξj(k)) + vi(k)

(2)

where k ∈ {0, 1, 2, · · · } is the discrete time index. In this project, we deal with the general class
of multiagent dynamical systems, and the agent dynamics may assume either the continuous-time
model in (1) or the discrete-time model in (2).

To achieve multiagent systems coordination, it is necessary that the agents in the group are capable
of exchanging information through the sensing/communication networks. For agent i, its output
and measurement vector yi reflects its interaction with other agents ξj in the group through commu-
nication/sensor channels. In addition, we define a coordination variable xi = χi(yi) to generically
describe the coordination tasks for multiagent systems, where χi : <pi 7→ <q is a continuous
and differentiable function of yi. By introducing xi, various coordination tasks such as consensus,
rendezvous, cooperative target localization, mobile agents coverage control, distributed resource
allocation, and formation control may be embedded into the definition of function χi(yi). To this
end, the multiagent task coordination to be addressed in this project can be recast as cooperative
stability issues as defined below.

3
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Definition 1 Multiagent systems (1) or (2) are said to be cooperative if limt→∞ [xi(t)− xj(t)] =
1q0, where 1q is q−dimensional column vector with all its elements being 1. Multiagent systems
(1) or (2) are said to be cooperatively stable (i.e., cooperative and all the state variables of the
systems are uniformly bounded) if, for some steady state xss ∈ <q, limt→∞ xi(t) = xss.

As seen in definition 1, the steady state xss represents the convergence value of the coordination
variables xi(t) for all agents in the group. For example, if the coordination task for mulitagent
systems (1) is to seek the average consensus, then xss =

∑N
i=1 xi(0)/N .

Now, let us define the objective function Ui(x, ui, t) for agent i to accommodate the optimal per-
formance of the multiagent systems coordination. Let the objective function Ui(x, ui, t) be

Ui(x, ui, t) =

∫ ∞
t

Li(x(τ), ui(τ))dτ, (3)

where x = [xT1 , x
T
2 , · · · , xTN ]T is the stacked overall coordination variable, Li(·) and ψ(·) are the

running cost functions. To this end, the multiagent systems task coordination problem studied in
this project can be generically described as follows.

Problem 1 For a network of mulitagent dynamical systems (1) or (2), design cooperatively stabi-
lizing control protocols ui(t) of the form

ui(t) = αi(xi, xj1 , · · · , xjl , t), (4)

while solving the following optimization problem

min
n∑
i=1

Ui(x) (5)

where xjk , jk ∈ Ni are the coordination variables of the neighboring agents of agent i, Ni is the
index set of the neighboring agents of agent i.

3.2 Sensing/Communication Model and Procedures

The success of solving coordination Problem 1 is dependent on information exchange among
agents. In general, we assume that the information exchange among agents are done through com-
munication broadcasting or agents’ sensing capabilities. We consider flexible time-varying sens-
ing/communication topologies among agents. To precisely account for the sensing/communication
information exchange among agents in the design of coordination strategy and control protocols,
we introduce the following sensing /communication matrix and its corresponding time sequence
{tsk : k = 0, 1, · · · }. That is, within time interval [tsk, t

s
k+1), the sensing/communication topology

is assumed to be unchanged.

S(t) =


s11 s12(t) · · · s1q(t)
s21(t) s22 · · · s2q(t)

...
... . . . ...

sq1(t) sq2(t) · · · sqq

 , (6)

4
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with S(t) = S(tsk),∀t ∈ [tsk, t
s
k1), where sii ≡ 1; sij(t) = 1 if the jth agent is in the sen-

sor/communication range of the ith agent at time t, and sij = 0 otherwise; and ts0
4
= t0. It can

be assumed without loss of generality that 0 < ct ≤ tsk+1 − tsk ≤ ct <∞, where ct and ct are con-
stant bounds. In the presence of communication delay τ , the available information at time instant
t will depend on S(t− τ).

In the following sections, we report several multiagent coordination control algorithms in solving
Problem 1 by focusing on procedures of dealing with the following key elements.

• First, a sensing/communication model is fundamental to describe the information exchange
among multiple agents in the system. One of the main objectives of this project is to establish
the least restrictive network controllability condition for multiagent systems to achieve the
task coordination.

• Second, in order to cover a broad class of practical applications for multiple agents, multi-
agent dynamics are of paramount importance in the coordination tasks. We design optimal
and adaptive coordination controls for a general class of dynamical systems with uncertain-
ties.

• Third, multiagent task coordination applications are conducted by particularly solving the
formation control and coverage control problems for multiple mobile robots with kinematic
constraints.

• Forth, extensive computer simulation and experimental tests have been performed to illus-
trate the proposed designs.

4.0 RESULTS AND DISCUSSION: NETWORK CONTROLLABILITY
ANALYSIS

In this section, we report the results on network controllability analysis and present a new dis-
continuous cooperative control for consensus of multiagent systems under directed and switching
sensing/communication topologies and time-delays. Simulation test results for underwater sonar
data transmission are also given.

4.1 Sequential Completeness Condition on Network Controllability

One of the key issues in engineered multiagent systems is the study of network controllability.
The objective is to figure out the connectivity conditions on sensor/communication topologies of
the network for achieving consensus behavior. In [7][20], the condition is obtained for composite
undirected graphs which need to be connected. Extensions were made in [17][9] to the case with di-
rected graphs, and the less restrictive conditions are stated as that there exists a spanning tree or the
network is strongly connected periodically. Complement to the aforementioned graph-theoretical

5
Approved for Public Release; Distribution Unlimited.



methods, a matrix-theoretical framework is developed in [16] to deal with the high-order systems
with arbitrary but finite relative degrees. The notion of sequentially completeness was introduced
in [16][29] to describe the least required condition on network connectivity for cooperative control
design, which is restated by the following definitions.

Definition 2 Sensing/communication matrix sequence {S(t)} is said to be sequentially lower-
triangularly complete if it is sequentially lower-triangular and in every row i of its lower triangular
canonical form, there is at lease one j < i such that the corresponding block Sij(t) is uniformly
non-vanishing.

Definition 3 Sensing/communication matrix sequence {S(t)} is said to be sequentially complete
if the sequence contains an infinite subsequence that is sequentially lower-triangularly complete.

As an example for sequential completeness, let us assume that the sensing/communication topolo-
gies for 3 agents are changing according to the sequence {S(tk), k ∈ ℵ,ℵ

4
= {1, 2, . . . }} defined

below: S(tk) = S1 for k = 4η, S(tk) = S2 for k = 4η + 1, S(tk) = S3 for k = 4η + 2, and
S(tk) = S4 for k = 4η + 3, where η ∈ ℵ,

S1 =

 1 0 0
1 1 0
0 0 1

 , S2 =

 1 1 0
0 1 0
0 0 1

 ,
S3 =

 1 0 0
0 1 0
1 0 1

 , and S4 =

 1 0 0
0 1 0
0 0 1

 . (7)

The bitwise union of Si, i = 1, · · · , 4 is

⋃
i

Si =

 1 1 0
1 1 0
1 0 1

 4= [ S ′Λ,11 ∅
S ′Λ,21 1

]
.

It then follows from the structure of
⋃
i Si that the corresponding sequence is lower-triangularly

complete, and therefore the switching sensing/communication topologies defined by (7) is sequen-
tially complete.

4.2 Multiagent Coordination with Discontinuous Dynamics

4.2.1 Issues with Sequential Completeness Condition in the Presence of Discontinuous Dy-
namics

Let us consider the consensus problem for the simplest multiagent systems described by single-
integrator dynamics

ẋl = ul, (8)
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where l ∈ Ω
4
= {1, · · · , n}, xl(t) ∈ < is the state, ul ∈ < is the control input to be designed. The

objective is to design ul(t) to achieve the consensus of the multiagent system (8), that is,

lim
t→∞

xl(t) = x∗, ∀l, (9)

where x∗ is some constant denoting the consensus value.

For the cooperative control of multiagent systems (8), if the standard design of ui(t) is adopted as
given below

ul(t) =
n∑
j=1

αlj(slj(t
s
k))(xj(t)− xl(t)), t ∈ [tsk, t

s
k+1), (10)

where

αlj(t
s
k) =

slj(t
s
k)∑n

i=1 sli(t
s
k)
, (11)

then it has been proved in [16] that the sequential completeness of sensing/communication matrix
sequence {S(t)} is the necessary and sufficient condition for consensus of multiagent systems.

However, in practice it is often necessary to consider the following discontinuos cooperative con-
trol of the form

ul(t) =
n∑
j=1

αlj(slj(t
s
k), xj(t

s
k))sgn(xj(t)− xl(t)), t ∈ [tsk, t

s
k+1), (12)

where αlj(·, ·) is a nonlinear gain to be designed based on the sensing/communication topology
S(tsk) as well as the available boundary values xj(tsk) if slj(tsk) 6= 0, and sgn(·) function is defined
as

sgn(z) =


1, z > 0
0, z = 0
−1, z < 0

Remark 1 By including sgn(·) in the control law (12), it may provide benefits to deal with the
control of truly nonlinear systems such as nonholonomic mobile robots [5], and improve the con-
vergence speed of the system. In addition, the control (12) may reduce the sensing/communication
loads because on one hand nonlinear gain αlj only relies on states xj(tsk) at the time instants
whenever the communication topology changes, and on the other hand, information exchange of
sgn(xj(t)−xl(t)) may also significantly reduce the required transmission capacity compared with
that of (xj(t)− xl(t)). 3

Under cooperative control (12), the closed-loop multiagent system become system with discontin-
uous dynamics. The sequential completeness of sensing/communication network may no longer
ensure the consensus if the gains αil are simply designed using (11). This is illustrated through the
following example.
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Example 1 Suppose we have 3 agents. Define index set Ω = {1, 2, 3}, Ωmax = {i ∈ Ω : xi(t) =

xmax(t)
4
= maxj xj(t)}, and Ωmin = {i ∈ Ω : xi(t) = xmin(t)

4
= minj xj(t)}.

Assume that at time instant t0, we have Ωmin(t0) = {1}, and Ωmax(t0) = {2, 3}, and the sens-
ing/communication topologies among three agents switch according to sensing/communication
matrices S(t3k), S(t3k+1) and S(t3k+2) defined below.

S(t3k) =

 1 0 0
1 1 0
0 0 1

 , S(t3k+1) =

 1 0 1
0 1 0
0 0 1

 , S(t3k+2) =

 1 0 0
0 1 0
0 1 1

 ,
where k = 0, 1, · · · . It can be readily verified that the matrix sequence S(t3k), S(t3k+1), S(t3k+2)
is sequentially complete. However, the consensus is not guaranteed if the standard gain design
for αij in (11) is applied under control (12). One possible scenario is that according to the sens-
ing/communication matrix S(t0), agent 2 receives information from agent 1 and may converge to
agent 1 in finite time interval t1 − t0, thus at time instant t1, we could have Ωmin(t1) = {1, 2}
and Ωmax(t1) = {3}; similarly, according to S(t1), agent 1 receives information from agent
3 and may converge to agent 3 in finite time t2 − t1, thus we may have Ωmin(t2) = {2} and
Ωmax(t2) = {1, 3}; by S(t2), agent 3 receives information from agent 2 and may converge to
agent 2 in finite time t3 − t2, and we may have Ωmin(t3) = {2, 3} and Ωmax(t3) = {1}. This
pattern will repeat following the periodical sensing/communication matrix sequence {S(ti)}. In
other words, though within time interval [t0, t3), the communication topology is complete, con-
traction mapping is not established since we have xmax(t3) = xmax(t0) and xmin(t3) = xmin(t0)
from the above analysis. This is further illustrated in figure 1, in which we consider three agents
with controls (12) and gain αij(t) are chosen based on (11), simulation parameters are given as
t3k+i− t3k+i−1 = 0.1, i = 1, 2, k = 0, 1, · · · , and initial conditions x1(t0) = 0.01, x2(t0) = −0.01,
and x3(t0) = 0.1. Apparently, no consensus is reached. 3

4.2.2 Design of New Discontinuous Cooperative Controls

As shown in examples 1, standard network topology based control gain design for (12) no longer
implies the consensus of multiagent systems, even with the most-restrictive network connectivity
condition (that is, fixed and undirected communication). In this subsection, in order to ensure the
multiagent systems consensus with control (12) under the least restrictive sensing/communication
condition (that is, sequential completeness of {S(tsk}), we propose a new nonlinear piecewise gain
design. The convergence of the overall closed-loop systems is proved by developing a contraction
mapping method for multiagent systems.

Theorem 1 Consider the multiagent system (8) under cooperative control (12). Assume that sens-
ing/communication matrix sequence {S(tsk)} is uniformly sequentially complete∗. Let the nonlin-
ear gain αlj be designed as follows: for any agent l,

∗The time-varying sensing/communication topology is considered here. If the topology becomes fixed after certain
time, we can treat it as a special case of switching sensing/communication sequence S(tsk) with c̄t being any positive
constant.
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Figure 1: System responses

1) if xl(tsk) = maxj∈Nl
xj(t

s
k) = minj∈Nl

xj(t
s
k), then αlj(t

s
k) can be any bounded positive

value.

2) if xl(tsk) ≥ maxj∈Nl
xj(t

s
k), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

xl(t
s
k)−minj∈Nl

xj(t
s
k)

ct
(13)

3) if xl(tsk) ≤ minj∈Nl
xj(t

s
k), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

maxj∈Nl
xj(t

s
k)− xl(tsk)

ct
(14)

4) if minj∈Nl
xj(t

s
k) < xl(t

s
k) < maxj∈Nl

xj(t
s
k), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) < min

(
maxj∈Nl

xj(tsk)−xl(tsk)

ct
,

xl(t
s
k)−minj∈Nl

xj(tsk)

ct

)
(15)

Then consensus of system (8) is asymptotically achieved.

Proof: See [26].
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Theorem 1 provides a general set of sufficient gain design conditions for the asymptotical stability
of discontinuous multiagent systems with directed and switching sensing/communication topolo-
gies. The nonlinear gain design conditions (13) to (15) are imposed for the purpose of avoiding
the possible states oscillation due to the finite time state reachability of dynamical systems driven
by discontinuous functions under certain communication topologies.

The result in theorem 1 can be extended to the case with communication delays. That is, In the
presence of sensing/communication delays, the cooperative control in (12) becomes

ul(t) =
n∑
j=1

αlj(slj, xj(t
s
k − τlj))sgn(xj(t− τlj)− xl(t)), t ∈ [tsk, t

s
k+1), (16)

where τlj ∈ [0, r] are time delays incurred during transmission with r being the upper bound on
latencies of information transmission over the network. The following theorem is in the sequel.

Theorem 2 [26] Consider the multiagent system (8) under cooperative control (16). Assume that
sensing/communication matrix sequence of {S(tsk)} is sequentially complete. Let the nonlinear
gain αlj be designed as follows: for any agent l,

1) if xl(tsk) = maxj∈Nl
xj(t

s
k − τlj) = minj∈Nl

xj(t
s
k − τlj), then αlj(tsk) can be any bounded

positive values.

2) if xl(tsk) ≥ maxj∈Nl
xj(t

s
k − τlj), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

xl(t
s
k)−minj∈Nl

xj(t
s
k − τlj)

max{ct, r}
(17)

3) if xl(tsk) ≤ minj∈Nl
xj(t

s
k − τlj), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

maxj∈Nl
xj(t

s
k − τlj)− xl(tsk)

max{ct, r}
(18)

4) if minj∈Nl
xj(t

s
k − τlj) < xl(t

s
k) < maxj∈Nl

xj(t
s
k − τlj), let αlj(tsk) be selected to satisfy the

inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) < min

(
maxj∈Nl

xj(tsk−τlj)−xl(tsk)

max{ct,r} ,
xl(t

s
k)−minj∈Nl

xj(tsk−τlj)

max{ct,r}

)
(19)

Then consensus of system (8) is asymptotically achieved.
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Figure 2: System responses

4.2.3 Simulation Results and Experimental Testing

Let us reconsider example 1 for the consensus of three agents with control (12) under the sens-
ing/communication topologies S(t3k), S(t3k+1) and S(t3k+2). We choose the nonlinear piecewise
constant gain αij based on theorem 1. Under the same simulation conditions, system responses are
shown in figure 2, and consensus is reached.

To further illustrate the benefit of introducing discontinuous dynamics in multiagent systems, the
underwater sonar data transmission testing was conducted at the Wave Laboratory, Embry-Riddle
Aeronautical University. As shown in figure 3, a wave tank is used as the testbed and wave maker
generates the noise environment. Two sonar communication transducers are used for sending and
receiving data. 100 sets of data are used in the testing under two scenarios of direct position data
transmission and indirect position data transmission. That is, in the scenario of indirect position
data transmission, the sign of data (binary number) was transmitted. Figures 4 and 5 show the
testing resulting for two scenarios, respectively. The transmitting and receiving speed is S5/R5 =
13bits/s. It is apparent that the error rate with indirect data transmission is much lower.

5.0 RESULTS AND DISCUSSION: OPTIMAL AND ADAPTIVE MULTI-
AGENT COORDINATION

In this section, we present three results on optimal and adaptive multiagent coordination. The first
result is on the design of a practically implementable approximately adaptive neural cooperative
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Figure 3: Wave Tank

Figure 4: Direct Position Data Transmission
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Figure 5: Indirect Position Data Transmission

control for multiagent systems based on online approximate dynamic programming. The second
one is on the design of optimal cooperative control based approximate Q-functions. The third one
is on a new distributed adaptive cooperative control method for consensus tracking of multiagent
systems with model uncertainties.

5.1 Value Function Based Multiagent Policy Iteration

In the study of cooperative control of multiagent systems, fruitful results for cooperative control
design have been obtained for first-order linear systems [7, 17, 9, 6, 20], for second-order linear
systems [23], for high-order linear systems [16, 28], and for nonlinear systems [11, 10, 12, 14,
4, 29, 26], few results are available for optimal cooperative control design. There appeared some
recent work in the study of optimal cooperative control, such as those in [22, 1, 3, 15]. Nonetheless,
it is still a challenge to systematically address the optimal cooperative control problem for more
general nonlinear multiagent systems, particularly, in the presence of model uncertainties.

The result reported in this section aims to deal with such a challenge. For multiagent optimal co-
operative control, the key issue is how to establish an optimality equation and find its solution in
real time. We tackle this problem by considering a general class of feedback linearizable nonlinear
multiagent systems. We assume that there exist admissible cooperative controls for such kind of
multiagent systems under the complete sensing/communication condition [16]. The fixed sens-
ing/communication topology is imposed for ease of design. The case for more complicated time-
varying sensing communication topology will be treated in future work. The optimal cooperative

13



control problem is then formulated as making all systems achieve consensus while minimizing the
individual sensing/communication topology dependent cost functions. It is shown that the optimal
solution to the defined problem requires to solve a multiagent Hamilton-Jacobi-Bellman (HJB)
equation. To avoid the obstacles in analytically solving multiagent HJB equation, we extend the
online policy iteration approach in [21][25] to the multiagent case, and employ radial basis func-
tion (RBF) neural networks to approximate value functions at each iteration. Through seeking the
least-squares solution to estimate the optimal neural weights, a new approximately adaptive multi-
agent policy iteration algorithm is proposed. It is further shown that the proposed adaptive optimal
cooperative control approximately solves the posed optimal consensus problem. Simulation results
are provided to illustrate the effectiveness of the proposed optimal design.

5.1.1 Problem Formulation

Consider a multiagent system which hasN members and each agent assumes the general nonlinear
dynamics

ẋi = fi(xi) + gi(xi)ui, (20)

where i ∈ Ω
4
= {1, · · · , N}, xi(t) ∈ <n is the system state, ui ∈ <m is the control input to be

designed, fi, gi : <n 7→ <n are locally Lipschitz continuous functions.

The objective is to design an optimal cooperative control ui(t) to achieve the consensus of the
multiagent system (20) such that

lim
t→∞

xi(t) = x∗, ∀i, (21)

while minimizing the following individual cost function for each agent i,

Ji(ui;xi(t0), sijxj(t0)) =

∫ ∞
t0

(
N∑
j=1

(xi − xj)T sijQij(xi − xj) + uTi Riui

)
dt, (22)

where x∗ is some constant denoting the consensus value, Qij and Ri are symmetric and positive
definite matrices, and sij (defined in equation (6)) is a binary number describing the availability of
the sensing/communication information exchange between the agent i and the agent j.

It should be noted that the individual cost function defined in (22) is related to the measurement of
closeness of xi to xj and control effort of agent i. In contrast, a multiagent differential graphical
game problem was defined in [24], in which a cooperative performance index was imposed by
including the terms related to control efforts of neighboring agents. Here we are not looking into
the team performance index as formulated in cooperative game based solution. Instead, we deal
with the optimal solution by looking into minimizing individual performance defined in (22).

5.1.2 On the design of Approximately Adaptive Cooperative Optimal Control

Multiagent HJB Equation: The design starts with the development of multiagent HJB equations.
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Recall that the cost function for agent i is defined in (22), which may be rewritten as

Ji(ui;xi(t0), sijxj(t0)) =

∫ ∞
t0

(∑
j∈Ni

(xi − xj)TQij(xi − xj) + uTi Riui

)
dt, (23)

where Ni = {j ∈ Ω|sij 6= 0} denotes the neighbor set of agent i. The following lemma is
instrumental in developing the multiagent Hamilton-Jacobi-Bellman (HJB) equation.

Lemma 1 For admissible cooperative control ui(t), if there exists a positive definite continuously
differentiable function Vi(xi, sijxj;ui) satisfying the following property

∂V T
i

∂xi
(f(xi) + g(xi)ui) +

∑
j∈Nj

∂V T
j

∂xj
(f(xj) + g(xj)uj)

+
∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi Riui = 0 (24)

and the boundary condition Vi(xi(∞), sijxj(∞);ui) = 0, then Vi(xi, sijxj;ui) is the value func-
tion for system (20) for all t, and

Vi(xi(t0), sijxj(t0);ui) = Ji(ui;xi(t0), sijxj(t0)) (25)

It follows from lemma 1 and Bellman’s principle of optimality, we know that the optimal value
function V ∗i (xi(t), sijxj(t)) approximately satisfies for small ∆→ 0

V ∗i (xi(t), sijxj(t)) ' min
ui

[l(xi(t), xj(t), ui)∆ + V ∗i (xi(t+ ∆), sijxj(t+ ∆)], (26)

where l(xi(t), xj(t), ui)
4
=
∑

j∈Ni
(xi− xj)TQij(xi− xj) + uTi Riui, xi(t+ ∆) ' xi(t) + (f(xi) +

g(xi)ui)∆, and xj(t+ ∆) ' xj(t) + (f(xj) + g(xj)uj)∆.

The corresponding optimal cooperative control can be derived as

u∗i = −1

2
R−1
i gTi

∂V ∗i
∂xi

(27)

and the mutliagent HJB equation is

0 =
∑
j∈Ni

(xj − xi)TQij(xj − xi) +
∂V ∗Ti
∂xi

f(xi)−
1

4

∂V ∗Ti
∂xi

g(xi)R
−1
i g(xi)

T ∂V
∗
i

∂xi

+
∑
j∈Ni

∂V ∗Ti
∂xi

(f(xj) + g(xj)uj), (28)
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with the associated boundary condition V ∗i (x∗i , sijx
∗
j) = 0, which requires that the optimal value

must be null when evaluated on an extremal trajectory (all agents in the set {i,Ni} reach consen-
sus.)

The solution to (28) would provide the optimal cooperative control in (27). However, it is difficult
to solve mainly for two reasons. First, equation (28) is a nonlinear partial differential equation,
and it is in general impossible to solve this equation in analytic form. Second, the coupling terms∑

j∈Ni

∂V ∗Ti

∂xi
(f(xj) + g(xj)uj) cause extra difficulty due to involvement of uj which may require

information propagation from agents not in the neighboring set Ni.
The Proposed Multiagent Policy Iteration Algorithm: The proposed multiagent policy iteration
algorithm consists of the following two steps:

Step 1: Policy evaluation. Find an admissible cooperative control policy ui,0(xi, sijxj). For any
integer l ≥ 0 denoting the iteration index, solve for Vi,l(xi, sijxj;ui,l) using

0 =
∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l +
∂V T

i,l

∂xi
(f(xi) + g(xi)ui,l)

+
∑
j∈Ni

∂V T
i,l

∂xj
(f(xj) + g(xj)uj,l), (29)

with Vi,l(x∗, sijx∗) = 0.

Step 2: Policy improvement. Update the control policy by

ui,l+1 = −1

2
R−1
i gTi

∂Vi,l
∂xi

(30)

The convergence of the multiagent policy iteration algorithm given in (29) and (30) is summarized
into the following theorem.

Theorem 3 If a sequence of pairs {Vi,l, ui,l+1} is generated by (29) and (30), then the correspond-
ing value function Vi,l satisfying

Vi,l+1 ≤ Vi,l (31)

and
lim
l→∞

Vi,l = V ∗i (32)

Proof: See [31].

For the ease of implementation, the policy evaluation step in the proposed multiagent policy
iteration algorithm can be replaced by following equation (33) for solving for Vi,l based on the
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available information xi(t), xj(t) and ui,l(t) during the time interval [t, t+ T ].

Vi,l(xi(t), sijxj(t);ui,l(t)) =

∫ t+T

t

(∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

)
dt

+Vi,l(xi(t+ T ), sijxj(t+ T );ui,l(t+ T )), (33)

where T > 0 represents certain time interval.

Approximately Adaptive Cooperative Optimal Control: A significant advantage of the pro-
posed multiagent policy iteration algorithm is that it iteratively generates a sequence of pairs
{Vi,l, ui,l+1} through (33) and (30) by only using the available local information xi, xj and ui for
agent i, which monotonically converges to the optimal value V ∗i and u∗i . It is apparent that the key
is to solve for Vi,l from (33). For the unknown value functions Vi,l(xi, sijxj), we use the following
neural network approximator.

Vi,l(xi, sijxj) = ΦT
i,l(x̄i)θ

∗
i,l + ωi,l(x̄i), ∀x̄i ∈ Ωi (34)

where x̄i = [si1x1, si2x2, · · · , xi, · · · , sijxj, · · · , siNxN ]T , θ∗i,l ∈ Rli is an unknown constant pa-
rameter vector, the neural network node number li > 1, ωi,l(x̄i) is the approximation error, and
Φi,l(x̄i) = [φi1,l, φi2,l, · · · , φili ,l]

T is the known basis function vector.

Upon using the function approximator (34), the policy evaluation equation in (33) becomes∫ t+T

t

(∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

)
dt = [Φi,l(x̄i(t))− Φi,l(x̄i(t+ T ))]T θ∗i,l

+ω̄i,l(t), (35)

where ω̄i,l(t) = ωi,l(t)− ωi,l(t+ T ).

It follows from (35) that θ∗i,l provides the best approximate solution for the policy evaluation.
However, its value is unknown, and needs to identified online. Let θi,l(t) be the estimate of θ∗i,l,
and equation (35) becomes∫ t+T

t

(∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

)
dt

= [Φi,l(x̄i(t))− Φi,l(x̄i(t+ T ))]T θi,l(t) + ei,l(t), (36)

where ei,l(t) = [Φi,l(x̄i(t)) − Φi,l(x̄i(t + T ))]T θ̃i,l(t) + ω̄i,l(t), θ̃i,l(t) = θ∗i,l − θi,l(t). Thus, given
any admissible cooperative control, the parameter θi,l should be chosen to minimize the squared
approximation residual error e2

i,l(t). As θi,l(t)→ θ∗i,l, it is obvious that ei,l(t)→ ω̄i,l.

In what follows, we present the proposed adaptive law for θi,l using the least-squares estimation.
Let us define

zi(tk) =

∫ tk+1

tk

(∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

)
dt
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and
Ψi,l(tk) = Φi,l(x̄i(tk))− Φi,l(x̄i(tk+1)).

Substituting this into (36) yields

zi(tk) = Ψi,l(tk)
T θi,l + ei,l(tk) (37)

The model in (37) is the regression model for policy iteration and Ψi,l is called the regressor.
Through the observation interval [tk, tk+n], pairs of observations and regressors {(zi(tk+µ), Ψi,l(tk+µ)),
µ = 0, 1, n−1} are obtained by using control policy ui,l. The parameter θi,l will be chosen to min-
imize the least-squares loss function

L(θi,l, tk) =
1

2

n−1∑
µ=1

(
zi(tk+µ)−Ψi,l(tk+µ)T θi,l

)2
.

To this end, standard least-squares estimation algorithm renders

θi,l =
(
ΞT
i,lΞi,l

)−1
ΞT
i,lZi,l (38)

where Zi,l = [zi(tk), zi(tk+1), · · · , zi(tk+n−1)]T , and Ξi,l = [ΨT
i,l(tk), · · · ,ΨT

i,l(tk+n−1)]T . Thus,

according to policy improvement step in (30), and noting ∂Vi,l
∂xi

=
∂ΦT

i,l

∂xi
θi,l the control law is

ui,l+1 = −1

2
R−1
i gTi

∂ΦT
i,l

∂xi
θi,l. (39)

The above results can be summarized into the following proposition.

Proposition 1 Under assumption of complete sensing/communication topology, the control law
(39) with adaptive law (38) approximately solves the optimal cooperative consensus problem for
multiagent nonlinear system (20) by minimizing the cost function (22).

In summary, the proposed approximately adaptive multiagent policy iteration (MPI) algorithm is
given in Algorithm 1.

Algorithm 1 Approximately Adaptive MPI Algorithm
1: Let l = 0. Given initial states xi(t0), sijxj(t0), let the initial admissible cooperative control

policy be ui,0.
2: Employ the control policy ui,l, and within the observation interval [tl×n, t(l+1)n−1], collect the

data pairs
{(zi(tl×n+µ),Ψi,0(tl×n+µ)), µ = 0, 1, n− 1}

3: Solve for θi,l from (38).
4: Solve for ui,l+1 from (39).
5: Let l← l + 1, and go to step 2, until

‖θi,l+1 − θi,l‖2 ≤ ε,

where ε > 0 is a sufficiently small predefined threshold.
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5.1.3 Simulation Results

To illustrate the proposed approximately adaptive cooperative control, we consider a simple mul-
tiagent system with 3 agents modeled by the following single integrators

ẋi = ui, i = 1, 2, 3 (40)

where xi ∈ <, and ui ∈ <. Let the sensing/communication topology among 3 agents be given by

S =

 1 1 0
0 1 1
1 0 1


Apparently, S matrix is complete, and admissible cooperative control exists for the consensus of
(40). Select the weight matrices in (22) as Qij = 1, Ri = 0.25 for simulation purpose. We use a
single neural node approximator for each value function Vi,l. Based on S matrix, we choose the
basic functions as Φ1,l = (x1 − x2)2, Φ2,l = (x2 − x3)2 and Φ3,l = (x3 − x1)2 for value functions
V1,l, V2,l and V3,l, respectively. System initial states are x1(0) = 0.5, x2(0) = 0.2 and x3(0) = 0.3.
Figure 6 shows that system states consensus is achieved, figure 7 displays the instantaneous cost
values. Figure 8 illustrates the optimal cooperative control inputs, and the convergence of neural
network weights estimates is shown in figure 9.
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Figure 6: Consensus of xi(t)
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Figure 7: Instantaneous cost values versus time
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Figure 8: Optimal cooperative controls
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Figure 9: Parameters of neural networks versus time

Simulation was also done for the following three agents with nonlinear models, and the corre-
sponding results in figures 10 to 13 illustrate the performance of the proposed optimal coordination
algorithm.

Agent 1: ẋ1 = −x1 + sin(x1) + u1

Agent 2: ẋ2 = −x2 − sin(x2) + u2

Agent 3: ẋ3 = u3

5.2 Approximate Q-Function for Multiagent Coordination

There are two main issues with the proposed value function based multiagent policy iteration
algorithm. First, the computation of ui,l+1 requires to know system dynamics gi. Second, the
implementation of estimation algorithm requires an excitation condition for matrix ΞT

i,lΞi,l, which
might cause difficult in selecting basis functions for linear approximators. To address those issues,
we propose the following new cooperative Q-iteration algorithm.
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Figure 10: System responses
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Figure 11: Cooperative control inputs
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Figure 12: Performance Index
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5.2.1 Problem Statement

Consider multiagent systems with more general nonaffine discrete-time model

xi(k + 1) = fi(xi(k), ui(k))

The individual cost function for agent i is

Vi(xi(k), sijxj(k)) =
∞∑
l=k

(
N∑
j=1

(xi(l)− xj(l))T sijQij(xi(l)− xj(l)) + uTi (l)Riui(l)

)

Q-function is a state-action value function, which gives the value obtained when starting from a
given state, applying a given action, and following a policy thereafter. The Q function for agent i
is given as follows:

Qi(xi(k), sijxj(k), ui(k)) =
N∑
j=1

(xi(k)− xj(k))T sijQij(xi(k)− xj(k)) + uTi (k)Riui(k)

+Vi(xi(k + 1), sijxj(k + 1), ui(k + 1))

Correspondingly, the optimal Q function id defined as

Q∗i (xi(k), sijxj(k), ui(k)) =
N∑
j=1

(xi(k)− xj(k))T sijQij(xi(k)− xj(k)) + uTi (k)Riui(k)

+V ∗i (xi(k + 1), sijxj(k + 1), ui(k + 1))

and the optimal cooperative coordination control protocol is

u∗i (xi(k), sijxj(k)) = argminuiQ
∗
i (xi(k), sijxj(k), ui(k))

5.2.2 Proposed Coordination Algorithm

To this end, the proposed Q function based approximate multiagent policy iteration algorithm is
summarized as two steps.

• Policy evaluation

– According to Bellman equation

Q+
i,l+1(xi(k), sijxj(k), ui,l(k)) =

N∑
j=1

(xi(k)− xj(k))T sijQij(xi(k)− xj(k))

+uTi,l(k)Riui,l(k) +Qi,l(fi, sijfj, ui,l(k))
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– The parameter vector θi,l+1 is obtained by a projection mapping P

θi,l+1 = P (Q+
i,l+1)

• Policy improvement
ui,l+1 = argminuiQi,l+1

Specifically, by using available on-line data xi(k), xj(k), ui(k), xi(k+ 1), ri(k+ 1), ui(k+ 1), the
following temporal difference Q-Iteration can be used in the multiagent Q-function policy iteration
algorithm

Qi,k+1(xi(k), ui(k)) = Qi,k(xi(k), ui(k)) + αk[ri(k + 1) + γQi,k(xi(k + 1), ui(k + 1))

−Qi,k(xi(k), ui(k))] (41)

However, for systems with large and continuous spaces, Q-functions in terms of state-action pairs
will have infinite number of pairs, there is no way to learn and explore all those. Therefore we
propose to use the parametric approximation of Q-functions, that is, let

Qi(xi, ui) = φTi (xi, sijxj, ui)θi

where φi basis functions, θi parameter vector to be estimated. To this end, the model-free approxi-
mate multiagent Q-learning algorithms can be summarized as follows.

1: Measure initial states xi(t0), sijxj(t0).
2: Initialize parameter vector, θi(0) = 0.
3: Let ui(0) = 0
4: For every time set k = 0, 1, 2, · · · , do
5: Apply ui(k), measure xi(k + 1), xj(k + 1), ri(k + 1)
6:

ui(k + 1) =
∂φi
∂ui

θi(k)

7:

θi(k + 1) = θi(k) + αk
[
ri(k + 1) + γφTi (xi(k + 1), ui(k + 1))θi(k)

−φTi (xi(k), ui(k))θi(k)
]
φi(xi(k), ui(k))

8: end for

5.2.3 Simulation Results

To illustrate the proposed design, we apply the approximate Q-learning algorithm to the consensus
control of the following three agents

xi(k + 1) = xi(k) + Tui(k), T = 0.05
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with the Sensing/Communication Topology

S =

 1 1 0
0 1 1
1 0 1


The reward function ri(k + 1) are

r1(k + 1) = −5(x2(k)− x1(k))2 − 0.01u1(k)2

r2(k + 1) = −5(x3(k)− x2(k))2 − 0.01u2(k)2

r3(k + 1) = −5(x1(k)− x3(k))2 − 0.01u3(k)2

and the approximate Q-functions

Q1(x1, u1) = −((x2 − x1)2 + (x2 − x1)u1 + u2
1)θ1

Q1(x2, u2) = −((x3 − x2)2 + (x3 − x2)u2 + u2
2)θ2

Q1(x3, u3) = −((x1 − x3)2 + (x1 − x3)u3 + u2
3)θ3

The corresponding cooperative controls are

u1(k) = − 1

2RD + 2θ1(k)
(x1(k)− x2(k))θ1(k)

u2(k) = − 1

2RD + 2θ2(k)
(x2(k)− x3(k))θ2(k)

u3(k) = − 1

2RD + 2θ3(k)
(x3(k)− x1(k))θ3(k)

with adaptation laws

θi(k + 1) = θi(k) + αk
[
ri(k + 1) + γφTi (xi(k + 1), ui(k + 1))θi(k)

−φTi (xi(k), ui(k))θi(k)
]
φi(xi(k), ui(k))

Simulation parameters: T = 0.05; QD = 10; RD = 5; γ = 0.98; α = 0.5. The simulation
results are shown in figures 14 - 17.

5.3 Adaptive Consensus Tracking for Uncertain Multiagent Systems

5.3.1 Problem Statement

Consider the multiagent systems in which the ith agent is described by the scalar differential equa-
tion

ẋi = aixi + giui (42)
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Figure 15: Cooperative control inputs
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where ai and gi are constants, xi ∈ < state, and ui ∈ R control input. We first consider the case of
ai being unknown and gi is known. For simplicity, we simply assume that gi = 1. Let the reference
trajectory be described by the first-order differential equation

ẋ0 = a0x0 + r0(t) (43)

where unknown constant a0 < 0, r0(t) is a piecewise-continuous bounded function of time pa-
rameterized by r0(t) = φT (t)w, where basis functions φ(t) = [φ1(t), φ2(t), · · · , φl(t)]T ∈ <l are
available to all agents, and parameters w = [w1, w2, · · · , wl]T ∈ <l are unknown constants. The
control objective is to design adaptive control ui such that

lim
t→∞

xi(t) = x0(t).

5.3.2 Proposed Adaptive Control

To proceed, let us define the Laplacian matrix L for the sensing/communication S(t) as follows.

L = diag

{
n∑
j=1

sij

}
− S(t)

We also assume that the reference state x0(t) is available to at least one agent through sens-
ing/communication detection, and this is described by a diagonal matrix B given below

B = diag {bi0}

where bi0 > 0 means that agent i has the information x0(t). Let âi be the parameter estimate of
a∗i = a0 − ai for agent i, ŵij be the estimate of wj by agent i, ŵi = [ŵi1, · · · , ŵil]T . The control
input for agent i is chosen to be

ui = âixi + φT (t)ŵi (44)

Defining the tracking error X̃ = [x̃1, · · · , x̃n]T = [x1 − x0, · · · , xn − x0]T , the parameter errors
ãi = âi − a∗i , w̃i = ŵi − wi = [w̃i1, · · · , w̃il]T , we obtain the error equation as

˙̃xi = a0x̃i + ãixi + φT w̃i (45)

and the overall error dynamics as

˙̃X = a0X̃ + X ã+
l∑

i=1

Φiw̃∗i (46)

where ã = [ã1, · · · , ãn]T , w̃∗i = [w̃1i, · · · , w̃ni]T ,X = diag[x1, · · · , xn], and Φ1 = diag[φi(t), · · · ,
φi(t), · · · , φi(t)].
We further define consensus error ei =

∑
j∈Ni

sij(xj − xi) + bi0(x0 − xi). It thus can be verified
that

(L+B)X̃ = [e1, · · · , ei, · · · , en]T (47)
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Let us consider the Lyapunov-like function

V =
1

2
X̃T (L+B)X̃ +

1

2

n∑
i=1

Γai(ãi)
2 +

1

2

l∑
j=1

n∑
i=1

Γwij
(w̃ij)

2 (48)

where Γai > 0, Γwij
> 0. The time derivative of V along the trajectories of (46) is given by

V̇ = X̃T (L+B) ˙̃X +
n∑
i=1

Γai ãi ˙̃ai +
l∑

j=1

n∑
i=1

Γwij
w̃ij ˙̃wij (49)

Choosing the adaptive laws

˙̂ai = Γ−1
ai
xi1ei (50)

˙̂wij = Γ−1
wij
φjei (51)

for i = 1, · · · , n, j = 1, · · · , l, and then we obtain

V̇ = a0X̃
T (L+B)X̃ ≤ 0 (52)

which implies X̃ , âi, ŵij ∈ L∞. Also X̃ ∈ L2 and Ẋ ∈ L∞, which further implies that X̃ → 0 as
t→∞. The main result is summarized into the following theorem.

Theorem 4 Consider the multiagent system in (42). If the sensing/communication topology S(t)
is connected, andB has at least one entry being nonzero, then the distributed adaptive cooperative
control in (44) together with the adaptive laws in (50) and (51) guarantee the boundedness of all
signals of the closed-loop system and achieve asymptotical consensus tracking.

5.3.3 Simulation Results

The proposed adaptive cooperative control is simulated for the following multiagent system with
three agents

ẋ1 = 2x1 + u1

ẋ2 = x2 + u2

ẋ3 = 5x3 + u3

Assume the Informed Agent: ẋ0 = −x0+r(t), r(t) = 2 cos(t)+3 cos(2t). The sensing/communication
matrix S and leader information matrix B are given by

S =

 1 1 0
1 1 1
0 1 1

 , B =

 1 0 0
0 0 0
0 0 0


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The corresponding adaptive consensus control is

ui = âixi + ŵi1 cos(t) + ŵi2 cos(2t)

withe adaptive laws
˙̂ai = kxi(

∑
j

sij(xj − xi) + bi0(x0 − xi))

˙̂wi1 = k cos(t)(
∑
j

sij(xj − xi) + bi0(x0 − xi))

˙̂wi2 = k cos(2t)(
∑
j

sij(xj − xi) + bi0(x0 − xi))

Simulation results are given in figures 18-23, which illustrate the effectiveness of the proposed
design.
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Figure 18: The trajectory of informed agent

6.0 RESULTS AND DISCUSSION: MULTIAGENT COORDINATION AP-
PLICATIONS

In this section, we present two case studies for multiagent coordination tasks. One is for formation
control of mobile robots, and the other is for coverage control of mobile agents.
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Figure 19: The trajectories of agents
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Figure 20: Adaptive cooperative controls
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Figure 21: Parameter estimate for w1
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Figure 22: Parameter estimate for w2
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Figure 23: Parameter estimate for a

6.1 Multiagent Formation Control

6.1.1 Problem Statement

Consider a network of multiple nonholonomic mobile robots with the individual system dynamics
given by

ẋi = vi cos θi,
ẏi = vi sin θi,

θ̇i = ωi

(53)

where i ∈ Ω
4
= {1, · · · , n}, (xi, yi) ∈ <2 denotes the ith robot’s position, θi is the orientation,

vi ∈ < driving velocity, and ωi ∈ < the steering velocity.

The design objective of this paper is to coordinate the motion of individual robots to follow a
desired trajectory contour while maintaining certain prescribed geometric formation shape through
local information exchange among robots. By taking the whole group of mobile robots as a virtual
body moving along the desired trajectory, formation shape of robots in the group can be determined
by a set of local coordinates with reference to the moving frame attached to the desired trajectory.

More specifically, let q0(t) = [x0(t), y0(t)]T ∈ <2 be the desired trajectory for the group motion,
the moving frame F(t) attached to q0(t) can be defined by the following orthonormal vectors e1(t)
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and e2(t)

e1(t) =

[
e11(t)
e12(t)

]
=


ẋ0(t)√

[ẋ0(t)]2 + [ẏ0(t)]2

ẏ0(t)√
[ẋ0(t)]2 + [ẏ0(t)]2

 ,

e2(t) =

[
e21(t)
e22(t)

]
=

 −
ẏ0(t)√

[ẋ0(t)]2 + [ẏ0(t)]2

ẋ0(t)√
[ẋ0(t)]2 + [ẏ0(t)]2

 .
Accordingly, any formation consisting of n robot positions inF(t) can be expressed as {P1, · · · , Pn}
with

Pi(t) = αi1e1(t) + αi2e2(t), (54)

where αij are constants of determining the formation. To this end, the formation control objective
can be recast as to design the control laws vi(t) and ωi(t) for the ith robot such that

lim
t→∞

[[
xi(t)
yi(t)

]
− q0(t)− Pi(t)

]
= 0. (55)

6.1.2 Proposed Linearization-Based Control

To facilitate the control design, the robot model (71) is first converted into a linear model as

żi1 = ui1, żi2 = ui2 (56)

where zi1 = xi +R cos θi, zi2 = yi +R sin θi, and[
vi
ωi

]
=

[
cos θi sin θi
− sin θi

R
cos θi
R

] [
ui1
ui2

]
To this end, the proposal new coordination control is of the form

ui1 =
∑
j∈Ni

αij(t)sgn

(
zj1 − zi1 +

2∑
l=1

(ail − ajl)el

)
+ q̇0 + ṗdi (57)

ui2 =
∑
j∈Ni

αij(t)sgn

(
zj2 − zi2 +

2∑
l=1

(ail − ajl)el

)
+ q̇0 + ṗdi (58)

in which the control gains are chosen based on the following guidelines: for any agent l,

1) if zl(tsk) = maxj∈Nl
zj(t

s
k) = minj∈Nl

zj(t
s
k), then αlj(tsk) can be any bounded positive value.
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2) if zl(tsk) ≥ maxj∈Nl
xj(t

s
k), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

zl(t
s
k)−minj∈Nl

zj(t
s
k)

ct

3) if zl(tsk) ≤ minj∈Nl
zj(t

s
k), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

maxj∈Nl
zj(t

s
k)− zl(tsk)

ct

4) if minj∈Nl
zj(t

s
k) < zl(t

s
k) < maxj∈Nl

zj(t
s
k), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) < min

(
maxj∈Nl

zj(tsk)−zl(tsk)

ct
,

zl(t
s
k)−minj∈Nl

zj(tsk)

ct

)

6.1.3 Simulation and Experimental Results

We conducted the experimental study to verify the proposed design. In the experiment, we use
4 Amigobot robots (see figure 24) and the sensing/communication topology among robots is as-
sumed to be

S =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


The testing results validated the proposed design.

Figures 25 and 26 show the snapshots of experiments conducted using AmigoBots at Robotics
Lab, Bethune-Cookman University.

Figure 26 shows the formation shape changing from rectangle to line, then to rhombus, and finally
converging to one point.

6.1.4 Proposed Nonlinear Model-Based Control with Limited Information of Desired Tra-
jectory

It is noted that the control objective defined in (55) can be achieved through the standard tracking
control design for individual robots if the desired trajectory q0(t) and its derivative q̇0(t) are avail-
able to every robot. However, such a design may not be robust in the presence of disturbance and
noise measurements due to the lack of coordination among robots. On the other hand, the desired
trajectory q0(t) may be known only by some of robots in the group. Therefore, it is desirable to de-
sign distributed formation control law for the ith robot based on information exchange and relative
position measurement between robots within its sensing/communication range.
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Figure 24: P3-AT and AmigoBots

Figure 25: Rectangle-to-line and line-to-rectangle formation control with undirected communica-
tion
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Figure 26: Formation changes from rectangle to line to rhombus and ends with a point with undi-
rected communication

Distributed Observers for Desired Trajectory

The proposed new formation control is done with the aid of distributed observes for the estimation
of q0(t). The proposed distributed observer is of the form (for t ∈ [tsk, t

s
k+1))

ẋi,0(t) =
∑
j∈Ni

αijsgn(xj,0(tsk)− xi,0(tsk)) + αi0si0sgn(x0(tsk)− xi,0(tsk)) (59)

ẏi,0(t) =
∑
j∈Ni

αijsgn(yj,0(tsk)− yi,0(tsk)) + αi0si0sgn(y0(tsk)− yi,0(tsk)) (60)

θ̇i,0(t) =
∑
j∈Ni

αijsgn(θj,0(tsk)− θi,0(tsk)) + αi0si0sgn(θ0(tsk)− θi,0(tsk)) (61)

where xi,0(t), yi,0(t) and θi,0(t) are the ith robot’s estimate of x0(t), y0(t), and θ0(t), respectively,
si0 = 1 if and only if the ith robot has the direct access to the information of the desired trajectory,
αi,j and αi0 are piecewise constant control gains to be designed, and sgn(·) function is defined as

sgn(z) =


1, z > 0
0, z = 0
−1, z < 0

Nonlinear Formation Control with Limited Information of a Desired Trajectory

The proposed new design is summarized into the following proposition.
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Theorem 5 Consider a group of nonholonomic mobile robots. Let the distributed cooperative
control be for t ∈ [t0 + kTs, t0 + (k + 1)Ts)

ui1(t) = aki1 + aki2 sinω(t− t0 − kTs) (62)
ui2(t) = bki1 + bki2 cosω(t− t0 − kTs) (63)

where ω = 2π
Ts

, aki2 6= 0 can be any constant, and

aki1 =
1

Ts

n∑
j=1

Gij(k)[xj(k)− xi(k)− xdj (k) + xdi (k + 1)], (64)

bki1 =
1

Ts

n∑
j=1

Gij(k)[zj2(k)− zi2(k)], (65)

bki2 =
2ω

aki2Ts

[
n∑
j=1

Gij(k)[yj(k)− yi(k)− ydj (k) + ydi (k + 1)]− aki1b
k
i1T

2
s

2

−aki1zi2(k)Ts +
aki2b

k
i1Ts
ω

]
. (66)

with

Gij(k) =
sij(k)∑n
η=1 siη(k)

, j = 1, · · · , n. (67)

xdi (k) = xi,0(k) + αi1 cos θi,0(k)− αi2 sin θi,0(k)

ydi (k) = yi,0(k) + αi1 sin θi,0(k) + αi2 cos θi,0(k)

xdi (k + 1) = xi,0(k + 1) + αi1 cos θi,0(k + 1)− αi2 sin θi,0(k + 1)

ydi (k + 1) = yi,0(k + 1) + αi1 sin θi,0(k + 1) + αi2 cos θi,0(k + 1)

where xi,0, yi,0, and θi,0 are governed by (59), (60), and (61), respectively, and

xi,0(k + 1) = xi,0(k) + Ts(
∑
j∈Ni

αijsgn(xj,0(k)− xi,0(k)) + αi0si0sgn(x0(k)− xi,0(k)))(68)

yi,0(k + 1) = yi,0(k) + Ts(
∑
j∈Ni

αijsgn(yj,0(k)− yi,0(k)) + αi0si0sgn(y0(k)− yi,0(k))) (69)

θi,0(k + 1) = θi,0(k) + Ts(
∑
j∈Ni

αijsgn(θj,0(k)− θi,0(k)) + αi0si0sgn(θ0(k)− θi,0(k))) (70)

Then the formation control objective (55) is achieved.
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6.1.5 Simulation Results

We simulate the proposed formation control by considering three mobile robots moving according
to a circular contour while maintaining a right triangle formation.

Let q0(t) be [sin(0.2t),− cos(0.2t)]T . The corresponding moving frame is given by e1(t) =
[cos(0.2t),− sin(0.2t)]T , e2(t) = [sin(0.2t), cos(0.2t)]T . The formation parameters are given
by α11 = 0, α12 = 0, α21 = −1, α22 = 1, α31 = −1, α32 = −1. The initial conditions
[xi(t0), yi(t0), θi(t0)] are given by [0.1, 0.2, π/4], [1,−2, π/6], [−1,−1.5, 0]T for i = 1, 2, 3, re-
spectively, aki2 = 0.2 and Ts = 0.1. Figure 27 illustrates the phase portrait under the proposed
controls proposed controls (62) and (63).

Figure 27: Phase portrait of three robots

6.2 Multiagent Coverage Control

Coverage control aims to address the issue of deployment of sensor networks for tasks like mon-
itoring an environment, environment modeling, search and rescue, and so on. In recent years,
mobile autonomous agents have been applied in the construction of mobile sensor networks due to
their flexibility and resilience to dynamically changing environments.

In this section, we propose a distributed deployment algorithm for a group of mobile robots
to cover a convex region. The individual mobile robot considered has kinematic constraints,
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and may only exchange information locally with its neighboring counterparts due to its lim-
ited sensing/communication range. The proposed deployment algorithm iteratively updates the
Voronoi partition through local information exchange, and then moves toward its centroid based
on centroid-driven control algorithms.

6.2.1 Problem Statement

To solve the autonomous deployment problem, we make the following assumptions without loss
of generality:

• The robots have the knowledge of the area to be covered and sensed.

• The robots have limited sensing ranges rs, and limited communication ranges rc. That is,
only points in a circle centered at the current robot’s position and of radius rs can be sensed
by the robot. In addition, at time t, robot i can communicate with its neighboring robot j,
j ∈ Ni(t) = {j|dij ≤ rc}, where dij is the distance between the ith robot and the jth robot.

• For a given region, there are enough number of n mobile robotic agents to completely cover
the area.

To this end, the multiagent coverage control problem is formulated as designing a distributed de-
ployment control algorithm to move the robots towards the centroid of the corresponding parti-
tioned regions based on the minimization of certain coverage cost functions. Under the aforemen-
tioned assumptions, the coverage control problem has at least one solution. In this section, a new
paradigm is proposed to deploy the robots by assuming limited sensing and communication ranges.

6.2.2 Proposed Coverage Control

The kinematic model of mobile robotic agent carrying sensors is described by the following equa-
tions:

ẋi = vi cos θi,
ẏi = vi sin θi,

θ̇i = ωi

(71)

where i ∈ Ω
4
= {1, · · · , n}, pi = [xi, yi]

T ∈ <2 denotes the ith robot’s position, θi is the orien-
tation, vi ∈ < driving velocity, and ωi ∈ < the steering velocity. The optimal coverage control
problem is then defined as designing distributed cooperative control vi and ωi such that agents
converge to optimal positions p∗i by minimizing certain cost function.

The proposed deployment algorithm is a recursive one. At each sampling time instant, each robot
first computes its Voronoi cell based on its communication with neighboring robots, then deter-
mine the centroid of its Voronoi region, and then moves towards it by employing a distributed
coordination algorithm.
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In what follows, we describe the basic idea of Voronoi partition based coverage control for mobile
robots. Let us denote an arbitrary point in the region Q as q. At each sampling time instant, the
agents will be able to generate the Voronoi partition of Q. That is, for agent i at position pi, its
Voronoi region satisfies

Vi = {q ∈ Q|‖q − pi‖ ≤ ‖q − pj‖, ∀j 6= i} (72)

Define cost function over the region as

J(p1, · · · , pn) =
n∑
i

∫
Vi

1

2
‖q − pi‖2φ(q)dq (73)

where φ(q) is a weighting function of importance over Q. The distance function 1
2
‖q − pi‖2 is

included in the cost function for the consideration of reducing energy consumed by a sensor’s
transceiver because it is generally a function of distance. In addition, the reliability of the informa-
tion at q measured by robot at pi will degrade with the increase of distance ‖q − pi‖2.

At each sampling time instant, the generation of Voronoi region Vi for robot i is based on the robots
in its neighboring set Ni. That is, robot i can only use the position information of the robots in its
communication range rc to compute Vi. This is a realistic situation since during the motion, the
robot could move in or out the communication range which is limited.

Once the Voronoi region is obtained, a simple control to drive the robot to the centroid of the
Voronoi region is to follow negative gradient of cost function J , that is,

− ∂J
∂pi

= −
∫
Vi

(q − pi)φ(q)dq

However, as discussed before, the kinematic model in (71) is nonlinear and may not be able to
follow the negative gradient due to velocity constraints. A simple way to avoid this issue is to
conduct input/output linearization by choosing a reference point off the robot center (xi, yi), that
is, let the cartesian coordinates of the off-center reference point be

pi1 = xi + b cos θi (74)
pi2 = yi + b sin θi (75)

where b > 0 is a constant. Differentiating (74) and (75) with respect to time, we have[
ṗi1
ṗi2

]
=

[
cos θ −b sin θ
sin θ b cos θ

] [
vi
ωi

]
4
= T (θ)

[
vi
ωi

]
4
=

[
ui1
ui2

]
(76)

To this end, the distributed deployment control for robot i is given by

ui
4
=

[
ui1
ui2

]
= − ∂J

∂pi
= −

∫
Vi

(q − pi)φ(q)dq = −MVi(CVi − pi) (77)
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where mass MVi is given by

MVi =

∫
Vi

φ(q)dq (78)

the first moment
LVi =

∫
Vi

qφ(q)dq (79)

and the centroid
CVi =

LVi
MVi

(80)

Once ui is obtained, the control inputs vi and ωi can be calculated by using inverse input transfor-
mation given below: [

vi
ωi

]
= T−1(θ)

[
ui1
ui2

]
.

6.2.3 Simulation Results

In this section, we simulate the proposed distributed deployment algorithm. Consider first the case
with 5 mobile robotic agents, and we assume fully connected communication topology. That is, at
each time instant, each robot has the position information of the rest members in the group. Figure
28 and 29 illustrate the initial location with Voronoi partition and the final position with Voronoi
partition, respectively. Figure 30 illustrates of the evolution of the robots.

In the 2nd case, we consider 10 robots with limited communication ranges. Assume that the initial
communication topology is defined by

C(0) =



1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 1


and changes subsequently based on system evolution. Figure 31 and 32 illustrate the initial loca-
tion with Voronoi partition and the final position with Voronoi partition, respectively. Figure 33
illustrates of the evolution of the robots.
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Figure 28: Initial location and Voronoi partition

Figure 29: Final location and Voronoi partition
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Figure 30: Evolution of the robots

Figure 31: Initial location and Voronoi partition
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Figure 32: Final location and Voronoi partition

Figure 33: Evolution of the robots
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7.0 CONCLUSIONS

In this report, we have presented a comprehensive description of the research results obtained
through this project. Specifically, technique details have been provided for three sets of multia-
gent coordination algorithms which solve the distributed task coordination problem while ensuring
system stability, accommodating the least-restrictive sensing/communication conditions, handling
system uncertainties, and guaranteeing near-optimal performance. Computer simulation and ex-
perimental results are presented to illustrate the effectiveness of the proposed algorithms.
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A Distributed Deployment Algorithm for Mobile Robotic Agents with
Limited Sensing/Communication Ranges

Jing Wang, Christopher Smith, Gennady Staskevich, and Brian Abbe

Abstract— In this paper, we propose a distributed deploy-
ment algorithm for a group of mobile robots to cover a
convex region. The individual mobile robot considered has
kinematic constraints, and may only exchange information
locally with its neighboring counterparts due to its limited
sensing/communication range. The proposed deployment algo-
rithm iteratively updates the Voronoi partition through local
information exchange, and then moves toward its centroid based
on centroid-drive control algorithms. Particularly, in addition to
gradient-based centroid-drive control algorithm in which input-
output linearization has been applied to robot model, a new
algorithm based on distributed consensus is proposed to directly
address the kinematic constraint associated with robot model.
Simulation results are provided to illustrate the effectiveness of
the proposed algorithm.

I. INTRODUCTION

Coverage control aims to address the issue of deployment
of sensor networks for tasks like monitoring an environment,
environment modeling, search and rescue, and so on [7][2].
In recent years, mobile autonomous agents have been applied
in the construction of mobile sensor networks [3][6][15][8]
due to their flexibility and resilience to dynamically changing
environments.

Generically, in solving coverage control problem using
multiple mobile agents, two fundamental issues have to be
addressed: i) how to optimally assign subregions for each
agent based on sensing/communication capabilities, online
updates about importance of the region to be surveyed,
and information exchange among agents; ii) how to design
control algorithms to drive agents to the desired deployment
locations. In addressing problem i), the typical method is to
generate Voronoi diagram for agents by minimizing certain
cost functions related to distances between the deployment
positions and the measuring points [3]. The importance of
region can be embedded into cost function through density
function, which could be analytically unknown and can
be adaptively estimated using measurement data [15]. For
problem ii), the standard gradient-based control can be used
if agents assume linear dynamics.

In this paper, we propose a distributed deployment algo-
rithm for a network of mobile robotic agents with kinematic
constraints, which is a common characteristic for typical
mobile robots such as differential drive robots and car-like
robots. In addition, we consider more realistic scenarios

J. Wang is with Faculty of Electrical and Computer Engineering, Bradley
University, Peoria, IL, 61625. C. Smith is a graduate student with Depart-
ment of Electrical and Computer Engineering, Bradley University, Peoria,
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13441. Email: jingwang@fsmail.bradley.edu This work
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of that robots have limited sensing/communication ranges,
and solving deployment problem through local informa-
tion exchange among agents. The proposed work relies
on the distributed coordination/consensus results for mul-
tiagent systems [11][10][12]. Distributed coordination of
multiagent systems has been an active research topics in
recent years. Fruitful results are available for the study of
cooperative control design and network connectivity analysis
[4][12][14][11]. In [11], we proposed sequential complete-
ness condition for sensing/communication matrix sequences
connectivity for ensuring coordination of multiple dynamical
systems. On the other hand, cooperative control and forma-
tion control have been studied extensively for both linear
and nonlinear dynamical systems [14][5]. However, there is
still a lot of work to be done for dealing with coordination
control of mobile robots with kinematic constraints.

The proposed deployment control algorithm in this paper
follows a two-step strategy. First, at each time instant,
Voronoi partition for each robot is generated based on robot’s
current position as well as the positions of robots in its com-
munication range. Then control algorithms are designed to
drive robots to centroids of Voronoi partitions. In particular, a
distributed centroid-drive algorithm is proposed by explicitly
taking into account kinematic model constraints for robots.
Unicycle robots are used, and the distributed control is based
on the transformation of unicycle into chained form [17][16].
Under the assumption of robots maintaining a sequentially
complete communication topology, the proposed distributed
deployment control algorithm solves the posed coverage
control problem. Simulation results are included to illustrate
the effectiveness of the proposed design.

II. PROBLEM FORMULATION

In this paper, we shall consider the problem of deploying
a fixed number of mobile robotic agents in a given convex
environment Q. An illustration example is shown in figure
1, in which three robots start from some initial positions,
and through coordination eventually move to points [1, 3]T ,
[2, 1]T , and [3, 3]T , respectively, to cover a square area Q =
4×4 unit2. Each robot has the sensing range rs = 2.2 unit.

To solve the autonomous deployment problem, we make
the following assumptions without loss of generality:
• The robots have the knowledge of the area to be covered

and sensed.
• The robots have limited sensing ranges rs, and limited

communication ranges rc. That is, only points in a circle
centered at the current robot’s position and of radius
rs can be sensed by the robot. In addition, at time t,
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Fig. 1. Deployment of 3 robots in a square area Q = 4 × 4 unit2 with
sensing range rs = 2.2 unit

robot i can communicate with its neighboring robot j,
j ∈ Ni(t) = {j|dij ≤ rc}, where dij is the distance
between the ith robot and the jth robot.

• For a given region, there are enough number of n mobile
robotic agents to completely cover the area.

To this end, the multiagent coverage control problem is
formulated as designing a distributed deployment control
algorithm to move the robots towards the centroid of the
corresponding partitioned regions based on the minimization
of certain coverage cost functions. Under the aforementioned
assumptions, the coverage control problem has at least one
solution. In this paper, a new paradigm is proposed to deploy
the robots by assuming limited sensing and communication
ranges.

A. Robot Modeling

The kinematic model of mobile robotic agent carrying
sensors is described by the following equations:

ẋi = vi cos θi,
ẏi = vi sin θi,

θ̇i = ωi

(1)

where i ∈ Ω
4
= {1, · · · , n}, pi = [xi, yi]

T ∈ <2 denotes
the ith robot’s position, θi is the orientation, vi ∈ < driving
velocity, and ωi ∈ < the steering velocity. The optimal cover-
age control problem is then defined as designing distributed
cooperative control vi and ωi such that agents converge to
optimal positions p∗i by minimizing certain cost function.

Remark 2.1: The model (1) has the so-called nonholo-
nomic constraints [9]. For such a system, there is no contin-
uous state feedback control to solve its stabilization problem
due to the violation of Brockett’s necessary condition [1].
Therefore, it becomes even more challenging to address the
optimal deployment problem of multiple mobile agents with
nonholonomic constrains.

III. PROPOSED DEPLOYMENT ALGORITHM

In this section we present a distributed deployment
algorithm for mobile robotic agents with limited sens-
ing/communication ranges. The proposed deployment algo-
rithm is a recursive one. At each sampling time instant,

each robot first computes its Voronoi cell based on its
communication with neighboring robots, then determine the
centroid of its Voronoi region, and then moves towards it by
employing a distributed coordination algorithm.

A. Voronoi Partition

In solving coverage control problem for sensor networks,
Voronoi diagram has been popular in generating the deploy-
ment positions for sensor nodes [3]. In what follows, we
describe the basic idea of Voronoi partition based coverage
control for mobile robots.

Let us denote an arbitrary point in the region Q as q.
At each sampling time instant, the agents will be able to
generate the Voronoi partition of Q. That is, for agent i at
position pi, its Voronoi region satisfies

Vi = {q ∈ Q|‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i} (2)

Define cost function over the region as

J(p1, · · · , pn) =
n∑
i

∫
Vi

1

2
‖q − pi‖2φ(q)dq (3)

where φ(q) is a weighting function of importance over Q.
The distance function 1

2‖q − pi‖2 is included in the cost
function for the consideration of reducing energy consumed
by a sensor’s transceiver because it is generally a function
of distance. In addition, the reliability of the information at
q measured by robot at pi will degrade with the increase of
distance ‖q − pi‖2.

At each sampling time instant, the generation of Voronoi
region Vi for robot i is based on the robots in its neighboring
set Ni. That is, robot i can only use the position information
of the robots in its communication range rc to compute Vi.
This is a realistic situation since during the motion, the robot
could move in or out the communication range which is
limited. It is apparent that, by only considering the robots
in its communication range, the obtained Voronoi partition
could be different. For instance, consider a robot at location
[2, 1]T computing its Voronoi region for a square area Q =
4×4 unit2. Figure 2 and figure 3 show the resulting Voronoi
region under 3 neighboring robots and 2 neighboring robots,
respectively.

Once the Voronoi region is obtained, a simple control to
drive the robot to the centroid of the Voronoi region is to
follow negative gradient of cost function J , that is,

− ∂J
∂pi

= −
∫
Vi

(q − pi)φ(q)dq

However, as discussed before, the kinematic model in (1)
is nonlinear and may not be able to follow the negative
gradient due to velocity constraints. A simple way to avoid
this issue is to conduct input/output linearization by choosing
a reference point off the robot center (xi, yi), that is, let the
cartesian coordinates of the off-center reference point be

pi1 = xi + b cos θi (4)
pi2 = yi + b sin θi (5)
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Fig. 2. Voronoi region for robot at [2, 1]T with 3 neighboring robots

Fig. 3. Voronoi region for robot at [2, 1]T with 2 neighboring robots

where b > 0 is a constant. Differentiating (4) and (5) with
respect to time, we have[

ṗi1
ṗi2

]
=

[
cos θ −b sin θ
sin θ b cos θ

] [
vi
ωi

]
4
= T (θ)

[
vi
ωi

]
4
=

[
ui1
ui2

]
(6)

To this end, the distributed deployment control for robot i is
given by

ui
4
=

[
ui1
ui2

]
= − ∂J

∂pi

= −
∫
Vi

(q − pi)φ(q)dq = −MVi
(CVi

− pi) (7)

where mass MVi is given by

MVi =

∫
Vi

φ(q)dq (8)

the first moment

LVi
=

∫
Vi

qφ(q)dq (9)

and the centroid
CVi

=
LVi

MVi

(10)

Once ui is obtained, the control inputs vi and ωi can be
calculated by using inverse input transformation given below:[

vi
ωi

]
= T−1(θ)

[
ui1
ui2

]
.

B. Deployment Algorithm Based on Distributed Consensus

In this subsection, a distributed deployment algorithm by
directly dealing with nonlinear model in (1) is presented.
That is, we propose a new control to drive robots to Voronoi
centroids based on distributed consensus algorithms.

To start, we first convert (1) into the following canonical
chained form

żi1 = ui1
żi2 = ui2
żi3 = zi2ui1

(11)

by using the state and input transformations defined below

zi1 = xi, zi2 = tan θi, zi3 = yi, (12)

ui1 = vi cos θi, ui2 =
ωi

cos2 θi
. (13)

The controls ui1 and ui2 will be designed and the corre-
sponding vi and ωi can be obtained through the inverse
transformation of (13).

To facilitate the design, we apply a binary matrix C(t) to
describe the time-varying communication topologies among
robots, that is, given a time sequence {tsη : η = 0, 1, · · · },
C(t) is defined by

C(t) =


c11 c12(t) · · · c1n(t)
c21(t) c22 · · · c2n(t)

...
...

. . .
...

cn1(t) cn2(t) · · · cnn

 , (14)

with C(t) = C(tsη),∀t ∈ [tsη, t
s
η+1), where cii ≡ 1; cij(t) =

1 if the jth robot is in the sensing/communication range
of the ith robot at time t, and cij = 0 if otherwise; and
ts0
4
= t0. It can be assumed without loss of any generality

that 0 < ct ≤ tsη+1 − tsη ≤ ct < ∞, where ct and ct are
constant bounds.

Remark 3.1: At each sampling time instant, finite-time
steering control can be used to move robots to the centroids
of Voronoi regions. In what follows, in order to further im-
prove the robustness against measurement errors, we propose
a distributed coordination algorithm based on information
exchange among neighboring robots.

The proposed design is based on distributed consensus
idea, which requires that the communication topologies
defined by (14) satisfy sequential completeness condition
[11][17]. The sequential completeness condition describe the
least required condition on network connectivity for cooper-
ative control design, which is equivalent to the existence of
a spanning tree introduced in [12].

Assumption 3.1: The group of robots defined in (1) has a
sequentially complete communication network.
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In what follows, we present the distributed deployment
algorithm under assumption 3.1. Define an infinite sequence
of time instants {t0 + kTs} for k ∈ N 4

= {0, 1, · · · } and
with sampling time 0 < Ts ≤ ct. The control inputs will
be updated according to the sampling time instants. For
notational convenience, z(t0 +kTs) is simplified as z(k) for
any variable z. At each time instant k, the Voronoi partition
Vi is obtained for robot i based on local information, then
its centroid [Cvi,x(k), Cvi,y(k)]T is computed, and then the
distributed centroid control algorithm is used for moving
robots to the desired positions. The proposed distributed
centroid control algorithm is summarized as follows.

Let the distributed centroid control be for t ∈ [t0 +
kTs, t0 + (k + 1)Ts)

ui1(t) = aki1 + aki2 sinω(t− t0 − kTs) (15)
ui2(t) = bki1 + bki2 cosω(t− t0 − kTs) (16)

where ω = 2π
Ts

, aki2 6= 0 can be any constant, and

aki1 =
1

Ts

n∑
j=1

Gij(k)[xj(k)− xi(k)− Cvj ,x(k)

+Cvi,x(k)], (17)

bki1 =
1

Ts

n∑
j=1

Gij(k)[zj2(k)− zi2(k)], (18)

bki2 =
2ω

aki2Ts

 n∑
j=1

Gij(k)[yj(k)− yi(k)− Cvj ,y(k)

+Cvi,y(k)]− aki1b
k
i1T

2
s

2

−aki1zi2(k)Ts +
aki2b

k
i1Ts
ω

]
. (19)

with

Gij(k) =
cij(k)∑n
η=1 ciη(k)

, j = 1, · · · , n. (20)

In the use of algorithms (15) and (16), the centroid
[Cvi,x(k), Cvi,y(k)]T at each step will be generated using
(10).

In summary, the proposed distributed deployment algo-
rithm is given in Algorithm 1.

Algorithm 1 Distributed Deployment Algorithm

1: Let k = 0. Given initial states pi(k), cijpj(k), calculate
the initial Voronoi partition Vi(k).

2: Compute the centroid [Cvi,x(k), Cvi,y(k)]T using (10).
3: Employ control (7) or (15)-(16).
4: Let k ← k + 1, and go to step 2, until

(Cvi,x(k+1)−Cvi,x(k))2+(Cvi,y(k+1)−Cvi,y(k))2) ≤ ε,

where ε > 0 is a sufficiently small predefined threshold.

IV. SIMULATION

In this section, we simulate the proposed distributed de-
ployment algorithm. Consider first the case with 5 mobile
robotic agents, and we assume fully connected communica-
tion topology. That is, at each time instant, each robot has the
position information of the rest members in the group. Figure
4 and 5 illustrate the initial location with Voronoi partition
and the final position with Voronoi partition, respectively.
Figure 6 illustrates of the evolution of the robots.

Fig. 4. Initial location and Voronoi partition

Fig. 5. Final location and Voronoi partition

In the 2nd case, we consider 10 robots with limited com-
munication ranges. Assume that the initial communication
topology is defined by

C(0) =



1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 1


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Fig. 6. Evolution of the robots

and changes subsequently based on system evolution. Figure
7 and 8 illustrate the initial location with Voronoi partition
and the final position with Voronoi partition, respectively.
Figure 9 illustrates of the evolution of the robots.

Fig. 7. Initial location and Voronoi partition

Fig. 8. Final location and Voronoi partition

Fig. 9. Evolution of the robots

V. CONCLUSION

In this paper, we proposed a distributed deployment al-
gorithm for solving the coverage control problem of mo-
bile robotic agents with inherent kinematic constraints. The
proposed design assumes the limited sensing/communication
capabilities, and the generation of Voronoi partition for each
robot as well as the centroid-drive control are based on
local information exchange among agents. Simulation results
validated the effectiveness of the proposed design. Future
work will be focused on experimental validation of the
proposed algorithm by using Kilobots [13].
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Discontinuous Cooperative Control for Consensus of Multiagent
Systems with Switching Topologies and Time-Delays

Jing Wang, Morrison Obeng, Zhihua Qu, Tianyu Yang, Gennady Staskevich, and Brian Abbe

Abstract— In this paper, we propose a discontinuous co-
operative control for consensus of multiagent systems with
directed and switching sensing/communication topologies and
time-delays. By introducing a new design for nonlinear co-
operative control gains, multiagent system consensus can be
guaranteed in the presence of switching topologies and time-
delays. System convergence analysis is done by employing a
new contraction mapping method. Simulation examples are
provided to illustrate the effectiveness of the proposed design.

I. INTRODUCTION

Cooperative control of multiagent systems has attracted
a great deal of attention in recent years [18][14][1][19].
Multiagent systems are generically defined as a group of
dynamical systems in which certain emergent behaviors are
exhibited through the local interaction of group members that
individually have the capability of self-operating. Fundamen-
tally, the key issues in engineered multiagent systems are the
study of network controllability and the design of distributed
cooperative control. In terms of network controllability, the
objective is to figure out the connectivity conditions on sen-
sor/communication topologies of the network for achieving
consensus behavior. In [8][20], the condition is obtained for
composite undirected graphs which need to be connected.
Extensions were made in [17][9] to the case with directed
graphs, and the less restrictive conditions are stated as that
there exists a spanning tree or the network is strongly
connected periodically. Complement to the aforementioned
graph-theoretical methods, a matrix-theoretical framework
is developed in [16] to deal with the high-order systems
with arbitrary but finite relative degrees. It is shown that
network controllability is ensured if and only if the sens-
ing/communication network is sequentially complete.

The design of cooperative control is closely related
to system dynamics. For linear systems, the results in
[8][17][9][6][20] are developed for the first-order integrator
model, in [22] for double integrator model, and in [16][23]
for high-order linear model. For nonlinear systems, the
problem becomes complicated since network controllability
may not render the direct design of cooperative control and
system dynamics have to be explicitly taken into account. In
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[11], a solution is obtained by convexity analysis for a class
of discrete-time nonlinear systems. The continuous-time non-
linear systems are also addressed such as in [10][13][15].
Particularly, a subtangentiality condition on the vector fields
is identified in [10]. In [13], the local passivity condition
is imposed on nonlinear functions in the system dynamics,
while a diagonally quasi-linear functions of positive gains
is introduced in [15]. In addition, time delays are literally
analyzed in [13][15] for continuous-time nonlinear systems.
It should be noted that the results in [10][13][15][24] are
for nonlinear systems with smooth dynamics. There also
appeared some pioneering work on consensus of systems
with discontinuous dynamics [5][3][2][7][4] by using the
tools from nonsmooth analysis [21][12]. Discontinuous con-
trol law was proposed for the coordination of nonholonomic
mobile robots in [5]. The finite-time semistable concept was
introduced in [7] for a class of switched rendezvous proto-
cols. The results in [3][2] addressed the distributed estimation
and tracking problem using a variable structure approach, and
a binary consensus control protocol was designed in [4] via
a pin node.

In this paper, we propose a new discontinuous cooperative
control design for multiagent systems with switching and
directed sensing/communication topologies. The case in the
presence of sensing/communication delays is also rigorously
addressed. Particularly, we developed a contraction mapping
method for the consensus analysis of multiagent systems
under the proposed discontinuous cooperative control. The
proposed discontinuous cooperative control design provides
a possible way to address the cooperative control problem
with more complicated system dynamics, and enriches the
disposal for cooperative control protocols. The contributions
of the paper are two-fold. First, it reveals that network
controllability condition does not guarantee the consensus in
the presence of discontinuous system dynamics. Second, it is
rigorously proved that through designing nonlinear piecewise
control gains, the convergence can be ensured for multiagent
systems with switching topologies and time-delays under the
least-restrictive network controllability condition of that the
system sensing/communication topologies are sequentially
complete. Simulation examples are provided to illustrate the
effectiveness of the proposed design.

II. PROBLEM FORMULATION

Consider a multiagent system which has n members and
each agent assumes the single-integrator dynamics

ẋi = ui, (1)
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where i ∈ Ω
4
= {1, · · · , n}, xi(t) ∈ < is the state, ui ∈ <

is the control input to be designed. The objective of this
paper is to design a discontinuous cooperative control ui(t)
to achieve the consensus of the multiagent system (1), that
is,

lim
t→∞

xi(t) = x∗, ∀i, (2)

where x∗ is some constant denoting the consensus value.
To reach the consensus, the control design will be based

on the sensing/communication information exchange among
agents, which can be described by the following sens-
ing/communication matrix and its corresponding time se-
quence {tsk : k = 0, 1, · · ·}. That is, within time interval
[tsk, t

s
k+1), the sensing/communication topology is assumed

to be unchanged.

S(tsk) =


s11 s12(tsk) · · · s1q(t

s
k)

s21(tsk) s22 · · · s2q(t
s
k)

...
...

. . .
...

sq1(tsk) sq2(tsk) · · · sqq

 ,
S(t) = S(tsk), ∀t ∈ [tsk, t

s
k+1), (3)

where sii ≡ 1; sij(t) = 1 if the ith agent can receive the
information from the jth agent at time t, and sij = 0 if
otherwise; and ts0

4
= t0. The neighbor set of agent i is defined

as Ni = {j ∈ Ω|sij 6= 0}. We further assume without loss
of any generality that 0 < ct ≤ tsk+1 − tsk ≤ ct <∞, where
ct and ct are constant bounds.

The proposed cooperative control is of the form

ui(t) =

n∑
l=1

αil(sil(t
s
k), xl(t

s
k))sgn(xl(t)− xi(t)), (4)

t ∈ [tsk, t
s
k+1),

where αil(·, ·) is a nonlinear gain to be designed based on
the sensing/communication topology S(tsk) as well as the
available boundary values xl(tsk) if sil(tsk) 6= 0, and sgn(·)
function is defined as

sgn(z) =

 1, z > 0
0, z = 0
−1, z < 0

III. MAIN RESULTS

Assume that the multiagent system (1) is operating under
switching and directed sensing/communication topologies.
That is, sensing/communication matrix S(tsk) is changing,
and not necessary be symmetric (in general sij(t

s
k) 6=

sji(t
s
k)).

To proceed with the design and stability analysis for the
closed-loop system under control (4), we introduce the fol-
lowing definitions which are adapted from [16] and describe
the standing conditions on sensing and communication.

Definition 3.1: Sensing/communication matrix sequence
{S(t)} is said to be sequentially lower-triangularly complete
if it is sequentially lower-triangular and in every row i of
its lower triangular canonical form, there is at least one
j < i such that the corresponding block is uniformly non-
vanishing.

Definition 3.2: Sensing/communication matrix sequence
{S(t)} is said to be sequentially complete if the sequence
contains an infinite subsequence that is sequentially lower-
triangularly complete.

Remark 3.1: The sequential completeness concept of the
sensing/communication matrix sequence {S(t)} was first
introduced in [16]. It spells out the least restrictive connec-
tivity condition for sensor/communication network in order
to achieve the asymptotically cooperative stability of the
overall system. It is equivalent to condition of the existence
of a spanning tree in the graph theory [14]. As an example,
consider the following communication sequence,

S(t3k) =

 1 0 0
1 1 0
0 0 1

 , S(t3k+1) =

 1 0 1
0 1 0
0 0 1

 ,
S(t3k+2) =

 1 0 0
0 1 0
0 1 1

 (5)

where k = 0, 1, · · ·. It is readily verified that the ma-
trix sequence {S(t3k), S(t3k+1), S(t3k+2)} is sequentially
complete since the sub-sequence consisting of S(t3k) and
S(t3k+2) is sequentially lower triangular complete. 3

A. Motivating Example

For the cooperative control of multiagent systems (1), if
the standard design of ui(t) is adopted as given below

ui(t) =
n∑
l=1

αil(sil(t
s
k))(xl(t)− xi(t)), t ∈ [tsk, t

s
k+1), (6)

where
αil(t

s
k) =

sil(t
s
k)∑

j=1 sij(t
s
k)
, (7)

then it has been proved in [16] that the sequential com-
pleteness of sensing/communication matrix sequence {S(t)}
is the necessary and sufficient condition for consensus of
multiagent systems. However, under the discontinuous co-
operative control (4) proposed in this paper, the sequential
completeness of sensing/communication network may no
longer ensure the consensus if the gains αil are simply
designed using (7). This is illustrated through the following
example.

Example 1: Suppose we have 3 agents. Define index set
Ω = {1, 2, 3}, Ωmax = {i ∈ Ω : xi(t) = xmax(t)

4
=

maxj xj(t)}, and Ωmin = {i ∈ Ω : xi(t) = xmin(t)
4
=

minj xj(t)}.
Assume that at time instant t0, we have Ωmin(t0) = {1},

and Ωmax(t0) = {2, 3}, and the sensing/communication
topologies among three agents switch according to sens-
ing/communication matrices S(t3k), S(t3k+1) and S(t3k+2)
defined in (5).

It can be readily verified that the matrix sequence
S(t3k), S(t3k+1), S(t3k+2) is sequentially complete. How-
ever, the consensus is not guaranteed if the standard gain
design for αij in (7) is applied under control (4). One possi-
ble scenario is that according to the sensing/communication
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matrix S(t0), agent 2 receives information from agent 1 and
may converge to agent 1 in finite time interval t1 − t0,
thus at time instant t1, we could have Ωmin(t1) = {1, 2}
and Ωmax(t1) = {3}; similarly, according to S(t1), agent
1 receives information from agent 3 and may converge to
agent 3 in finite time t2− t1, thus we may have Ωmin(t2) =
{2} and Ωmax(t2) = {1, 3}; by S(t2), agent 3 receives
information from agent 2 and may converge to agent 2 in
finite time t3 − t2, and we may have Ωmin(t3) = {2, 3}
and Ωmax(t3) = {1}. This pattern will repeat following the
periodical sensing/communication matrix sequence {S(ti)}.
In other words, though within time interval [t0, t3), the
communication topology is complete, contraction mapping
is not established since we have xmax(t3) = xmax(t0) and
xmin(t3) = xmin(t0) from the above analysis. This is further
illustrated in figure 1, in which we consider three agents
with controls (4) and gain αij(t) are chosen based on (7),
simulation parameters are given as t3k+i−t3k+i−1 = 0.1, i =
1, 2, k = 0, 1, · · ·, and initial conditions x1(t0) = 0, x2(t0) =
0, and x3(t0) = 0.1. Apparently, no consensus is reached.
3
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Fig. 1. System responses

In the presence of sensing/communication delays, the
cooperative control in (4) becomes

ui(t) =
n∑
l=1

αil(sil, xl(t
s
k − τil))sgn(xl(t− τil)− xi(t)),

t ∈ [tsk, t
s
k+1), (8)

where τil ∈ [0, r] are time delays incurred during transmis-
sion with r being the upper bound on latencies of information
transmission over the network. In general, multiagent sys-
tems with time-delays become more involved. By imposing
more stringent network connectivity conditions, such as bi-
directional (undirected) sensing/communication, the consen-
sus may still be ensured. However, given the discontinuous
cooperative control (8), if control gains αij are simply chosen
according to (7), consensus cannot be guaranteed even under
fixed and undirected communication topology as illustrated
by the following example. Nonlinear piecewise constant gain
αij(·) needs to be designed to solve the problem.

B. Design and Stability Analysis with Directed and Switch-
ing Topologies

As shown in example 1 , standard network topology based
control gain design for (4) no longer implies the consensus
of multiagent systems, even with the most-restrictive net-
work connectivity condition (that is, fixed and undirected
communication). In this subsection, in order to ensure the
multiagent systems consensus with control (4) under the least
restrictive sensing/communication condition (that is, sequen-
tial completeness of {S(tsk}), we propose a new nonlinear
piecewise gain design. The convergence of the overall closed-
loop systems is proved by developing a contraction mapping
method for multiagent systems.

Theorem 1: Consider the multiagent system (1) under
cooperative control (4). Assume that sensing/communication
matrix sequence {S(tsk)} is uniformly sequentially com-
plete∗. Let the nonlinear gain αlj be designed as follows:
for any agent l,

1) if xl(tsk) = maxj∈Nl
xj(t

s
k) = minj∈Nl

xj(t
s
k), then

αlj(t
s
k) can be any bounded positive value.

2) if xl(tsk) ≥ maxj∈Nl
xj(t

s
k), let αlj(tsk) be selected to

satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

xl(t
s
k)−minj∈Nl

xj(t
s
k)

ct
(9)

3) if xl(tsk) ≤ minj∈Nl
xj(t

s
k), let αlj(tsk) be selected to

satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

maxj∈Nl
xj(t

s
k)− xl(tsk)

ct
(10)

4) if minj∈Nl
xj(t

s
k) < xl(t

s
k) < maxj∈Nl

xj(t
s
k), let

αlj(t
s
k) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) < min

(
maxj∈Nl

xj(t
s
k)−xl(t

s
k)

ct
,

xl(t
s
k)−minj∈Nl

xj(t
s
k)

ct

)
(11)

Then consensus of system (1) is asymptotically achieved in
the sense of (2).

Proof: See Appendix.
The nonlinear gain design conditions (9) to (11) play a

paramount important role for the consensus of multiagent
systems (1). Those conditions are easy to be satisfied since
for agent l, it only requires the available neighboring state
information of agent l in the design of αlj(tsk). For instance,
to satisfy (9), one simple choice could be

αlj(t
s
k) =

xl(t
s
k)−minj∈Nl

xj(t
s
k)

(|Nl|+ 1)ct
, ∀l ∈ Nl (12)

where |Nl| denotes the cardinality of the set Nl. Same
selection can be made for satisfying the conditions (10) and
(11).

∗The time-varying sensing/communication topology is considered here.
If the topology becomes fixed after certain time, we can treat it as a special
case of switching sensing/communication sequence S(tsk) with c̄t being any
positive constants.
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C. Multiagent Systems with Time-Delays

The following theorem presents the control design and
consensus analysis for multiagent systems with directed
switching communications and time-delays.

Theorem 2: Consider the multiagent system (1) under
cooperative control (8). Assume that sensing/communication
matrix sequence of {S(tsk)} is sequentially complete. Let the
nonlinear gain αlj be designed as follows: for any agent l,

1) if xl(tsk) = maxj∈Nl
xj(t

s
k − τlj) = minj∈Nl

xj(t
s
k −

τlj), then αlj(tsk) can be any bounded positive values.
2) if xl(tsk) ≥ maxj∈Nl

xj(t
s
k−τlj), let αlj(tsk) be selected

to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

xl(t
s
k)−minj∈Nl

xj(t
s
k − τlj)

max{ct, r}
(13)

3) if xl(tsk) ≤ minj∈Nl
xj(t

s
k−τlj), let αlj(tsk) be selected

to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) <

maxj∈Nl
xj(t

s
k − τlj)− xl(tsk)

max{ct, r}
(14)

4) if minj∈Nl
xj(t

s
k − τlj) < xl(t

s
k) < maxj∈Nl

xj(t
s
k −

τlj), let αlj(tsk) be selected to satisfy the inequality

0 ≤
∑
j∈Nl

αlj(t
s
k) < min

(
maxj∈Nl

xj(t
s
k−τlj)−xl(t

s
k)

max{ct,r} ,
xl(t

s
k)−minj∈Nl

xj(t
s
k−τlj)

max{ct,r}

)
(15)

Then consensus of system (1) is asymptotically achieved in
the sense of (2).

Proof: The proof can be done following the similar proce-
dure as shown in theorem 1, and omitted here due to space
limitation.

IV. EXAMPLE

Let us reconsider example 1 for the consensus of three
agents with control (4) under the sensing/communication
topologies S(t3k), S(t3k+1) and S(t3k+2) given in (5). Un-
der the same simulation conditions, system responses are
shown in 2, and consensus is reached.
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Fig. 2. System responses

V. CONCLUSIONS

In the paper, we proposed a new discontinuous cooperative
control for consensus of multiagent systems with directed
and switching topologies and sensing/communication delays.
The proposed new design may be applied to address the
cooperative control problem for truly nonlinear systems.
Further research will be devoted to convergence speed and
performance analysis of the proposed cooperative control.

APPENDIX

Proof of theorem 1: By substituting (4) into (1), we have

ẋi =
n∑
l=1

αil(sil(t
s
k), xl(t

s
k))sgn(xl(t)− xi(t))

4
= Fi(x),

(16)
where i = 1, · · · , n and x = [x1, x2, · · · , xn]T .

We first show that if matrix sequence {S(tsk)} is uniformly
sequentially complete, then x = x∗1 is the only type of
equilibrium point of the closed-loop system (16) where 1 ∈
<n a vector with all entries being 1. The proof is established
by contradiction. Assume that xe = [xe1, · · · , xen]T is an
equilibrium point satisfying Fi(xe) = 0, ∀i and mini x

e
i 6=

maxi x
e
i . Define index sets Φmin = {j : xej = mini x

e
i} and

Φmax = {j : xej = maxi x
e
i}.

Since matrix sequence is uniformly sequentially complete,
which is equivalent to say that the composite graph S(t) has
at least one globally reachable node xg . Apparently, xg may
be in Φmin or Φmax or may not be in both sets. For any
case, there must exist an index j in the compliment set of
the set containing xg while maintaining a path to xg due
to the completeness assumption. That is, xj 6= xg , which
renders Fi(x) 6= 0 for at least one i, a contradiction.

In what follows, we further show that the system (16) is
Lyapunov stable, and cooperative stable (consensus can be
achieved).

(a) At each time instant t, let i∗ denote the index such that

xi∗(t) = max
j
xj(t) (17)

we will show that xi∗(t) is non-increasing over time. It
follows from (17) that sgn(xl(t)−xi∗(t)) ≤ 0 for all αi∗l 6=
0. Hence ẋi∗(t) ≤ 0, and we conclude that the maximum
value of maxj xj(t) never increases over time. The proof
of the minimum value of minj xj(t) never decreasing over
time is similar. Lyapunov stability becomes obvious from the
above conclusions.

(b) To prove consensus, we will show that the mapping
defined by differential equation (16) is a contraction mapping
under undirected sequentially complete network topologies.
That is, we will prove that for any t, there exists a constant
δ(t) > 0, such that

max
i,j
‖xi(t+δ)−xj(t+δ)‖ ≤ λmax

i,j
‖xi(t)−xj(t)‖, (18)

where 0 ≤ λ < 1.
Let Ω = {1, · · · , n} be the set of indices on state variables,

and at time t, let xmax(t) = maxj xj(t) and xmin(t) =
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minj xj(t). Define sub-sets Ωmax(t), Ωmin(t), Ωcmax(t) =
Ω/Ωmax(t), and Ωcmin(t) = Ω/Ωmin(t) as follows:

Ωmax(t) = {i∗ ∈ Ω : xi∗(t) = xmax(t)}

and
Ωmin(t) = {i∗ ∈ Ω : xi∗(t) = xmin(t)}

To show (18), it is equivalent to prove for any t, there exists
a constant δ(t) > 0, such that

‖xmax(t+δ)−xmin(t+δ)‖ ≤ λ‖xmax(t)−xmin(t)‖, (19)

for some 0 ≤ λ < 1.
It follows from points (a) and (b) that for any time interval

δ(t), we have

xmax(t+ δ) ≤ xmax(t), xmin(t+ δ) ≥ xmin(t), (20)

thus, a weaker version of inequality (19) holds for some
0 ≤ λ1 ≤ 1 under arbitrary network conditions and system
dynamics constraints.

Now let us show that if for any t, there exists a finite value
δ(t) such that the composite network topology is complete
within the time interval [t, t+ δ), then (19) always holds.

Consider the evolution of xi∗(t) for every i∗ ∈ Ωmax(t)
and xi∗(t) for every i∗ ∈ Ωmin(t). Several cases are in the
sequel.

Case I: If there are leader nodes† staying in Ωmax(t′) for
t′ ∈ [t, t+ δ), which means they don’t directly or indirectly
receive any information from members in Ωcmax(t′) and
hence xmax(t+δ) = xmax(t). Thus all the agents in Ωmin(t)
must have either direct or indirect (through agent in Ωmin(t))
information exchange with members in their complement
set Ωcmin(t) during the time interval [t, t+ δ(t)), otherwise,
it contradicts the completeness assumption for composite
network topology within the time interval [t, t + δ(t)). The
question then becomes to verify xmin(t + δ) > xmin(t) in
order to prove that (19) holds.

Now consider the evolution of xi∗(t) and xl(t) for l ∈
Ωcmin(t). According to point (a), the states xi∗(t) have the
tendency of increase, and xl(t) have the tendency of either
increase or decrease. If we can show that all xi∗(t) will
increase in [t, t + δ(t)), and the decreasing agents xl(t)
will not reduce their values to some xi∗ at time instant t,
that is, xi∗(t), then xmin(t + δ) > xmin(t) is apparent.
Since by completeness assumption, every agent i∗ ∈ Ωmin(t)
will have a chance to communicate with some agents in
Ωcmin(t), without loss of generality, we consider that agent
i∗ ∈ Ωmin(t) has the communication with agents in Ωcmin(t)
right at time instant t, then we have

xj(t) > xi∗(t),∀j ∈ Ni∗ ∩ Ωcmin(t)

and thus
ẋi∗(t) =

∑
j∈Ni∗

αi∗j(t) > 0. (21)

†A node is called a leader node if it does not receive information from
other nodes or only has communication with nodes in its current set.

It is readily seen from (21) that before network topology
at time instant t switches to another topology, the value of
xi∗(t+ τ) for 0 < τ < δ will increase within the given time
interval.

On the other hand, consider the agent l ∈ Ωcmin(t)
with decreasing speed at time instant t, and has one of its
neighboring agents from Ωmin(t), that is, we have

ẋl(t) =
∑
j∈Nl

αlj(t
s
k)sgn(xj(t)− xl(t)) < 0,

t ∈ [tsk, t
s
k+1) (22)

It follows that

−
∑
j∈Nl

αlj(t
s
k) ≤ ẋl(t) < 0 (23)

and
xl(t+ τ) ≥ xl(t)−

∑
j∈Nl

αlj(t
s
k)τ (24)

Note also that since ẋl < 0, agent l must satisfy
xl(t

s
k) ≥ maxj∈Nl

xj(t
s
k) or minj∈Nl

xj(t
s
k) < xl(t

s
k) <

maxj∈Nl
xj(t

s
k). To this end, due to the nonlinear gain

αij(t
s
k) selected in (9) or (11), we have∑

j∈Nl

αlj(t
s
k) ≤

∑
j∈Nl

αlj(t
s
k)

<
xl(t

s
k)−minj∈Nl

xj(t
s
k)

ct
(25)

Note that minj∈Nl
xj(t

s
k − τij) ≥ xmin(t) , we further have∑

j∈Nl

αlj(t
s
k) <

xl(t
s
k)− xmin(t)

ct
(26)

together with (24), we have

xl(t+ τ) ≥ xl(t) +
xmin(t)− xl(tsk)

ct
τ

> xmin(t) (27)

Therefore, we know that before network topology at time
instant t switches to another topology, the value of xl(t+ τ)
for some 0 < τ < δ will keep decreasing but not achieving
to the minimum value at time instant t (that is, xmin(t)) in
any given time interval smaller than ct. In conclusion, for all
agents i∗ ∈ Ωmin(t), their values will increase during time
interval [t, t+δ); for the decreasing agents xl(t), l ∈ Ωcmin(t),
their values will not be able to reduce to xmin(t). Hence, we
have xmin(t+ δ) > xmin(t).

Case II: Similar argument is true for the case of leader
nodes staying in Ωmin(t) in time interval [t, t+ δ). That is,
for all agents i∗ ∈ Ωmax(t), their values will decrease during
time interval [t, t+ δ);

For agent l ∈ Ωcmax(t) which acquires the increasing speed
at time instant t, we have

ẋl(t) =
∑
j∈Nl

αlj(t
s
k)sgn(xj(t)− xl(t)) > 0,

t ∈ [tsk, t
s
k+1) (28)
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It follows that

0 < ẋl(t) ≤
∑
j∈Nl

αlj(t
s
k) (29)

and
xl(t+ τ) ≤ xl(t) +

∑
j∈Nl

αlj(t
s
k)τ (30)

Note also that since ẋl > 0, agent l must satisfy
xl(t

s
k) ≤ minj∈Nl

xj(t
s
k) or minj∈Nl

xj(t
s
k) < xl(t

s
k) <

maxj∈Nl
xj(t

s
k). Thus, according to gain selection dlj(t) in

(10) or (11), we have∑
j∈Nl

αlj(t
s
k) ≤

∑
j∈Nl

αlj(t
s
k)

<
maxj∈Nl

xj(t
s
k)− xl(tsk)

ct
(31)

which further leads to∑
j∈Nl

αlj(t
s
k) <

xmax(t)− xl(tsk)

ct
(32)

and

xl(t+ τ) ≤ xl(t) +
xmax(t)− xl(tsk)

ct
τ < xmax(t),

since maxj∈Nl
xj(t

s
k) ≤ xmax(t). Thus for xmin(t + δ) =

xmin(t), we have xmax(t+ δ) < xmax(t).
In summary, for both Case I and Case II, inequality (19)

holds.
Case III: Now we consider the case in which there are no

leader nodes in Ωmax(t) and Ωmin(t). Then, for every i∗ ∈
Ωmax(t), we must have xi∗(t+ δ) < xi∗(t), because system
xi∗(t) must have state exchange with at least one element in
their complement sets during time interval [t, t + δ). Same
argument holds for xi∗(t), and we have xi∗(t+ δ) > xi∗(t).
Several sub-cases follow:

Case III-1: If Ωmax(t) ∩ Ωmax(t+ δ) 6= ∅ and Ωmin(t) ∩
Ωmin(t + δ) 6= ∅, which means at least one i∗ ∈ Ωmax(t)
remains staying in Ωmax(t+δ), and at least one i∗ ∈ Ωmin(t)
remains staying in Ωmin(t+ δ), thus (19) holds.

Case III-2: Ωmax(t) ∩ Ωmax(t + δ) 6= ∅ and Ωmin(t) ∩
Ωmin(t+δ) = ∅. It follows from Ωmax(t)∩Ωmax(t+δ) 6= ∅
that xmax(t + δ) < xmax(t). On the other hand, we have
xmin(t+ δ) ≥ xmin(t) from point (b). Thus, (19) holds.

Case III-3: Ωmax(t) ∩ Ωmax(t + δ) = ∅ and Ωmin(t) ∩
Ωmin(t+ δ) 6= ∅. It follows from Ωmin(t)∩Ωmin(t+ δ) 6= ∅
that xmin(t + δ) > xmin(t). It then suffices to show that
xmax(t+ δ) ≤ xmax(t), which is always true from point (a).

Case III-4: Ωmax(t) ∩ Ωmax(t + δ) = ∅ and Ωmin(t) ∩
Ωmin(t+ δ) = ∅. This means that the entries in Ωmax(t+ δ)
and Ωmin(t + δ) are completely from the complement sets
Ωcmax(t) and Ωcmin(t), respectively.

Due to the undirected network topology, and following
the same argument in case I, we know that for any entry
of Ωcmax(t), its maximum increase in δ(t) can only reach to
some value less than xmax(t), and for any entry of Ωcmin(t),
and its maximum decrease in δ(t) can only reach to some
value greater than xmin(t). Thus, we have xmax(t + δ) <

xmax(t) and xmin(t+δ) > xmin(t). This completes the proof.
2
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ABSTRACT
In this paper, we propose an approximate policy itera-
tion method for cooperative control of multiagent systems
under the limited sensing/communication topology. By
considering a class of nonlinear multiagent systems, the
cooperative control problem is formulated as making all
systems achieve consensus while minimizing the individ-
ual sensing/communication topology dependent cost func-
tions. To solve the induced multiagent Hamilton-Jacobi-
Bellman (HJB) equations, a multiagent policy iteration al-
gorithm is proposed with convergence proof. Neural net-
work parameterization is further employed to approximate
value function to deal with unknown system dynamics.
Through seeking the least-squares solution based on the
measured online sensing/communication data, the approx-
imate multiagent policy iteration algorithm is obtained to
solve the posed optimal cooperative control problem for
multi agents. Simulation results illustrate the effectiveness
of the proposed optimal cooperative control.

KEY WORDS
Multiagent policy iteration, Cooperative Control, Multia-
gent Systems, Neural Network.

1 Introduction

Cooperative control of multiagent systems, in particular
consensus control of multiagent systems, has been one
of the dominating research subjects in the current control
community due to numerous potential applications in the
areas such as robotic network [11][14][15], power network
[20], to name but a few. The research for cooperative con-
trol has been focused on two types of major issues: the
necessary and sufficient multiagent network connectivity
condition for information exchange [6][13], and the design
of locally distributed cooperative control. While fruitful re-
sults for cooperative control design have been obtained for
first-order linear systems [8][16], for second-order linear
systems [21], for high-order linear systems [13], and for
nonlinear systems [10][9][23], few results are available for

optimal cooperative control design. There appeared some
recent work in the study of optimal cooperative control,
such as those in [19][2][4][12]. Nonetheless, it is still a
challenge issue to systematically address the optimal coop-
erative control problem for more general nonlinear multia-
gent systems, particularly, in the presence of model uncer-
tainties. In this paper, we develop an approximately adap-
tive multiagent policy iteration (MPI) algorithm to coop-
eratively solve the consensus problem for multiagent sys-
tems.

The result reported in this paper aims to present a
dynamic programming solution to multiagent cooperative
control. For multiagent optimal cooperative control, the
key issue is how to establish an optimality equation and
find its solution in real time. We tackle this problem by
considering a general class of feedback linearizable nonlin-
ear multiagent systems. We assume that there exist admis-
sible cooperative controls for such kind of multiagent sys-
tems under the complete sensing/communication condition
[13]. Since this paper is centered on the design of approxi-
mately adaptive optimal cooperative control, the fixed sens-
ing/communication topology is imposed for ease of design.
The case for more complicated time-varying sensing com-
munication topology will be treated in future work. The
optimal cooperative control problem is then formulated as
making all systems achieve consensus while minimizing
the individual sensing/communication topology dependent
cost functions. It is shown that the optimal solution to the
defined problem requires to solve a multiagent Hamilton-
Jacobi-Bellman (HJB) equation. To avoid the obstacles in
analytically solving multiagent HJB equation, we extend
the online policy iteration approach in [18][22] to the mul-
tiagent case, and employ RBF neural networks to approx-
imate value functions at each iteration. Through seeking
the least-squares solution to estimate the optimal neural
weights, a new approximately adaptive multiagent policy
iteration algorithm is proposed. It is further shown that
the proposed adaptive optimal cooperative control approx-
imately solves the posed optimal consensus problem. Sim-
ulation results are provided to illustrate the effectiveness of
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the proposed optimal design.

2 Problem Formulation

Consider a multiagent system which has N members and
each agent assumes the general nonlinear dynamics

ẋi = fi(xi) + gi(xi)ui, (1)

where i ∈ Ω
4
= {1, · · · , N}, xi(t) ∈ <n is the system

state, ui ∈ <m is the control input to be designed, fi, gi :
<n 7→ <n are locally Lipschitz continuous functions.

The objective of this paper is to design an optimal
cooperative control ui(t) to achieve the consensus of the
multiagent system (1) such that

lim
t→∞

xi(t) = x∗, ∀i, (2)

while minimizing the following individual cost function for
each agent i,

Ji(ui;xi(t0), sijxj(t0))

=

∫ ∞
t0

 N∑
j=1

(xi − xj)T sijQij(xi − xj) + uTi Riui

 dt,(3)

where x∗ is some constant denoting the consensus value,
Qij and Ri are symmetric and positive definite matrices,
and sij is a binary number describing the availability of the
sensing/communication information exchange between the
agent i and the agent j.

The success of solving consensus problem defined in
(2) is dependent on the sensing/communication informa-
tion exchange among agents, which can be described by a
N ×N sensing/communication matrix defined below

S =


s11 s12 · · · s1N

s21 s22 · · · s2N

...
...

. . .
...

sN1 sN2 · · · sNN

 , (4)

where sii ≡ 1; sij(t) = 1 if the ith agent can receive
the information from the jth agent, and sij = 0 if other-
wise. In general, sensing/communication matrix S could
be time-varying due to the changing environment. In this
paper, we focus on the design of approximately adaptive
optimal cooperative control for multiagent systems under
the assumption of the sensing/communication matrix S be-
ing constant and satisfying the completeness condition for
its connectivity. The completeness condition for network
connectivity was developed in [13], which can be summa-
rized into the following definition.

Definition 2.1 Sensing/communication matrix S is said to
be complete if in every block row i of its lower triangular
canonical form, there is at least one j < i such that the
corresponding block is nonzero.

For more general sequentially changing sens-
ing/communication topology, the sequential completeness
concept of the sensing/communication matrix sequence
{S(t)} was also introduced in [13]. It is equivalent to the
condition of that there exists a spanning tree in the commu-
nication graph [11], which represents the least restrictive
connectivity condition for sensor/communication network
in order to achieve the asymptotically cooperative consen-
sus of the overall multiagent system. In this paper, the fixed
S is considered, the completeness condition is described in
definition 1. We will utilize the following assumptions for
the design of optimal cooperative control.

Assumption 2.1 The sensing/communication matrix S in
(4) is complete.

Assumption 2.2 For nonlinear multiagent systems (1),
there exist admissible cooperative control policies ui(t) to
solve the consensus problem defined in (2).

To this end, the optimal cooperative control problem
can be formulated: given the nonlinear multiagent systems
(1), the set of admissible cooperative control policies, and
the infinite horizon cost function (3) for individual agents,
find an admissible cooperative control policy such that the
cost function (3) achieves its minimum.

3 The Proposed Approximate Policy Itera-
tion for Multiagent Cooperative Control

3.1 Multiagent HJB Equation

Recall that the cost function for agent i is defined in (3),
which may be rewritten as

Ji(ui;xi(t0), sijxj(t0))

=

∫ ∞
t0

∑
j∈Ni

(xi − xj)TQij(xi − xj) + uTi Riui

 dt,(5)

where Ni = {j ∈ Ω|sij 6= 0} denotes the neighbor set of
agent i. The following lemma is instrumental in developing
the multiagent Hamilton-Jacobi-Bellman (HJB) equation.

Lemma 3.1 For admissible cooperative control ui(t), if
there exists a positive definite continuously differentiable
function Vi(xi, sijxj ;ui) satisfying the following property

∂V Ti
∂xi

(fi(xi) + gi(xi)ui)

+
∑
j∈Nj

∂V Ti
∂xj

(fi(xj) + gi(xj)uj)

+
∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi Riui = 0(6)

and the boundary condition Vi(xi(∞), sijxj(∞);ui) = 0,
then Vi(xi, sijxj ;ui) is the value function for system (1)
for all t, and

Vi(xi(t0), sijxj(t0);ui) = Ji(ui;xi(t0), sijxj(t0)) (7)
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To this end, it follows from lemma 3.1 and Bell-
man’s principle of optimality [3], we know that the optimal
value function V ∗i (xi(t), sijxj(t)) approximately satisfies
for small ∆→ 0

V ∗i (xi(t), sijxj(t)) (8)
' min

ui
[l(xi(t), xj(t), ui)∆ + V ∗i (xi(t+ ∆), sijxj(t+ ∆)],

where l(xi(t), xj(t), ui)
4
=
∑
j∈Ni(xi − xj)

TQij(xi −
xj) +uTi Riui, xi(t+ ∆) ' xi(t) + (fi(xi) + gi(xi)ui)∆,
and xj(t+ ∆) ' xj(t) + (fi(xj) + gi(xj)uj)∆. Since V ∗i
is continuously differentiable, we may write (for ∆→ 0)

V ∗i (xi(t+ ∆), sijxj(t+ ∆)) ' V ∗i (xi(t), sijxj(t))

+
∂V ∗Ti
∂xi

(xi(t), xj(t))[fi(xi) + gi(xi)ui]∆

+
∑
j∈Ni

∂V ∗Ti
∂xj

(xi(t), xj(t))[fi(xj) + gi(xj)uj ]∆.(9)

Substituting (9) in (8) we obtain the multiagent HJB equa-
tion

0 = min
ui

Hi(xi, sijxj , ui, V
∗
i ) (10)

where the multiagent Hamiltonian is defined as

Hi(xi, sijxj , ui, Vi)

=
∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi Riui

+
∂V Ti
∂xi

(fi(xi) + gi(xi)ui)

+
∑
j∈Ni

∂V Ti
∂xj

(fi(xj) + gi(xj)uj) (11)

The minimum with respect to ui is obtained by solving
∂Hi(xi,sijxj ,ui,V

∗
i )

∂ui
= 0, that is,

2uTi Ri +
∂V ∗Ti
∂xi

gi(xi) = 0 (12)

yielding the optimal cooperative control

u∗i = −1

2
R−1
i gTi

∂V ∗i
∂xi

(13)

Substituting (13) into (10) yields

0 =
∑
j∈Ni

(xj − xi)TQij(xj − xi) +
∂V ∗Ti
∂xi

fi(xi)

−1

4

∂V ∗Ti
∂xi

gi(xi)R
−1
i gi(xi)

T ∂V
∗
i

∂xi

+
∑
j∈Ni

∂V ∗Ti
∂xi

(fi(xj) + gi(xj)uj), (14)

with the associated boundary condition V ∗i (x∗i , sijx
∗
j ) = 0,

which requires that the optimal value must be null when
evaluated on an extremal trajectory (all agents in the set
{i,Ni} reach consensus.)

Equation (14) is the mutliagent HJB equation. Its
solution would provide the optimal cooperative control in
(13). However, it is difficult to solve mainly for two rea-
sons. First, equation (14) is a nonlinear partial differen-
tial equation, and it is in general impossible to solve this
equation in analytic form. Second, the coupling terms∑
j∈Ni

∂V ∗T
i

∂xi
(fi(xj)+gi(xj)uj) cause extra difficulty due

to involvement of uj which may require information prop-
agation from agents not in the neighboring set Ni.

3.2 Multiagent Policy Iteration Algorithm

Motivated by the policy iteration algorithm for solving HJB
equation for single agent systems in [18], in what follows,
we provide the mutliagent policy iteration algorithm for ap-
proximately solving the multiagent HJB equation (14). The
proposed multiagent policy iteration algorithm consists of
the following two steps:

Step 1: Policy evaluation. Find an admissible coop-
erative control policy ui,0(xi, sijxj). For any inte-
ger l ≥ 0 denoting the iteration index, solve for
Vi,l(xi, sijxj ;ui,l) using

0 =
∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

+
∂V Ti,l
∂xi

(fi(xi) + gi(xi)ui,l)

+
∑
j∈Ni

∂V Ti,l
∂xj

(fi(xj) + gi(xj)uj), (15)

with Vi,l(x∗, sijx∗) = 0.

Step 2: Policy improvement. Update the control policy
by

ui,l+1 = −1

2
R−1
i gTi

∂Vi,l
∂xi

(16)

The convergence of the multiagent policy iteration al-
gorithm given in (15) and (16) is summarized into the fol-
lowing theorem.

Theorem 1 If a sequence of pairs {Vi,l, ui,l+1} is gener-
ated by (15) and (16), then the corresponding value func-
tion Vi,l satisfying

Vi,l+1 ≤ Vi,l (17)

and
lim
l→∞

Vi,l = V ∗i (18)
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The proof of theorem 1 can be done following the
similar lines of reasoning as that of theorem 4 in [18]. De-
tails are omitted due to space limitation. The proposed mul-
tiagent policy iteration algorithm relieves the nonlinearity
obstacle in solving multiagent HJB equation (14) to a cer-
tain level in the sense of only dealing with a linear partial
differential equation. For instance, by linearly parameter-

izing
∂V Ti,l
∂xi

, the solution to (15) can be obtained from a set
of linear algebra equations. However, uj,l for j ∈ Ni are
still needed in solving (15), which might be hard to directly
be sensed and/or communicated.

To avoid this obstacle, we note that the solution Vi,l
to (15) is actually the value function for system (1) at the
iteration l, since it satisfies the properties in lemma 3.1.
Thus, we obtain

Vi,l(xi(t), sijxj(t);ui,l) = Ji(ui,l;xi(t), sijxj(t)),∀t.

It follows from the above equation and (3) that

Vi,l(xi(t), sijxj(t);ui,l(t))

=

∫ t+T

t

∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

 dt

+Vi,l(xi(t+ T ), sijxj(t+ T );ui,l(t+ T )), (19)

where T > 0 represents certain time interval. To this
end, the policy evaluation step in the proposed multia-
gent policy iteration algorithm can be replaced by equation
(19) for solving for Vi,l based on the available information
xi(t), xj(t) and ui,l(t) during the time interval [t, t+ T ].

3.3 Approximate Policy Iteration

A significant advantage of the proposed multiagent policy
iteration algorithm is that it iteratively generates a sequence
of pairs {Vi,l, ui,l+1} through (19) and (16) by only us-
ing the available local information xi, xj and ui for agent
i, which monotonically converges to the optimal value V ∗i
and u∗i . It is apparent that the key is to solve for Vi,l from
(19). To facilitate the design and for the ease of implemen-
tation, in the sequel, we hypothesize that Vi,l has a linearly
parameterized form as

Vi,l(xi, sijxj) =
m∑
µ=1

φiµ,l(xi, sijxj)θ
∗
iµ,l = ΦTi,lθ

∗
i,l,

(20)
where Φi,l = [φi1,l, φi2,l, · · · , φim,l]T ∈ <m
are some known basis functions, and θ∗i,l =

[θi1,l, θi2,l, · · · , θim,l]T ∈ <m are unknown constant
parameters to be estimated.

It is worth pointing out that the value functions Vi,l
are generally nonlinear and may not assume the exact para-
metric form as that in (20). In that sense, a linearly pa-
rameterized approximator can be used to approximate un-
known nonlinear value function Vi,l. Several function ap-
proximators are available for this purpose, such as, radial

basis function (RBF) neural networks [5, 17], high-order
neural networks [7] and fuzzy systems [24], which are de-
scribed as WTS(z) with input vector z ∈ Rn, weight vec-
tor W ∈ Rl, node number l, and basis function vector
S(z) ∈ Rl. Universal approximation results indicate that,
if l is chosen sufficiently large, then WTS(z) can approxi-
mate any continuous function to any desired accuracy over
a compact set [7, 17].

In this paper, we assume that the value functions Vi,l
are approximated by RBF neural networks. That is, for
the unknown value functions Vi,l(xi, sijxj), we have the
following approximation over some compact set Ωi

Vi,l(xi, sijxj) = ΦTi,l(x̄i)θ
∗
i,l + ωi,l(x̄i), ∀x̄i ∈ Ωi (21)

where x̄i = [si1x1, si2x2, · · · , xi, · · · , sijxj , · · · , siNxN ]T ,
θ∗i,l ∈ Rli is an unknown constant parameter vector, the
neural network node number li > 1, ωi,l(x̄i) is the approx-
imation error, and Φi,l(x̄i) = [φi1,l, φi2,l, · · · , φili ,l]

T is
the known basis function vector.

Upon using the function approximator (21), the policy
evaluation equation in (19) becomes∫ t+T

t

∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

 dt

= [Φi,l(x̄i(t))− Φi,l(x̄i(t+ T ))]T θ∗i,l + ω̄i,l(t),(22)

where ω̄i,l(t) = ωi,l(t)− ωi,l(t+ T ).

Remark 3.1 Based on the universal approximation theo-
rem [7, 17], approximation error ωi,l(x̄i) will uniformly
converge to zero as the neural network node number li →
∞. In other words, |Vi,l − ΦTi,lθ

∗
i,l| → 0 as li →∞. Thus,

ω̄i,l(t) → 0 as li → ∞, which implies that (22) can be
used as an approximation for the policy evaluation in the
proposed multiagent policy iteration algorithm. �

It follows from (22) that θ∗i,l provides the best approx-
imate solution for the policy evaluation. However, its value
is unknown, and needs to identified online. Let θi,l(t) be
the estimate of θ∗i,l, and equation (22) becomes∫ t+T

t

∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

 dt

= [Φi,l(x̄i(t))− Φi,l(x̄i(t+ T ))]T θi,l(t) + ei,l(t),(23)

where ei,l(t) = [Φi,l(x̄i(t)) − Φi,l(x̄i(t + T ))]T θ̃i,l(t) +

ω̄i,l(t), θ̃i,l(t) = θ∗i,l − θi,l(t). Thus, given any admissible
cooperative control, the parameter θi,l should be chosen to
minimize the squared approximation residual error e2

i,l(t).
As θi,l(t)→ θ∗i,l, it is obvious that ei,l(t)→ ω̄i,l.

In what follows, we present the proposed adaptive
law for θi,l using the least-squares estimation. To pro-
ceed with the proposed adaptive design, we introduce an

infinite sequence of time instants {tk
4
= t0 + kT} for

k ∈ N 4
= {0, 1, · · · , } with T > 0 the sampling time. The

proposed adaptive multiagent policy iteration algorithm re-
lies on two types of updating intervals:
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1) Control action interval [tk, tk+1), in which the same
control policy ui,l will be applied;

2) Observation interval [tk, tk+n), in which n sets of
control action with the same control policy ui,l will
be applied, and observation data during the n intervals
will be used for the least-squares estimation of θi,l.

Remark 3.2 Note that the observation interval is imposed
for the least-squares solution of Vi,l based on (23) for the
policy evaluation step in the proposed multiagent policy
iteration algorithm, while the control action interval corre-
sponds to the implementation of control ui,l from the policy
improvement step. �

For notational convenience, let us define

zi(tk)

=

∫ tk+1

tk

∑
j∈Ni

(xj − xi)TQij(xj − xi) + uTi,lRiui,l

 dt

and

Ψi,l(tk) = Φi,l(x̄i(tk))− Φi,l(x̄i(tk+1)).

Substituting this into (23) yields

zi(tk) = Ψi,l(tk)T θi,l + ei,l(tk) (24)

The model in (24) is the regression model for policy itera-
tion and Ψi,l is called the regressor. Through the observa-
tion interval [tk, tk+n], pairs of observations and regressors
{(zi(tk+µ),Ψi,l(tk+µ)), µ = 0, 1, n − 1} are obtained by
using control policy ui,l. The parameter θi,l will be chosen
to minimize the least-squares loss function

L(θi,l, tk) =
1

2

n−1∑
µ=1

(
zi(tk+µ)−Ψi,l(tk+µ)T θi,l

)2
.

To this end, standard least-squares estimation algorithm
renders

θi,l =
(
ΞTi,lΞi,l

)−1
ΞTi,lZi,l (25)

where Zi,l = [zi(tk), zi(tk+1), · · · , zi(tk+n−1)]T , and
Ξi,l = [ΨT

i,l(tk), · · · ,ΨT
i,l(tk+n−1)]T . Thus, according

to policy improvement step in (16), and noting ∂Vi,l
∂xi

=
∂ΦTi,l
∂xi

θi,l the control law is

ui,l+1 = −1

2
R−1
i gTi

∂ΦTi,l
∂xi

θi,l. (26)

The above results can be summarized into the follow-
ing proposition.

Proposition 3.1 Under assumptions 2.1, 2.2 and ??, the
control law (26) with adaptive law (25) approximately
solves the optimal cooperative consensus problem for mul-
tiagent nonlinear system (1) by minimizing the cost func-
tion (3).

Proof: The proof can naturally be done following the
above multiagent policy iteration design steps, the least-
squares estimation, the claims in lemma 3.1, theorem 1 as
well as the universal approximation theorem for neural net-
work function approximation. 2

Remark 3.3 The implementation of estimation algorithm
in (25) requires an excitation condition for matrix ΞTi,lΞi,l,
which could be satisfied with the careful choices of basis
function for neural network approximators. To further re-
duce the computation load due to the computation require-
ment for matrix inverse, in what follows, we give a simpli-
fied adaptive recursive algorithm for θi,l. 3

The simplified adaptive recursive update for θi,l
is based on Kaczmarz’s project algorithm [1]. That
is, one pair of data {zi(tk),Ψi,l(tk)} generates an
estimate θi,l(tk). Once a new measurement pair
{zi(tk+1),Ψi,l(tk+1)} is obtained, it is natural to choose
the new estimate θi,l(tk+1) as that minimizes the following
cost function

L =
1

2
(θi,l(tk+1)− θi,l(tk))T (θi,l(tk+1)− θi,l(tk))

+λ(zi(tk+1)−Ψi,l(tk+1)θi,l(tk+1)), (27)

where λ is a Lagrangian multiplier. Taking derivatives with
respect to θi,l(tk+1) and λ, we obtain

θi,l(tk+1)− θi,l(tk)− λΨi,l(tk+1) = 0, (28)
zi(tk+1)−Ψi,l(tk+1)θi,l(tk+1) = 0. (29)

Solving the above equations yields

θi,l(tk+1) = θi,l(tk)

+
Ψi,l(tk+1)

Ψi,l(tk+1)TΨi,l(tk+1)
(zi(tk+1)−Ψi,l(tk+1)θi,l(tk))(30)

To avoid the possible singularity for the term
Ψi,l(tk+1)TΨi,l(tk+1) for computation stability, a
modified algorithm for (30) would be used in practice as
given below by the double-column formula (31), where
γ > 0 is the learning rate and α is a positive constant.

In summary, the proposed approximately adaptive
multiagent policy iteration (MPI) algorithm is given in Al-
gorithm 1.

Algorithm 1 Approximately Adaptive MPI Algorithm

1: Let l = 0. Given initial states xi(t0), sijxj(t0), let the
initial admissible cooperative control policy be ui,0.

2: Employ the control policy ui,l, and within the observa-
tion interval [tl×n, t(l+1)n−1], collect the data pairs

{(zi(tl×n+µ),Ψi,0(tl×n+µ)), µ = 0, 1, n− 1}

3: Solve for θi,l from (31).
4: Solve for ui,l+1 from (26).
5: Let l← l + 1, and go to step 2, until

‖θi,l+1 − θi,l‖2 ≤ ε,

where ε > 0 is a sufficiently small predefined thresh-
old.
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θi,l(tk+1) = θi,l(tk) +
γΨi,l(tk+1)

Ψi,l(tk+1)TΨi,l(tk+1) + α
(zi(tk+1)−Ψi,l(tk+1)θi,l(tk)) (31)

4 Simulation Results

To illustrate the proposed approximately adaptive coopera-
tive control, we consider a simple multiagent system with
3 agents modeled by the following single integrators

ẋi = ui, i = 1, 2, 3 (32)

where xi ∈ <, and ui ∈ <. Let the sensing/communication
topology among 3 agents be given by

S =

 1 1 0
0 1 1
1 0 1


Apparently, S matrix is complete, and admissible cooper-
ative control exists for the consensus of (32). Select the
weight matrices in (3) as Qij = 1, Ri = 0.25 for sim-
ulation purpose. We use a single neural node approxi-
mator for each value function Vi,l. Based on S matrix,
we choose the basic functions as Φ1,l = (x1 − x2)2,
Φ2,l = (x2 − x3)2 and Φ3,l = (x3 − x1)2 for value func-
tions V1,l, V2,l and V3,l, respectively. System initial states
are x1(0) = 0.5, x2(0) = 0.2 and x3(0) = 0.3. Apply-
ing the proposed approximately adaptive MPI algorithm in
Algorithm 1, the correspondingly cooperative controls are
of the form (26), and the adaptive laws for θi,l are given
by (31). Figure 1 shows that system states consensus is
achieved, figure 2 displays the instantaneous cost values.
Figure 3 illustrates the optimal cooperative control inputs,
and the convergence of neural network weights estimates is
shown in figure 4.

Figure 1. Consensus of xi(t)

5 Conclusions

In this paper, we proposed a new approximately adaptive
online multiagent policy iteration algorithm to address the

Figure 2. Instantaneous cost values versus time

Figure 3. Optimal cooperative controls

Figure 4. Parameters of neural networks versus time
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optimal cooperative consensus control problem for a gen-
eral class of nonlinear multiagent systems. The proposed
design relies on iterative policy evaluation and policy im-
provement by using neural network based online adaptive
estimation for optimal value functions. Simulation results
further verified the effectiveness of the proposed design.
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Experimental Validation of Distributed Cooperative Control for Mobile
Agents with Switching Topologies and Time-Delays*

Junzhen Shao1, Jing Wang2 and Tianyu Yang1

Abstract— In this paper, we present practical experimental
results to demonstrate a control law for consensus of multiagent
systems with switching topologies and time delays. The nonlin-
ear control law utilizes nonlinear cooperative control gains and
uses contraction mapping to achieve consensus of multiagent
systems. The testing platform we used consists of a number
of mobile robots. We present the effectiveness of the control
law design by Aria mobile robots with applications in dis-
tributed cooperative formation control. Computer simulations
and hardware experiments presented include point consensus
control and formation control, both with changing topologies
and time-delays using directed and undirected communication
topologies.

I. INTRODUCTION

Cooperative control[5][10] aims at achieving consensus or
agreement dynamics in a multiagent system. It is an area
of research lying at the intersection of systems and graph
theory. A prominent application area of cooperative control is
autonomous systems, especially for military and government
applications. The development of single agent systems is
increasingly mature in recent years. For example, unmanned
aerial vehicles (UAV) and autonomous underwater vehicles
(AUV) play an important role in applications in severe envi-
ronments or classified operations. On the other hand Cooper-
ative control of multiagent systems can enhance the system
performance for applications like patrolling, monitoring, etc.
The design of cooperative control is closely related to system
dynamics. For linear systems, the dynamics can be simplified
to the first-order integrator model or the double integrator
model[1][2]. For nonlinear systems, which are more relevant
to real world applications, cooperative control becomes much
more complicated, and large gaps exist between theoretical
system design and practical applications[1][3].

The multigent system is a computerized system of multiple
interacting intelligent agents within an environment[5][13],
and the agents work together to accomplish certain tasks.
Each agent in the system has the capability of self-operating.
There are two key topics in the research of multiagent sys-
tems: the design of cooperative control laws, and the control-
lability of networks. The network communication topology
plays a key role in accomplishing consensus tasks. From this

*This work was supported by Air Force Research Laboratory FA8750-
13-1-0109, Bethune-Cookman University and Embry-Riddle Aeronautical
University

1Tianyu Yang and Junzhen Shao are with the department of Electrical
Engineering and Computer Science, Embry-Riddle Aeronautical University,
Daytona Beach, FL 32114, USA sz030247@hotmail.com

2Jing Wang is with Faculty of Computer Engineering, School of Sci-
ence, Engineering and Mathematics, Bethune-Cookman University, Daytona
Beach, FL 32114, USA

perspective, several different communication strategies have
been proposed[2][7]. A popular method is the leader-follower
model, in which one agent plays as the leader, and other
agents communicate with the leader when performing the
tasks. This model has little communication requirement and
short reaction time. Nevertheless, the entire system breaks
down once the leader agent is disabled.

In this paper, we experimentally validate the effectiveness
of the nonlinear cooperative control proposed in [1], which is
demonstrated through discontinuous cooperative control for
consensus of multiagent systems with switching topologies
and time-delays using mobile robots[1][2][12][15]. By de-
signing nonlinear piecewise control gains, the consensus or
formation of multiangent systems with switching topologies
and time-delays are achieved both in software simulations
and hardware experiments.

II. PROBLEM FORMULATION

The dynamics of a group of mobile agents are expressed
as

ẋi = vi cosθi, ẏi = vi sinθi, θ̇i = ωi (1)

where xi and yi denote the position of the ith agent, θi shows
the orientation which is based on the driving velocity vi and
steering velocity ωi. In this case (xi,yi) ∈ R2, (vi,ωi) ∈ R
and i ∈ 1, · · · ,n.

Let us define the desired trajectory for the group of agents
as

q0(t) = [x0(t),y0(t)]T ∈ R2 (2)

And the motion frame is denoted as F(t), which can be
considered as a constraint in geometric coordinates in terms
of relative positions of the robots. F(t) consists of q0(t) and
the orthonormal vectors, e1,e2, as defined below,

e1(t) =
[

e11(t)
e12(t)

]
=

 ẋ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

ẏ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

 , (3)

e2(t) =
[

e21(t)
e22(t)

]
=

 ẋ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

ẏ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

 , (4)

Based on the orthonormal vectors ei(t) and the trajectory
information q0(t), the agent position is given as,

Pi(t) = αi1e1(t)+αi2e2(t), (5)
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where Pi(t) is the position of the ith robot, and αi j are
constants determining the formation shape.

The sensing/communication information exchange
among the fleet agents can be expressed by the
sensing/communication matrix,

S(ts
k) =


s11 a12(ts

k) · · · a1m(ts
k)

s21(ts
k) a22 · · · a2m(ts

k)
...

...
. . .

...
sm1(ts

k) sm2(ts
k) · · · amm

 , (6)

where at (ts
k) : k = 0,1, · · · , the ith agent receives velocity, ori-

entation and position information from agent j, if si j(ts
k) = 1.

Otherwise, if si j(ts
k) = 0, there is no communication between

agent i and agent j.
Define the sign(z) function as,

sign(z) =

 1, z > 0
0, z = 0
−1, z < 0

(7)

For si j(ts
k) 6= 0, the control model can be expressed as,

ui(t) =
n

∑
j=1

α(si j(ts
k),Pj(ts

k))sign(Pj(t)−Pi(t)), (8)

where t ∈ [ts
k, t

s
k+1], and α(,) is a nonlinear control gain.

III. CONTROL DESIGN

In this paper we use formation control to demonstrate the
consensus of multiagent systems with the new control law
(8). First, we use the robot model (1), and define x̂ = x+
Rcosθ , ŷ = y+Rsinθ . Therefore,

˙̂x = vcosθ −Rsinθω ,̇̂y = vsinθ −Rcosθω, (9)

Now, we can linearize the robot model as (10), and the real
control inputs are expressed as (11).

˙̂x = ux, ˙̂x = uy, (10)

[
v
ω

]
=

[
cosθ sinθ

− sinθ

R
cosθ

R

]
+

[
ux
uy

]
,

[
v
ω

]
=

[
uxcosθ +uysinθ

− uxsinθ

R +
uycosθ

R

]
, (11)

The moving velocity for the ith robot during formation to
a certain shape following certain predetermined track can be
expressed as (12) based on (2),

qi(t) = q0(t)+
2

∑
j=1

α(si j(ts
k),Pj(ts

k)), (12)

This can be considered as the derivative value based on
the robot’s relative velocity. For each robot in the system,
we can assume the velocity of the robot to be a constant,
and others follow the robot based on (12).

The ith robot’s control design without time-delays is based
on (2)(3)(4)(8)(12), and is given by,

ui =
n

∑
j=1

α(si j(ts
k),Pj(ts

k))sign(Pj(t)−Pi(t))+ q̇i(t), (13)

in (13), α(si j(ts
k) is the nonlinear control gain. S(ts

k) can
be changing to reflect different types of communication
strategies such as leader-follower, global communication and
neighbor-follower, etc.

The design of nonlinear control gain for global commu-
nication and simple directed communication without time-
delay can be given as,

α(si j(ts
k)) =

si j(ts
k)

∑l=1 sil(ts
k)
, (14)

which has been proved in [1]. In this paper, we show
through computer simulations and robots experiments that,
the control gain (14) is sufficient for systems with directed
communication topologies. However, this control gain may
fail to achieve consensus when applied to systems with
undirected communication topologies. Therefore, we adopt
the new nonlinear control law for undirected communication
as follows [1]. Let the nonlinear control gain αi j be designed
as,

case 1: if Pi(ts
k) =max j∈NiPj(ts

k) =min j∈NiPj(ts
k),αi jcan be

any bounded positive value.
case 2: if Pi(ts

k) ≥ max j∈NiPj(ts
k), then al pha(si j can be

ranged,

0≤
n

∑
j∈Ni

α(si j(ts
k)<

Pi(ts
k)−min j∈NiPj(ts

k)

c
, (15)

case 3: if Pi(ts
k) ≤ min j∈NiPj(ts

k), then al pha(si j can be
selected,

0≤
n

∑
j∈Ni

α(si j(ts
k)<

max j∈NiPj(ts
k)−Pi(ts

k)

c
, (16)

case 4: if min j∈NiPj(ts
k) < Pj(ts

k) < max j∈NiPj(ts
k), let

al pha(si j be selected to satisfy,

0≤
n

∑
j∈Ni

α(si j(ts
k)< min[(9),(10)], (17)

where c could be any positive constant. This theorem has
been proved in [1] analytically.

IV. SIMULATION AND EXPERIMENTS

A. Software Results

In the Matlab environment, we demonstrate the new con-
trol algorithm for multiagent systems. All the demos consist
of four agents performing the consensus and formation
control tasks with two communication strategies. One is the
directed communication topology, which means each agent
knows the connected neighbor agents’ information in terms
of velocity, position and orientation. The other is called least
restrictive communication topology, in which each agent
knows their neighbors’ information in one way only.
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To implement the control law shown in (13), for the
directed communication topology, we consider a group of
four mobile robots achieving a rhombus formation while
following a circular movement. For the general setting
as expressed in (12) (13), we set q0(t) = [2cost,2sint]T ,
and e1(t) = [−sint,cost]T ,e2(t) = [−cost,−sint]T . The four
robots are following a circle, and the control gain applied
is (14). The update time ts = 0.05s. First, the control input
(13) is adopted, which contains the sign function. Second,
to simulate the control law without the sign function, simply
remove the sign function part.

In the first set of simulations, the directed communication
topology is adopted and we compare the system performance
with and without the sign function. Four robots are designed
to either converge to one point or form a certain shape (while
making circular movements). si j(tk) is applied as,

s1 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 1 1

 ,s2 =


1 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,

s3 =


1 0 0 0
1 1 1 0
0 0 1 0
0 0 0 1

 ,s2 =


1 0 0 0
0 1 0 0
0 1 1 1
0 0 0 1

 , (18)

The obtained trajectories are shown in figures 1-4,

Fig. 1: Consensus of four agents without the sign function
with directed communication topology, starting from four
different positions and converging to one point. Time to
consensus is T=4.7s

Fig. 2: Consensus of four agents with the sign function
with directed communication topology, starting from four
different positions and converging to one point. Time to
consensus is T=3.6s

Fig. 3: Four robots starting from different positions and
forming a rhombus while following a circle with the sign
function and the directed communication topology. Time to
the desired formation is T=3.3s

Fig. 4: Four robots starting from different positions forming
a rhombus while following a circle without the sign function
and with the directed communication topology. Time to the
desired formation is t=4.4s
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For the undirected communication topology, we adopt
the least-restrictive neighbor communication topology,
with each robot only communicating with a neighboring
agent. There is no leader in the system, and minimum data
transferring is incurred. si j(tk) is set as,

s1 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

 ,s2 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

s3 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,s2 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , (19)

The control law with time-delays and the sign function
can be expressed as (21), with τi j set to one second,

ui =
n

∑
l=1

α(si j(ts
k),Pj(ts

k)− τi j)sign(Pj(t− τi j)−Pi(t))+ q̇i(t),

(21)
The control gain design is specified in (14)(15)(16)(17),

i.e., every time an agent receives a neighbor’s position infor-
mation, the software compares this value with the maximum
or minimum value as shown in (14)(15)(16)(17), then the
control gain is selected accordingly.

As we mentioned before, the control gain in (14) may not
be a appropriate for undirected communication topologies.
Agents may fail to form the desired shape. Figure 5 below
gives an example of such scenario with the continuous
control gain (14). The four agents fail to converge within
60s and the trajectory contains oscillation.

Fig. 5: Consensus of four agents with the sign function and
time-delays with the directed communication topology. They
start from four different positions and attempt to converge
to one point, but fail to converge within 60s.

As we apply the rules (14)(15)(16)(17), the system works
satisfactorily under the same conditions, as shown in figure
6. A formation example is also displayed in figure 7,

Fig. 6: Consensus of four agents using new rules with the
sign function and time-delays with the directed communi-
cation topology. They start from four different positions to
converge to one point in 3.2s.

Fig. 7: Four robots starting from random positions form a
rectangle following a certain circular movement. Time to
the desired formation t=3.5s

B. Hardware Experiments

We also implemented the new control law in the Aira
mobile robots. The robots know the initial position of them-
selves, but when they are moving, each robot only knows
the velocity and the position information from one of its
neighboring robots. q̇i(t) is set based on the requirement
of the consensus speed. All the Aira demos shown are for
the distributed formation control of multiagent systems with
switching topologies. q̇i(t) is set to 200mm in both x and
y orientations. The communication topology (19) is adopted
with the control law (13). At this time, the control gains are
designed as Kx=120 and Ky=20. Figure 8 shows the position
information of robot1 and figure 9 compares the experimental
results with the theory.

From figure 9 we can see the experimental value Kx=120
fits the theoretical control gain very well based on (15).
Similarly, for the y domain, the experimental value fits well
with the theoretical value (17).
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Fig. 8: Referring to Robot1 and Robot2, Y is the distance
between two robots in x and y domains. We sampled 120
points, one point per second.

Fig. 9: X and Y control gains comparison between theory
and experiments. We sampled 120 points, one point per
second.

Figures 10 and 11 are a series of images showing the
Aira robot simulations in our lab.

Fig. 10: Rectangle-to-line and line-to-rectangle formation
control with undirected communication and the sign func-
tion.

Figure 11 shows the formation shape changing from
rectangle to line, then to rhombus, and finally converging
to one point. K is set to 60, moving velocity q̇i(t) = 100mm
with the same communication topology (19).

Fig. 11: Formation changes from rectangle to line to rhom-
bus and ends with a point with undirected communication
and the sign function

V. CONCLUSION

In this paper, we demonstrate the distributed coopera-
tive control for the consensus of multigent systems with
switching topologies and time-delays using Matlab and Aira
mobile robot experiments. Matlab simulations confirmed the
advantages of using the sign function in terms of short
consensus time and assurance of consensus, compared with
the control law without the sign function. Also, the results
obtained through the discontinuous design of control gains
validated the effectiveness of such design in consensus and
formation problems. Another important benefit is, this new
control law can be easily loaded into real robots, so practical
implementation issues can be studied experimentally, such as
time-delays, hardware limitations, etc.
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Formation Control of Multiple Nonholonomic Mobile Robots with
Limited Information of a Desired Trajectory

Jing Wang, Morrison Obeng, Tianyu Yang, Gennady Staskevich, and Brian Abbe

Abstract— In the study of task coordination for multiagent
systems, formation control has received considerable attention
due to its potential applications in civil and/or military prac-
tices. Fundamentally, formation control problem for multiagent
systems can be formulated as making a group of agents follow
the desired trajectory while maintaining certain prescribed
geometric distances among agents. In this paper, we consider
the formation control problem for mobile robots with nonlinear
dynamics and moving in a 2D environment. To address the
inherent challenges due to nonlinear system dynamics and
agents’ limited sensing/communication capabilities, we instill an
idea of integrating the recently developed distributed consensus
theory into the standard feedback control, and propose a new
time-varying cooperative control strategy to solve the forma-
tion control problem for multiagent systems. In particular,
the proposed design only requires the local and intermittent
information exchange among agents to achieve the formation
control objective. More importantly, we remove the restriction
on the need of the desired trajectory for every agent, and
instead design a distributed observer for obtaining the desired
trajectory in order to establish the formation in the design.
The overall distributed formation control system stability is
rigorously proved by using a contraction mapping method
under the condition that the sensing/communication network
among robots is sequentially complete. Simulation is provided
to validate the effectiveness of the proposed design.

I. INTRODUCTION

Coordination of multiagent systems has been and con-
tinues to be an active research area in the current control
community, and recent years have seen a significant progress
in the development of distributed consensus strategies for
multiagent systems [24][23][25].

The developments have been primarily focused on ad-
dressing two aspects of issues. The first issue is on the study
of network controllability. The core is to identify the least
required sensing/communication conditions for completing
coordination tasks. A significant result was obtained in
[10], in which the sensing/communication topologies are
modeled using an undirected graph and its uniform connec-
tivity provides the sufficient condition for agents consensus.
This condition was further relaxed to take into account the
directed graph [25][27], and the existence of a spanning tree
in the graph is necessary and sufficient for group coordina-
tion. In our recent work [24], we addressed this issue by
using matrix theory, and introduced the notion of sequential

J. Wang and M. Obeng are with Faculty of Computer Engineering, School
of Science, Engineering and Mathematics, Bethune-Cookman University,
Daytona Beach, FL 32114, USA. G. Staskevich and B. Abbe are with
AFRL/RISC, Rome, NY, 13441. T. Yang is with Electrical Engineer-
ing, Embry-Riddel Aeronautical University, Daytona Beach, FL 32114.
Email: ecejwang@ieee.org This work was supported by the
Air Force Research Laboratory FA8750-13-1-0109.

completeness of sensing/communication matrix sequences
to describe the connectivity condition. The second issue is
on the design of cooperative control and stability analysis.
The cooperative control for linear systems are thoroughly
studied in [13][10][27][8][24]. For nonlinear systems, some
results are available by using passivity-based design in [2],
Lyapunov design in [23], and set-valued Lyapunov functions
[19][16].

The aforementioned results are mostly centered on the
study of consensus problem for multiple dynamical systems.
One of direct applications of those results is to tackle the
formation control problem for real systems. Fundamentally,
formation control problem can be formulated as making a
group of agents follow the desired trajectory while maintain-
ing certain prescribed geometric distances among agents. In
this paper, we consider the formation control problem for
nonholonomic mobile robots with nonlinear dynamics and
moving in a 2D environment. Progress has been made in
solving formation control problem by using leader-follow
strategies, virtual structure method, and artificial potentials
[26][11][22][7][5][17][9][1][14][18]. However, most results
are obtained by either assuming linear system dynamics or
converting the nonholonomic robot model into linear one
through feedback linearization. It is well known that it is
challenging to design feedback control for mobile robots
with nonholonomic constraints [21]. There are some results
for studying the cooperative control of nonholonomic robots
[6][15][20][28]. Among them, a discontinuous control was
proposed in [6] and nonsmooth Lyapunov theory and graph
theory are used for stability analysis. In [15], based on the
Frenet-Serret model of unicycle, time-varying controls were
designed and analyzed using average theory. The work in
[20][28] assumed the constant driving velocity and controls
were only designed for steering velocity. In our recent paper
[30], we proposed a distributed cooperative steering control
design for a class of networked dynamical systems with
inherent nonlinear dynamics. A number of conditions were
established in terms of the properties of the cooperative
steering control for achieving cooperative behaviors.

In this paper, we present a new solution for the formation
control design of nonholonomic mobile robots. The nonholo-
nomic constraints of robots are explicitly taken into account
in the proposed design by converting the unicycle model
into the canonical chained form. The proposed distributed
formation control utilizes the information exchange to better
coordinate the motion of individual robots, but there is
no requirement for the strongly connected communication
topology which could be uncertain and unreliable due to
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communication noises. Instead, we allow more flexible,
intermittent, and time varying communication topologies
among robots. A finite-time distributed observer is designed
to estimate the desired trajectory information. The stability
and convergence analysis for the proposed formation control
are done through contraction mapping method under the
condition that the sensing/communication network among
robots is sequentially complete. Simulation result is included
to validate the effectiveness of the proposed control.

The rest of the paper is organized as follows. Section
II formulates the formation control problem. Main results
are presented in section III, in which distributed finite-
time observer and nonlinear formation control are designed
including system stability analysis. A simulation example is
given in section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

Consider a network of multiple nonholonomic mobile
robots with the individual system dynamics given by

ẋi = vi cos θi,
ẏi = vi sin θi,

θ̇i = ωi

(1)

where i ∈ Ω
4
= {1, · · · , n}, (xi, yi) ∈ <2 denotes the ith

robot’s position, θi is the orientation, vi ∈ < driving velocity,
and ωi ∈ < the steering velocity.

To make the method in this paper more general, our design
will be based on the following canonical chained form

żi1 = ui1, żi2 = ui2, żi3 = zi2ui1, (2)

into which the model in (1) can be converted by using the
following state and input transformations

zi1 = xi, zi2 = tan θi, zi3 = yi, (3)

ui1 = vi cos θi, ui2 =
ωi

cos2 θi
. (4)

That is, once the formation controls ui1 and ui2 are designed,
the corresponding vi and ωi can be found through the inverse
transformation of (4).

The design objective of this paper is to coordinate the
motion of individual robots to follow a desired trajectory
contour while maintaining certain prescribed geometric for-
mation shape through local information exchange among
robots. By taking the whole group of mobile robots as a
virtual body moving along the desired trajectory, formation
shape of robots in the group can be determined by a set of lo-
cal coordinates with reference to the moving frame attached
to the desired trajectory (see figure 1 for an illustration of
moving frames).

More specifically, let q0(t) = [x0(t), y0(t)]T ∈ <2 be the
desired trajectory for the group motion, the moving frame
F(t) attached to q0(t) can be defined by the following
orthonormal vectors e1(t) and e2(t)

e1(t) =

[
e11(t)
e12(t)

]
=


ẋ0(t)√

[ẋ0(t)]2 + [ẏ0(t)]2

ẏ0(t)√
[ẋ0(t)]2 + [ẏ0(t)]2

 ,

Fig. 1. Moving frames on the desired trajectory

e2(t) =

[
e21(t)
e22(t)

]
=

 −
ẏ0(t)√

[ẋ0(t)]2 + [ẏ0(t)]2

ẋ0(t)√
[ẋ0(t)]2 + [ẏ0(t)]2

 .
Accordingly, any formation consisting of n robot positions

in F(t) can be expressed as {P1, · · · , Pn} with

Pi(t) = αi1e1(t) + αi2e2(t), (5)

where αij are constants of determining the formation. To
this end, the formation control objective can be recast as to
design the control laws vi(t) and ωi(t) for the ith robot such
that

lim
t→∞

[[
xi(t)
yi(t)

]
− q0(t)− Pi(t)

]
= 0. (6)

It is noted that the control objective defined in (6) can
be achieved through the standard tracking control design
for individual robots if the desired trajectory q0(t) and its
derivative q̇0(t) are available to every robot. However, such
a design may not be robust in the presence of disturbance
and noise measurements due to the lack of coordination
among robots. On the other hand, the desired trajectory
q0(t) may be known only by some of robots in the group.
Therefore, it is desirable to design distributed formation
control law for the ith robot based on information exchange
and relative position measurement between robots within its
sensing/communication range.

In this paper, we assume that the sensing/communication
topologies among robots are changing, which can be cap-
tured by the time sequence {tsη : η = 0, 1, · · · }. Correspond-
ingly, we introduce the following binary matrix to describe
the sensing/communication topology.

S(t) =


s11 s12(t) · · · s1q(t)
s21(t) s22 · · · s2q(t)

...
...

. . .
...

sn1(t) sn2(t) · · · snn

 , (7)

with S(t) = S(tsη),∀t ∈ [tsη, t
s
η+1), where sii ≡ 1; sij(t) =

1 if the jth robot is in the sensing/communication range

551

Approved for Public Release; Distribution Unlimited. 
78



of the ith robot at time t, and sij = 0 if otherwise; and
ts0
4
= t0. It can be assumed without loss of any generality

that 0 < ct ≤ tsη+1 − tsη ≤ ct < ∞, where ct and ct are
constant bounds. We also define the neighbor set for the ith
robot as Ni(t) = {j ∈ Ω|sij(t) = 1}.

It is apparent that in order to achieve the coordination
task, the sensing/communication topologies defined by (7)
must satisfy certain connectivity conditions. In our recent
work [24][30], we introduced the notion of sequentially
completeness to describe the least required condition on
network connectivity for cooperative control design, which
is restated by the following definitions.

Definition 2.1: Sensing/communication matrix sequence
{S(t)} is said to be sequentially lower-triangularly complete
if it is sequentially lower-triangular and in every row i of its
lower triangular canonical form, there is at lease one j < i
such that the corresponding block Sij(t) is uniformly non-
vanishing.

Definition 2.2: Sensing/communication matrix sequence
{S(t)} is said to be sequentially complete if the sequence
contains an infinite subsequence that is sequentially lower-
triangularly complete.

As an example for sequential completeness, let us assume
that the sensing/communication topologies for 3 robots are
changing according to the sequence {S(tk), k ∈ ℵ,ℵ 4=
{1, 2, . . . }} defined below: S(tk) = S1 for k = 4η, S(tk) =
S2 for k = 4η + 1, S(tk) = S3 for k = 4η + 2, and
S(tk) = S4 for k = 4η + 3, where η ∈ ℵ,

S1 =

 1 0 0
1 1 0
0 0 1

 , S2 =

 1 1 0
0 1 0
0 0 1

 ,
S3 =

 1 0 0
0 1 0
1 0 1

 , and S4 =

 1 0 0
0 1 0
0 0 1

 . (8)

The bitwise union of Si, i = 1, · · · , 4 is

⋃
i

Si =

 1 1 0
1 1 0
1 0 1

 4= [ S′Λ,11 ∅
S′Λ,21 1

]
.

It then follows from the structure of
⋃
i Si that the corre-

sponding sequence is lower-triangularly complete, and there-
fore the switching sensing/communication topologies defined
by (8) is sequentially complete.

Assumption 2.1: The group of robots defined in (1) has a
sequentially complete sensing/communication network.

III. THE MAIN RESULT

In this section, we present a nonlinear formation control
design for nonholonomic mobile robots (1) with limited
information of the desired trajectory q0(t). Particularly, the
proposed new formation control will be done with the aid of
distributed observers for the estimation of q0(t).

It follows that the desired trajectory q0(t) also satisfies the
nonholonomic constraints, that is, we have

ẋ0 = v0 cos θ0, ẏ0 = v0 sin θ0, θ̇0 = ω0

for some v0, ω0, and θ0. It is then readily seen that the
moving frame attached to q0(t) can be established using the
rotation matrix in terms of the desired trajectory orientation
θ0(t), that is,

e1(t) =

[
cos θ0

sin θ0

]
, e2(t) =

[
− sin θ0

cos θ0

]
To this end, the formation control can be designed based

on the real time estimation of x0(t), y0(t) and θ0(t). The pro-
posed distributed observer is of the form (for t ∈ [tsk, t

s
k+1))

ẋi,0(t) =
∑
j∈Ni

αijsgn(xj,0(tsk)− xi,0(tsk))

+αi0si0sgn(x0(tsk)− xi,0(tsk)) (9)

ẏi,0(t) =
∑
j∈Ni

αijsgn(yj,0(tsk)− yi,0(tsk))

+αi0si0sgn(y0(tsk)− yi,0(tsk)) (10)

θ̇i,0(t) =
∑
j∈Ni

αijsgn(θj,0(tsk)− θi,0(tsk))

+αi0si0sgn(θ0(tsk)− θi,0(tsk)) (11)

where xi,0(t), yi,0(t) and θi,0(t) are the ith robot’s estimate
of x0(t), y0(t), and θ0(t), respectively, si0 = 1 if and only
if the ith robot has the direct access to the information of
the desired trajectory, αi,j and αi0 are piecewise constant
control gains to be designed, and sgn(·) function is defined
as

sgn(z) =

 1, z > 0
0, z = 0
−1, z < 0

The following theorem states the finite-time convergence
of the proposed distributed observers (9), (10) and (11) under
appropriate choices of αi,j and αi0.

Theorem 1: Consider a group of nonholonomic mobile
robots given by (2) with assumption 2.1. The finite-time
convergence of xi,0(t) to x0(t), yi,0(t) to y0(t) and θi,0(t)
to θ0(t) can be guaranteed under the proposed distributed
observers (9), (10) and (11), if the control gain αij and αi0
(for si0 = 1) are designed as follows: for agent i,∑

j∈Ni

aij(t
s
k) + ai0(tsk) > d̄, if si0 = 1, (12)∑

j∈Ni

aij(t
s
k) > d̄, if si0 = 0 (13)

where d̄ is the upper bound of |ẋ0(t)|, |ẏ0(t)| and |θ̇0(t)|.
Proof: We prove the convergence of (9). The same pro-

cedure applies to (10) and (11). We first consider the robots
which have the direct access to x0(t), that is, robot i for i ∈
Ω0 = {i ∈ Ω : si0 = 1}. Define xmaxi,0 (t) = maxi∈Ω0 xi,0(t)
and xmini,0 (t) = maxi∈Ω0 xi,0(t). Let x̃maxi,0 (t) = xmaxi,0 (t) −
x0(t), and x̃mini,0 (t) = xmini,0 (t) − x0(t). It follows from (9)

552

Approved for Public Release; Distribution Unlimited. 
79



that

˙̃xmaxi,0 (t) =
∑
j∈Ni

αijsgn(x̃j,0(tsk)− x̃maxi,0 (tsk))

+αi0sgn(x0(tsk)− xmaxi,0 (tsk))− ẋ0 (14)
˙̃xmini,0 (t) =

∑
j∈Ni

αijsgn(x̃j,0(tsk)− x̃mini,0 (tsk))

+αi0sgn(x0(tsk)− xmini,0 (tsk))− ẋ0 (15)

Now consider the evolution of x̃maxi,0 (t) and x̃mini,0 (t). If both
x̃maxi,0 (t) > 0 and x̃mini,0 (t) ≥ 0, it suffices to show that
x̃maxi,0 (t) converges to zero in finite time. It follows from
(14) and (12) that

˙̃xmaxi,0 (t) = −
∑
j∈Ni

αij − αi0 − ẋ0

≤ −
∑
j∈Ni

αij − αi0 + d̄ < 0, (16)

which implies that x̃maxi,0 will converge to zero in a finite
time. If both x̃maxi,0 (t) ≤ 0 and x̃mini,0 (t) < 0, it suffices to
show that x̃mini,0 (t) converges to zero in finite time. It follows
from (15) and (12) that

˙̃xmini,0 (t) =
∑
j∈Ni

αij + αi0 − ẋ0

≥
∑
j∈Ni

αij + αi0 − d̄ > 0, (17)

which implies that x̃mini,0 will converge to zero in a finite
time. If x̃maxi,0 (t) > 0 and x̃mini,0 (t) < 0, same conclusion can
be drawn by noting both (16) and (17).

Now let us consider the robots which do not have direct
access to x0(t) but have information exchange with robots in
Ω0, that is, for robot i with i ∈ Ω1 = {i ∈ Ω : si0 = 0, sij =
1, j ∈ Ω0}. To this end, we know that since after certain
finite time, robot j (for j ∈ Ω0) will converge to x0(t), thus,
similar analysis can be done to show the convergence of
x̃i,0 (for i ∈ Ω1) to zero in finite time. The above procedure
can be repeated recursively due to the sequentially complete
sensing/communication assumption. 2

Remark 3.1: The proposed distributed observers are mo-
tivated by the result in [4], in which a distributed estimator
with terms like sgn(

∑n
j=1 alj(xj−xl)) was proposed, while

in this paper we consider more general form with terms like
sgn(xj − xl). 3

In what follows, we present the distributed formation
control design. Let us define an infinite sequence of time
instants {t0 + kTs} for k ∈ N 4

= {0, 1, · · · } and with
sampling time 0 < Ts ≤ ct. The control inputs will
be updated according to the sampling time instants. For
notational convenience, z(t0 + kTs) is simplified as z(k)
for any variable z.

Theorem 2: Consider a group of nonholonomic mobile
robots given by (2) with assumption 2.1. Let the distributed
cooperative control be for t ∈ [t0 + kTs, t0 + (k + 1)Ts)

ui1(t) = aki1 + aki2 sinω(t− t0 − kTs) (18)
ui2(t) = bki1 + bki2 cosω(t− t0 − kTs) (19)

where ω = 2π
Ts

, aki2 6= 0 can be any constant, and

aki1 =
1

Ts

n∑
j=1

Gij(k)[xj(k)− xi(k)− xdj (k)

+xdi (k + 1)], (20)

bki1 =
1

Ts

n∑
j=1

Gij(k)[zj2(k)− zi2(k)], (21)

bki2 =
2ω

aki2Ts

 n∑
j=1

Gij(k)[yj(k)− yi(k)− ydj (k)

+ydi (k + 1)]− aki1b
k
i1T

2
s

2

−aki1zi2(k)Ts +
aki2b

k
i1Ts
ω

]
. (22)

with

Gij(k) =
sij(k)∑n
η=1 siη(k)

, j = 1, · · · , n. (23)

xdi (k) = xi,0(k) + αi1 cos θi,0(k)− αi2 sin θi,0(k)

ydi (k) = yi,0(k) + αi1 sin θi,0(k) + αi2 cos θi,0(k)

xdi (k + 1) = xi,0(k + 1) + αi1 cos θi,0(k + 1)

−αi2 sin θi,0(k + 1)

ydi (k + 1) = yi,0(k + 1) + αi1 sin θi,0(k + 1)

+αi2 cos θi,0(k + 1)

where xi,0, yi,0, and θi,0 are governed by (9), (10), and (11),
respectively, and

xi,0(k + 1) = xi,0(k)

+Ts(
∑
j∈Ni

αijsgn(xj,0(k)− xi,0(k))

+αi0si0sgn(x0(k)− xi,0(k))) (24)
yi,0(k + 1) = yi,0(k)

+Ts(
∑
j∈Ni

αijsgn(yj,0(k)− yi,0(k))

+αi0si0sgn(y0(k)− yi,0(k))) (25)
θi,0(k + 1) = θi,0(k)

+Ts(
∑
j∈Ni

αijsgn(θj,0(k)− θi,0(k))

+αi0si0sgn(θ0(k)− θi,0(k))) (26)

Then the formation control objective (6) is achieved.
Proof: Directly applying controls (18) and (19) to (2)

yields

zi1(k + 1) = zi1(k) + aki1Ts (27)
zi2(k + 1) = zi2(k) + bki1Ts (28)

zi3(k + 1) = zi3(k) + aki1zi2(k)Ts +
aki1b

k
i1T

2
s

2

−a
k
i2b

k
i1Ts
ω

+
bki2a

k
i2Ts

2ω
(29)
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Substituting (20), (21) and (22) into the above equations, and
noting that aki1 and bki2 can be rewritten as

aki1 =
1

Ts

n∑
j=1

Gij(k)[xj1(k)− xi1(k)− xdj (k) + xdi (k)]

+
1

Ts
(xdi (k + 1)− xdi (k)), (30)

bki2 =
2ω

aki2Ts

 n∑
j=1

Gij(k)[yj3(k)− yi3(k)− ydj (k)

+ydi (k)] + (ydi (k + 1)− ydi (k))− aki1b
k
i1T

2
s

2

−aki1zi2(k)Ts +
aki2b

k
i1Ts
ω

]
, (31)

we have

zi1(k + 1) = zi1(k) +
n∑
j=1

Gij(k)[ζj1(k)− ζi1(k)]

+

∫ t0+(k+1)Ts

t0+kTs

ẋdi (t)dt, (32)

zi2(k + 1) = zi2(k) +

n∑
j=1

Gij(k)[zj2(k)− zi2(k)],(33)

zi3(k + 1) = zi3(k) +
n∑
j=1

Gij(k)[ζj3(k)− ζi3(k)]

+

∫ t0+(k+1)Ts

t0+kTs

ẏdi (t)dt, (34)

where ζl1(k)
4
= xl(k) − xdl (k) and ζl3(k)

4
= yl(k) − ydl (k).

It then follows from the definitions of ζl1(k) and ζl3(k) and
from (32) and (34) that

ζi1(k + 1) = ζi1(k) +
n∑
j=1

Gij(k)[ζj1(k)− ζi1(k)],(35)

ζi3(k + 1) = ζi3(k) +
n∑
j=1

Gij(k)[ζj3(k)− ζi3(k)].(36)

To this end, if we can show that limk→∞ ζi1(k) = c1,
limk→∞ ζi3(k) = c3, limk→∞ zi2(k) = c2, for all i,
where c1, c2, c3 are some constants, then it is obvious
that the formation control objective (6) is achieved since
limk→∞ zi1(k) = c1 + xdi (k) and limk→∞ zi3(k) = c3 +
ydi (k).

It suffices to show the convergence of ζi1(k) in (35). Same
argument can be applied to ζi3(k) in (36) and zi2(k) in (33).
It follows from the choice of Gij(k) in (23) that
n∑
j=1

Gij(k)[ζj1(k)− ζi1(k)] =
n∑
j=1

Gij(k)ζj1(k)− ζi1(k).

Thus, (35) becomes

ζi1(k + 1) =
n∑
j=1

Gij(k)ζj1(k) (37)

To show the convergence of ζi1(k), let us define Ω =
{1, · · · , n} to be the set of indices on state variables, and
at time instant t0 + kTs, let ζ1

max(k) = maxj ζj1(k) and
ζ1
min(k) = minj ζj1(k). Define sub-sets Ωmax(k), Ωmin(k),

Ωcmax(k) = Ω/Ωmax(k), and Ωcmin(k) = Ω/Ωmin(k) as
follows:

Ωmax(k) = {i∗ ∈ Ω : ζi∗1(k) = ζ1
max(k)}

and
Ωmin(k) = {i∗ ∈ Ω : ζi∗1(k) = ζ1

min(k)}

Thus, the proof of the convergence ζi1(k) is equivalent to
prove for any k, there exists a constant δ(k) > 0, such that

‖ζ1
max(k+δ)−ζ1

min(k+δ)‖ ≤ λ‖ζ1
max(t)−ζ1

min(k)‖, (38)

for some 0 ≤ λ < 1.
Noting that It follows from the sampling time Ts ≤ ct

that the sensing/communication sequence {S(k)
4
= S(t0 +

kTs), k = 0, 1, · · · } completely captures the information
of sequence {S(tsη), η = 0, 1, · · · }. Thus, the sequential
completeness of {S(tsη), η = 0, 1, · · · } implies the sequential
completeness of {S(k), k = 0, 1, · · · }.

To this end, the inequality (38) can be established by
looking into the evolution of ζi∗1(k) for every i∗ ∈ Ωmax(k)
and ζi∗1(k) for every i∗ ∈ Ωmin(k). This can be done using
a similar analysis as in [29]. Details omitted due to space
limitation. 2

Remark 3.2: The kinematic model (1) was considered in
the proposed formation control. With the aid of backstep-
ping design [12], the result can be extended to deal with
the distributed formation control for nonholonomic robots
described by the following dynamic models [3]:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ + JT (q)λ (39)
J(q)q̇ = 0 (40)

where q =
[
q1 · · · qn

]T ∈ <n is the generalized
coordinates, M(q) ∈ <n×n is a bounded positive-definite
symmetric inertia matrix, C(q, q̇) ∈ <n×n is the centripetal
and coriolis matrix, G(q) ∈ <n is the gravitation force
vector, B(q) ∈ <n×r is the input transformation matrix,
τ ∈ <r is the input vector of forces and torques, J(q) ∈
<(n−m)×n is the matrix associated with the constraints, and
λ ∈ <n−m is the vector of constraint forces on the contact
point between the rigid body and the surface. �

IV. SIMULATION

In this section, we simulate the proposed formation control
by considering three mobile robots moving according to a
circular contour while maintaining a right triangle formation.
We assume that the sensor/communication topologies are
changing according to the sequence {S(tk), k ∈ ℵ} defined
in (8), and robot 1 can receive the desired trajectory contour
information q0(t).

Let q0(t) be [sin(0.2t),− cos(0.2t)]T . The corresponding
moving frame is given by e1(t) = [cos(0.2t),− sin(0.2t)]T ,
e2(t) = [sin(0.2t), cos(0.2t)]T . The formation parameters
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are given by α11 = 0, α12 = 0, α21 = −1, α22 = 1, α31 =
−1, α32 = −1. The initial conditions [xi(t0), yi(t0), θi(t0)]
are given by [0.1, 0.2, π/4], [1,−2, π/6], [−1,−1.5, 0]T for
i = 1, 2, 3, respectively, aki2 = 0.2 and Ts = 0.1. Figure
2 illustrates the phase portrait under the proposed controls
proposed controls (18) and (19).

Fig. 2. Phase portrait of three robots

V. CONCLUSION

In this paper, we proposed a new nonlinear formation
control method for nonholonomic mobile robots. Formation
patterns are defined based on local coordinates with respect
to the moving frame attached to the desired trajectory contour
for the group. Through the design of a finite-time distributed
observer for the desired trajectory, the formation control
design can be done with limited information for the desired
trajectory. System stability was rigorously proved using a
contraction mapping method. Simulation result validated the
effectiveness of the proposed design.
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

HJB Hamilton-Jacobi-Bellman
RBF Radial Basis Function
MPI Multiagent Policy Iteration
≡ identically equal
4
= defined as
< (>) less (greater) than
≤ (≥) less (greater) than or equal to
∀ for all
∈ belongs to
→ tends to∑

summation⋃
union

‖x‖ the norm of a vector x
max maximum
min minimum
<n the n−dimensional Euclidean space
diag[x1, · · · , xn] a diagonal matrix with diagonal elements x1 to xn
ẋ the first derivative of x with respect to time
ẍ the second derivative of x with respect to time
AT (xT ) the transpose of a matrix A ( a vector x)
argmin the argument of the minimum
L2 the space defined based on 2−norm
L∞ the space defined based on∞−norm
sgn(·) the signum function
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