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1. Overview of the Turbulence Problem
The field of optical engineering represents a unique combination of physics,
mechanical engineering, and electrical engineering. Over the past 100 years the field
has expanded from telescope design to range-gated imagers and digital systems.
In the late 1960s, visual-imaging systems were augmented by infrared detectors.
Digital cameras have also largely replaced film-recording systems and now feature
high-resolution image capture capabilities. As systems improved, the desire to see
farther and more accurately lead to an increasing awareness of the influence of
optical turbulence on image quality, particularly in ground-to-ground observation
scenarios. This recognition began with studies of turbulence effects on visual
systems, but with the advent of third-generation forward looking infrared (FLIR)
systems operating in the far infrared band (8–12 µm), turbulence-distortion effects
are acknowledged as a critical limitation on a wide range of imaging conditions.

The 1960s also saw the advent of lasers. Coherent radiation faces its own
set of unique challenges. Unlike passive systems where scintillation effects are
largely negated by aperture averaging of the effect, coherent photons perturbed
by turbulent fluctuations tend to interfere with one another, producing (at times)
large scintillations, resulting in loss of focus of beams (turbulent beam spread),
beam wander, and (for laser communications) unwanted data dropouts or reduced
bandwidth.

To describe these effects, propagation modelers construct simulations based on
turbulence strength measured through the refractive-index structure parameter, C2

n

[m−2/3], and 2 length scales, the inner and outer scales of turbulence, `o and Lo, that
characterize the large-scale (Lo) and small-scale (`o) limits of the inertial subrange,
the portion of the refractive-index power spectrum that obeys the Kolmogorov
turbulence κ−11/3 spectral power law dependence.

In turn, C2
n, `o, and Lo are typically modeled through correlations that have

been measured between predicted atmospheric properties in the boundary-layer
atmosphere and properties characterizing the turbulence itself. In the atmospheric
surface layer (that layer where sensible heat and momentum fluxes are roughly
constant with height), it is common to modelC2

n as a function of height, the sensible
heat flux, and the Monin–Obukhov (or simply Obukhov) length scale, LOb. This
latter scale is related to the ratio of convective energy to mechanical energy and is
mainly valid for daytime-atmosphere applications.
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Various rules are employed to model C2
n in the surface layer, but a key question

is how to extend this estimation technique into the lower boundary layer above

the surface layer and, perhaps more problematically, what to do about nighttime

predictions where the daytime assumption of fully mixed turbulence does not hold.

While the current effort does not provide a final answer to these questions,

it is hoped that the techniques developed here for dealing with surface fluxes,

radiation effects, and gravity-wave influences on nocturnal turbulence will lead

this endeavor toward better surface-layer, boundary-layer, and nocturnal-layer

evaluation of turbulence. Complementing these improvements efforts to incorporate

intermittency effects using more detailed wind-flow models and thermal mixing to

better characterize temperature fluctuations could be combined with the present

study to better model point-turbulence fluctuations.

1.1 Boundary- and Surface-Layer Atmospheres
To set the stage for the Chapter 2 discussion, let us begin by overviewing the

atmosphere to be modeled. The boundary layer generally constitutes that portion

of the atmosphere that is influenced by the drag effects of the earth’s surface. In

this layer, the wind velocity at the exact surface itself is modeled as being exactly

zero (a no-slip condition). The velocities of horizontal winds increase with height

above the surface until at the top of the boundary layer the wind speed matches

the geostrophic wind. This is the situation during the daytime. At night a nocturnal

jet layer can result in wind speed considerably faster than the geostrophic speed,

but the wind then reduces above the jet to match the geostrophic wind speed at the

top of the nighttime boundary layer as well. Typically the layer grows vertically

throughout daylight hours and exhibits modifications due to failing solar energy at

sunset. This behavior is illustrated graphically in Fig. 1.

From Fig. 1, prior to dawn, an inversion condition typically persists from the

previous day’s cooling, as denoted by the 1 along the time track. Then, starting

at dawn, energy enters the base of the boundary layer due to solar loading. This

sunlight warms the surface and eventually breaks the surface-based inversion from

the surface upward. Time point 2 highlights the morning growth of the mixed layer

and an entrainment zone at the top of the warming boundary layer.

During the day, between the base and top of the boundary layer, the intervening

atmosphere circulates air vertically through substitutions of air parcels that translate
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Fig. 1 Typical diurnal behavior of boundary layer due to vertical growth, and modifications
due to energy changes

drag effects throughout the layer from the ground up. Simultaneously, air parcels

arising from a given level produce temperature perturbations at a different level,

degrading optical propagation.

As indicated previously, at the bottom of the boundary layer is the atmospheric

surface layer in which the vertical sensible heat flux varies by less than 10%

throughout the layer. The structure above the surface layer is described in different

terms depending on the overall state of the boundary layer, as a function of the time

of day. Starting from local noon, let us consider a typical sunny mid-latitude day.

The layer immediately above the surface layer under these conditions is described

as the free convection layer or the convective boundary layer (CBL). The CBL

generally extends up to half the height of the full boundary layer. It is a daytime-

only effect, where the name connotes the dominant effect of the convective heat flux

arising from the surface. The bulk of the full boundary layer is termed (during the

daytime) the mixed layer, connoting that region of the boundary layer where air is

being both convectively and mechanically mixed due to drag interactions with the

surface. At the top of the boundary layer there typically exists a capping inversion

layer (or elevated inversion) where temperature becomes an increasing function of

height.

This inversion appears to be driven by 3 mechanisms. First, cold air tends to

sink relative to warmer air (being denser). So, one might expect colder air to be

present near the surface despite the daily warming of the air by the surface. Second,

and related, as warm air moves away from the equator toward more temperate
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latitudes, the warm air tends to ride on top of cooler air at those latitudes, producing
inversions. Third, under clear-sky conditions the layer atop the boundary layer often
previously contained moist air that rained out; this leaves the upper air dry and the
boundary layer moister (due to evaporation at the surface). Once this condition sets
up, the moist air in the boundary layer becomes a more efficient radiator of heat than
the air above the boundary layer. The boundary layer thus is constantly cooling due
to radiation, while the upper layer retains more heat since it is less efficient as an
infrared radiator (even with CO2 present).

In daytime the above scenario, involving a surface layer, CBL, mixed layer,
and elevated inversion layer, is common. Of course, modifications to this model
are necessary to account for the presence of cloud cover, frontal passages, and
precipitation, when present. The present model has not been developed to consider
either weather fronts or precipitation effects, only variations in solar radiation due
to cloud cover.

Let us next consider the transitional period to the nocturnal boundary layer. As
the sun sinks toward sunset, the atmosphere experiences a deterioration from the
daytime atmospheric structure to a neutral period in which the potential temperature
is approximately constant with height. The sensible heat flux that had previously
warmed the full boundary layer becomes sufficient to heat the surface layer plus
a portion of the boundary layer. The upper portion of the boundary layer becomes
disconnected from the surface layer and is redesignated the residual layer. (This
transition is denoted by the 3 on the time track in Fig. 1.) Mechanical mixing of
near-surface air will still yield intermittent temperature fluctuations in the layer, but
not the strong fluxes of the CBL and mixed layers.

Eventually, the solar heating of the surface is insufficient to match the net thermal
radiation lost due to the warm surface, and the surface begins to cool. At this
point the atmosphere transitions from the unstable daytime atmospheric state to
the stable nighttime atmosphere through an evening neutral event. This event
begins in the surface layer where the atmosphere becomes temporarily isothermal
(actually where the vertical gradient of the potential temperature is zero). In this
case there are no turbulence fluctuations because there no longer is mixing of
different temperature air.

The neutral event begins at the surface, therefore affecting the surface layer first.
It then quickly spreads vertically into what was the CBL and then into the mixed
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layer. There is some hysteresis to this effect since some upper level may not have

responded to the neutral event before the cooling at the surface has caused the

surface layer to transition into its next state: the surface-based inversion (denoted

by the 4 in Fig. 1).

Once the surface-based inversion appears, the surface layer enters what is termed a

stable state. Here the terms stable and unstable are used in relation to the motions of

vertically displaced parcels of air during inversion and lapse conditions. Under an

inversion condition, if a parcel of air is displaced vertically—all other things being

equal—the parcel will tend to attempt to return to the vertical level of its origin.

When displaced downward it becomes warmer (and therefore more buoyant) than

its surroundings and attempts to move upward. When displaced upward it becomes

colder than its surroundings (therefore less buoyant) and attempts to displace back

downward. Parcels are therefore stable under vertical displacements.

This behavior is in contrast to unstable vertical air motions. Again, all other

things being equal, if during the daytime (warm surface) a parcel of air is

displaced vertically, it will always find itself out of balance (buoyancy-wise) with its

surroundings: A parcel displaced downward becomes denser than its surroundings

and tends to fall farther. A parcel displaced upward becomes warmer than its

surroundings and remains buoyant. Daytime atmospheres thus enhance vertical

mixing of air. This in turn affects the net effective drag of the surface on the

geostrophic winds, and a deeper layer develops because a greater amount of air

is involved in vertical motions. Conversely, because stable motions tend to block

mixing, the nocturnal layer features less vertical mixing and a shallower overall

layer. Nocturnal atmospheres also tend to become layered and unmixed.

Hence, the air nearest the ground becomes colder than the air above due to

radiative cooling of the surface and cooling of the near-surface air to the surface via

convection. The result is a stable inversion layer that grows slowly from the surface

layer upward. Above the surface-based inversion the remainder of the boundary

layer continues on as the residual layer, but odd (dynamically unstable) effects begin

to occur in this layer as the nocturnal atmosphere unfolds. We shall leave these

discussions for later sections, but suffice to say that the stable layer, while stable in

terms of vertical parcel displacements, is unstable dynamically due to nonlinear

processes such as Kelvin–Helmholtz instabilities and gravity-wave growth and

collapse.
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1.2 Turbulence Structure in the Atmosphere
The structure of the diurnal energy forcings in the boundary layer provide the

source for temperature fluctuations, but these are large-scale effects. However, it

is the structure of the turbulence at small scales that affects the performance of

optical devices and propagation within the boundary layer. We thus address, in

general terms, the structure of the turbulence in the boundary layer. We follow

Appendix C of Volume 2 of Ishimaru’s (1978) study of wave propagation in random

media. Ishimaru follows Kolmogorov’s (1941) original statistical description of

turbulence based on scaling arguments, essentially following the description given

in English mathematician Lewis Richardson’s (1922) famous poem that describes

how turbulence cascades from large-scale perturbations downward to the smallest

scale elements that are destroyed by viscous forces:

Big whirls have little whirls that feed on their velocity,

And little whirls have lesser whirls and so on to viscosity.

Kolmogorov’s theory considered the characterization of fully mixed turbulence at

high Reynolds numbers. This number, Re, is a dimensionless quantity defined as

v l/ν, where v and l are characteristic velocity and length scales associated with

turbulent fluctuations of a certain size, and ν is the kinematic viscosity (m2/s) of

air, ν = µ/ρa. Here, µ is the dynamic viscosity, and ρa is the air density:

µ = µ0

(
Tµ + C

T + C

) (
T

Tµ

)3/2

, (1.1)

where µ0 = 1.8325×10−5 kg/(m-s), Tµ = 296.16 K, andC = 120 K is Sutherland’s

constant. For dry air,

ρa = 0.34838P/T, (1.2)

where P is the air pressure in millibars, and T is the air temperature in Kelvin (K).

At standard temperature (288 K) and pressure (1013 mbar), the kinematic viscosity

is 1.79×10−5 m2/s. Stull (1988) observes, “The Reynolds number can be interpreted

as the ratio of inertial to viscous forcings.”

Under most length-scales and corresponding velocity scales, the atmosphere

exhibits a very large Reynolds number due to the small viscosity. Only when
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considering length scales of a few millimeters, and the corresponding velocity

fluctuations at such scales, does one approach Re ≈ 1 where viscous

forces become dominant. Of course, computations at such millimeter scales in

combination with typically meaningful propagation-scenario domain sizes on the

order of kilometers—requiring on the order of 1018 computational cells—would

be practically impossible given even today’s supercomputing resources. Thus,

compromises are necessary. One method is to simply ignore viscous effects, or

to treat such influences only due to a parameterized surface-drag effect. However,

to estimate the turbulence strength itself, typically the structure of small-scale

turbulence is parameterized using the approximations developed by Kolmogorov.

Having assumed the turbulence is well mixed, Kolmogorov’s next step involved

estimating the rate of production of kinetic energy per unit mass in the flow, as well

as the rate of dissipation of such kinetic energy. Let us consider that for length-

scales of the order of lf of the flow itself, the velocity perturbations of such scales

are on the order of the mean velocity of the flow (vf ). A characteristic time scale

within the flow may thus be estimated as τf = lf/vf for eddies (organized turbulent

fluctuations within the flow) that are of the characteristic length-scale of the flow

itself. The rate of kinetic-energy production of these elements per unit mass per unit

time may then be estimated as

KP (f) ∼ v2
f/τf = v3

f/lf . (1.3)

On the other hand, the rate of dissipation of turbulence from the flow should

be relatively small at the largest spatial scales since the Reynolds number is so

large and since turbulence at large scales is generally sustained. This suggests a

dissipation rate for the largest spatial scales of the order

εf ∼ ν v2
f/l

2
f . (1.4)

Kolmogorov’s analysis to this point is consistent with Stull’s interpretation of the

Reynolds number since when the ratio of KP (f) to εf is formed, one obtains just the

Reynolds number of this flow: Ref ∼ vf lf/ν.

Because of the difference between the magnitude of the mean energy and the

dissipation rate, based on the kinematic viscosity, it is clear dissipation processes
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are not significant for large-scale flows. Rather, dissipative effects only become
significant at smaller scales where kinematic influences (and therefore viscous
effects) become important. These influences begin at millimeter scales.

Kolmogorov designated a cutoff point in his flow model that he characterized as an
outer scale, designated here byLo. This scale is the largest length-scale below which
the flow can be considered fully mixed. And, there appears to be a strong correlation
between this concept of full mixing and a related concept regarding isotropy of the
turbulence. Klipp (2014) has studied the nature of the scale at which turbulence
transitions from a (roughly) 2-dimensional structure to becoming isotropic, and this
scale is of the same length as the outer scale. Above the outer scale the flow appears
to exhibit anisotropies. Below this scale, in the inertial subrange the flow becomes
isotropic. For flows close to the earth’s surface the outer scale is a function of the
height above the surface (varying from a few meters to perhaps several dozen meters
[Tofsted 2000]), and has been shown to vary as a function of time of day (Tofsted
et al. 2009, Fig. 21).

In connection with Lo, let us identify Vo as the corresponding characteristic velocity
fluctuation at this scale. Since the dissipation rate of eddies of this size is negligible,
if one assumes a steady state of the flow, then production at this scale must match
the rate of transfer of energy from this scale to smaller eddy scales in a spectral
cascade of energy to smaller turbulence scales. This cascade is, nevertheless, based
on inertial mixing, not viscous effects. At successively smaller turbulence scales
the same process occurs. Energy cascades downward to smaller and smaller length-
scales while viscous forces gradually grow. Eventually energy is removed at some
smallest length-scale, `o, termed the inner scale, where viscous forces become
dominant, and the bulk of the kinetic energy is removed from the flow.

Let V1, V2, ... , Vn be the velocities of eddies of scales L1, L2, ..., Ln, where Lo >
L1 > L2 > ... > Ln. Then, due to the transfer of kinetic energies to smaller length-
scales, the kinetic energies per unit mass per unit time for eddies of all length-scales
(an equipartition argument) will tend to be approximately equivalent:

V 3
o /Lo ≈ V 3

1 /L1 ≈ V 3
2 /L2 ≈ ...V 3

n /Ln. (1.5)

That is, when the flow is in a steady state, the amount of energy flow into a given
length-scale range from the next-larger length-scale will equal the rate of kinetic-
energy flow from that length-scale to the next smaller scale.
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As the length-scales decrease, the dissipation rate, ν V 2
n /L

2
n, tends to increase until

the inner scale is reached, at which point the dissipation rate is of the same order as
the rate of kinetic-energy flux into that length-scale:

V 3
ε /Lε ≈ V 3

ε /`o ≈ ν V 2
ε /`

2
o ≈ ε. (1.6)

At this length-scale, practically all of the kinematic energy is dissipated into heat so
that no eddies of scale smaller than `o remain in the flow. Only molecular thermal
energy remains.

Two important properties emerged from this analysis. First, Kolmogorov
recognized that V 3

1 /L1 ≈ ... ≈ V 3
n /Ln ≈ B, a constant, such that the velocity

fluctuations could be written as a function of the length scale, Vn ≈ (B Ln)1/3.
From this Kolmogorov deduced a form for the velocity structure function:

Dv(r) = C2
v (εr)2/3, `o < r < Lo, (1.7)

which is related to the square of the mean velocity difference at separation scale
r. Here, C2

v is a constant, the velocity structure parameter. The structure function
is considered isotropic, which follows naturally from the properties of the flow at
length-scale Lo.

In general, one may define a structure function for any property, p, as

Dp(r) =
〈
[p(~x+ ~r)− p(~x)]2

〉
, (1.8)

where r = |~r|.

Second, from the form of the velocity structure function, Kolmogorov was able to
make the conceptual link to temperature fluctuations by assuming that temperature
perturbations are carried along by the wind flow as a conserved property. That
is, eddies, characterized by velocity ~v(~r), will transport with them a characteristic
temperature T (~r), since mixing effects are ignored at large scales.

Such perturbations, termed conservative passive additives (CPAs), persist within
the flow down through the cascade process until such point as small-scale mixing
causes the remaining perturbations to be dissipated out of the flow, as was the case
with the wind field. Similarly, the temperature structure function follows the same
power law as other CPAs.
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However, we should add a few caveats when it comes to temperature. Thermal
perturbations will tend to radiate differently depending on the temperature.
Therefore, they are not exactly conservative. Also, because different temperatures
exhibit different buoyancies relative to the background mean vertical temperature
structure, they are not exactly passive, either. But, for the sake of simplicity, both of
these assumptions are commonly used.

We focus on the temperature effects because of their direct relation to refractive
index. In the boundary layer, atmospheric temperature fluctuations are primarily
responsible for the variations in refractive index at ultraviolet through far-infrared
wavelengths. While there is a pressure dependence that is nontrivial, in general
pressure gradients are a relatively slowly varying function of height:

dP

dz
= −ρa g/100, (1.9)

where the 100 factor converts the dimension from Pascals (the natural
MKSA dimension) to millibars (the units used commonly for meteorological
measurements). From this relation, the total dry-air-density fluctuation can be
written,

dρa = 0.34838

(
dP

T
− P

T

dT

T

)
= −ρa

T
(0.034 dz + dT ) . (1.10)

That is, thought of as a temperature gradient equivalent, the pressure effect is
equivalent to a –0.034 K/m temperature drop.

Let us next introduce the formula used for converting pressure and temperature to
the refractive index for dry air:

n ≈ 1 + 78.2× 10−6 P

T
= 1 + ℵP/T = 1 + 224.5× 10−6 ρa. (1.11)

The refractive index also features a humidity-dependent term, but this effect is a
factor of roughly 100 weaker compared to the temperature effect. Similarly, there
exists a spectral-dependent term in the refractive index formula that is second order.
Finally, there is a humidity–temperature cross term that is approximately an order
of magnitude weaker than the temperature effect; but, since turbulence strength can
vary by orders of magnitude over a single diurnal cycle, and the uncertainty in the
C2
n is roughly a factor of 2.0 or greater, due to intermittency effects, this 10% effect

is ignored in practice.
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To a good approximation one can compute a refractive index power spectrum

knowing only the structure of the temperature fluctuations and using the above

expression for the refractive index.

1.3 Turbulence Spectrum
We have now seen the refractive index structure parameter in at least one context.

It appears in relation to the refractive index structure function,

Dn(r) =
〈
[n(~x)− n(~x+ ~r)]2

〉
. (1.12)

But a further refinement is often invoked. This one involves the assumption that

the refractive index can be subdivided into a portion that is constant with position

(n0) and a perturbation term (n1) that varies. In a real atmosphere this assumption

is never technically true, since the mean refractive index must be a function height

as it depends on vertically varying pressure and temperature. However, as long as

length separations are not made too long, then it is approximately true. This is the

implication of the concept of stationary increments.

With this assumption, the expression in Eq. 1.12 is modified such that n1’s replace

the n’s on the right-hand side (RHS). One may then write the structure function in

terms of correlation functions:

Dn(r) = 2 Γn(0)− 2 Γn(r), (1.13)

where the Γn functions are covariance functions of n:

Γn(r) = 〈n1(~x)n1(~x+ ~r)〉 . (1.14)

This function is related to a power spectrum of the refractive index, Φn(κ), through

a Fourier transform:

Φn(~κ) =
(

1

2π

)3 ∫∫ +∞∫
−∞

Γn(~r) exp (i ~κ · ~r) d~r, (1.15)

or via the following Fourier-transform pair if the turbulence is isotropic:

Φn(κ) =
(

1

2π

)3 ∞∫
0

Γn(r)
sin(κ r)

κ r
4π r2 dr, (1.16)
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Γn(r) =

∞∫
0

Φn(κ)
sin(κ r)

κ r
4π κ2 dκ, (1.17)

by integrating first over the 2 angular variables.

Unfortunately, because the Kolmogorov refractive index structure function has no

upper bound, only its r2/3 dependence, and the cutoffs in r: `o < r < Lo, when

forming the refractive index spectrum one obtains a divergent integral (Γn(0) =∞).

This in turn indicates the Kolmogorov spectrum should diverge at the origin, which

indeed it does, following the law,

ΦnK(κ) = β C2
n κ
−11/3, (1.18)

where β ≈ 0.033 is an integration constant:

β ≡ (5/36)[22/3 Γ(5/6)]/[π3/2 Γ(2/3)] ≈ 0.033. (1.19)

We shall not dwell on the frequency spectrum, but we do note that the range of

validity of the Kolmogorov spectrum is commonly expressed as

1

Lo
< κ <

1

`o
. (1.20)

Hence, the inner and outer scales of turbulence appear again, this time as gate-

keepers of sorts on the Kolmogorov inertial subrange, whereas previously the inner

scale was shown to be related to the dissipation of kinetic energy and the outer

scale to the source term of kinetic energy, in combination with the wind structure

function.

Now, in terms of effects of the inner and outer scale on turbulence problems, we note

2 things. Outer scale is related to the amount of energy available in the turbulent

fields, both wind and temperature fields. Therefore, in terms of modeling, the outer

scale provides an important link between flux theories and turbulence calculations

eventually used in propagation studies. On the other hand, the inner scale has a

direct role in propagation studies of scintillation effects.

This inner-scale role appears because of the end of fluctuations at frequencies much

higher than 1/`o, due to dissipation effects, and because of a particular feature of

the wind dissipation itself. Emerging from Kolmogorov’s analysis is the fact that
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when the wind perturbations are dissipated at the size range around the inner scale,
or the Kolmogorov scale, denoted ηo, where the 2 are related through Wyngaard’s
(1973) definition,

`o ≈ 7.4 ηo = 7.4
(
ν3/ε

)1/4
. (1.21)

The distinction without a difference between these 2 measures is that the inner scale
occurs roughly at the beginning of a bump in the refractive index spectrum, while
ηo occurs in the middle of this spectral bump and typically measures less than a
millimeter.

At this length-scale a secondary heating source appears due to the dissipated
mechanical energy. This extra heating is intermittent, enhancing temperature
fluctuations in its spectral vicinity and producing a bump in the temperature
spectrum. This effect is termed the “Hill Bump” (Hill 1978; Hill and Clifford 1978).

This bump, though small, signals the end of the refractive spectrum (values zero
at frequencies an order of magnitude greater than the bump frequency). The
bump produces significant impacts on certain propagation effects, particularly
those related to scintillations of beam-wave propagation of coherent light. For an
optical path-length denoted S, and a monochromatic wavelength of radiation λ, a
dimensionless parameter φ = (λS)/`o can be shown to parameterize the height
of the resulting scintillation saturation curve as a function of integrated turbulence
strength (e.g., Tofsted 1993).

The next section will introduce a more complete spectrum — but before leaving
considerations of the basic spectrum, let us introduce a few useful relations that
may be needed later. The first of these is the refractive index variance:

σ2
n =

∞∫
0

Φn(κ) 4π κ2 dκ. (1.22)

The second is an integral that connects a 1-dimensional (1-D) spectrum such as
would be sensed with a fixed sensor (a sonic anemometer for instance) with an
equivalent 3-dimensional (3-D) spectrum used in propagation models.

Fn(κ1) = 2

∞∫
0

Φn

(√
κ2

1 + κ2
r

)
2π κr dκr, (1.23)

where κ1 is the transform dimension oriented along the direction of the mean wind,
κr is a radial frequency in the plane transverse to the mean wind, and both Fn and

13



Φn are single-sided spectra (undefined for κr or κ less than zero). The inverse of
this relation is

Φn(κ) = − 1

4π κ

dFn(κ)

dκ
. (1.24)

In the inertial subrange the 1-D spectrum evaluates as in Tofsted et al. (2007),

FnK(κ1) = (12π/5) β C2
n κ
−5/3
1 , (1.25)

the 1-D analog of the Eq. 1.18’s 3-D Kolmogorov spectrum. However, it should be
emphasized that these relations are based on the assumption of isotropic turbulence.
When anisotropic turbulence is present at large length-scales, analysis has indicated
(Tofsted et al. 2009) that at least in terms of wind turbulence the structure of
the fluctuations produces a Reynolds stress tensor whose principle axes are not
equal, meaning that at the largest length-scales the fluctuations are dominated
by the horizontal-axis components. Interestingly enough, it is not the along-wind
component that is the greatest horizontal term. Rather, due to the effects of
meandering, it is the horizontal component that is transverse to the mean wind that
is the largest component, followed closely by the along-wind component of the
wind variance and then by the vertical component, in approximately a 6–4–1 ratio,
but where the principal axes are tipped slightly forward and downward to account
for the mean flux of momentum toward the ground.

1.4 Outer-Scale Effects on the Refractive Index Spectrum
It is not the purpose of the present work to develop models of the modifications
of the turbulence spectrum due to the inner and outer scales of turbulence. For
completeness and closure, however, this report presents model forms for both the
outer- and inner-scale effects on the spectrum. In this way we will have a point of
reference for viewing future impacts of the spectrum on propagation statistics as
well as a model for describing moments of the turbulence when looking at energy
content and source terms that particularly involve outer-scale effects.

The standard approach to dealing with the outer scale effects is to use the so-called
von Kármán spectrum. We express this as

ΦnV (κ) = β C2
n Υ0(κ, L0), Υm(κ, L) =

L11/3 (κL)2m

[1 + (κL)2 ](11+6m)/6
. (1.26)

Propagation scientists commonly identify L directly with the outer scale Lo, and
then define Lo ≈ k z, where k ≈ 0.4 is von Kármán’s constant and z is the
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height above the surface. But these associations appear rather arbitrary. Moreover,
Hinze (1987) described the spectrum as including 3 regions: the energy containing
subrange, the inertial subrange, and the dissipation subrange. Below the energy-
containing range von Kármán (1948) indicated the spectral dependence should
behave as κ2, not the constant spectral energy that reaches a maximum at zero
frequency. A misinterpretation seems to have occurred somewhere such that the
spectrum that bears his name does not behave as von Kármán himself intended.
This was previously corrected in Tofsted (2000) and Tofsted et al. (2007).

In Tofsted (2000), forms Υ1 and Υ2 were combined to construct a κ2 dependence
at the lowest frequencies. However, this form did not strictly follow von Kármán’s
theory due to the presence of Υ2, yielding a κ4 term. It also required one of the
components to be negative. The 2007 paper corrected this deficiency through the
use of 3 weighted Υ1 functions:

ΦnR(κ) = β C2
n

3∑
i=0

wi Υ1(κ, Li), (1.27)

where the nR subscript references the characterization of the energy-containing
range of the spectrum, and where

w1 = 1/4, L1 = 0.8Lo,

w2 = 1/2, L2 = 2.0Lo, (1.28)

w3 = 1/4, L3 = 5.0Lo.

These relations were chosen such that an outer scale could be defined relative to the
rolloff of the Kolmogorov behavior at low frequency:

ΦnR(1/Lo)/ΦnK(1/Lo) ≈ 0.5, (1.29)

where κ = 1/λ is used, consistent with Ishimaru (1978) and Andrews and
Phillips (1998), as opposed to κ = 2π/λ used by Clifford (1978) and
Kopeika (1998). (The actual value on the RHS of Eq. 1.29, based on the coefficients
of Eq. 1.28, is 0.506.)

This spectral form was designed to match data presented by, and the 1-D spectral
model proposed by Kaimal et al. (1972). This 1-D model can be cast into a refractive
index spectrum form as

FnG(κ1) = σ2
n

B/κ0

1 +B (κ1/κ0)5/3
. (1.30)
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This spectrum carries the appropriate asymptotic behaviors at low and high
frequencies. At low frequencies it approaches a constant at maximum value. At high
frequency it exhibits the κ−5/3

1 behavior. The significance of this form is that the
Kaimal group developed similarity-theory-based relations between the κ0 constant
and the ratio ζ = z/LOb. However, we cannot use FnG directly, for when we apply
Eq. 1.24 to this functional form to generate the equivalent 3-D spectrum we obtain

ΦnG(κ) =
σ2
n

4π κ

(5/3)B2

κ2
0

(κ/κ0)2/3

[1 +B (κ/κ0)5/3]
2 . (1.31)

This function’s κ−1/3 low-frequency dependence yields a singularity at the origin.

To solve this problem, the Eq. 1.27 form involving a weighted sum of Υ1 terms was
used. But before proceeding, let us first compare the high-frequency behaviors of
the Kaimal function and that of the Kolmogorov spectrum translated into its 1-D
form in Eq. 1.25:

12π

5
β C2

n = σ2
n κ

2/3
0 . (1.32.A)

κ0 =

(
12π

5

β C2
n

σ2
n

)3/2

. (1.32.B)

The κ0 thus depends on turbulence strength and the form taken by the refractive
index variance.

While we cannot convert the Kaimal expression into a 3-D version that behaves
properly, the opposite can be performed: We can produce a 1-D version of our
proposed spectrum and compare it against the 1-D Kaimal function. To perform
such comparisons, we first introduce the standard normalized form used by Kaimal:

ΨnG(κ1) = κ1 FnG(κ1)/σ2
n. (1.33)

This form is useful because it can be transformed more easily between its temporal-
frequency and spatial-frequency versions.

To compare forms, let us first evaluate σ2
n for the Eq. 1.27 spectrum:

σ2
n =

∞∫
0

Φn(κ) 4π κ2 dκ =
12π

5
β C2

nAA
3∑
i=1

wi L2/3
i , (1.34)

where
AA =

(3π)3/2

11 Γ
(

5
6

)
Γ
(

2
3

) ≈ 1.7209. (1.35)
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Our spectrum can then be converted into 1-D form:

ΨnR(κ1)

κ1

=
1

AX

3∑
i=1

wi
L5/3
i

[
(κ1 Li)2 + 6

11

]
[
1 + (κ1 Li)2

]11/6
, (1.36)

using

AX = AA
3∑
i=1

wi L2/3
i . (1.37)

From ΨnR(κ1) and ΨnG(κ1), both B and κ0 can be evaluated. In the limit κ1 → 0,

ΨnG → B/κ0. In the limit κ1 → ∞, ΨnG → κ2/3
o κ

−5/3
1 . From the high-frequency

limit a relation between κ0 and Lo is obtained:

κ
2/3
0 =

A−1
A∑

iwi L
2/3
i

=
1.72086−1

1.74015× L2/3
o

−→ κ0 =
0.19298

Lo
. (1.38)

This result also allows us to simplify the expression for the refractive variance:

σ2
n =

12π

5
β C2

n/κ
2/3
0 =

(12π/5) β

0.192982/3
C2
n L

2/3
o = 0.745C2

n L
2/3
o . (1.39)

In the low-frequency limit we can obtain a value for B:

B

κ0

=
6
11

∑
iwi L

5/3
i

AA
∑
j wj L

2/3
j

−→ B =
0.19298 6

11

Lo 1.72086

5.41478L5/3
o

1.74015L
2/3
o

≈ 0.19033. (1.40)

This result differs from the values used by Kaimal. In the original paper B = 0.16;

more recently, Kaimal and Finnegan (1996) recommendedB = 0.164. On the other

hand, from Kaimal’s data, comparison appeared to show B ≈ 0.20 (Tofsted 2000).

The 0.19 introduced here represents a compromise between these different results,

though tending toward the data result.

Now, the ΨnG(κ1) function has a peak value that occurs at κm = κ0 (2B/3)−3/5.

The Kaimal group studied this maximum, but only in terms of the related

dimensionless frequency f = κ z/2π. In this form, Tofsted (2000) analyzed

the Kaimal et al. scatter plot showing the peak point, fm, as a function of the

dimensionless ratio ζ = z/LOb, the ratio of the height z to the Monin–Obukhov

scaling length LOb (Paulson 1970). Data from one of Kaimal’s plots were digitized,

and an equation was fitted to these digitized data. Separate fits were generated for
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unstable and stable surface-layer conditions (positive and negative LOb values):

fm =

{
0.460

√
+ζ + 0.0014 ζ > 0,

0.036
√
−ζ + 0.0014 ζ < 0.

(1.41)

The fit achieved is illustrated in Fig. 2.

Figure 3 compares different versions of the Kaimal ΨnG function based on different

values of the B parameter along with the fit of the ΨnR function transformed from

the proposed 3-D spectrum (the Proposed Spectrum).

Fig. 2 Intercomparison of Kaimal-frequency maximum data (fm) versus dimensionless height
parameter ζ = z/LOb and plot of Eq. 1.41

Fig. 3 Intercomparison of digitized Kaimal data with 1-D curve of ΨnG using original Kaimal
B = 0.16 and B = 0.19, and ΨnR based on B = 0.19
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Simplified means exist for evaluating the Obukhov length LOb (e.g., Tofsted

et al. 2006), but these are less accurate than energy-budget-based evaluations.

Calculation of LOb is a main focus of the present study, using Surface Energy

Budget (SEB) methods to evaluate this parameter accurately.

Whichever means is used, for a given z and the computed LOb, fm can be evaluated,

leading to an estimate of Lo. For the proposed model’s choice of B = 0.19033, the

relation,

Lo =
0.19298

κ0

=
0.19298 z

2π f0

=
0.19298 z

2π fm (2B/3)3/5
=

0.10599 z

fm
, (1.42.A)

immediately follows.

Combining this result with the expression for fm,

Lo =

{
z/(4.34

√
+ζ + 0.013) ζ > 0,

z/(0.34
√
−ζ + 0.013) ζ < 0.

(1.42.B)

This relation reveals the distinctly different behavior of Lo under the 2 different

stability regimes. During daytime conditions, ζ < 0, and Lo ≈ 3
√
|z LOb|,

indicating outer-scale values often larger than the distance z to the ground.

This suggests that the daytime outer scale is driven by large-scale mixing from

turbulence aloft. Even near-surface turbulence is thus seeing the influence of

air mixing throughout the boundary layer. Conversely, under nocturnal stable

conditions, turbulence is suppressed, such that Lo is significantly less than the

distance to the ground. That is, the turbulence-suppressing nature of the inversion

only permits localized small-scale mixing.

Lastly, at the neutral event (ζ → 0) the outer scale increases rapidly with height,

indicative of the presence of low-frequency mixing that is not driven by fluctuations

merely at the ground level. Effectively the entire boundary layer becomes involved

when neutral mixing can occur. However, under such conditions our interest wanes

since the effects of the turbulence will be negligible.

The above discussion of Lo evaluation is limited to the surface-layer atmosphere.

Outside the surface layer alternative methods must be formulated, but available data

are scarce. Notice that in arguing the Kolmogorov turbulence form we assumed that
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at the outer scale the characteristic velocity was that of the wind speed. Perhaps

this was because the wind speed differential would be that between the speed at

height z and that at height zero. But, in general this parameter would need to be

modeled using a quantity of order Lo dU/dz. Buoyancy effects would also need to

be considered. Hence, results obtained for the surface layer do not have immediate

analogs in the remainder of the boundary layer.

1.5 Inner-Scale Effects on the Refractive Index Spectrum
Inner-scale effects on the refractive index spectrum have been developed by a

number of researchers, starting with Tatarski (1961). However, most of these

models do not integrate easily. Therefore, some years ago the present author

introduced (Tofsted 2003) a bump spectrum constructed using a transition function

originally introduced by Belen’kii (1996).

The first step in describing this spectrum is to further examine the variability of

the inner scale (first defined in Eq. 1.21), including its height dependence. The

kinematic viscosity, ν, depends on the dynamic viscosity, µ, from Eq. 1.1 and the

density, ρa, from Eq. 1.2. Let us combine this dependence with a surface-layer

characterization of the dissipation rate, ε, that is (approximately) u3
?/(kvz). Here,

u? is the friction velocity, given in its neutral stability form by

u? ≈
kv u

ln(z/zo)
, (1.43)

where kv is von Kármán’s constant, kv ≈ 0.40 over rough terrain, zo is the

roughness length, and u is the wind speed at height z above the displacement height.

Combining terms, we have

`o ∝ [µ/(ρa u?)]
3/4 (kv z)1/4 ∝

[
T 5/2 ln(z/zo)

P (T + C) kv u

]3/4

(kv z)1/4. (1.44)

This formulation indicates that we can determine the inner scale as a function of

height, but we must begin by knowing u and T at height z, along with P , and zo. The

apparent wind-speed dependence in this function is u−3/4; however, data collected

at Table Mountain, Colorado, by researchers from the National Oceanic and

Atmospheric Administration’s Wave Propagation Laboratory at Boulder, Colorado,

suggest a slightly modified dependence.
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In Tofsted and Auvermann (1991) we developed the empirical relation (Eq. 33 of
that paper) that I shall approximate here as

`o ≈ 0.000463

[
T 5/2 z1/3

P (T + C)
ln
(
z

zo

)]3/4 [
1− 0.0618u+

0.515

u
+

0.268

u2

]
, (1.45)

where the temperature and pressure-dependent term was appended to a modified
wind-speed function and z and zo obtained from the height of the meteorological
sensors and site vegetation.

The wind-speed component of this curve is plotted in Fig. 4 along with the data
set from which it was derived. In addition, we present the u−3/4 wind-speed
dependence as the blue dashed line. Only the neutral condition’s log-wind profile
was introduced since we did not have data-tagging to assign any specific stability
condition to elements of the data set, though clearly the data set does bifurcate
at inner-scale lengths above 7 mm, and this may be stability related. A more
detailed study of this behavior would be possible using one or more Scintec SLS-
20 scintillometers in combination with wind and temperature measurements at
multiple heights to provide the data needed to characterize the vertical dependence
of `o in the surface layer as well as `o’s stability dependence.

Fig. 4 Empirical inner-scale relationship to observed wind speed versus theoretical inner-scale
wind dependence for neutral stability case

Knowing `o, the inner-scale effect due to dissipation can be modeled using a
function suggested by Belen’kii (1996):

I(x) =
x11/6K11/6(x)

25/6 Γ(11/6)
. (1.46)
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Here, Kλ is the modified Bessel function of the third kind, order λ. This function

is approximately unity at small values of argument x and trails off toward zero

at large x. Belen’kii used the function in a single-mode form to approximate

Tatarski’s (1961) inner-scale exponential dissipation effect. This function is plotted

in Fig. 5. However, Tatarski’s form did not account for the spectral bump.

Here, Belen’kii’s form is used due to its integral properties, but where 2 copies of

the function are combined to simulate the Hill bump spectrum (Hill and Clifford

1981) in the form,

ΦnH(κ, `o) = βnC
2
n κ
−11/3 F (κ `o/1.412), (1.47)

with the envelope function,

F (γ) = 2.75 I(γ/1.324)− 1.75 I(γ/0.586). (1.48)

Fig. 5 Dissipation curve of Belen’kii function

The F function, being based on I, behaves as F → 1 for small argument, while

exhibiting F → 0 at large argument, and exhibiting the characteristic Hill-bump

behavior near κ ≈ 1/`o. This curve was fitted to bump spectra of Hill (1978) and

Frehlich (1992) where a compromise between the differing forms was constructed.

A third bump spectrum is also available, by Churnside (1990), but the shape of this

curve is approximately the same as that of Hill’s spectrum and so was not included.

These bump spectra are intercompared in Fig. 6.
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Fig. 6 Intercomparison of different inner-scale-affected bump spectra

The fitted coefficients modeled the average of the Hill spectrum and Frehlich’s

intermediate case (1.324 = 100.122; 0.586 = 10−0.232).

To conclude this development, let us note how the inner- and outer-scale modulated

spectra can be combined. Inner- and outer-scale modulated forms of the original

Kolmogorov spectrum, ΦnK , exhibit asymptotic behaviors that match this spectrum

at low- and high-frequency ranges respectively. To create a complete spectrum we

simply note that under most conditions Lo � `o. As such, there is little feedback

between the inner- and outer-scale modulated portions of the complete spectrum.

Thus, we should be able to simply write

Φn(κ) = ΦnR(κ, Lo) + ΦnH(κ, `o)− ΦnK(κ), (1.49)

where we subtract a copy of the Kolmogorov spectrum to avoid double-counting

the inertial subrange. In this way, separate integral forms can be developed to treat

different portions of the spectrum separately.

Although the combined spectrum is not perfect, in that it assumes isotropic

turbulence, this would not affect its properties at high frequency or within the

inertial subrange, where it would be isotropic. Therefore, its properties account

for the majority of the spectrum that most directly impacts optical effects. Also,

at the low-frequency end of the spectrum—although the spectrum proposed is

isotropic—when converted to a 1-D spectrum its properties match those of the

23



Kaimal group, which was viewed as the best model available at the point where

the research bifurcated into the recent focus on Large Eddy Simulations and the

interest of the optical community on spectral properties. It is hoped that the present

work will help to re-establish these 2 divergent areas. The main question, though, is

how to transform the information available with regard to anisotropic turbulence

and interpret this information in terms of a useable spectrum for propagation-

analysis purposes. One method might be to simply transform the 3-D spectrum

down to a 2-D form and then low-pass filtered. The result could be interpreted as

a low-frequency part of the complete spectrum. The equivalent high-pass filtered

portion would correspond to the 3-D portion of the spectrum. We already have

some concept of the range of the transition, but the full exploration of this issue is

outside the scope of the current investigation.
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2. Introduction to the Surface Energy Budget
In this chapter we shall discuss the connection of the turbulence strength, C2

n, to
surface layer properties, particularly energy fluxes arising from or directed toward
the surface. Recall that in Chapter 1 we discussed in general terms the connections
between the energy dynamics of the surface-layer atmosphere and how those are
related to properties of the turbulence spectrum. For example, the inner-scale
correlation with wind speed is strong, as well as its connection to height above
the surface. The outer scale is a function of height above the surface as well as the
Obukhov length, LOb. It was also described how temperature differentials at the top
of the surface layer enter the base of the convective boundary layer during daylight
heating of the boundary layer and influence the turbulence above the surface layer.
At night the situation is somewhat altered since the surface becomes a heat sink
rather than a source. Nonetheless, surface-layer dynamics remain important even at
night due to the process generating cooler air near the surface that is a source of
temperature differentials when mixed with warmer air from above via mechanical
mixing that occurs intermittently during the night.

2.1 Turbulence Prediction using Surface Energy Budget
To further establish these connections, let us review an analysis that first appeared
in Tofsted et al. (2006). To begin, we introduce the Kunkel and Walters (1983)
definition of C2

n:

C2
n = C2

T

A2 P 2

T 4

(
1 +

0.03

B

)2

, (2.1)

where A = 79 × 10−6 K/mbar, C2
T is the temperature-structure parameter, P is

again the pressure in mbar, T is temperature in Kelvin, and B is the Bowen ratio,
the ratio of the sensible to latent heat fluxes, B = HS/HL. This is a surface-layer
formulation. In most cases where turbulence is strong,B will tend to be greater than
unity, and perhaps much greater than unity such that this term can be viewed as a
minor perturbation.

The key variable in the above expression is therefore C2
T . Wyngaard (1973)

recommended the function,

C2
T = T 2

∗ z
−2/3 4.9×


[
1− 7.0

(
z
LOb

) ]−2/3

, LOb < 0;[
1 + 2.4

(
z
LOb

)+2/3
]
, LOb > 0.

 (2.2)

During daylight surface heating, LOb < 0, the C2
T height dependence is

approximately z−4/3, while at night the initial vertical dependence of z−2/3 gives
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way to an approximately constant C2
T at the top of the surface layer. What we don’t

see in this standard method of vertical structure are the commonly observed vertical
and horizontal variations in C2

T .

What we do see in Eq. 2.2 is the connection from C2
n → C2

T → T∗, the scaling
temperature. This latter parameter connects C2

n directly to measurable properties of
both microscale surface-layer statistics and to surface fluxes modeled by the SEB,
primarily the sensible heat flux.

The sensible heat flux is approximately constant across the surface layer. It can be
expressed using the T∗ parameter in the form,

HS = −ρaCp u∗ T∗ = −ρaCp k u∗ θ∗, (2.3)

where ρa is the air density, Cp is the specific heat of air at constant pressure, k is
von Kármán’s constant (k ≈ 0.4), and u∗ is the friction velocity.

Equation 2.3 highlights one of the problems of the standard literature in flux-profile
theory, also known as similarity theory: the appearance of multiple instantiations of
the same parameter in slightly different forms. In this case the scaling temperature,
T∗, also appears in the form of the scaling potential temperature, θ∗, where T∗ =

k θ∗.

Friction velocity and scaling temperature also appear in conjunction with the
expression for the Obukhov length, LOb (e.g., Paulson 1970):

LOb =
u2
∗ T

k g T∗
=

u2
∗ θ

k2 g θ∗
, (2.4)

where T or θ is a characteristic temperature/potential temperature of the surface
layer, and g is the acceleration due to gravity (+9.8 m/s2). (Near the surface, T ≈ θ.)
Through the use of HS it is possible to eliminate T∗ or θ∗ from the Obukhov length
calculation, which results not in a solution but merely transfers the problem to that
of determining the sensible heat.

Interestingly,LOb is considered a constant of the surface layer, yet θ (T ) is a function
of height. To resolve this we will focus on θ and use its value as extrapolated
from the top of the boundary layer. Because this temperature varies little over the
course of a diurnal cycle, the importance of θ is minimized, leaving u∗ and θ∗ as the
principal unknowns in determining LOb.
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Now, the problem with estimating u∗, θ∗, and LOb is becoming simpler with time

due to advanced sensor technologies. Modern 3-D sonic-anemometer technologies

(e.g., Climatronics’ CSAT-3 or RM Young’s 81000 series devices) permit direct

calculation of second-order statistics for atmospheric wind and temperature fields.

After removing mean trends, the wind fluctuations can be assigned as a perturbation

vector (u′, v′, w′) where the u direction is oriented along the mean wind, v

is a crosswind term in a right-hand orthonormal system, and w is the vertical

wind component. To denote mean effects we will often adopt the angle-bracket

symbology 〈·〉, representing time-averaged quantities where the averaging time is

significantly longer than the time required for an integral scale (twice the outer-scale

length of turbulence) to drift past the observation point. Based on this symbolism we

shall form second-order statistics denoting the Reynolds’ stress tensor components,

Rij = 〈u′i u′j〉, (2.5)

where u1 = u, u2 = v, u3 = w. For a properly oriented wind system, 〈w′〉 ≡ 0,

since there can be no net wind flow through the ground interface. Use of the

Reynolds’ tensor allows us to define the friction velocity in terms of the net

downward-directed momentum flux. This is given by Stull (1988):

Rij = 〈u′i u′j〉. (2.6)

For example, a time-averaged sensible heat flux can be evaluated using

u2
∗ =

√
R2

13 +R2
23. (2.7)

However, in general, R13, R23 < 0 because winds are higher the farther one

displaces from the surface. Therefore, downward-perturbed winds are usually faster

than the average, while upward-perturbed winds are generally slower than the

average wind speed. In the special case where the coordinate axes are aligned such

that the surface stress is oriented along the u axis, u∗ = −R13.

The sensible heat flux can similarly be expressed in terms of perturbation wind and

temperature fluctuations (Paulson 1970):

HS = ρaCp 〈w′ T ′〉 = −ρaCp k u∗ θ∗ = −ρaCp u∗ T∗. (2.8)
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As regards various flux calculations, the significance of the integral scale (relative to

the expectation averaging time) is that small-scale effects are isotropic and therefore

decorrelated, while the large-scale perturbations are correlated and contribute to the

vertical fluxes of heat, moisture, and momentum. The integral scale reflects the peak

energy level in the flow. Therefore, the integration time must be sufficiently long to

accurately account for the energy within the flow.

We are therefore left with the apparent paradox in the standard theory (and one to

be tested) that whereas T∗ is based on correlations at the integral scale, T∗ can be

used to predict C2
n, which is characteristic of inertial subrange-sized perturbations

seemingly distant (frequency-wise) from the size of turbulent eddies producing

fluxes.

Nonetheless, the takeaway from this analysis is that by using sonic-anemometer

measurements it is possible to evaluate u2
∗ and u∗ T∗ directly, from which u∗ and

T∗ may be derived. Using these parameters, C2
n can be evaluated, along with LOb.

The C2
n can also be derived via an analysis of a sensed-temperature spectrum (e.g.,

Tofsted et al. 2007). We thus have 2 means of evaluating C2
n and can compare the 2

methods as functions of height and/or stability conditions.

However, in lieu of direct access to sonic-anemometer data, u∗ and T∗ are

significantly more difficult to estimate. This factor leads to the adoption of

SEB techniques, which require less direct information (e.g., time and/or spatially

averaged wind information as opposed to high-frequency 3-component wind data).

2.2 The Surface Energy Budget
The SEB approach involves first estimating the sensible heat flux in light of

several other energy fluxes at the surface; then, by estimating the Obukhov length,

obtaining u∗, and finally T∗, after which C2
n follows directly. We shall write the

energy-balance equation at the surface in the following form:

RS ↓ +RL ↓ = HS +HL +RS ↑ +RL ↑ +G. (2.9)

In each case the fluxes being measured are entering or leaving the surface layer,

which is here distinguished from what we previously described as the surface-layer

atmosphere. By surface layer what is intended is a layer of foliage plus the surface

itself. That is, a flat ground surface that has temperature Tg at any given moment.
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The R terms of Eq. 2.9 are radiative fluxes. The RS designates shortwave-radiative

fluxes (wavelength of radiation less than 2.6 µm). This is radiation in the solar

band. ByRL we designate terrestrial graybody radiation at wavelengths greater than

2.6 µm. Arrows indicate either upward flow from the surface interface or downward

toward it.

The H terms denote convective fluxes into the surface-layer atmosphere. The HS is

the sensible heat flux (warming of the air), measured as positive when the surface is

heating the air, and HL is the latent heat of vaporization of water in the soil layer or

evapotranspiration from the foliated layer. The G represents the ground-heat flux,

such that positive G represents heat flow into the ground, warming the soil.

In general, because the density of the foliage is not considered substantial, the net

energy retained by the surface interface is assumed equal to zero.

In its Eq. 2.9 form, the surface energy budget appears rather straightforward to

evaluate. However, the presence of a foliated layer introduces complications in

bookkeeping aspects of the calculation. For example, in addition to tracking the

surface temperature, Tg, we must also account for a bulk temperature of the mean

leaf surface, characterized by Tf .

Consider Fig. 7. Here, σF denotes the fraction of the surface covered by plants

when viewed from above. Due to the foliated layer, the sensible heat flux has

been subdivided into a component due to heat from the ground (bare soil), HSg,

and a component due to heat being transferred at plant surfaces, HSf . A similar

subdivision occurs for the latent heat fluxes. In both cases the surfaces interact with

the air near the surfaces. The carrying capacity of the air regulates the overall net

fluxes.

In Fig. 7 the convective-flux arrows are directed upward. This denotes that rather

than allowing the surfaces to interact with each other, due to the flux mechanism

the plant and soil surfaces directly involved in the convective fluxes themselves

only indirectly interact with one another.

The main influence is therefore the direct flow of energy into or out of the surface-

layer atmosphere. This, in turn, will tend to heat/cool the surface layer air and result

in the corresponding feedback. Conversely, when treating radiative fluxes there are

direct reflection and re-emission effects that are immediate.
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HLg + HLf = HL
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Subsurface Soil

F

Fig. 7 Expanded decomposition of surface-energy fluxes in the presence a foliated layer

For reference, let us codify what is contained in Fig. 7 in terms of equations:

HSg +HSf = HS, (2.10.A)

HLg +HLf = HL. (2.10.B)

In other literature (e.g., Deardorff 1978; Tofsted 1993) the latent heat flux is written

as the product between the latent heat of vaporization, Lv, and the vapor fluxes, Eg
and Ef , corresponding to the rate of evaporation of moisture from the ground and

from the leaf surfaces (evapotranspiration) in units of grams per square meter of

underlying surface per unit of time increment. Here, for simplicity of presentation,

all convective fluxes are denoted by the H symbology.

The primary goal of the remainder of this report is to further explain and argue for

the solution of Eq. 2.9 (with 7 fluxes) or its extension in terms of Eq. 2.10, which

introduces 4 new fluxes to replace 2 from the original expression. The reason for

this approach can be explained when considering the alternative.
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2.3 Flux-Profile Characterization of the Sensible Heat Flux
The flux-profile method becomes necessary under conditions where site data are
unavailable or only known from model runs involving estimated temperature
and wind-speed conditions. Under such conditions, modeled forms of the mean
horizontal wind speed and temperature as functions of height must be invoked.

Paulson (1970) introduced forms for these functions of height given by

uz − 0 =
u∗
k

[
ln
(
z

zo

)
− ψ1

(
z

LOb

)]
, (2.11)

Tz − Ts =
T∗
k

[
ln
(
z

zo

)
− ψ2

(
z

LOb

)]
, (2.12)

where uz and Tz are horizontal wind-speed and temperature mean values at height
z, and ψ1 and ψ2 are diabatic-influence functions dependent on the ratio z/LOb.
The surface-based values of wind speed and temperature are denoted as 0 = us and
Ts, respectively. However, neither of these important features is exactly as it might
be portrayed at face value. That is, despite its appearance, Ts is not actually the
temperature at the surface. Rather, it is an equivalent temperature at an extrapolated
height somewhere within the surface layer of Fig. 7. Similarly, us equals zero at
an extrapolated height (and perhaps a different height from the temperature profile)
within the surface layer.

The diabatic-influence functions are related to dimensionless vertical wind and
temperature gradient functions,

φ1(z/LOb) =
kz

u∗

∂u

∂z
, (2.13)

φ2(z/LOb) =
kz

T∗

∂T

∂z
, (2.14)

such that
ψx(ξ) =

∫ ξ

0

1− φx(ξ′)
ξ′

dξ′. (2.15)

For daytime conditions the diabatic-influence functions appear as

φ1(ξ) = (1− 15 ξ)−1/4 , φ2(ξ) = (1− 9 ξ)−1/2 Km

Kh

. (2.16)

Under nocturnal conditions these functions are modeled using

φ1(ξ) = (1 + 4.7 ξ) , φ2(ξ) = (1 + 4.7 ξ)
Km

Kh

. (2.17)

31



In both cases Km/Kh is the ratio of eddy diffusivities of momentum to heat, equal

to 0.74 under neutral conditions. Dyer (1974) used the constant 5 instead of 4.7

for nocturnal effects and 15 instead of 9 for the heat-related daytime relation. The

coefficients included above are due to Businger et al. (1971). These are also the

equations included in Stull (1988). (However, note the error in Stull’s Eq. 9.7.5f

where he used an exponent of –1/4 instead of the correct –1/2, as is included in Part

b of his Fig. 9.9, which reproduces Businger et al’s results.)

The importance of these relations is that u∗ and T∗ appear to be related to the

vertical structures of the horizontal wind-speed and temperature profiles. If we can

determine the shapes of these profiles, we can determine u∗ and T∗ and therefore

determine HS . But note that while the wind speed always approaches zero at the

surface, the height of the extrapolated zero wind speed surface is not at the ground

itself but, rather, at some height z0, termed the roughness height. Likewise, Ts is

not the surface temperature, but instead is some effective temperature that causes

the profile fit to match the current shape.

These functional forms also indicate that the temperature and wind speed are

varying with height across the surface layer. The vertical profiles are in turn related

to large-scale mixing effects that are related to the heat and momentum fluxes within

the surface layer.

We also see from Eq. 2.11 that while we may know the left-hand side’s (LHS)

mean wind uz, the RHS of 2.11 depends on both u∗ and LOb (assuming z is a fixed

observation height and the surface roughness zo is a known, slowly varying function

of time). Of course, we could combine the resolution of Eq. 2.11 with 2.12, but this

equation also introduces the new unknown Ts. And, Ts is not easily obtained, given

that it consists of an amalgam of effects related to both the surface and foliage

temperatures.

But, we can estimate Ts (or at least get closer) if we can estimate Tg and Tf through

an energy-budget computation. We can also check that work by computation of the

HS flux directly.

Given the complications of working with the rather intricate ψ and φ functions

used in the profile methods, it is perhaps not unexpected that various flux modelers

would chose simpler compound expressions to describe the sensible heat flux. For
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example, Deardorff (1978) effectively approximates the sensible heat flux through
use of the form,

HS = ρaCp cH u (Ts − Tz), (2.18)

where Ts is an aggregate surface temperature (see the Eq. 2.12 discussion) and Tz is
again the estimate of the temperature at a specific height. This is the same height as
associated with the horizontal wind speed uz and density ρa (effectively, ρa is also
a function of height but we omit the height indication). This reformulation replaces
unknowns u∗ and T∗ by presumably measurable (or model/forecast predicted)
quantities u and Tz, along with the new sensible-heat-flux efficiency factor, cH ,
and modeled parameter Ts.

For composite surfaces consisting of a flat soil surface plus a vegetative layer,
one must know the surface values of Tg, the soil-surface temperature, plus Tf , the
aggregate foliage temperature.

Yet, perhaps inevitably, by introducing this new form, Deardorff has also introduced
yet another parameter than needs to be evaluated: cH . Thom (1972) used a slightly
altered computation:

HS = ρaCp
(Ts − Tz)
rH(z)

, (2.19)

where rH is a convective-flux resistance factor that incorporates the wind-speed
effect. Let us also, here, define the specific heat of dry air at constant pressure:

Cp = 7R/2 = 1004.84
J

kg K
, (2.20)

where R is the gas constant, equal to 287.04 J/(kg K). This factor is related to the
coefficient 0.34838 from the air-density equation, since 0.34838 = 100.0/287.04,
where the factor of 100 converts pressure from millibars into Pascals. (For moist
air there is a slight adjustment to the Eq. 2.19 expression, but as it represents only a
minor perturbation it will usually be ignored in the various derivations.)

The above assessment highlights that there are ad hoc methods for computing
the sensible heat flux; that each requires knowledge of an effectiveness constant
(cH , rH , etc.) dependent on atmospheric stability, and of a surface-equivalent
temperature.

In this formulation, a method is used for mixing the temperatures of the foliage
(Tf ) and soil surface (Tg) that involves a weighted average of the 2 temperatures
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based on their relative surface areas. Typically, a foliage layer has much greater
exposed surface area than the overshadowed ground. To parameterize this effect, 2
numbers are used: σf , the relative fraction of the terrain covered by the foliage (the
fractional, orthogonally shadowed area), and Υf , the single-sided area of leaves per
unit of area of terrain covered. That is, for each square meter of terrain covered,
Υf says there is Υf times as much leaf surface. The traditional value determined
for Υf is 7. The value of 7 was adopted by Deardorff (1978) based on reported
values by Allen and Lemon (1972) for a corn crop and by Monteith et al. (1965)
for a barley crop — that for each square meter of overshadowing foliage, there are
approximately 7 m2 of leaf surface area. However, these studies considered mature
agricultural crops. Such numbers thus refer to specific states of well-cultivated plant
stands. Natural (noncultivated vegetation) would not likely exhibit this dependence.
For example, short grasses simply do not have the same areal extent as significant
crops of vegetables or grains.

These 2 parameters multiply to compute Nf , the square footage of single-sided
plant-leaf surface per square meter of underlying surface:

Nf = σf Υf , (2.21.A)

or, more appropriately,
Υf = Nf/σf . (2.21.B)

For more general types of plants, the simple rule likely does not apply. This problem
is addressed in more detail in Chapter 6.

Using the basic rule for NF , Tofsted (1993) approximated the surface temperature
as the surface-area-weighted average,

Ts =
(Tg + 1.1Nf Tf )

(1 + 1.1Nf )
. (2.22)

The factor 1.1 was used to account (c.f., Deardorff 1978) for the difference in
surface area between the leaf surface Nf and the leaf plus stems, twigs, branches,
and trunks that can be involved in the sensible heat flux but would not contribute to
the evaporative heat flux.

In the process, the problem has seemingly become more complex by exchanging Ts
for both Tg and Tf , the ground- and foliage-surface temperatures. This is somewhat
deceptive, though, since Ts was never truly the surface temperature. Technically,
the logarithmic rule approaches minus infinity at exactly zero, so the process is
only taken to a distance akin to the z0 used in the wind-speed profile.
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2.4 Surface and Atmospheric Inertia Effects
As we shall also explain in detail in a later chapter, there is a further consideration

that affects all of our discussions, as well. That detail is first encountered when

treating the surface temperature, since there is a thermal wave that passes into the

surface. Therefore, there is always a resistance-type effect at the soil surface. But

the same comment applies to the near-surface atmosphere, since heat that transfers

into the air is distributed over a deeper zone than is associated with merely the

thickness of the surface layer. These inertial effects in turn have an influence on

how the model can accept measured data. By this is implied the following: Imagine

the effect of inputting a measured atmospheric temperature into the model. As

long as this temperature is reflective of and trails the warming or cooling surface

temperature, the proper results occur: heat flows in the proper direction from the

surface. However, what if our knowledge of the existing conditions is only partial?

In this case the measured air temperature might lead the surface temperature,

creating anomalous heat fluxes and predictions. For example, if our knowledge of

solar radiation is not moment to moment — at the same data rate as the temperature,

say — then under partly cloudy conditions the model might be using an incorrect

radiation estimate but an accurate air-temperature value that is reflective of the

moment-to-moment variations in radiation. To keep the model as consistent as

possible, it is necessary to drive the vertical temperature model using the surface

heat flux as its guide for warming or cooling.

This aspect will be treated in a separate section; but, we begin with a treatment

of the various fluxes to develop improved models of these individual components

before treating the overall coordination of the fluxes in temperature calculations.

2.5 History of Surface Energy Budget Model
The earliest attempt to produce an SEB model was an analog computer simulation

by Halstead et al. (1957). As computer technology increased, the number of authors

attempting such derivations has also increased, including the present author. More

specifically, the derivation history closest to the present work is derived from an

algorithm reported by Deardorff (1978) that was an amalgam of various techniques

and empirical relations formulated to account for the different fluxes. Following

Deardorff’s work, researchers at the US Army Atmospheric Sciences Laboratory,

Ken Kunkel and Don Walters, coded Deardorff’s relations into a FORTRAN code
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in the early 1980s that was used to predict turbulence conditions at what was to

become the White Sands Missile Range’s (WSMR’s) High Energy Laser Systems

Test Facility. Although this model was a direct translation, Kunkel and Walters

recognized that it lacked an appropriate surface adjustment for surface-roughness

effects in the sensible heat flux (Kunkel and Walters 1983).

In 1984 the present author encountered the Deardorff model as encoded by Kunkel

when studying vertical structure of temperature in the surface layer and its effects

on refractive path bending. Initially, the effort was merely to study the predicted

vertical temperature gradients predicted by the model based on input weather

data; however, this effort soon branched out to consider various alternative energy-

budget factors since the model appeared to be in error under certain conditions

when predicting sensible and latent heat fluxes. The most serious difficulties

occurred when attempting to model effects for highly vegetated moist regions.

This issue was addressed (e.g., Tofsted and Gillespie 1986) through the adoption

of parametric results by Thom (1972). However, due to changing priorities this

work was abandoned in the late 1980s. The final report documented the last state of

the model (Tofsted 1993) that had not changed for more than 5 years. Since 1993,

though, the need for a model to predict SEB effects has not diminished. If anything,

such a model is more necessary today, given the proliferation of higher-powered

optics and lasers, including advanced (FLIR) third-generation imaging sensors.

Moreover, while significant advances have occurred in the field of weather

prediction, the standard mesoscale meterological models still are primarily focused

on generation of correct wind calculations and less so on temperature and surface

properties. Indeed, the MM5 model commonly used a few years ago had its first

computational level at 40+ meters above ground level (AGL). Such a level is outside

or on the upper edge of the surface layer, leaving characterization of surface effects

as an afterthought.
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3. Surface Energy Budget Model Inputs
Up to this point we have discussed primarily the theoretical framework upon which

the task of turbulence prediction is based. Now, it is appropriate to introduce the

conceptual framework of the computer model itself. In so doing, the focus of this

chapter to address a use case and the choices made with regard to user inputs within

this case, since the inputs supplied will tend to drive the quality of the model’s

results obtained.

As such, let us consider what sort of model might be of use in a modeling

environment. To begin, one must assume a user with some degree of familiarity

with the problem being addressed; nonetheless, many users might only know that

a problem with the optical systems exists but not know the physical basis for

the effect. As such, users are only assumed to have sufficient familiarity with the

environmental parameters to provide inputs to the model.

The other problem that typically arises is that for surface characterization many

parameters are necessary to specify the state of the surface, subsurface soil,

vegetation, moisture availability, and atmospheric conditions. Hence, if the number

of parameters required to run such a model became prohibitively high, it may

become unusable. Given this potential, the present effort has struggled to adopt

as simple of a set of inputs as possible to supply the model with the necessary

conditions, while restricting the number of inputs and the information required;

this is so a relatively untrained user could successfully operate the code and

obtain meaningful results quickly. In the process of discussing these inputs, we

also address the means of translating between the input data and the relevant-state

variables used by the model. These variables then appear in later chapters where we

discuss the dynamic models used to evaluate the fluxes.

Given that this is initial version of the code is based on an initial set of assumptions

with regard to user inputs, future versions can be readily envisioned in which

more detailed information is supplied, thereby improving the temporal resolution of

wind and temperature information. But in this first-level model, we characterize the

needed inputs in terms of various elements of the environment: ground state, surface

state, planetary location, temporal information, and general atmospheric conditions.

In all, there are 15 variables considered necessary to run the code. Each of these

variables is assigned a default value, so the code can be run with no standard inputs,
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or by simply using the defaults for most inputs. The remaining inputs are entered

using a standard format in a file named SiteCond.dat, the site conditions file.

Each line of this input file contains a mnemonic 6-letter keyword followed by either

a numerical value (integer or floating point depending on variable) or a second

keyword (of variable length) used to select between different types of the designated

variable. The use of keywords makes the input file easily understandable in terms

of the input required (though in some cases the user must know the appropriate

dimension to use for the input parameter). In most cases, where possible, the model

inputs utilize the MKSA system. One exception is the case of air pressure where

the common meteorological use of millibars is adopted over the MKSA system’s

use of Pascals (1 mbar equals 1 HPa). Temperatures are always in degrees Celsius

or Kelvin.

This model is designed after the system developed for the Electro-Optical Systems

Atmospheric Effects Library (EOSAEL) input methodology. Here, however, rather

than permitting multiple entries per data-input line, only one parameter is to be

input per line. While this is less efficient, it makes the input more readily legible

and comprehensible.

3.1 Soil Properties
The primary soil characteristics that must be used within the SEB model are the

solar-band mean albedo, or reflectivity, of the soil and the infrared band soil-

surface emissivity, along with 2 of 3 of the properties: soil heat capacity Cg [J/(kg-

K)], thermal diffusivity κg [m2/s], and thermal conductivity kg [W/(m-K)]. In the

process we also identify the soil density ρg [kg/m3]. Only 2 out of the 3 soil thermal

properties are needed, since the third can be calculated via

κg = kg/Cg.

Requiring a user to supply the relevant condition data needed to assign all 6 of these

parameters would be difficult under most operational conditions. Hence, rather than

impose this requirement on the user, we choose to parameterize the soil conditions

in terms of 2 variables only. As an alternative potentially a database of values could

be accessed, including information on soil conditions and moisture levels. While

such an application is beyond the scope of the present effort, certain modeling

environments feature just such access, permitting a table look-up to obtain the
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necessary information, and in principle passing this information back to a main
routine.

But for the present, we simply assign up to 3 variables: SOILTP, SOILML, and
SOILRH — soil type, moisture level, and roughness height, respectively. For
now there are only 3 possible soil-type input values permitted: SAND, CLAY,
and PEAT. These use the canonical data sets supplied by Oke (1978, table 2.1,
pg. 38). Oke supplies values of the major soil thermal parameters for dry and
saturated conditions. At intermediate soil-moisture levels the model of Deardorff
has been adapted to interpolate between the dry and saturated conditions to produce
meaningful, intermediate moisture results. On the other hand, Oke’s Table 2.1 only
supplies information for the soil thermal properties. Table 1.1 of Oke (1978) is used
to augment this information to include soil albedo and emissivity ranges used for
dry versus wet soils.

The initial dry soil condition data used is contained in the Table below.

Table Baseline dry-soil properties

Variable Name Symbol Dimensions SAND Value CLAY Value PEAT Value

HeatCap Cg 10+6 J/(m3-K) 1.28 1.42 0.58
TherDif κg 10−6 m2/s 0.24 0.18 0.10
WK wK dimensionless 0.30 0.30 0.60
Wgmax wmax dimensionless 0.40 0.40 0.80
Wwilt wwilt dimensionless 0.15 0.15 0.30
Albedo αg dimensionless 0.35 0.23 0.14
Emisty εg dimensionless 0.91 0.94 0.95

To characterize the relative moisture in the soil, the SOILML soil-moisture-level
input is used. Moisture-level choices range from PARCHED VERYDRY, DRYSOIL,
WETSOIL, and VERYWET to SATUR8D. These moisture levels correspond to
numerical fill factors of water in the soil relative to a maximum fill factor possible
for a particular soil type. Numerical translations are 0.02 (i.e., 2% fill), 0.10, 0.35,
0.65, 0.90, and 1.00 (100% fill). Let this input be termedmS , such that 0 < mS < 1.
From the previous input variable (soil type), one obtains a maximum soil-moisture
fill fraction termed wmax on the order of 0.25. The net soil-moisture content is then
denoted by the variable wg, the ground-moisture fill factor per unit of volume of
soil:

wg = mS wmax. (3.1)
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To gain some perspective on what constitutes typical conditions, Deardorff (1978,

table 2) identified 2 typical soils: the O’Neill average and results from a clay

pasture. In the former case, the soil-pore space was 22% (wmax = 0.22) and of

this the moisture fraction was 18% (mS = 0.18). For the clay pasture the pore

space was 30% (wmax = 0.30) and of this roughly 50% was saturated (mS = 0.50).

As might be expected of a bottom-land pasture, the resulting soil is quite wet and

of much greater heat capacity, reducing its diurnal variability.

To model the impact of soil moisture on the albedo, Deardorff’s modification is

used:

αg,moist = αg,dry (1.0− 0.5mS). (3.2)

The soil heat capacity is modified by the amount of soil moisture. To account for

this we multiply the water content, wg, by the density of water, ρw = 103 kg/m3,

times the heat capacity of water, Cw = 4184 J/(kg-K):

Cg,moist = Cg,dry + ρw Cw wg. (3.3)

For the thermal diffusivity, Deardorff (1978, Eq. 38A) attempted to simulate the

effect of moisture. However, the relationship shown by Oke (1978, Fig. 2.5.a)

appears to be better accomplished by starting with the dry thermal conductivity,

kg,dry = Cg,dry κg,dry, and modifying it as

kg,moist = kg,dry + ρw Cw κg,dry Σ(3wg/wmax), (3.4)

where Σ(x) is the sigmoidal function,

Σ(x) =
[exp(x)− exp(−x)]

[exp(x) + exp(−x)]
. (3.5)

Then, computing

κg,moist = kg,moist/Cg,moist. (3.6)

For these 2 cases, soil emissivities, εg, were also reported. Values of 0.90 and 0.95,

respectively, were given for the O’Neill and clay soils, and the soil albedos, αg, were

reported as 0.25 and 0.15, respectively. The O’Neill soil, being considerably drier

than the pasture soil, was also significantly more reflective, while the 2 emissivities

were similar.
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The last soil-input category is SOILRH, a measure of the soil-surface-roughness

element height used to evaluate the roughness length (z0G) of the ground.

Three input values are used: GRANULR, PEBBLED, and ROCKY10. These inputs

correspond to numerical sizes of typical “surface roughness elements”. GRANULR

means fine grains 1 mm in size; PEBBLED represents surface pebbles 1 cm in

size; ROCKY10 equates to rocky soil covered with rocks 10 cm in size. These will

produce surface-based, roughness-element heights of 1 mm, 1 cm, and 10 cm that

are used to compute the surface-roughness length, z0G, used to evaluate the friction

velocity, sensible heat model, and humidity flux. Assigning this input to the variable

h0G, the ground-roughness length is computed via

z0G = 0.13h0G. (3.7)

3.2 Foliage Properties
In the Deardorff approach to handling foliage information (although plant experts

would disagree) the primary variables of interest are the height of the vegetation,

which affects wind flow, and the amount, which affects the amount of shielding that

the vegetation layer provides for the surface beneath. Though this is a relatively

simple approach, and there are improvements that are obviously possible, for

the current analysis this approach appeared to be the most accessible and easily

definable.

To define these 2 inputs, 3 possible variables can be assigned. This route was taken

so that users who have direct access to a ruler or other means of measuring length

can easily input a more realistic number than the mnemonic choices available. The

3 variable names are FOLTYP, FOLHGT, and FOLCVR. The first 2 of these are 2

versions of the same input, essentially the standing height of the vegetation, zF (as

previously illustrated in Fig. 7).

The user can select the foliage-type input, FOLTYP, to indicate preset values of

the height of the vegetation. Choices include GREEN (i.e., a golf green with foliage

heights of 5 cm); GRASS measuring 15 cm (6-inches) high; WEEDS 25 cm high;

HEDGE 50 cm high; and BUSHS 1.00 m high.

Alternatively, the user can input a FOLHGT involving a floating-point height (in

meters) directly. The governing variable in the code is termed FolHgt and is set to a
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default value of 0.5 m, roughly that of tall weeds (and approximately the height of

the yucca plants native to the WSMR, New Mexico, area).

The second main category of input required for foliage is the fractional foliage

cover, variable FolCvr, and use of the input keyword FOLCVR. We shall use the

symbol σF for this parameter in equations beyond this chapter. Valid inputs range

from 0.0 to 1.0. Negative values and results corresponding to a cover fraction greater

than 100% are simply reset to the appropriate valid range.

It should also be mentioned that 2 constants are set to evaluate foliage radiative

properties: foliage reflectivity of shortwave solar radiation (albedo), set as αF =

0.20, and foliage infrared radiative emissivity, εF = 0.95. (These values correspond

to live vegetation, but in deserts the plants spend much of the year in dormant —

dead— states.) The emissivity and albedo of dead grass and weeds are obviously

different, but are not available presently.

3.3 Surface-Layer Atmosphere Characteristics
To describe the most basic information needed to characterize the atmosphere

(aside from clouds), we require at least one temperature, one wind-speed, and one

humidity value. The governing assumption of the model is simplicity of input;

and, while sophisticated temperature, wind, and humidity data could significantly

improve the outputs, a user might not have access to such information, particularly

if attempting to predict the turbulence levels in a forecast. In this case, a simple

approach is taken: the use of persistence in prediction.

Based on this use case we simply require one temperature, measured or predicted,

for dawn. The time of dawn is chosen because this should be the minimum

temperature of the day or close to it. From this we should be able to assess properties

of the complete boundary layer for the day. The relevant variable is TdawnC,

with the input keyword TDAWNC. The input value is the air temperature at 4 m

AGL, measured in degrees Centigrade. In many tactical settings a 6 AM weather

observation is taken. From this input we calculate Tdawn = TdawnC + KC , where

KC = 273.16 converts the input temperature from Centigrade to Kelvin units.

Along with a dawn temperature reading, the humidity variable chosen is a relative

humidity given as a fractional saturation (0.0 equals no humidity, 1.0 equals 100%

relative humidity). Dawn is again chosen such that the temperature and the relative
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humidity can be combined to generate an absolute humidity density (kg/m3) in the
air. The program variable is RHdawn, while the input keyword is RHDAWN. Let this
variable be written, RdH .

The last parameter is a 24-hr averaged horizontal wind speed (m/s) at a selected
station height (StaHgt) in meters AGL. The value of this station height is set
internally to the model but could be added as an input if desired. The wind-speed
code variable is WindSH and the input keyword is WINDSH. The choice of a station
height is necessary since temperature and wind speed are functions of height above
the surface. We assign the symbol U24(zS) to this variable, where zS is the station
height.

Default conditions set for these variables are TdawnC = 15 ◦C; WindSH = 2.0 m/s;
RHdawn = 0.080 (i.e., 8% relative humidity); and StaHgt = 2.0 m.

3.4 Cloud-Cover Information
The next general category of inputs is the upper atmosphere, characterized by cloud
properties. Three parameters are used, and the model of the clouds is rather simple.
This is because for too many clouds one can simply assume the turbulence level
will be suppressed sufficiently that many tactical operations will encounter limiting
conditions other than turbulence (i.e., aerosol effects, precipitation, or diffraction at
long ranges).

To characterize the clouds, we use 3 input types. The FRACCC keyword denotes
input of the fractional cloud-cover amount, and the model variable FracCC. The
valid range of this input is again 0.0 (no cloud cover) to 1.0 (overcast conditions).
Let σC represent this parameter.

The second parameter is the cloud level, CLDHGT, using an index variable CldHgt
set to 1, 2, or 3 in the model, which correspond to input keywords LOWEST,
MEDIUM, and HIGHER.

The third parameter supplies a cloud type via keyword CLDTYP, using an integer
variable CldTyp set to 1, 2, or 3, corresponding to input keywords CUMULO,
STRATO, and CIRRUS.

The significance of these choices of keywords and characterizations is in connection
with a cloud transmission model (Shapiro 1972) used to estimate the relative
propagation of radiation through the cloud layers.

Default values for these 3 parameters are FracCC of 10% (0.1) and low-level
cumulus clouds (CldHgt = 1; CldTyp = 1).
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3.5 Site and Time Information
Finally, we need to set a series of variables to know the time and location of the
calculation being made. Since we are performing a 24-hr simulation we only require
the year, keyword YEARAD, and variable YearAD, and a date, keyword JULDAT,
and variable JulDat. Both of these parameters require integer-valued input numbers.

The site of the computation is then identified based on a 3-D plot, given as latitude,
longitude, and height of the site above sea level (ASL). Again, this information
could be gleaned fairly easily from web resources. The mnemonics for these
variables were selected as follows: LATTNE is latitude of the site of interest in
degrees north of the equator. LONGEG is the longitude of the site measured in
degrees east of Greenwich. Hence, WSMR, New Mexico, is assigned a positive
LattNE code variable around 32.0, while LongEG is assigned a negative value of
approximately –106.0.

The vertical dimension of the position is indicated using the variable HGTASL, and
code variable HgtASL, denoting the site’s height ASL, but read as kilometers rather
than meters. (This input breaks the paradigm of using only meters for lengths.)
The main use of this variable is to assess the mean air density. Here, a simple
approximation of the air density is given as a function of height ASL in kilometers
in the variable H . Using a function empirically derived by Abel Blanco of the US
Army Research Laboratory, we have the approximation,

ρ = 1.225− H

10

[
1.176− H

100

[
4.34− 7.46

H

100

]]
, (3.8)

where ρ is given in kg/m3.

A final input is a height (in meters AGL) to be used in calculating the output C2
n

values. This variable is denoted using the keyword HGTCLC and associated variable
CalHgt. This parameter allows the user to input data at one height (the station’s)
and output results at a different height (where C2

n is desired to evaluate its effect on
propagation). Let zC represent this variable.

3.6 Model Execution
Following input of all data elements the input file requires an ENDDAT statement.
This statement takes no additional parameter. Once this line is read, the model
executes. Any lines following the ENDDAT statement are ignored. The following
is a complete model-input set:
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Example Input File SiteCond.dat

YEARAD 2014

JULDAT 175

LATTNE 32.00

LONGEG -106.00

HGTASL 1.200

FRACCC 0.250

CLDHGT MEDIUM

CLDTYP STRATO

HGTCLC 2.000

TDAWNC 5.00

WIND4M 3.00

RHDAWN 0.20

FOLCVR 0.10

FOLTYP WEEDS

SOILTP SAND

SOILML PARCHED

SOILRH PEBBLED

ENDDAT
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4. Diurnal Ground Heat Flux Model
In this chapter we will discuss the present model’s method for handling the ground

heat-flux. The method developed to address this is described in detail. However, it

is perhaps worthwhile to first compare this technique with methods used previously

to see why it might provide a better estimate of the soil’s conductive heat-flux than

previous methods.

As the touchstone model of the author’s experience, the reader is referred

to Deardorff’s (1978) model. This model applied a force-restore technique to

calculating the ground heat-flux. The force-restore method was developed by

Bhumralkar (1975) and Blackadar (1976). In this model a forcing term (the ground

heat-flux) heats a near-surface layer of thickness d1 (approximately 10 cm) that

corresponds to the penetration depth of the diurnal heat wave. Secondarily, this

force is partially compensated by a restoring term associated with heat transfers

between the diurnal soil layer and an even deeper layer of thickness d2 (∼ 50 cm)

associated with the penetration depth of the annual thermal wave. At the time of

the late 1970s this method was considered one of the most advanced available (e.g.,

Hoffert and Storch 1979).

A key problem with this approach is that one obtains a solution for the temperature

of a layer 10 cm thick, but not a solution for the actual temperature of the soil

surface. Or, perhaps in fairness one might say the technique is tuned to provide a

correct temperature of a thermal wave penetrating the ground plane, but only for

one wave frequency that makes one cycle per diurnal period. It is relatively easy to

see where this might lead to problems. For example, frontal passages might cause

variations in solar irradiation at the surface that are not periodic over 24 hr. In this

case, shorter-period fluctuations carry the incident energy to different depths and

can result in shorter-term ground-layer responses.

Moreover, the SEB model relies on the actual surface-skin temperature to generate

the correct outgoing (upward directed) infrared radiation that is directly responsible

for cooling the ground. And, if the ground heat-flux is not properly handled, the

radiation model will not respond properly, either. This results in a cascading series

of model errors, particularly affecting the balance of the proper energy entering

the atmosphere via the sensible heat flux, and will affect the turbulence prediction.

The sensible heat flux relies (again) on the actual soil temperature, not on a mean
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temperature of a soil layer. To fix this problem, a means must be derived to calculate

the ground heat-flux based on the surface temperature alone without relying on the

nature of the penetration depth of any particular frequency of thermal perturbations.

But before considering that method, let us also mention the issue of horizontal

conduction within the ground. For purposes of this calculation, the soil will be

considered flat. It may, of course, be considered tipped relative to the incident

sunlight. This would not affect the derivation. However, in most cases we will

consider it oriented perpendicular to the vertical, though this might be addressed

in future. The main point is that horizontal heat flow will be ignored. When

considering the penetration depth of the diurnal thermal wave it is relatively easy

to see why. In most cases our knowledge of soil properties is crude at best; and

typically the approximation of horizontal homogeneity is a given. Certainly the

resolution of available soil type data is no better than 10 cm, and the effects

of horizontal differentials at larger scales would be minimal. Since the model

described does not attempt to address such infrared-visualization effects, such flows

will not be considered.

The method discussed and developed here was based on a combination of Laplace

and Fourier transform techniques. Therefore, the discussion is divided into 2

sections. In Section 4.2 the Laplace transform component of the analysis is

discussed as applied to a periodic boundary condition. The soil is considered a

flat, semi-infinite (into the earth) slab of uniform medium of uniform thermal

properties. The results of this analysis allow one to model the energy flux exactly

for such a periodic surface-temperature-boundary condition. One may then proceed

to decomposition of the soil-surface-temperature diurnal wave in terms of a Fourier

series. This is discussed in Section 4.3, where an expression for the complete diurnal

ground heat-flux wave is formulated as a summation of periodic components.

4.1 Model Assumptions Used
In Section 4.2 the surface response to a sinusoidally-perturbed temperature

boundary-condition is derived. Such a derivation requires a series of assumptions be

made to allow the solution to be tractable. In the process, hopefully, the assumptions

made are not themselves unrealistic. These are

1) We assume the soil thermal properties to be constants both in time and depth

within the layer of interest during the computational period.
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As justification, since we are primarily interested in turbulence effects — and since

turbulence issues primarily occur under relatively dry desert-climatic conditions

when optical turbulence becomes a problem — the soil is usually dry, meaning its

moisture content will not vary significantly with depth beneath the surface. Such

conditions would also argue against the presence of rainfall and evaporation over

a 24-hr period of interest. Either of these would tend to reduce the prevalence of

optical turbulence as well as cause variations in the soil properties as functions of

time and depth. Even without such variations, one might anticipate some changes

in soil properties with increasing depth. Yet due to the shallow penetration of the

diurnal wave such impacts might tend to be minimized, especially when considering

only a 24-hr period. This was the same approximation used by Ren and Xue (2004).

Nonetheless, such effects could be considered under a testing regime where it might

be possible to track the drying out of a soil layer over several days and consider how

variations in moisture would tend to alter the resulting turbulence predictions.

2) We also assume the effects of the annual temperature wave can be ignored if we

are only dealing with a day or a few days of computational time.

To assess the impact of this assumption, let us consider the average variation in

annual daytime temperatures as indicative of the variations in soil temperature

for the annual wave. At WSMR’s locale in southern New Mexico, the average

daytime high temperature varies from approximately 55 ◦F to 95 ◦F between the

winter and summer months. Taking this range in combination with the results

of the analysis below (further discussed in Section 4.3) we find the maximum

energy flux into the soil for an average soil is approximately 3 W/m2. This amount,

while significant on an annual basis, is minor compared to the magnitudes of

diurnal fluxes that are on the order of hundreds of Watts per meter squared. Strong

turbulence conditions require strong sensible heating rates. Therefore, while the

effects of the annual thermal wave should be included for longer-term (climate)

studies, when considering 24-hr variations in turbulence strength this effect can be

ignored.

3) Finally, we assume that the diurnal thermal wave can be treated as periodic.

For this third assumption, we note that once the annual wave effect is removed,

the main influence on turbulence is due to cloud and wind effects that might be
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treated as being diurnally cyclical in nature. For instance, in summer months in New

Mexico a common diurnal cycle begins with relatively clear skies in the morning

hours becoming perceptibly cloudier in the afternoon, then dissipating after dusk.

In many locations, in the absence of a major weather change, persistence is the

dominant factor in forecasting. Beyond that, precipitation events generally disrupt

the level of turbulence observed. Hence, the model developed is designed to be a

best fit to study conditions where turbulence becomes a significant factor. Further,

the diurnal model could also be adjusted to treat a multiday scenario to study

cyclical patterns of precipitation and subsequent drying. But, this is beyond the

scope of the present work.

4.2 Laplace Analysis of Ground Impulse Response Function
In this section, Laplace transforms will be used to study the flow of heat into a

semi-infinite soil volume with a known, single-frequency sinusoidal temperature

perturbation as the upper-boundary condition and homogeneous soil conditions

throughout, based on the assumptions stated in Section 4.1. For simplicity, the

variable x will denote distance measured into the semi-infinite slab volume starting

at the soil boundary (x = 0) and extending downward into the semi-infinite region

(0 < x < +∞).

Based on this model and assumptions, we may ignore horizontal heat fluxes,

such that we need only determine the form of a function T (x, t) representing the

temperature as a function of depth and time that solves the heat-transfer equation:

∂T (x, t)

∂t
= κ

∂2T (x, t)

∂x2
= a2 ∂

2T (x, t)

∂x2
, (4.1)

where κ = a2 [m2/s] is the thermal diffusivity, assumed constant.

For the boundary condition, let us write

T (0, t) = A sin(ω t) + T∞ = d(t) + T∞, (4.2)

where ω = 2π/τ and τ is the period of the sinusoidal oscillations.

Here, note that T∞ was added to avoid negative temperatures, but effectively it

becomes merely a background-temperature offset. That is, it represents not only the
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mean temperature at the surface but also the asymptotic temperature deep beneath
the surface:

T (∞, t)→ T∞ = const. (4.3)

Once a solution is found for this case, it will be relatively simple to generalize the
results in the next section, since the equation is linear in T (x, t).

To solve this system, it will be easiest to Laplace transform Eq. 4.1 with respect to
time. Here, we use the standard definition of the Laplace transform (e.g., Kreyszig
1972):

L [w(t)] =

∞∫
0

e−stw(t) dt = W (s). (4.4)

Standard transform and inverse-transform tables will be used to provide the results
needed to express the differential equation in terms of its Laplace-transform
equivalent. First, we consider the transform of a time derivative:

L
[
∂w(t)

∂t

]
= sW (s)− w(0). (4.5)

This result tells us we need to know the value of the function w(t) at t = 0, w(0).
However, such terms are truly necessary only if we are concerned with the effects of
transients. Since our interest is only in the general periodic behavior of the solution,
behavior that persists long after the transients have damped out, we ignore all such
effects and simply assign all transient terms as w(0) = 0.

Next, since t and x derivatives acting on T∞ must equal zero, we may always assign
T∞ = 0 initially, ignoring the mean-temperature offset (the zero frequency (DC)
term) as well. This is consistent with the observation that T∞ = T (0, t) is the mean
background temperature throughout the solution.

The Laplace transform of Eq. 4.1 can thus be written,

a2 ∂
2Θ(x, s)

∂x2
− sΘ(x, s) = 0, (4.6)

except that Θ(x, s) represents the transform of T (x, t)−T∞, where the background
offset has been removed.

Equation 4.6 may now be solved along the x dimension, taking the easily derived
general form,

Θ(x, s) = D(s) exp
[
−
√
s x/a

]
+ E(s) exp

[
+
√
s x/a

]
. (4.7)
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One of these terms is immediately removed by applying the boundary condition.
Because T (x, t)|x→+∞ approaches T∞, E(s) must be set to zero, since the
exponential part of this term diverges as x → +∞. Therefore, E(s) may be
eliminated, leaving

Θ(x, s) = D(s) exp
[
−
√
s x/a

]
. (4.8)

Recall that, in general, when one encounters products in various transform
spaces, these products typically transform to become convolutions in the original
space. Hence, the product solution, Θ(x, s), becomes a convolution upon inverse
transformation into T (x, t). For the Laplace transform such convolution operations
are expressed as

L−1 [F1(s)F2(s)] =

t∫
0

f1(t− v) f2(v) dv. (4.9)

This form is consistent with the Laplace transform’s causal applications, yielding a
causal integral involving 2 temporal functions.

Now it will be noted that since Θ(x, s) is the transform of T (x, t), we may always
set x = 0, in which case we have Θ(0, s) which must inverse-transform as T (0, t).
This implies that the boundary function, d(t), is the inverse Laplace transform
of D(s). The remaining exponential factor in Eq. 4.8 must therefore relate to the
effects of heat transfer from the surface into the conducting slab as a temporal (and
causal) impulse-response function. However, it is unnecessary to actually perform
the forward Laplace-transform operation needed to convert d(t) into D(s) since we
are not interested in D(s), per se, and only in the spatial-temporal solution.

The complete behavior of T (x, t) will thus require convolving the known function
d(t) with the transform of the exponential factor of the Laplace-transformed
solution. Once this convolution function is known, we may perform the convolution
integral in time.

The inverse transform of the exponential term, e−
√
sx/a, is a common look-up table

function given as

L−1
[
e−δ

√
s
]

=
δ

2
√
π t3

exp

(
−δ

2

4t

)
= g(t, δ), (4.10)

where δ = x/a. This function can be rewritten as

g(t, δ) =
1

2
√
π δ2

exp
(
− 1

4(t/δ2)

)
(t/δ2)3/2

. (4.11)
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It is perhaps not surprising that as an impulse-response function the time-integrated
area beneath the function (when integrated over t = 0... +∞) is unity, regardless
of the value of δ. And, as δ → 0 as x → 0, the function obtains attributes similar
to that of a Dirac delta function. This integral property is also guaranteed by the
simple observation that the function’s transform value at s = 0 is unity. One may
likewise represent this function in a dimensionless form, with the property

∞∫
0

g(t, δ) dt =

∞∫
0

1

2
√
π

exp
(
− 1

4u

)
u3/2

du =

∞∫
0

G(u) du = 1, (4.12)

using u = t/δ2.

The function G(u) is plotted in Fig. 8. The unique property of this function is its
ability, in the limit as δ → 0, of G(t/δ2)/δ2 to sift out the value of the function at
t = 0 (as δ → 0), upon convolution. Moreover, this function behaves like a single-
sided Dirac delta function. Its single-sidedness allows it to act in such a way that
it avoids acausal effects. The function g(t, δ) thus exhibits all of the attributes of
an impulse-response function, distributing the behavior of T (0, t) downward into
the volume, where the delay of the temperature flowing downward depends on the
depth being assessed, parameterized by the variable δ.

Fig. 8 Dimensionless function G(u) produced from Laplace analysis of the heat equation

The convolution operation in Eq. 4.9 can now be performed. An exact form is
available for the inverse Laplace transform of the exponential function, and Eq. 4.2
supplies a relation for f2(t) = d(t) = A sin(ω t), leading to the following
expression for the temperature wave inside the soil layer:

T (x, t)− T∞ = A

t∫
0

g(t− v, x/a) sin(ω v) dv. (4.13)
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Since only a steady-state behavior is sought, any transients are ignored such that
the lower bound of the convolution integral can be replaced by −∞.

This integral can be evaluated best by converting it into a dimensionless form by
introducing the substitutions: q = ω t, u = ω v, and c2 = ω δ2. Then, the integral
takes the form

A

q∫
−∞

1√
4π c2

exp
(
− 1

4 (q−u)/c2

)
[(q − u)/c2]3/2

sin(u) du. (4.14)

We now proceed to manipulate this dimensionless version. First, let us rearrange the
integration limits by the substitution r = q−u, allowing the integral to be rewritten

A

+∞∫
0

1

2c2
√
π

exp
(
− 1

4 r/c2

)
(r/c2)3/2

sin(q − r) dr. (4.15)

Next, it will be advantageous to introduce yet another new integration variable,
m = r/c2, dm = dr/c2, such that the integral can be rewritten

A

+∞∫
0

1

2
√
π

exp
(
− 1

4m

)
m3/2

sin(q − c2m) dm. (4.16)

In this form the sine can be expanded, using

sin(q − c2m) = sin(q) cos(c2m)− cos(q) sin(c2m),

such that terms in q can be factored out of the integral, leaving 2 simplified integrals
of m, that evaluate as

∞∫
0

1

2
√
π

exp
(
− 1

4m

)
m3/2

cos(c2m) dm = e−c/
√

2 cos(c/
√

2); (4.18)

∞∫
0

1

2
√
π

exp
(
− 1

4m

)
m3/2

sin(c2m) dm = e−c/
√

2 sin(c/
√

2). (4.19)

Converting these results back into the original variables used, the periodic solution
for the sinusoidal-temperature wave is written

T (x, t) = Ae−x/∆ sin (ωt− x/∆) + T∞, (4.20)

where we introduce a new characteristic penetration depth, ∆ =
√

2κ/ω, associated
with a wave of frequency ω and soil thermal diffusivity κ.
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Such a wave exhibits an increasing phase delay between the amplitude function at

a depth x > 0 and the phase at the surface, and rapidly diminishing magnitude.

The shape of the vertical temperature profile can also be used to evaluate the

ground heat-flux, G, for this simple model, as well. At any soil depth, x, G may

be calculated as

G = −κCs
dT

dx
, (4.21)

where Cs is the soil heat-capacity (J/m3/K). The G thus has the dimensions of a

flux (W/m2). Computing this flux based on the vertical temperature gradient of the

sinusoidal-temperature model at the ground surface (x = 0), we obtain

G(t) = −κCs
dT (x = 0, t)

dx
. (4.22)

After some math, the vertical gradient of the temperature at the surface (x = 0) can

be computed as
dT (x = 0, t)

dx
= −
√

2A

∆
sin

(
ω t+

π

4

)
. (4.23)

The ground heat-flux can thus be written

G(t) =
κCs
√

2A

∆
sin

(
ω t+

π

4

)
= CsA

√
ω κ sin

(
ω t+

π

4

)
, (4.24)

where the lead constant product carries the dimensions of a flux (W/m2). The

quantity
√
ω κ has the dimensions of a velocity (m/s). Higher-frequency waves thus

penetrate into the soil layer more quickly, but because ∆ is smaller, their effect is

limited compared to the lower-frequency diurnal wave and even lower-frequency

seasonal and yearly waves.

4.3 Fourier Analysis of a Diurnal Response
The results of the previous section are next generalized by expanding the periodic

surface-boundary-condition temperature result of the previous section into a more

complicated multi-frequency result based on a Fourier series decomposition of the

24-hr diurnal temperature behavior:

T (0, t) =
n∑
1

An cos
[
2πn t

τ

]
+

n∑
1

Bn sin
[
2πn t

τ

]
+ T∞. (4.25)
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Again, τ is the 24-hr diurnal cycle period used by the model. The resulting

temperature profile can be written based on the results of the previous section:

T (x, t) = T∞ +
n∑
1

An e
−x/∆n cos

[
2πn t

τ
− x

∆n

]

+
n∑
1

Bn e
−x/∆n sin

[
2πn t

τ
− x

∆n

]
. (4.26)

Here, the penetration depths, ∆n, of each component wave of frequency ωn = nω1

are expressed as

∆n =

√
2κ

ω
=

√
κ τ

π n
=

∆1√
n
,

where ∆1 =
√
κ τ/π is the basic depth.

To obtain the ground heat-flux we can extend the results obtained for the single

sinusoidal-boundary component in Eqs. 4.23 and 4.24. Note first that in general the

single-wave component will have a gradient at any point within the volume given

by
dTn(x, t)

dx
= −An

∆n

e−x/∆n [sin(ωt− x/∆n) + cos(ωt− x/∆n)]

= −
√

2An
∆n

e−x/∆n sin
(
ωt− x/∆n +

2π

8

)
. (4.27)

At the surface, the flux for this component equals

Gn(t) = AnCs
κ
√

2

∆n

sin
(
ωnt+

π

4

)
= AnCs

√
κωn sin

(
ωnt+

2π

8

)
. (4.28)

The peak heat flux thus always occurs 1/8th of a cycle prior to the time of the peak

temperature. We will also be able to combine terms to produce a series of quantities

Vn =
√
κωn with dimensions of velocity (m/s or cm/s). These denote the velocity

of penetration of heat associated with a given frequency of thermal fluctuation.

Higher-frequency terms travel faster into the soil, but not as far as lower-frequency

waves.

Consider, for example, the behavior of this lowest-order diurnal term, consisting of

ω1 = 2π/τ , with τ = 86, 400 s. For dry soils the soil thermal diffusivity is typically

of the order κ = 0.2 × 10−6 m2/s, yielding V1 = 3.8µm/s, and ∆1 = 7.42 cm.

Velocity V1 equates to a speed of 1.37 cm/hr. This depth value appears typical of

diurnal thermal waves of the order of several centimeters.
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In contrast, a fluctuation with a period of 5 min has a wave velocity of 64.7 µm/s

(significantly faster), but affects a layer whose depth is only approximately 4.4 mm.

Returning to the general expression for the soil temperature, the derivative of the

complete temperature-profile function may be written in the form,

G(t) = Cs
N∑
n

[
An Vn cos

(
ωnt+

2π

8

)
+Bn Vn sin

(
ωnt+

2π

8

)]
. (4.29)

While we have focused on the nature of the diurnal wave given a boundary condition

of a temperature, if, instead, we have been given a system of energy fluxes at the

surface, we could equally well begin by solving for the equivalent ground heat-

flux necessary to bring the energy equation into balance using Eq. 4.29 to solve for

coefficients An and Bn, thereby determining the surface temperature.

Since the ground heat-flux reacts to temperature changes at the ground, and involves

an energy-storage mechanism, the ground acts much like a capacitor in an electrical

circuit, except that (unlike a capacitor) as heat is introduced into the ground (mainly

due to solar irradiance) the sensible heat-flux and ground thermal-radiative-flux

tend to oppose this heat transfer. Nonetheless, because of this storage capacity,

it would appear that by iteratively updating the ground heat-flux, and thereby the

surface temperature, one could solve iteratively for the ground temperature until the

energy-budget equation relaxes to a solution.

4.4 Conclusions and Observations
This new ground-heat-flux calculation method may be described as a Periodic

Ground-Heat-Flux Model for a Semi-Infinite Uniform Medium. The importance

of the ground heat-flux is usually not significant when considering only daytime

effects, since solar radiation is usually so dominant during daylight hours. However,

for longer-term modeling and especially for nighttime situations, the energy stored

in the soil becomes important as other fluxes grow in significance after dark or

around the time of the neutral event.

As an interesting observation based on the foregoing analysis, one might ask this:

What is the typical time of day when the air temperature near the ground reaches a

maximum? Presumably, this is connected to the time when the ground temperature

reaches its maximum. From the +2π/8 term appearing in the argument of the
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ground-heat-flux equation, one can see that if the main thermal flux stimulates the

lowest frequency, ω1, of the diurnal heat wave, the peak ground heat-flux will occur

around solar noon, but the peak temperature will be one-eighth cycle or 3 hours

later, equating to approximately 3 PM standard time. Since most of the United

States uses daylight savings time most of the year, particularly during summer,

this time adjustment indicates the local high temperature should occur around

4 PM (daylight savings time). This behavior is commonly observed under clear-

sky conditions.

One might similarly consider the impact of this equation on an annual temperature

wave. Peak heating in the Northern Hemisphere should occur on the summer

solstice, but the peak temperature should then occur around 365/8 days later, or

around August 6 in the Northern Hemisphere. The statistically coldest day of

the year would then occur approximately 46 days after the winter solstice, or on

approximately February 5 in the Northern Hemisphere. It is interesting that even

while not knowing this rule, the days of summer were chosen to be centered±1/8th

of the year about the peak summer temperature and minimum winter temperature.
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5. Effects of Vegetation on Convective Surface Fluxes
In this chapter, we begin to consider updated models of the various flux components

constituting the surface energy budget. These fluxes fall into radiative, convective,

and conductive categories. In this chapter we consider the 2 convective fluxes, the

sensible heat flux and the latent heat flux, which is due to surface evaporation or dew

formation and evapo-transpiration from plant surfaces. The present chapter follows

the development of these fluxes based on prior work (Tofsted 1993).

5.1 General Discussion
The general theory commonly used to model convective fluxes at the earth’s

surface is typically based on the flux-profile method (Dyer 1974), or (which is the

same thing) similarity theory. Similarity theory implies there are similarities that

exist in the atmospheric properties of all conservative passive additive properties

contained in the air flowing within the surface-layer atmosphere. We have already

discussed the meaning of this concept in Chapter 1. Here, this concept is applied

as we model the fluxes of sensible heat (essentially, the conservative property

of temperature) and latent heat (conserved moisture) to and from the surface.

According to similarity theory the functional forms of equations describing these

fluxes should be similar in nature.

Obukhov (1946) was the first to propose that there should be similar shapes to

vertical profiles of temperature, humidity, and wind speed above a surface based

on parameterized relations. He developed the concept of the friction velocity, u∗,

to parameterize the wind speed. Similarly, he identified a parameter termed the

scaling temperature, T∗, to characterize the vertical temperature profile’s shape

and introduced a length scale, here called simply the Obukhov length, LOb, to

characterize the curvatures of such profiles.

Let us begin by defining the 2 quantities we wish to discuss here: The sensible heat

flux is denoted as HS . The latent heat flux is denoted by HL. Both of these might

be related to more basic fluxes of temperature, FT , and water vapor, FQ, such that

(Stull 1988),

HS = ρaCp FT , HL = ρa Lv FQ. (5.1)

Here the sensible heat is obtained by multiplying FT = u∗ T∗ = 〈w′ T ′〉 [K-m/s],

by air density, ρa, and is proportional to the specific heat at constant pressure, Cp
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(Eq. 2.20), while the latent heat flux relies on FQ = u∗Q∗ = 〈w′Q′〉 [m/s], where

Q is a relative amount of water vapor present per unit quantity of total moist air

(g/g). Thus, the air density, ρa, can be removed from the water vapor to produce an

equation form that is similar to that of the sensible heat, but with the introduction

of the quantity Lv, the latent heat of vaporization (e.g., Lv = 2, 465 J/g at 15◦ C)

(Oke 1978), that scales the amount of water vapor released into a net energy flux.

In both cases the net flux arising from the composite surface depends on the

temperature(s) of the surface(s) involved; warmer surfaces feature higher saturation

vapor pressure and therefore are more effective at carrying water away from the

surface. However, moisture fluxes also depend on the availability of water at the

surface where evaporation is evaluated.

A common variable is the Bowen ratio,

β =
HS

HL

= Γ
FT
FQ

, (5.2)

where Γ = Cp/Lv is the psychrometric constant. Stull (1988) mentions that β

ranges from 5 over semiarid regions to 0.5 over grasslands to 0.2 over irrigated

fields to even negative values over desert oases. However, he concludes: “Attempts

to use this approach have mostly failed, because the Bowen ratio usually varies with

time and weather over each site.” I.e., assigning a β value a priori is not effective.

Plants, in order to survive, carefully control their water resources by controlling

stomatal entryways that exchange moisture and CO2 with the outside air. The

degree of difficulty of passage of moisture through the surface of plants is

termed the stomatal resistance. Under high-humidity conditions this resistance

tends to be low. Conversely, under low-humidity conditions this resistance can

be high and extremely high for desert-type plants. Or, as Stull remarks, “[T]he

evapotranspiration component of the latent heat flux from plants is a complex

function of the age, health, temperature and water stress of the plant.”

This is, in fact, a serious enough problem that neither Stull nor Hoffert and Storch

(1979) attempt to suggest complete equations for the latent heat fluxes to include

plant stomatal resistance. Perhaps it is a matter of going “where angels fear to

tread,” but Deardorff (1978) did suggest equations, and for that purpose we use

his results.
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It should also be pointed out that the current model takes a somewhat more

relaxed view of humidity-flux calculations. In Tofsted (1993) it was assumed the

computation of the surface fluxes could be dominated by humidity effects. However,

in many locales where turbulence dominates, moisture availability can be very low.

Also, in terms of a diurnal model, to have a periodic condition it is important to not

permit discontinuities in the fluxes or model parameters. Allowing the soil layer to

vary significantly in moisture content over the diurnal cycle would disrupt such a

model, particularly if a reset event were to occur every 24 hr. Hence, the approach

taken is to simply set the user’s choice of moisture level at the beginning of the

model scenario and leave this value constant throughout the model run. In this way,

the effects of different moisture levels can be studied without permitting the soil to

dry over a multiday period.

Also in the previous study, 2 distinct soil-moisture parameters were used: a

near-surface soil moisture, wg, and a deeper surface moisture, w2. However, the

measurement of such parameters becomes problematic; further, the modeling of

the effects of these and/or benchmarking their effects independently also becomes

problematic. Therefore, only a single soil-moisture value is employed. This value

is constant throughout any given model run, and may be thought to correspond

to the wg parameter associated with the top 10 cm of soil. This is also consistent

with the new model’s focus on a new method for computing the ground heat-flux

discussed in Chapter 4. There, the soil thermal properties are considered constant

over the model calculation period as well as constant with depth into the soil. This

is consistent with keeping wg constant throughout the model runs.

Therefore, it is hoped the reader recognizes the sensible-heat-flux calculation is

somewhat simpler to formulate than the latent heat-flux. We therefore will begin by

describing the sensible-heat-flux case and, once that effect has been described in

detail, treat the latent heat-flux in approximately the same level of detail.

5.2 Sensible Heat Flux Calculation for a Vegetated Surface
Let us begin this section with a brief review of the material presented in Chapter 2.

In that previous discussion the main point was that the sensible heat flux is closely

connected with the analysis of the friction velocity, u∗, the scaling temperature,

T∗, and the Obukhov length, LOb. However, we also discussed the fact that these

parameters, while easily computed from modern rapid-sampling sonic-anemometer
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devices, are badly poised to be computed from normal wind and temperature

measurements. We then introduced a substitute relation for the sensible heat flux

based on an air temperature, TZ , a surface layer aggregate temperature, TS , and a

wind speed, uZ , at the same height as the air temperature as Eq. 2.19:

HS = ρaCp cH(z)uZ (TS − TZ) = ρaCp
(TS − TZ)

rH(z)
. (5.3)

Now, rH(z) is a height-dependent function of the wind speed uZ and the current

stability condition. And, this function is the main focus of attention in this section.

We also introduced a definition for the surface-layer temperature being a composite

of the surface temperature of the ground, Tg, and the foliage, Tf , in Eq. 2.22.

Deardorff (1978) appears to have correctly adduced that because the foliage cover

generally presents a much greater surface area than the underlying surface, that the

sensible heat flux from the foliage should be much greater than that of the ground.

However, Deardorff’s formulation was somewhat flawed in that it could result in

much higher heat fluxes from the foliage than would be reasonable to assume, given

the remaining terms in the energy budget. That is, Deardorff failed to consider the

carrying capacity of the air. Simply because there is 7.0 times the surface area does

not mean the air is capable of absorbing 7.0 times the energy. Rather, the air’s

carrying capacity is fixed, but the mix of how much of that capacity is reflective of

the soil temperature and how much is reflective of the foliage temperature is what is

in question. Hence, we use Eq. 2.22 for describing the effective surface temperature.

But, once the effective surface temperature is known via Eqs. 2.21 and 2.22, there

is still an element to consider — the flux-resistance factor, rH . Here, it will be

recalled that although we compute the surface aggregate temperature as a mixture

of the ground and foliage leaf temperatures, the position at which the temperature

profile intercepts this actual temperature cannot be the top surface of the foliage, or

the actual, exact surface height of z = 0. Figure 9 illustrates this same problem, but

in relation to the height at which the wind-speed profile becomes zero. This height

is adjusted relative to the height above the surface, z, according to 2 corrections.

The first correction is the surface-roughness length, z0. For a flat surface with no

vegetation the wind-speed profile will become zero at z = z0. However, for foliated

surfaces the leaf surfaces are typically elevated some distance above the ground,

such that the projected zero wind-speed height occurs at z0 +D, where D is termed

the displacement height (e.g., Stull 1988, sec. 9.7.3).
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Fig. 9 Foliated layer’s displacement-height and roughness-length offsets

The roughness height therefore influences the curvature of the wind profile, but the

profile itself is also displaced.

Further complicating this situation is the fact that the height at which the

temperature profile appears to intercept the surface layer’s aggregate temperature,

TS , occurs at a different offset height than z0, or D, or D + z0. The effect of

this height difference must be accounted for in the flux calculation. Otherwise,

one could simply derive a method for computing T∗ based on height z, computed

temperature TS , and z0 directly from Eq. 2.12. This would include an iterative

computation of LOb, u∗, and T∗. Instead, due to these offsets, T∗ can only be

evaluated after estimating HS , as influenced by a surface-resistance factor rH (or

u cH) that reflects these offsets.

Stull recommends determining the value of D by studying a measured wind profile.

This would require at least 3 wind sensors to determine the mean, vertical gradient,

and curvature of the profile. In lieu of such available data, using Eqs. 2.21 and 2.22,

the following approximations are considered:

z0F ≈ 0.13 zF ; z0G ≈ 0.13 zG. (5.4)

DF ≈ 0.70 zF ; DG ≈ 0.70 zG. (5.5)

Here, Frank Hansen’s1 recommendation was to estimate the roughness length z0 as

approximately 13% of the height of the typical roughness element. But instead of

seeking a single, composite roughness length or displacement height, it is observed
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that the wind profile never reaches zero at the base of the vegetation. Rather, a
portion of the wind remains beneath the vegetation and only reaches zero at the
surface. Hence, the profile is characterized twice, once for the wind curtailed by the
foliage and a second time for the wind affected by the soil surface.

The resulting height of the zero wind-speed level from the foliage perspective is
approximately 0.83 zF for a fully vegetated surface. This result is consistent with
Stull’s data (1988, Fig. 9.7). Both sets are scaled in the same manner to account
for the impact of surface irregularities (where zG represents the top height of rocks,
uneven ground, etc., and where zF represents the tops of trees, shrubs, etc.).

The displacement height’s importance is that one cannot correctly evaluate the
friction velocity u∗ from Eq. 2.11 unless the height z is first adjusted according
to the displacement height in the modified form,

uZ =
u∗
k

[
ln
(
z −D
z0

)
− ψ1

(
z −D
LOb

)]
. (5.6)

A similar expression applies when evaluating the scaling temperature T∗. We shall
expand on this result, but only after considering the temperature profiles for barren
soil and foliated surfaces.

A further height adjustment is required to evaluate rH due to fine scale differences
between the zero height of the wind versus the temperature. To do so, the research
findings of Kunkel and Walters (1983), hereafter KW-83, and Thom (1972),
hereafter T-72, have been investigated. The KW-83 paper examined sensible heat-
flux measurements obtained under barren soil conditions at White Sands Missile
Range, based on measurements at the High Energy Laser Systems Test Facility
then under development. Conversely, the T-72 analysis was performed for heavily
vegetated crop surfaces. These 2 research efforts produced surprisingly similar
offsets expressed as C uα∗ , where α was 0.333 for T-72 and 0.450 for KW-83.

5.3 Barren Soil’s Resistance Factor
At this point a distinction should be made between the present method and that
of Deardorff. While Deardorff’s model included a number of interesting features
involving various researchers’ findings, his development of the sensible heat flux
made an incorrect assumption.

Fluxes of sensible and latent heat are driven by bouyant and forced mixing of
turbulence elements of different sizes. The general term “eddy” is used to describe
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such elements. Klipp (2014) has shown that these fluxes are largely driven by the

largest turbulence elements that are not isotropic. Isotropic turbulence tends to have

no correlations between its components and therefore is inappropriate for carrying

off momentum or energy where biases are required.

Many simplified models have been developed to approximate these fluxes, of which

Deardorff’s model was typical. Deardorff used a simplified approximation where

he introduced one heat-exchange-rate coefficient, cH , for all daytime (unstable

atmospheric state) calculations, and a second exchange rate for stable (nighttime)

cases. Deardorff also attempted to include the effects of a foliated layer. Knowing

the expected heat flux from a nonfoliated surface, however, he simply assumed that

a heavily foliated surface would transferNF times as much heat as the flat surface in

a linear scaling. As a result, sensible heat-fluxes of up to 700 W/m2 were computed

based on this model, results that were completely erroneous.

In contrast, others (e.g., Hoffert and Storch 1979) have attempted to invoke the

direct use of Eqs. 2.11 and 2.12 (or their equivalents) directly, without adjusting

for the difference in height between the temperature and wind-speed zero-height

levels. Even considering Thom’s analysis versus Kunkel–Walters, one must also

interpolate results between barren and foliated terrain types.

Fortunately, when this work began in 1983, we inherited Ken Kunkel’s

implementation of Deardorff’s paper, in which Ken had already implemented his

adjustment to account for the barren-soil conditions. Then, over the next few years,

Thom’s work was first uncovered and subsequently included as an extension of

KW-83 to treat foliated surfaces.

To discuss this development, let us first examine Kunkel and Walters’ method for

barren soils. Kunkel and Walters adopted Deardorff’s basic form for expressing the

sensible heat flux as a function of a temperature difference, the mean wind-speed

uZ , and a variable cH parameter:

HSKW = ρaCP cH uZ (TS − TZ). (5.7)

Using the nomenclature developed here, Kunkel–Walters’ cH appears as

cH =
0.74−1 k2[

ln
(
z−DG

z0G

)
− ψ1

(
z−DG

LOb

)] [
ln
(
z−DG

z0G

)
− ψ2

(
z−DG

LOb

)
+ kX

0.74

] . (5.8)
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This form is modified by k X/0.74 from the form that would be obtained by simply

using Eqs. 2.11 and 2.12 to solve for cH , where the ψ1 and ψ2 functions are

those appearing in Eqs. 2.11 through 2.17. The adjustment term k X/0.74 appears

related to the offset height of the effective zero-temperature plane. The use of the

parameter DG emphasizes that the displacement height involved here is that of a

barren surface.

According to Kunkel and Walters, X was derived from the bluff-body form of

Garratt and Hicks (1973), and ψ1 and ψ2 are the diabatic-influence functions

described in Chapter 2. This method parameterized a laminar sublayer to handle

the barren surface. The variable k is again von Kármán’s constant (approximately

0.4 for rough surfaces); z is the height above the surface; and z0G is the bare-ground

roughness length. Note that KW-83 did not consider a displacement height because

the flat ground and lack of vegetation did not require the consideration of one. But

the use of DG suggests that the soil offset will need to be distinguished from that

associated with the vegetation, as does the use of u∗G suggest that the drag effects

of the soil will be different from those of the foliage.

Kunkel and Walters defined X as

X = [0.37 (30u∗G z0G/ν)0.45 Pr0.8], (5.9)

where ν = µ/ρa is the kinematic viscosity, which we have already encountered just

prior to Eqs. 1.1 and 1.2; and Pr is the Prandtl number (0.72 in our atmosphere).

Simplifying, k X can be expressed as

k X = 0.5258 (u∗G z0G/ν)0.45. (5.10)

One may then consider how this compares with the resistance technique:

cH u ≈ 1/rH(z), . (5.11)

Multiplying cH by u, Eq. 2.11 can be used to collapse a portion of the cH expression

into u∗. What remains is a denominator associated with the T∗ equation plus the

adjustment factor k X:

cH u =
k u∗G

0.74
[
ln
(
z−DG

z0G

)
− ψ2

(
z−DG

LOb

)
+ 0.71 (u∗G z0G/ν)0.45

] . (5.12)
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Since u∗, z0, and ν are all positively valued and independent of the stability
condition, the surface resistance to heat flux will be greater than that predicted
by the basic theory based on Eqs. 2.11 and 2.12. This suggests that the interface
height for the barren soil is lower than the corresponding zero-wind condition’s
extrapolated height — for if the height were greater it would mean the resistance
was less, not greater; any positive contribution in the denominator equates to a
greater resistance.

5.4 Vegetated Terrain’s Resistance Factor
Thom’s (1972) resistance model yields much the same conclusion as for the barren-
soil condition. In his paper, Thom characterized the aerodynamic resistance to the
flux of property P , calling it rP . This is the resistance encountered at a rough
surface that generally exceeds the resistance to momentum flux (rM ), just as for
the previous barren-soil case. Thom expressed this difference in a nondimensional
form using the parameter B−1

P , given by

B−1
P = u∗ [rP (z)− rM(z)] . (5.13)

This resistance method treated the property fluxes of heat, momentum, and
humidity much like currents (I) in electrical circuits. Temperature, humidity, and
kinetic-energy differentials between a material property of the air measured at
station height zS and a similar property measured at the surface are analogous to
potential differences (V ), such that the resistance terms (r) parameterize the fluxes.

Thom quantized the baseline atmospheric resistance (resistance to momentum flux)
as

rM(z) =
u(z)

u2
∗
. (5.14)

This is obvious since ρa u
2
∗ is just equal to the total vertical flux of horizontal

momentum (Stull 1988, 67). The corresponding flux relation for momentum based
on the resistance model of Eq. 5.3 would be

FM = ρa
(0− u(z))

rM(z)
= −ρa u2

∗. (5.15)

Both ρa and u∗ are positive definite. Therefore, FM is a downward-directed flux of
momentum to the surface.

Thom’s equation for a general property flux uses rP written as

rP (z) =
1

u∗

∣∣∣∣∣χz − χsχ∗

∣∣∣∣∣
χ←P

. (5.16)
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In the case of sensible heat (temperature), χz is the temperature at height z (i.e.,

TZ); χs is the surface value of the parameter, in this foliated case, TF = TS , the

effective mean aggregate surface temperature of the leaves; and χ∗ is the scaling

value of the given parameter. In this case, χ∗ becomes the scaling temperature, T∗.

Hence,

rH(z) =
1

u∗

∣∣∣∣TZ − TST∗

∣∣∣∣ . (5.17.A)

From the definition of T∗ in Eq. 2.12, the ratio inside this equation’s absolute-value

operator is always positive. We therefore remove this symbol:

rH(z) =
TZ − TS
u∗ T∗

−→ 1

rH(z)
=

u∗ T∗
TZ − TS

. (5.17.B)

The nondimensionalized excess resistance to heat (B−1
H in an analog of Eq. 5.13)

can then be written using Eqs. 5.14 and 5.17.B as,

B−1
H = u∗ [rH(z)− rM(z)] =

TZ − TS
T∗

− u(z)

u∗
; (5.18.A)

from which,
TZ − TS
T∗

= B−1
H +

u(z)

u∗
; (5.18.B)

T∗
TZ − TS

=
u∗

B−1
H u∗ + u(z)

. (5.18.C)

Thom then completes his analysis by supplying an explicit form for B−1
H :

B−1
H = 1.35 (u′∗)

1/3, (5.19)

which is explicitly dependent on his choice of dimensions of cm/s for his friction

velocity, u′∗. Translating this result into the model dimensions of m/s,

B−1
H = 6.27u1/3

∗ . (5.20)

However, Thom also based his model on a bluff-body analysis and obtained the

above relation assuming ν = 0.15 cm2/s and z0 = 7 cm for the bean crop he

studied. Thom’s result can thus be cast into the same framework as Kunkel–Walters’

by using his result that a typical u′∗ = 25 cm/s produces a B−1
H of 4.0. From this

result, and using the conditions cited, one obtains the rule,

B−1
H = 0.38 (u∗ z0/ν)1/3. (5.21)
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Combining this new relation with Eqs. 5.17.B and 5.18.C, the transfer-coefficient
product becomes

cH uF ≈
1

rH(z)
=

u∗F T∗
TZ − TS

=
u2
∗F

uF + 0.38u∗F (u∗F z0F/ν)1/3

=
k u∗

k uF/u∗F + k × 0.38 (u∗F z0F/ν)1/3
. (5.22)

For a rough surface k ≈ 0.40 is used to evaluate the lead constant in the
denominator’s perturbation term, yielding

cH uF =
k u∗F{

ln
[

(z−DF )
z0F

]
− ψ1

[
(z−DF )
LOb

]
+ 0.15 (u∗F z0F/ν)1/3

} , (5.23)

where the roughness length and displacement height used are those consistent with
a fully foliaged layer. Yet the use of z0F , u∗F , and DF indicates we will need to
consider separate parameters from those used to describe the bare-ground case.

5.5 Transfer Efficiency for Intermediate Cases
The previous 2 sections considered the separate effects of bare soil and a foliage
layer’s influence on sensible heat. Similar results were obtained for the 2 analyses.
For comparison purposes both of these results are reproduced here:

cHG u =
0.74−1 k u∗G{

ln
[

(z−DG)
z0G

]
− ψ2

[
(z−DG)
LOb

]
+ 0.71 (u∗G z0G/ν)0.45

} ; (5.12)

cHF u =
k u∗F{

ln
[

(z−DF )
z0F

]
− ψ1

[
(z−DF )
LOb

]
+ 0.15 (u∗F z0F/ν)0.33

} . (5.23)

Both feature similar adjustment terms in the denominator. The first offsets adjust
the log-altitude ln(z/z0) profile shapes by diabatic-influence functions (ψ1 and ψ2).
Thom bases his correction on the wind-profile function ψ1, while Kunkel–Walters
based theirs on the thermal term involving ψ2. Both also included similar intercept
height adjustments based on fractal-power functions of friction-velocity variables.

Even after accepting both of these results as correct in the limit, applying Thom’s
solution to conditions involving fully foliated surfaces, and implementing Kunkel-
Walters’ analysis of barren-soil conditions, an interpolation rule still is needed
under intermediate conditions (0 < σF < 1). Complicating this task is the means of
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subdividing the wind effects on the 2, since changing the surface-roughness length,

z0, impacts the values of the very parameters, u∗, LOb, and T∗ (particularly u∗), that

drive the resistance calculations.

Previously, in Tofsted (1993), the sensible heat flux was parsed by weighing the

average surface-interface temperature, used when evaluating the sensible heat flux,

by the relative areas of exposed ground and foliage surfaces, as in the example of

Eq. 2.22. However, this method assumed that the same wind ventilated both the soil

and plant surfaces. Here, a different paradigm is invoked where, instead of parsing

the temperature, we parse the wind that ventilates the surface interface based on the

wind-speed profile as illustrated by Thom (1972, Fig. 1).

The wind-speed profile shown in Thom’s figure is similar to that of Fig. 8 above,

except instead of the speed becoming zero inside the foliage canopy, a remnant

of wind remains beneath the canopy that becomes zero only at height z0G + DG.

This suggests the wind speed can be divided into a portion that influences only the

foliage fluxes and another part that influences only fluxes at the ground surface. The

wind-speed equation then is written as, uZ = uZG + uZF , or in expanded form as,

uZ =
u∗G
k

[
ln
(
Z −DG

z0G

)
− ψ1

(
Z

LOb

)]

+
u∗F
k

[
ln
(
Z −DF

z0F

)
− ψ1

(
Z

LOb

)]
, (5.24)

at heights Z significantly above the surface interface (Z > 2hF , 2hG).

In most cases, for substantial vegetation, the foliage layer will absorb the bulk of the

wind’s momentum, leaving a reduced wind profile beneath the canopy. Below the

canopy, the wind profile should reflect the influence of the ground and its roughness

parameter.

The main factor in this approach to be resolved is the relative values of uZG
and uZF , or, equivalently, u∗G and u∗F . Previously, a weighted average was

computed based on the relative areas of barren ground (1) versus leaf-surface area

(Nf = σf Υf ). This appears approximately correct, but instead of applying it to

the temperature, in this case it is applied to the wind. Still, some factors could be

better resolved by comparison with measurements for different terrain/vegetation

combinations. That is, while the ground is considered flat, and given a weighting of

unity, depending on its roughness (z0G), a unit area of bare ground may create more

69



drag than the same area of relatively smooth leaves. But since the leaves present
different angles of attack to the incident wind, they may present more or less drag
than the surface. Nevertheless, the model used will be to subdivide the available
wind based on the relative area:

WG =
1

1 +Nf

; WF =
Nf

1 +Nf

. (5.25)

This relative-area concept will then distribute the available drag effects according
to proportional amounts of the momentum being transferred to the surface via the 2
component friction velocities:

u∗G = WG u∗; u∗F = WF u∗. (5.26)

Each wind component is then modeled as exhibiting its own wind profile, consistent
with the surface it interacts with. For example, the wind interacting with the soil is
modeled as only experiencing drag effects due to the ground (parameterized by a
separate ground roughness length z0G).

Here, the 10% adjustment of the leaf index Nf to account for twigs and branches is
dropped to ensure that the results obtained for the sensible heat flux are consistent
with calculations made for the latent heat flux.

Subdividing the wind effect rather than the temperature influence allows the
efficiency coefficients for the ground and foliage to be applied separately in
resolving the impact of each of the 2 influences. Thus, one can define:

cHG(Z) =
0.74−1 k u∗G/uZG{

ln
[

(Z−DG)
z0G

]
− ψ2

[
(Z−DG)
LOb

]
+ 0.71

(
u∗G z0G

ν

)0.45
} ; (5.27.A)

cHF (Z) =
k u∗F/uZF{

ln
[

(Z−DF )
z0F

]
− ψ1

[
(Z−DF )
LOb

]
+ 0.15

(
u∗F z0F

ν

)0.33
} . (5.27.B)

The net sensible heat flux can then be written as HSg +HSf in the form,

HS = ρaCp
[
cHF (Z)uZF (TF − TZ) + cHG(Z)uZG (TG − TZ)

]
. (5.28)

By performing the parsing of the drag effects on the wind via the u∗ variable, we
can still write that HS ∝ u∗ T∗. This allows T∗ to be evaluated from HS , and we
may iterate on the values of LOb, u∗, and HS (T∗).
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In the program these relations are simplified through the use of the constants

AHg = ρaCp cHG(Z)uZG, (5.29.A)

AHf = ρaCp cHF (Z)uZF , (5.29.B)

such that,

HSg = AHg (TG − TZ), (5.30.A)

HSf = AHf (TF − TZ). (5.30.B)

In a similar manner, individual latent heat fluxes from ground and foliage are found

in the next section.

5.6 Latent Heat Flux for Foliated-Terrain Conditions
Based on the results obtained for the sensible heat-flux for vegetated-terrain

conditions, it is now possible to expand on these results to solve for the latent heat-

flux for vegetated-terrain conditions. In doing so, we follow a modified version of

the method Deardorff developed for the latent heat flux. In Deardorff’s approach to

the moisture flux — unlike the sensible heat flux that just depended on temperature

— not every surface need be moist. Therefore, the fraction of a surface that is

susceptible to evaporation must be moist initially. Parameters are used to designate

the degree of moisture availability on both ground and vegetation surface. Variables

r′′ and α′ characterize fractional moisture availabilities of foliage and bare ground

surfaces, respectively. The weighted mean fraction of the surface susceptible to

evaporation was modeled through use of the parameter,

A′ =
α′ + r′′Nf

(1 +Nf )
, (5.31)

in Tofsted (1993). The terms α′ and r′′ are based on Deardorff (1978), given as,

α′ = (1− δc) + min(1, wg/wK) δc, (5.32.A)

r′′ = 1− δc [rs/(rs + ra)] [1− (wdew/wdmax)
2/3], (5.32.B)

δc =

{
1, evaporation is occurring,
0, condensation is occurring,

(5.32.C)

where wg is the fractional moisture of the ground (by volume); wK is the fraction

of moisture the ground contains when it behaves as if it is saturated; rs is the
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stomatal resistance; ra is the atmospheric resistance; wdew is the mass of dew on
the foliage per square meter of ground surface area (normally zero during the day);
and wdmax is the maximum dew accumulation per square meter of ground before
runoff to the ground will occur. Further equations for rs, ra, and wdmax can be
found in Deardorff (1978). These equations depend on the foliage type, wilt factors,
mean incident sunlight, and other coupling factors that will not be explained here.
The controlling parameters are generated in the model, and no justification for
the validity of Deardorff’s approach will be presented. Note that evaporation is
considered to be occurring if Qsat(TG) > QZ (i.e., when the specific humidity of
saturated air at the ground temperature exceeds the specific humidity of air at the
station height) or Qsat(TF ) > QZ , depending on whether the ground or foliage
surfaces are being considered.

Using a flux-equation form similar to that in Paulson (1970), the total latent heat
flux is described by the equation,

HL = Lv E = −ρa LvQ∗ u∗, (5.33)

where E is the evaporative flux (kg of water per square meter of underlying surface
per second), and Q∗ is defined in the same sense as T∗ in Eq. 2.8, in that a negative
Q∗ is indicative of heat leaving the surface interface and entering the surface-layer
air.

This equation can also be expressed in efficiency-coefficient and resistance-method
forms as

HL = Lv E = ρa Lv cQ uZ (QS −QZ) = ρa Lv
(QS −QZ)

rQ
, (5.34)

where rQ is the resistance to water-vapor flux, cQ is the efficiency of the water-vapor
flux, and QS is an equivalent surface-specific-humidity source term. This was the
approach taken in Tofsted (1993).

This approach is modified to account for the current parsing of the wind speed,
instead of the surface property, according to the relative drag effects of the surface
based on the properties of the foliage layer in accord with the sensible-heat-flux
calculation discussed above.

This is possible because of the general assumption that rQ = rH , reflecting the
similarity of all conservative-passive-additive transport processes. This calculation
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is even more simply stated than in Tofsted (1993), since the wind-speed parsing

becomes separated from the humidity-availability parsing necessary to determine

separate, equivalent QS values for the ground and foliage surfaces.

Given the above discussion, one can readily write

QG = α′Qsat(TG), QF = r′′Qsat(TF ). (5.35)

Essentially, these quantities represent saturation water-availability as represented

by the Qsat components, multiplied by relative-humidity parameters represented by

α′ and r′′. We then write, immediately, HL = HLg +HLf , such that,

HL = ρa Lv
[
cQF (Z)uZF (QF −QZ) + cQG(Z)uZG (QG −QZ)

]
. (5.36)

Here, using the property that both humidity and temperature may be considered

conservative-passive-additives, we may assume

cQF = cHF and cQG = cHG. (5.37)

This procedure allows for the same parsing of the wind into foliage and ground

components as was performed in the sensible-heat-flux case.
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6. Boundary-Layer Thermal Accounting
In this chapter a key deficiency of the Deardorff (1978) model is addressed. In
Chapter 5 the calculation of the sensible and latent heat fluxes focused on the
parsing of energy contributions to these fluxes between foliage and soil surfaces.
However, one aspect of these fluxes that was not emphasized was the issue of the
air temperature used, TZ .

The issue is this: In Deardorff’s model, the air temperature is simply considered
to be a given and not affected by energy fluxes to or from the surface interface.
Instead, the air temperature is typically updated based on measured data at some
height z above the surface. But this gives rise to 2 possible problems. First, what
if such data are simply unavailable? Second, what if the available data are not
properly synchronized with the surface-soil and surface-foliage temperatures? In
this case the measured air-temperature evolution could be out of phase with the
surface interface, producing false fluxes.

To produce a suitable air-temperature evolution, the air temperature in the surface
layer should lag the surface temperatures but should lead the reaction of the overall
boundary-layer temperature. To address these dynamics the flux-profile relations
governing the standard, vertical temperature structure are slightly modified to
produce profile shapes that appropriately connect the energy states of the boundary
and surface layers.

To do so we note that the general temperature profile within the boundary layer is
generally characterized by some type of adiabatic lapse-rate profile, using either the
moist adiabatic lapse rate of –6.4 K/km or the dry adiabatic lapse rate of –9.8 K/km.
By extrapolating these profiles to the ground an intercept point may be identified,
given by temperature TG that we shall use in characterizing the energy content of
the boundary-layer air. Beyond TG, the surface-layer atmosphere is characterized by
an extra amount of energy related to a height scale and the difference in temperature
between TG and the temperature at some characteristic height. In the previous
chapter this temperature was called TZ . Here, we shall substitute various variable
names to be more consistent with a height (Z) and temperature (T ) paradigm.

6.1 Vertical Temperature Profile Models
To begin, recall that in Eq. 5.28 we developed an expression for the sensible heat
flux being a combination of fluxes from the soil and foliage surfaces, HS . We
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also introduced a length scale termed the Obukhov length, LOb. In this chapter

that variable will be renamed as ZK , consistent with other height scales that will

likewise be labeled as Z-type variables.

Given that HS is known or can be calculated knowing TZ (TA in this chapter), we

write the Obukhov length as

ZK = − U3
∗ T

k g [HS/(ρaCp)]
. (6.1)

The Obukhov length is considered the dominant, vertical scaling length within the

surface layer according to the flux-profile theory. This characteristic vertical length-

scale approximately equals the height at which mechanical and buoyant effects are

balanced. Beyond |ZK | mechanical effects dominate. Using ZK , any function of

height within the surface layer can be written in a dimensionless form dependent

on the ratio ζ = z/ZK .

In particular, the vertical structures of wind speed and temperature are typically

written using a nondimensional function of height dependent on ζ . Paulson’s (1970)

nomenclature has been slightly altered to write vertical temperature and wind-speed

gradients in the forms,

φ1(z/ZK) =
kz

U∗

∂U

∂z
; (6.2)

φ2(z/ZK) =
kz

T∗

∂T

∂z
; (6.3)

where k is von Kármán’s constant (a dimensionless quantity set to 0.385), U∗ is

the friction velocity (m/s), and T∗ is the scaling temperature (K). The U∗ and T∗
parameters are defined based on their relations to the vertical sensible heat flux

(W/m2),

HS = −ρaCp U∗ T∗, (6.4)

where ρa is the air density (kg/m3) at the flux-calculation height and Cp is the

specific heat of air at constant pressure (Cp ≈ 1004.84 J/kg/K). We assume that

the sensible heat flux is a constant of the surface layer (it varies by approximately

10%, but we assume it constant), such that U∗ and T∗ are also constants of the layer.

We also of necessity must compute the flux at some height, call it zcalc. For

purposes of this chapter we identify this height with the height ZA at which the air

temperature equals TA. (And note that temperature and wind variables are actually
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expectation values, T = 〈T 〉, averaged such that fluctuations over several seconds,

corresponding to variations within the inertial subrange, are ignored.)

Integrating the above nondimensional gradient functions φ1 and φ2, one can

produce integrated vertical wind-speed and temperature profile functions involving

new nondimensional diabatic-influence functions ψ1 and ψ2:

U∗ =
k [UZ − U0]

ln(z/z0)− ψ1(z/ZK)
, (6.5)

T∗ =
k [TZ − TS]

ln(z/z0)− ψ2(z/ZK)
, (6.6)

where z0 is the surface-roughness length, some small fraction of the height, ZF , of

the average roughness element (Hansen1 recommended z0 ≈ 0.13ZF ), and TS is

the effective surface temperature.

To be consistent when using these forms, Eqs. 6.5 and 6.6 cannot be used to

determine HS , since HS is found using the flux model of Chapter 5. Instead, since

U0 = 0, and assuming UZ is known, ZK can be computed iteratively. Then, once

ZK is known, T∗ can be derived from HS and U∗, and Eq. 6.6 then provides an

estimate for

∆TZ = TZ − TS = TA − TS. (6.7)

Yet, notice that this analysis only yields ∆TZ , not TA and TS separately. But TA
is also necessary to evaluate the downward long-wave-radiation flux. And both TA
and TS are needed separately to account for energy contained in the surface layer.

Hence, we need at least one more equation to resolve TA. It will also become

clear that this formulation must be considered separately for different atmospheric-

stability conditions. Therefore, let us begin by considering the daytime diabatic-

heating case. (The nocturnal boundary-layer case will be examined later.)

For the daytime case, solar radiation warms the surface interface, which then

heats the surface-layer atmosphere. The temperature TA will therefore be elevated

somewhat above the background, boundary-layer equivalent temperature TG (TA >

TG). This differential is maintained by the continuous flow of sensible heat into

the atmosphere from the surface interface. But, warmed air in the surface layer is

then the primary means of delivering heat into the remainder of the boundary layer

through convective processes.
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This secondary warming can only occur if TA > TG. Otherwise, when TS > TA the

surface layer can warm, even while no heat is transferred into the upper boundary

layer. Likewise, TA will rapidly decay toward TG in the event the sensible heat flux

from the surface is cut off, an effect often seen when clouds shade the surface and

during solar eclipses.

Yet, clearly, the sensible heat only depends on ∆T , not TG. This leads to an

interesting paradox: While the sensible heat flux depends on TS − TA, the flux

of heat out of the surface layer depends on TA − TG. Temperature TA couples to

both, meaning either a steady-state relation could exist or a cyclical behavior could

emerge.

6.2 Decomposition of the Sensible Heat
To identify the resulting set of coupled equations to describe evolution of the

boundary-layer and surface-layer atmospheres, we must be able to parse the

sensible heat-flux into a portion that is heating the surface-layer air and another

portion that passes through the surface layer and heats the boundary layer. We

denoted these by HSA and HSB for the portions associated with the surface layer

and boundary layer, respectively,

HS = HSA +HSB. (6.8)

The easiest of these to resolve is HSB, which affects the value of TG. The rate

at which TG is increasing in the boundary layer, dTG/dt, involving temperature

change, dTG, and occurring over time step dt will be expressed simplistically (for

now) as
dTG
dt

=
HSB

(ρaCp)

1

ZI
∝ TA − TG

ZI
, (6.9)

where ZI is the depth of the boundary layer up to the elevated inversion height.

Here we assume the heat delivered is distributed evenly over the complete boundary

layer. Use ofHSB acknowledges our need to model both a sensible heat flux flowing

into the boundary layer but also a net energy flux from all sources that affect the

boundary-layer temperature. We designateHSB as the boundary-layer heat flux, but

in fact the complete flux equation will be more complicated since there are several

fluxes affecting the energy budget of the boundary layer. For example, there exists a

downward sensible heat flux at the top of the boundary layer caused by entrainment

of rising air into the elevated inversion layer that is approximately an extra quarter
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of HSB, according to Stull (1988). Also, the density of the air is not constant and
accounting for this involves inclusion of an extra weighting factor. But the main
point illustrated by Eq. 6.9 is that the change in TG depends on the temperature
difference (TA − TG) and not (TS − TG) or (TS − TA).

Using the same logic as in Eq. 6.9, we can heat the surface-layer air using

dTA
dt

=
HSA

(ρaCp)

1

ZT
, (6.10)

where ZT is a characteristic length scale of the surface-layer atmosphere. Likely, it
is of the order of magnitude as |ZK |, but this is one of the elements to be resolved in
this analysis. Also, this Equation presumes that TA changes in the same proportion
as the mean characteristic temperature of the full surface layer.

In the steady-state case, note that TA becomes a constant, and HSB = HS , where
HSA = 0. That is, the surface layer then acts merely as a conduit for transferring
energy to the boundary layer.

We thus have 2 expressions for heating the 2 layers. These must next be coupled.
To see how they might be related, consider that to mix the heated air in the surface
layer into the boundary layer the dynamics must rely on the relative buoyancy of
the surface-layer air as it rises. The relative buoyancy is given by the characteristic
air temperature (TA) versus the local ambient (background) temperature. One can
think of the temperature TA as being associated with air heated near the surface that
is rising and the background air being air that has been mixed in the boundary layer
and is falling toward the surface and, therefore, is characterized by temperature TG.
Of course, as the air rises out of the surface layer, it cools along with the rest of
the ambient air at the same adiabatic lapse rate as the background air characterized
by temperature TG. The relative difference should remain approximately constant
as long as we can ignore the effects of entrainment. But the entrainment that occurs
is part of the mixing that diffuses the heat across the layer. Hence, overall, the
product V ∆T should remain a constant, where V is the volume of the rising air
and ∆T = TA − TG is the temperature difference. This volume is associated with
the unit footprint of the model (1 m2 of surface) and the characteristic height of the
air being mixed out of the surface layer (ZT ).

The initial acceleration of the rising buoyant air will be a = g∆T/TA. This is
simply Archimedes’ principle applied to the buoyant air. The sense of ∆T is that
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when ∆T > 0 an upward displaced parcel of air will become buoyant. Let us
consider a given air parcel to have an initial vertical velocity equal to zero. The
parcel’s acceleration is thus proportional to the density difference divided by the
mean density of the air being moved (force divided by mass equals acceleration).
The time of rise that we are concerned with is related not to the time it takes for the
parcel to rise to the top of the boundary layer, but merely the time needed for the
parcel to exit the surface layer. The distance the parcel must rise is thus only ZT .
The rise time should thus be on the order of

trise ≥
√

2ZT/a =
√

2ZT TA/(g∆T ). (6.11)

For typical temperature differences on the order of a few degrees, an estimate of the
acceleration coefficient can be formed as a = g∆T/T ≈ g/100 = 0.1 m/s2. For
strong daytime heating ZT could be perhaps only 10 m thick. The time needed to
rise this 10 m would be approximately 14 s, consistent with observed rapid decay
of surface-turbulence conditions when clouds overshadow optical lines of sight.

Of course, this calculation focuses only on the time necessary for a warm air
parcel to rise by a height equal to the surface-layer thickness. This calculation
could also be used to simulate the behaviors of other organized features of the
daytime atmosphere such as thermal plumes. At WSMR, desert dust devils are often
observed that are perhaps 300 m tall (the rise time for these would be on the order
of 80 s). The computed final velocity of air at the top of such a column, based
on the buoyancy force, would be approximately 8 m/s. Typical dust devils expel
visible material from their tops. While 8 m/s may be high, since it does not include
entrainment effects, as an order-of-magnitude result it appears reasonable.

Next, we assign a quantity ∆E = ρ0Cp ∆T ZT (J/m2) as the amount of energy
per square meter provided by the surface layer over rise time trise. We thus have an
amount of energy delivered in a specific amount of time, such that,

HSB = ∆E/trise =
ρ0Cp ∆T ZT√

2ZT/a
= ρ0Cp

√
g∆T 3 ZT

2TA
. (6.12)

We thus have 2 out of the 4 terms in Eq. 6.9. However, the product ρa ZI needs to be
slightly adjusted since it actually represents an integrated mass and height product
given by

ρa ZI −→
∫ ZI

0
ρa(z) dz. (6.13)
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To integrate this expression, we replace the vertical dependence of ρa by a form

derived from the hydrostatic equation:

dP

dz
= −ρa g −→

∫ ZI

0
ρa dz = −1

g

∫
dP = +

1

g
[P (0)− P (ZI)]. (6.14)

The pressure at the surface is given as P (0) = P0 = Pbottom based on the height of

the site ASL, while the top pressure may be approximated by an exponential decline

based on ZI and the atmospheric scale height,

ZSc =
RT

g
=
RT

P

P

g
=

1

ρa

P

g
−→ P0

g
= ρ0 ZSc, (6.15)

using g, the gravitational acceleration, and R, the gas constant. Hence,

ρa ZI −→
P0

g
[1− exp(−ZI/ZSc)] ≈ ρ0 ZI

[1− exp(−ZI/ZSc)]
(ZI/ZSc)

. (6.16)

While this expression could be improved further, we will stop here. Rather, let us

simplify the writing of the result by defining

G1(τ) = [1− exp(−τ)]/τ. (6.17)

ρa ZI −→ ρ0ZI G1(ZI/ZSc). (6.18)

As an example, for a boundary layer of thickness ZI ≈ 2 km and a scale height

ZSc ≈ 8 km, ZI/ZSc = 1/4 and G1(1/4) = 0.885. Thus, the error in using ρ0 ZI is

approximately 12% versus the more accurate version. (Further improvements will

remove progressively less error.)

Returning now to Eq. 6.9, replacing terms with the results of Eqs. 6.12 and 6.18:

dTG
dt
≈
ρ0Cp

√
g∆T 3 ZT/(2TA).

Cp ρ0 ZI G1(ZI/ZSc)
=

√
g∆T 3 ZT/(2TA Z2

I )

G1(ZI/ZSc)
. (6.19)

Of course, this Equation supplies an answer for daytime (surface heating)

conditions (∆T > 0) only, and only if TA can be sustained over the time period of

the time step involved. If trise is significantly less than the time step of the model,

it could be that the heated atmosphere rises out of the surface layer leaving air

of temperature TG in its wake. Therefore, the production time is significant. For

example, in the example above where the rise time was found to be approximately
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14 s, a model time step of 1 min would be too long. The time step chosen should
therefore be less than the rise time of the surface layer. Secondly, at night, ∆T < 0

and Eq. 6.19 yields imaginary numbers, invalidating the method. Thus, a separate
derivation will be needed for the nighttime case.

It would also be convenient if we could replace the surface-layer height ZT by some
other depth scale, such as |ZK |; but, as we shall discover in a later section, ZT is
best treated as its own variable, as it is related to ZA and TA.

From the result for the energy entering the boundary layer, HSB, we can combine
Eqs. 6.8 and 6.10 to obtain the result,

dTA
dt

=
HS −HSB

(ρ0Cp)

1

ZT
. (6.20)

Thus, while HS depends on TS−TA, any energy remaining within the surface layer
will tend to heat the surface layer and diminish the energy exiting to the boundary
layer. This formulation also assumes ZT remains constant as the layer is heated.

6.3 Extended Surface- and Boundary-Layer Heating Equations
In the previous section the sensible heat warming of the surface and boundary layers
was considered in a simple fashion. However, now these relations are expanded to
include additional terms due to radiative and convective fluxes that were previously
omitted. While latent heat fluxes do not alter the temperature state, and short-wave
radiative fluxes pass through the atmosphere without warming it (or so it is modeled
here), long-wave radiation is partially absorbed; a sensible heat flux from the top of
the boundary layer must be handled.

First, consider the long-wave infrared fluxes. The atmospheric surface layer will
tend to absorb long-wave radiation emitted by the surface and re-emit radiation
toward the surface and toward the boundary layer above. Likewise, the atmospheric
surface layer will absorb radiation emitted downward from the boundary layer.
Governing these fluxes is the atmospheric emissivity, which we consider in detail
in the following chapter. Here, let us designate the emissivity as εA. The radiative
fluxes are itemized as follows:

1) The long-wave flux from the atmospheric surface layer — both upward (from the
top of the surface layer) and downward (from the bottom) directed — modeled as

L↑,A = L↓,A = σ εA T
4
A, (6.21)

using σ for the Stefan–Boltzmann constant.
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2) The downward long-wave flux from the bottom of the boundary layer (into the
top of the surface layer) is expressed by

L↓,B = σ εA T
4
G. (6.22.A)

3) Then, the upward long-wave from the effective surface designated as L↑,E (also
discussed at length in the next chapter). Because the atmospheric emissivity also
quantifies the ability of the atmosphere to absorb infrared radiation, only a portion,
εA L↑,E , of the upward-directed long-wave energy leaving the surface interface will
be absorbed by the surface layer. The remainder will pass through both the surface
layer and the boundary layer and be lost to space.

4) The last 2 long-wave fluxes of note arise from the upward-directed radiative flux
leaving the top of the boundary layer, denoted by

L↑,B = σ εA T
4
T = εA L↑,T , (6.22.B)

where TT is the temperature at the top of the boundary layer, given by TT = TG −
ΓZI , where Γ is the adiabatic lapse rate for dry air equal to 9.8 K/km. (L↑,T is the
equivalent blackbody radiation at the top of the boundary layer.)

5) Finally, the downward radiative flux emitted from above the boundary layer
accounts for both upper air radiative emissions and cloud emissions. To model the
upper-air emission we use an estimation from Stull’s Figs. 3.6 and 3.8 that suggest
the upper air dries out to a specific humidity value that is one-third of the value in
the boundary layer. From this approximation we can compute a quantity εU that is
the emissivity for this layer. We then model the downward basic radiation as

L↓,U = σ εU T
4
T , (6.23)

where TT is the temperature of the top of the boundary layer. To this quantity we add
the cloud radiation that is blackbody in nature but scaled according to the amount
of cloud cover (FC):

L↓,C = σ FC T
4
C . (6.24.A)

This is the total flux emitted downward from the cloud layer. However, only a
certain fraction of this will reach the top of the boundary layer, as determined by
the upper-air emissivity:

L↓,C,T = σ FC (1− εU)T 4
C . (6.24.B)
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Of this amount, a certain fraction will then make it through the atmospheric window
and reach the effective surface. This amount is expressed by

L↓,C,E = σ FC (1− εA)T 4
C . (6.24.C)

The difference between these 2 calculations (where εA > εU ) is just that portion of
the radiation that is absorbed in the boundary layer:

L↓,C,B = σ FC (εA − εU)T 4
C . (6.24.D)

The reason why we can represent the absorption effects in this manner is because
the absorption effects of the upper air and the boundary layer are associated with
the same absorption lines, so the effects overlay one another spectrally.

Throughout this discussion, TC has represented the air temperature (K) at the cloud-
base height. Following Stull we compute TT then add 3 ◦C (denoting the rise in
temperature of the air due to the elevated inversion) to obtain TC for low clouds:

TC (low) = TT + 3 [C]. (6.25.A)

For midlevel clouds we assume they are another 3 km up. Using the moist adiabatic
lapse rate, we compute

TC (mid) = TC (low) − 3 [km]× 6.4 [C/km]. (6.25.B)

For high clouds, we add another 3 km of altitude:

TC (high) = TC (mid) − 3 [km]× 6.4 [C/km] = TC (low) − 6 [km]× 6.4 [C/km].

(6.25.C)

The factor (εA − εU) is added to account for the absorption of the cloud radiation
by the intervening upper-air layer. The difference is used because the ability of
the air within the boundary layer to absorb radiation is proportional to εA, but this
absorption coincides with the same spectral lines where the upper air is absorbing
with efficiency εU .

Combining flux terms, the improved version of the surface-layer temperature’s
evolution becomes,

dTA
dt
≈ (HSA − 2L↑,A + L↓,B + εA L↑,E)

ρ0Cp ZT
. (6.26.A)
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Using this result, the more accurate version of the TG evolution becomes

dTG
dt
≈

(
5
4
HSB − L↑,B − L↓,B + L↑,A + L↓,U + L↓,C,B

)
ρ0Cp ZI G1(ZI/ZSc)

, (6.26.B)

where the 5/4 factor derives from the entrainment of warmer air in the elevated
inversion that mixes into the boundary layer when rising plumes of air overshoot
the top of the boundary layer and mix with warmer air above. This results in a
downward sensible heat flux into the boundary layer. The result is a partial heat flux
from the inversion layer downward into the boundary layer.

Eq. 6.26.B can also be somewhat simplified as

dTG
dt
≈ +

[
5
4
HSB − L↓,B + L↑,A + (εA − εU) (L↓,C − L↑,T )

]
ρ0Cp ZI G1(ZI/ZSc)

, (6.27)

which we may further simplify and write as

dTG
dt
≈

[
5
4
HSB + L↑,A − L↓,B + L↑↓,T

]
ρ0Cp ZI G1(ZI/ZSc)

, (6.28)

where L↑↓,T represents the net long-wave radiation entering at the top of the
boundary layer that will be absorbed within the upper regions of the boundary layer.

The key dynamical aspect of Eqs. 6.26.A and 6.28 is to note that TA is an
important term in evaluating T∗, the scaling temperature that directly influences
the computation of C2

n. It also drives the sensible heat flux from the ground and
regulates the heat flux into the boundary layer. Thus, while computation of the
various surface-energy-budget fluxes is important, producing an accurate model
of the dynamics of the evolution of the surface-layer temperature is critical to
improving estimates of C2

n. To capture the dynamics of TA it will be necessary
to reduce the length of the time step used.

Along with the difference TS − TA, the resulting scaling temperature T∗ will also
tend to cycle, causing variability in the C2

n calculated. Wind-speed variations will
also tend to introduce more or less heat into the surface layer, causing fluctuations.
This is often observed during daytime environments. We thus appear to have a
model capability that tends to mimick the observed variability of daytime near-
surface C2

n, as long as our time step is short enough to capture the temporal
frequency of these variations.
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Note also that a portion of the radiation arriving from the clouds has been blocked
by the upper-air absorptivity, εU . Since this absorptivity is at lower specific humidity
the absorption effects will be more tightly centered about the absorption lines of the
radiation. Therefore, the upper air has already absorbed this radiation.

6.4 Perturbed Daytime-Temperature Profile Function
The previous section’s results appear to resolve a critical issue with regard to the
handling of atmospheric temperatures. However, we did not resolve which value to
use for the characteristic thickness of the surface layer, ZT . We also did not resolve
how to choose ZA based on TA.

Let us therefore consider a general temperature function with height, called T (z) =

TZ , and compare that with the background temperature that we associate with
the general boundary-layer-temperature profile, TB(z). We model this latter profile
using the function

TB(z) = TB = TG − Γ z. (6.29)

At this point we shall set Γ as the dry adiabatic lapse rate, since under most
circumstances we will not be considering moist atmospheres.

In general, T (z) will approach TB(z) as z increases. The difference between
these 2 functions defines a profile we associate with the departure of the surface-
layer temperature from the adiabatic atmosphere. The daytime version of this
functional form is the subject of this section’s discussion. The connection between
the resulting profile and the use of TA and ZT , however, may be discussed now. Let
us write

T̃ (z) = T̃Z =

{
TB + (TA − TG), z < ZT ,
TB, z > ZT ,

(6.30.A)

T̃Z =

{
TA − Γ z, z < ZT ,
TG − Γ z, z > ZT ,

(6.30.B)

where T̃Z is a model of the true vertical profile, but greatly simplified such that it
follows TB at large height and evaluates to approximately TA throughout the surface
layer. We then select ZT and TA in such a way that the above simplified model is
optimized, using a least-squares approach, for the current atmospheric state.

To determine this optimization we must have a vertical structure model for the
temperature as a function of the Obukhov length, ZK , that smoothly merges into
the background TB(z) vertical structure of the boundary layer.
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We begin this process by considering the surface-layer-temperature difference
formula, repeating Eq. 6.6 here:

TZ − TS =
T∗
k

[
ln
(
Z

Z0

)
− ψ2

(
Z

ZK

)]
, (6.31)

where z = Z, and ψ2(ζ) is given by Paulson (1970) as

ψ2(ζ) = 2 ln

{
[1 +X2(ζ)]

2

}
, (6.32)

where
X(ζ) = (1− γ ζ)1/4, (6.33)

with γ = 9 and ζ < 0 for the temperature profile for daytime conditions.

This profile, appropriate for the daytime diabatic-lapse atmosphere, can be rewritten
by expressing the height dependence as

ln
(
Z

Z0

)
− ψ2

(
− Z

|ZK |

)
= ln

(
|ZK |
Z0

)
+ ln

(
Z

|ZK |

)
− ψ2

(
− Z

|ZK |

)
, (6.34)

where ln(|ZK |/Z0) is a constant of the current stability condition. This term thus
has an influence on the offset of the profile dependent on the surface properties,
but does not influence the vertical structure away from the surface. Essentially, this
means it simply gets absorbed into any constant temperature offset and may be
ignored.

The height-profile shape therefore only depends on the ratio Z/ZK = ζ .
Unfortunately, the function ln(|ζ|)−ψ2(ζ) is continuously increasing with no upper
limit. However, for |ζ| > 20, the 2 logarithms tend to cancel.

Still, to ensure a profile that approaches the adiabatic lapse-rate behavior of the
boundary layer at large distances from the surface, a correction must be made
to the surface-layer dependence that becomes dominant at large distances from
the surface. In this way a single consistent function can be assigned to the
surface/boundary layer for purposes of evaluating TA, ZA, and ZT .

To perform this task, let us next rewrite the surface-layer profile based on our
observations of Eq. 6.34:

TZ = TS +
T∗
k

[
ln

(
|ZK |
Z0

)
+ P

(
Z

|ZK |

)]
. (6.35)
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Let ξ = |ζ|, such that,
P (ξ) = ln(ξ)− ψ2(−ξ). (6.36)

The background profile we wish to adapt to is the TB(Z) function of Eq. 6.29. To
do so, we must perturb P (ξ) such that the modified function approaches zero at the
top of the boundary layer and has zero derivative there as well. This perturbation
should also approach zero effect within the surface layer. Let us denote this modified
function as Q(ξ, NI) (where NI = ZI/|ZK | parameterizes the thickness of the
boundary layer). This new function can be defined using

Q(ξ, NI) = P (ξ)− P (NI)−
dP (Z/|ZK |)

dZ
|Z=ZI

|ZK | (ξ −NI). (6.37)

This function satisfies the stated requirements at the top of the boundary layer but
to ensure that the profile also matches the original profile in the surface layer, at
Z = Z0 the profile must become TS . To satisfy this requirement we must use

TZ = TS + (TG − TS)

[
1− Q(Z/|ZK |, NI)

Q(Z0/|ZK |, NI)

]
− Γ (Z − Z0). (6.38)

This modified profile matches the desired temperature properties at the top and
the bottom of the profile, while applying a minimal distortion in curvature to
accomplish both purposes. That is, the Γ = 9.8 K/km gradient is a small
perturbation at the base but produces the correct asymptotic behavior. Like the
original profile of Eq. 6.35, TG − TS < 0, as is T∗.

Let us then find the explicit form of Q(ξ). We already have a definition for P (ξ).
Taking the derivative of this function,

dP

dZ
=

1

|ZK |
dP

dξ
=

1

|ZK |

[
1

ξ
− 9

(1 + 9 ξ)1/2 + (1 + 9 ξ)

]
. (6.39)

Evaluating this derivative at ξ = ZI/|ZK | = NI , after a little math,

dP

dZ

∣∣∣
Z=ZI

=
1

ZI

1√
1 + 9NI

. (6.40)

Substituting this definition into Eq. 6.37, Q can be rewritten as

Q(ξ, NI) = P (ξ)− P (NI) +
(NI − ξ)
NI

1√
1 + 9NI

. (6.41)

This vertical function features a value Q(Z0/|ZK |, NI) that approximately equals
ln(Z0/|ZK |), as expected. However, the form of Eq. 6.38 is rather complicated and
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can be considerably simplified. This and evaluation of parameters TA and ZT of the
step-profile function of Eq. 6.30 are the subjects of the next section.

6.5 Simplified Unstable Layer Vertical Model
In this section the calculation of the parameters TA, ZA, and ZT of the step profile
model of Eq. 6.30 are described. To evaluate parameters TA and ZT , we introduce
the integrated squared error:

δ2 =
∫ ZI

0
[TZ − T̃ (Z)]2 dZ =

∫ ZI

0
R2(Z) dZ. (6.42)

Taking the derivative of this expression with respect to TA and ZT , we obtain the
results,

TA = 2T (ZT )− TG, (6.43)

(TA − TG)ZT =

ZT∫
0

[T (Z)− TG] dZ =

ZT∫
0

R(Z) dZ. (6.44)

Combining these expressions, a transcendental equation emerges that must be
solved:

[T (ZT )− TG] =
1

2ZT

ZT∫
0

[T (Z)− TG] dZ. (6.45)

From this function, the ratio ξS = ZT/|ZK | is solved as a function of NI =

ZI/|ZK |, as shown by the red line in Fig. 10. This means of solving for ZT is
possible if Eq. 6.45 is rewritten using Eq. 6.38 to transform the term T (Z) − TG

based on the substitution,

TZ − TG ≈ (TS − TG)
Q(Z/|ZK |, NI)

Q(Z0/|ZK |, NI)
. (6.46)

This approximation is possible when considering the surface layer (i.e., ignoring
the Γ z term). Then, substituting the RHS of Eq. 6.46 into the integral of Eq. 6.45,

[T (ZT )− TG] =
1

2ZT

ZT∫
0

(TS − TG)
Q(Z/|ZK |, NI)

Q(Z0/|ZK |, NI)
dZ (6.47.A)

[T (ZT )− TG] =
1

2ZT

(TS − TG)

Q(Z0/|ZK |, NI)

ZT∫
0

Q(Z/|ZK |, NI) dZ. (6.47.B)

However, we recognize that having factored (TS−TG)/Q(Z0/|ZK |, NI) out of the
integral, using Eq. 6.38 a similar factor could also appear on the LHS.
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Cancelling these factors out, the resulting equation appears in the form

Q(ξS, NI) =
1

2 ξS

∫ ξS

0
Q(ξ, NI) dξ,

where ξS clearly appears as a function of NI .

Fig. 10 Ratio ZT /|ZK | of surface-layer characteristic thickness (ZT ) to absolute value of
Obukhov length (|ZK |) (red line), and ratio ZA/|ZK | (dashed blue line), as functions of NI

Once ZT is known, T (ZT ) = TT can be calculated, and TA follows immediately
from Eq. 6.43. Further, because this is a daytime case, TT > TG. Similarly, TA >

TT , ZA < ZT , and ZA may be solved as a function of ZT :

Q(ZA/|ZK |, NI) = 2Q(ZT/|ZK |, NI). (6.48)

The function ZA/|ZK | may also be expressed in terms of NI , as plotted in Fig. 10.
It is worth noting that while ZA is of the same order as |ZK |, this analysis and
Fig. 10’s blue dashed curve further justify the setting of both ZT and ZA as separate
parameters from |ZK |, since each varies in a slightly different fashion.

For daytime cases, the boundary-layer depth, ZI , is of the order 1–4 km, and |ZK |
is on the order of 10–40 m. The range of the parameter NI is thus from 25 to 400.
But while ZT increases with NI , ZA remains of the order of |ZK |.

The choice of TA and ZT permits us to write the surplus heat present in the surface
layer as

ES = ρaCp (TA − TG)ZT . (6.49)

This product has dimensions of Joules per square meter of surface area.
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The Eq. 6.38 vertical-temperature-profile expression may now be connected back to
Paulson’s surface-layer profile of Eq. 6.31 by associating T∗ of the standard profile
with its equivalent in Eq. 6.38. To do so, let us first compare the 2 profiles in their
general forms:

TZ = TS +
T∗
k

[
ln
(
Z

Z0

)
− ψ2(−Z/|ZK |)

]
≈ TS + (TG − TS)

[
1− Q(ξ,NI)

Q(ξ0, NI)

]
. (6.50)

Next, let us write the equation for the specific height Z = |ZK |. (Let TK =

T (|ZK |).) Ignoring the adiabatic term,

TK = TS +
T∗
k

[
ln

(
|ZK |
Z0

)
− ψ2(−1)

]

≈ TS + (TG − TS)

[
1− Q(1, NI)

Q(ξ0, NI)

]
. (6.51.A)

T∗
k

[
ln

(
|ZK |
Z0

)
− ψ2(−1)

]
≈ (TG − TS)

Q(ξ0, NI)
[Q(ξ0, NI)−Q(1, NI)] . (6.51.B)

We can use this equation to assess a relation between T∗ and the terms on the right.
At this point the left and right sides appear distinctly different, but if we examine
the difference of the two Q functions on the right, considerable cancellations occur:

Q(ξ0, NI)−Q(1, NI) = P (ξ0)− P (NI) +
1√

1 + 9NI

[
1− ξ0

NI

]
(6.52.A)

−P ( 1 ) + P (NI)−
1√

1 + 9NI

[
1− 1

NI

]

= P (ξ0)− P ( 1 ) +
1√

1 + 9NI

[
1

NI

− ξ0

NI

]
.

But P (ξ0) ≈ ln(ξ0), since ψ2(0) = 0 and ξ0 � 1 ≈ 0. And P (1) ≈ −ψ2(−1), since
ln(1) = 0, and we assume ξ0/NI ≈ 0. These transformations and approximations
thus suggest

Q(ξ0, NI)−Q(1, NI) ≈ ln

(
Z0

|ZK |

)
+ ψ2(−1) +

1

NI

√
1 + 9NI

. (6.52.B)

Finally, for large NI , the final term on the right will also be small. The Q difference
on the RHS of Eq. 6.51.B is thus equal to the negative of the quantity in brackets on
the LHS of 6.51.B.
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Cancelling these factors out, what remains is

T∗
k
≈ −(TG − TS)

Q(ξ0, NI)
. (6.53)

And this result allows us to rewrite Eq. 6.50 in the form,

TZ = TS −
T∗
k

[Q(ξ0, NI)−Q(ξ,NI)] , (6.54.A)

or, restoring the adiabatic trend,

TZ = TS −
T∗
k

[Q(ξ0, NI)−Q(ξ,NI)]− ΓZ. (6.54.B)

Writing the formula in this form is important when comparing with results from
the nocturnal analysis. The sign of T∗ is negative during the day. On the other
hand, the Q function is negative value and increasing in magnitude with height.
The difference quantity in brackets is then positive, and our function is cast so that
the perturbation will be positive definite during the daytime.

Now, the development of Eqs. 6.51 through 6.55 allowed us to remove one instance
where TS appeared. We can next eliminate TS entirely by evaluating TZ at Z = ZI .

T (ZI) = TB(ZI) = TG − ΓZI . (6.55)

Substituting this result into the LHS of Eq. 6.55.B and cancelling terms, we find

TG − ΓZI = TS −
T∗
k

[Q(ξ0, NI)−Q(NI , NI)]− ΓZI , (6.56.A)

TG = TS −
T∗
k
Q(ξ0, NI), (6.56.B)

where we also recognize that Q(NI , NI) = 0.

We may therefore remove the TS term from Eq. 6.55.B, replacing it with TG. Then,
using Eq. 6.55,

TZ = TB +
T∗
k
Q(ξ,NI). (6.57)

Note that in this section T∗ and Q(ξ,NI) are negative, such that T∗Q is in every
instance a positive perturbation. Further, this new profile form disconnects the
profile shape from its near-surface details. This is critical since we shall find it
easier to determine T∗ based on the sensible heat flux than tracking the value of TS
based on a temperature estimated at a specific height within the surface layer.
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Before proceeding to consider the nocturnal profile shape, let us pause and consider
how we might set this profile given measured data. We see immediately that there
are several parameters to consider: TG, T∗, ξ = Z/|ZK |, and NI = ZI/|ZK |. In
Tofsted et al. (2006) we estimated ZI for the White Sands Missile Range region
based on data collected locally. For other locales the height of ZI can be estimated
from the ceiling height. The model also computes and tracks this quantity. The
daytime model also computes and tracks ZK . The Obukhov length can also be
estimated from measured data from a sonic anemometer. Hence, Q(ξ, NI) and T∗
can be estimated. Further, from a temporal record of the sensible heat flux HS , it
is possible to identify the time of the neutral event (heating reversal). At this time
T∗ = 0 and TZ = TB such that TG can be established.

It is also possible to measure the temperature gradient vertically by sensing T (Z2)−
T (Z1)/(Z2−Z1) and applying the result to height Z = (Z2 +Z1)/2. The measured
temperature gradient can then be assigned to the vertical gradient of Eq. 6.58. After
some math, we obtain

dTZ
dZ

= −Γ +
T∗
k

dQ(ξ,NI)

dξ

dξ

dZ

=
T∗
k

[
1√

1 + 9 ξ
− 1√

1 + 9NI

]
1

|ZK |
− Γ. (6.58)

Using a sample vertical gradient plus a computed Obukhov length and an evaluated
T∗, this equation is actually over-specified. It could therefore be used to validate the
choice of γ = 9.

6.6 Stable Layer Vertical Structure Model
The analysis of the previous section considered daytime atmospheric conditions,
ZK < 0. At the time when the atmosphere undergoes thermal reversal, the sign of
TA − TG reverses from positive to negative. The diabatic daytime analysis then no
longer applies and new equations must be developed. As part of this metamorphosis,
the temperature-evolution equations were based on buoyant mixing of heated air
boiling up through the mixed layer. Stability reversal actively suppresses such
buoyant motions, and this dynamic must be replaced as well.

However, the discussion of the current section will focus on the available nocturnal
profile form, along with the topic of merging this form with the general adiabatic
profile of the boundary layer that transforms into the residual layer after active
heating of the layer ceases in the late afternoon until the following morning.
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In the previous section, a bulk temperature, TA, and a characteristic layer thickness,
ZT , were studied so that the net excess energy in the surface layer could be
monitored and adjusted. We were also interested in tracking the net rate of
convective heat flow into the boundary layer. The boundary layer was characterized
by temperature TG and layer thickness ZI .

In the nocturnal environment, however, in addition to the residual layer that appears
as (roughly) the replacement of the full boundary layer, a surface-based inversion
layer also begins to grow. Within this inversion, the temperature is coldest at the
ground and increases in temperature through the top of this layer. The inversion
temperature thus features a positive temperature gradient up to the inversion top.
But then the question is raised regarding the vertical shape of this element of the
boundary-layer profile.

To answer this question we need to adopt a new, characteristic depth measure for the
inversion layer. Let us call this depth ZV (as ZI is already being used to designate
the height of the elevated inversion). Let us similarly identify a characteristic
temperature of the inversion analogous of TG. Call this TV . We define TV such
that the temperature of the inversion at height Z = 0 extrapolates to TV .

It should be emphasized here that the objective of these considerations is not
necessarily to find the truth, but, rather, to find a working model that is merely
an approximation of the atmosphere, not the true dynamics. Nonetheless, even an
approximation can be used to supply information regarding radiative fluxes, which
is one of our main objects in pursuing this concept of a vertical temperature profile.

In this section, therefore, we consider the characterization of the nocturnal boundary
layer using an approach similar to that adopted in the previous section for the
daytime diabatic atmosphere. That is, the standard stable flux-profile model is
extrapolated to the entire boundary layer by modifying the profile functions in
such a way that outside the surface layer the profile approaches the behavior of
the standard adiabatic lapse rate; meanwhile, near the surface the profile structure
follows that of the generally agreed-upon shape of the flux-profile theory’s curves
in the surface layer.

The objective, then, is to again make adjustments to the standard profile shapes
that introduce only minor corrections at low altitudes, but that cause the profiles to
adjust to the appropriate adiabatic behavior at high altitudes (the top of the residual
layer). Such corrections leave the surface-layer characterization unchanged from
the standard theory.
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Unfortunately, what we shall discover is that even when this allowance is made, the
standard theory must be adjusted. This is because the profile of the standard theory
approaches a constant, positive vertical gradient as one rises above the surface layer.
Such a behavior is inconsistent with observations of vertical temperature structure.
For example, Stull’s data (1988, Figs. 1.11 and 1.12) show a smoothly decreasing
vertical gradient of temperature with height, unlike the linear trend of the standard
profile’s model.

Therefore, let us first consider the standard model, examine the parts of it that
are inappropriate for merging into the complete boundary-layer model, and make
adjustments as necessary.

As before, we wish to assign a general profile appropriate for the residual layer as
described by the vertical function,

TB(Z) = TG − ΓZ. (6.59)

The gradient of whatever perturbation function is added to this profile must produce
a result that merges into this profile at some point. In particular, let us assume that
the height of this merger is ZV , a height that denotes the top of the surface-based
inversion layer.

On the other hand, we have the form used for the standard vertical profile:

TZ = TS +
T∗
k

[
ln
(
ZK
Z0

)
+ ln

(
Z

ZK

)
− ψ2

(
Z

ZK

)]
. (6.60)

The standard method for characterizing the nighttime-diabatic-influence function
ψ2 is to use

ψ2 (ζ) = −β ζ = −5
Z

ZK
, (6.61)

such that,

TZ = TS +
T∗
k

[
ln
(
ZK
Z0

)
+ ln

(
Z

ZK

)
+ 5

Z

ZK

]
. (6.62)

Here, as for the daytime function, I have separated off the constant factor,
ln(ZK/Z0). This offset term may again be absorbed into a general constant.

Now, the first problem with this profile shape is this choice of β ζ = 5Z/ZK .
Notice that if we had chosen to describe the basic inversion layer as having a vertical
gradient of, say, ΓI , that we would need to set this gradient to

ΓI = 5
T∗
k ZK

. (6.63)
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That is, the properties of the surface layer would be directly linked into the
properties of the surface-based inversion as a whole. Perhaps this is not a bad
thing but nonetheless it means, at the least, that we lose one of our so-called free
parameters, either T∗ or ZK , in fitting to the inversion-layer gradient ΓI .

Worse, we have a constant positive gradient leaving the surface and no mechanism
for turning it around to become a negative gradient once the top of the inversion
layer is reached.

A second complication with using this profile form is that the daytime surface-layer
profile model could be fitted into the overall boundary-layer model, linking the
surface layer directly into the rest of the boundary layer. But the standard nocturnal
model only links the surface layer into the bottom of the surface-based inversion,
meaning a second connection would be needed to connect the result into the residual
layer. This seems overly complicated.

For these reasons (and after much agonizing, given the rather widespread use of the
standard forms), the original form of this expression was abandoned and a simpler
alternative form was adopted, given by

TZ = TS +
T∗
k

[
ln
(
ZK
Z0

)
+ ln

(
Z

ZK

)]
. (6.64)

Now, obviously the resulting expression is just equal to an offset plus a ln(Z)

function. So this function is not very interesting. The interesting aspect appears
when this form is adapted to a specific height of inversion layer by introducing a Q̃
function tailored to cancel the surface-layer portion not at the top of the boundary
layer, but at the top of the inversion layer. In so doing, we shall retain the ability
to define T∗ and ZK in the surface layer without losing the ability to model the
inversion layer.

For this new form of the surface-layer temperature profile we introduce a new
version of the P (ξ) function (with ξ = Z/ZK):

P (ξ) = ln(ξ). (6.65)

Using this form, we can now shadow the previous daytime methodology for
adapting the surface-layer profile to the boundary layer. The next step is to
transform the P function into an analog of the daytime’s Q function. As previously,
we connect this Q function into the boundary-layer-profile function TB, but at the
height ZV , not ZI . Let us then define a new parameter MI = ZV /ZK denoting the
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dimensionless height of the surface-based inversion. Given this measure, the analog
of Eq. 6.37 is written,

Q(ξ, MI) = P (ξ)− P (MI)−
∂P (Z/ZK)

∂Z
|Z=ZV

ZK (ξ −MI). (6.66)

The derivative of P is (1/ξ)/ZK . Evaluating P at Z = ZV , the derivative becomes
(1/ZV ). Multipying by ZK yields (1/MI), so Q reduces to

Q(ξ, MI) = ln(ξ)− ln(MI)− (1/MI)(ξ −MI)

= ln(ξ/MI)− ξ/MI + 1. (6.67)

In this form, clearly Q can be represented as the function of a single variable:

Q(ξ, MI) = Q̃(ξ/MI); Q̃(A) = ln(A)− A+ 1. (6.68)

The function Q̃ is negative throughout its range, with a maximum of zero at A = 1.
This negative property is consistent with the Q function obtained in the daytime
case. In the process, this expression has been transformed from a function of ξ
and MI to one of only ξ/MI = Z/ZV , independent of ZK . (Perhaps this is not
unexpected since in the daytime case ZT addresses the energy characterization of
the surface layer, effectively eliminating the need to track ZK .)

As previously, this function is designed to provide a zero-function value and zero
derivative at its upper limit, ZV . And similar to the daytime version, this function
diverges in a log sense as ξ approaches zero due to the ln(ξ) dependence. Therefore,
also similar to the daytime case, the integral can be extended down to Z = 0 since
z ln(z)→ 0 as z → 0. Thus the result will again not be sensitive to its lower bound,
as in the daytime case.

The utility of this function is further justified by comparison with the curves in
Stull’s book (1988, Figs. 1.11 and 1.12). Rather than featuring a flat temperature
structure within the inversion layer, Stull’s vertical temperature profiles appear to
smoothly approach a gradient of zero at the top of the inversion. Figure 11 (next
page) illustrates an example of this equation.

The Q̃ function can then be used in an analog of Eq. 6.38:

TZ =

TS + (TG − TS)
[
1− Q̃(Z/ZV )

Q̃(Z0/ZV )

]
− Γ (Z − Z0) , Z < ZV .

TG − Γ (Z − Z0) = TB(Z) , Z > ZV .
(6.69)
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Fig. 11 Inversion-layer-temperature structure for dT/dZ = 1 ◦C/m at 2 m AGL and a layer
thickness of 200 m

Based on this profile, the energy deficit of the surface-based inversion can be
calculated. As evident in Fig. 11, the majority of the inversion is located at less
than half of the inversion height. Therefore, we shall find that the significance of T∗
is such that it influences the full inversion layer.

The energy deficit of the inversion layer can now be integrated. This is determined
by first evaluating

∫ ZV

Z0

(TZ − TB) dz ≈ (TS − TG)

Q̃(Z0/ZV )

∫ ZV

0
Q̃(Z/ZV ) dZ. (6.70)

Again employing the variable ξ = Z/ZV and extending the integral to zero,

∫ ZV

Z0

Q̃(Z/ZV ) dZ ≈ ZV

∫ 1

0
Q̃(ξ) dξ = ZV

[
−1

2

]
. (6.71)

Therefore, the energy content of the inversion becomes,

ES = ρaCp

∫ ZV

Z0

(TZ − TB) dz ≈ ρaCp
(TG − TS)

Q̃(Z0/ZV )

ZV
2
, (6.72)

which is negative-valued because Q̃ < 0.

Next, let us consider representing ES using temperature TA and height ZT .
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Using the crude temperature model of Eq. 6.30 that led to the series of relations in
Eqs. 6.42 through 6.45, we can write

TT − TG =
1

2ZT

ZT∫
0

[T (Z)− TG] dZ. (6.73)

Except for the upper limit of ZT instead of ZV , this is the same integral as in
Eq. 6.71. We can thus write

(TS − TG)
Q̃(ZT/ZV )

Q̃(Z0/ZV )
=

1

2ZT

ZT∫
0

(TS − TG)
Q̃(Z/ZV )

Q̃(Z0/ZV )
dZ. (6.74)

After cancelling out constant terms,

Q̃(ZT/ZV ) =
1

2ZT

ZT∫
0

Q̃(Z/ZV ) dZ. (6.75)

Setting ξ̃ = Z/ZV ,

Q̃(ξS) =
1

2 ξS

ξS∫
0

Q̃(ξ) dξ. (6.76)

Integrating using the Maple program,

Q̃(ξS) = ln(ξS)− ξS + 1 =
1

2 ξS

[
ξS ln(ξS)− ξ2

S

2

]
. (6.77.A)

2 ξS ln(ξS)− 2 ξ2
S + 2 ξS = ξS ln(ξS)− ξ2

S

2
. (6.77.B)

ξS ln(ξS) =
3ξ2
S

2
− 2 ξS −→ ln(ξS) + 2 =

3

2
ξS. (6.77.C)

From which we find 2 roots:

ξS = 0.1763, 1.6787. (6.78)

Selecting the lesser root, since ZT < ZV ,

ZT = 0.1763ZV . (6.79)
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The height ZA associated with TA may be computed using the stable layer
equivalent of Eq. 6.43 that lead to Eq. 6.48:

Q̃(ZA/ZV ) = 2 Q̃(ZT/ZV ) −→ ZA = 0.06326ZV , (6.80)

For typical inversion-layer depths of 100–400 m, ZA = 6–25 m, while ZT = 18–
71 m. The height range of ZA is perhaps slightly higher than that traditionally
attributed to the surface layer, but certainly occurs well within the overall inversion
layer. Likewise, ZT clearly lies outside the traditional surface layer, but since it now
is being used to represent the energy deficit of the full inversion layer, it too appears
reasonable.

The next step is to eliminate TS andZ0 from this form. Following the same approach
as for the daytime case, we find that

T∗
k

=
(TS − TG)

Q̃(Z0/ZV )
. (6.81)

This result is obtained because the ratio

Q̃(Z0/ZV )− Q̃(Z/ZV )

ln(Z/Z0)
=

ln(Z/Z0)− (Z/ZV ) + (Z0/ZV )

ln(Z/Z0)
≈ 1, (6.82)

as long as Z and Z0 are much less than ZV . This is clearly true for measurements
made in the region typically associated with the surface layer; such as ZA � ZV .

Substituting this definition into the temperature expression,

TZ =

{
TS − (T∗/k)

[
Q̃
(
Z0

ZV

)
− Q̃

(
Z
ZV

)]
− Γ (Z − Z0) , Z < ZV .

TG − Γ (Z − Z0) = TB(Z) , Z > ZV .
(6.83)

Both TS and Z0 can now be eliminated. We consider the analog of Eq. 6.56.B,
expressing TS as

TS ≈ TG +
T∗
k
Q̃(Z0/ZV ). (6.84)

The vertical temperature-structure model from Eq. 6.83 then transforms into

TZ = TB +
T∗
k
Q̃(Z/ZV ), (6.85)

for Z < ZV , and TZ = TB for Z > ZV . Recall that Q < 0, while T∗ > 0, such that
a proper negative correction term occurs at night.
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The Eq. 6.85 temperature formula now supports evaluation of TA as

TA ≈ TG +
T∗
k
Q̃(0.06326) = TG + T∗

(−1.82376)

0.385
= TG − 4.737T∗. (6.86)

Using T∗ and ZV the energy-deficit equation can now be written,

ES = ρaCp

∫ ZV

Z0

(TZ − TB) dz ≈ −ρaCp
T∗
k

ZV
2
. (6.87)

An interesting aspect of this analysis is that while we have lost Z0, TS , and ZK as
useful quantities to characterize the surface-based inversion and surface layer, T∗
as a scaling temperature still is a meaningful quantity. It should also be emphasized
that ZK at night is often erratic, and the presence of HS within the equation for ZK
is even more problematic at night since vertical mixing is often shut down by strong,
positive vertical temperature gradients. The presence of such effects, though, does
not preclude the use of T∗ in characterizing the temperature structure, even if it can
no longer be related to a turbulent flux of sensible heat.

Instead, assuming the height of the inversion layer,ZV , is known or can be estimated
(based on ES , perhaps), then T∗ could be directly estimated from a measured
vertical temperature gradient. Taking the Z derivative of Eq. 6.86,

dTZ
dZ

=

{
(T∗/k)

(
Z−1 − Z−1

V

)
− Γ, Z < ZV ,
−Γ, Z > ZV ,

(6.88)

which can be used for temperature gradients measured close to the surface in
computing the parameter

T∗ = k Z

(
dTZ
dZ

+ Γ

)(
ZV

ZV − Z

)
. (6.89)

While this form suggests a small Z evaluation height could aid in computing T∗
by reducing the ZV influence, we note that the above has not been considered the
foliage displacement-height, which tends to complicate the evaluation of Z itself.

Results of this chapter’s structure models provide needed inputs for Chapter 8’s
long-wave radiation calculations. They also support time-evolution calculations for
variables TA and ZT , to be discussed in Chapter 9.
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7. Cloud and Surface Radiative Effects Modeling
In this chapter the equations used to model the radiative fluxes at the surface are

described. To some extent this is a review of material first discussed in Tofsted

(1993) with regard to Shapiro’s cloud model (1972) of direct and diffuse radiation

reaching the ground. Therefore, Section 7.2 is merely an overview of the Shapiro

model following an overall review of the various radiation calculations included

in the Deardorff (1978) model in Section 7.1. Beginning in 7.3, a new method

for handling short-wave radiative reflections in a surface/foliage layer is described.

This method is also considered in a slightly modified form to treat infrared fluxes

within the surface interface. In the process, the methods used to describe the

radiative fluxes are homogenized with the multiple surface methods inferred from

the convective-flux calculations.

7.1 Review of Standard Radiation Models
In his groundbreaking 1978 paper, Deardorff brought together a series of methods

developed across the research spectrum to compute the surface energy budget.

It seems appropriate to review his methodology and then suggest, in follow-on

sections, improvements used in the current model.

First, it should be pointed out that Deardorff (1978) provided no details regarding a

shortwave solar-radiation model. This is interesting and suggests that he simply

used direct measurements of incident solar-irradiation information. He simply

assumed a known value for the incident solar radiation above the top of the foliage

layer that is denoted by S↓ here. He therefore wrote

SG ↓ = (1− σF )S↓, (7.1)

as the radiation reaching the ground, and

SG ↑ = αG (1− σF )S↓, (7.2)

as the radiation reflected at the ground. The difference

SG net = SG ↓ − SG ↑ = (1− αG) (1− σF )S↓, (7.3)

thus represents the net rate of solar shortwave radiation absorption at the ground.
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Deardorff then modeled the net reflected short-wave radiation as

S↑ = (1− σF )αG S↓ + σF αF S↓. (7.4)

One might therefore infer that the net flux of short-wave radiation absorbed by the
foliage layer should be expressed as

SF,net = σF (1− αG)S↓, (7.5)

although Deardorff did not provide an exact equation describing this as such.

In so doing, Deardorff ignored the effects of all multiple reflections from soil and
plant surfaces. Deardorff also discounts any reflected radiation from the surface
reaching the foliage. Perhaps such assumptions could be valid for stands of
cultivated crops, but for relatively uniformly mixed terrain of partial vegetation,
foliage–soil interactions should not be ignored. The Tofsted (1993) SEB model
simply adopted the Deardorff technique. Here, this method is updated with a more
exact solution but using the same assumption of a single vegetated layer used by
Deardorff.

Next, consider the method used by Deardorff (1978) to model the surface long-wave
radiation flux from the atmosphere. Deardorff writes the net long-wave flux at the
top of the foliage layer as

RL ↓ =
[
σC + (1− σC) 0.67 (1670 qa)

0.08
]
σ T 4

a , (7.6)

where σC is the fractional cloud cover, qa is the atmospheric specific humidity, σ is
the Stefan–Boltzmann constant, and Ta is the air temperature in Kelvin. Effectively,
then, Deardorff is using a relation of Staley and Jurica (1972) to express the
atmospheric emissivity as

εA = 0.67 (1670 qa)
0.08. (7.7)

Now Eq. 7.6 appears to be wired incorrectly. That is, infrared emissions from
the humid atmosphere occur from molecules within a relatively short distance:
Radiation reaching the ground arises from molecules within approximately only
the first 10 m above ground! Beyond that distance, due to absorption effects,
air molecules within the first 10 m tend to nearly completely absorb infrared
energy emitted by molecules farther from the surface. Hence, it should be that
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the atmospheric emissivity is the restricting factor on the near-blackbody radiation
emerging from the cloud base, and not the fractional cloud cover that scales the
atmospheric band emissions of the near-surface atmosphere. Thus, instead, the
relation,

RL↓ = εA σ T
4
a + (1− εA)σC σ T

4
c , (7.8)

is used, whereby the effect of the near-surface air emissivity is such that it filters
the incident longwave energy arising from the cloud base associated with the
temperature Tc. In the process a new variable must be assessed (Tc), yet from the
input parameters a reasonable guess can be obtained for this temperature based on
the temperature of the top of the boundary layer plus a guess as to the height of the
cloud base.

The more significant unknown to be addressed regarding the infrared radiation is
the appropriate form for modeling the atmospheric emissivity, εA. One notes that the
expression for εA given in Eq. 7.7 approaches zero at zero atmospheric humidity.
Hence, we know that this form ignores the effects of carbon dioxide (as well as
oxygen, nitrogen, and all other dry gases). This suggests at a minimum a reanalysis
of atmospheric emissivity is needed. This will be developed in Section 7.6, but first
a model of the radiative interactions within the surface interface will be developed in
Sections 7.3–7.5. This analysis will determine the apportionment of energy between
the soil and foliage surfaces, as well as consider visible direct and diffuse radiation
and long-wave radiation flowing from the ground, foliage, and atmosphere.

7.2 Shapiro’s Cloud Model
Shapiro (1972; 1982) constructed an empirical model based on reported radiation
data from a series of ground stations along with correlated cloud condition
reports. The model consisted of 3 cloud layers where absorption, transmission,
and reflection coefficients were estimated for each layer along with a ground-
haze effect. Each cloud layer computed the reflection (Rk), transmission (Tk), and
absorption (Ak) coefficients which satisfied the condition

Rk + Tk + Ak = 1, (7.9)

for the kth layer, guaranteeing conservation of energy. Shapiro’s model was based
on observed weather conditions and Eppley radiometer outputs of net solar radiation
received under those conditions. Shapiro based his model on solar elevation to
produce tabulated data sets for different clouds in each indicated cloud layer.
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The choice of cloud types and layer locations has been approximated in the cloud
model of the current program to simplify the input; however, the model could be
expanded to accommodate increased information availability by the user since the
full Shapiro model has been incorporated into the program, including the data sets
of all possible cloud conditions. Currently, the user is only permitted to select a
single cloud layer’s elevation and a single cloud type (cumulus, stratus, or cirrus).

For a given cloud type and height the Shapiro model uses the computed solar
elevation to interpolate reflectance, transmittance, and absorption information from
the tabulated database. Once the layer data have been interpolated, the Shapiro
method uses the equivalent surface albedo to compute the net downward radiation
at the top of the surface interface, S↓.

As his database Shapiro used the SOLMET station network of radiation-data
collected at 26 sites scattered throughout the continental United States. Shapiro’s
database also included precipitation impacts; however, from the standpoint of an
optical turbulence evaluation, once precipitation begins it is considered a dominant
effect and would either completely or effectively decrease the turbulence impacts
to the level that a calculation would be unnecessary.

Shapiro considered cloud types as consisting of Thin Cirrus or Cirrostratus, Thick
Cirrus or Cirrostratus, Altostratus or Altocumulus, Stratocumulus or Stratus, and
Cumulus or Cumulonimbus. Effects were classified according to the cosine of the
zenith angle of the sun by increments of 0.10 from 0.05 to 0.95.

The Shapiro model calculated the net downward radiation flux through use of a
multiple scattering computation between the different cloud layers, the haze layer,
and the surface. In implementing this model, the net surface reflectance is evaluated
using a multiple scattering approach described in Sections 7.4–7.6. However, the
model’s haze-layer parameterization has been disabled, due to complications over
the maximum (10 km) visibility reported at airports. (Low humidity sites that
feature high turbulence often see visibilities much higher than 10 km.)

In the model’s code, the Shapiro cloud model is encapsulated in a single subroutine
that is called any time the sun is above the horizon. Input cloud information is
translated into formats associated with the Shapiro model, including cloud fractions
and types in each layer and solar elevation.

For further details on the Shapiro model, the reader is directed to the original
documentation.
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7.3 Foliage Layering Model
In this and the next 2 sections the basic Deardorff method for handling the effects of

a foliage layer on radiative fluxes will be examined and updated. As was pointed out

in Section 7.1, the Deardorff approach does not include any feedback effects due

to multiple reflectances between the foliage layer and the ground surface. There

also appears to be a consistency issue with regard to this apparent contradiction:

In the convective exchange model the foliage-surface area is assumed to exceed

the area of underlying surface by a factor of 7.0, while the radiative model relies

on a flat 2-sided, semitransparent layer whose multiplying factor is thus only 2.0.

To resolve this inconsistency, several steps must be examined. The first step is

to construct a consistent model of the foliage layer that produces realistic values

for the surface area’s multiplying factor. Once this foliage model is developed

(Section 7.3), including a leaf-orientation distribution model, a foliage model can

be constructed based on multiple foliage sublayers. Calculations of reflection,

absorption, and transmission can then be performed for a single sublayer (Section

7.4), and then full model calculations can be performed (Section 7.5).

The main Deardorff inconsistency apparently is connected to the assumption that

for a given value of σF , the fractional underlying surface covered by the foliage,

the leaf surfaces are simply assumed to be flat and parallel to the underlying ground

surface in the radiation model, but not in the convective flux model. But, in general,

the leaf surfaces will exhibit random orientations to the ground. Therefore, a new

model is developed in this section to account for these differences. The result is that

the surface interface will exhibit different reflectance and transmission properties

relative to radiation flowing through the layer in different directions. In particular,

this will produce a solar-zenith-angle dependence that was not previously modeled

as well as altering the diffuse scattered and transmitted radiation factors from values

used previously.

To model the effect of random orientation of the leaf surfaces, we first note that

each leaf has 2 surfaces for every surface oriented in the proper direction to receive

incident radiative flux energy. Therefore, the relative area of leaf surface per area of

underlying surface covered (σF ) is always at least NF = ΥF σF ≥ 2σF . We further

recognize that there are 2 other parameters of interest: αG, the soil albedo, and αF ,

the foliage albedo, both with respect to directly incident radiation.
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To develop this model, several simplifying assumptions are first made. Reflections

off either the ground or leaf surfaces will be considered Lambertian: where the

emerging radiance is a constant, and the resultant irradiance is proportional to the

cosine of the angle due to the relative cross section of the source being reduced

for directions off the normal to the surface. Second, transmittance through leaves

will also be considered to emerge in a Lambertian form as well. Third, each leaf

will be considered to be flat, consisting of a single normal vector associated with

the appropriately directed leaf surface. Fourth, each leaf will be assumed to have

a uniformly random orientation relative to the vertical axis. While this condition

ignores sun-tracking (phototropic) plants, it simplifies the calculations considerably

and accounts for many types of plants.

Based on this fourth assumption, it is relatively easy to visualize the probability

density function of the leaf orientations. It is such that the distribution of the

leaf normal vectors perpendicular to the sides of the leaves, when considering

downward-flowing radiation, will be evenly distributed over the upper hemisphere.

If we define as 1.0 the square area of the circle that lies underneath said hemisphere,

then the total area of the upper surface of said hemisphere must equal 2.0. This is

developed mathematically in the following discussion:

Let the normal vector to a given leaf be described by a unit vector whose orientation

is described by variables θ (zenith angle) and φ (azimuth angle) oriented in the

upper hemisphere.

It is common to write vectors in a Cartesian system, denoting a triplet (x, y, z)

as the components of such vectors, where the +z axis is oriented in the vertical

direction. For unit vectors, x2 + y2 + z2 = 1. For integration purposes the standard,

spherical-polar angle system will be adopted. Let θ be the angle of a unit vector

measured relative to the +z axis, and let φ equal the azimuthal angle measured

counterclockwise in the x − y plane from the +x axis, initially increasing toward

the +y axis. Then, a given unit vector can be expressed as

Ω̂ = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)). (7.10)

The solid angle, dΩ, about a unit vector Ω̂ is then designated by

dΩ = sin(θ) dθ dφ. (7.11)
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For the uniform orientation distribution, for any given upward-directed unit vector
Ω̂, the probability of leaves being oriented in that direction dP = dΩ/(2π) is equal
in all directions. This is shown through the following integral:

∫
dP =

∫
H

dΩ

2π
=
∫ 2π

0
dφ

∫ π/2

0
dθ sin(θ)

1

2π
= 1, (7.12)

where the solid-angle integral is performed over the upper hemisphere (H).

On the other hand, the overall surface area covered by such a distribution is
measured by foreshortening the surface area subtended by any given leaf according
to the cosine of its orientation with respect to the vertical direction. This is evaluated
via the integral:

∫
cos(θ) dP =

∫
H

cos(θ)
dΩ

2π
=
∫ 2π

0
dφ

∫ π/2

0
dθ sin(θ) cos(θ)

1

2π
= 1/2.

(7.13)

In this model there is thus twice as much upper-leaf-surface area as the underlying
surface area covered, and 4 times as much surface area overall when including the
lower-leaf surfaces, meaning NF = 4σF .

For this distribution ΥF appears to equal 4.0. However, this value is obviously less
than the reported nominal value ΥF = 7 (Monteith et al. 1965; Allen and Lemon
1972) used by Deardorff. To obtain larger values, recall first that ΥF is defined as the
ratio NF/σF in Eq. 2.21.B, yet based on the immediately preceding development a
single foliage layer could never produce this observed behavior.

Therefore a multilayer foliage model must be developed, but the means of
describing such a model requires several further considerations. First, let us assume
that leaves in different layers will not be correlated with one another. That is, the
positions of individual leaves in separate layers are assumed independent. Consider
a plant canopy consisting of several such independent layers, each of equal foliage
density. Call this density σFm, where there are M total layers. For example, if there
were 3 layers (M = 3), then the total foliage-surface area per square underlying
surface would be just the sum of the surface area in the 3 layers, or,

NF = σF1 ΥF1 + σF2 ΥF2 + σF3 ΥF3. (7.14)

For simplicity, the orientation of the leaves can be assumed constant and equal in
each layer, such that ΥFi = 4. Also, for simplicity, the amount of foliage can be
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modeled as equipartitioned between the different layers, such that σFm = σs, a

single value characterizing all of the sublayers. Hence, in this model,

NF = 12σs. (7.15)

Next, since the leaves in each layer are distributed randomly, the overlap of the

leaves between the different layers will also be random. The probability of a clear,

vertically drawn line of sight through a given layer becomes (1 − σs). Then, the

probability of seeing through all M layers becomes (1 − σs)
M . So, based on the

definition of σF ,

(1− σF ) = (1− σs)M . (7.16.A)

σs = 1− (1− σF )1/M . (7.16.B)

Then the total foliage-surface area per unit of underlying surface becomes

NF = NF (M) = 4M σs = 4M
[
1− (1− σF )1/M

]
. (7.17)

In the limit, as the number of layers increases, the leaf fraction in each layer is

reduced and a limiting behavior emerges:

NF ∞ = NF (M)|lim M→∞ = −4 ln(1− σF ), (7.18.A)

leading to a result in a familiar form,

1− σF = exp (−NF ∞/4) . (7.18.B)

From this result, one may express the function,

ΥF ∞ =
NF ∞

σF
= −4

ln(1− σF )

σF
. (7.19)

This function begins at 4.0 for σF = 0 and increases steadily. Interestingly, NF ∞ =

4.8 at σF = 0.7, such that ΥF ∞ ≈ 7 at this point. Coincidently, while Deardorff

cites this factor of 7, the studies he compared to and his computations were made

with σF = 0.75. Yet, from these relations it is clear the point ΥF ≈ 7 is simply one

point along a continuum of behavior.

In other words, it appears that using a constant ΥF was simply a convenient

approximation developed by the energy-budget-modeling community to describe
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the primary behavior of the cultivated crops studied. But in more general cases, such

as fallow fields and desert regions where σF varies significantly from the cultivated

norm, the standard value would not be appropriate.

In the model developed here, NF will be identified with NF ∞ and ΥF with the

ΥF∞ expression above. However, since NF ∞ → ∞ as σF → 1, σF will be

restricted in range (σF ≤ 0.975) to avoid these limiting cases. To check whether

this is a reasonable upper limit for this variable, consider a set of circular trees that

are nonoverlapping, but touching along their outer edges, whose leaves fall within

cylinders of equal radius about their trunk centers. If each tree has a radial extent of

1.0, then an equilateral triangle connecting the centers of 3 adjacent trees will have

sides of length 2.0, with each tree subtending π/6 of the center-to-center triangle,

such that the net footprint of the 3 trees is π/2 of the full triangle of net area
√

3.

The net foliage fraction is then π/(2
√

3) ≈ 0.9069. The chosen maximum therefore

exceeds this case and should be sufficient for any reasonable foliage situation.

However, an infinite-layer model is merely a mathematic construct — it cannot be

implemented in software. But as illustrated in Fig. 12, low-order layer models are

insufficient to account for the infinite-layer model’s NF behavior. Therefore, a 100-

layer model was selected since it tracks the infinite-layer model’s behavior up to

large σF values.

Because the behavior of the infinite-layer model will be considered the standard

of comparison, the nomenclature will now be simplified to remove the infinity

symbols; whenever NF and ΥF are used hereafter, it is implied that we intend NF∞

and ΥF∞.

Next, notice that from Eq. 7.16.B the quantity (1− σs) expresses the transmittance

factor for radiation passing vertically through the leaf layer without intercepting one

of the leaves. This transmittance expression abets the transitioning of the discussion

to consideration of radiative-transfer processes involving light passing through the

leaf sublayer model from zenith angles (angles relative to the vertical axis) other

than zero (directly downward). Let θR be a zenith angle of light passing through the

foliated layer. And let µ = cos(θR).

The length of the scattering path through a finite-thickness leaf layer is then longer

by the factor 1/ cos(θR) compared to radiation passing vertically through the layer.
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Fig. 12 Various models of NF dependence on σF comparing Deardorff constant ΥF

dependence versus multilayer model dependencies and infinite-layer dependence

In this case the transmittance factor through the whole foliage layer becomes

T (θR) = exp[−NF ∞/(4µ)] = (1− σF )1/µ. (7.20)

Thus, even for foliage layers with low σF , incident direct sunlight will always

become effectively cut off beyond some angle due to shadowing of the ground by

the leaf layer. The greater σF becomes, the more rapidly the light is cut off as θR
increases.

This transmittance term fully describes the effect of the leaf layer on the direct

radiation-transmission component. What remains is a series of results involving

radiation that is reflected from foliage or transmitted through the leaves. However,

before engaging in these analyses, let us summarize the results of the current

section.

While Deardorff’s approach assumed one could fix the value of ΥF at 7.0,

regardless of the value of σF , the results of the current section reveal, first, that

more than one layer is required to obtain this 7.0 figure and, second, that when

the placement of leaves in multiple, randomized foliage layers is considered, then

the value of ΥF becomes dependent on the overall fractional foliage cover σF .

Moreover, we have seen that σF also guides the overall, transmittance factor of

direct radiation passing through the foliage layer, but this effect is now also a

function of the solar-zenith angle.
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As a consequence, we have found that both NF and ΥF are functions of σF . Or,

to express this concept slightly differently, because the leaf positions in different

layers are decorrelated, the net σFi in each layer is less than σF , such that the leaf

surface does not scale linearly with σF .

A single-layer model thus plots along a maximum linear relation of 4σF , but this

line is insufficient to explain observedNF dependence. Because of this limitation, it

was necessary to consider extra layers. But, these extra layers require a multilayer

canopy model to describe radiative interactions much more complex than those

considered by Deardorff.

This also illustrates fairly clearly that the canopy results commonly published,

involving the assumed NF = 7σF behavior, would tend to overpredict the impact

of foliage for thinner foliage canopies and would tend to underpredict the impacts

of canopies with σF > 0.7.

In desert conditions normally σF values are relatively small (0.1 ≤ σF ≤ 0.2),

producing ΥF values close to 4. These will now predict surface effects more heavily

weighted toward soil fluxes than those previously obtained. Such a model would

seem to be consistent with the natural dispersion of desert plants, where the first

seeds to sprout take up the available water supply. Nonetheless, certain desert

vegetation, such as mesquite bushes, challenge this model and typically represent

concentrations of dense, localized leaves that also can alter the shape of the very

terrain itself through the accretion of hummocks of dirt at their bases, trapping the

dust of many wind events.

7.4 Foliage Sublayer Reflectivity and Emissivity Model
Based on the layered foliage model posited in the previous section, a new

connection can be developed between the observed additional surface area of

foliage and the statistics of light propagating vertically through a multilayered

foliage canopy with a uniform leaf-orientation distribution model. This process was

begun in the previous section for the relatively simple calculation of the proportion

of direct radiation that can pass through a layer. Still to be resolved are the details of

various forms of diffuse radiation propagating through a foliage layer. In this section

the first stage of that resolution process is considered by computing the reflective

and transmissive properties of the randomly oriented leaf model. These results
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are analyzed via integral techniques for direct scatter from the leaf-orientation

distribution; then, further integration to determine the scatter/transmission of direct

radiation; and, finally, the resolution of direction-averaged, stream-wise, upward-

and downward-flowing radiation fields.

The first step in resolving these effects of reflection and transmission requires a

detailed analysis of the scattering and reflective properties of a single leaf oriented

in a specific direction to the direction of the incident light. Once the properties of

an individual leave have been resolved, the mean properties of a foliated layer can

be evaluated through integration over the leaf-orientation distribution.

Let us designate by the unit vector Ω̂ the specific orientation of the upper surface

of a leaf designating a vector normal to the otherwise flat surface of a leaf. If

the upward direction is indicated as the positive z axis in a standard (x, y, z)

Cartesian coordinate system, then the positive z axis is associated with the vector

triplet (0, 0, 1). For a given leaf, since the leaf distribution considered is uniform

in direction, the scattering properties of a general leaf can be analyzed by selecting

specific input and output directions for energy flows that exploit the symmetries of

this system. Let us call Ω̂i the direction of incidence of incoming radiation, where

Ω̂i points into the direction of the incoming radiation. Second, designate by Ω̂s the

direction into which radiation is leaving following scattering from the leaf surface

(i.e., the scattering direction).

To simplify the mathematics, let us consider for computational purposes that the

incident radiation is approaching the leaf from the zenith direction Ω̂i = (0, 0, 1).

Also, let us place the leaf at the origin of coordinates. This simplifies the calculation

of the scattering statistics. Symmetry of the leaf-orientation distribution also

guarantees that the scattering results, after integrating over the leaf distribution, will

be independent of the azimuth of the outgoing radiation. Therefore, the scattering

direction Ω̂s may be chosen to lie in the x−z plane (the scattering azimuth is zero).

The probability that a random photon propagating vertically downward from

incident direction Ω̂i will encounter a leaf whose normal vector is Ω̂ can then be

expressed as just the uniform leaf-orientation probability dP = dΩ/(2π) times the

foreshortened area of the leaf (proportional to cos(θ)):

dPLθ = cos(θ) dΩ = sin(θ) cos(θ) dθ dφ. (7.21)
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This result is, of course, conditioned upon the event that a leaf was actually struck

as the photon passed through the foliage layer.

To better understand this, let us dimensionalize the calculation: Consider an

infinitessimal leaf-surface area dA. Let I represent the photon flux arriving at

the leaf from the zenith incident irradiation direction +ẑ (in photons per second

per meter-squared area that would otherwise impinge upon the underlying ground

surface oriented perpendicular to the direction of the streaming incident photons).

For a leaf of orientation Ω̂, the number of photons striking dA per second will be

dF = I dA cos(θ). (7.22)

For underlying ground-surface area S and relative leaf-layer cover σFi, if the leaves

were removed the net flux per area S would be I S. But, due to the leaves, only

I S (1 − σFi) photons reach the ground unscattered per second. So, the portion of

photons scattered, transmitted, or absorbed by the leaf-layer must be I S σFi.

From the development of the previous section, we recognize that σFi S is just the

surface under the leaves. And, due to the leaf-orientation-distribution model chosen,

the total area of upper-leaf surfaces exposed to the radiation must be σFiA, where

A = 2S. Therefore, dA can be directly connected to dΩ or dP via

dA = 2S dΩ/(2π) = 2S dP, (7.23)

such that
∫
dA = 2S. That is, the integrations have been normalized so that only

the radiation that strikes the foliage is being considered.

Let us assume the leaves are Lambertian reflectors. While this is not exactly true, it

still provides an improvement over the Deardorff model. Let αF be the reflectivity

coefficient of the foliage. For a Lambertian reflector the radiation appears to exhibit

equal radiance in all scattering directions, but the apparent area of the scattering

surface is reduced according to the cosine of the scattering direction relative to the

normal to the scattering surface, denoted by the angle γ. The normalization constant

for this distribution of scattered energy is obtained by integrating over all scattering

directions:

X = 2π
∫ π/2

0
cos(γ) sin(γ) dγ = π. (7.24)
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Hence, we divide the incoming energy by π to determine the outgoing photon flux

in direction γ relative to the surface normal:

dR = αF I dA cos(θ) cos(γ)/π, (7.25)

where dR is the differential radiance in the outbound direction. This resulting

quantity measures the rate of photon flow per second per steradian.

To better quantify this result, consider the output direction,

Ω̂s = (sin(ψ), 0, cos(ψ)). (7.26)

The normal to the surface dA is specified by

n̂dA = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). (7.27)

The cosine of the angle between the outbound radiation vector and the surface

normal thus becomes

cos(γ) = n̂dA · Ω̂s = sin(ψ) sin(θ) cos(φ) + cos(ψ) cos(θ). (7.28)

Only positive incident energy contributions are permitted when computing the

reflected radiation, such that cos(θ) > 0, requiring 0 < θ < π/2. Second, only

positive cos(γ) contributions are permitted for the reflected radiation, as well.

For ψ < π/2, there will be a region 0 < θ < θc where the entire range of φ produces

positive cosines. This region is limited by

cos(ψ) cos(θc)− sin(ψ) sin(θc) = 0; (7.29.A)

cos(ψ − θc) = cos(θc − ψ) = 0; (7.29.B)

θc − ψ = π/2; −→ θc = π/2− ψ. (7.29.C)

Beyond the value of θc, for each value of θ the range of φ is given by −φx < φ <

+φx, where the cosine equals zero at the limits:

sin(ψ) sin(θ) cos(φx) + cos(ψ) cos(θ) = 0; (7.30.A)

cos(±φx) = − 1

tan(ψ) tan(θ)
. (7.30.B)
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Here, because tan(θ) becomes infinite at θ = π/2, the limits of φx always become

±π/2 at the limiting edge of the integration region (because a leaf oriented at an

angle θ > π/2 cannot receive downward incident radiation on its upper surface).

However, this result is only useful for ψ < π/2 itself. For a scattering direction in

the lower hemisphere (ψ > π/2), there will exist a minimum angle θm below which

there will be no contribution:

θm = ψ − π/2. (7.31)

Beyond this minimum, there will be a region of integration in φx beyond which the

cosine will become negative:

sin(ψ) sin(θ) cos(φx) + cos(ψ) cos(θ) = 0; (7.32.A)

cos(±φx) = − 1

tan(ψ) tan(θ)
. (7.32.B)

This is the same result as before, except that in the former case tan(ψ) was greater

than zero, so |φx| > π/2. Here, tan(ψ) < 0, so |φx| < π/2.

Let us then determine the net scattered radiation, R, arising from all possible leaf

orientations that contribute (i.e., from the full surface, A, of the leaves). We then

divide by the total underlying surface, S = A/2, as a normalization step. By

further dividing by the factor αF and the incident flux I , the resulting function

will represent a probability distribution of scattering in the given direction:

Pscat(ψ) =
R/S

αF I
=

1

S

∫
A

dA cos(θ) cos(γ)/π; (7.33.A)

Pscat(ψ) =
1

π

∫∫
dθ dφ sin(θ) cos(θ) cos(γ)/π; (7.33.B)

where the integration over the leaf surfaces has been replaced by an integration over

the distribution of surface normals of the surface elements. The remaining step is to

expand the cos(γ) term using the expression in Eq. 7.28, along with the integration

limits described. These steps are accomplished in an implementing numerical-

integration routine. Based on the geometry, we recognize that for incident

radiation from above, the downward-scattered radiation, Pscat(π), must equal zero.

Conversely, Pscat(0), the backscattering case, must represent a maximum return,

and cos(γ) reduces to just cos(θ), simplifying the math.
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For the backscattering case,

Pscat(0) =
1

π2

∫ 2π

0
dφ
∫ π/2

0
dθ sin(θ) cos2(θ);

=
2

π

∫ π/2

0
dθ sin(θ) cos2(θ) =

2

3π
≈ 0.2122. (7.34)

Based on this result, the Pscat(ψ) numerical integration results have been plotted in

Fig. 13 in a normalized form by dividing through by the factor 2/(3π).

Fig. 13 Scaled and normalized reflection function Pscat(ψ)/[2/(3π)]

Since Eq. 7.33.B is a general rule for calculating a reflection-distribution function,
like the phase functions of radiative transfer theory, this function will satisfy the
normalization condition,

2π

π∫
0

Pscat(ψ) sin(ψ) dψ = 1. (7.35)

However, like a phase function, Pscat(ψ) only characterizes scattering from a
specific direction into a chosen direction. The results thus only characterize
outputs evaluated as though falling onto a surface perpendicular to the direction
of propagation of the scattered energy, Ω̂s. To use this function in the model, this
equation must be integrated out to determine the net scatter of radiation from the
leaf-layer into upward- and downward-directed hemispheric radiation flow streams.

To do so, one applies Pscat(ψ) in another integral over each hemisphere and weighs
the contribution in each scattering direction according to the cosine of the radiation
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in the corresponding direction (either +ẑ for upward-directed radiation or −ẑ for
downward-flowing radiation).

To perform this computation, one must first define a quantity I ′ = I cos(θR)

describing the vertical component of the energy flux of incident radiation as it
arrives at the scattering layer. Here θR is again the zenith angle of the approaching
light relative to the normal axis of the scattering layer (±ẑ). For direct shortwave
radiation this will be given by the solar-zenith angle. However, following this
stage, a further step will be used to integrate over complete hemispheres of input
streaming radiation to determine the scattering of diffuse radiation into upward- and
downward-directed streams.

Second, to determine the net stream-wise fluxes of radiation, a small test patch of
foliage is placed at the origin of coordinates and oriented so that the normal to this
patch is in the +ẑ direction. The net vertical flux returned from this patch can be
evaluated by integrating over the upper hemisphere of radiation emerging from the
patch and determining its contribution in the +ẑ direction (or −ẑ for the radiation
scattered into the downward hemisphere).

Let us define a direction Ω̂R to describe the unit vector pointing into the direction
of the incident direct radiation, using angles θR and φR in the usual sense. For
radiation scattered from the surface patch into a direction designated by a scattering
unit vector Ω̂s with angles θs and φs, let us assign the solid angle subtended about
this direction as

dΩs = sin(θ) dθ dφ. (7.36)

The number of photons directed in the Ω̂s direction is

αF I
′ dAF Pscat(Ω̂R · Ω̂s) dΩs, (7.37)

where dAF is the differential scattering surface area, such that αF I ′ dAF is the
total number of scattering photons, as guaranteed by the integral over all scattering
directions indicated in Eq. 7.35.

The net vertically upward directed flux is thus,

F↑(θR) =

2π∫
0

dφs

π/2∫
0

αF I
′ dAF Pscat(Ω̂R · Ω̂s) cos(+θs) sin(θs) dθs. (7.38.A)
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The downward directed flux is,

F↓(θR) =

2π∫
0

dφs

π∫
π/2

αF I
′ dAF Pscat(Ω̂R · Ω̂s) cos(−θs) sin(θs) dθs. (7.38.B)

Dividing F↑ through by αF I ′ dAF produces the vertical component of the relative
flux of photons for the incident angle of radiation θR. A similar calculation can be
performed for downward-directed radiation. Let these reflected-radiation terms be
identified as

RU(θR) = F↑(θR)/(αF I
′ dAF ); (7.39.A)

RD(θR) = F↓(θR)/(αF I
′ dAF ). (7.39.B)

For the uniform leaf distribution described, results are plotted in Fig. 14 that divide
the reflected radiation into an upward-directed stream (red line), a downward-
directed stream (blue line), and a combined reflection total (green line) based on the
incidence angle of the available direct radiation given by the zenith angle varying
from zero (straight downward light source) to horizontal radiation (arriving from
the horizon).

Fig. 14 Upward- and downward-integrated scattering-probability plots as functions of
incident radiation’s zenith angle; green line shows sum of upward and downward components.

Figure 14 provides much information. First, the flux of energy reflected upward
from the leaf layer is seen to be a slowly varying function of the zenith angle
up to moderate values. Hence, Deardorff’s assumption that surface reflectance is
independent of the radiation angle of arrival approximately holds up to moderate
incident angles, but clearly fails for near-horizontal incidence.
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Second, the total reflectance adds to less than 50% of the incident radiation, but this
is similar to the situation with Lambertian reflectors. There, recall that if one were
to integrate over the output solid angle of 2π and normalize the energy, one would
obtain a normalization constant of (2π)−1, as in Eq. 7.12; but, when accounting for
the cosine of incidence, for the outgoing energy to be balanced against the incoming
energy in the case of a 100% reflective surface the normalization coefficient must
be adjusted to π−1, as illustrated in Eq. 7.13. Hence, for energy-conservation
purposes the results of Eqs. 7.38 and 7.39 must be normalized by the sum of the
upward- and downward-directed fluxes (the green line in Fig. 14). Once this effect
is accounted for, the resulting reflection curves are expressed as shown in Fig. 15.
These normalized forms can be expressed as

R̃U(θR) = RU(θR)/[RU(θR) +RD(θR)]; (7.40.A)

R̃D(θR) = RD(θR)/[RU(θR) +RD(θR)]. (7.40.B)

Fig. 15 Normalized hemispherical reflection curves, given scattering occurs into the upward
(red) and downward (blue) hemispheres.

Now, leaves transmit as well as reflect radiation in the shortwave (solar) band. To a
first order of approximation we can model such transmissions as producing outputs
that are Lambertian in distribution in the same pattern as the reflected radiation. But,
therefore, if it is assumed that whatever does not reflect will transmit (by ignoring
absorptions), then one may immediately write transmission factors equivalent to the
reflection factors, as,

T̃U(θR) = R̃D(θR); (7.41.A)

T̃D(θR) = R̃U(θR). (7.41.B)
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The data set corresponding to the normalized reflection functions of Fig. 15
can next be used to determine the integrated mean reflectivity coefficients for
incident diffuse-streaming radiation. To use the terminology of satellite radiometry,
this involves determining the effects of the foliage distribution on white sky

incident radiation. And, by reciprocity, once the backscattering statistic, RDB, has
been determined, the forward-hemisphere scattering statistic, RDF , is immediately
computed via the normalization RDB +RDF = 1.

These quantities are determined by integration over the incident radiation’s solid
angle, accounting for the cosine of the incident radiation, and averaging the
outgoing radiation over each hemisphere.

RDB =
1

π

π/2∫
0

(2π) cos(θi) R̃U(θi) dθi = 0.7222, (7.42.A)

RDF =
1

π

π/2∫
0

(2π) cos(θi) R̃D(θi) dθi = 0.2778. (7.42.B)

In a similar correspondence with the transmission factors, we may also write

TDF = RDB = 0.2778; (7.43.A)

TDB = RDF = 0.7222. (7.43.B)

This completes the evaluation of the statistics of reflection and transmission from a
single sublayer of the foliage canopy. In the next section these single-layer statistics
are used to sum the aggregate behavior of a complete foliage layer using the multi-
layer model described in Section 7.3.

7.5 Foliage and Surface Aggregate Radiation Properties
In the previous section a group of computations was performed to evaluate the
reflective and transmissive behaviors of a thin layer of foliage characterized
by a uniform leaf-orientation distribution. However, as illustrated in Fig. 12,
to adequately characterize the behavior of foliage layers with surface covering
fractions, σF , in excess of approximately 0.2, a multilayer model is necessary to
achieve observed values of ΥF exceeding 4.0 corresponding to cultivated crops
(7.0) or other moderate-to-dense foliage conditions.

To handle such surfaces, the statistics of scattering/transmission from a single thin
layer, as computed in the previous section, must be introduced into a scattering
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model consisting of multiple plane–parallel foliage sublayers. Such multiple
scattering techniques have been well established for radiative transfer applications.
Examples such as the doubling method and discrete-ordinates techniques are
generally necessary because aerosol and molecular scatterers within the atmosphere
can be highly reflective. It is not the purpose of this section, however, to review,
endorse, or adopt any of these techniques. Rather, since foliage and soil surfaces
are moderately to highly absorbing, simplified methods can be adopted that attempt
to model such reflections and transmissions using simpler techniques.

To put this issue in perspective, recall that Deardorff’s (1978) model of surface
reflectances ignored the issue of multiple scattering between the foliage and
ground surfaces altogether. Hence, any development in this area should provide
a substantive improvement in the current state of the art.

To begin the process of formulating such a reflection/transmission model for the
flow of radiation within the surface interface, let us begin by focusing on shortwave
radiation components. In this model, let us assume that the incident shortwave
radiation can be approximated by 2 components: The first is a direct component
consisting of radiation propagating through the atmosphere that appears to be
streaming from the solar disk itself and arrives at the surface from an incident
zenith angle θR measured relative to the vertical axis (+ẑ). A second component
is modeled as the diffusely scattered radiation arriving from the remainder of
the sky, approximated as a Lambertian source (white sky radiation component)
produced by the scattering of solar radiation from molecular (Rayleigh scattering)
and aerosol atmospheric constituents. (Components were derived from the Shapiro
[1972] model.)

The white-sky diffuse-radiation component will appear as an input at the top of the
layered-foliage model. The diffuse radiation then passes through the foliage layer
via multiple reflections and transmissions between layer.

In contrast, direct radiation must be passed down into the sublayer model,
initializing each level since the direct radiation will use the direct-to-diffuse
transformation rule; on the other hand, the diffuse-to-diffuse radiation begins by
using the stream rule from the outset. Following the initialization procedure, the
streaming secondary radiation is multiple-scattered through the sublayer model as
secondary-source terms between the model layers, plus a final surface reflection.
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In either case, the model is run until all of the energy is exhausted from the system
by multiple absorption events. At each iteration, the amount of energy removed
by each layer is computed to determine whether the ground surface, leaf layer, or
atmosphere are the ultimate recipients of the energy. Tabulated results can then be
generated for each of the various energy forms passing through the interface layer.
The diffuse radiation will depend only on the variables σF , αF , and αG, while the
direct radiation contributions will also depend on θR.

Nominally, the value of αF is set to 0.2, but this is understood to be effective
layer reflectance of the foliage. Since the leaves are both forward and backward
scattering, as well as transmissive, it will be necessary to perform numerical
experiments to find effective leaf transmission and reflection coefficients that
produce the appropriate aggregate layer reflectance of 0.2.

Complicating this process is the fact that leaves exhibit significant variations in
spectral reflectivity. Below 0.80 µ, in the visible band, foliage reflectance is low and
focused in the green portion of the spectrum around 0.55 µm. Beyond 0.80 µ, the
reflectivity of leaves increases dramatically, at times exceeding 0.60, depending on
the sample tested. Neu et al. (1990) collected numerous sets of spectral-reflectivity
data for both freshly cut and dry leaves, plotting them in great detail in their
report. However, the data provided are at times contradictory and do not provide
a single easily accessible result usable in the present model. Hence, equivalent
leaf reflectance and transmittance had to be interpreted from the curves provided
and guided by the net result expected (0.20). Certainly better models are possible,
but, given the cost in time and effort to accumulate such information and account
for special cases, it is outside the current scope of the work. Instead, a simplified
approach was adopted. Through examination of Neu’s findings, spectrally averaged
values of reflectance and transmittance were inferred. Numerical experiments
performed using the multilayer foliage model further confirmed these coefficients.
Values selected were

αF ≈ 0.325; γF ≈ 0.175. (7.44)

where γF is the leaf-surface-transmittance coefficient. And, of course, these results
are subject to further verification.

To model the propagation, scattering, and reflection effects in model terms, Φ↑(i)

and Φ↓(i) were defined as flowing, diffuse energy streams arriving at layer i
from below and above, respectively. Then, the A(i)’s were used to denote the net
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fractional energy absorbed at each layer i. Initially, these quantities were set to
zero. As the model iterated, the A(i)’s were updated to account for all the energy
absorbed by the layer, so far, in the computation.

The model constructed to evaluate these results used 100 foliage sublayers to
simulate scattering from the foliage with sufficient fidelity to model cases of σF
up to 0.975. Let M = 100 denote the number of layers, indexed by i to denote the
sublayers, plus a layer at i = 0, corresponding to the ground surface.

From Eq. 7.16.B, the foliage fraction in each sublayer is given by

σs = 1− (1− σF )1/100. (7.45)

For use in the main SEB model, direct radiation results were tabulated at a series of
different incidence angles, while diffuse radiation calculations could be made for a
single pass through the layer from above for each combination of σF and αG.

Since it is the simpler case, let us consider the diffuse calculation first. Let the
nominal incident net flux at the top of the foliage layer be given by

Φ↓(100) = 1.

The remaining fluxes were initially set to zero. Following initialization, the
following iterative rules were applied:

Φ′↑(i+ 1) = (αF RDB + γF TDB)σs Φ↓(i)

+(αF RDF + γF TDF )σs Φ↑(i)

+(1− σs) Φ↑(i), (7.46.A)

Φ′↓(i− 1) = (αF RDB + γF TDB)σs Φ↑(i)

+(αF RDF + γF TDF )σs Φ↓(i)

+(1− σs) Φ↓(i). (7.45.B)

The Φ components were updated in a separate Φ′ array to ensure conservation of
energy. Note that αF and theR parameters always appear together, as do the γF and
T parameters.
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A separate rule was used to update the ground-reflected energy:

Φ′↑(1) = αG Φ↓(0). (7.46)

Following each update of the streaming-radiation components, the energies
absorbed in each layer and at the ground were updated, using

A′(i) = A(i) + Φ↓(i) + Φ↑(i)− Φ′↓(i− 1)− Φ′↑(i+ 1), (7.47.A)

A′(0) = A(0) + Φ↓(0)− Φ′↑(1). (7.47.B)

Lastly, the energy escaping back into the atmosphere at the top of the model was
evaluated by accumulating the output energy via

E ′ = E + Φ↑(101), (7.48)

where, again, E is initialized to zero.

After each iteration of the equation set above, the updated primed values were
copied into the prior flux array so the process could be iterated. Each iteration
deposits energy into the absorbed-energy and escaped-energy bins while removing
energy from the Φ array until it eventually becomes exhausted. At that point the
calculation is finished and the energy absorbed in the foliage sublayers can be
summed to determine the net energy absorbed by the foliage; the A(0) value
corresponds to the energy absorbed by the ground; and E corresponds to the net
energy reflected back into the atmosphere. By setting the initial input energy to
unity, the resulting sums are also equivalent to the net transfer coefficients of the
downward-directed diffuse streaming energy into the foliage (AF ) and the ground
(AG) and the portion reflected back to the atmosphere (RS , sky reflected).

A set of diffuse reflection results, using αF = 0.325 and γF = 0.175, for a range of
surface-reflectance coefficients, αG, from 0.05 through 0.25, are plotted in Fig. 16.

Notice that the resulting curves indicate a net foliage-layer sky reflectance of
approximately 0.20 as σF → 1. This occurs, even though αF = 0.325, because
of the multiple scattering of light between the different leaf sublayers. Much of
the light tends to penetrate through several layers before encountering a reflection
surface. But once the light enters the canopy, it cannot directly reflect back out, due
to partial blocking by vegetation above the reflection layer. A portion of the blocked
light is then absorbed.
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Fig. 16 Diffuse radiation absorption and reflection results obtained for varying soil albedo, αG,
and foliage fraction, σF , for foliage reflectivity, αF = 0.325, and transmissivity, γF = 0.175.
Red curves denote fractional energy absorbed by the ground, AG; green curves, AF , show
fractions absorbed by foliage; blue curves, αS , show sky-reflection fractions.

Results were calculated up to αG = 0.95 to support interpolation of surface
conditions in the SEB model. Note also that these diffuse results, in combination
with the direct-radiation results, such as the red line of Fig. 14 that exceeds 0.20,
produce a net reflectivity of approximately 0.20 even though the results in Fig. 16
fall below 0.20 as σF → 1.

Next, consider the case of direct radiation. The same leaf-surface reflection and
transmission factors will be used for the scattered diffuse radiation. However, for
initialization purposes, the direct-to-diffuse reflection/transmission results are used.

To initialize the calculations, the amount of net flux is again set to 1.0 at the top of
the surface layer. This net flux is then distributed among the model sublayers and
the i = 0 ground layer. Because 1.0 is the net flux, the solar-zenith angle cosine
term’s effect has been transferred outside the present calculation’s results.

To perform the initialization, we must determine which fraction of the net flux is
delivered to each layer for further scattering/transmission. Recall from Eq. 7.20
that the direct radiation transmittance to the surface depends on µ = cos(θR). From
Eq. 7.16, the noninteracting portion of the net flux that is transmitted through the
layered foliage to the top of any particular layer can be calculated as

T (i) = (1− σs)(100−i)/µ. (7.49)
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Hence, for i = 0, the ground sees the effect of the full foliage layer, while at i =

100, the top layer sees no foliage-related energy loss.

Consistent with this result is use of a net transmittance for a single layer given by

τ1 = (1− σs)1/µ. (7.50)

We shall also use the variable χ1 = (1− τ1) to denote the net fractional energy lost
as the direct beam passes through any given sublayer. If σs/µ � 1, then Eq. 7.51
can be solved using the approximation (1−x)p ≈ 1−px..., such that τ1 ≈ 1−σs/µ
and χ1 ≈ σs/µ. But, in general σs/µ may not be small, particularly as θR → π/2.
Hence, we use the full equation for χ1.

Based on these layer results, the upward- and downward-streaming diffuse fluxes
can be initialized by multiplying the radiation reaching each layer by the direct-to-
diffuse scattering fraction calculations from Section 7.4. Iterating from i = 1 to
i = 100, we set

Φ↑(i+ 1)← [αF R̃U(θi) + γF T̃U(θi)]χ1 T (i),

Φ↓(i− 1)← [αF R̃D(θi) + γF T̃D(θi)]χ1 T (i).

A(i)← (1− αF − γF )χ1 T (i). (7.51)

In addition to the internal initializing conditions, the values on the edges of the
arrays were set using

Φ↓(0)← Φ↓(0) + T (0),

Φ↑(0)← Φ↑(1)← 0,

A(0)← 0,

E ← Φ↑(101),

Φ↑(101)← 0, (7.52)

in the order specified. A portion of the incident solar energy has thus been absorbed
and the rest converted into diffuse radiation in the energy-flux bins of the sub-
layer model. Once initialized, the iteration process of Eqs. 7.44 through 7.47 is
immediately applicable.
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The same resolution of computations is used for each solar-zenith angle as the
previous diffuse results. However, rather than stepping through zenith angles
uniformly, a stepping method was developed where µ = exp(−Y 2), and Y was
stepped between 0.0 and 2.0 in increments of 0.1. The zenith angles achieved ranged
from 0.0◦ to 88.95◦, yielding a database of approximately 16,000 results.

Given the size of the resulting database it will be difficult to illustrate more than
a minimal portion of the full results. Some concept of the variability produced
by the model can be grasped from the following 2 graphs. Figure 17 illustrates
the varying layer reflectivity (RS) as a function of the solar altitude above the
horizon for a series of ground reflectivities αG in the common range of 0.00 to
0.20, for varying foliage fraction σF . The results obtained show similarities to the
behaviors of measured layer reflectivities for foliage canopies, such as presented in
Oke’s Fig. 4.12 (1978). That figure plotted several foliage-canopy-reflectivity series
for various forest types, grass, and kale as functions of increasing solar-altitude
angle above the horizon. The graphs showed marked increases in reflectivity as
solar altitude fell below 40◦. Reasonable agreement was found between Fig. 17’s
αG = 0.0, σF = 0.5 curve (in this report) and Oke’s oak-forest-canopy curve,
and also between any of the αG = 0.2 cases and Oke’s kale-crop curve. A good
agreement with Oke’s grass case should also be possible but using a higher αG
value than assigned in this model.

A second set of results plotted in Fig. 18 shows the decomposition of the fractional
energy absorbed by the ground (red curves) and foliage layer (green curves) and sky
reflected energy (blue curves) for varying solar-zenith angles as parameterized by
Y varying from 0.0 to 2.0 in increments of 0.5. Obviously, for the Y = 2.0 curves
the sun is very close to the horizon and the resulting curves exhibit rather extreme
behaviors. For all these curves αG has been set to 0.00 to isolate the reflection
properties of the foliage.

A key observation in these graphs is that the Y = 0.0 and Y = 0.5 curves,
representing overhead direct illumination and radiation arriving at a zenith angle
of 52◦, respectively, are shown to bracket the value 0.20, which is the expected
reflectance from a foliated layer. Thus, we return to the finding that these
calculations fit within the overall concept of an expected, mean layer reflectivity
of 0.2 — though illustrating the variability of results when zenith angles close to
the horizon are present.
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Fig. 17 Behavior of surface-layer reflectivity of foliated layers of different surface fractions σF
as functions of ground reflectivity αG and as a function of the solar altitude in degrees

Fig. 18 Direct-radiation transmission factors to the ground (red lines), foliage (green lines),
and sky-reflected (blue lines) for variable σF at a range of solar-zenith positions parameterized
by Y , for constant αG = 0.00
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This completes the shortwave-radiative calculations. We next consider 3 types of
diffuse radiative fluxes associated with long-wave (infrared: IR) radiation. The
first is downward long-wave radiation arriving at the top of the surface interface
and using the same computational engine and method as previously described
for the short-wave downward diffuse flux. (The only difference is the relative
reflectivities used for the soil surface and the foliage.) The second is upwelling
radiation emerging from the ground. The third is radiation emitted by the foliage
layer in both the upwelling and downwelling directions.

The nominal IR–foliage statistic for bulk emissivity is 0.95 (layer IR albedo of
0.05). Similar to the shortwave calculations, an adjusted leaf emissivity must be
introduced to produce this bulk effect. The value selected was εF = 0.87. Using
this value, a full set of computed results AG, AF , and RS were produced for the
downward long-wave case. A subset of results is plotted in Fig. 19.

Fig. 19 Diffuse IR-radiation absorption and reflection results equivalent to the cases plotted
in Fig. 16, but using altered foliage-albedo value αF (IR) = 0.13 (εF = 0.87)

Next, again using αF = 0.13, we consider radiation emitted from the ground as
the source. Setting the initial value of the upward-welling, diffuse radiation from
the surface to a normalized 1.0 produced outputs corresponding to normalized
multipliers that can be used to scale computed ground IR radiation given by
εG σ T

4
G (where σ is the Stefan–Boltzmann constant). A portion of the outputs

of this calculation are plotted in Fig. 20. Note that the sky-output variable has
been renamed ES corresponding to an effective surface-layer emissivity into the
atmosphere, as opposed to calling it a reflectance factor, since in this case there is
no incident radiation to reflect.
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Fig. 20 Diffuse IR-radiation absorption and emission results similar to the cases plotted
in Fig. 16, but using altered foliage albedo αF (IR) = 0.13 (εF = 0.87) for ground-emitted
radiation and plotting sky emissivity, ES , rather than reflectivity, RS

Finally, the foliage layer can be selected as the radiation source. Radiating energy
is initialized in both upward- and downward-welling directions from each foliage
layer. Each radiation component is set to σs, associated with the relative layer-
surface-area from which the normalized radiation emerges. This choice is made
such that the resulting flux fractions can be multiplied by εF σ T 4

F , using εF = 0.87,
to generate the net fluxes from the layer. The results of these calculations, for a
range of αG and σF values, are plotted in Fig. 21.

Fig. 21 Diffuse IR-radiation absorption and reflection results equivalent to cases plotted in
Fig. 18, using foliage albedo αF = 0.13 (εF = 0.87); radiation originates in foliage layer
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In contrasting the results plotted in Fig. 21 with those of Figs. 19 and 20, at least 2
characteristics are self-evident. The first regards sources and sinks: In both Figs. 19
and 20 the radiation-source regions receive the least feedback of energy. This is
a factor of the low reflectivity coefficients involved. This observation is also true
at low σF values in Fig. 21. However, as σF increases, the foliage surface area
increases rapidly. Much of the radiation then becomes self-absorbed by the foliage
itself. As σF approaches 1 this value increases up to 5.5 times the amount of
radiation that escapes from the canopy. Hence, the second unique feature is that the
system is no longer normalized to unity (sum of the 3 components approximately
equals 1.0), but, rather, reflects the unnormalized surface area of the foliage per
square meter of underlying soil, consistent with the foliage surface area NF . This
model thus appears to be a good surrogate for modeling the microclimate of a
thickly foliated layer.

Figure 21 also reveals that the sky-emitted output is greater than the one-to-one
line such that the effective emissivity exceeds the 0.87 value. For example, the sky
output equals 1.0 at approximately σ = 0.92. Thus, the effective emissivity at that
point is 0.87/0.92 = 0.945, close to the bulk emissivity of 0.95.

To conclude, the foliage-layer model developed produces bulk properties that
correspond to various reported behaviors associated with deciduous trees, grasses,
and crops, but somewhat dissimilar to behaviors of alternative leaf structures (pine
forests, etc.). Hence, the model developed would be appropriate for desert grasses,
low weeds, yucca, creosote, mesquite, savannas, and steppe terrains. The model
would be less appropriate for desert cacti such as saguaro, agave, and ocotillo that
are relatively thicker and less leaf-covered. The diffuse calculations similarly appear
to have good performance using the albedos and emissivities chosen to produce the
expected aggregate behaviors.

To use the results obtained, tables generated for given values of αF and εF

are combined with variable αG, εG, and solar-zenith parameterization in an
interpolation routine for the 5 scattering/transmission scenarios described. In
addition, equations using NF , ΥF , αF , and εF — Eqs. 2.21.A, 2.21.B, 2.22, 5.25,
and 5.31 — must use the reassigned values.
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8. Atmospheric Infrared Radiative Fluxes
This chapter focuses on the influence of atmospheric IR radiation on the Surface

Energy Budget (SEB) as well as heating of the boundary-layer atmosphere by

IR energy in general. In so doing, we attempt to avoid the general discussion of

radiative fluxes within the overall atmosphere as this is the subject of many other

research projects and applications. Examples include Goody and Yung (1961), Liou

(1980), Stephens (1994), and Thomas and Stamnes (1999). Concurrently, models

of atmospheric propagation such as LOWTRAN and MODTRAN developed by

the US Air Force Research Laboratory increased in complexity from 100 cm−1 per

channel of spectral resolution to 1 cm−1 spectral resolution, to a 15-component

correlated-k calculation per wave-number channel.

Our focus is on the boundary layer and, more specifically, the surface layer. Since

our main concern is solar loading, a simpler model will be developed as we are

not interested in the detailed inner workings of the upper atmosphere. Critically,

we are concerned with the surface interface where the influence of atmospheric

radiation directly augments the impact of solar direct/diffuse radiation. In this

model the effort was made to follow Deardorff, in the sense of providing a

simple expression for the downward-longwave radiation such that one could avoid

activating a complex radiative-transfer code. This is based largely on the available

information, which this model assumes is minimal, but could be linked into a

higher-resolution model such as the Air Force’s LEEDR model (e.g., Fiorino et

al. 2014). We therefore start with the expression introduced by Deardorff (1978)

involving use of Staley and Jurica’s (1972) atmospheric-emissivity model. We then

upgrade this model through use of vertical temperature-structure models developed

in Chapter 6, in combination with radiative-flux calculations performed based on

atmospheric-emissivity data derived from the MODTRAN-4 code.

Using a more complete radiative-transfer model described, calculations were

performed to determine the radiative flux passing downward from the base of the

surface layer into the surface interface, at the top of the boundary layer upward,

and both upward and downward at an interface between the boundary layer and the

surface layer. In such a way the balance of energy fluxes entering and leaving the

different regions of the modeled volume (boundary layer and surface layer) could

be approximately tracked.
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8.1 Review of Deardorff’s Long-Wave Radiation Model
In his groundbreaking paper, Deardorff (1978) brought together a suite of methods

developed across the research spectrum to compute the SEB. One of these was the

atmospheric-emissivity model of Staley and Jurica (1972) that Deardorff used to

formulate a net long-wave downward flux of IR radiation at the top of the foliage

layer, expressed as

RL ↓ =
[
σC + (1− σC) 0.67 (1670 qa)

0.08
]
σ T 4

A, (8.1)

where σC is the fractional cloud cover, qa is the specific humidity, σ is the Stefan–

Boltzmann constant, and TA is the air temperature in Kelvin. The main Staley and

Jurica (1972) contribution to this formulation was the atmospheric emissivity given

by

εA = 0.67 (1670 qa)
0.08. (8.2)

The first element to note is that Eq. 8.1 appears to be wired wrong. That is,

experience with atmospheric IR radiation suggests that emissions from a humid

atmosphere occur from molecules within a relatively short distance of the level of

measurement; that IR radiation reaching the ground appears to arise from molecules

within approximately the first 10 m AGL. We know this because the emissivity of

the air is often greater than 80%, but the temperature used to characterize the flux is

simply the air temperature TA. Emissivity values this high could not be achieved if

the energy arose from molecules much farther from the surface since then TA would

be an inappropriate temperature (too high) to use.

Given this observation, radiation from higher in the atmosphere must be heavily

absorbed by the air within the first 10 m AGL, except in what are known as

atmospheric window regions. Hence, it should be that the atmospheric emissivity

becomes a limiting factor restricting the near-blackbody radiation arising from

the cloud base; it should not restrict the near-surface atmospheric radiation from

reaching the surface based on the available cloud cover, as parameterized by

available cloud fraction σC . Thus, the first correction to the downward, long-wave

radiative flux involves rewriting this function in the form,

RL↓ = εA σ T
4
A + (1− εA)σC σ T

4
C . (8.3)
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In addition to filtering the incident long-wave energy arising from the cloud base,

we also introduce a new temperature parameter TC to denote the cloud temperature.

To approximate the value of TC , some simple rules are generated based on TG, ZI
and the cloud type indicated by the user (low, medium, or high clouds).

The more significant unknown to be addressed regarding the IR radiation is the

appropriate form for modeling the atmospheric emissivity, εA. One notes that the

expression for εA given in Eq. 8.2 approaches zero at zero atmospheric humidity.

Hence, we know that this form ignores the effects of carbon dioxide (as well as

those of oxygen, nitrogen, and all other dry gases). This suggests, at minimum,

a reanalysis of atmospheric emissivity is needed. In addition, we shall consider

various temperature scenarios in these calculations.

8.2 Downward Long-wave Radiation Calculation Re-evaluation
In addition to the Staley and Jurica (1972) parameterization of the atmospheric
emissivity, in the early 1980s a parallel study of the SEB was conducted by the
US Army Waterways Experiment Station, Vicksburg, Mississippi, for the US Army
Corps of Engineers. This study (Balick et al. 1981) based its long-wave atmospheric
downward flux on an emissivity expression by Sellers (1965), written,

εA ≈ 0.61 + 0.050
√
ea, (8.4)

where ea is the water-vapor pressure in millibars.

Clearly, these 2 emissivities in Eqs. 8.2 and 8.4 will predict different behaviors,
particularly based on their conflicting exponential dependence and Sellers’ use of a
zero-humidity offset of 0.61 versus Staley and Jurica’s lack of any offset.

Therefore, a complete reanalysis was performed. Through this reanalysis we
compare results obtained via a spectral integration against these 2 models. In the
process we consider whether the heights we have chosen for characterizing the
surface layer (ZT or ZA) and the characteristic temperature TA are reasonable for
modeling the long-wave fluxes to/from the atmosphere (and are characteristic of the
radiative temperature, as well).

8.3 Numerical Radiative-Transfer Calculation
To make the comparison, a numerical radiative-transfer calculation can be
performed for a range of initial air temperatures, pressures, and humidities. Let
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us first denote by k the radiation wave number, k = 2π/λ. For reference purposes,
most radiation calculations can be performed relative to that of a blackbody source.
For such a source, the number of photons per unit wave number interval per unit
volume is given by

nk =
k2

π2 (ex − 1)
; x =

h̄ c k

kB T
=

1.43879 k̃

T
, (8.5)

where h̄ = h/2π, h is Planck’s constant, c is the velocity of light in vacuum, kB is
Boltzmann’s constant, and T is the absolute temperature in Kelvin (Wolfe 1989),
and k̃ = k/(200 π), the inverse centimeter wave number representation used by
MODTRAN.

Transforming this result to energy per unit volume in spectral interval dk, we obtain

wk dk = hν nk dk = h̄ c k nk dk =
h̄ c k3

π2 (ex − 1)
dk. (8.6)

This energy density is isotropic since it is basically the energy flowing inside a
blackbody (100% emitting and absorbing) cavity. The next step is therefore to
study how this emits outward by considering the energy flux in a given direction
(basically, through a pinhole in the blackbody’s cavity wall). Therefore, dividing by
4π, the above spectral energy is converted to an amount passing into a unit solid
angle. Further, multiplying by a small solid angle, ∆Ω, one can resolve the amount
of spectral energy flowing into that amount of solid angle. That is,

wk dk dV ∆Ω

4π
. (8.7)

Now, the radiation flowing from the atmosphere toward the ground does not emerge
from a blackbody cavity, but the radiation computed as arising from any volume of
the atmosphere is typically evaluated as a relative fraction of the amount of energy
that would arise from such a cavity. Hence, let us imagine a differential volume
dV somewhere within the atmosphere above the surface, and let us imagine a finite
region of the surface below, of area A. Let the region dV be located at a height z
above the ground and located at an angle θ relative to the vertical direction from
our test patch A, and thus at a distance r = z/ cos(θ) from the test patch. The solid
angle ∆Ω subtended by the test patch, as seen from volume element dV at distance
r, would then be

∆Ω =
cos(θ)A

r2
, (8.8)

135



where patch area A is foreshortened by the cos(θ) factor in computing the surface
area of the patch presented perpendicular to the vector connecting the surface patch
with the volume. (We assume patch A has a normal vector in the direction of an
earth-to-space path such that angle θ is a zenith angle from the vertical to the
direction toward the volume element dV .)

Next, for simplicity of calculation, let us place the test patch at the origin of
coordinates and orient the normal vector to the surface in the +ẑ direction. Further,
let us adopt a circular test patch of diameter D: A = πD2/4, and assume D � r.
A sample radiating volume dV can then be designated in an (r, θ, φ) spherical
coordinate system by its volume extents dr, r dθ, and r sin(θ) dφ:

dV = r2 sin(θ) dr dθ dφ. (8.9)

From this and the previous result, we see that the r2 dependence in the product
∆Ω dV cancels:

∆Ω dV = A sin(θ) cos(θ) dθ dφ dr. (8.10)

The downward long-wave radiation consists of all of the energy incident on our
test patch arriving in unit time, then divided by the patch area, thereby producing a
statistic in Watts per meters squared.

The net spectral energy in interval dk emitted by a blackbody radiator from a
volume dV in the direction of the area A is, therefore,

wk dk dV
∆Ω

4π
=

h̄ c k3 dk

4π3 (ex − 1)
A sin(θ) cos(θ) dθ dφ dr. (8.11)

This result is given as an amount of energy present inside the volume dV that is in
the right spectral range and travelling in the right direction to impact on patch A,
but the result sought should have the dimensions of an irradiance: power (energy
per unit time) per unit area per unit spectrum. To denote this result, we recognize
that the amount of energy in volume dV takes only an amount of time dr/c to
pass out of said volume. Dividing by dr/c the energy quantity is transformed into a
power produced by dV at A per second. Further dividing by the area A, the power
delivered to patch A is transformed into a power per unit surface area:

dBΩ̂(k, T ) = wk dk
dV

(dr/c)

∆Ω

4π A
=

h̄ c2 k3 dk

4π3 (ex − 1)
sin(θ) cos(θ) dθ dφ. (8.12)

This quantity is the blackbody’s spectral-radiance contribution from direction Ω̂

arriving at the origin of coordinates.
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By integrating over the solid angle, the net spectral irradiance can be determined.

Let µ = cos(θ), such that the integral over the upper hemisphere can be written as

BB(T ) =
∫ 2π

0
dφ

∫ 1

0
µ dµ

h̄ c2

4 π3

k3 dk

ex − 1
= 2π

∫ 1

0
µ dµ [B(k, T ) dk]. (8.13)

B(k, T ) =
k3
B T

3

4π3 h̄2 c
× x3

ex − 1
. (8.14)

Using 2π
∫ 1

0 µ dµ = π, a π term in B(k, T )’s denominator cancels.

The function with respect to x provides a universal spectral shape of the blackbody

curve that scales according to the temperature of the source. For the total energy

flux due to the blackbody, one would need to finally integrate as

BB(T ) =
k3
B T

3

4π2 h̄2 c

∫ ∞
0

x3

ex − 1
dk =

k4
B T

4

4 π2 h̄3 c2

∫ ∞
0

x3

ex − 1
dx. (8.15)

The integral evaluates as ∫ ∞
0

x3

ex − 1
dx =

π4

15
. (8.16)

Inserting numerical values, h̄ = 1.0546× 10−34 J/s, kB = 1.381× 10−23 J/K, and

c = 2.998× 108 m/s, leading to

σSB =
k4
B

h̄3 c2

π2

60
= 5.67× 10−8

[
W

m2 K4

]
, (8.17)

BB(T ) = σSB T
4 [W/m2]. (8.18)

This result represents the energy received from an entire plane of emitting

blackbody surface, but by reciprocity it also represents the net blackbody output

from a 1-square-meter surface at temperature T , where the input energy absorbed by

the perfect absorber would equal the output energy radiated by the perfect emitter.

To extend this calculation to a non-blackbody problem, the first step is to

replace the perfect emitter/absorber model of a blackbody, where ε = 1, with a

frequency-dependent graybody emitter emissivity, ε(k). Such graybody surfaces

were encountered in the previous section, where foliage and soil surfaces were

assigned emissivity coefficients εF and εG less than 1.0.

However, while solid surfaces exhibit mildly varying emissivities that can be

approximately characterized by a single frequency-independent emissivity factor,
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atmospheric molecular components exhibit highly variable spectral-emissivity

dependence because they respond as quantum-mechanical objects with various

combinations of orbital, vibrational, and rotational energy levels that produce

detailed spectral line structure that is dependent on temperature, pressure, and

absorbing species’ density. Each atmospheric species has its own spectrum of

absorption/emission, with water vapor being one of the most effective molecules

due to the number of modes produced by its polar assymetry.

To proceed we need 2 elements: We need to have a model for propagating

through the atmosphere to generate the radiation that appears at the surface. We

also need to know the governing statistics of the atmosphere for propagating

radiation at different frequencies. First, let us consider the propagation problem.

We need to have a quantity to represent the rate at which the atmosphere absorbs

(extinguishes) streaming radiation as a function of a fractional quantity per unit

distance propagated through the media. Let us assign this as αk, denoting by the

subscript k its wavelength dependence, but also noting that it will depend on the

atmospheric state, as well.

For complete applications one considers both the impacts of scattering and

absorption, designating the fraction of radiation scattered by $k , such that $k αk

is the scattering coefficient. However, since the calculations being made involve

relatively short-range effects, and since IR scattering is minimal relative to visible-

band scattering, we shall ignore scattering effects.

With that understanding, we write a radiative-transfer equation in the general form

(Tofsted and O’Brien 1998),

Ω̂ · ∇Ik(~r, Ω̂) = αk Bk − αk Ik(~r, Ω̂), (8.19)

where Ik is a radiance field that is a function of position ~r and radiation-flow

direction Ω̂. Here we have omitted the scattering portion (effectively setting$ = 0).

Here also Bk is a frequency-dependent, blackbody-radiation source term that is

temperature dependent only.

The dot product of the unit vector Ω̂ with the gradient operator ∇ acting on the

radiance field has the effect of sifting out a derivative oriented in the direction of

radiation flowing in the Ω̂ direction. That is, Ω̂ · ∇Ik becomes dIk/ds, where s is

increasing in the Ω̂ direction.
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As long as temperature is a slowly varying function of position, and αk, the

absorption/emission coefficient, operates much more quickly that Bk changes, then

we may form a new variable; call it Ck = Ik −Bk. The above equation can thus be

simplified into the form,
dCk
ds

= −αk Ck, (8.20)

which has the rather simple solution,

ln(Ck) = −αk s −→ Ck(s) = Ck(0) exp(−αk s); (8.21.A)

Ik(s)−Bk(s) = [Ik(0)−Bk(0)] exp(−αk s). (8.21.B)

But Bk(s) = Bk(0) = Bk, such that,

Ik(s) = Ik(0) exp(−αk s) +Bk[1− exp(−αk s)], (8.21.C)

where the altitude step must be small enough that Bk can be considered constant;

that is, that atmospheric temperature and pressure are not changing markedly across

the height step. We therefore designate by δs such a short path step.

To produce the full energy arriving at a given point on the ground, one must

integrate downward from some height sufficient that the energy accounted for is

nearly complete. One way to accomplish this is by integrating backwards from the

point of interest into the volume. To perform this, let us recall the use of variables

τ1 and χ1 in Eq. 7.50 of the previous chapter. In the present application we could

assign

τ δz,k,µ = exp(+αk δz/µ), (8.22)

where δz < 0. Then,

χδz,k,µ = 1− τ δz,k,µ. (8.23)

Here, δz can be constant, but αk will depend on temperature at the height where the

propagation is being computed.

To compute the output Ik(0, µ), start with Ik(0, µ) = 0, and T̃k = 1. Then, for i = 0

to n (the number of layers), let

Ik,i+1(0, µ)← Ik,i(0, µ) + T̃k χδzi,k,µBk[T (zi)], (8.24.A)

T̃k,i+1 ← T̃k,i τ δzi,k,µ. (8.24.B)
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In this algorithm, the radiance at height zero increases by an amount related to the
source term added over each step i at height zi, given by χδz,k,µBk[T (zi)], but then
attenuating this amount by T̃k,i corresponding to the energy loss in transmitting that
flux contribution to the surface. To reduce the processing overhead, it would not be
necessary in many cases to integrate the result up to the top of the atmosphere since
the net transmission T̃k provides a good estimate of when the full amount of energy
transfer has been accounted for. For example, the iteration process could be stopped
as soon as T̃k < 0.00001. The total energy flux at the ground can then be computed
via

R↓ =
∫ ∞

0
dk
{

2π
∫ 1

0
Ik(0, µ)µ dµ

}
. (8.25)

Written in terms of the finite-element solution of the implementing computer
algorithm, this procedure is approximated by

R↓ ≈
J∑
j=0

δk

{
2π

M∑
m=0

Ik(j)[0, µ(m)]µ(m) δµ

}
. (8.26)

This equation is evaluated using the quantities τ and χ from Eqs. 8.22 and 8.23,
and Bk(T ) is effectively the spectral radiance component that is the integrand of
Eq. 8.15 using the x definition from Eq. 8.5, repeated here:

Bk(T ) = B(k, T ) =
k3
B T

3

4π3 h̄2 c
× x3

ex − 1
; x =

h̄ c k

kB T
.

8.4 Spectral Absorptivity Data Collection
To obtain sets of data needed to characterize τk and χk, the MODTRAN-4 code
was run using that code’s implementation of the 1976 US Standard Atmosphere in
a transmission mode where transmission coefficients were computed over the first
kilometer (0–1 km) interval of the model atmosphere looking vertically through the
model volume. In MODTRAN, the absorption coefficients are constant in each 1-
km layer, including the 0–1 km layer. Exploiting this feature, the model was run
in transmission mode, but the vertical-path transmission coefficient was intercepted
prior to output from the model. Taking the negative natural logarithm of the spectral
transmission produced a net layer-attenuation coefficient at 1 cm−1 resolution in the
range of 100–5,000 cm−1.

The MODTRAN output combines all significant atmospheric gases into a
single attenuation coefficient. The output thus contained both dry-air and water-
vapor influences. To distinguish the moist atmospheric effects from the dry-air
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components, MODTRAN was run for a dry case using the baseline 1976 US

Standard Atmosphere — where relative humidity is a constant 46.04% in the

first kilometer — and a doubled-humidity case using MODTRAN’s humidity-

scaling factor at an input value of 2.0, producing a result of 94.21% relative

humidity in the first model layer. The resulting humidity levels, when expressed as

specific humidities, evaluated to 0.004800 and 0.009852 (kg/kg), respectively. By

intercepting the output transmission and converting it to a logarithm, MODTRAN’s

4-digit output format precision used in its transmission output was avoided,

allowing attenuation coefficients to be resolved to values greater than the 9.9 optical

depths per kilometer of the base model.

Using the 2 outputs in each wave-number bin, a dry-atmosphere extinction

coefficient αkd could be interpolated for sea-level density conditions, and a water-

vapor extinction coefficient αkw associated with sea-level density and 0.004800

specific humidity could be computed.

Results were obtained spanning the infrared band from wave numbers k̃ =100

to 5,000 cm−1 (inverse centimeters). To translate these to wave numbers k,

MODTRAN’s wave numbers k̃ = 10000/λ̃ use wavelengths λ̃ expressed in microns

(µm). MODTRAN 4’s available spectral resolution of δν̄ = 1 cm−1 should be

sufficient for energy-flux calculations.

Next, note that,

αkd(Pα, Tα, ) = − ln(Tdk), αkw(Pα, Tα, qα) = − ln(Twk), (8.27)

where Tdk and Twk are MODTRAN-derived transmission results, and the α values

are the resulting dry-air and water-vapor extinction coefficients derived. Values

obtained were categorized by the standard pressure (Pα), temperature (Tα), and

specific humidity (qα) values associated with the run.

From the basic values, analysis of MODTRAN outputs indicated variations in

absorption following the relations,

αkd(P, T ) = αkd(Pα, Tα)
[
P

Pα

]1/2
[

(1− q)P/T
(1− qα)Pα/Tα

]
; (8.28.A)

αkw(q, P, T ) = αkw(qα, Pα, Tα)
[
P

Pα

]1/2
[
q P/T

qα Pα/Tα

]
. (8.28.B)
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The pressure dependence seen here is a combination of a linear pressure dependence
related to the density of the absorbers multiplied by a square-root dependence
related to the pressure-broadening of absorption lines that occurs at low altitude.
As altitude increases, and the pressure drops, absorption lines become narrower
and therefore less absorptive. The temperature and humidity dependencies are just
those factors related to the density of the absorbers.

8.5 Atmospheric Temperature and Pressure Model
To calculate the radiation emitted from a layer of the atmosphere, the previous
sections of the chapter have so far laid out the radiative properties of the atmosphere.
Here, the process is completed by considering the vertical profile models of
temperature and pressure used to seed the absorption/emission coefficients needed
by the radiative-transfer model.

In addition to knowing the temperature and pressure profiles, a water-vapor profile
is critical — especially considering the dominant role of water vapor in the Staley
and Jurica emissivity model. However, it is not the intent of the current text to
address all conceivable temperature, humidity, and pressure profile combinations.
Rather, given the temperature-profile models of Chapter 6, the concept is to
add a pressure and humidity model to the temperature models and calculate the
emissivities predicted by these combinations.

The series of atmospheric models features a number of variables. First, the baseline
pressure is selected based on an initial height of the modeled surface above sea level
(ASL). The 1976 US Standard Atmosphere is used to set the starting pressure. First,
the standard air density is set using Eq. 3.8 (by ARL’s Abel Blanco) using input site
height ASL, H . The mean atmospheric temperature can then be set based on the
1976 US Standard Atmosphere vertical temperature function

TSA(H) = 288.1− 6.4H [K], (8.29)

where TSL = 288.1 K is the standard sea-level temperature. The standard pressure
at sea level (PS = P (0)) is 1013.25 mbar. And, the standard pressure becomes

PSA(H) = 2.87 ρSA(H)TSA(H). (8.30)

Once the surface pressure is estimated, we can compute a vertical pressure profile
using the hydrostatic equation and a selected temperature profile based on

dP

dz
= −g ρa/100, (8.31)
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where z is the height above the surface measured in meters, and ρa is the

atmospheric density (kg/m3) given as

ρa = 0.34838P/Tv. (8.32)

Here, we could have used T ′v, the adjusted virtual temperature, in T ′v = C Tv,

introducing the compressibility factor, C; but, since C is within a few thousandths

of 1.00, we simply use the virtual temperature, Tv, a humidity-adjusted function of

the temperature:

Tv(Z) = T (Z)
1 + rm/εw

1 + rm
, (8.33)

where εw = 0.62197 is the ratio of the molecular weight of water to the molecular

weight of dry air, and rm is the mixing ratio: the ratio of the mass of water vapor

to the mass of dry air. The resulting air density varies with humidity, unlike Eq. 1.2

where humidity effects were suppressed.

The mixing ratio rm, in turn, is a function of the specific humidity, qa, the ratio of

water vapor to total air mass (dry plus water) in a given air sample. Quantities rm
and qa are related through

rm =
qa

1− qa
, qa =

rm
1 + rm

, (8.34)

where qa (kg/kg) is evaluated using

qa = εw
Vp

P − (1− εw)Vp
, or Vp =

rm P

εw + rm
. (8.35)

The Vp is the (water) vapor pressure (mbar), which is simply the saturation vapor

pressure V S
p (mbar) multiplied by the relative humidity (0 < RH < 1):

Vp = V S
p RH , (8.36)

where V S
p is given by

V S
p (TC) = A1 10X , X =

A2 TC
A3 + TC

. (8.37)

The coefficient A1 ≈ 6.13686 (mbar). The remaining coefficients depend on

whether the vapor pressure is being measured over a surface of water (A2 ≈ 7.601,

A3 ≈ 240.97 ◦C) or ice (A2 ≈ 9.5, A3 ≈ 265.5 ◦C), and uses TC = T − 273.16 K,

143



the Celsius temperature. The over-water numbers were derived from recent theory

used by Li-Cor in its humidity-sensor software. The over-ice values were obtained

from the Smithsonian Meteorological Tables. The over-water values were used in

the numerical radiation calculations performed.

At this point, let us take stock of the equations available and the means of creating

a profile.

First, given H , TG, and ZI .

1) From H we use Blanco’s Eq. 3.8 to obtain ρSA.

2) Using Eqs. 8.29 and 8.30 we compute the surface pressure PSA.

3) Assuming a dry adiabat up through inversion base, and assuming the air saturates

at the inversion height, we compute TDI = TG − Γd ZI , the dewpoint temperature

at the inversion base height, using the dry adiabatic lapse rate Γd = 9.8 K/km.

That is, we do not solve for TD as a function of height. Rather, we simply assume

that TD = T at the top of the boundary layer, and we assume we know the height ZI
where this crossover between the 2 temperature tracks will occur. Granted, this is a

rather large assumption. Alternatively, we could model TD as a function of height

(e.g., Fiorino et al. 2014).

4) Given this dewpoint temperature, TDI , we compute the vapor pressure at the

inversion base by assuming VpI = V S
pI(TDI − 273.16), using Eqs. 8.36 and 8.37,

and RH = 1.0, the saturation condition. (This supplies us with a vapor pressure at

the top of the boundary layer, but to find a qa or rm from Eqs. 8.34 and 8.35, we

still need a pressure at the top of the boundary layer, P (ZI).)

5) Assuming the specific humidity is approximately constant throughout the

boundary layer — a key assumption — then both qa and rm are constant with height.

6) From Eq. 8.35, therefore Vp/P is constant throughout the boundary layer.

Unfortunately, we only know P at the bottom of the boundary layer. To obtain

P (ZI) we adopt Beer’s (1974) Eq. 1.2.21 (adapted to this model) based on a dry

adiabatic lapse rate:

P (ZI) = P (0) [(TG − Γd ZI)/TG]γ/(γ−1) , (8.38)
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where γ = Cp/Cv = 1.4 is the ratio of specific heats for dry air at constant pressure

(Cp) to constant volume (Cv).

7) Given Vp(ZI)/P (ZI), use Eq. 8.35 to solve for qa and rm.

8) Finally, Eqs. 8.31 through 8.33 can then be used, with the estimated rm to

calculation Tv given the more exact temperature profile T (Z), then ρ(Z), and P (Z).

9) If desired, this procedure can be iterated to produce better estimates of rm and

qa.

10) The computed profiles of temperature, pressure, and specific humidity then

supply dry and moist values for Eq. 8.28 atmospheric-absorption coefficients:

ρw = εw 0.34838
Vp
T

=
rm

(1 + rm)
ρa = qa ρa; (8.39.A)

ρd =
1

(1 + rm)
ρa = (1− qa) ρa. (8.39.B)

11) Once the boundary layer has been established, a model of the air above

is specified as follows: Using Stull’s (1988) Fig. 3.8 data behavior, the specific

humidity above the boundary layer is modeled as qu = qa/3. We transition to this

value over a span of 250 m, representing the capping inversion’s thickness. In this

layer the temperature gradient reduces from the dry adiabatic profile’s –9.8 K/km

to the moist adiabatic rate of –6.4 K/km. Above this capping-inversion height

(ZI + 250) we resume the dry adiabatic lapse-rate profile.

The remaining inputs required to use Eq. 8.28 are the Pα, Tα, and qα values

corresponding to those appropriate for the tabulated extinction-data output by the

MODTRAN code. These can be inferred from the metadata information contained

as the preamble of MODTRAN’s Tape-6 output file. This file lists values of

temperature and pressure for each 1-km-thick layer. However, the information

supplied appears to pertain to the lower boundary of each layer, while the output

extinction information appears to relate to molecular densities averaged over each

layer.

This appears to be true for both the dry-air concentration as well as the water-

vapor content, though the listed relative humidity (46.04%) does appear to be the

average quantity for the first-kilometer layer that is our focus. To verify this, the
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MODTRAN documentation indicates the standard water-vapor content in the first

kilometer is 7,750 parts per million (ppm). The code’s output water-vapor content

for the first km is indicated as 734 ATM CM/KM, where the dimension indicated

seems to have a cryptic meaning. Similar output values for CO2 and O2 are also

listed, as 34.6 and 19,800 ATM CM/KM, respectively, that supply us with a means

of interpreting this meaning.

These values appear to be scaled relative to their sea-level values. If we interpret

ATM CM/KM to indicate the number of centimeters of air at standard temperature

and pressure as a portion of the first kilometer of air filled by this constituent,

then the 19,800 reported for oxygen equates to 198.0 meters of sea-level pressure-

temperature oxygen in the first kilometer. Since the standard nitrogen content is

78.10% of the atmosphere, oxygen is 20.90%, and most of the rest of the dry

atmosphere is made up of argon (0.93%), 19,800 would correspond to 944.7 m

of dry atmosphere at standard pressure and temperature, or an average density

over the first kilometer that is 5.53% less than its surface value. To rescale the

734 listed for atmospheric water vapor back to its full amount, one could simply

use the oxygen values at sea level and averaged over the kilometer to calculate

734 × 209/198 = 774.78 cm/km, or a water-vapor content of 7,748 ppm, which

compares closely with the 7,750 ppm value listed in the MODTRAN manual.

Based on this result, let us assume the mean modeled temperature in the first

kilometer is Tα = 288.1 − 3.2 = 284.9 K, where half of the moist adiabatic lapse

rate of 6.4 K/km has been subtracted from the mean sea-level temperature. The

pressure used as the extinction baseline (Pα) can then be calculated from

Pα
PSL

TSL
Tα

=
Pα

1013.252
× 288.1

284.9
=

734

775
−→ Pα = 949. (8.40)

A similar calculation performed on the 34.6 statistic given by MODTRAN for the

CO2 content produces 34.6× 775/734 = 36.5 or 365 ppm. Current CO2 levels are

at roughly 402 ppm, indicating the output values of CO2-based absorption will need

to be increased by 1.101. Because of yearly increases in atmospheric CO2 content,

the dry-atmospheric term will have CO2 extinction separately tracked.

To summarize, MODTRAN’s baseline first-kilometer extinction coefficients relate

to baseline pressure and temperature settings of Pα ≈ 949 mbar and Tα ≈ 284.9 K,

a baseline qα = 0.0048 specific humidity, and atmospheric CO2 content at 365 ppm.
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However, running MODTRAN-4 using the full standard atmosphere of humidity

produces high-extinction coefficients in some spectral bands, so the code was run

such that the relative humidity was set to a factor of 100 less than the standard value.

The results of these calculations are plotted in Fig. 22 for extinction coefficients

over the first kilometer of the model atmosphere.

Fig. 22 Four extinction-coefficient curves based on MODTRAN output: blue curve is for water
vapor at 0.46% relative humidity, red curve plots CO2 extinction at 404 ppm, purple curve is
methane, and green curve plots remaining dry-air gas effects; also, superposed are blackbody
curves at 233 K (red), 273 K (green), and 313 K (blue).

Of particular interest within this Figure is the 8–12 µm “atmospheric window”

occurring in the 800–1,200 wave number range. This is the main gap in the

greenhouse-gas blanket that accounts for thermal radiation emitted to space. The

other major gap occurs at 3–5 µm, the midwave IR (MWIR) window (wave

numbers 2,000–3,000). While this window is suited to energy emitted higher in the

atmosphere, the 8–12 window permits radiation emitted from the surface to escape

to space. The CO2 band at 15 µm is the main feature related to global warming,

although from its appearance in the graph it clearly is already highly saturated.

Contrasting with the CO2-absorber behavior are 2 spectrally broad water-vapor

bands: one extending down to 20 µm, the other extending across the 5–8 µm region.

Because the atmosphere’s water-vapor content is highly variable, its greenhouse-

gas influence is also highly variable. As an illustration, Fig. 23 shows the effects

of plotting water vapor at its standard humidity level of 46% versus a doubled CO2

level (red) and unmodified dry-air and methane contents. As shown, water-vapor

effects at normal levels drown out the influence of methane, while double-CO2
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content has little influence on the width of its bands. Conversely, the water-vapor
bands show considerable widening, even at normal levels. Yet water-vapor content
can be up to roughly 4 times the US Standard Atmosphere level in high-temperature
and high-humidity conditions.

Fig. 23 Four extinction-coefficient curves based on MODTRAN output: same data as Fig. 22
shown, except water-vapor content (blue curve) is plotted as its Standard Atmosphere value,
and CO2 content (red curve) has been doubled (to 808 ppm); green plots the remaining dry-
air contents and the purple line is the same methane effect as in Fig. 22, along with the same
blackbody curves.

8.6 Atmospheric-Radiation Calculations
Using the outputs from a first-stage calculation of the extinction coefficients based
on the MODTRAN outputs, a second-stage model was then developed to compute
the net long-wave radiation reaching the surface under varying conditions using the
vertical structure models of Chapter 6. The height of the surface was varied from
sea level to 2,000 m. The height of the boundary layer was varied from 1,000 m to
4,000 m in 1,000-m increments. The neutral-condition temperature, TG, was varied
from –40◦ C to +40◦ C. The thickness of the surface layer, ZT , was varied from
5 m to 200 m; and, the vertical temperature gradient was varied from –0.5 C/m
to +2.0 C/m. In all, some 9,000 combinations of conditions were generated for
each propagation scenario. Beyond the basic question of which value to assign the
atmospheric emissivity (compared to both the Staley–Jurica and Sellers formulas),
an additional goal was to supply the model with a means of transferring energy
between the different layers of the model’s atmosphere.

To model the atmosphere, 3 layers were considered: the surface layer positioned
from 0 to ZT , the remainder of the boundary layer located between ZT and ZI ,

148



and the upper troposphere above ZI . The fluxes between these layers are illustrated

graphically in Figs. 24 through 26.

To understand the symbology used, consider Fig. 24. Arrowheads at the tails of

lines represent blackbody sources — either the undersides of clouds or the surface

interface. Each flux has a four-letter label (e.g., SLSI) that denotes the radiation

source (first 2 letters) and the energy destination (last 2 letters) within the model

framework. The C1, C2, and C3 represent radiation flowing downward underneath

low, medium, and high cloud decks. The UA represents the upper-atmosphere

(troposphere) source radiation under cloudless conditions, while the C1, C2, and C3

results combine radiation emitted by the clouds plus additional radiation included

in the downward-streaming radiation down to and including the base of the elevated

inversion (Z ≥ ZI). Solid lines represent computed emissions of radiation in

the atmosphere. Dashed lines correspond to radiation transmitted through a layer

without further emissions in the layer passed through.

In Figs. 25 and 26 several fluxes are labeled using 5-letter combinations. This

reflects the necessity of computing the related fluxes by subtracting the output from

a layer from the input to the layer, assuming the remainder is the radiation absorbed

by the layer. Hence,

C3BL = C3BL0− C3SL0; C3SL = C3SL0− C3SI; (8.41.A)

C2BL = C2BL0− C2SL0; C2SL = C2SL0− C2SI; (8.41.B)

C1BL = C1BL0− C1SL0; C1SL = C1SL0− C1SI; (8.41.C)

UABL = UABL0− UASL0; UASL = UASL0− UASI; (8.41.D)

BLSL = BLSL0− BLSI; SLBL = SLBL0− SLUA; (8.41.E)

SISL = SISL0− SIBL0; SIBL = SIBL0− SIUA. (8.41.F )

From the model’s perspective, we do not care what happens to the radiation once it

emerges from the boundary layer, only that it is lost, representing a cooling effect.

Thus, upward-directed fluxes all stop at the elevated inversion base.

In addition to the atmospheric fluxes, the surface-interface fluxes are dependent

on the temperature of the vegetation and the soil separately. And since the

air temperature curve cannot connect directly to both the foliage and soil

temperatures at once, the radiation calculations were performed for a range of

surface temperatures, from 0 ◦C to 40 ◦C above (if T∗ < 0) or below (if T∗ > 0) TG.

149



SLSI BLSI UASI C1SI C2SI C3SI SIUA
0

ZS

ZI ,C1
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C3

Fig. 24 Fluxes oriented toward the surface-interface layer (SI)

SISL0 BLSL0 UASL0 C1SL0 C2SL0 C3SL0 SLUA
0

ZS

ZI ,C1

C2

C3

Fig. 25 Fluxes oriented toward the surface layer (SL)

8.7 Atmospheric-Radiation Results
The statistics derived from these calculations can be compared to the results of

the Staley–Jurica and Sellers formulas. The net total radiation reaching the surface

is given by, effectively, the sum SLSI + BLSI + UASI for the cloud-free case; in

combination with C1SI, C2SI, or C3SI replacing UASI for the overcast case; or a

combination of the 2 for intermediate conditions.

To test these various impacts, the calculated emissivity values were compared with

the emissivities from the 2 analytic expressions for the full array of condition

variations considered, for the complete radiation reaching the surface interface from

cloud-free skies. The results are plotted in Fig. 27.
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Fig. 26 Fluxes oriented toward the remainder of the boundary layer (BL)

Fig. 27 Two scatterplots comparing computed emissivity values (abscissa, x-axis component)
versus Staley and Jurica’s (red) or Seller’s (green) analytic emissivity expressions (ordinate
components)

Visual inspection of these results is complicated by the fact that we required an input
air temperature to compute either of the analytic models. Yet, due to the varying
temperature model employed it became impossible to choose a characteristic
temperature. In lieu of knowledge of a correct, effective air temperature, TG
was chosen. Obviously, neither the Staley–Jurica (SJ) model nor the Sellers (SL)
model performs well when atmospheric conditions involve rapidly varying air
temperatures near the surface.

Therefore, a second reduced set of results is plotted in Fig. 28. In it, only results
associated with neutral conditions are plotted. These results indicate a considerably
tighter dependence relative to fitting using the SJ and SL models.
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Fig. 28 Two scatterplots comparing computed emissivity values (abscissa, x-axis component)
versus Staley and Jurica’s (red) or Seller’s (green) analytic emissivity expressions (ordinate
components) for a series of neutral-atmosphere cases

In addition to the main 1-to-1 fit possible, linear lines

ε2 = 0.9 ε1 and ε2 = 1.1 ε1

are also plotted. The SJ curve appears to be a better fit to the numerical solutions,

and perhaps could be fixed through a rescaling of its results. Yet SJ features a zero

emissivity at zero humidity. In contrast, the Sellers curve appears to have a non-

linear correlation to the computed results. Both appear to perform relatively poorly

when near-surface temperatures are varying. This indicates the significance of near-

surface radiation to the total downwelling long-wave radiation.

In these calculations, the range of humidities tested was fairly wide. Perhaps this

explains why the SJ curve fell considerably at low humidity levels while the

computed results did not. Perhaps the presence of CO2 in the spectrum kept the

emissivity from falling precipitously. On the other hand, at high relative humidities

corresponding to high emissivities in both the SJ and SL models, the computed

emissivity did not increase precipitously, either. In this sense, the computed results

appear to exhibit more of the behavior expected, where a doubling of water vapor

appears to have a similar effect per doubling, while the analytical curves appear

to exhibit more effect than a uniform increment per doubling. Also, the computed

results model the reduction in dry-air content and reduced density as the humidity

level increases.
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It should be relatively easy to verify the temperature and humidity aspects of the

Staley and Jurica and/or computed results through measurements at a single site.

More difficult would be verification of the pressure effect, which would require

data campaigns at multiple sites at different heights above sea level. In any case, the

relative consistency between the computationally integrated results and the Staley

and Jurica expression indicates these 2 are similar. The key difference is that the

Staley and Jurica results go to zero at zero humidity; the computational method does

not. However, calculations were not made at exactly zero relative humidity because

part of the calculations involve dividing through by the humidity level, creating an

overflow situation. Given more time this calculation method can be extended to zero

relative humidity.
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9. Further Developments
In this final chapter of the technical portion of the report, we consider the means of
modeling several aspects of the diurnal problem that can influence the transition to
the nocturnal atmosphere as well as the development of the vertical perturbations
of turbulence within the nocturnal boundary layer. We begin by studying/modeling
the vertical structure of the daytime horizontal wind field. This is followed by a
study of the low-level nocturnal jet. Through these 2 analyses we can determine
from just a few inputs the general course of the wind field that is driving the
turbulent fluxes at the surface. These 2 are followed by a pair of related analyses of
nighttime-turbulence production. The first considers conditions supporting small-
scale turbulence production. Essentially, this amounts to a reanalysis of the critical
Richardson number. The second is a detailed analysis of the conditions for gravity-
wave production and collapse; in the process, it develops an argument for a
characteristic breaking time of such waves and how they can feed perturbation
energy into the boundary layer even under seemingly stable conditions.

9.1 Diabatic Wind Modeling
In this section the standard daytime Ekman spiral wind profile is first discussed,
and then the evolution of the nocturnal low level jet (Blackadar 1976) is considered.
In the model developed, the user is assumed to provide minimal information.
Assuming the user supplies a mean wind speed at an observation-station height the
model attempts to construct a vertical profile, in particular a profile that approaches
the speed of the geostrophic wind at the top of the boundary layer (the base of the
elevated inversion).

The general momentum equation for horizontal wind components Ux and Uy can
be written,

dUx
dt

= fc (UGy − Uy)− fc Fx, (9.1.A)

dUy
dt

= fc (UGx − Ux)− fc Fy, (9.1.B)

where fc = 2ω sin(φ) is the Coriolis parameter (Stull 1989, 78) representing the
rate of evolution of the Coriolis rotation at latitude φ, and ω = 2π radians per
24 h is the rotational rate of the earth, equal to 7.27× 10−5 s−1. (From the Coriolis
parameter, a period of rotation of the atmosphere can be defined as TI = 2π/fc. At
most mid-latitude locations this period is approximately 17 h. This quantity is also
termed the inertial period.)
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Quantities Fx and Fy are drag terms that are expressed in dimensions of velocity.

The geostrophic wind (Stull 1989, sec. 3.3.3) represents a static solution to the
Navier–Stokes momentum equation. In it, the wind-velocity vector’s (Ux, Uy) =

(UGx, UGy) centrifugal force in Cartesian coordinates of (x, y) is balanced against
the horizontal pressure gradient due to the local synoptic weather condition. This is
expressed by the equation pair,

fc UGx = − 1

ρa

dP

dy
; fc UGy = +

1

ρa

dP

dx
. (9.2)

Note that for most locations, TI will be longer than the duration of the nocturnal
period. Thus, typically the atmosphere cannot cycle through a complete inertial
period before the night ends.

Based on the assumption that the coordinate system is oriented such that the
geostrophic wind is (UGx, UGy) = (UG, 0), there is only one nonzero term:

UG = − 1

fc ρa

dP

dy
, (9.3)

since dP/dx = 0. Typical values of UG are on the order of 10 m/s. The use of a
geostrophic wind also assumes there is no drag effect on the wind and therefore this
wind speed is applicable to the top of the boundary layer.

Below the top of the boundary layer the wind speed follows a profile commonly
modeled as the Ekman spiral. To model this effect, the wind profile is assumed to
approach a steady state,

dUx
dt

= 0 = fc Uy − fc Fx; (9.4.A)

dUy
dt

= 0 = fc (UG − Ux)− fc Fy. (9.4.B)

The Fx and Fy drag terms are expressed in Ekman’s formulation as depending on
second-order derivatives of the wind components:

Fx = Km
∂2Ux
∂x2

; Fy = Km
∂2Uy
∂y2

. (9.5)

The solution to the differential-equation set then is written,

Fx = Km
∂2Ux
∂x2

= Uy(daytime), (9.6.A)
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Fx = Km
∂2Uy
∂y2

= UG − Ux(daytime). (9.6.B)

Here, Km is the coefficient of eddy viscosity (e.g., Houghton 1977). If Km is a

constant of height, then this equation set may immediately be solved:

Ux(Z) = UG [1− exp(−γ Z) cos(γ Z)] , (9.7.A)

Uy(Z) = UG exp(−γ Z) sin(γ Z)]. (9.7.B)

Note that in the northern hemisphere the departure of Uy (due to the Coriolis force)

is always to the left of the geostrophic wind and therefore in the direction of positive

y, while the departure in the along-geostrophic direction is always negative, so Ux
is always less than UG. The constant γ is given as

γ =
√
fc/(2Km). (9.8)

At height Z = π/γ, Ux ≈ UG and Uy = 0, which is the condition of the wind

vector at the top of the boundary layer. Thus π/γ is approximately the height of the

boundary layer. Since the model tracks the height of the boundary layer elsewhere,

instead of requiring a separate evaluation of Km, we can simply set

γ = π/ZI . (9.9)

However, Km is not generally a constant of height (Houghton 1977; Stull 1989).

Nonetheless, in lieu of further information the Ekman spiral provides a useful

starting place for characterizing daytime winds aloft.

To correct the Ekman analysis for nonconstant Km, one must obtain a substitute

approximation for Ekman’s choice, of

−ρa
[
〈u′w′〉2 + 〈v′w′〉2

]1/2
= ρaKm

∂U

∂Z
. (9.10)

Here, the quantity in angle brackets is the correlation between wind perturbations in

the vertical direction (w′) and in the horizontal directions (u′ and v′). The quantity

on the left is termed the turbulent vertical momentum flux, whereas the quantity

on the right depends on the vertical gradient of the mean wind speed. Hence, this is

another flux-profile relation. And, of primary interest is the behavior of this function

outside the surface layer where the quantity in square brackets is a variable function
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of height (as opposed to its behavior in the surface layer where it is assumed to be

a constant of height within the layer).

This problem has not been solved for the model. Complicating the daytime

characterization is the effect of the convective rolls mentioned elsewhere that would

tend to transfer momentum into the surface layer but not through a small-scale

mechanism directed by the vertical gradient.

Consider the rise time computed in Eq. 6.11. There, the time required for heated

air to mix out of the surface layer into the upper portion of the boundary layer was

considered. In that calculation the height used for the mixing was ZT , the surface-

layer thickness. However, a second rise time could also be inferred using ZI that

would be associated with the time required to mix air heated at the ground into the

complete boundary layer. This time,

trise,B =
√

2ZI/a =
√

2ZI TA/(g∆T ), (9.11)

which characterizes a forcing time associated with momentum added to the

boundary layer. As is frequently observed, daytime wind speeds typically increase

in speed as convective rolls appear in the boundary layer. To characterize typical

times and velocities involved, we could divide the rise time for the surface layer

into the depth of the surface layer to characterize a velocity perturbation,

∆U ≈ ZT
trise

=
√
ZT a/2. (9.12)

Then, assuming this perturbation must propagate around the convective roll, the

propagation time would equal approximately 4 times the height to the elevated

inversion base, 4 trise,B. Let us consider a boundary-layer height of ZI = 2, 000 m

and an acceleration of a ≈ 0.1 m/s2. Then the propagation time becomes 800 s,

a delay of approximately 13 min. Such perturbations in wind speed would tend

to drive further fluctuations in heating that would cause further fluctuations in the

wind, etc.

Ultimately, the objective would be to obtain expressions for the vertical variation of

wind speed consistent with both the Ekman spiral model, similar to the approach

used in modeling the temperature profile such that the wind-speed gradient

approached zero at the top of the boundary layer and approached the flux-profile
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form (e.g., Paulson 1970) in the surface layer, as developed in Chapter 6. But in
addition to the mean wind, a fluctuating wind component would be added to account
for variations in wind speed that would add perturbations to the heat production near
the surface. Complicating this picture is the nature of the Ekman spiral relation that
models 2 components of the wind.

9.2 Nocturnal Low-Level Jet Development
Assuming such a model is possible for the mean wind profile, a model for the
nighttime evolution of the wind profile is also needed. The Ekman spiral form
then provides the starting-point profile that evolves into the nocturnal low level jet

profile. The theory of the nocturnal jet postulates that at sunset as the surface-based
inversion sets up, it produces a condition where there is reduced turbulence aloft.
At some elevation, Z > ZC (critical height), the wind gradient is not strong enough
to maintain turbulent turnover of the air at a given level. When this occurs, the wind
experiences an acceleration due to the Coriolis force.

The rationale for such accelerations is that the daytime wind profile features
increased drag effects due to buoyant mixing of air from the surface layer into the
boundary layer. This effect is experienced as an increased drag coefficient during
the daytime, with the wind speed falling as Z decreases. Conversely, when the
atmosphere becomes stable, cooler air near the ground suppresses vertical mixing,
drag effects are reduced, and the momentum equation may be approximated by

dUx/dt = fc Uy , (9.13.A)

dUy/dt = fc (UG − Ux), (9.13.B)

where the drag coefficients have been set to zero. The solution to this equation set
is such that the velocity vector orbits a central wind vector (UG, 0) over the inertial
period TI = 2π/fc ≈ 17 hr. Hence, the wind speed above the surface will peak at
around 8.5 hr after the neutral event. Since winds near the surface start at a value
less than winds aloft, a wind-speed maximum appears at an elevation close to the
ground. The fact that the maximum does not occur exactly at the ground is due
to the simplifying assumption made above where the drag effects were completely
removed. Obviously, this procedure is not accurate close to the ground.

Assuming a layer that follows the above rules approximately, we first set the initial
conditions and then evolve them. Once the daytime conditions end, the final daytime
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state becomes the initial state for the nocturnal winds. We equate this condition to

the winds at the neutral event:

Ux(0) = Ux(neutral) = UG − Fy(daytime), (9.14.A)

Uy(0) = Uy(neutral) = Fx(daytime). (9.14.B)

This state may then be introduced in solving the nocturnal winds:

Ux(t) = UG − Fy cos(fc t) + Fx sin(fc t), (9.15.A)

Uy(t) = Fy sin(fc t) + Fx cos(fc t). (9.15.B)

The maximum wind velocity is then UG + (F 2
x + F 2

y )1/2 obtained in 6–8 hours.

To complete this model a near-surface drag effect consistent with the typical

nocturnal profile must be postulated. Some insight into the nature of the drag

variability is gained by considering a cylinder of air rotating under the influence

of a vertical velocity gradient in the presence of a rotation-suppressing, negative

density-gradient.

9.3 Small-Scale Nocturnal Turbulence Generation
In the next 2 sections an extended analysis of a turbulent cylinder is first presented,

followed by the development of a surface-layer-based gravity-wave model under

conditions of the stable surface layer. In these analyses various detailed calculations

are provided, several minor errors are resolved, and methods are developed for

solving the gravity-wave calculation.

An earlier analysis (Tofsted 1993, App. B) examined the criteria for the

existence of turbulence in a stable flow. As is well known, the nocturnal stable

atmosphere features a vertical temperature gradient that is positive (the surface-

based inversion).

Under daytime unstable atmospheric conditions, featuring a temperature lapse rate

that is negative, any motion of the air is potentially able to produce a turnover in the

atmosphere leading to vertical fluxes of warm air away from the ground. This can

be modeled using a simple cylinder of air featuring mean vertical gradients of both

temperature and wind speed. However, at night as stable atmospheric conditions are
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established the atmosphere will suppress such attempts at turnover and each layer
will remain in place, resulting in near-laminar flow.

In the previous analysis (Tofsted 1993, App. B) a simple model was used to study
such flow. Vertical gradients of density and wind speed were considered constant
over a small cylinder. Analysis of the cylinder’s rotational kinetic-energy and
potential-energy states was performed. The angular momentum of the cylinder was
found to be

LA = (ρ0 u̇+ ρ̇ u0)
V R2

4
. (9.16)

Here, the mean density of the cylinder is given as ρ0, the mean wind speed is u0, and
the vertical gradients of density and wind are given as ρ̇ = dρ/dz and u̇ = du/dz.
The volume of the cylinder is given by V = π R2 Y , where the wind is directed
along the positive x axis, the vertical axis in which the gradients are directed is
designated by z, and y is in the crosswind direction. R is the radius of the cylinder,
while Y is the cylinder length along the y axis.

The cylinder’s rotational inertia can be computed as I = ρ0 V R
2/2. Then, the

rotational kinetic energy can be computed using

KEA =
L2
A

2 I
=

(
u̇+

ρ̇

ρ0

u0

)2
ρ0 V R

2

16
. (9.17)

Counteracting this available kinetic energy is the potential energy to be overcome.
From its stable state where the densest air is considered to be at the bottom of the
cylinder and the lightest air at the top, it was found that one must overcome the
negative potential energy,

PEA = −2 ρ̇ g
V R2

4
, (9.18)

where g = 9.8 m/s2 is the gravitational acceleration. That is, we must have

KEA ≥ PEA, (9.19)

in order to have turnover.

Introducing the expanded equation forms from Eqs. 9.17 and 9.18, Eq. 9.19 can be
written as (

u̇+
ρ̇

ρ0

u0

)2
ρ0 V R

2

16
≥ −2 ρ̇ g

V R2

4
, (9.20)
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where ρ̇ < 0. However, note that we are only interested in the density gradient

that is different from that achieved by normal adiabatic effects. Thus, we write the

density vertical gradient as
ρ̇

ρ0

= − θ̇
θ
, (9.21)

adopting the potential temperature, θ, as a replacement for temperature T . Note that

if we had retained the pressure-gradient term, we would have discovered that the

pressure gradient effect is dominant, but only outside the boundary layer, since,

ρ̇

ρ0

= −α g
θ
− θ̇

θ
= −0.03414

θ
− θ̇

θ
, (9.22)

where α = 1/R, where R = 287 J/kg-K is the gas constant for dry air, and g =

9.8. Nonetheless, this form also include an adiabatic density decrease that must be

cancelled out, since it does not influence buoyancy. Therefore Eq. 9.21 is the correct

form. Substituting this expression into Eq. 9.20, and cancelling terms, the condition

for successful turnover can be reduced to the form,

u̇+
θ̇

θ
u0 >

√
+

8 g θ̇

θ
. (9.23)

This expression may be simplified by removing the second term on the left. Due

to the presence of θ on the order of 270 K or higher in the denominator of this

term, it will be small compared to both the first term on the left and the term on the

right that features only a θ−1/2 dependence. The condition can then be written in

the approximate form
u̇2

8 g
>
θ̇

θ
. (9.24)

Further progress was achieved by introducing the nocturnal (stable layer)

expressions for the wind- and temperature-gradient functions in the surface layer:

u̇ =
u∗
k z

(
1 + β

z

LOb

)
, (9.25)

θ̇ =
T∗
k z

(
1 + β

z

LOb

)
, (9.26)

where k is von Kármán’s constant (approximately equal to 0.4), z is height above

the ground, LOb is the Obukhov similarity scaling height for the surface layer, u∗ is

the friction velocity, and T∗ is the scaling temperature.
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Introducing these definitions, the condition equation was reduced to the relation,

θ

g

u2
∗

k T∗

(
1

z
+

β

LOb

)
> 8. (9.27)

This was the final result in the Appendix (Tofsted 1993), given in Eq. B-16.
However, the definition of the Obukhov length is given as

LOb =
u2
∗

k g T∗/θ
. (9.28)

Introducing this definition on the left we obtain(
LOb
z

+ β
)
> 8. (9.29)

The value of β is commonly believed to be approximately 5 (Businger gives the
value as 4.7). Solving for z relative to LOb, we now find the condition reduced to

z <
LOb
3
. (9.30)

Under neutral conditions the Obukhov length tends to increase toward infinity and
any vertical wind gradient is sufficient to produce a turnover, leaving z unrestricted.
But as stable conditions become established and the Obukhov length is reduced, the
region of the air that remains turbulent is restricted to a layer close to the surface.
Only within this layer are vertical wind gradients strong enough to thwart the stable,
vertical density-gradient component from suppressing vertical motions that lead to
laminar flow.

Hence, for even minor inversion conditions (i.e., for LOb of even moderate values:
10s to 100s of meters), there will exist a layer that becomes detached from the
drag effects of the surface, in which turbulent flow is sufficiently suppressed
that near-laminar-flow conditions prevail. This will cause the surface to become
disconnected from the air above and lead to nocturnal wind accelerations associated
with nocturnal jet flow.

Also note that this condition appears to contradict the very grounds used in defining
the Obukhov length in the first place. That is, we normally associate the Obukhov
length with a height scale that covers a constant stress layer. But we have just shown
that for the standard vertical-structure functions given for that layer, one obtains
turnover only over the first third of the layer, an apparent contradiction.
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9.4 Gravity-Wave Turbulence in the Stable Surface Layer
Let us now consider a related influence on the nocturnal boundary-layer
atmosphere. The state of the atmospheric surface layer at night is characterized as
being stable in the sense that the vertical temperature gradient is generally positive
(coldest air is near the surface) due to radiative cooling of the ground. As we have
seen in the previous section this cooling, when applied to even small parcels of
air, can cause them to be unable to turn over due to differential temperatures at
the top and bottom of a cylinder. More generally, when any parcel of air in a stable
atmosphere is displaced from its original height due to adiabatic warming (lowering
it) or cooling (raising it), it becomes out of balance with other air at the same level.
Raising it makes it denser than surrounding air and it tends to sink, while lowering
it causes it to be warmer than the surrounding air and it gains bouyancy, tending to
want to rise. The characterization as being stable thus refers to the tendency of the
parcel to return to its original height.

However, due to the effect of the bouyancy, this stability is dynamic. In the absence
of viscous forces, a displaced parcel will tend to oscillate about its point of origin.
This means that when wind advects such stable air over certain terrain features,
the terrain interaction with the advected air causes the mean flow of wind to
stimulate what are termed gravity waves: waves that exist as transverse stability-
based perturbations of the flow. Such waves remove energy from the mean flow
and introduce energy into wave modes that propagate with the wind. However,
while a stable atmosphere gives rise to such wave modes, these waves are far
from stable. Rather, because the wind is vertically varying, these waves tend to
disperse as they propagate. And, like waves at a beach, once a dense portion of a
gravity wave has propagated out from under a less-dense portion, the wave density
will become unstable where a denser portion of air lies over less dense air. As the
denser air falls, this will cause mixing with air below; effectively, the layer will
experience an overturning. This event will then cause air from above, characterized
by faster wind speed (and presumably slightly warmer) to mix with air near the
ground that is cooler and denser. The result will be an increase of the heat flux near
the ground, warming the surface, but also extending the surface-based inversion to a
greater depth and, at the same time, reducing the wind speed aloft due to increased
dissipation rate.

Once the mixing event has sufficiently reduced the overall gradients of wind and
temperature, the conditions for mixing no longer prevail. Then the atmosphere
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re-establishes the disconnection between the wind and the surface, increasing
gradients and the temperature gradient, but over a deeper layer, and the gravity
waves reappear, repeating the process. However, the above description only
provides a narrative. To produce a modeled effect we require a framework within
which to produce a model. This new framework builds off the analysis of Beer’s
(1974) and a preliminary analysis included in Tofsted (1993).

9.5 Gravity-Wave Equation Set
First, let us define the quantity γ = Cp/Cv ≈ 1.4 as the ratio of Cp, the specific
heat of air per unit of mass at constant pressure, to Cv, the specific heat at constant
volume.

Second, using ρ = P/(RT ) as the definition of density, with R = 187 and pressure
P measured in Pascals (not millibars), let us define the quantity H as the scale
height of the atmosphere. Holton (1979) expresses this quantity as

H = RT/g ≈ 8 km. (9.31)

The scale height may be considered equivalent to the thickness of the atmosphere if
it were considered to be of a constant density throughout. This length scale is also
related the speed of sound, c, through the relation,

c2 = γ g H. (9.32)

These parameters basically tend to characterize static atmospheric conditions.
For dynamic processes Beer (1974) introduces a discussion of Eulerian versus
Lagrangian methods (point sensing versus point following) in which he provides
the Stokes derivative,

DV

D t
=
∂ V

∂t
+ U · ∇V. (9.33)

Here, ∇ is a gradient operator and U is the total wind vector, so that the second
component represents an advection term while the first term represents just a point
variation following the wind. This form applies to a scalar variable (V ). For a vector
quantity, V , the operator becomes

D V

D t
=
∂ V

∂t
+ (U · ∇)V . (9.34)

We are interested in the case where V ≡ U , which can be expressed (Arfken 1985)
as

DU

D t
=
∂ U

∂t
+ U · ∇U =

∂ U

∂t
+

1

2
∇(U2) + U × (∇× U). (9.35)
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But it will be just as easy to compute the result directly from the tensor form rather

than invoke both the vector terms.

The Stokes derivative operator is applied to one of 4 field variables: P , ρ, Ux,

and Uz, corresponding to the pressure, density, and along-wind and vertical-wind

components. In general, each variable is divided into a mean component (subscript

zero) and a perturbation (subscript one):

P = P0 + P1, (9.36.A)

ρ = ρ0 + ρ1, (9.36.B)

Ux = Ux,0 + Ux,1, (9.36.C)

Uz = Uz,0 + Uz,1. (9.36.D)

In each case (except where it is assumed zero), the zero-order variable is considered

much smaller than the perturbation term.

For purposes of calculation, the perturbation quantities are all considered to exist

within a framework of oscillating functions offset from one another by phase

variations that remain constant, but obey the structural forms,

P1

P0 V
=

ρ1

ρ0W
=
Ux,1
X

=
Uy,1
Y

=
Uz,1
Z

= A0 exp [i (ω t− κ · x)] . (9.37)

Here x = (x, y, z), the 3-dimensional vector position, while κ = (κx, κy, κz) is

the vector wave number and ω is the temporal radial frequency. Functions V , W ,

X , Y , and Z function as complex phase modifiers. However, we shall further find

it useful to pick out the vertical dimension for development:

A(x, z, t) = A0 exp [i (ω t− κ · x)]→ W (z) exp [i (ω t− κx x)] . (9.38)

Beer’s (1974) equations of motion for these variables consisted of the equation of

motion, an energy equation accounting for the adiabatic atmosphere, and a mass

continuity equation. These are expressed, respectively, as,

∂ U

∂t
+ U · ∇U = −1

ρ
∇P + g, (9.39)

∂ P

∂t
+ U · ∇P = c2

(
∂ ρ

∂t
+ U · ∇ ρ

)
, (9.40)

165



∂ ρ

∂t
+∇ · (ρU) = 0. (9.41)

This set of equations encompasses 2 different types of solutions. The first solution
is for acoustic waves. The second solution is our focus, related to gravity waves.

Some simplifications are possible when we limit the problem to just those
conditions we are interested in. These include mean quantities that are time
independent and mean wind quantities Ux,0 = A + Bz and Uz,0 = 0. And while
Ux,0 is variable with height, its vertical gradient is considered to be second order.
Therefore,

(∇× U)× U ≈ 0, (9.42)

to first order (in this derivation). The Stokes operator can thus be approximated by

DV

D t
≈ i(ω − Ux,0 κx)V = Q̂(z)V. (9.43)

This allows us to replace a main operator with a multiplicative function. In
particular, the quantity (ω − Ux,0 κx) is termed the Doppler-shifted frequency,
designated Ω:

Ω = ω − Ux,0 κx = −i Q̂, Q̂ = iΩ. (9.44)

First, when dealing with the mean fields, the mass continuity and energy equations
are identically zero, while the momentum equation reduces to the hydrostatic
equation,

∇P0 = ρ0 g, (9.45)

where g = −g k̂. For the near-surface atmosphere treated within the boundary layer
this calculation can be simplified if the temperature is constant. Using the scale
height, H , the baseline density can be written as

ρ0(z) = ρg exp(−z/H). (9.46)

Then, solving for the pressure,

P0(z) = g H ρg exp(−z/H) = Pg exp(−z/H). (9.47)

If, on the other hand, we are dealing with an atmosphere in which the temperature
is varying linearly with height, say as T (z) = Tg + β z, then the presssure becomes

P0(z) = Pg (1 + βz/Tg)
−g/(Rβ), (9.48)
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where Tg is the ground temperature (at z = 0), just as ρg is the density at the ground

and Pg is the pressure at ground level. Note that the 2 forms of pressure variation

in Eqs. 9.47 and 9.48 are approximately equal when z/H is small. In this case the

exponential in Eq. 9.47 approximates as 1 − z/H , while (1 + βz/Tg)
−g/(Rβ) ≈

1− [gz/(RTg)] = 1− z/Hg, where Hg is the H value evaluated using the ground-

level temperature Tg.

Given these 2 forms, let us expand Eq. 9.41:

∂ ρ1

∂t
+ U0 · ∇ρ1 − ρ0 Uz,1/H + ρ0∇ · U1 = 0. (9.49)

Simplifying, the first 2 terms on the right can be collapsed using the Q̂ operator.

Second, the vertical derivative of ρ0 produces only a second-order effect when

multiplying the z-axis wind-perturbation component. Third, the wind-divergence

term may be expressed using the term χ = ∂x Ux,1 + ∂z Uz,1. With these changes

this equation appears as

Q̂
ρ1

ρ0

− Uz,1
H

(1 + Ḣ) + χ = 0. (9.50)

This equation is equivalent to Eq. B-19d of Tofsted (1993) and to Beer’s (1974)

approach of using a term −Uz,1 Ḣ/H that has been included to account for vertical

variations of H .

Given the forms indicated for Ux,1 and Uz,1 in Eqs. 9.37 and 9.38, we could write

out an expression for the divergence χ explicitly in expanding Eq. 9.50. However, it

instead will be more effective to recognize that Eq. 9.40 and 9.41 can be combined,

along with the definition of χ = ∇ · U , to produce the relation,

∂ P

∂t
+ U · ∇P + c2 ρ0 χ = 0. (9.51)

The P differential term then expands, using Eq. 6.32, to produce,

Q̂ P1 − Uz,1
P0

H
+ γ g H ρ0 χ = 0. (9.52)

Dividing by P0, we recognize that ρ0 g H/P0 = 1, such that,

Q̂
P1

P0

− Uz,1
H

+ γ χ = 0. (9.53)
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This equation is equivalent to Eq. B-19c of Tofsted (1993).

The remaining 2 equations must be set up separately from the x and z components
of Eq. 9.39. Start with the z component corresponding to Eq. B-19b of Tofsted
(1993). The right side of Eq. 9.39 can be expanded as

−1

ρ
(∂zP0 + ∂zP1 + g ρ0 + g ρ1)→ −∂zP1

ρ0

− g ρ1

ρ0

, (9.54)

where the P0 gradient component balances the gravitational term (∂z P0 = −g ρ0).
But, Beer chose (P1/P0) as his independent variable. Therefore, ∂zP1 must be
transformed to appear as a function of only (P1/P0). Consider,

∂(P1/P0)

∂z
=
∂z P1

P0

− P1

P 2
0

∂z P0. (9.55)

From the Eq. 9.31 definition of H , we can rewrite ρ0 = P0/(gH), such that,

P1

P 2
0

∂z P0 = −g ρ0 P1

P 2
0

= − 1

H

P1

P0

. (9.56)

Then, rearranging further,

∂z P1

P0

=
∂(P1/P0)

∂z
+
P1

P 2
0

∂z P0 =
∂

∂z

(
P1

P0

)
− 1

H

P1

P0

. (9.57)

Multiplying this equation by RT0 = gH ,

RT0
∂z P1

P0

=
∂z P1

ρ0

= gH
∂

∂z

(
P1

P0

)
− gP1

P0

. (9.58)

Substituting this result into Eq. 9.54, the RHS of 9.39 to be rewritten,

−∂zP1

ρ0

− g ρ1

ρ0

= −gH ∂

∂z

(
P1

P0

)
+ g

P1

P0

− g ρ1

ρ0

. (9.59)

Now let us consider the LHS of Eq. 9.39. First, we recall (see Eq. 9.36 discussion)
that ∂t Ux,0 = 0, since Ux,0 is a time-averaged mean-wind quantity. Next, from
Eq. 9.37, ∂t Ux = i ω Ux,1, and ∂t Uz = i ω Uz,1. This leaves only the second
divergence term to resolve. To do so, notice that the term ∇U is a second-order
tensor. Luckily, most of its components are zero. This tensor can be resolved
separately into its mean and perturbation components. For its mean wind portion,

∇U0 =


∂x Ux,0 ∂x Uy,0 ∂x Uz,0

∂y Ux,0 ∂y Uy,0 ∂y Uz,0

∂z Ux,0 ∂z Uy,0 ∂z Uz,0

 =


0 0 0

0 0 0

∂z Ux,0 0 0

 , (9.60)
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a significant reduction occurs. For its perturbation portion,

∇U1 =


∂x Ux,1 ∂x Uy,1 ∂x Uz,1

∂y Ux,1 ∂y Uy,1 ∂y Uz,1

∂z Ux,1 ∂z Uy,1 ∂z Uz,1

 =


∂x Ux,1 0 ∂x Uz,1

0 0 0

∂z Ux,1 0 ∂z Uz,1

 . (9.61)

If we assume the perturbation wind velocities are small, then U1 · ∇U1 will be

small. And since direct calculation easily shows U0 · ∇U0 = 0, we need only

concern ourselves with the interaction terms U1 · ∇U0 and U0 · ∇U1. The first of

these interaction terms evaluates as

U1 · ∇U0 = Uz,1 ∂z Ux,0 ı̂. (9.62)

For the second term,

U0 · ∇U1 = Ux,0 ∂x Ux,1 ı̂+ Ux,0 ∂x Uz,1 k̂. (9.63)

The 2 terms resulting from this second term each combine with the ∂t = i ω

operator to become a Q̂ operator. The remaining term, Uz,1 ∂z Ux,0, contributes to

the x-axis equation, as in Eq. B-19a of Tofsted (1993). Combining the results from

Eqs. 9.54 and 9.59, the z component of the momentum equation can be written,

Q̂ Uz,1 = −gH ∂

∂z

[
P1

P0

]
+ g

(
P1

P0

− ρ1

ρ0

)
, (9.64)

while the x-axis component of the momentum is written,

Q̂ Ux,1 + Uz,1 ∂zUx,0 = − 1

ρ0

∂xP1 = −gH ∂x

[
P1

P0

]
= +i κx gH

[
P1

P0

]
. (9.65)

This derivation thus produces 4 coupled equations:

Q̂ Ux,1 + µUz,1 = +i κx gH
[
P1

P0

]
. (9.66.A)

Q̂ Uz,1 = −gH ∂

∂z

[
P1

P0

]
+ g

(
P1

P0

− ρ1

ρ0

)
. (9.66.B)

Q̂
[
P1

P0

]
− Uz,1

H
+ γ χ = 0. (9.66.C)

Q̂

[
ρ1

ρ0

]
− Uz,1

H
(1 + Ḣ) + χ = 0. (9.66.D)
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Here, Eq. 9.66.A has been modified to replace ∂zUx,0 with µ the constant wind
gradient.

9.6 Vertical Wind Perturbation Equation
Let us now attempt to take the set of 4 coupled equations and derive from these
a single equation that describes one of the component terms. From this solution
we may then be able to determine the remaining terms by using the elimination
equations in reverse. In this section we will thus focus on using mathematical
elimination to obtain a single equation in a single one of the unknowns. The simplest
of these to resolve will be the vertical wind perturbation term.

To solve for this term, the easiest quantity to eliminate first is the difference,
(P1/P0 − ρ1/ρ0), contained in Eq. 9.66.B. Multiplying 9.66.B by Q̂, and using
Eqs. 9.66.C and 9.66.D, we can isolate the variable Q̂ times this difference as

Q̂

[
P1

P0

− ρ1

ρ0

]
= (1− γ)χ− Ḣ

H
Uz,1. (9.67)

Q̂2 Uz,1 = −gH Q̂
∂

∂z

[
P1

P0

]
− g

[
(γ − 1)χ+

Ḣ

H
Uz,1

]
. (9.68)

This can be slightly simplified by recognizing,

g
Ḣ

H
= g

θ̇

θ
= N2, (9.69)

the square of the Brunt–Viasala frequency. Use of this term allows us to consolidate
this factor onto the LHS as

(Q̂2 +N2)Uz,1 = −gH Q̂
∂

∂z

[
P1

P0

]
− g(γ − 1)χ. (9.70)

Let us now reappraise the resulting equation set. We have eliminated the factor
ρ1/ρ0. What remains are the 3 variables, Ux,1, Uz,1, and P1/P0, expressed in
Eqs. 9.66.A, 9.66.C, and 9.70.

Equations 9.37 and 9.38 appeared to suggest that perhaps a single function, W (z),
could be used to describe the vertical structure of all of the perturbation functions.
However, the appearance of Eq. 9.70 does not give us much hope this is true. That’s
because for Uz,1 we expect that there should exist a boundary condition at z = 0

such that Uz,1(x, z, t) obeys Uz,1(x, 0, t) = 0. But dP0/dz will not be zero at z = 0.
Therefore P1/P0 cannot have the same z dependence as Uz,1.
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This possibility of different vertical dependencies for the different components

indicates caution is needed when performing variable transformations. That is,

we should do whatever is necessary to directly solve for one of the remaining 3

components to avoid introducing phase transformations that cannot be evaluated

directly. We therefore proceed to eliminate variables through direct substitution

rather than through model assumptions.

The most-appropriate next candidate for elimination seems to be P1/P0, but 2

courses to accomplish this are available. One method would be to substitute

Eq. 9.66.A into Eqs. 9.66.C and 9.70. The other would be to use Eq. 9.66.C

and insert its results into 9.66.A and 9.70. In his analysis, Beer followed the first

approach, using his equivalent of our Eq. 9.66.A. In his application this approach

was the obvious choice because only one component (the first term on the LHS of

Eq. 9.66.A) needed to be replaced. However, in the current equation set, Eq. 9.66.A

also includes a wind-gradient term. So, both 9.66.A and 9.66.C will introduce 2

terms.

However, choosing Eq. 9.66.C is still probably not preferrable since 9.66.C contains

χ and at the point it is introduced it will generate a second-order z derivative in

Eq. 9.70. On the other hand, substituting Eq. 9.66.A into 9.66.C and 9.70 only

introduces first-order z derivatives into Eq. 9.70.

We therefore begin by combining Eqs. 9.66.A and 9.66.C seeking to solve for Ux,1
in terms of Uz,1, whereby we write,

− i

κx gH

(
Q̂2 Ux,1 + µ Q̂Uz,1

)
= +

Uz,1
H
− γ (−i κx Ux,1 + ∂z Uz,1) . (9.71)

Rearranging the lefthand and righthand expressions (and ignoring the central form),

we attempt to isolate Ux,1 by first multiplying Eq. 9.71 by i κx gH:

+
(
Q̂2 + κ2

x c
2
)
Ux,1 = +i κx

(
g − c2 ∂z

)
Uz,1 − µ Q̂Uz,1. (9.72)

Next, we simplify Eq. 9.72 by substituting in Q̂ = iΩ from Eq. 9.44,

(
κ2
x c

2 − Ω2
)
Ux,1 = +i

[
−µΩ + κx

(
g − c2 ∂z

)]
Uz,1. (9.73)
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Substituting Eq. 9.66.A into Eq. 9.70, having first reversed all signs,

(Ω2 −N2)Uz,1 = +gH Q̂
∂

∂z

[
− i

κx gH

(
Q̂ Ux,1 + µUz,1

)]

+g(γ − 1) (−i κx Ux,1 + ∂z Uz,1) . (9.74)

Next, we expand the first term on the right as a series of 5 parts. Let us designate

vertical derivatives using ∂zH = Ḣ and ∂zQ̂ = −i κx µ, where µ = ∂z Ux,0.

+gH Q̂
∂

∂z
[...] =

[
−ΩN2/(g κx)

]
(iΩUx,1 + µUz,1)

−i µΩUx,1 + i
Ω2

κx
∂z Ux,1 +

µΩ

κx
∂z Uz,1. (9.75)

Substituting Eq. 9.75’s intermediate result into Eq. 9.74 yields

(Ω2 −N2)Uz,1 =

(
−ΩN2

g κx

)
(iΩUx,1 + µUz,1)− i µΩUx,1 + i

Ω2

κx
∂z Ux,1

+
µΩ

κx
∂z Uz,1 + g (γ − 1) (−i κx Ux,1 + ∂z Uz,1) . (9.76)

Rearranging terms, placing the Uz,1 terms on the left,

(
µΩ

κx
+ g(γ − 1)

)
∂z Uz,1 −

[
Ω2 +

(
µΩN2

g κx

)
−N2

]
Uz,1 =

+
iΩ2N2

g κx
Ux,1 + i µΩUx,1 − i

Ω2

κx
∂z Ux,1 + i g(γ − 1)κx Ux,1. (9.77)

To simplify the math, let us introduce dimensionless parameters M = µΩ/(g κx)

and R = M + γ − 1, such that Eq. 9.77 can be written,

g R ∂z Uz,1 −
[
Ω2 + (M − 1) N2

]
Uz,1 =

−Ω2

κx
∂z (i Ux,1) + g κx

(
M2N2

µ2
+R

)
(i Ux,1). (9.78)

With this result, P1/P0 has been eliminated. The equation set has thus been reduced

to Eqs. 9.73 and 9.78. The final step is to substitute for (i Ux,1) from Eq. 9.73 into

Eq. 9.78. But before doing so, note that the new variable M allows Eq. 9.73 to be

expressed in the simplified form,

(
κ2
x c

2 − Ω2
)

(i Ux,1) = g κx [(M − 1) + γ H ∂z] Uz,1. (9.79)
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The system of Eqs. 9.66.A–D has thus been reduced to Eqs. 9.78 and 9.79. To

proceed we will need to remove Ux,1 from 9.78. This will require both solving

Eq. 9.79 for (i Ux,1) and using this equation’s derivative to eliminate ∂z Ux,1. This

latter procedure is made simpler by introducing additional new variables: Let β =

κx c, and Γ2 = β2 − Ω2, such that Eq. 9.79 can be rewritten as

(i Ux,1) = g κx Γ−2 [(M − 1) + γ H ∂z] Uz,1. (9.80)

However, Eq. 9.78 also involves the derivative of Eq. 9.80, so we will need the

derivative of Γ−2, given by,

∂z (Γ2)−1 = −(Γ2)−2 ∂z (Γ2). (9.81)

∂z (Γ2) = ∂z (β2 − Ω2) = +κ2
x γ g Ḣ + 2 Ωκx µ

= +κ2
x g

(
γ Ḣ + 2

µΩ

g κx

)
= +κ2

x g
(
γ Ḣ + 2M

)
. (9.82)

Taking the derivative used by the middle term in Eq. 9.80,

∂z [(M − 1) + γ H ∂z] = ∂z [µΩ/(g κx)] + ∂z [γ H] ∂z

= −κxµ [µ/(g κx)] + [γ Ḣ] ∂z

= −µ2/g +
γ H

g
(g Ḣ/H) ∂z

= −(N2/g)
(
µ2/N2 − γ H ∂z

)
. (9.83)

Using these results, solving Eq. 9.79 for (i Ux,1), and taking the z derivative,

∂z (i Ux,1) = g κx ∂z
{

Γ−2 [(M − 1) + γ H ∂z] Uz,1
}

= −(g2 κ3
x Γ−4)(2M + γ Ḣ) [(M − 1) + γH ∂z] Uz,1

−κxN2 Γ−2
[
µ2/N2 − γH ∂z

]
Uz,1

+κx g Γ−2 [(M − 1) + γH ∂z] ∂z Uz,1. (9.84)

The intermediate results given in Eqs. 9.80 and 9.84 can now be introduced into

Eq. 9.78 so that we may solve for Uz,1. However, since only vertical derivatives of

Uz,1 will remain, the exponential factor of Eq. 9.38 should cancel out of both sides

of the resulting equation, leaving only terms in W (z) and its derivatives.
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Based on this reduction to the function W (z), we further abbreviate these

derivatives in the form ∂zW (z) = Ẇ and ∂2
zW (z) = Ẅ .

With these substitutions, we can rewrite Eqs. 9.80 and 9.84 as

(i Ux,1) ∝ +(g κx/Γ
2)
[
(M − 1) W + γ H Ẇ

]
; (9.85)

−(1/κx) ∂z (i Ux,1) ∝ +(g2 κ2
x/Γ

4)(2M + γ Ḣ)
[
(M − 1)W + γH Ẇ

]
+(N2/Γ2)

[
(µ2/N2)W − γH Ẇ

]
−(g/Γ2)

[
(M − 1) Ẇ + γH Ẅ

]
. (9.86)

So then, Eq. 9.78 translates into

g R Ẇ−
[
Ω2 + (M − 1) N2

]
W = −(Ω2 g/Γ2)

[
(M − 1) Ẇ + γH Ẅ

]
+(g2 κ2

x/Γ
2)
(
M2N2/µ2 +R

) [
(M − 1) W + γ H Ẇ

]
+(Ω2 g2 κ2

x/Γ
4)(2M + γ Ḣ)

[
(M − 1)W + γH Ẇ

]
+(Ω2N2/Γ2)

[
(µ2/N2)W − γH Ẇ

]
. (9.87)

Next, following the same procedure as in Tofsted (1993), let us isolate the Ẅ term

and proceed to collect algebraic factors that multiply the Ẇ and W terms. We will

begin by dividing both sides by Ω2 γgH/Γ2 = c2 Ω2/Γ2. But, let us also move all

terms onto the LHS of the equation. Together, these steps lead (after some math) to

Ẅ + (g/c2)(M − 1) Ẇ + (g/c2)R (Γ2/Ω2) Ẇ

−[g2 κ2
x/Γ

2](2M + γ Ḣ)
[
((M − 1)/c2)W + Ẇ/g

]
−
(
N2 + µ2R/M2

) [
((M − 1)/c2)W + Ẇ/g

]
−(Γ2/c2)

[
1 + (M − 1) (N2/Ω2)

]
W

−
[
(µ2/c2)W − (N2/g) Ẇ

]
= 0. (9.88)

All of the coefficients related to the Ẇ and W terms can be consolidated.

Consolidating all of the Ẇ coefficients we have, using g/c2 = 1/(γH),

+

[
(M − 1)

(γH)
+

R

(γH)

Γ2

Ω2
− g κ2

x

Γ2
(2M + γ Ḣ)− µ2 R

gM2

]
Ẇ . (9.89)
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Further consolidation is possible when we note that Γ2/Ω2 = β2/Ω2 − 1, that

g κ2
x = β2/(γH), and M − 1 − R = −γ. In addition, 2 more wave numbers may

be defined: κU = µ2/g and κG = g/c2. This term then reduces to

+

[
− 1

H
+ κGR

β2

Ω2
− 2κGM

β2

Γ2
− N2 β2

g Γ2
−R κU

M2

]
Ẇ . (9.90)

At this stage there are so many named coefficients that several cancellations

will occur; but first, more new variables are introduced: G = Ω/β, and κN =

(g Ḣ/H)/g = N2/g.

+κG
β2

Ω2
− κU
M2

=
g

c2

c2κ2
x

Ω2
− µ2/g

[(µΩ)/(gκx)]2
=
gκ2

x

Ω2
− g κ2

x

Ω2
= 0. (9.91)

Using these substitutions, the Ẇ term can be reduced to

+

[
− 1

H
− κN

(1−G2)
− 2

κGM

(1−G2)

]
Ẇ . (9.92)

This result follows that of Eq. B-22’s result in Tofsted (1993), which matches

Beer’s (1974) ∂zW term of his Eq. 2.5.12, except for the third term,−2κGM/(1−
G2), which accounts for the vertical wind shear, a factor that was not considered in

the previous analysis.

Following the same procedure used to simplify the Ẇ expression, the term

proportional to W can be simplified to the form

{
−
[

(M − 1)

c2

] [
Γ2N2

Ω2
+
g2 κ2

x

Γ2
(2M + γ Ḣ) +N2 +

µ2R

M2

]}
W

+

{
−(Γ2 + µ2)

c2

}
W. (9.93)

Additional cancellations are also possible through the substitutions

Γ2N2

Ω2
+N2 =

(1−G2)N2

G2
+N2 =

N2

G2
, and, (9.94)

g2 κ2
x γ Ḣ

Γ2
=

γ Ḣ g2 κ2
x

β2 (1−G2)
=

γ Ḣ g2

γ g H (1−G2)

=
Ḣ g

H (1−G2)
=

N2

(1−G2)
. (9.95)
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Combining terms from Eqs. 9.94 and 9.95,

N2

G2
+

N2

(1−G2)
=

(1−G2)N2

G2 (1−G2)
+

G2N2

G2 (1−G2)
=

N2

G2 (1−G2)
. (9.96)

One can also rewrite

µ2R

M2
=

µ2R

[µΩ/(g κx)]2
=
g2 κ2

xR

Ω2
=
g2 κ2

xR

β2G2
=

g2R

c2G2
, (9.97)

and,
g2 κ2

x 2M

Γ2
=

2M g2 κ2
x

β2 (1−G2)
=

2M g2

c2 (1−G2)
. (9.98)

Adding these quantities, a common denominator appears:

g2R

c2G2
+

2M g2

c2 (1−G2)
=
g2

c2

[
R

G2
+

2M

(1−G2)

]
. (9.99)

By collecting terms from Eqs. 9.96 and 9.99 and introducing these back into
Eq. 9.93, and setting S2 = 1−G2, the W function becomes, after some math,

CT W =

[
κNκG
G2 S2

+ κ2
G

(
(γ − 1)

G2
+
M (1 +G2)

G2 S2

)]
(1−M)W

−
(
κ2
x S

2 + κUκG
)
W. (9.100)

For comparison, let us write out Beer’s W coefficient terms from his Eq. 2.5.12.
The current function also contains terms related to the wind gradient, so these
should appear as extra terms, but the rest should be consistent. Translating Beer’s
expression into the dimensionless variables used here, he obtained

CBW =

{
κN κG
G2 S2

+ κ2
G

(γ − 1)

G2
− κ2

x S
2

}
W. (9.101)

Comparing these 2 forms we see that the 2 terms that do not match depend on M
and κU . Both of these terms are dependent on the µ = ∂z Ux,0 factor through M
and κU = µ2/g. Therefore, since Beer’s derivation did not consider a vertical wind
shear, these 2 terms would have necessarily equalled zero.

Unfortunately, this comparison highlights the many variables introduced to
describe these equations in dimensionless terms, and raises the question of
which dimensionless wave numbers and/or frequencies are the most natural for
characterizing the flow modeled. This question has yet to be resolved.
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As just one example, consider the product κU κG. Using the variables available, it
can be transformed into several equivalent expressions:

−κU κG = −µ
2

g

g

c2
= −M

2 β2 g2

c4 Ω2
= −M

2

G2
κ2
G. (9.102)

One can similarly manipulate M and G variables to eliminate a few terms in the W
coefficient expression:

(
κ2
G

G2

{
(1−M)

[
κN
κG S2

+ (γ − 1) +
2(1 +M)

S2

]
−M

}
− κ2

x S
2

)
W. (9.103)

Whether the resulting expression improves our understanding is debatable. What
we can conclude is that generally each algebraic multiplier of W contains a product
of 2 (possibly identical) wave numbers, while each Ẇ multiplier acts like a single
wave number (and 1/H = κH also has the dimensions of a wave number).

The complete equation is written as

Ẅ −
[

1

H
+
κN
S2

+ 2
κGM

S2

]
Ẇ = (9.104)

−
(
κ2
G

G2

{
(1−M)

[
κN
κG S2

+ (γ − 1) +
2(1 +M)

S2

]
−M

}
− κ2

x S
2

)
W.

To solve this equation for W (z), we have merely to introduce Dirichlet boundary
conditions in which W (z) = 0 at z = 0 and z = ZV , while the first derivatives of
W at the boundaries remain indeterminate. Hence, setting Ẇ (z)|z=0 to an arbitrary
constant, the solution can be integrated numerically using Euler’s method or another
suitable technique.

The form taken byW (z) has several qualities. First, we note that the above equation
could be expressed in the form,

0 = Ẅ + P (z, κx, ω) Ẇ +Q(z, κx, ω)W. (9.105)

This form is conducive to a solution using standard techniques. However, because
of the boundary conditions at z = 0 and z = ZV , the time frequency ω will become
a function of these boundary conditions, as well as the choice of κx. One also
finds that a series of solutions exists for a given atmospheric state. These different
solutions each feature a zero value of W (z) only at z = 0 and ZV . The zeroth-
order solution only contains these zeros. Higher-order solutions feature additional
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zeros at an extra intermediate height for each order of the solution. Such higher-

order solutions permit the boundary-layer atmosphere to dynamically turn over

due to the effects of vertical variations of frequency ω. This is consistent with the

concept of gravity waves that can break and produce intermittent turbulent episodes

characteristic of nocturnal turbulence.

The next section examines various solutions to the above equation as well as the

issue of breakdown of such states.

9.7 Vertical Wind Structure
According to Tofsted (1993), where several sources were cited — including

Browning (1971), Miles and Howard (1964), Goldstein (1931), Lalas and Einaudi

(1976), and Davis and Peltier (1976) — the wavelength of the fastest-growing

gravity-wave mode is approximately 7.5 times the depth of the surface-inversion

layer, ZV .

That is, we recognize that terrain will be variable. Nighttime flow over such terrain

undulations tends to induce vertical wind motions that, in turn, can generate wave

energy for these waves. We also understand that such waves must be limited in their

vertical wavelength and, therefore, in their vertical motions such that at the least,

one-half of a wavelength must span the surface-inversion layer. Higher-frequency

waves, of course, have a larger number of vertical wavelengths fitting into the

inversion layer’s height. Yet, higher-frequency waves are more easily absorbed by

the surface layer. Hence, wavelength modes that are attuned to the terrain over

which the wind is flowing are more likely to absorb more energy from the flow,

while longer wavelength modes are likely to retain more of their energy, as opposed

to losing their energy due to absorption in the surface layer.

Therefore, we expect to have some wavelength mode that would tend to absorb

energy from the main flow more efficiently. Statistically, it is expected that that

particular wavelength will produce the most rapidly growing wave mode. This

reported maximum wave number is

κx ≈ 2π/(7.5ZV ). (9.106)

We will use this as our starting point in seeking modes to drive the search for our

waves.
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The other criterion that must be satisfied is that the S2 = 1 − G2 parameter must
be positive. Otherwise, the W solution diverges. To ensure this condition, we insist
that |G| = |Ω/β| < 1. In addition, Booker (1967) indicates a gravity wave will be
absorbed at a level where frequency Ω = 0. Therefore Ω must not become too small
or too large. We thus begin our search for a solution with 2 boundary conditions plus
2 consistency conditions to meet.

It should be mentioned that this analysis ignores tunneling, meaning the
mathematics have been simplified to ignore heating effects and viscous forces.
Nevertheless, such considerations should not disturb us overmuch since the
solutions we seek involve long wavelength perturbations. For such length scales
the influence of viscous forces will be minimal. According to Orlanski (1973), the
results obtained will be virtually identical to those of a full analysis.

The main reason we require the wave to have zero amplitude at the inversion layer’s
top is because the gravity waves are assumed to reflect at the top, producing a
standing wave with zero amplitude at the reflection point, consisting of two equal
magnitude but opposing amplitude waves that add at the top. Of course, this is just
a model and the temperature structure does not feature a constant gradient up to a
definitive inversion top. Nonetheless, it is hoped this model provides some skill in
characterizing the type of waves that could exist and the resulting turbulent episodes
that could be encountered.

Given that we know the inversion layer’s height and the temperature- and wind-
profile gradients, and given Eq. 9.104 as the governing linear-wave equation, we
set W (0) = W (ZV ) = 0 as the boundary conditions and choose an arbitrary initial
value of Ẇ (0) = a. The solution is integrated from the surface using Euler’s method
and a given choice of κx. The remaining free parameter is frequency ω that must
be tuned in such a way that W (ZV ) = 0 upon integration. Figure 29 illustrates 4
wave-mode solutions, Wn(z), n = 1...4, for an atmosphere of surface temperature
288 K, surface pressure of 880 mbar, horizontal windspeed at the surface of 1 m/s,
ZV = 200 m, and wind and temperature gradients of 2 m/s and 3 K per 100 meters.

The resulting waves appear approximately as sinusoidal functions spanning the
inversion layer. Vertical functions W (z) shown are for a particular choice of
horizontal wave number, κx, but tests with varying κx indicate similar forms at even
widely separated, horizontal wave numbers. That is, the vertical structure appears
to be insensitive to the governing horizontal wave number.
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Fig. 29 First 4 vertical wind modes, W (z), for typical inversion scenario

These waves also appear to exhibit group velocities, Vgrp = dω/dκ, very close

to their phase velocities, Vφ = ω/κ. This is illustrated in Fig. 30 for the first 2

computed modes (n = 1, 2) at a range of input horizontal wave numbers, κx,

approximated vertical wave numbers κz = nπ/ZV , and ω obtained from the

computed solution. The close approximation of the phase velocity to the group

velocity is evidenced by the nearly linear relation between ω versus κ.

Fig. 30 Computed frequency versus wave number for first 2 modes: Mode 1 plotted in red,
Mode 2 in green, dashed line is ω = κ/3.

Due to the relative magnitudes of the horizontal and vertical wave numbers, the

wave appears to primarily exist as a vertically propagating, standing wave with a

small horizontal component. Indeed, this type of vertical connectivity would almost
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be necessary since otherwise the waves could become entrained into the mean flow

rather than riding on top of the mean flow.

In terms of the wave motions, while the z component exhibits a maximum

displacement away from the boundaries, the x component exhibits a maximum

displacement at the upper and lower boundaries. This occurs because the dominant

term of the coupling formula in Eq. 9.79 has a major component that converts

the vertical sine-like dependence of the z wave component into a cosine-like

dependence in the x component. This behavior is illustrated in Fig. 31 showing

the vertical dependence of Ux,1 for the same 4 modes as Fig. 29. This plot

reveals that although the horizontal component is, strictly speaking, a mixed mode,

because κg � 1, the derivative term proportional to ∂z Uz,1 is dominant and the

horizontal wind components appear approximately as cosine forms for their vertical

dependence.

Fig. 31 First 4 horizontal wind modes, U(z), for typical inversion scenario

Of course, because the equation is only an approximation, ignoring drag effects

near the surface, the plot indicates maximum wind speed near the surface. While

this approximation would not occur in reality, the general properties within the

inversion layer, particularly for higher-frequency modes, supports the existence of

such waves.

9.8 Gravity-Wave Breakdown
The analysis in the previous section constructed an approximate model of gravity

waves that could exist within the surface-inversion layer at night. These waves,
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moreover, could draw energy from the mean wind as it flows over undulating terrain

at night. However, such waves are inherently unstable. As discussed by Whitham

(1974), gravity waves are subject to collapse as a function of breakdown of the

model itself as a result of variation in the phase velocity as a function of height.

To examine this behavior, we consider a nominal vertical wave number, κz, that

can be modeled as a simple function of the height of the inversion layer, given

as nπ/ZV , as was introduced in the previous section. Also, as previously stated,

the wave solution sets W (0) = W (ZV ) = 0 at the base and top of the inversion

layer. However, the actual vertical dependence of the wave function W (z) is not

exactly sinusoidal. Therefore, κz can be considered a function of height. That is,

we consider the function,

W (z) = A sin[κz(z) z]. (9.107)

Assuming ω is constant for a given κx value, based on using up ω’s degree of

freedom to ensure that W (ZV ) = 0, and κx is also fixed, then κz can be considered

to vary.

We then find an interesting effect occurs. The wave vector κ = (κx, κz) will point

in the direction of the wave propagation. But since we are looking at a standing

wave, the z component is immaterial; the only concern will be the x component.

But the velocity of propagation will be c = ω/κ, where

κ =
√
κ2
x + κ2

z. (9.108)

Hence, increases in κz will cause decreases in propagation speed c. An increase in

κz could also cause the propagation vector to point more into the z direction and

less in the x direction. That is, the x component of the propagation velocity will be

αx = κx/κ. The horizontal velocity is thus

cx = c αx =
ω κx
κ2

=
ω κx

κ2
x + κ2

z

. (9.109)

Changes in κz with height have an effect on the propagation speed of the disturbance

as a function of height. This can have an impact on the ability of the wave to

maintain its structure over time. According to earlier analyses (Whitham 1974,

23 and 46), any disturbance that begins with propagation velocity gradients (e.g.,
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W (z) in this case), will, after a characteristic time, reach a point where the wave

breaks. At this time the wave velocity gradient becomes infinite at some point.

This singularity is characterized by the point where the velocity derivative is a

maximum (i.e., dcx/dz is maximized). At this location and at the characteristic

time the atmosphere must become turbulent, as the rules whereby the wave itself

was formed no longer exist. The characteristic break-down time can be expressed

as

tB =
1

dcx/dz
= − κ4

2ω κx κz

1

∂zκz
. = − κ2

2 cx κz

1

∂zκz
. (9.110)

For gravity waves it is possible to have multiple waves growing within the same

layer at the same time. Their internal velocity structures will depend on the

properties of each wave individually. The translation of Whitham’s analysis to

gravity waves is that eventually a spillover effect will occur where the magnitude

of the wave has grown to where heavier cold air overlies less dense warm air and

the less dense air below can no longer support the heavier air above. The resulting

spillover or overturning of the air due to gravitational collapse then destroys the

wave. The resulting mixing generates optical turbulence involving differentials of

temperature throughout the boundary layer.

Based on the signs chosen for the different terms in the above equation, we would

require that ∂z κz be negative, such that κz is a decreasing function of height.

Whitham’s formulation of the tB breakdown time corresponds to the temporal

evolution of the solution in such a way that the function at some inflection point

becomes multivalued. (This is akin to the case of the Tacoma Narrow Bridge that

collapsed in 1940: Initially the bridge fluctuations were correlated, but as time

progressed, the fluctuations in different portions because increasingly out of phase.)

In the atmosphere, there being no physical connection between one portion of air

and another, such discontinuities are much easier to imagine. Eventually the point of

disparity becomes so marked that even at an infinite derivative the function cannot

hold together.

Beyond this initial breakdown time, an increasingly larger region of the solution

becomes multivalued. In the atmosphere, such discontinuities would lead to mixing

of air at different temperatures (optical turbulence is produced). This mixing then

induces a reduction in velocity and a restarting of the inversion-generation process,

typically involving a reset of the surface temperatures and the wind speed.

183



As an example of this analysis, consider Fig. 32. From prior study of breakdown

times (Tofsted 1993), typical periods ranged between 20 and 40 min, as observed

through variations in vertical temperature gradients. This assumed mixing to

the ground would destroy the integrity and intensity of the vertical temperature

inversion’s structure. Nighttime studies indicated significant variations in vertical

temperature gradients that appear to be inversely connected to turbulence episodes

in the surface layer.

Fig. 32 Breakdown times (minutes) for a series of 4 gravity-wave modes, illustrating
breakdown times from initiation of wave motion as functions of height

These breakdown plots show that the vertical structure of κz is such that the

breakdowns typically occur first close to the surface. However, some caution is

called for regarding the apparent result that the first breakdowns are caused by the

highest-order wave-number cases (n = 3, 4), since, as Fig. 31 illustrates, the waves

show maximum horizontal velocity near the ground. In fact, the model does not

consider drag effects. This suggests that possibly the near-ground time scales have

been overstated. Ignoring the solutions for the curves nearest to the ground, the next

shortest timescale is the n = 3 result that peaks at approximately 80 m, and whose

breakdown occurs at roughly 26 min. This result is consistent with breakdown times

observed and reported (Tofsted 1993).

We thus have a conceptual framework for accounting for the mechanism causing

intermittent nocturnal turbulence. However, these questions must be answered:

How much energy is released upon breakdown of a given wave? What is the

expected fluctuation in C2
n for a given breakdown as well as the duration of the
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disturbance before this turbulence dissipates? Hence, while the current analysis

supplies additional information, a model is still necessary, perhaps based largely

on statistical inferences, as to how variations in inversion structure a) feed energy

into gravity-wave modes and b) generate turbulence upon wave breakdown.
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10. Conclusions
This report has discussed a series of improvements performed on a model of the

Surface Energy Budget designed for the express purpose of estimating the optical-

turbulence strength of the near-surface atmosphere. In the process a number of areas

for improving heat-flux-calculation methods have been explored and addressed in

great detail.

The primary improvements considered in the present report have focused on

consistency of methods. In particular, one issue related to the surface layer

was considered in Chapter 6. There, the focus was on how to produce mixed

convective fluxes from surfaces of different temperatures and different relative

surface fractions. The prior method in Tofsted (1993) considered only heat arising

from an averaged temperature surface, but encountered mixed resistance numbers

for the ground versus the foliage layer. The new method relies on a different

formulation for producing these mixed fluxes.

This consideration of weighting fluxes based on a modified understanding of the

relative areas of leaves and ground surface then carried over into the Chapter 7

development. The study there considered radiation scattered and absorbed within

the foliage layer by multiple sublayers. In so doing, an inconsistency was resolved

between the previous method of handling radiative interactions with the foliage and

the convective-flux methods that assumed considerably more leaf surface than was

modeled in the previous radiation model.

In the process of producing this consistent picture, a new model was developed

that connects the amount of leaf surface to the foliage-cover fraction through a

random leaf model. To our knowledge, the community studying such problems

has mainly focused on mature agricultural crops. For immature crops, where the

foliage fraction, σF , is significantly less than unity, or for desert areas featuring

sparse vegetation, this new approach appears to be a much more realistic means

of addressing vegetative impacts than the use of a constant leaf-to-area ratio. And,

certainly, there are numerous areas on the planet that do not feature mature crop

surfaces or high-density vegetation. For such regions the present model may be

very useful.

A main additional focus was to develop tables of radiation for various atmospheric

states. While such models appear to exhibit similar results as the Staley–Jurica
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analytic expression under certain conditions, in general the new method presents
a much broader picture of atmospheric variability than previously modeled. But to
produce such calculations in Chapter 8, it first was necessary to develop consistent
vertical-temperature and vertical-humidity structure concepts in Chapter 6. These
equations now provide the basis for characterizing the complete boundary layer
(temperature-wise) through the base of the elevated inversion.

Chapter 9 then suggested the means of extending this analysis from temperature to
also handle mean wind flows, and how fluctuations in wind speed might be inserted
into the model through variable daytime-wind effects. It further suggests the
nocturnal boundary layer’s growth and periodic dissipation are due to intermittent
gravity-wave breakdowns.

With these improved flux calculations within the surface layer and the atmosphere,
the resulting model is capable of much higher fidelity of fluxes above ground.
The below-ground component is also improved by considering a diurnal model of
ground heat-flux. This model, based on the assumption of constant soil properties,
could easily be improved through a wider choice of soils along with the addition of
2 low-frequency terms (sine and cosine) to account for the annular heat wave into
the soil. In this fashion the day-to-day cooling or heating that occurs seasonally
could also be factored into the model.

In all, these changes represent a considerable improvement of the prior-art model
of 1993 but also reflect improvements that could be used in current climate models.
In particular, it is apparent that the force-restore approach commonly used to model
the ground heat-flux is only truly tuned to handle the single diurnal (24 h) frequency.
As such, hourly flux variations and dawn/dusk or cloud effects are not handled well.
The current model is designed to include frequencies up to 5-min variations, such
that cloud effects are well characterized for their influence on the diurnal variations.

The ground heat-flux model also is significant in that it models the surface skin
temperature and not a vertically averaged number. Yet, the longwave radiative flux
from the surface is dependent on this skin temperature rather than on a vertically
averaged value. Hence, this model more accurately handles radiative cooling than
most climate models.

The numerous changes introduced here represent a significant advance in the
modeling of surface fluxes.
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Notes
1. Private communication between the author and Frank V Hansen, then of the US

Army Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico,

1990.
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List of Symbols, Abbreviations, and Acronyms
ρ air density, in kg/m3

P air pressure, in millibars

C speed of sound in air at the current thermodynamic state

T temperature measurement in either degrees Kelvin (K) or Celsius

(C)

C2
n refractive index structure parameter, a measure of optical

turbulence strength, in dimensions of m−2/3

u or U horizontal wind speed in m/s

HS sensible heat flux, in W/m2, denoting the energy lost by the

surface layer due to heating of the air in the Surface Layer

atmosphere

HL latent heat flux, in W/m2, denoting the energy lost by the

surface layer due to evaporation of water from the soil or

evapotranspiration of water vapor from the plant layer to the

Surface Layer atmosphere

ZI depth of the Boundary Layer in meters (m)

ZS a characteristic depth of the Surface Layer atmosphere.

U∗ friction velocity, a characteristic windspeed for parameterizing

the vertical structure of the horizontal winds near the surface.

T∗ scaling temperature, a characteristic temperature for parameterizing

the vertical structure of the temperature near the surface.

AGL above ground level

ARL US Army Research Laboratory

ASL above sea level

BL boundary layer
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CBL convective boundary layer

CPA conservative passive additive

EOSAEL The Electro-Optical Systems Atmospheric Effects Library

FLIR forward-looking infrared

IR infrared

LHS left-hand side

MKSA meter–kilogram–second–ampere (system)

ppm parts per million

RHS right-hand side

SEB Surface Energy Budget

SI surface interface

SL surface layer

WSMR White Sands Missile Range
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Glossary
Boundary Layer The layer of air near the ground that is characterized by drag

effects due to the surface. Typically the BL is 1–3 km deep,

features a capping elevated inversion layer, and contains well-

mixed aerosols.

Stable Layer Nighttime condition where vertical air motions are opposed by a

negative buoyancy force. Also termed a katabatic condition.

Surface Layer The atmospheric layer just above the air–surface interface

characterized by constant drag and constant sensible heat flux.

A layer from 10 m to 50 m deep.

Unstable Layer Daytime predominant condition within the earth’s boundary

layer atmosphere where vertical air displacements produce a

result in an acceleration force driving the parcel from its initial

height location due to buoyancy forces.
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