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Final Report

Comprehensive Space Object
Characterization using Spectrally
Compressive Polarimetric Sensing

Prof. S. Prasad, U. New Mexico, PI
with contributions from the co-PIs,

Prof. R. Plemmons, Wake Forest U., and Prof. D. Brady, Duke U.

April 8, 2015

Period of Performance: July 14, 2011 - January 14, 2015

Grant No. FA9550-11-1-0194

Abstract

This document represents the final report on the various scientific activities and ac-
complishments relating to Grant No. FA9550-11-1-0194 over its period of performance,
July 14, 2011 - January 14, 2015. The project had the following five overarching tech-
nical objectives, which have been re-organized under three broader categories, namely
theoretical, experimental, and computational objectives and accomplishments therein:

1. To develop physical models that predict how surface roughness, texture, and
shape alter the state of polarization of solar illumination scattered/reflected by a
space object;

2. To develop enhanced but approximate, task-based theoretical performance-assessement
tools based on statistical information and Bayesian error analysis that are numer-
ically efficient, polynomially scalable, and generally applicable to image analysis,
recovery, and reconstruction tasks; and to compare the actual performance of
algorithms with theoretical bounds predicted by the above tools and to explore
ways of improving performance by identifying information bottlenecks and weak
links.
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3. To design, fabricate, and test a polarimetrically enhanced version of the existing
SD-CASSI instrument with simple polarization sensitive elements added to the
beam train to generate spectrally compressive polarimetric data;

4. To develop and benchmark new algorithms for highly resolved spatial segmenta-
tion, material identification, shape determination, surface characterization, and
extraction of rigid-body kinematics from polarimetric data acquired with a com-
pressive spectral imaging system like CASSI;

5. To perform an exhaustive analysis of a newly proposed technique for the recovery
of 3D shape, rigid-body kinematics, and surface characterization from a time
series of 2D spectrally compressive polarimetric images;

Over its forty-two-month performance period, the research grant has supported, in
part, the production of 25 publications (15 refereed and 10 conference), 2 completed
PhD dissertations at UNM (Srikanth Narravula - defended in May 2014; Rakesh Kumar
- defended on April 2, 2015), 1 partially completed PhD dissertation at Duke (Tsung-
Han Tsai - supervised by Prof. D. Brady), 15 professional presentations (10 invited,
5 contributed), and 1 US patent application. Based on research partially supported
by the grant, 2 additional manuscripts are currently in preparation for submission to
peer-reviewed journals.

1 Summary of Overall Project Accomplishments

The following is a list of the most important technical accomplishments of the project,
separated according to its theoretical, experimental, and computational thrusts:

1.1 Theoretical Accomplishments

1.1.1 Analysis of the dependence of the spatial pBRDF distribution on the 3D
shape

We developed a unified theoretical framework to analyze compressive sensing, sparse repre-
sentation, and reconstruction of space objects in the combined spatial-spectral domain. The
usual hyperspectral imaging approach gathers data over a full range of 2D spatial coordinates
and 1D spectral channels in what is called a data cube. In most cases, such data typically
carry relatively small amounts of information in a highly redundant manner, since space
objects whether man-made (like satellites) or naturally produced (like asteroids and other
space debris) are typically composed of a much smaller number of primitives, e.g., spatially
and materially homogeneous elements and geometrically simple parts, than the number of
voxels in the full data cube.

Theoretical work proceeded along two different lines. The first entailed constructing sim-
ple forward models for the SOI problem. This construction begins with a low-dimensional
parametric model of space-object surfaces using a superquadric parameterization. Superquadrics
are generalizations of ellipsiodal, hyperboloidal, and toroidal surfaces based on changing the
powers of the Cartesian-to-spherical coordinate relationships for such ordinary 3D surfaces.
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Figure 1: A satellite mock-up composed of five simple superquadrics

For example, a super-ellipsoid may be parameterized as follows:

x =a1 cosε1 η| cosω|ε2sgn(cosω);

y =a2 cosε1 η| sinω|ε2sgn(sinω);

z =a3| sin η|ε1sgn(sin η), (1)

where the five parameters a1, a2, a3, ε1, ε2 are chosen to be all positive. The first three de-
termine the spatial scale of the three orthogonal dimensions in the object while the last
two the geometrical shape of the solid. An example of a satellite mock-up composed of five
different superellipsoids is shown in Fig. 1. By parameterizing the relatively small number
of simple geoemtrical shapes that constitute a 3D satellite body via superquadrics, we can
turn a complex surface characterization problem involving thousands of surface pixels into
one involving a rather small number of parameters. These parameters can be estimated
from a kinematic sequence of 2D images of such a 3D body, as we have shown previously for
low-dimensional but non-superquadric parameterizations.

Once such a 3D space-object surface model is constructed, it may be ascribed material
properties, specifically what material comprises what superquadric component of such a
body. The surfaces are then given texture. To do so, we have modeled the surfaces of
the individual superquadrics as being microscopically rough so they do not scatter sunlight
simply via specular reflection. We have used a realistic roughness model for surfaces in
3D that may be described statistically by means of a distribution of planar micro-facets
with varying surface-normal orientations relative to the underlying idealized microscopically
smooth surface. Such surfaces, since they are typically made from dielectric materials, reflect
and refract, so there is both a single-scattering specular component and a multiply-scattered
diffuse Lambertian component. It is the latter component, which gives an opaque surface
its spectral character, i.e., color, in solar reflection. Both these components contribute to
the spectral power density but only the specular albedo has a polarimetric content that
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(a) (b)

Figure 2: The 2D spatial distribution of difference-polarization intensity in solar reflection
from a sphere for four different solar angles for (a) smooth surface; (b) rough surface.

carries information about both the local shape and roughness of the space object. Thus,
when supplemented with a sensor noise model, a model for atmospheric propagation and a
blur model for the observing instrument, our calculations allow us to simulate the spectral
and polarimetric content of any observations one might make of the solar albedo from a
space object of varying local shape and roughness profile. It is this end-to-end forward
model that we are now beginning to simulate to demonstrate the validity of our compressive
spectral-polarimetric sensing and reconstruction approach.

The power spectral density (PSD) of the diffuse solar albedo depends only on the disper-
sion of the materials comprising the surface, rather than its shape or roughness, and has been
extensively measured for a host of materials commonly present on a satellite. We therefore
do not focus on the diffuse PSD in our effort, but analyze the specular albedo which, as
we have noted, depends not just on material dispersion but also on the surface shape and
roughness. We present some of our results of this analysis in Fig. 2 where we display the
difference-polarization (H-V) images of a roughened sphere of Si at a specific wavelength
and four different solar angles of illumination. It is clear that roughness, as measured by
the ratio of the standard deviation of the heights of the microfacets and its length affects
the footprint of the polarimetric signature of the surface. For highly smooth surfaces, the
polarimetric difference image is limited to the glint spot, but as the surface becomes rougher,
the spot containing polarimetric information spreads out in a way that is a measure of the
roughness (for fixed shape), as we see in Fig. 2(b).

In Fig. 3, we plot the depedence of the angle-integrated power in the specular component
as a function of the solar angle and varying roughness. As roughness increases, the specular
component decreases in its fractional power when compared to the diffuse albedo, so the
surface becomes more Lambertian and acquires its spectral signature that gives it a color
and spectral content quite distinct from the white-light spectrum of the illuminating sunlight.
By parameterizing the relatively small number of simple geoemtrical shapes and materials
that constitute the space object and their roughness levels, represented by the ratio of the
statistical scatter of microfacet heights to their lateral dimensions, we thus have an excellent
forward model for varying local shapes, spectral reflectances, and roughness levels of a general
space object.
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Figure 3: The total specular return fraction, sHDR, in solar reflection vs. the solar angle for
different roughness levels

1.1.2 Extensions of the micro-facet-based roughness model to include hemi-
spherical pits and proposal of a more general, composite roughness model

For ideally smooth, reflecting objects, the solar-reflected signal is rather uninteresting, char-
acterized by simple glint points at which the condition for specular reflectance is met pre-
cisely. Such objects have furthermore spectral traces that closely reproduce the solar spec-
trum which they reflect rather faithfully, and thus appear white. But such idealized surfaces
are just that, and in reality they undergo processes of weathering by solar wind and other
particulate surface damage, e.g., from microdebris flying around, that roughen them. Rough-
ening spreads the reflected radiance over the surface around the idealized fglint points in a
way that depends crucially on the detailed surface shape in the vicinity of the glint points.
Roughening can thus enable surface shape extraction if a detailed physical model can be
derived that can predict such dependence on shape and roughness. Derivation of such a
forward model has been a major emphasis of our theoretical work. We previously devel-
oped a micro-facet-based roughening model [5] in which the the strength of the polarimetric
BRDF from any point on the object surface depends on its surface texture as well as the
local shape and orientation relative to the observation direction via the spatial distribution
of the reflected power around specularly refecting glint points.

We have recently extended the roughening model to include a statistical distribution of
hemispherical pits, rather than - or even in addition to - microfacets, from which surface
returns may be computed semi-analytically. These pits cause both included and excluded
reflections since the curved surface of the pits allows solar light to be reflected in a whole
range of directions not available to a smooth surface without pits, while the same curvedness
also excludes points, those that lie in the shadow, from being operative in reflections along
a corresponding range of directions. Such included and excluded reflections depend on the
depth-to-radius ratio of the pit, and thus are statistically random for random but static
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(a) (b)

Figure 4: The 2D angular histogram of reflected rays, including its specular and diffuse com-
ponents, for solar reflection from a superquadric for two different solar incidence angles, 300

and 850, for a “pitted” rough surface with depth-to-radius ratio ranging uniformly between
0 and 1.

fluctuations of this ratio in a macroscopically small region of the surface. The nature of the
reflected radiance, as captured by the distribution of allowed reflected ray directions, thius
changes dramatically when compared to the micro-facet-based roughness model. This is
shown in the following figure where the emergence of a two-peaked structure in the reflected-
ray distribution - and thus in the BRDF - from a pit-based model is easily see, in sharp
contrast with the previous model.

We can also separate out the specular, polarized part from the total polarimetric BRDF,
so we can determine what fraction of the illumination power is returned in the unpolarized
diffuse, Lambertian component. This requires determining the singly-reflected rays of all
reflected rays, the former being those that leave the pit without encountering it again. This is
a simple geometrical calculation we have recently completed. We are currently implementing
this pit-based roughening model on curved surfaces to determine how for such surfaces the
polarimetric BRDF, like in the micro-facet model, can potentially encode the 3D surface
shape and surface texture.

We are using our two models of roughening to construct a composite roughness model
that includes these two different roughness primitives - microfacets and hemispherical pits -
occurring for a surface exposed to the two different mechanisms of roughening. The relative
weight of the two BRDFs corresponding to the two mechanisms that contribute to the overall
observable BRDF is a fitting parameter that can be extracted by solving the inverse problem
of reconstruction and parameter recovery based on our forward roughening models. Indeed,
this composite roughness model is easily extended further to include a whole variety of
surface roughening and damage mechanisms with a set of probability weights to simulate
realistically roughened surfaces in the space environment.
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1.1.3 Developed a rotating PSF concept [6, 7, 8] to perform 3D imaging, being
extended currently to include polarimetric imaging, in a single snapshot

The PI proposed and developed [6, 7, 8] a simple approach based on the use of a properly
designed pupil phase profile that is divided into Fresnel-type zones, each with an integral
number of complete phase windings that changes from one zone to the next by a fixed integer,
to create a 3D point-spread function (PSF) that rotates with changing defocus, while keeping
its transverse shape approximately invariant. This shape and size invariance of the rotating
PSF can easily extend over ± 3-4 waves of defocus, with fairly compact dimensions that
can provide excellent 3D precision for source localization and imaging of 3D shapes. Unlike
Gauss-Laguerre mode-based approaches, it provides highly extended depth of field over a
large transverse field of view to enable acquisition of large 3D volumes. The off-center spatial
character of the rotating PSF allows it to resolve with ease sources that are in the same line
of sight, which many other 3D imagers cannot typically do well. Further, it generalizes
readily for encoding spherical aberration too via PSF rotation.

It can also be employed to effect 2D digital super-resolution (DSR) that overcomes the
low-resolution iFOV limits of sensor data acquisition by collecting multiple image data frames
that are different only in the axial defocus of their location. Current work in the PI’s group is
beginning to address the prospects of DSR by replacing the more traditional sub-pixel-shifts
by changing axial defocus of PSF-rotated image frames.

The rotating-PSF approach can be extended by combining its spiral phase mask with
a different kind of phase mask, called a q-plate, which is a birefringent phase plate with
spiraling optical axis of phase retardation. Since the q-plate can convert right and left
circular optical polarizations into ±q waves of orbital angular momentum, this combination
mask enables one to generate different kinds of rotating PSFs for different source polarization
states. In other words, we have a new approach to perform full 3D polarimetric imaging in a
single snapshot. This promising concept, with tremendous implications for SSA and general
space-based imaging and debris localization, has been proposed for further study under a
currently pending proposal to AFOSR in the Imaging Science program headed by Dr. Julie
Moses.

1.1.4 Asymptotics of Bayesian Error Probability and Source Super-Localization
[9]

We carried out an asymptotic analysis of the minimum probability of error (MPE) in inferring
the correct hypothesis in a Bayesian multi-hypothesis testing (MHT) formalism using many
pixels of data that are corrupted by signal dependent shot noise, sensor read noise, and
background illumination. We performed our analysis for a variety of combined noise and
background statistics, including a pseudo-Gaussian distribution that can be employed to
treat approximately the photon-counting statistics of signal and background as well as purely
Gaussian sensor read-out noise and more general, exponentially peaked distributions. We
subsequently evaluated both the exact and asymptotic MPE expressions for the problem of
three-dimensional (3D) point source localization. We focused specifically on our recently
proposed rotating-PSF imager and compared, using the MPE metric, its 3D localization
performance with that of conventional and astigmatic imagers in the presence of background
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and sensor-noise fluctuations.
Based on the powerful asymptotic error analysis, we determined that the rotating PSF

imager has the best super-localization performance, of all 3D imagers considered here, over
a large focal volume containing multiple point sources. This work was also presented at
the 2014 International Quantitative Bio-Imaging workshop as a poster, and elicited much
interest from the single-molecule bio-imaging community.

The analysis represents the achievement of an important theoretical milestone in error
analysis of single-molecule localization that is not limited in applicability as are those based
on the Fisher information and associated Cramer-Rao bound on the error of estimation.

1.1.5 Asymptotics of Bayesian Error Probability and 2D Pair Superresolution
[10]

We applied the asymptotic Bayesian multi-hypothesis testing (MHT) based error analysis
developed in the previous paper (see above) to treat the problem of superresolution imaging
of a pair of closely spaced, equally bright point sources. The analysis exploits the notion
of the minimum probability of error (MPE) in discriminating between two competing equi-
probable hypotheses, a single point source of a certain brightness at the origin vs. a pair
of point sources, each of half the brightness of the single source and located symmetrically
about the origin, as the distance between the source pair is changed. For a Gaussian point-
spread function (PSF), the analysis makes predictions on the scaling of the minimum source
strength, expressed in units of photon number, required to disambiguate the pair as a function
of their separation in both the signal-dominated and background-dominated regimes. Certain
logarithmic corrections to the quartic scaling of the minimum source strength with respect
to the degree of superresolution characterize the signal-dominated regime, while the scaling
is purely quadratic in the background-dominated regime. For the Gaussian PSF, general
results for arbitrary strengths of the signal, background, and sensor noise levels were also
presented.

The applicability of this error analysis to more complicated imagers is being currently
pursued. Our hope is to provide a comprehensive Bayesian inference based description and
quantitative understanding of other imagers in performing 3D superresolution imaging of
closely spaced point sources.

1.1.6 Bayesian Error Based Sequences of Statistical Information Bounds [11]

The relation between statistical information and Bayesian error has been sharpened by de-
riving finite sequences of upper and lower bounds on the equivocation entropy (EE) in terms
of the minimum probability of error (MPE) and related Bayesian quantities. The well known
Fano upper bound and Feder-Merhav lower bound on the EE are tightened by including a
succession of posterior probabilities starting at the largest, which directly controls the MPE,
and proceeding to successively lower ones. A number of other interesting results were also
derived, including a sequence of upper bounds on the MPE in terms of a previously intro-
duced sequence of generalized posterior distributions. The tightness of the various bounds
was numerically evaluated for a simple example. These new bounds are not just compu-
tationally efficient but they are sufficiently simple to interpret analytically, and can thus
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provide excellent framework in which to analyze information processing systems that use
finite codewords for which some of the more powerful asymptotic approaches cannot be used
without incurring large errors.

Our plan for current and future work is to employ some of these bounds to analyze
fundamental upper limits of performance of 3D imaging systems like rotating-PSF imagers
when only a few pixels of image data are available or practical, e.g., in the point-source
localization scenario where many sources cover a relatively small image area so only a few
pixels per source can be used to localize each source. An asymptotic analysis would not be
sufficiently accurate in such a situation, but the bounds developed in this work can be used
with much accuracy.

1.2 Experimental Accomplishments

1.2.1 Coded aperture snapshot spectral polarization imaging - early version
using two birefringent crystals in combination with a single disperser and
a grayscale coded mask

We demonstrated a coded aperture snapshot spectral polarization imager based on com-
pressive sensing. In a snapshot, this system can calibrate the difference of the two linear
orthogonal polarization states along with their spectral-spatial signature with large field of
view. A grayscale 2D detector array is utilized to record the coded mixture of spatial, spec-
tral and polarization information of the object. In the end, a fast imaging reconstruction
algorithm called TwIST is utilized to reconstruct the polarized spectral image.

Figure 5: System setup.

Figure 5 is a photograph of the experimental prototype. The objective lens in this setup
is a commercialized objective form Jenoptik (Easthampton, Massachusetts). The coded
aperture is a lithography patterned on a quartz substrate with an anti-reflection coating on
both sides, with 1988*1988 elements random binary pattern that are each 7.4 µm square.
The birefringent material are two calcite crystals which manufactured by United Crystals
(Port Washington, New York), with 8mm thickness, 2.5 cm square clear aperture and 45o

optical axis angle relative to the light propagation axis. The magnification of the relay
lens is 0.38. Finally, the detector is an 8-bit monochrome CMOS camera form Aptina
(San Jose, California) with 4384*3288 pixels that are each 1.4 µm square. All of these
system components are aligned on a mounting plate. The detector and the objective lens are

9



carried by translation stages in order to provide the ability to adjust the focusing distance.
The detector was placed on a rotation mount to ensure the proper alignment of the beams
dispersion direction across the image plane.

Figure 6 represents the design and the dispersion relation of the birefringent crystal pair.
The optical axes of the first and the second calcite plates orientate 45o relative to the y-z
plane and x-z plane, respectively. Therefore, the ordinary ray (o-ray) of the first birefringent
plate will become the extraordinary ray (e-ray) of the second plate and be shifted parallel to
its original propagation direction. This image displacing effect split two orthogonal polarized
images. In addition, the displacing distance follows the refraction law, which results in image
sharing at wavelength dependent location. When the images pass through the crystal pair,
those birefringent crystals can generate the polarization selective image displacement and
wavelength dependent image dispersion. Both modulations are due to the double refraction
effect of the calcite crystals.

Figure 6: Design of the birefringent crystals.

On the detector plane, the measurement in this system is a two-dimensional projection
of two separated three-dimensional spatial-spectral data cube which include the information
form the scene. The data reconstruction form this compressive sensing based on assuming
the object has the sparsity in some basis, which making the object highly compressible.
Here the reconstructing process relies on the two-step iterative shrinkage and thresholding
(TwIST) algorithm. We also assume the piecewise smoothness of object in spatial domain
and the sparsity in the wavelet basis is enforced by utilizing the total variation regularization.

To test the performance of the system and the reconstruction algorithm, we measured
negative 1951 USAF resolution test chart to validate the ability of the TwIST algorithm
to estimate the variation in spectral signature and partial polarization state distribution in
an image. The test chart was illuminated by a Tungsten light bulb and filtered by a linear
polarizer. The light was guided by a multimode fiber and collimated by a commercialize
beam expander. A linear polarizer was placed after the collimator to control the incident
polarization state of the system. The transmission image of the test chart was modulated and
then acquired by the measurement system. Figure 7 shows a detector measurement of the test
chart. The dispersion and splittering which was generated by the two birefringent crystals
redistributed the intensity of the incident image. As shown in the figure, the measurement
on the detector plane is the superposition of the two overlapping images; each image is
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Figure 7: Detector measurement.

modulated by the coded pattern. A 400-680 nm band-pass filter was mounted in front of the
objective lens to confine the measurement of the scene within the corresponding wavelength
channels.

Figure 8 presents the reconstruction of 19 wavelength channel and two Stokes vectors
between 400 and 680 nm. The left part of the reconstruction shows the S0 term of the
scene, which is total irradiance of the object; the right part shows the S1 term, which
represents the polarization difference in intensity. The spatial modulation pattern and the
image overlapping in Figure 5 had been removed and clear resolution charts with sharp edge
had been reconstructed by the TwIST algorithm in majority of the wavelength channels.
The brightness in the reconstructed figure represents the relatively intensity between the
wavelength channels. Since the azimuth angle of the incident polarizer was 30o relative to
the plane of the optical table, the ideal value of the S1 terms is 0.5. Based on the result
in Figure 4, the brightness of the images in all S1 channels are around half of value as the
corresponding irradiance channels, which fits the theoretical value.

To test the performance of the spectral reconstruction, we compared the reconstructed
spectral signature of the test chart and the reference spectrum was acquired using a com-
mercial Ocean Optics USB2000 spectrometer. For comparison, the continuous reference
spectrum was integrated into the 19 spectral bands based on the channel width of this
system. Figure 9 shows the reconstructed spectrum of the test chart in blue star and the ref-
erence spectrum in red line. Both spectrums were normalized to the maximum value in their
curves. The reconstructed spectrum represents the spectral distribution of the average in-
tensity within a selected area in the test chart. The comparison demonstrates the agreement
between the reconstructed and the reference spectrum, indicating that the reconstruction
can correctly identify the spectral data.
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Figure 8: Reconstruction result of a negative 1951 USAF resolution test chart.

1.2.2 Coded aperture snapshot spectral polarization imaging - improved version
using coded aperture, polarizers, and LC-SLM to create joint polarization
and spectral encoding

We next employed a vastly improved design based on the use of a liquid crystal on silicon
modulator to jointly code spatial, spectral and polarization features for snapshot spectral
imaging. We demonstrate compressive sampling of megapixel multispectral image on a two-
dimensional (2D) detector array. The reconstruction recovers the encoded 2D measurement
to a 4D data cube The 4D data cube includes megapixels in spatial domain, 15 wavelength
channels between 450 and 680 nm and their horizontal and vertical polarized irradiance.

A schematic of this SLM based CASSI system is shown in Fig. 10. An objective lens L1
images the scene from a remote distance, and the lenses L2, L3 relay the scene through the
beam splitter and the wave plate onto the modulator. The SLM modulates the scene with
spatially distributed polarization state rotation and then reflects the image back. The SLM
generated degree of polarization state rotation is a wavelength dependent value. The imaging
lenses L3 and L4 relay the modulated image onto the detector plane through the polarizer.
To achieve best contrast in every wavelength, we insert an achromatic quarter wave-plate
in the light path in order to compensate the extra phase retardation in the liquid crystal
device. Finally, the detector array records modulated patterns in every wavelength, which
involves the spectral and spectral, and polarization modulated information of the object.

Fig. 11 is a photograph of the experimental setup. The setup includes a 60 mm objective
lens (Jenoptik), one 70 mm achromatic lens (Newport), a dichroic beam splitter (Newport),
an achromatic quarter wave plate, a liquid crystal based SLM (Pluto, Holoeye), two 25 mm
imaging lenses (Computar), a sheet polarizer(CVI) ,and a monochrome CCD camera (Pike
F-421, AVT) with 2048 x 2048 pixels that are 7.4 µm square. A band pass filter (Badder)
is mounted on the objective lens to cut the ultra-violet and infrared. The transmission of
the filter, the reflection of the SLM and the quantum efficiency of the detector limit the
wavelengths of interest of this system between 450 nm and 680 nm. The scattered image of
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Figure 9: Comparison between the reconstructed and the reference spectrum.

the scene is first collected by the objective lens then projected on the SLM. After modulated
by the SLM with transmission patterns, the scene is reflected and then propagated to the
color insensitive detector.

The SLM plays an important role in this system because this revised design of polar-
ization spectral imager replaces both the coding device and the dispersive element by this
single modulator. This modulator is based on a reflective Liquid Crystal on Silicon (LCoS)
microdisplay technique, which has a 1920x1080 pixels active area with 8 µm pixel pitch.
Being down magnified by two imaging lenses, the width of each pixel on the SLM becomes
7.4 µm square. Considering a perfect alignment, it is possible to map each detector pixel
with one corresponding pixels on the SLM. Each pixel on the microdisplay can be indepen-
dently addressed by an 8-bit voltage value to change the amount of phase retardation to the
incident polarized light. After propagating back through the polarizer splitter, the amount
of retardation for two orthogonal polarized incident becomes different transmission to every
voxel in the image data cube corresponding to its spatial voltage address and wavelength.
This characteristic will be utilized to encode the image in spatial and spectral domains.

Here we used a random 8-bit (0-255) gray scale voltage code on the SLM to generate
a group of different transmission patterns for each wavelength slice (450 to 680 nm) in the
image data cube. The voltage address varies from 0 to 255, which represents 0 to 3 π phase
delay at 630 nm. The transmission to voltage address and wavelength can be estimated
by calibrating the SLM. The calibration process records the transmission under the two
orthogonally polarized monochromatic illuminations and homogeneously applied voltage on
the modulator. It also includes the transmission of all the optics, the quantum efficiency of
the detector, and the phase modulation of the SLM. We averaged the transmission across the
center area of the SLM and calculate its amplitude modulation, which is shown in Fig. 12.
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Figure 10: The system schematic. L1 is the objective lens images the scene. L2 and L3
relay the image onto the SLM. L3 and L4 project the encoded image on the detector. The
polarizer is used to achieve intensity modulation mode of the SLM. The quarter wave plate
compensates phase retardation of the SLM to achieve best contrast.

Based on the calibration, within 450 nm and 680 nm, an 8-bit voltage variation on the SLM
generates a gray scale transmission ratio between 0.08 and 0.96.

Here the liquid crystal SLM generates joint wavelength and polarization dependent mod-
ulation for each spectral plane of the scene. The modulated spectral slices are integrated by
a 2D detector, but the spectral information in the 4D data cube can be distinguished based
on the corresponding transmission patterns between all wavelength channels.

1.2.3 A Further Improved Version of the SLM-CASSPI Instrument with Full
Linear Polarimetric Coding

We decompose the compressed signal into 0o, 90o, 45o, and 135o polarization channels for lin-
ear polarization state estimation. This linear polarimetry would satisfy several applications
without significant circular polarizations, such as most of the natural scenes.

The LC cell has a property of electrical controllable optical anisotropy, which enables
the signal modulation for this camera. The long axis and the short axis of each layer of
the LC cell provide different refractive indices to the incident wave. By controlling the
orientation of the LC cell through tuning the applied voltage, the SLM can be considered
as a variable wave-plate. We sampled the vertical fraction of the irradiance to transfer the
phase modulation, given by β, into a detector recognizable amplitude modulation, which can
be described as

I = (1/2)[S0 − S1 cos(2β) + S2 sin(2β)],

in terms of the first three Stokes parameters, S0, S1, S2.
Fig. 14 shows the amplitude modulation provided by the different polarization and color

channels. Each sub-figure describes the relationship between the transmission pixel counts
and the applied voltage on the SLM. We note that this camera has freedom of choosing
the basis of polarization state decomposition. Here we use linear horizontal, linear vertical,
linear 45, and linear 135 as the decomposing basis to analyze all linear polarization states.

Fig. 11 shows the experimental prototype of the compressive camera. A series of lenses
projects the scene on the SLM, which is the intermediate image plane. A random voltage
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Figure 11: The experimental prototype of the system.

pattern is applied on the SLM, which provides a spectral and polarization dependent ampli-
tude modulation to encode the object. After reflected by the silicon layer of the SLM and
then filtered by the polarizer, the applied phase retardation becomes a wavelength and po-
larization dependent amplitude modulation which is added to the scene. We apply a quarter
wave-plate as a compensator to increase the contrast ratio of the coding. The modulated
image will then recorded by the color detector. Based on the design, this camera has a 25
field of view and a 12.5 mm clear aperture. The detector has a 1280x720 spatial resolution
with 4.08um square pixel size. The modulation process can be represented by the following
mathematical model:

gmn =

∫ ∫ ∫
[f‖(x, y, λ)T‖(x, y, λ)+f⊥(x, y, λ)T⊥(x, y, λ)] rect (x/∆−m, y/∆−n)dxdydλ+wmn,

where g represents the power spectral density in the detector plane, f the spatial-spectral
distribution of the scene, and T⊥ and T‖ are the wavelength and polarization dependent
transmission code patterns. We note that the size of the detector pixel is ∆ and its corre-
sponding pixel noise is denoted by w. We depict the 4D discrete sampling function in matrix
form as g = Hf +w, where H represents the forward matrix of the system, f the vectorized
and discretized object datacube, and w represents the sensor noise vector. The H matrix
approximates the sampling, encodes the color and polarization channels to compress the 4D
color and polarization datastream f on measurement g. We experimentally calibrate the
forward matrix H by illuminating the camera under four identical polarization states. We
assign linear horizontal, linear vertical, linear 45o, and linear 135o polarization channels as
the identical states. The light source we use is a white light LED filtered by a rotatable
polarizer. We record the modulation patterns of these four polarizations sequentially. This
calibration considers the errors which might break the ideal mapping relationship, such as
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Figure 12: The intensity modulation of the SLM for horizontal polarized light. Given dif-
ferent voltages and incident wavelengths, the SLM combined with the optics generates cor-
responding transmission code.

the aberration of the optics and the sub-pixel misalignment.
Figs. 15 and 16 show the experimental result of the compressive camera. The objects

are polarization filtered color bricks and a scene of a parking lot. Both of them include the
spatial, spectral and polarization complexity. Both scenes are reconstructed by Two-step
Iterative Shrinkage Thresholding (TwIST) algorithm combined with total variation (TV)
regularization function. The reconstruction shows the linear horizontal, linear vertical, linear
45o, and/or linear 135o polarization channels with red, green, and blue color channels.

This single-shot compressive color polarization imager presents an integration of color
and polarization compression. Such camera uniquely encodes and decomposes the scene into
color polarization images through the phase modulation of a SLM along without any dis-
persive element. This technique eliminates mechanical movements that hinder conventional
polarimetry. The experimental results show clear spatial resolution and low noise reconstruc-
tions in the experiments. Future applications will use the polarization sensitivity to analyze
the surface information, such as the curvature and the roughness.

A similar setup can be used in compressive spectral imaging. Based on the singular
value decomposition, this SLM modulation provides six measurement modes in spectral
multiplexing. Therefore, it can effectively multiplex a spectrum which has up to six major
spectral bands/peaks in the sensing region (400 to 680 nm) without losing information. This
criterion can satisfy most of the spectral distribution of the natural scenes, which have smooth
spectrum and only require two to three modes to fully represent their major distribution in
the spectral domain. The minor detail can be recovered by the spectral constraint of the
reconstruction algorithm, such as interpolating the relative spectral density to correct the
reconstruction.

Here we use an SLM to encode the 3D spatial-spectral information on a 2D gray-scale
detector - a similar CDMA strategy to CASSI for snapshot hyperspectral imaging. The SLM
provides wavelength-dependent transmission patterns to multiplex every spectral channel for
the compressive measurement. The hyperspectral slices can be separated by using inversion
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Figure 13: The intensity modulation of the SLM for vertical polarized light. Given different
voltages and incident wavelengths, the SLM combined with the optics generates correspond-
ing transmission code.

algorithms. We calibrated the spectral channels under a 5 nm spectral bandwidth by using
a monochromator (iHR320, Horiba).

Figs. 17 and 18 show the preliminary reconstruction results of this compressive hyper-
spectral camera. The objects are color candies which are illuminated by a tungsten light
source.

1.3 Computational Accomplishments

1.3.1 Randomized Singular-Valued Decomposition (SVD) Methods in Hyper-
spectral Imaging [12]

We advanced and tested a randomized singular value decomposition (rSVD) method for
the purposes of lossless compression, reconstruction, classification, and target de- tection
with hyperspectral (HSI) data. Recent work in low-rank matrix approximations obtained
from random projections suggest that these approximations are well-suited for randomized
dimensionality reduction. Approximation errors for the rSVD were eval- uated on HSI and
comparisons were made to deterministic techniques and as well as to other randomized low-
rank matrix approximation methods involving compressive prin- cipal component analysis.
Numerical tests on real HSI data suggested that the method is promising, and is particularly
effective for HSI data interrogation.

1.3.2 Deblurring and Sparse Unmixing For Hyperspectral Images [14]

We developed a new approach to joint deblurring and sparse unmixing of hyperspectral
images based on a total variation regularization method:

min
X≥0

1
2
‖HXA− Y ‖2F + µ1 ‖X‖1,1 + µ2TV(X)
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Figure 14: The amplitude modulation tests for three color channels and four polarization
channels. The horizontal axis represents the 8-bit applied voltage address on the SLM. The
vertical axis is the average pixel count.

where H is an n-by-n hyperspectral data acquisition blurring matrix, and µ1 and µ2 are two
positive regularization parameters used to control the importance of the sparsity term and
the total variation term, respectively. Here

‖X‖1,1 :=
n∑
i=1

m∑
j=1

|Xi,j|.

In the model we incorporated blurring operators for dealing with blurring effects accross the
spectral bands, and in particular, blurring operators for hyperspectral imaging whose PSFs
are generally system dependent and result from axial optical aberrations in the acquisition
system. An alternating direction method was developed to solve the resulting optimization
problem efficiently. According to the structure of the total variation regularization and
sparse unmixing in the model, the convergence of the alternating direction method can be
guaranteed. Experimental results were reported to demonstrate the effectiveness of the TV
and sparsity model and the efficiency of the proposed numerical scheme, and the method
was compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian
and Total Variation (SUnSAL-TV) method by Iordache, Bioucas-Dias, and Plaza.

Here we assumed that the PSF leading to the blurring matrix for hyperspectral data
has already been estimated. As discussed above, hyperspectral image degradation is often
“system dependent,” and the point-spread function (PSF) of the image acquisition system
needs to be identified. The system PSF relates generally to axial optical aberrations, while
spatial PSFs relate to the usual image blurring problems such as defocus, motion, imaging
through a medium, etc. Axial optical aberrations can lead to a significant blurring of image
intensities in certain parts of the spectral range. These axial optical aberrations arise from
the index of refraction variations that is dependent on the wavelength of incident light. In
a recent paper by Spiclin, et al., the authors assumed a model of the PSF to be a “linear
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Figure 15: The measurement, the references, and the reconstruction of toys which is filtered
by two orthogonal sheet polarizers. The upper left shows the azimuth angle of the polarizer.
The upper middle and upper right show the irradiance of the object and the raw measurement
of the compressive polarization camera, respectively. The second row shows the reference
images measured by a camera filtered by a rotatable polarizer. The third row shows the
pseudo-color reconstruction.

combination of Gaussian functions” across the different spectral bands, therefore the overall
PSF blur identification process is reduced to finding only the corresponding scalar weight
for each Gaussian function.

1.3.3 Sparse Nonnegative Matrix Underapproximation and its Application to
Hyperspectral Image Analysis [15]

Dimensionality reduction techniques such as principal component analysis (PCA) are power-
ful tools for the analysis of high-dimensional data. In hyperspectral image analysis, nonneg-
ativity of the data can be taken into account, leading to an additive linear model called non-
negative matrix factorization (NMF), which improves interpretability of the decomposition.
Recently, another technique based on underapproximations (NMU) has been introduced,
which allows the extraction of features in a recursive way, such as PCA, but preserving
nonnegativity, such as NMF. Moreover, in some situations, NMU is able to detect automat-
ically the materials present in the scene being imaged. However, for difficult hyperspectral
datasets, NMU can mix some materials together, and is therefore not able to separate all of
them properly. In this paper we introduce sparse NMU by adding a sparsity constraint on
the abundance matrix and use it to extract materials individually in a more efficient way
than NMU. This was experimentally demonstrated on the HYDICE images of the San Diego
airport and the Urban dataset.
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Figure 16: The measurement, the references, and the reconstruction of a scene of a parking
lot. The upper left and upper right show the irradiance of the object and the raw mea-
surement of the compressive polarization camera, respectively. The second row shows the
reference images measured by a camera filtered by a rotatable polarizer. The third row shows
the pseudo-color reconstruction. Notice that the reflections on the windows and on the rear
screen of cars are polarized.

1.3.4 Randomized Methods in Lossless Compression of Hyperspectral Data [16]

We evaluated recently developed randomized matrix decomposition methods for fast lossless
compression and reconstruction of hyperspectral imaging (HSI) data. The simple random
projection methods have been shown to be effective for lossy compression without severely
affecting the performance of object identification and classification. We built upon these
methods to develop a new double-random projection method that may enable security in data
transmission of compressed data. For HSI data, the distribution of elements in the resulting
residual matrix, i.e., the original data subtracted by its low-rank representation, exhibits
a low entropy relative to the original data that favors high-compression ratio. We showed
both theoretically and empirically that randomized methods combined with residual-coding
algorithms can lead to effective lossless compression of HSI data. We conducted numerical
tests on real large-scale HSI data that shows promise in this case. In addition, we showed
that randomized techniques can be applicable for encoding on resource-constrained on-board
sensor systems, where the core matrix-vector multiplications can be easily implemented on
computing platforms such as graphic processing units or field-programmable gate arrays.

1.3.5 Joint Blind Deconvolution and Spectral Unmixing of Hyperspectral Im-
ages [17]

Our interest here was spectral imaging for space object identification based upon imag-
ing using simultaneous measurements at different wavelengths. AMOS sensors can collect
simultaneous images ranging from visible to LWIR. On the other hand, multiframe blind
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Figure 17: The reconstruction of compressive hyperspectral camera. (a) The raw measure-
ment of the color candies. (b) The 48 spectral channels reconstruction between 450nm and
685 nm.

deconvolution (MFBD) has demonstrated success by acquiring near-simultaneous multiple
images for reconstructing space objects, and another success has been shown through adding
phase diversity (PD) by splitting the light beam in channels with different phase functions.
So far, most MFBD and PD applications have been focused on monochromatic images,
with a few MFBD studies on multispectral images, also called the wavelength diversity. In
particular, B. Calef has shown that wavelength-diverse MFBD is a promising technique for
combining data from multiple sensors to yield a higher-quality reconstructed image. Here, we
presented optimization algorithms to blindly deconvolve observed blurred and noisy hyper-
spectral images with phase diversity at each wavelength channel. We used the facts that at
longer wavelengths, turbulence effects on the phase are less severe, while diffraction effects at
shorter wavelengths are less severe. Moreover, because the blurring kernels of all wavelength
channels essentially share the same optimal path difference (OPD) function, we have greatly
reduced the number of parameters in the blurring kernel. We modeled the true hyperspectral
object by a linear spectral unmixing model, which reduces the number of pixels to be recov-
ered. Because the number of known parameters is far greater than the number of unknowns,
the method enjoys an enhanced capability of successful reconstruction. We simultaneously
reconstructed the true object, estimated the blurring kernels, and separate the object into
spectrally homogeneous segments, each characterized by its support and spectral signature,
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Figure 18: The spectral reconstruction of color candies. (a) The reference image measured by
a color camera. (b) to (f) are the averaged reconstruction spectra of orange, blue, red, yellow
and green candies, respectively. The reference spectra are measured by a fiber spectrometer.

an important step for analyzing the material compositions of space objects.

1.3.6 Shape and Pose Recovery of Solar-Illuminated Surfaces from Compressive
Spectral-Polarimetric Image Data [5]

We performed simulation-based studies of the use of compressively sensed spectral polari-
metric spatial image data from a solar illuminated reflecting surface to recover its material
signature, three-dimensional (3D) shape, pose, and degree of surface roughness. The spa-
tial variations of the polarimetric BRDF around glint points contain unique information
about the shape and roughness of the reflecting surface that is revealed most dramatically
in polarization-difference maps from which the spatially generalized diffuse-scattering con-
tibutions to brightness are largely absent. Here we employed a specific compressed-sensing
protocol, the so-called Coded-Aperture Snapshot Spectral Polarimetric Imager advanced re-
cently by Tsai and Brady under partial support from this grant and discussed in detail
in Section 1.2 of this report, to simulate noisy measurements from which these surface at-
tributes are recovered in a sequential manner. Even in the presence of additive sensor noise,
the recovery of these surface attributes seemed to be quite robust.

1.3.7 Image Reconstruction from Double Random Projection [18]

We advanced double random projection methods for reconstruction of imaging data. The
methods draw upon recent results in the random projection literature, particularly on
lowrank matrix approximations, and the reconstruction algorithm has only two simple and
non-iterative steps, while the reconstruction error is close to the error of the optimal low-
rank approximation by the truncated singular-value decomposition. We extended the often-
required symmetric distributions of entries in a random-projection matrix to asymmetric
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distributions, which can be more easily implementable on imaging devices. Experimental
results were provided on the subsampling of natural images and hyperspectral images, and
on simulated compressible matrices. Comparisons with other random projection methods
were also provided.

1.3.8 Deblurring and Sparse Unmixing of Hyperspectral Images using Multiple
Point Spread Functions [19]

We advanced an iterative approach to solve separable nonlinear least squares problems aris-
ing in the estimation of wavelength-dependent point spread function (PSF) parameters for
hyperspectral imaging. A variable projection Gauss-Newton method was used to solve the
nonlinear least squares problem. An analysis shows that the Jacobian can be potentially
very ill-conditioned. To deal with this ill-conditioning, we used a combination of subset
selection and other regularization techniques. Experimental results related to hyperspectral
PSF parameter identification and star spectrum reconstruction illustrate the effectiveness of
the resulting numerical scheme.

1.3.9 Estimation of Atmospheric PSF Parameters for Hyperspectral Imaging
[20]

A numerical approach was provided for deblurring and sparse unmixing of ground-based
hyperspectral images (HSI) of objects taken through atmospheric turbulence. Hyperspectral
imaging systems capture a 3D datacube (tensor) containing: 2D spatial information, and 1D
spectral information at each spatial location. Pixel intensities vary with wavelength bands
providing a spectral trace of intensity values, and generating a spatial map of spectral vari-
ation (spectral signatures of materials). The deblurring and spectral unmixing problem is
quite challenging since the point spread function (PSF) depends on the imaging system as
well as the seeing conditions and is wavelength varying. We showed how to efficiently con-
struct an optimal Kronecker product-based preconditioner, and provide numerical methods
for estimating the multiple PSFs using spectral data from an isolated (guide) star for joint
deblurring and sparse unmixing the HSI datasets in order to spectrally analyze the image
objects. The methods were illustrated with numerical experiments on a commonly used test
example, a simulated HSI of the Hubble Space Telescope satellite.
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