

 ARL-TR-7412 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Voice Call Analysis

by Kenneth D Renard, Greg M Besack, and Douglas F Dixon

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7412 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Voice Call Analysis

by Kenneth D Renard and Greg M Besack
Computational and Information Sciences Directorate, ARL

Douglas F Dixon
Focused Ingenuity, Bel Air, MD

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 July 2012–31 December 2014
4. TITLE AND SUBTITLE

High-Bandwidth Tactical-Network Data Analysis in a High-Performance-
Computing (HPC) Environment: Voice Call Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kenneth D Renard, Greg M Besack, and Douglas F Dixon
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7412

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Analyzing network traffic for Voice over Internet Protocol (VoIP) calls for large test events, complex correlation, and
aggregation of packet flows—between multiple nodes in a large network (typically 50 or more instrumented nodes), across
multiple application flow protocols (Transmission Control Protocol call signaling and Real-time Transport Protocol audio
data), and over significant lengths of time (multiple hours)—while also accommodating incomplete information in the
captured packet streams. This report discusses the methods by which the US Army Test and Evaluation Command’s
Aberdeen Test Center and the US Army Research Laboratory’s Computational and Information Sciences Directorate
collaborated to utilize high-performance-computing (HPC) resources to extract VoIP call information and metrics from very
large volumes of network traffic recorded in a tactical environment. The extracted voice call metadata and associated metrics
were stored as part of the command, control, communications, and computers Data Model, which was delivered to the
analysis community for evaluation. In addition, the HPC processing also extracts actual voice conversations (as audio files)
from the traffic flows for analysts to review.
15. SUBJECT TERMS

tactical networks, data reduction, high-performance computing, data analysis, big data

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

32

19a. NAME OF RESPONSIBLE PERSON

Kenneth D Renard
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-4678
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. Voice Subsystem Components 1

3. Phone Equipment: Combat Network Radio Gateway 2

4. Voice Packet Flow: SIP, Session Description Protocol (SDP), and
RTP 3

5. Voice Data Analysis 5

6. Call Analysis 6

7. Call Metrics 6

8. Data Model: Voice Tables 7

9. HPC VoIP Processing Overview 8

10. HPC Parallelization 8

11. HPC SIP Analysis 10

12. TCP to SIP: TCP Extract 11

13. TCP to SIP: TCP Conditioner 12

14. TCP to SIP: SIP Converter 12

15. SIP to Calls: SIP Manager 13

iv

16. SIP to Calls: SIP Sessions 14

17. SIP to Calls: RTP Parser 14

18. SIP to Calls: Complex Calls 15

19. Extracting Voice Audio from RTP 16

20. Recreating RTP Waveforms 17

21. Conclusion 18

22. References and Notes 20

List of Symbols, Abbreviations, and Acronyms 22

Distribution List 23

v

List of Figures

Fig. 1 Cisco IP phone ...2

Fig. 2 Multi-Domain Atlas in Soldier Network Extension cab2

Fig. 3 VoIP call flow ..5

Fig. 4 HPC voice call processing flow ...9

Fig. 5 Striping many unsorted TCP sessions to disk10

Fig. 6 TCP byte stream to SIP packet alignment ...12

Fig. 7 SIP manager design overview ..13

Fig. 8 Illustration of the anchor as it shifts when calls are added16

List of Tables

Table 1 Sample SIP messaging ...4

Table 2 Sample SDP messaging ...4

vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

The Aberdeen Test Center/US Army Research Laboratory (ATC/ARL high-
performance-computing (HPC) Voice over Internet Protocol (VoIP) call analysis
processing is designed for a general VoIP system architecture based on Session
Initiation Protocol (SIP) for negotiating call sessions and Real-time Transport
Protocol (RTP) for transporting voice data packets.

The primary system under test has been the upper tactical internet assets within the
US Army networking infrastructure, which is based on a Cisco Internet Protocol
(IP) Telephony/VoIP system, as described in the following section. As a result, the
VoIP analysis processing goes beyond the SIP standard to support the
idiosyncrasies and extensions found in the tested Cisco implementations.

2. Voice Subsystem Components

The voice subsystem under test uses a commercial VoIP solution, based on the
Cisco Unified Communications Manager (also known as the CallManager) and
Cisco Unified IP Phone instruments.1 This commercial VoIP system employs
standard IP networking for delivering the telephony signaling messages and voice
conversation packets.

The voice subsystem is implemented as a standard VoIP solution, with IP-based
telephone terminals that communicate over the local area network to their
associated local VoIP server (CallManager). The CallManager servers maintain a
local database with the administrative details of the VoIP phone network to be able
to route calls to the appropriate destination device.

The telephone terminals provide the interface to the end user with dial pad, handset
audio, and display. These plug in to the local network and connect to the associated
local CallManager when the user dials a number. To set up the call, the local
CallManager then forwards the call to the proper destination CallManager server
for the dialed phone number, which then passes the phone call on to its local phone
terminal registered for the number. Once the call is setup, the phone terminals then
pass the voice data packets directly to each other over the network.

The Cisco VoIP system employs Skinny Client Control Protocol for network
communication between the phone and the local CallManager (e.g., for each dialed
digit), SIP between the endpoint CallManagers for call setup/termination signaling,
and RTP for digitized voice transport.

2

3. Phone Equipment: Combat Network Radio Gateway

The VoIP system includes both VoIP hardphones (conventional physical phones)
and softphones (software user interface implemented on the system display). The
softphones are used in the vehicles, and the hardphones are typically used in
shelters attached to stationary assets.

Hardphones like the Cisco Unified IP Phone are full-featured VoIP phones with a
speakerphone and handset (Fig. 1). Softphones are implemented as an application
on the system displays within vehicle cabs (Fig. 2), with a user interface that
simulates the Cisco IP phone. The user speaks on the phone using the system
headset, with earcups and a boom microphone.

Fig. 1 Cisco IP phone

Fig. 2 Multi-Domain Atlas in Soldier Network Extension cab

The vehicles also support a Combat Network Radio (CNR) gateway function,
allowing the extension of analog voice radio networks, such as Single Channel
Ground/Airborne Radio System and the Soldier Radio Waveform.

The CNR Gateway provides several usage scenarios to allow users on a vehicle's
local radio network to converse with remote users over the wide area network
(WAN) VoIP network:

3

• A VoIP caller can dial the dedicated CNR Gateway number for a vehicle,
and the gateway will auto-answer the call and connect the caller into the
vehicle's local radio network.

• The operator in the vehicle can use the gateway to dial out to an external
number. When the call is connected, local users on the radio network can
converse with the distant phone user (or with a group on a conference call).

• The operator in the vehicle can use the gateway to dial out to another
gateway on a second vehicle. This bridges the local radio networks at each
vehicle over the VoIP network so that the users can all communicate.

While CNR Gateway calls use very different equipment, to the VoIP system they
simply appear to be normal voice calls that happen to dial from or into numbers
associated with CNR Gateway equipment. From the point of view of the HPC
reduction, these again look like normal calls, with SIP setup and RTP audio flow,
although the details of the protocols can be different that that observed at the Cisco
CallManagers.

The command, control, communications, and computers (C4) Data Model
(C4_DM) then supports analysis of CNR Gateway calls separately from other call
types by identifying CNR calls through the phone number and/or the phone device
type.

4. Voice Packet Flow: SIP, Session Description Protocol (SDP),
and RTP

The C4_DM Reduction process for VoIP calls supports VoIP traffic processing
based on using SIP over Transmission Control Protocol (TCP) as the call signaling
protocol (from call start to call termination), with the actual compressed voice
bitstream carried on RTP over User Datagram Protocol (UDP). The local traffic
between a phone and its CallManager is not used for analysis.

SIP is a simple application-level signaling communications protocol, widely used
for controlling multimedia communication sessions, such as voice and video calls
over IP networks. It is defined in ITEF RFC 3261.2

This protocol defines the messages that are sent between endpoints that govern
establishment, termination, and other essential elements of a call consisting of one
or more participants. SIP is designed as a session protocol to work independently
of underlying transport protocols. It also can support other multimedia types and
conferences.

4

SIP is implemented using a simple text-based protocol, stepping through session
management using a request-response model (e.g., INVITE/OK to start call,
BYE/OK to end it). SIP also uses a second set of numeric response codes (e.g.,
Ringing, Forwarded, Success, Redirection, Error) to respond to requests, provide
status, indicate further action is required, and report errors. The 3-digit SIP
Response code values are grouped with 3 levels of positive responses marking
incremental call progress (1xx Informational, 2xx Success, 3xx Redirection), and 3
levels of error responses reporting call failure (4xx Client Failure, 5xx Server
Failure, 6xx Global Failure).

These SIP codes are specified as literal text strings as shown in Table 1. The SIP
protocol is used solely to negotiate the call session; the actual call parameters
(including the phone numbers and audio encoding parameters) are embedded
within the SIP messages using Session Description Protocol (SDP), as defined in
ITEF RFC 4566.3 SDP is a standard representation for session description and
media meta-data. The SDP is typically included in the SIP INVITE and OK
messages to negotiate the media information to be used for the call.

Table 1 Sample SIP messaging

SIP Message Type Sample Message Text
Request INVITE sip:user@server.com SIP/2.0

Response SIP/2.0 200 OK

SDP also is a text-based format, using a simple <type>=<value> format. The
actual options and values specified in the SDP traffic are dependent on the specific
network and implementation, with session, time, and media description lines.
Sample SDP messaging is shown in Table 2.

Table 2 Sample SDP messaging

SDP Message Type Sample SDP Message
Session
Originator and session identifier o=jdoe 2015554586 2015552877 IN IP4 10.0.0.2
Connection information c=IN IP4 224.0.1.1/127
Time
Time session active t=2015557496 2015554696
Media
Media name and transport m=audio 49170 RTP/AVP 0
Media attributes a=rtpmap:99 h263-1998/90000

In practice, the implementation of the SIP and SDP protocols observed in systems
under test can be more complex than the notional handshaking described in the
associated specifications. In particular, the INVITE message can be repeated a
second time, from the receiver to the sender, and different information can be

repeated in the SDP portion of consecutive messages. The SDP flow also is used to
communicate additional nonstandard infmmation, including call priorities, call
transfer, and call conferencing infmmation. In other cases, some endpoint devices
may not include important infom1ation in the SIP flow. The HPC code pe1fmming
the processing of the VoiP call observables then must be capable of properly
interpreting all of the expected variants of call setup and teardown and call

infmmation.

5. Voice Data Analysis

The Voice tables in the C4_DM are designed to directly suppmt the analysis of the
flow of voice calls both by extracting call metadata and by computing common

metrics used for system requirements (e.g., completion, time to voice). The tables
include the call endpoint infmmation, timestamps of key events in the call setup
and voice traffic, and the fmal call disposition.

The VoiP Call Flow Diagram (Fig. 3) shows the logical call flow, from initiation to
ringing to pickup to voice flow, and then to hang up. Tracking of the flow is driven
by the SIP messaging request-response sequence, which signals key events in the call
flow. The call timing metrics are based on the elapsed time between these events.

Call dialed

Elapsed Tune to Voice
Clock time from
last digit dialed

to near voice

VoiP Call Flow
Initiator I Caller Receiver I Callee

~ * INVITE C-an Setup ffime to Ringl
+-------T~ry~ing~ ~ Last digit dialed to phone rings

-<EE:--------"'R:;.,i!'!J.,_,iQQ,_ * ~ Phone ringing

'f' Woit for Pick Up (Off Hookl
1 Pbone riogs- to user lifts h&nd t

OK '+' .._ ______;.;.;._ * .,...._ Pick up handset

~

t Pick Up to Voice
Pick u;p to hear voice

Hear voice ~ * i==::::.-====~ * .,...._ Hearvoice +

BYE {Han!U!P}

Fig. 3 VoiP call flow

Call Time to Voice
Dial to ring, plus pick up to voice
(Elapsed time less wait for pick up)

The associated HPC voice processing supports this design by aggregating the
packets containing the SIP messaging associated with a call, then parsing and
extracting the call infmmation with the associated SDP infonnation. It also extracts

and analyzes the associated RTP flow in each direction, especially for packet
delive1y metrics (e.g., loss, latency, and jitter).

5

6

6. Call Analysis

The approach used in creating the Voice tables in the C4_DM was to define the
VoIP and metrics analysis in terms of a 3-step process:

1. Call Events: Record important events during the lifetime of each call (e.g.,
initiated, ringing, voice start, hang up), along with the associated timing.

2. Call Categorization: Categorize calls according to various characteristics
useful in performing analysis (e.g., completed versus rejected versus error,
simple versus complex).

3. Call Metrics: Compute metrics from the call results and timings, for useful
clusters of calls based on the categorization.

This approach is intended to support broad system technical characterization and
performance analysis, since a VoIP system cannot be usefully analyzed by simply
performing gross calculations of call events and timings across all recorded calls.
For example, if call completion is judged by a brute force count of only the number
of calls that cause the end instrument to ring, then the calculation will be distorted
by not accounting for busy calls, no answers, misdials, disconnected phones, or
many other conditions that have nothing to do with measuring whether properly
dialed calls are able to reach a properly connected destination.

7. Call Metrics

Call metrics are used to verify system performance against requirements and to
evaluate performance improvements between system iterations. The HPC
processing directly computes several system characterization metrics in the C4
Data Model Voice tables that are driven by system requirements. These also match
metrics defined in ITU-T:E.425, Internal automatic observations (for checking the
quality of the international telephone service).4

Based on the call events and categorizations, the following metrics are defined
relative to the voice subsystem:

• Call Delivery Ratio (Call Completion Rate) metric

The Call Delivery Ratio metric is based on measuring calls for which the initial
“Invite” message successfully transits the network to reach the destination
instrument (i.e., Delivered event, which may include ringing, busy, or other cases).
This initial delivery indication is independent of the further progress of the call.
The ratio is then computed as the percentage of calls delivered compared with those

7

attempted, less calls categorized as “Invalid” or “No Test”. Defined as such, Call
Delivery Ratio matches the Network Effectiveness Ratio definition in the ITU-
T:E.425 standard.

• Call Delivery Delay (Time to Ring) metric

The Call Delivery Delay metric measures the time from the call’s initiated (last
number dialed) to Delivered (ring) events. This metric applies to those calls
included in the previously mentioned Call Delivery Ratio. Defined as such, this
metric matches the Post Dialing Delay definition in the ITU E.437 standard.5

• Voice Setup Time (Time to Voice) metric

The Voice Setup Time metric measures the time from the call’s Initiated (dialed)
to initial Voice Received (first voice) events, less the time from the Delivered (ring)
to Accepted (pick up) events. Thus, this metric includes all voice system overhead
between dialing and successful voice interchange but excludes the wait for the user
to pick up a ringing call.

• Packet Delivery metrics (Loss, Latency, Jitter)

These standard metrics apply solely to the network’s performance in delivering the
real-time stream of voice traffic contained within RTP packets. Within a point-to-
point call, they are calculated and aggregated independently for each direction (i.e.,
caller-to-callee and callee-to-caller). Packet Loss represents the percentage of sent
voice traffic packets that fail to successfully transit the network; Latency represents
the average transit time of voice traffic packets successfully received; and Jitter
represents the standard deviation of the individual voice traffic packet latencies.

8. Data Model: Voice Tables

The C4 Data Model6 contains 2 tables that focus on voice-related data and metrics:

• CommsVoiceCalls records metrics for each unique phone call.

• CommsVoiceFlows records metrics for the delivery of the real-time voice
traffic stream.

The population of the tables employs the general process of identification of call
events, categorization of calls based on context and type, and the subsequent
computation of metrics based on the time-stamped events and category
assignments.

The CommsVoiceCalls table includes a summary of all VoIP calls established via
the SIP interchange between remote nodes; VoIP calls conducted locally to a given

8

node and application-specific VoIP are not included. As discussed earlier, the
contents of the table tracks the call setup sequence, the establishment of the call,
the transfer of digitized voice data, and call termination. Complex calls (e.g., call
transfer, call forward, and conference call) are represented as multiple individual
rows for each point-to-point connection.

The CommsVoiceFlows table includes statistics for RTP flows identified in the SIP
traffic used to set up VoIP calls recorded in the CommsVoiceCalls table. It is used
to collect call/packet statistics over discrete intervals of the call, including packet
loss, latency, and jitter. The information for each call is broken into multiple records
for each direction of the call flow (unique RTP SSRC [Synchronization Source])
and for each evaluation interval (“chunk”) within each voice call RTP traffic. The
evaluation interval (chunk size) is nominally 15 s but can be shorter (especially at
the end of a call).

One SIP call sequence (aggregated as a single entry in CommsVoiceCalls) is
typically associated with a pair of RTP streams, one in each direction (stored in
CommsVoiceFlows).

9. HPC VoIP Processing Overview

The HPC VoIP processing algorithms search, correlate, and aggregate SIP and RTP
packet streams across all captured traffic on the network under test.

The processing begins with IP packet records stored in the CommsIP table.7 The
process extracts and aggregates individual TCP sessions between SIP ports. It then
parses and aggregates SIP message streams from the TCP sessions and parses the
SIP messages and stores the information associated with each individual call. The
IP packets are then processed to extract and aggregate the RTP flows associated
with each call.

This processing can be complicated by the grouping of TCP streams with SIP
sessions since one SIP call may bridge multiple TCP sessions.

10. HPC Parallelization

The HPC system permits this processing to be significantly accelerated by being
performed in parallel, with parallel cores working independently on individual TCP
sessions or SIP message streams. The overall flow of the processing of voice call
data is shown in Fig. 4

9

Fig. 4 HPC voice call processing flow

The packet data being processed is stored in the HPC General Parallel File System,8
the centralized global file system accessible by all of the cores so that each core
only needs to keep the data for the current session in local memory. The
intermediate data, TCP sessions and SIP sessions, are accessed via a unique
identification (ID), based on the TCP Transport ID or the SIP Call ID, respectively.

The Transport ID is the tuple of the TCP Source IP, Source Port, Destination IP,
and Destination Port tuple, where the lower binary IP is sorted first along with its
port. This collates both the initiator and receiver side of the TCP session into one
hash, since the directionality is removed by the sort.

The SIP Call ID is used in the SIP protocol to uniquely identify a SIP Session. This
is a pseudo-random sequence of alphanumeric characters that are guaranteed to be
unique by the calling device (i.e., 29dce180-f519718-5-7d8ddb16
@12.345.678.123). This can be thought of as the key that all SIP packets are sorted
by. Every SIP packet contains the SIP Call ID field. Calls will not span more than
one Call ID, although they may span more than one TCP session.

The TCP and SIP sessions are assigned to processing cores using the hash of the
TCP Transport ID or the SIP Call ID. Taking the hash modulo total ranks maps the

10

hash to a bin and its associated compute core. This distributes the work so that each
core then can scan though the list of data to be processed and only process the
elements whose hash matches the core number.

The intermediate output then is striped to disk to the associated bin file (Fig. 5).
This is a single large file used to store the data for all the sessions that the core
processes. This avoids the need to thrash the global file system by creating and
accessing large numbers of small files.

Fig. 5 Striping many unsorted TCP sessions to disk

The Group Disk Cacher and Stream Reduce Manager modules each provide a file
input/output API that manages local storage and transparently stripes data to the
appropriate bin and reproduces the streams.

11. HPC SIP Analysis

The HPC processing of SIP messaging begins with searching the packet capture
data for key elements of the call setup found within the SIP call signaling
interchanges between the CallManagers.

This process results in the assignment of time stamps to each of the call setup
events. From this information, the calls can be further categorized and overall call
metrics can be computed.

11

The SIP messages include both SIP Request messages that initiate actions (e.g.,
Invite, ACK, Bye, Cancel) and numeric SIP Response codes that generally indicate
whether the request succeeded or failed (e.g., 100 Trying, 180 Ringing, 183 Session
Progress, 200 OK).

Voice call events are recorded in the CommsVoiceCalls table of the C4 Data Model.
The associated fields capture the timestamp of each key step in the call setup (the SIP
message interchange), including Initialized (i.e., SIP Invite Request message),
Delivered (Ringing), Accepted (OK), and Hang Up (Bye), and timestamps from the
associated RTP traffic, such as Start and Stop Time in each direction.

In addition, the CommsVoiceCalls table includes a CallEndReason field to report
the disposition of the call, which is populated based on observed events.
Specifically, if a SIP Bye is reached without encountering a SIP error,
CallEndReason is set to BYE. Alternately, if a SIP error (i.e., codes 3xx, 4xx &
5xx) is found before a Bye, then the first such error event found is recorded in
CallEndReason. Since it is possible for one call to have several different Bye and/or
error messages in the SIP interchange, only the first such event is recorded
(subsequent error messages are ignored by the reduction algorithms).

Observation of test data has shown that the Cisco implementation of SIP also can
generate error messages after a call has successfully completed, and such errors
also are ignored during reduction. Should an analyst need to see further call details,
the HPC processing also reformats and outputs the packet capture data in packet
capture (PCAP) files9 which can be used by several network packet capture tools
such as Wireshark (www.wireshark.org).10

12. TCP to SIP: TCP Extract

The first step of the HPC VoIP processing is to aggregate TCP sessions to extract
the SIP messaging (Fig. 4). Since the TCP VoIP module call metrics are heavily
dependent on bidirectional communications, the module uses the output of the
CommsIp module as its input, taking advantage of the packet matching done in this
module, so that each packet record contains information from both the transmit and
receive side observations.7 It applies a filter across all packets contained in
CommsIp, matching any TCP packet on SIP source port 5060 or destination port
5060 (although some of these packets can be non-SIP).

To extract the call metadata from the SIP, the module performs basic TCP session
reconstruction on the sessions filtered from CommsIp. The unrelated packets
filtered from CommsIp are joined together into “streams” by using the Transport
Hash.11

12

13. TCP to SIP: TCP Conditioner

After the unsorted SIP TCP packets are extracted, the TCP Conditioner reconstructs
the TCP sessions, rebuilding the TCP streams as they were encountered on the
transmitting/receiving CallManager. Since the conditioner has the luxury of
examining the entire stream of packets, no “sliding window” logic is required to
successfully reassemble the session, as the next arriving packet is already known.
It is only necessary to properly align the TCP sequence and ACK numbers to
accurately reproduce the TCP stream.

Out of order sequences also must be handled properly as they are critical to the
arrival times of the packets at the application layer. That is, if a packet is lost in the
stream and packets further along in the sequence are received, they will not be
released to the app layer until the missing packet is also received and/or
retransmitted.

14. TCP to SIP: SIP Converter

Once the TCP packets are reassembled into ordered logical TCP streams, they are
fed into the SIP Converter. This module transforms the raw bytes in the TCP
payload to discrete SIP messages.

The actual parsing of the byte stream into a discrete SIP message is handled by a
portion of the SIPpy library.12 The SIPpy library is passed a chunk of the byte stream
(Fig. 6) from which SIPpy creates a single packet in a greedy, left to right fashion,
stopping when a packet is complete. This is repeated until the byte stream is entirely
consumed. If SIPpy cannot produce a packet from the byte stream, the first “N” bytes
are popped off the stream and the process is retried. This filters any corruption that
may occur in the byte stream. Once the conversion from TCP to SIP is complete, the
individual packets are passed into a SIP Manager processing module.

Fig. 6 TCP byte stream to SIP packet alignment

13

15. SIP to Calls: SIP Manager

The processing from SIP messages to SIP sessions (calls) uses a parser design with
a tree hierarchy. A SIP Manager (Fig. 7) contains one or more SIP Sessions. A SIP
Session contains one or more SIP Callers and one SipParser. As discussed
previously, the SIP traffic is processed in parallel by SIP Call ID.

Fig. 7 SIP manager design overview

SIP Packets are fed into the SIP Manager one at a time. The SIP Manager creates
new SIP Sessions based on the observance of a new SIP Call ID. The SIP Session
creates a new SIP Caller based on the source IP address and direction of the packet
(incoming or outgoing). This assigning of direction, or vectorization, of a packet is
crucial to timing considerations for transmit and receive times of the packet, due to
the multiple observations of the packet inherent to the distributed network testing.

Once the packets have been sorted into the proper SIP Caller in the SIP Session, an
initial parse is called on in the SIP Caller to sort the SIP packets into message type
categories such as INVITE, ACK, BYE, CANCEL, and all other 2xx, 3xx, 4xx,
5xx, and 6xx response categories. The SIP Caller also extracts and formats auxiliary
information including SDP call information.

14

16. SIP to Calls: SIP Sessions

Once the SIP Caller has parsed all of its packets, the SIP Manager initiates the first
round of parsing on all of its child SIP Sessions. This parse performs call type
designation, voice traffic session parameter extraction, and many other call-timing
functions.

In order to categorize the call type for further processing, a call is considered
COMPLEX if a SUBSCRIBE type SIP message is observed in the SIP Caller parse.
This necessitates further considerations discussed later. A call is designated
INCOMPLETE if only one SIP Caller exists in the SIP Session. This is because of
an instrumentation issue, since a call cannot possibly exist without a receiving
device. A call is considered POINT-TO-POINT if the number of SIP Callers is
exactly 2.

These classifiers only relate to the number of callers expected in a SIP Session. A
SIP Session is then assigned either a PT-PT or COMPLEX parser, with
INCOMPLETE receiving a PT-PT parser. A COMPLEX parser contains a PT-PT
parser in addition to specific COMPLEX parsing routines mentioned later.

The PT-PT parser is designed to parse a call from the initiator and receiver points
of view. Having both sides allows the parser to extract accurate timing information
from the sequence of events that occur.

The SIP Session will call the parse routine on its parser. Events such as Canceled,
Invalid, Error, and Dropped are all considered and handled here as well. The
extracted parameters are attached to the SIP Session.

The Voice Traffic Session Parameters are extracted from the SDP components of
some SIP messages. These include the sending and receiving Phone IP addresses,
sending and receiving ports, and the time stamp of the SIP message indicating a
successful call connection and the time stamp of the SIP message indicating the end
of a call.

17. SIP to Calls: RTP Parser

The parser also searches for any RTP/UDP voice traffic sessions associated with
the call (i.e., the actual packet traffic that contains encoded voice data). The call
parameters are passed back to the main module to perform another search for any
UDP/RTP through all CommsIp output, looking for packets that meets the criteria
(IPa, IP2b, PORTa, PORTb, starttime, endtime). It is possible, although highly

15

unlikely, for other packets to match this exact signature. Should this occur, there is
no factor to help overcome the ambiguity other than application layer analysis of
the packet that is outside the scope of this parser.

Once the SIP Session has its RTP traffic loaded, it parses it for relevant statistics.
It calculates packet flow statistics over 15-s windows (for the CommsVoiceFlows
table), and computing statistics over the entire call. Appropriate considerations are
made for one-sided packets (sent but not received, received but not sent) and
malformed latency.

18. SIP to Calls: Complex Calls

The final step to the VoIP module is to parse out the links between COMPLEX
calls. Again, a COMPLEX call is a call that has more than 2 participants at any
time, TRANSFER, CONFERENCE (ad-hoc), or MEETME (central conference
line). In the initial PARSE stage, each call is designated either PT-PT,
INCOMPLETE, or COMPLEX. The COMPLEX calls are further parsed and
designated one of the TRANSFER, CONFERENCE, or MEETME property. These
calls are all offloaded to a single rank where the actual linking of the calls takes
place.

The linking between 2 separate calls is based on a dynamic, temporal window
bounded by the start and end times of a call. Every COMPLEX call in the list is
sorted by call start time, earliest first. This call’s start and end times is the first
“anchor point”. Anchor points define the time window (start and end) of a voice
call. If the next call’s start time falls within the boundary of the anchor (i.e.,
anchor.start <= current.start <= anchor.end) then this call is considered “LINKED”
and the 2 calls are assigned the same “AGGREGATE ID” (Fig. 8). Then the
aggregate call anchor’s end time is expanded by the call with the latest end time,
expanding the ANCHOR if necessary. If the next call’s start time falls outside of
the ANCHOR, a new ANCHOR is created using the same next call as the initial
parameters and a new AGGREGATE ID.

16

Fig. 8 Illustration of the anchor as it shifts when calls are added

19. Extracting Voice Audio from RTP

The collected raw packet data on the HPC contains both the TCP SIP call
management traffic and the UDP/RTP flow containing the compressed voice bit
streams transmitted in each direction. The HPC processing provides the option to
extract the audio segments from RTP packets, and then aggregate, decompress, and
save the transmitted voice streams (e.g., as uncompressed WAVE/PCM audio
files).

Streams captured at the sender side then can be played back to review the voice
quality of the transmitted audio, for example, to evaluate whether there is
significant background noise or audio artifacts in the audio received from the
headset.

Streams captured at the receiver side then should sound the same, as they are a
digital packet stream of audio samples delivered over the network. The issue instead
is whether the packets were received in a timely manner to permit them to be played
back continuously or whether some packets were lost or arrived late, causing skips
and gaps.

17

One option for the receiver side is to reassemble the audio stream as best as
possible, ignoring these issues. This provides a basic sense of how the received
audio could have been heard, including skips for lost packets.

Instead, the HPC voice packet analysis includes a packet buffering model that uses
the arrival time information for each packet to simulate the result on the audio
playback buffer. This includes introducing gaps for missing packets or packets that
arrived too late. This provides a more accurate simulation of the user experience in
listening to the received audio.

20. Recreating RTP Waveforms

Once the RTP is parsed out and linked back to the SIP Session, the HPC processing
can perform the optional feature of rebuilding the actual waveform audio. This
essentially replays the packets as observed from each device and produces 4 distinct
streams: Inbound A, Outbound A, Inbound B, and Outbound B. These streams
create the ability to hear the lossless stream from the sending device and the
potentially lossy stream from the receiving side.

The WAN VoIP calls are typically encoded with the G.729 codec13 transported over
an RTP stream. The VoIP decoder takes as input the raw RTP Payload values.

Recreating RTP waveforms from RTP packets presents an interesting design issue
due to the minimal information in the RTP header. RTP provides timestamps for
synchronization and sequence numbers for packet loss and reordering. However,
the RFC for RTP designates a 16-bit sequence counter for RTP streams, similar to
sequence numbers in TCP. Assuming a G.711 encoder with a sample rate of 8,000
samples per second, and 40 samples per packet, the counter will roll over every
327.68 s. Expanding on this, any call that lasts N>1 multiples of this rollover
constant will have an ambiguity in the position of 2 packets with similar time
stamps. In addition, the RTP timestamp field is not a reliable sorting member since
the RFC allows this field to be null. Because of this, the RTP packets are binned by
the sequence number first and then each bin is sorted by the appropriate
transmit/receive time of the packet, depending on the packet direction. Finally, the
bins are looped over, picking the first packet from each bin in sequence.

The possibility of missing sequence numbers is handled by checking the timestamp
of the previously used sample against the current sample. If this delta is outside of
a constant time threshold (50 s in this implementation), the packet is discarded and
the next one checked. Should there be a reason that transmission was interrupted
entirely for greater than 50 s, then the current packet is picked and the process of
iterating over the bins continues.

18

To emulate audible gaps in the reconstructed waveform and produce a temporally
synced call for both transmit and receive observation points, the rebuilt RTP stream
can be artificially padded with null bytes (\x00) for any missing packets. The length
of padding is implementation dependent and was empirically determined to be 40
bytes per missing packet.

This depends on detecting gaps in the sequence numbers. Since these numbers are
serial in the sense that they are linearly increasing with each new packet, serial
arithmetic must be used to account for any comparisons that span the rollover
boundary.14 RFC-1982 defines the limits of performing binary comparisons on 2
“serial” numbers, specifically where the ambiguity lies.

Once the RTP payloads are reassembled and reserialized, each of the 4 streams
(txout, txin, rxout, and rxin) are written to disk. The G.729 decoder converts them
to the common RAW PCM wav file format, which can be played by any audio tool.

21. Conclusion

The depth of the VoIP system analysis performed by the ATC/ARL HPC Reduction
process was demonstrated at the US Army Network Integration Exercise (NIE)
15.1.

The HPC system processed around 1.5 TB of raw data per day over the 19-day
event, producing data in a steady stream for analysis in the form of 1.1 GB of
databases containing 4.7 billion records per day.

Over the full NIE 15.1 event, the HPC processing analyzed over 58 billion raw
packets, correlated 14 billion end-to-end IP packets, and aggregated 210 million
TCP sessions, to extract over 42,000 VoIP phone calls and associated RTP audio.

For each of these calls, the HPC system assembled and parsed the SIP session
messaging (and associated SDP information) to populate the VoiceCalls table in
the Data Model with call information and performance metrics. The system also
processed the associated RTP packets to populate the VoiceFlows table with call
network performance metrics.

These Voice tables then provide analysts with the ability to review the voice call
traffic across the network and examine its performance in relation to numerous
VoIP and network variables.

In addition, the HPC system can optionally generate PCAP files for further analyst
review with packet tools.

19

Beyond network analysis, the HPC system also provides the ability to extract and
review the actual audio conversations carried in the RTP packet flow. In this way,
analysts can compare sent versus received audio quality and hear the experience of
the test users as they use the VoIP system.

20

22. References and Notes

1. Cisco. Cisco unified communications manager version 8.5 with 8.6 data sheet.
Houston (TX): n.d. [accessed 2015 Jan 15]. http://www.cisco.com/c/en
/us/products/collateral/unified-communications/7800-series-media
-convergence-servers /data_sheet_c78-652908.html.

2. Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson J, Sparks R,
Handley M, School E. SIP: session initiation protocol; RFC 3261, 2002 June
[accessed 2015 Jan 15]. http://www.rfc-editor.org/info/rfc3261. DOI
10.17487/RFC3261,

3. Handley M, Jacobson V, Perkins C. SDP: session description protocol; RFC
4566, 2006 July [accessed 2015 Jan 15]. http://www.rfc
-editor.org/info/rfc4566. DOI 10.17487/RFC4566.

4. International Telecommunication Union. E.425 – Network management –
checking the quality of the international telephone service: internal automatic
observations. Geneva (Switzerland): ITU; 2002 Mar.

5. International Telecommunication Union. E.437 – Qualtiy of service, network
management – checking the quality of the international telephone service:
Comparative metrics for network performance management. Geneva
(Switzerland): ITU; 1999 May.

6. Adametz J. C4 data model description document 1.8.13. Aberdeen Proving
Ground (MD): Aberdeen Test Center; unpublished 2014.

7. Panneton B, Adametz J. High-bandwidth tactical-network data analysis in a
high-performance-computing (HPC) environment: packet level analysis.
Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2015 Sep.
Report No.: ARL-CR-0779.

8. IBM. General parallel file system. Armonk (NY): n.d. [accessed 2015 Jan 21].
http://www-03.ibm.com/software/products/en/software/.

9. Harris G. Libpcap file format. Wireshark.Org.; 2013 July 29 [accessed 2015
Jan 15]. http://wiki.wireshark.org/Development/LibpcapFileFormat.

10. Lamping U, Sharpe R, Warnicke E. Wireshark user’s guide. 2014 Nov 9. 29
[accessed 2015 Jan 15]. https://www.wireshark.org/docs/wsug
_html_chunked/.

11. Renard K, Adametz J. High-bandwidth tactical-network data analysis in a
high-performance-computing (HPC) environment: transport protocol

21

(transmission control protocol/user datagram protocol [TCP/UDP]) analysis.
Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2015 Sep.
Report No.: ARL-TR-7411.

12. Sippy B2BUA, a RFC3261-compliant Session Initiation Protocol (SIP) back-
to-back user agent (B2BUA) server software. 2012 [accessed 2014 Jan].
http://b2bua.org/.

13. International Telecommunications Union. G.729: coding of speech at 8 kbit/s
using conjugate-structure algebraic-code-excited linear prediction (CS-
ACELP); 2014 May 15 [accessed 2015 Jan 21]. http://www.itu.int/rec/T-REC
-G.729/e.

14. Elz R, Bush R. Serial number arithmetic. RFC 1982, 1996 Aug [accessed 2014
Jan 22]. http://www.rfc-editor.org/info/rfc1982. DOI 10.17487/RFC1982.

22

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

ATC US Army Aberdeen Test Center

CNR Combat Network Radio

HPC high-performance computing

ID identification

IP Internet Protcol

NIE Network Integration Exercise

PCAP packet capture

RTP Real-time Transport Protocol

SIP Session Initiation Protocol

SDP Session Description Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WAN wide area network

23

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL CIH C
 K RENARD

 24

INTENTIONALLY LEFT BLANK.

