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1. Introduction 

The Aberdeen Test Center/US Army Research Laboratory (ATC/ARL high-
performance-computing (HPC) Voice over Internet Protocol (VoIP) call analysis 
processing is designed for a general VoIP system architecture based on Session 
Initiation Protocol (SIP) for negotiating call sessions and Real-time Transport 
Protocol (RTP) for transporting voice data packets. 

The primary system under test has been the upper tactical internet assets within the 
US Army networking infrastructure, which is based on a Cisco Internet Protocol 
(IP) Telephony/VoIP system, as described in the following section. As a result, the 
VoIP analysis processing goes beyond the SIP standard to support the 
idiosyncrasies and extensions found in the tested Cisco implementations. 

2. Voice Subsystem Components 

The voice subsystem under test uses a commercial VoIP solution, based on the 
Cisco Unified Communications Manager (also known as the CallManager) and 
Cisco Unified IP Phone instruments.1 This commercial VoIP system employs 
standard IP networking for delivering the telephony signaling messages and voice 
conversation packets. 

The voice subsystem is implemented as a standard VoIP solution, with IP-based 
telephone terminals that communicate over the local area network to their 
associated local VoIP server (CallManager). The CallManager servers maintain a 
local database with the administrative details of the VoIP phone network to be able 
to route calls to the appropriate destination device. 

The telephone terminals provide the interface to the end user with dial pad, handset 
audio, and display. These plug in to the local network and connect to the associated 
local CallManager when the user dials a number. To set up the call, the local 
CallManager then forwards the call to the proper destination CallManager server 
for the dialed phone number, which then passes the phone call on to its local phone 
terminal registered for the number. Once the call is setup, the phone terminals then 
pass the voice data packets directly to each other over the network. 

The Cisco VoIP system employs Skinny Client Control Protocol for network 
communication between the phone and the local CallManager (e.g., for each dialed 
digit), SIP between the endpoint CallManagers for call setup/termination signaling, 
and RTP for digitized voice transport. 

 



 

2 

3. Phone Equipment: Combat Network Radio Gateway  

The VoIP system includes both VoIP hardphones (conventional physical phones) 
and softphones (software user interface implemented on the system display). The 
softphones are used in the vehicles, and the hardphones are typically used in 
shelters attached to stationary assets. 

Hardphones like the Cisco Unified IP Phone are full-featured VoIP phones with a 
speakerphone and handset (Fig. 1). Softphones are implemented as an application 
on the system displays within vehicle cabs (Fig. 2), with a user interface that 
simulates the Cisco IP phone. The user speaks on the phone using the system 
headset, with earcups and a boom microphone. 

 

Fig. 1 Cisco IP phone 

 

Fig. 2 Multi-Domain Atlas in Soldier Network Extension cab 

The vehicles also support a Combat Network Radio (CNR) gateway function, 
allowing the extension of analog voice radio networks, such as Single Channel 
Ground/Airborne Radio System and the Soldier Radio Waveform.  

The CNR Gateway provides several usage scenarios to allow users on a vehicle's 
local radio network to converse with remote users over the wide area network 
(WAN) VoIP network: 
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• A VoIP caller can dial the dedicated CNR Gateway number for a vehicle, 
and the gateway will auto-answer the call and connect the caller into the 
vehicle's local radio network. 

• The operator in the vehicle can use the gateway to dial out to an external 
number. When the call is connected, local users on the radio network can 
converse with the distant phone user (or with a group on a conference call). 

• The operator in the vehicle can use the gateway to dial out to another 
gateway on a second vehicle. This bridges the local radio networks at each 
vehicle over the VoIP network so that the users can all communicate. 

While CNR Gateway calls use very different equipment, to the VoIP system they 
simply appear to be normal voice calls that happen to dial from or into numbers 
associated with CNR Gateway equipment. From the point of view of the HPC 
reduction, these again look like normal calls, with SIP setup and RTP audio flow, 
although the details of the protocols can be different that that observed at the Cisco 
CallManagers. 

The command, control, communications, and computers (C4) Data Model 
(C4_DM) then supports analysis of CNR Gateway calls separately from other call 
types by identifying CNR calls through the phone number and/or the phone device 
type. 

4. Voice Packet Flow: SIP, Session Description Protocol (SDP), 
and RTP 

The C4_DM Reduction process for VoIP calls supports VoIP traffic processing 
based on using SIP over Transmission Control Protocol (TCP) as the call signaling 
protocol (from call start to call termination), with the actual compressed voice 
bitstream carried on RTP over User Datagram Protocol (UDP). The local traffic 
between a phone and its CallManager is not used for analysis. 

SIP is a simple application-level signaling communications protocol, widely used 
for controlling multimedia communication sessions, such as voice and video calls 
over IP networks. It is defined in ITEF RFC 3261.2 

This protocol defines the messages that are sent between endpoints that govern 
establishment, termination, and other essential elements of a call consisting of one 
or more participants. SIP is designed as a session protocol to work independently 
of underlying transport protocols. It also can support other multimedia types and 
conferences. 
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SIP is implemented using a simple text-based protocol, stepping through session 
management using a request-response model (e.g., INVITE/OK to start call, 
BYE/OK to end it). SIP also uses a second set of numeric response codes (e.g., 
Ringing, Forwarded, Success, Redirection, Error) to respond to requests, provide 
status, indicate further action is required, and report errors. The 3-digit SIP 
Response code values are grouped with 3 levels of positive responses marking 
incremental call progress (1xx Informational, 2xx Success, 3xx Redirection), and 3 
levels of error responses reporting call failure (4xx Client Failure, 5xx Server 
Failure, 6xx Global Failure). 

These SIP codes are specified as literal text strings as shown in Table 1. The SIP 
protocol is used solely to negotiate the call session; the actual call parameters 
(including the phone numbers and audio encoding parameters) are embedded 
within the SIP messages using Session Description Protocol (SDP), as defined in 
ITEF RFC 4566.3 SDP is a standard representation for session description and 
media meta-data. The SDP is typically included in the SIP INVITE and OK 
messages to negotiate the media information to be used for the call.  

Table 1 Sample SIP messaging 

SIP Message Type Sample Message Text 
Request INVITE sip:user@server.com SIP/2.0 

Response SIP/2.0 200 OK 
 
SDP also is a text-based format, using a simple <type>=<value> format. The 
actual options and values specified in the SDP traffic are dependent on the specific 
network and implementation, with session, time, and media description lines. 
Sample SDP messaging is shown in Table 2. 

Table 2 Sample SDP messaging 

SDP Message Type Sample SDP Message 
Session  
Originator and session identifier o=jdoe 2015554586 2015552877 IN IP4 10.0.0.2 
Connection information c=IN IP4 224.0.1.1/127 
Time  
Time session active t=2015557496 2015554696 
Media  
Media name and transport m=audio 49170 RTP/AVP 0 
Media attributes a=rtpmap:99 h263-1998/90000 

 
In practice, the implementation of the SIP and SDP protocols observed in systems 
under test can be more complex than the notional handshaking described in the 
associated specifications. In particular, the INVITE message can be repeated a 
second time, from the receiver to the sender, and different information can be 



repeated in the SDP portion of consecutive messages. The SDP flow also is used to 
communicate additional nonstandard infmmation, including call priorities, call 
transfer, and call conferencing infmmation. In other cases, some endpoint devices 
may not include important infom1ation in the SIP flow. The HPC code pe1fmming 
the processing of the VoiP call observables then must be capable of properly 
interpreting all of the expected variants of call setup and teardown and call 

infmmation. 

5. Voice Data Analysis 

The Voice tables in the C4_DM are designed to directly suppmt the analysis of the 
flow of voice calls both by extracting call metadata and by computing common 

metrics used for system requirements (e.g., completion, time to voice). The tables 
include the call endpoint infmmation, timestamps of key events in the call setup 
and voice traffic, and the fmal call disposition. 

The VoiP Call Flow Diagram (Fig. 3) shows the logical call flow, from initiation to 
ringing to pickup to voice flow, and then to hang up. Tracking of the flow is driven 
by the SIP messaging request-response sequence, which signals key events in the call 
flow. The call timing metrics are based on the elapsed time between these events. 

Call dialed 

Elapsed Tune to Voice 
Clock time from 
last digit dialed 

to near voice 

VoiP Call Flow 
Initiator I Caller Receiver I Callee 

~ * INVITE C-an Setup ffime to Ringl 
+-------T~ry~ing~ ~ Last digit dialed to phone rings 

-<EE:--------"'R:;.,i!'!J.,_,iQQ,_ * ~ Phone ringing 

'f' Woit for Pick Up (Off Hookl 
1 Pbone riogs- to user lifts h&nd t 

OK '+' .._ ______ .....;.;.;._ * .,...._ Pick up handset 

~ 

t Pick Up to Voice 
Pick u;p to hear voice 

Hear voice ~ * i==::::.-====~ * .,...._ Hearvoice + 

BYE {Han!U!P} 

Fig. 3 VoiP call flow 

Call Time to Voice 
Dial to ring, plus pick up to voice 
(Elapsed time less wait for pick up) 

The associated HPC voice processing supports this design by aggregating the 
packets containing the SIP messaging associated with a call, then parsing and 
extracting the call infmmation with the associated SDP infonnation. It also extracts 

and analyzes the associated RTP flow in each direction, especially for packet 
delive1y metrics (e.g., loss, latency, and jitter). 
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6. Call Analysis 

The approach used in creating the Voice tables in the C4_DM was to define the 
VoIP and metrics analysis in terms of a 3-step process: 

1. Call Events: Record important events during the lifetime of each call (e.g., 
initiated, ringing, voice start, hang up), along with the associated timing. 

2. Call Categorization: Categorize calls according to various characteristics 
useful in performing analysis (e.g., completed versus rejected versus error, 
simple versus complex). 

3. Call Metrics: Compute metrics from the call results and timings, for useful 
clusters of calls based on the categorization. 

This approach is intended to support broad system technical characterization and 
performance analysis, since a VoIP system cannot be usefully analyzed by simply 
performing gross calculations of call events and timings across all recorded calls. 
For example, if call completion is judged by a brute force count of only the number 
of calls that cause the end instrument to ring, then the calculation will be distorted 
by not accounting for busy calls, no answers, misdials, disconnected phones, or 
many other conditions that have nothing to do with measuring whether properly 
dialed calls are able to reach a properly connected destination. 

7. Call Metrics 

Call metrics are used to verify system performance against requirements and to 
evaluate performance improvements between system iterations. The HPC 
processing directly computes several system characterization metrics in the C4 
Data Model Voice tables that are driven by system requirements. These also match 
metrics defined in ITU-T:E.425, Internal automatic observations (for checking the 
quality of the international telephone service).4 

Based on the call events and categorizations, the following metrics are defined 
relative to the voice subsystem: 

• Call Delivery Ratio (Call Completion Rate) metric 

The Call Delivery Ratio metric is based on measuring calls for which the initial 
“Invite” message successfully transits the network to reach the destination 
instrument (i.e., Delivered event, which may include ringing, busy, or other cases). 
This initial delivery indication is independent of the further progress of the call. 
The ratio is then computed as the percentage of calls delivered compared with those
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attempted, less calls categorized as “Invalid” or “No Test”. Defined as such, Call 
Delivery Ratio matches the Network Effectiveness Ratio definition in the ITU-
T:E.425 standard. 

• Call Delivery Delay (Time to Ring) metric 

The Call Delivery Delay metric measures the time from the call’s initiated (last 
number dialed) to Delivered (ring) events. This metric applies to those calls 
included in the previously mentioned Call Delivery Ratio. Defined as such, this 
metric matches the Post Dialing Delay definition in the ITU E.437 standard.5 

• Voice Setup Time (Time to Voice) metric 

The Voice Setup Time metric measures the time from the call’s Initiated (dialed) 
to initial Voice Received (first voice) events, less the time from the Delivered (ring) 
to Accepted (pick up) events. Thus, this metric includes all voice system overhead 
between dialing and successful voice interchange but excludes the wait for the user 
to pick up a ringing call.   

• Packet Delivery metrics (Loss, Latency, Jitter) 

These standard metrics apply solely to the network’s performance in delivering the 
real-time stream of voice traffic contained within RTP packets. Within a point-to-
point call, they are calculated and aggregated independently for each direction (i.e., 
caller-to-callee and callee-to-caller). Packet Loss represents the percentage of sent 
voice traffic packets that fail to successfully transit the network; Latency represents 
the average transit time of voice traffic packets successfully received; and Jitter 
represents the standard deviation of the individual voice traffic packet latencies. 

8. Data Model: Voice Tables 

The C4 Data Model6 contains 2 tables that focus on voice-related data and metrics: 

• CommsVoiceCalls records metrics for each unique phone call. 

• CommsVoiceFlows records metrics for the delivery of the real-time voice 
traffic stream. 

The population of the tables employs the general process of identification of call 
events, categorization of calls based on context and type, and the subsequent 
computation of metrics based on the time-stamped events and category 
assignments. 

The CommsVoiceCalls table includes a summary of all VoIP calls established via 
the SIP interchange between remote nodes; VoIP calls conducted locally to a given 
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node and application-specific VoIP are not included. As discussed earlier, the 
contents of the table tracks the call setup sequence, the establishment of the call, 
the transfer of digitized voice data, and call termination. Complex calls (e.g., call 
transfer, call forward, and conference call) are represented as multiple individual 
rows for each point-to-point connection. 

The CommsVoiceFlows table includes statistics for RTP flows identified in the SIP 
traffic used to set up VoIP calls recorded in the CommsVoiceCalls table. It is used 
to collect call/packet statistics over discrete intervals of the call, including packet 
loss, latency, and jitter. The information for each call is broken into multiple records 
for each direction of the call flow (unique RTP SSRC [Synchronization Source]) 
and for each evaluation interval (“chunk”) within each voice call RTP traffic. The 
evaluation interval (chunk size) is nominally 15 s but can be shorter (especially at 
the end of a call). 

One SIP call sequence (aggregated as a single entry in CommsVoiceCalls) is 
typically associated with a pair of RTP streams, one in each direction (stored in 
CommsVoiceFlows). 

9. HPC VoIP Processing Overview 

The HPC VoIP processing algorithms search, correlate, and aggregate SIP and RTP 
packet streams across all captured traffic on the network under test. 

The processing begins with IP packet records stored in the CommsIP table.7 The 
process extracts and aggregates individual TCP sessions between SIP ports. It then 
parses and aggregates SIP message streams from the TCP sessions and parses the 
SIP messages and stores the information associated with each individual call. The 
IP packets are then processed to extract and aggregate the RTP flows associated 
with each call. 

This processing can be complicated by the grouping of TCP streams with SIP 
sessions since one SIP call may bridge multiple TCP sessions. 

10. HPC Parallelization 

The HPC system permits this processing to be significantly accelerated by being 
performed in parallel, with parallel cores working independently on individual TCP 
sessions or SIP message streams. The overall flow of the processing of voice call 
data is shown in Fig. 4 
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Fig. 4 HPC voice call processing flow 

The packet data being processed is stored in the HPC General Parallel File System,8 
the centralized global file system accessible by all of the cores so that each core 
only needs to keep the data for the current session in local memory. The 
intermediate data, TCP sessions and SIP sessions, are accessed via a unique 
identification (ID), based on the TCP Transport ID or the SIP Call ID, respectively. 

The Transport ID is the tuple of the TCP Source IP, Source Port, Destination IP, 
and Destination Port tuple, where the lower binary IP is sorted first along with its 
port. This collates both the initiator and receiver side of the TCP session into one 
hash, since the directionality is removed by the sort.  

The SIP Call ID is used in the SIP protocol to uniquely identify a SIP Session. This 
is a pseudo-random sequence of alphanumeric characters that are guaranteed to be 
unique by the calling device (i.e., 29dce180-f519718-5-7d8ddb16 
@12.345.678.123). This can be thought of as the key that all SIP packets are sorted 
by. Every SIP packet contains the SIP Call ID field. Calls will not span more than 
one Call ID, although they may span more than one TCP session.  

The TCP and SIP sessions are assigned to processing cores using the hash of the 
TCP Transport ID or the SIP Call ID. Taking the hash modulo total ranks maps the 
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hash to a bin and its associated compute core. This distributes the work so that each 
core then can scan though the list of data to be processed and only process the 
elements whose hash matches the core number. 

The intermediate output then is striped to disk to the associated bin file (Fig. 5). 
This is a single large file used to store the data for all the sessions that the core 
processes. This avoids the need to thrash the global file system by creating and 
accessing large numbers of small files.  

 

Fig. 5 Striping many unsorted TCP sessions to disk 

The Group Disk Cacher and Stream Reduce Manager modules each provide a file 
input/output API that manages local storage and transparently stripes data to the 
appropriate bin and reproduces the streams. 

11. HPC SIP Analysis 

The HPC processing of SIP messaging begins with searching the packet capture 
data for key elements of the call setup found within the SIP call signaling 
interchanges between the CallManagers.  

This process results in the assignment of time stamps to each of the call setup 
events. From this information, the calls can be further categorized and overall call 
metrics can be computed. 
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The SIP messages include both SIP Request messages that initiate actions (e.g., 
Invite, ACK, Bye, Cancel) and numeric SIP Response codes that generally indicate 
whether the request succeeded or failed (e.g., 100 Trying, 180 Ringing, 183 Session 
Progress, 200 OK).  

Voice call events are recorded in the CommsVoiceCalls table of the C4 Data Model. 
The associated fields capture the timestamp of each key step in the call setup (the SIP 
message interchange), including Initialized (i.e., SIP Invite Request message), 
Delivered (Ringing), Accepted (OK), and Hang Up (Bye), and timestamps from the 
associated RTP traffic, such as Start and Stop Time in each direction. 

In addition, the CommsVoiceCalls table includes a CallEndReason field to report 
the disposition of the call, which is populated based on observed events. 
Specifically, if a SIP Bye is reached without encountering a SIP error, 
CallEndReason is set to BYE. Alternately, if a SIP error (i.e., codes 3xx, 4xx & 
5xx) is found before a Bye, then the first such error event found is recorded in 
CallEndReason. Since it is possible for one call to have several different Bye and/or 
error messages in the SIP interchange, only the first such event is recorded 
(subsequent error messages are ignored by the reduction algorithms).   

Observation of test data has shown that the Cisco implementation of SIP also can 
generate error messages after a call has successfully completed, and such errors 
also are ignored during reduction. Should an analyst need to see further call details, 
the HPC processing also reformats and outputs the packet capture data in packet 
capture (PCAP) files9 which can be used by several network packet capture tools 
such as Wireshark (www.wireshark.org).10 

12. TCP to SIP: TCP Extract 

The first step of the HPC VoIP processing is to aggregate TCP sessions to extract 
the SIP messaging (Fig. 4). Since the TCP VoIP module call metrics are heavily 
dependent on bidirectional communications, the module uses the output of the 
CommsIp module as its input, taking advantage of the packet matching done in this 
module, so that each packet record contains information from both the transmit and 
receive side observations.7 It applies a filter across all packets contained in 
CommsIp, matching any TCP packet on SIP source port 5060 or destination port 
5060 (although some of these packets can be non-SIP). 

To extract the call metadata from the SIP, the module performs basic TCP session 
reconstruction on the sessions filtered from CommsIp. The unrelated packets 
filtered from CommsIp are joined together into “streams” by using the Transport 
Hash.11 
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13. TCP to SIP: TCP Conditioner 

After the unsorted SIP TCP packets are extracted, the TCP Conditioner reconstructs 
the TCP sessions, rebuilding the TCP streams as they were encountered on the 
transmitting/receiving CallManager. Since the conditioner has the luxury of 
examining the entire stream of packets, no “sliding window” logic is required to 
successfully reassemble the session, as the next arriving packet is already known. 
It is only necessary to properly align the TCP sequence and ACK numbers to 
accurately reproduce the TCP stream.  

Out of order sequences also must be handled properly as they are critical to the 
arrival times of the packets at the application layer. That is, if a packet is lost in the 
stream and packets further along in the sequence are received, they will not be 
released to the app layer until the missing packet is also received and/or 
retransmitted.  

14. TCP to SIP: SIP Converter 

Once the TCP packets are reassembled into ordered logical TCP streams, they are 
fed into the SIP Converter. This module transforms the raw bytes in the TCP 
payload to discrete SIP messages. 

The actual parsing of the byte stream into a discrete SIP message is handled by a 
portion of the SIPpy library.12 The SIPpy library is passed a chunk of the byte stream 
(Fig. 6) from which SIPpy creates a single packet in a greedy, left to right fashion, 
stopping when a packet is complete. This is repeated until the byte stream is entirely 
consumed. If SIPpy cannot produce a packet from the byte stream, the first “N” bytes 
are popped off the stream and the process is retried. This filters any corruption that 
may occur in the byte stream. Once the conversion from TCP to SIP is complete, the 
individual packets are passed into a SIP Manager processing module. 

 

Fig. 6 TCP byte stream to SIP packet alignment 
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15. SIP to Calls: SIP Manager 

The processing from SIP messages to SIP sessions (calls) uses a parser design with 
a tree hierarchy. A SIP Manager (Fig. 7) contains one or more SIP Sessions. A SIP 
Session contains one or more SIP Callers and one SipParser. As discussed 
previously, the SIP traffic is processed in parallel by SIP Call ID. 

 

Fig. 7 SIP manager design overview 

 
SIP Packets are fed into the SIP Manager one at a time. The SIP Manager creates 
new SIP Sessions based on the observance of a new SIP Call ID. The SIP Session 
creates a new SIP Caller based on the source IP address and direction of the packet 
(incoming or outgoing). This assigning of direction, or vectorization, of a packet is 
crucial to timing considerations for transmit and receive times of the packet, due to 
the multiple observations of the packet inherent to the distributed network testing.  

Once the packets have been sorted into the proper SIP Caller in the SIP Session, an 
initial parse is called on in the SIP Caller to sort the SIP packets into message type 
categories such as INVITE, ACK, BYE, CANCEL, and all other 2xx, 3xx, 4xx, 
5xx, and 6xx response categories. The SIP Caller also extracts and formats auxiliary 
information including SDP call information. 

  



 

14 

16. SIP to Calls: SIP Sessions 

Once the SIP Caller has parsed all of its packets, the SIP Manager initiates the first 
round of parsing on all of its child SIP Sessions. This parse performs call type 
designation, voice traffic session parameter extraction, and many other call-timing 
functions.  

In order to categorize the call type for further processing, a call is considered 
COMPLEX if a SUBSCRIBE type SIP message is observed in the SIP Caller parse. 
This necessitates further considerations discussed later. A call is designated 
INCOMPLETE if only one SIP Caller exists in the SIP Session. This is because of 
an instrumentation issue, since a call cannot possibly exist without a receiving 
device. A call is considered POINT-TO-POINT if the number of SIP Callers is 
exactly 2.  

These classifiers only relate to the number of callers expected in a SIP Session. A 
SIP Session is then assigned either a PT-PT or COMPLEX parser, with 
INCOMPLETE receiving a PT-PT parser. A COMPLEX parser contains a PT-PT 
parser in addition to specific COMPLEX parsing routines mentioned later.  

The PT-PT parser is designed to parse a call from the initiator and receiver points 
of view. Having both sides allows the parser to extract accurate timing information 
from the sequence of events that occur. 

The SIP Session will call the parse routine on its parser. Events such as Canceled, 
Invalid, Error, and Dropped are all considered and handled here as well. The 
extracted parameters are attached to the SIP Session. 

The Voice Traffic Session Parameters are extracted from the SDP components of 
some SIP messages. These include the sending and receiving Phone IP addresses, 
sending and receiving ports, and the time stamp of the SIP message indicating a 
successful call connection and the time stamp of the SIP message indicating the end 
of a call. 

17. SIP to Calls: RTP Parser 

The parser also searches for any RTP/UDP voice traffic sessions associated with 
the call (i.e., the actual packet traffic that contains encoded voice data). The call 
parameters are passed back to the main module to perform another search for any 
UDP/RTP through all CommsIp output, looking for packets that meets the criteria 
(IPa, IP2b, PORTa, PORTb, starttime, endtime). It is possible, although highly
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unlikely, for other packets to match this exact signature. Should this occur, there is 
no factor to help overcome the ambiguity other than application layer analysis of 
the packet that is outside the scope of this parser. 

Once the SIP Session has its RTP traffic loaded, it parses it for relevant statistics. 
It calculates packet flow statistics over 15-s windows (for the CommsVoiceFlows 
table), and computing statistics over the entire call. Appropriate considerations are 
made for one-sided packets (sent but not received, received but not sent) and 
malformed latency.  

18. SIP to Calls: Complex Calls 

The final step to the VoIP module is to parse out the links between COMPLEX 
calls. Again, a COMPLEX call is a call that has more than 2 participants at any 
time, TRANSFER, CONFERENCE (ad-hoc), or MEETME (central conference 
line). In the initial PARSE stage, each call is designated either PT-PT, 
INCOMPLETE, or COMPLEX. The COMPLEX calls are further parsed and 
designated one of the TRANSFER, CONFERENCE, or MEETME property. These 
calls are all offloaded to a single rank where the actual linking of the calls takes 
place. 

The linking between 2 separate calls is based on a dynamic, temporal window 
bounded by the start and end times of a call. Every COMPLEX call in the list is 
sorted by call start time, earliest first. This call’s start and end times is the first 
“anchor point”. Anchor points define the time window (start and end) of a voice 
call. If the next call’s start time falls within the boundary of the anchor (i.e., 
anchor.start <= current.start <= anchor.end) then this call is considered “LINKED” 
and the 2 calls are assigned the same “AGGREGATE ID” (Fig. 8). Then the 
aggregate call anchor’s end time is expanded by the call with the latest end time, 
expanding the ANCHOR if necessary. If the next call’s start time falls outside of 
the ANCHOR, a new ANCHOR is created using the same next call as the initial 
parameters and a new AGGREGATE ID. 
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Fig. 8 Illustration of the anchor as it shifts when calls are added 

19. Extracting Voice Audio from RTP 

The collected raw packet data on the HPC contains both the TCP SIP call 
management traffic and the UDP/RTP flow containing the compressed voice bit 
streams transmitted in each direction. The HPC processing provides the option to 
extract the audio segments from RTP packets, and then aggregate, decompress, and 
save the transmitted voice streams (e.g., as uncompressed WAVE/PCM audio 
files). 

Streams captured at the sender side then can be played back to review the voice 
quality of the transmitted audio, for example, to evaluate whether there is 
significant background noise or audio artifacts in the audio received from the 
headset.  

Streams captured at the receiver side then should sound the same, as they are a 
digital packet stream of audio samples delivered over the network. The issue instead 
is whether the packets were received in a timely manner to permit them to be played 
back continuously or whether some packets were lost or arrived late, causing skips 
and gaps. 
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One option for the receiver side is to reassemble the audio stream as best as 
possible, ignoring these issues. This provides a basic sense of how the received 
audio could have been heard, including skips for lost packets. 

Instead, the HPC voice packet analysis includes a packet buffering model that uses 
the arrival time information for each packet to simulate the result on the audio 
playback buffer. This includes introducing gaps for missing packets or packets that 
arrived too late. This provides a more accurate simulation of the user experience in 
listening to the received audio. 

20. Recreating RTP Waveforms 

Once the RTP is parsed out and linked back to the SIP Session, the HPC processing 
can perform the optional feature of rebuilding the actual waveform audio. This 
essentially replays the packets as observed from each device and produces 4 distinct 
streams: Inbound A, Outbound A, Inbound B, and Outbound B. These streams 
create the ability to hear the lossless stream from the sending device and the 
potentially lossy stream from the receiving side.  

The WAN VoIP calls are typically encoded with the G.729 codec13 transported over 
an RTP stream. The VoIP decoder takes as input the raw RTP Payload values.  

Recreating RTP waveforms from RTP packets presents an interesting design issue 
due to the minimal information in the RTP header. RTP provides timestamps for 
synchronization and sequence numbers for packet loss and reordering. However, 
the RFC for RTP designates a 16-bit sequence counter for RTP streams, similar to 
sequence numbers in TCP. Assuming a G.711 encoder with a sample rate of 8,000 
samples per second, and 40 samples per packet, the counter will roll over every 
327.68 s. Expanding on this, any call that lasts N>1 multiples of this rollover 
constant will have an ambiguity in the position of 2 packets with similar time 
stamps. In addition, the RTP timestamp field is not a reliable sorting member since 
the RFC allows this field to be null. Because of this, the RTP packets are binned by 
the sequence number first and then each bin is sorted by the appropriate 
transmit/receive time of the packet, depending on the packet direction. Finally, the 
bins are looped over, picking the first packet from each bin in sequence.  

The possibility of missing sequence numbers is handled by checking the timestamp 
of the previously used sample against the current sample. If this delta is outside of 
a constant time threshold (50 s in this implementation), the packet is discarded and 
the next one checked. Should there be a reason that transmission was interrupted 
entirely for greater than 50 s, then the current packet is picked and the process of 
iterating over the bins continues. 
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To emulate audible gaps in the reconstructed waveform and produce a temporally 
synced call for both transmit and receive observation points, the rebuilt RTP stream 
can be artificially padded with null bytes (\x00) for any missing packets. The length 
of padding is implementation dependent and was empirically determined to be 40 
bytes per missing packet.  

This depends on detecting gaps in the sequence numbers. Since these numbers are 
serial in the sense that they are linearly increasing with each new packet, serial 
arithmetic must be used to account for any comparisons that span the rollover 
boundary.14 RFC-1982 defines the limits of performing binary comparisons on 2 
“serial” numbers, specifically where the ambiguity lies.  

Once the RTP payloads are reassembled and reserialized, each of the 4 streams 
(txout, txin, rxout, and rxin) are written to disk. The G.729 decoder converts them 
to the common RAW PCM wav file format, which can be played by any audio tool. 

21. Conclusion 

The depth of the VoIP system analysis performed by the ATC/ARL HPC Reduction 
process was demonstrated at the US Army Network Integration Exercise (NIE) 
15.1. 

The HPC system processed around 1.5 TB of raw data per day over the 19-day 
event, producing data in a steady stream for analysis in the form of 1.1 GB of 
databases containing 4.7 billion records per day. 

Over the full NIE 15.1 event, the HPC processing analyzed over 58 billion raw 
packets, correlated 14 billion end-to-end IP packets, and aggregated 210 million 
TCP sessions, to extract over 42,000 VoIP phone calls and associated RTP audio.  

For each of these calls, the HPC system assembled and parsed the SIP session 
messaging (and associated SDP information) to populate the VoiceCalls table in 
the Data Model with call information and performance metrics. The system also 
processed the associated RTP packets to populate the VoiceFlows table with call 
network performance metrics. 

These Voice tables then provide analysts with the ability to review the voice call 
traffic across the network and examine its performance in relation to numerous 
VoIP and network variables.  

In addition, the HPC system can optionally generate PCAP files for further analyst 
review with packet tools. 
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Beyond network analysis, the HPC system also provides the ability to extract and 
review the actual audio conversations carried in the RTP packet flow. In this way, 
analysts can compare sent versus received audio quality and hear the experience of 
the test users as they use the VoIP system. 
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List of Symbols, Abbreviations, and Acronyms 

ARL US Army Research Laboratory 

ATC US Army Aberdeen Test Center 

CNR Combat Network Radio 

HPC high-performance computing 

ID identification 

IP Internet Protcol 

NIE Network Integration Exercise 

PCAP packet capture 

RTP Real-time Transport Protocol 

SIP Session Initiation Protocol 

SDP Session Description Protocol 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 

VoIP Voice over Internet Protocol 

WAN wide area network 
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