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1. Introduction

Humanitarian assistance and disaster relief (HA/DR) has long been appreci-
ated as one of the most compelling applications of robotics technology, giving
responders tools to sense and act in dangerous environments.1 For example,
the use of robots in the aftermath of the Fukushima Daiichi nuclear disaster
has been well documented,2 and analysis of the response suggests that action
at one of several “inflection points” of the crisis would have probably averted
further catastrophe3 if those actions had not been deemed too dangerous at the
time. Partly inspired by these implications, the Defense Advanced Research
Projects Agency (DARPA) Robotics Challenge was conceived to catalyze the
focused development of solutions for solving the myriad of challenges related to
locomotion, manipulation, perception, and human interface that are needed to
build a robot that can act as a stand-in for humans at such “inflection points”
in the future. Though this “avatar” concept inspires the imagination, we would
argue that robotics has an even more important role to play in the broader
HA/DR mission as the backbone for the required information-gathering activ-
ities that lie at the heart of any coordinated response. As an illustration, the
Foreign Humanitarian Assistance manual published by the US Department of
Defense4 identifies that the military will primarily assist in a few ways to a
disaster requiring government response: with the first-responder Crisis Action
Team tasked as the immediate responder and assessor for the regional com-
mander; and with the Humanitarian Assistance Survey Team whose primary
responsibility is assessment, such as dislocated populations, degree of property
damage, and remaining communications infrastructure. These are all activities
that feed into the planning phase that must happen before any larger action
can be carried out. Though not quite as exciting as a humanoid robot that
wades through a flooded disaster site to extinguish a critical fire, we believe
a heterogeneous, multi-robot team that can quickly navigate through an envi-
ronment to quantify an emerging situation is more important to the timeliness
and success of the larger response.

Two important focal points of multi-robot systems deployed in a primarily
information-gathering sense have been the Robocup Rescue League5 and the
Multi Autonomous Ground-robotic International Challenge (MAGIC) 2010
competition.6,7 From these activities, we learn that, although physical plat-
form capabilities do play a role, the majority of the system complexity is
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derived from the overarching operational problems of team management and
communication.

Toward this end, this work focuses on establishing a preliminary formal prob-
lem description that places an HA/DR-inspired, information-gathering mission
in an operations research context (Section 2) and describing a multi-robot sys-
tem capable of performing such a mission in a relevant field environment. We
present the design of such a system (Section 3), a set of autonomy-enabled
behaviors that can be used to address the HA/DR mission (Section 4), and a
graphical user interface (GUI) that allows a human operator to task the system
(Section 5). Finally, we report extensive experimental results, which address
the current capabilities of our system with respect to the implementation of a
solution to the HA/DR mission (Section 6).

2. Problem Statement

Within the scope of information-gathering activities required for planning a
response to a HA/DR scenario, we focus on simultaneously solving 2 specific
problems: evaluating of damage to infrastructure in the environment, e.g.,
traversability of roads; and localizing particular targets of interest, e.g., a po-
tentially injured “very important person” (VIP) who we discover through sens-
ing a radio signal, such as a cell phone. This problem statement contains both
a priori goals (key assessment sites established from prior maps) and dynamic
goals (the existence and possible locations of targets), and a solution must
focus on effectively balancing between these 2 types of goals. Moreover, we ad-
dress the issues of unreliable autonomy and limited communications through
incorporation of dynamically uncovered costs, and we cast the entire problem
as a dynamic variant of the Capacitated Team Orienteering Problem (CTOP)
with details discussed below.

If we considered only the problem to efficiently visit a set of locations derived
from prior maps of the environment, a classical formulation would suffice.
Initially it could be as a well-studied Vehicle Routing Problem (VRP): with
known travel costs between sites, find paths for multiple vehicles to visit all
sites that minimize total travel costs. However, since we may assume that the
mission is time-critical and some sites are likely to be more interesting than
others, we could instead formulate it as a Team Orienteering Problem (TOP):
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with known travel costs between sites and known rewards for visitation, find
paths that maximize the total gathered reward with a fixed cost bound.8 The
environment limitations suggest 1 final modification.

Because the environment is communications-limited, we conjecture that as we
send robots to visit sites and gather information, we need them to eventually
return to communications range in order to offload their information before it
becomes too outdated. This is most closely modeled as a CTOP: as a TOP but
with a constraint on the total reward that any individual vehicle may gather
on a single trip.9

A key component of the problem is the dynamic goals that arrive because of
detecting unknown targets. We model these as dynamically updated rewards
available at the visitation sites of the CTOP, and we assign the value of these
rewards according to the expected information gain about the target location
using the available sensing, similar to information-guided exploration strate-
gies.10 If we assign a distribution to these rewards initially or as the mission
progresses, there is prior work on solving TOPs with stochastic rewards11 that
could apply.

The last challenge is to incorporate the effects of unreliable autonomy; in our
experience, this mostly manifests itself when performing autonomous naviga-
tion between 2 waypoints and the intervening terrain has features that make
perceiving or avoiding obstacles difficult. Two waypoints along a road usu-
ally present no problem, even if they are far apart, but navigating between
2 waypoints in a grassy field may cause the navigation system of a ground
platform to believe that there are tiny obstacles everywhere as laser scans pick
up individual blades of grass and consequently fail to find a path. We model
these effects as unknown travel costs between visitation sites: we may have
some intuition about how likely it is for a given site-to-site navigation to be
successful, but ultimately we build a navigation risk model during operation
in the environment. It is important to note that failed navigation is not neces-
sarily fatal because we assume we have backup behaviors to return to a known
safe location. If we assign a distribution to these costs, there is prior work on
solving TOPs with stochastic costs12 that could apply.

Our preliminary formal problem formulation is thus as a CTOP with stochastic
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(unknown) costs and rewards. We ask, what value is it to have such a formal
problem given that we are not developing an online planner to demonstrate
through these experiments? The answer is that having the solution for any
specific mission instance gives us an upper-bound on how well any autonomy
or human could perform at the task and therefore gives us a metric to know
when the system is improving. Even for the case of unknown costs and rewards,
we can solve the plan as if the costs/rewards were known up front or solve it
in a receding-horizon fashion as information is uncovered. Developing these
upper-bounds for this experiment remains future work.

3. System Overview

We present a heterogeneous, multi-robot system capable of field testing basic-
research algorithms focused on a wide range of military applications in relevant
environments, e.g., military operations in urban terrain (MOUT) training fa-
cilities. In particular, our focus is on moving from small-scale systems operat-
ing in controlled laboratory environments to the study of interacting systems
and the development of algorithms that can operate robustly in real-world
scenarios. To that end, our design decisions regarding hardware and software
infrastructure are driven by the need for these systems to “survive the field”
and allow for reliable evaluation of autonomy-enabling algorithms flexibility
and sufficient reliability are our objectives.

3.1 Hardware

Two robotic platforms are used in this work: an iRobot PackBot13 and a
Clearpath Robotics Husky.14 The PackBot, seen in Fig. 1a, is a military-grade,
tracked platform capable of speeds up to 2 m/s and traversing both indoor and
outdoor terrains. To enable autonomous operation, the PackBot is outfitted
with a processing payload containing a Quad-Core Intel i7 ICOM express board
and a 256-GB solid-state drive (SSD). The PackBot collects three-dimensional
(3D) point cloud data by nodding a Hokuyo UTM-30LX-EW LiDAR15 with a
Dynamixel servo. This Hokuyo LiDAR has a 270◦ field of view, 30-m range, and
1-mm resolution. Accurate state information is achieved using a MicroStrain
3DM-GX3-25 inertial measurement unit (IMU)16 mounted on a custom-made
vibration isolator. A Garmin 18x PC global positioning system (GPS) sensor17

is elevated on a mast in an effort to receive better GPS measurements. Finally,
an ASUS Xtion Pro Live provided red, green, blue (RGB) data.18
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The second robot used in this work, the Clearpath Husky seen in Fig. 1b, is a
larger, wheeled platform that is limited to a maximum velocity of 1 m/s and is
best suited for outdoor operations. Similar to the PackBot, the Husky employs
a MicroStrain 3DM-GX3-25 IMU and a Garmin 18x PC GPS. The Husky is
equipped with 2 Quad-Core Intel i7 Mini-ITX processing payloads, each with a
256-GB SSD. The Husky has a Velodyne HDL-32E LiDAR,19 which generates
a 360◦ point cloud of 700, 000 points per second at a range of 70 m and an
accuracy of up to ±2 cm. Finally, the Husky collects imagery data using a
Prosilica GT2750C, 6-megapixel charge-coupled device (CCD) color camera.20

(a) (b)

Fig. 1 The hardware configurations of (a) the iRobot PackBot and (b) the
Clearpath Husky

Both robots use Ubuntu 14.04 (Trusty) and leverage the open-source Robotics
Operating System (ROS) Indigo21 to support higher-level algorithms for map-
ping, navigation, and autonomous capabilities.

3.2 Mapping and Navigation

While the focus of this work is on the evaluation of high-level site-visitation
tasks, the capability for a mobile robot to robustly operate autonomously
hinges on its ability to understand its environment, know where it is within
that environment, and successfully move within that environment, the problem
of mapping and navigation.
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3.2.1 Mapping

Though the GPS coupled with low-cost IMUs can provide accurate localization
capabilities under certain circumstances including unobstructed line of sight
to a large number of satellites, a more robust method for managing a world
model or map is necessary for 2 reasons. First, ground robots are inherently
useful because they can operate in cluttered environments that are specifically
not visible from aerial assets, i.e., areas with degraded or denied access to the
GPS. Second, the ability of a robot to move autonomously through an environ-
ment depends on its ability to understand the structure and traversability of
that environment this requires precise, consistent knowledge of the robot’s
trajectory as it gathers sensor measurements. The simultaneous localization
and mapping (SLAM) problem aims to address these capabilities and has been
studied for some time in the robotics literature.22,23 We adopt a modern graph-
based solution to the SLAM problem based on the square-root smoothing and
mapping (

√
SAM) technique24 and the GTSAM software library developed

at Georgia Tech.25 Our technique leverages the Generalized Iterative Closet
Point (ICP) algorithm26 for dense inter-frame matching of point cloud data
and loop closure constraints. GPS measurements, when available, are robustly
incorporated into our solution based on the techniques described in our previ-
ous work.27

We refer to our SLAM system as OmniMapper due to its ability to integrate
sensor data from a variety of sensor sources including Velodyne 3D laser scan-
ners, Microsoft Kinect 3D cameras, Hokuyo two-dimensional (2D) laser scan-
ners, which are mounted on a tilting platform, as well as planar, unactuated
2D laser scanners. We divide the components of this system into a backend, the
OmniGraph, which is responsible for solving the factor graph representation
of the SLAM problem, and a frontend, the OmniCache, which is responsible
for managing sensor data and performing computations that yield the proba-
bilistic factors connecting nodes in the factor graph. An example factor graph
like one used by the OmniGraph can be seen in Fig. 2. Our SLAM back-end
called OmniGraph solves for the robot’s optimal trajectory using the GTSAM
library; the front-end tasks of data association and generating relevant mea-
surements is handled by the OmniCache.
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Fig. 2 An example factor graph like one used by GTSAM. P ose variables X i 
are connect ed through m ea surements called factors. 

The point-cloud OmniCache used in this work receives local point-cloud data 

aggregated over small time windows based on t he odometry of t he robot and 

serves 2 primary purposes. First, it can respond to queries about the relat ive 

pose of 2 local point-clouds via ICP algorithms in order to generate mea­

surement factors. Second, it acts as a pipeline for generating a series of data 

products based on the underlying local point-cloud data. This includes a set 

of intrinsic products, i.e., ones that are invariant to t he global pose of a local 

point-cloud, such as per-cloud terrain classification, occupancy grid render­

ing, and terrain height estimation. Other products are extrinsic, i.e. , ones t hat 

must be recomputed after optimization of t he factor graph yields a new optimal 

t rajectory for t he robot , including an aggregated point cloud and composite 

occupancy grid map. A block diagram of the relevant components of the Om­

niMapper can be seen in Fig. 3. Once an opt imized t rajectory is computed, 

each robot broadcasts its current locat ion in a GPS-based reference frame to 

all clients. This broadcast is at a low enough rate so t hat it does not signifi­

cantly impact t he bandwidth available to other services on the network. The 

posit ion data of other agents are inserted as obstacles into the robot's costmap, 

which is later used for planning and t rajectory generation. 
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Fig . 3 The OmniMapper configuration used in this wor k 

3.2.2 Navigation 

Given an occupancy-grid map of free space and obstacles in the environment, 

the navigation problem consists of 2 main parts finding kinematically fea­

sible paths and controlling to follow the chosen path. Finding kinematically 

feasible paths is the motion planning problem traditionally considered in t he 

robot ics literature28 t hough finding detailed plans through a large environment 

can be computat ionally expensive. Finding control inputs to follow t hat path 

is, generally speaking, a nonlinear control problem. We address the coupled 

problem of general navigat ion wit h a 3-stage architecture including a global 

mot ion planner, a local planner, and a local controller as depicted in Fig. 4. 

We use t he idea of a 3-stage architecture to drive our software design wit hin t he 

ROS framework. That is, each stage of t he navigation system is implement ed 

as a node, or independent software process, which provides an ActionServer 

interface. ActionServer interfaces are a ROS construct used to deal with long­

running tasks and include an internal state machine to manage t he setting 

of goals, task feedback, and eventual complet ion state, i.e. , success or failure. 

Each stage of our navigat ion architecture provides an ActionServer t hat re-
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Fig. 4 Architecture for autonomous navigation tasks 

sponds to an abstraction of the navigation problem. For instance, the global 

planner provides a ComputePlan action, which takes as input a starting and 

goal pose given the current map, it returns an optimal kinematically feasi­

ble path. The local planner provides a ComputeLocalPlan action, which takes 

a global plan as input and uses the robot's current pose and a local map of 

dynamic obstacles to find a short-term high-resolution path that follows the 

global plan. Note that the decoupling of the planning problem into a global 

and local component is a standard approach used in the robotics literature 

the local planner is capable of generating high-resolution plans over a short 

time-horizon while the global planner helps prevent the system from being 

trapped in local minima caused by non-convex environments. Finally, the lo­

cal controller provides a ControlToPlan action, which takes the current local 

plan and the current state of the robot to compute control inputs, which can 

be sent to the tmderlying platform. 

Sequencing of the actions is performed by a NavigationManager process, which 

presents an external interface to the user or application, e.g., the M oveBase 

action, which mirrors the traditional ROS interface to navigation to provide 

the capability of driving to a desired pose. The software architecture presented 

above is designed to maximize flexibility in implementing different solutions to 

not only each component of the navigation system, but also provide flexibility 

in how the external interface to navigation is presented the NavigationMan­

ager is a fairly simple state machine and allows for easy adaptations of the 
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traditional pose-based navigation interface. For instance, in this experiment,
we relied exclusively on a variant of the MoveBase action and instead use
a GotoRegion action, which drives the system to any pose within a defined
region.

For this experiment, we rely on the Search-Based Planning Library (SBPL)29

to perform global planning actions. We generate a custom set of motion prim-
itives based on our platform’s kinematics and use of 0.2 and 0.3 m occupancy-
grids for the PackBot and Husky, respectively. We use the ARA* planner
algorithm and compute reverse plans so that computations can be reused as
the robot drives for fast re-planning actions. Re-planning allows the system
to quickly correct in the event of errors in platform control or updates of
the occupancy-grid map. Feasible solutions to most initial planning queries
are found in less than a second with optimal solutions being found in a few
seconds for most scenarios.

Local planning and control actions are currently provided by a single process,
which performs optimal trajectory generation over the space of time-varying
control inputs. As stated above, local control is essentially a nonlinear control
problem. Based on prior work in trajectory generation,30 we formulate a pa-
rameterization of the control input for a differential-drive platform such that a
relatively small number of variables, 4 in our current instantiation, provide an
expressive description of the possible trajectories available to the robot over a
short time horizon of T = 3 s. An objective function is devised that performs
a weighted minimization of the error between the robot’s path and the desired
global path coupled with some curvature minimization terms to prevent overly
aggressive trajectories. The final optimization problem, including bounds on
the parameterization of the control input, can be solved with a variety of algo-
rithms implemented in the NLOPT library.31 We are typically able to solve the
trajectory generation optimization for a time horizon of T = 3 s in 5− 10 ms,
allowing for a control frequency of 10 Hz. We are able to directly execute
the optimized time-varying control inputs, thus simultaneously addressing the
local planning and control problems.
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3.3 Signal-Strength Modeling

The search for an injured VIP can be represented by localizing a radio fre-
quency beacon, e.g., a cell phone. In fact, a variety of spatial information-
gathering tasks, including chemical and radiation analysis, can be emulated
with radio signal propagation from 1 or more beacons.

We use a low-power IEEE 802.15.4 XBee radio, shown in Fig. 5, to broadcast
a beacon once per second at 2.4 GHz. Each robot also carries a XBee radio, as
shown in Fig. 1, and records radio signal-strength indication (RSSI) when it
successfully receives packets from the beacon while traversing the environment
in pursuit of the other data-collection tasks. The locations that these RSSI
measurements have received are also recorded.

Fig. 5 XBee ”beacon signal” transmitter with protective case

By aggregating the signal-strength measurements from multiple robots in
many locations across the environment, the operator can infer an estimate
of the beacon location from the maximum of the signal-strength field. This
task is complicated by the fact that radio-signal propagation is notoriously
challenging to model in complex urban environments due to the phenomena of
shadowing and multi-path. Furthermore, a high frequency beacon transmission
may make complete reconstruction of the signal-strength measurements at the
operating station impractical. We employ a segmentation-based approach for
modeling that allows each robot to maintain efficient models of the received
signal strength.32 This method relies on analyzing the obstacle costmap and it-
eratively creating regions that comprise a portion of the traversable area of the
obstacle costmap. Regions are characterized by a single position from which
all other points must be below a maximum distance and within line of sight;

11



each region must also be continuous. As the robot uncovers traversable areas
through exploration, regions may expand into these new areas. Otherwise, size
and line-of-sight constraints necessitate the creation of new regions.

It has been shown that these regions are a useful tool for grouping RSSI
measurements. RSSI measurements from the same region are likely to be better
correlated than measurements from other regions.32 We use this hypothesis to
justify averaging the RSSI measurements collected in a region together. The
resulting list of averaged RSSI with a corresponding region center is much
lower bandwidth, less noisy, and more succinct. These compressed models can
be transmitted to the operator and visualized to allow adaptive exploration of
the environment with the goal of accurately localizing the VIP beacon.

3.4 Wireless Communication

Robust wireless communication is an important capability for the multi-robot
experiments described in this report. While the primary role of wireless com-
munication is to support the transfer of information and commands to and
from the human operators during experiments, it also plays an important role
during development, enabling software updates and easy tuning of algorithmic
parameters. These 2 objectives lead to a desired system design that resembles
a realistic deployed network with sometimes severe limitations on the range of
communication but includes the capability to quickly deploy additional radios
- creating a rich infrastructure for the development paradigm.

We use embedded hardware equipped with off-the-shelf IEEE 802.11.g radios
operating in the 2.4-GHz frequency band to provide the necessary wireless
connectivity. Specifically, we use the Ubiquiti hardware listed in Table 1.

An advantage of the Ubiquiti embedded systems is that we can easily use
OpenWRT,37 an open-source Linux distribution focused on the network router
application we currently use version 14.07 (Barrier Breaker).

Each wireless radio is operated in AdHoc mode, i.e., no central access point
is defined or required for inter-node communication. End-to-end connectivity
is supported by the B.A.T.M.A.N. mesh routing protocol version 2014.2.0.38

B.A.T.M.A.N. is a Layer-2 routing protocol, meaning that it operates entirely
over raw ethernet frames and all nodes on the network appear to be linked
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Table 1 Embedded hardware for wireless communication

Ubiquiti Atheros MIPS CPU at 680 MHz,
RouterStation Pro33 4 Ethernet ports (10/100/1000),

128 MB RAM,
XR2 2.4 GHz 802.11b/g radio module
capable of 28 dBm transmit power34

Ubiquiti Atheros MIPS CPU at 680 MHz,
RouterStation35 4 Ethernet ports (10/100/1000),

128 MB RAM,
XR2 2.4 GHz 802.11b/g radio module
capable of 28 dBm transmit power34

Ubiquiti Atheros MIPS CPU at 180 MHz,
PicoStation2HP36 1 Ethernet Port (10/100),

32 MB RAM,
Embedded 2.4 GHz 802.11b/g radio
capable of 28 dBm transmit power

local. Layer-2 routing simplifies the network configuration of the clients using
the mesh and allows us to easily employ a high-reliability wired “backbone”,
which drastically improves the robustness of our wireless communication sys-
tem when deploying a development infrastructure.

Since the focus of these experiments was not on teaming or inter-robot com-
munication, we allocated each robotic platform with a unique frequency for
communication. For the experiments, a “base station” was located in an ad-
vantaged location, i.e., a tower approximately 20 m above the ground, and
equipped with 2 radios to support communication with each of the robots be-
ing deployed. The placement of the “base station,” environment complexity,
and the fact that each robot’s radio was placed very close to the ground, in-
duced a communication environment within our test facility, which clearly ex-
hibited regions of high-bandwidth reliable communication, intermittent unre-
liable communication, and no communication at all. While the B.A.T.M.A.N.
routing protocol supports multi-hop communication, we restricted all commu-
nication in this experiment to be over a single wireless link in order to simplify
the modeling of communication capabilities.
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3.5 Multi-Robot Capabilities

The focus of this work is not primarily multi-robot coordination insofar as
each robot independently pursues a series of data-collection tasks after being
tasking by a centralized planner or human operator. However, the robots do
operate in the same physical environment and though the centralized planning
will generally yield motions that keep each robot in disjoint regions of the
environment, some interagent knowledge and coordination may be necessary
for efficient navigation. This stems primarily from the fact that platforms such
as the PackBot are very low-profile and thus have small sensor signatures in
a 3D point cloud the primary source of traversability and obstacle detection
for navigation.

We address this problem by having each robot broadcast its current location
in a GPS-based reference frame to all clients in the network. This broadcast
is made up of a small UDP datagram and is sent at a low enough rate, e.g.
2 Hz, that it does not significantly impact the bandwidth available to other
services on the network. It should be noted that routing of UDP broadcast
packets is equivalent to a flooding algorithm when using the B.A.T.M.A.N.
mesh protocol. This makes for a very reliable form of communication the
recent positions of the robot were generally available to the mission opera-
tor even near the extent of the feasible communication range. Each robot’s
algorithms for autonomous navigation incorporate other agent’s positions by
inserting obstacles into the maps used for planning and trajectory generation
based on the broadcast data.

4. Behaviors Supporting Autonomy

In the previous section, we described the basic capabilities of our multi-robot
system. In this section, we describe how we build automata to sequence these
capabilities in order to provide higher-level autonomous actions and begin to
address the data-collection mission described in Section 2. While the behav-
iors described here are fairly simplistic, the underlying architecture allows for
complex collections of actions.

For the purposes of this work, all of our navigation behaviors build on the
canonical GotoRegion action in which the robot plans and drives to an arbi-
trary pose within a defined region of the environment. Our current implemen-
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tation requires each region to be defined as a disk with center and radius, but
can easily be extended to regions of arbitrary geometry. The design decision
to rely on region-based navigation is based on the observation that navigation
to a precise pose in the environment leads to brittle solutions and that many
data-collection problems can in fact be satisfied with large degrees of flexibility.
Take for example, the image collection problem there are many viewpoints
from which to obtain a suitable image of a target in R3. While the complexity
of solving this viewpoint problem is beyond the scope of this work, we believe
many future data-collection problems can be generalized to a desired region
in the environment.

At their core, the behaviors generated by sequencing basic capabilities are
meant to aid the operator in tasking the robot when it must go outside the area
of reliable communication. Thus, we begin by defining the GuardedNavigation
behavior to be one where a goal region and safe region are defined. If execution
of navigation to the goal fails, the robot navigates back to the safe region
where communication is known to be reliable and the operator can continue
to task the robot. Clearly, the GuardedNavigation behavior can be extended
to support sequences of goal regions such that a failure at any point in the
sequence results in pursuit of the safe region.

With the addition of a simple Collect action that causes the robot to record
and store an image, the operator can immediately begin to address the data-
collection mission from Section 2. By specifying a sequence of goal regions with
accompanying Collect actions, i.e., a goal region and a safe region, the operator
instructs the robot to visit a number of sites at which it will record high-
resolution images. When it completes visiting the sequence of goal regions or
deems a leg of the task to be infeasible, the robot returns to the safe region with
its known reliable communication and transmits the images to the operator.
For now, the operator selects safe regions based on previous locations from
which the robot has successfully transmitted data.
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5. Operator Interface

We rely on a simple GUI that enables a human operator to task 1 or more
robots. Our GUI is based on the RViz application that is included in ROS
for 3D rendering of sensor-data visualizations, tools for on-screen interactions,
and an extensible plugin architecture. In addition to software components
that allow for visualization of experiment-specific data, we developed tools
for creating and interacting with generic graph-embeddings on R2, which are
used to specify autonomous behaviors. It should be noted that our design
and implementation of an operator interface is driven by necessity in order
to evaluate our system in appropriately relevant scenarios rather than as an
example of best practices in terms of human-robot interaction. Indeed, the
design of an efficient interface that allows a single human operator to task
many autonomous systems is a research topic in its own right and beyond the
scope of this work.

5.1 Visualization of the System State

For this work, we used RViz to display a top-down orthographic view of satellite
imagery of our experimental facility, as seen in Fig. 6. Along the top bar of
the application, there are a collection of tools for interacting with the objects
in the main view area. Beside the main view are customized panels that allow
the human operators to task each robot.

Fig. 6 The RViz panel, which contains several different windows and buttons
for mission specification and verification
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While our factor-graph-based algorit hm for mapping does incorporate GPS 

measurements that fix the robot's reference frame relative to t he GPS refer­

ence frame, systematic bias in these measurements can lead to errors in t he 

alignment. Since the robots perform autonomous navigation in a local map­

based reference frame, t his alignment is important in order for the robot to 

reliably execute missions specified by a human operator based on a priori 

knowledge of the environment, e.g., satellite images. We have implemented a 

"GPS To Map Factor" t ool, which allows t he operator to manually align t he 

map generated by the robot with the satellite imagery and insert alignment as 

a precise measurement to t he underlying mapping system. In this way, a GPS 

to map reference frame alignment, which may require many measurements to 

accurately converge, can be bootst rapped in the beginning of an experiment . 

Fig. 7 shows a view where the satellite imagery is overlaid wit h an aligned oc­

cupancy grid produced by the 3D mapping techniques described in Section 3, 

along with the current posit ions of all robots in the system. 

Fig. 7 An example view of the satellite overlaid with an occupancy g r id 

5.2 Tasking the System 

We designed a generic set of tools for creating and editing a graph object, i.e., 

a collection of nodes and edges, that is embedded in t he metric space wit hin 

which the robots operate, as seen in the top bar of Fig. 6. We rely on a generic 

graph struct ure because it presents an int uitive representation for a variety 

of tasks including pat rol, exploration, and data-collection. For t he purposes 

of t his work, we focus on t he data-collect ion task and implicitly add edges 
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to create linear topologies along a sequence of nodes, which are defined by a
disk with a center position and radius. After the operator has annotated each
node as safe or goal, we can easily map a graph onto the behaviors described
in Section 4. Figure 8 depicts an example autonomous sensing task given to a
robot.

Fig. 8 An example of the user interface for a single data-collection task in a
trial. The map is overlaid on top of a satellite image with small pink disks
representing the predefined GPS mission nodes. The blue disks indicate that
the robot has measured poor received signal strength data thus far. The large
orange and green disks are the goal and safe nodes, respectively, as set by the
operator. Note, the red lines, white text, and yellow dotted lines have been
manually added for clarity.

After defining a graph in RViz, the system runs a verification to ensure that
there are 1 or more goal regions and only 1 safe region for each task. The
mission definition is then communicated to each robot where the resulting
state machine is executed. Since the execution takes place onboard, the robot
continues to run even if communication with the operator is lost or unreliable.
At completion of the task, the color of the panel indicates success or failure,
i.e., if the robot was forced to return to the safe region before visiting all of
the goal regions.

5.3 Visualization of the Exploited Data

Another aspect of the GUI was visualizing the information that the robots col-
lect during execution of their data-collection behaviors. The RSSI and images
comprised the data collected, as depicted in Fig. 9.
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(a) (b) 

Fig. 9 Examples of (a ) the average R SSI sampled in diffe rent areas traversed 
by the robot and (b) the images taken at the goal nodes 

The color of t he RSSI circles show t he average RSSI in an region generally 

wit hin 2 m of the marker. 32 When t he experiment starts it is possible that t he 

robots will be far enough away from t he signal source that it is not possible 

to detect the RSSI. As the robots t raverse the environment, they attempt to 

sample RSSI and assign samples to spat ial regions. As a result , RSSI markers 

for areas will not be created in t he GUI until several valid RSSI measurements 

are made for a given region in order to properly smoot h the highly variable 

signal st rength measurements. As RSSI is sampled closer to the signal source, 

the color of t he marker for that region changes from blue to cyan to yellow to 

red. 

When the robot enters a goal region, it captures a high-resolution image and 

stores it in a local cache. When the robot reaches t he safe region, it t ransmits 

all of these images back to the operator where t hey can be visualized. Camera 

icons are displayed in the GUI to represent t he pose from which each image 

was capt ured. The operator can then select each image in order to display t he 

view from t hat pose. 

6. Experimental Results 

We conducted a series of experimental trials using the 175 x 175 m environ­

ment pict ured in Fig. lOa to evaluate the capability of our system t o address 

missions defined according to t he problem statement in Section 2. 
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(a) (b) 

Fig. 10 A satellite overview of the experimental facility overlaid with (a) ex­
periment annotations (green: operating center, purple: elevated base station 
antenna, orange: mission-specified sites, red: VIP location for each trial, black 
arrow: starting location for all trials) and (b) the aggregated paths driven by 
robots over all trials 

Each experiment consisted of 1 or 2 robotic platforms and mission operators 

tasked with the mission of capturing an image at as many of the defined col­

lection sites as possible within the time limit of 20 min. Experiments were 

designed such that the visitation of some collection sites require traversal over 

a variety of terrain complexities and that robots must travel outside of commu­

nication to motivate the use of autonomy. While collecting images, each robot 

monitors the received signal strength from a radio beacon carried by a mock 

VIP that is hidden in a static location for the duration of an experimental 

trial. Localization of the VIP through received signal strength at the end of 

each 20-min experiment is an auxiliary intelligence-gathering task that further 

guides the exploration strategies employed by the mission operator. 

While we envision a multi-robot system capable of autonomous traversal of the 

complete mission with high degrees of reliability, i.e., suitable for tasking by an 

autonomous agent that dynamically optimizes vehicle routes, this is beyond 

the scope of state-of-the art algorithms when implemented in a realistic field 

environment. The use of a safety operator not constrained by unreliable com­

munication, i.e., following the robot through the environment who is able to 
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intermittently intervene and control the robot’s actions, drastically improves
our ability to collect information on the system performance across an entire
mission execution. As such, evaluation of the frequency and duration of these
interventions serves as a primary benchmark in terms of rating current au-
tonomous capability. Additionally, each mission operator was given a joystick
and allowed to intervene remotely from the base location; however, it should be
noted that the absence reliable communications often made this error-prone.

We report on the results of 9 experimental trials with respect to the number of
sites visited, the number of interventions, the distance traveled autonomously,
and the mock VIP localization accuracy in Tables 2 through 5. The trajecto-
ries traversed by both robots across all experiments are overlaid in Fig. 10b to
depict the breadth of experiments conducted. In most experimental trials, the
robots drove more than 90% of their total distance while autonomously execut-
ing GuardedNavigation-based sub-missions designed by the human operators
to gather high-resolution images and VIP signal strength data.

Table 2 The number of site visitations for each experimental trial

Trial PackBot Husky Total
3 2 2 4
4 9 4 13
5 1 8 9
7 4 3 7
8 7 8 15
9 7 10 17
10 7 8 15
11 5 7 12
12 11 6 17
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Table 3 Data comparing when an operator intervened and when the PackBot
operated autonomously

Trial Interventions Intervention Autonomous Total Percent of
(Mission/Safety) Distance (m) Distance (m) Distance (m) Mission

Autonomous
3 0/17 14.5 101.2 115.7 87.5%
4 7/13 51.6 386.4 438.0 84.1%
5 0/22 34.2 175.5 209.7 83.7%
7 4/1 162 9.9 171.9 5.8%
8 5/5 25.6 334.3 359.9 92.9%
9 1/7 26.1 403.1 429.2 93.9%
10 1/12 61.5 454.4 515.9 88.1%
11 4/19 48.1 446.3 494.4 90.3%
12 0/13 107.0 605.9 712.9 85.0%

Table 4 Data comparing when an operator intervened and when the Husky
operated autonomously

Trial Interventions Intervention Autonomous Total Percent of
(Mission/Safety) Distance (m) Distance (m) Distance (m) Mission

Autonomous
3 0/4 2.6 167.1 169.7 98.5%
4 1/6 21.9 336.4 358.3 93.9%
5 0/9 77.9 494.4 572.3 86.4%
7 0/1 0.5 169.9 170.4 99.7%
8 0/6 1.7 378.4 380.1 99.6%
9 0/16 15.2 371.4 386.6 96.1%
10 0/5 0.1 426.2 426.3 99.9%
11 0/0 0.0 342.7 342.7 100.0%
12 0/11 125.7 326.0 451.7 72.2%
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Table 5 Approximate error between the estimation made by the operators
and the actual location of the mock VIP beacon. Note, 0 m indicates that the
operators had an image with the VIP in the field of view and thus knew the
location exactly

Trial Localization Estimation
Error (m)

3 60
4 15
5 3
7 0
8 2
9 45
10 53
11 0
12 8

Appendix A contains a collection of figures that depict all of the experimental
results. For each trial, we show 1) the maps and RSSI visualization generated
by the PackBot and Husky, respectively, as seen by the mission operators at
the end of a single trial; 2) the trajectories of each robot with an overlay of
interpolated RSSI provided for data analysis; and 3) plots of the communi-
cations reliability and rate of collected images. The mission operators were
instructed to use the map and RSSI visualization during the experiment to
guide their execution of the site-visitation problem and the interpolated RSSI
plots demonstrate how these data can be leveraged to provide localization
information for the VIP’s radio beacon. In practice for this experiment, the
mission operators communicated with each other in order to coordinate their
search efforts across the facility.

One noteworthy test is trial 11, seen in Fig. A-8. In this trial, both robots
begin by heading east until they reach an intersection - at which point the
mission planners coordinate the PackBot to travel south and the Husky east-
ward. Then, after traveling several meters down the road without receiving
strong RSSI, both robots return to the common intersection. While traveling
to the intersection the mission operators share their maps with one another and
determine the only revealing RSSI measurement thus far is located near the
starting location. As a result, the PackBot is tasked to return to the starting
location while the Husky is sent north to map an uncharted area in the environ-
ment. During this process, both robots receive stronger RSSI measurements
in the northwest region of the environment. The PackBot mission operator
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tasks the robot to navigate through a building complex to reach the road that
the Husky is also investigating. Together, the mission operators converge on
an area that has very high RSSI and eventually locate the mock VIP’s radio
beacon exactly by collecting images with the mock VIP within the robot’s field
of view. This trial is particularly interesting because it requires the operators
to use the guarded navigation capabilities to autonomously collect data in re-
gions of dubious communications, as seen in Figs. A-8c and A-8d. Additionally,
this trial demonstrates the ability of the mission operators to combine their
current knowledge about the environment and cooperatively locate the mock
VIP within a predefined time limit.

A similar and equally interesting trial is number 12, shown in Fig. A-9. Again,
both robots begin by heading to the central intersection. The PackBot is tasked
to explore south and returns to the intersection when no informative RSSI is
obtained. Meanwhile, the Husky is sent north and receives the team’s first
revealing RSSI measurement. Using this piece of information, the PackBot
mission operator decides to task the robot to navigate to a road north of its
current location by travelling through a narrow alley in the complex. At this
point, both robots are operating autonomously as they are outside of commu-
nications range. While the Husky explores inside the complex, the PackBot
navigates down the north-most road and the 2 robots converge on an area
with strong RSSI readings. Eventually all communications are lost between
the base station and the Husky so no additional data are received from this
robot. Finally, the 20-min time limit expires and the mission operators are
required to mutually agree upon their estimation for the mock VIP beacon lo-
cation. Although incorrect, the operators’ assessment for the mock VIP beacon
location was within 10 m of the actual location. This trial, like the previous
example, illustrates the usefulness of the guarded navigation capability to al-
low for data collection in areas that would otherwise be unnavigable due to the
absence of communications. Likewise, this trial emphasizes how beneficial it is
to use more than 1 robot for solving the site-visitation and VIP-localization
problems, even when 1 of the robots is lost during the mission.
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7. Conclusions and Future Work

We have presented a series of field experiments that explore the capability
of a heterogeneous multi-robot system when applied to intelligence-gathering
tasks in a post-disaster scenario. Our results demonstrate autonomy-enabled
operation when communication reliability is not sufficient for teleoperation.
Furthermore, by allowing the operators to on-the-fly compose behaviors and
define sub-missions that respond to new conditions such as navigation failure,
we enable safe operation completely outside the range of reliable communica-
tion.

From Table 5 we conclude our system enabled mission operators to localize
a mock VIP beacon within 3 m of a static location in 4 of the 9 reported
trials. Furthermore, the mission operators localized the beacon exactly in 2 of
these trials by acquiring images with the VIP in view. It should be noted that
the mission operators were given 20 min for each trial and could presumably
decrease localization estimation error in cases of poor performance if given
additional time.

By comparing the communications reliability plots in Appendix A, we note
that, in general, the Husky experienced more reliable communications to the
base station than the PackBot. This improved communication is expected due
to the increased height of the Husky and, in turn, its antenna for wireless
communication, relative to the radio installed on the PackBot. Indeed, it is
well known that the so-called “ground effect” can drastically affect radio signal
performance when transmitters are placed to close to the ground. After several
trials, the mission operators noticed this difference in communication reliability
and adjusted their task allocation accordingly.

Similarly, from the image collection plots in Appendix A, we see that 2 distinct
methods for allocating goal waypoints arise. The mission operator commanding
the PackBot chose to assign several goal waypoints so that the robot would
transmit a larger number of images at each safe region. The mission operator
tasking the Husky, on the other hand, only assigned 1 or 2 goal waypoints for
each safe region, resulting in a more linear transmission of imagery data. The
latter technique can be considered a safer approach as fewer images will be
lost in the event the robot loses communications with the base station, but
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also requires more effort and oversight by the operator to task short missions
more frequently.

The results from the reported trials shed light on a number of improvements
that can be made to the existing system as well as avenues for future work. In
terms of the data collection process, images are taken at the boundary of the
waypoints assigned by the mission operator and are often not in the desired
direction for maximal information gain. This drawback is most apparent in
trials such as 4, seen in Fig. A-2b, where the Husky drives within 2 m of the
beacon location, but fails to capture imagery data containing the mock VIP.
As a direct result, the mission operators were unable to successfully localize the
beacon. We note that the system would benefit dramatically from additional
task-level information, specifically for the VIP localization mission - that is,
the waypoints assigned by the operator should incorporate an orientation in
addition to location information. This way the operator can investigate specific
areas of the environment by receiving very focused images. Along the same
lines, the robot could present the mission operator with even more information
if an omnidirectional camera were installed. An alternative to this solution
would be a specific procedure that the robot executes at each waypoint where
it rotates in place and takes a picture approximately every 45◦. An additional
drawback to the current data collection process is the downtime the operators
have while waiting for the robots to finish executing navigation tasks. To
alleviate this issue, we suggest that the robots attempt to transmit each image
as soon as it is taken rather than waiting until the safe regions are achieved. In
the event the robot is within communications range, the mission operator will
receive the image sooner and can be visually searching for the VIP or planning
the next iteration of exploration.

Data visualization was not a primary objective for this work and we hypoth-
esize that improved tools in this area would have a positive impact on the
mission operator’s decision-making process. First, we suggest providing the
mission operators with the ability to select each RSSI region and receive more
data. For example, each RSSI region could provide the maximum, minimum,
and average RSSI measurements for that region. These data would only be
displayed when the operator clicked on the RSSI region so as to not clutter
the visualization window. Additionally, the system should build some visual-
ization involving the interpolation of RSSI data, as seen in Figs. A-1c - A-9c,
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on-the-fly so the mission operator can more efficiently localize the VIP bea-
con. A similar communications visualization could also be developed to show
the quality of communications using the measured latency when transmitting
data between the robot and base station. Throughout the navigation process,
it was often unclear what the order of waypoints the robot would attempt to
achieve and, in the current configuration, the mission operator was required
to remember the order of placement if they wanted to reuse these nodes for
the next task. By displaying some visualization such as numbers or arrows
connecting the nodes, the mission operator would have a much more clear
understanding of what the robot was attempting to accomplish. In some cir-
cumstances the robot’s map would become corrupted due to error in a sensor
measurement. Some visualization tool that allowed the mission operator the
ability to correct a map by removing or adjusting sensor measurements could
be the difference between a successful and unsuccessful mission. Finally, a tool
we believe could help improve communications between the robot and base
station is a diagnostic visualization that shows statistics on each piece of data
that is transmitted. With this tool the mission operator would know exactly
how much bandwidth each piece of information requires in order to be received
and then make more informed decisions when tasking the robot with collect-
ing data. For example, if the operator recognizes that images require a large
percentage of the available bandwidth and the robot is in a communications-
limited area, the mission operator may task the robot with fewer waypoints so
fewer images are transmitted. Similarly, the mission operator may decide the
robot should refrain from transmitting some specific data to free up bandwidth
for transferring some other, more important, piece of information.

It should be noted that there is a subtle increase in the reliability of our
system afforded by the operator’s ability to incorporate a priori knowledge,
e.g., the road network, and intuitive uncertainty management to specify region-
based navigation as seen in Fig. 8. Encoding the intelligence that goes into
incorporating this a priori knowledge will be key to the application of future
autonomous planners that schedule the collection mission specifications for
multiple robots operating in challenging environments.

In the end, the series of experiments presented here offer a wealth of insight
into how a multi-robot system operating with state-of-the art algorithms for
autonomous perception, navigation, and intelligence, but subject to environ-
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mental uncertainty and communication constraints, can be used to address
data gathering missions in the wake of a natural disaster. We see this work as
a starting point for 2 distinct lines of inquiry. First, the performance of system
acts as a benchmark for the capability of our multi-robot system in conjunc-
tion with human operators - we expect that as the reliability and performance
of our underlying component systems increases, so will our performance on the
overall site-visitation and beacon-localization tasks. Second, the experimental
results captured in this work provide data that can be used to model the re-
liability, performance, and efficiency of our current multi-robot autonomous
behaviors. These models will enable future intelligent task allocation algo-
rithms to find robust solutions to a wide range of site-visitation problems that
take into account realistic field-environment conditions. Ultimately, the exper-
iments presented here lay the ground work for future systems that allow a
minimal set of human operators to intelligently task large numbers of robotic
platforms for intelligence-gathering tasks in disaster-relief scenarios.
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Appendix A. Trial Results
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This section contains experimental results for each of the reported trials. In
each trial, we present 1) the visualization as seen by each of the mission oper-
ators; 2) the corresponding RSSI data processed for additional analysis; and
3) plots indicating the measured communications reliability and rate of im-
ages collected for each robot. Note the blue lines in (c) and (d) of each trial
correspond to the PackBot and the red lines correspond to the Husky.
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F ig . A-1 Exper im ental trial 3. (a ) and (b) dep ict the operators' maps that were 
built by the PackBot and H usky, respectively. (c) depicts the trajectories driven 
by each robot with interpolated received signal stren gth data overlayed. I n this 
colormap, red indicates stronger s ignal strength. (d ) depicts the communications 
re liabilit y and rate of collected images throughout the exp e r im ent 
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Fig . A-2 Experimental trial4. (a ) and (b) depict the operators' maps t hat were 
built by the P ackBot and Husky, respectively. (c) depicts the trajectories driven 
by each robot with interpolated received signal stren gth data overlayed. In this 
colormap, red indicates stronger s ignal strength. (d ) depicts the communications 
re liability and rate of collected images throughout the exp eriment 
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F ig . A -3 Exper imental trial 5. (a ) and (b) dep ict the operators' maps t hat were 
built by the P ackBot and H usky, respectively. (c) depicts the trajectories driven 
by each robot with interpolated received signal stren gth data overlayed. I n this 
colormap, red indicates stronger s ignal strength. (d ) depicts the communications 
re liabilit y and rate of collected images t h rough ou t the experiment. Not e, in this 
exp eriment, the s ign a l source from the mock VIP is accu rate ly localized 
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F ig . A -4 Exper imental trial 7. (a) and (b) dep ict the operators' maps t hat were 
built by the PackBot and H usky, respectively. (c) depicts the trajectories driven 
by each robot with interpolated received signal stren gth data overlayed. I n this 
colormap, red indicates stronger s ignal strength. (d ) depicts the communications 
re liability and rate of collected images throughout the experiment. Not e, in this 
experiment, the s ignal source from the mock VIP is accurate ly localized 
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Fig . A-5 Experimental trial 8. (a ) and (b) depict the operators' maps t hat were 
built by the P ackBot and Husky, respectively. (c) depicts the trajectories driven 
by each robot with interpolated received signal stren gth data overlayed. In this 
colormap, red indicates stronger s ignal strength. (d ) depicts the communications 
re liability and rate of collected images through out t h e experiment. Not e, in this 
exp eriment, the s ign a l source from the mock VIP is accurate ly localized 
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F ig . A -6 Exper im ental trial 9. (a ) and (b) dep ict the operators' maps t hat were 
built by the P ackBot and H usky, respectively. (c) depicts the trajectories driven 
by each robot with interpolated received signal stren gth data overlayed. I n this 
colormap, red indicates stronger s ignal strength. (d ) depicts the communications 
re liabilit y and rate of collected images throughout the exp e r im ent 
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F ig . A -7 Experimenta l t r ia llO. (a ) and (b ) d ep ict the op erators' m ap s that were 
b uilt by the P ackBot and H usky, respectively. (c) depict s the traject ories driven 
by ea ch robot with inter polated r eceived signal stren gth d a t a over layed . I n this 
colormap, red indicates stronger s ign a l strength. (d ) depict s the communication s 
re liabilit y and rate of collect ed im ages throu gh out the exp e r im ent 
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Fig . A-8 E xp erimenta l t r ia lll. (a ) and (b) d epict the op erators' m ap s that were 
b uilt by the P ackBot and Husky, respectively. (c) depict s the traject ories driven 
by ea ch robot with interpolated r eceived signal stren gth d a t a overlayed . In this 
colormap , red indicates stronger s ign a l strength. (d ) depict s the communication s 
re liability a nd r a t e of collected images through out t h e experiment. Not e, in this 
exp eriment, the s ign a l sou rce from the mock VIP is a ccura t e ly localized 
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F ig . A -9 Experimental trial12. (a ) and (b ) depict the operators' maps that were 
built by the P ackBot and H usky, respectively. (c) depicts the trajectories driven 
by each robot with interpolated received signal stren gth data overlayed. I n this 
colormap, red indicates stronger s ignal strength. (d ) depicts the communications 
re liabilit y and rate of collected images t h rough out the experiment. Not e, in this 
experiment, the s ign a l source from the mock VIP is accurate ly localized 
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