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Two approaches are commonly used for handling fric-
tional contact within the framework of the Discrete Ele-
ment Method (DEM). One relies on the Complementarity
Method (CM) to enforce a non-penetration condition and
the Coulomb dry-friction model at the interface between two
bodies in mutual contact. The second approach, called the
Penalty Method (PM), invokes an elasticity argument to pro-
duce a frictional contact force that factors in the local de-
formation and relative motion of the bodies in contact. We
give a brief presentation of a DEM-PM contact model that
includes multi-time-step tangential contact displacement his-
tory. We show that its implementation in an open source sim-
ulation capability called Chrono is capable of accurately
reproducing results from physical tests typical of the field of
geomechanics; i.e., a direct shear tests on a mono-disperse
material. Keeping track of the tangential contact displace-
ment history emerges as a key element of the model. We
show that identical simulations using contact models that in-
clude either no tangential contact displacement history or
only single-time-step tangential contact displacement history
are unable to accurately model the direct shear test.

1 The Discrete Element Method
Two alternative approaches have emerged as viable so-

lutions for large frictional contact problems in granular flow
dynamics and quasi-static geomechanics applications. The
so-called Complementarity Method (CM) is generally fa-
vored within the multibody dynamics community, see for in-
stance [1]. In this approach, individual particles in a bulk
granular material are modeled as rigid bodies, and non-
penetration conditions are written as complementarity equa-
tions which, in conjunction with a Coulomb friction law, lead
to a Differential Variational Inequality (DVI) form of the
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Newton-Euler equations of motion [2]. Not limited by sta-
bility considerations, DEM-CM allows for much larger time
integration steps than the alternative Penalty Method-based
(PM) solutions, since the latter involve large contact stiff-
nesses that impose strict stability conditions on all explicit
time integration algorithms. However, DEM-CM involves a
relatively complex and computationally costly solution se-
quence per time step, since it leads to a mathematical pro-
gram with complementarity and equality constraints, which
must be relaxed to obtain tractable linear complementarity or
cone complementarity problems [3].

More mature and widely adopted within the geomechan-
ics community [4], DEM-PM can be viewed either as a reg-
ularization (or smoothing) approach, which relies on a relax-
ation of the rigid-body assumption, or as a deformable-body
approach localized to the points of contact between individ-
ual particles in a bulk granular material [5, 6]. In this ap-
proach, normal and tangential contact forces are calculated
using various laws [7, 8], which are based on the local body
deformation at the point of contact. In the contact-normal
direction, this local body deformation is defined as the pen-
etration (overlap) of the two quasi-rigid bodies. In the tan-
gential direction, the deformation is defined as the total tan-
gential displacement incurred since the initiation of contact.
Once contact forces are known, the time evolution of each
body in the system is obtained by integrating the Newton-
Euler equations of motion. Since in this approach the con-
tact force-displacement law is derived from the elastic prop-
erties of the materials constituting the contacting bodies; i.e.,
Young’s modulus and Poisson’s ratio, the DEM-PM is capa-
ble of resolving statically indeterminate loading conditions
that can exist at the particle level in random granular pack-
ings [9–11]. However, due to large contact stiffnesses and
the use of explicit time integration [12], the DEM-PM ap-
proach is limited to very small time integration step-sizes to
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ensure stability.

2 The Penalty Method or Soft-Body Approach
A granular or particulate medium problem is modeled

in DEM using a massive collection of distinct rigid or de-
formable elements having simple shapes that in many cases
are spheres. In the DEM-PM or soft-body approach, the el-
ements are “soft” – they are allowed to “overlap” or experi-
ence local deformation before a corrective contact force is
applied at the point of contact. Once such an overlap δn
is detected, by any one of a number of contact algorithms,
contact force vectors Fn and Ft normal and tangential to the
contact plane at the point of contact are calculated using var-
ious constitutive laws [7, 8] based on the local body defor-
mation at the point of contact. In the contact-normal direc-
tion, n, this local body deformation is defined as the penetra-
tion (overlap) of the two quasi-rigid bodies, un = δnn. In the
contact-tangential direction, the deformation is defined as the
total tangential displacement incurred since the initiation of
contact, which is approximated as a vector ut in the contact
plane.

An example of a DEM-PM contact constitutive law, a
slightly modified form of which is used in the open-source
codes Chrono [13] and LIGGGHTS [14], is the following
viscoelastic model based on either Hookean or Hertzian con-
tact theory:

Fn = f (R̄,δn)(knun− γnm̄vn)

Ft = f (R̄,δn)(−ktut − γtm̄vt) ,
(1)

where u = un + ut is the overlap or local contact displace-
ment of two interacting bodies, see Fig. 1. The quantities
m̄ = mim j/(mi +m j) and R̄ = RiR j/(Ri +R j) represent the
effective mass and effective radius of curvature, respectively,
for contacting bodies with masses mi and m j and contact
radii of curvature Ri and R j. The relative velocity at the con-
tact point, v = vn +vt , and its normal and tangential compo-
nents vn and vt are computed as

v = v j +Ω j× r j−vi−Ωi× ri

vn = (n ·v)n
vt = v−vn ,

(2)

where vi and v j are the velocity vectors of the centers of
mass of bodies i and j, Ωi and Ω j are the angular velocity
vectors of bodies i and j, and ri and r j are the position vec-
tors from the centers of mass of bodies i and j to the point of
contact. For Hookean contact, f (R̄,δn) = 1 in Eqn. (1); for
Hertzian contact, one can let f (R̄,δn) =

√
R̄δn [15, 16]. The

normal and tangential stiffness and damping coefficients kn,
kt , γn, and γt are obtained, through various constitutive laws
derived from contact mechanics, from physically measurable
properties for the materials of the contacting bodies, such as
Young’s modulus, Poisson’s ratio, the coefficient of restitu-

tion, etc. Detailed descriptions of the contact models imple-
mented in Chrono and LIGGGHTS, as well as alternative
contact models are provided in [17].

The component of the overlap or contact displacement
vector u in the contact-normal direction, un = δnn, is ob-
tained directly from the contact detection algorithm, which
provides the magnitude of the “inter-penetration” δn. It fol-
lows that un is parallel to the normal component of the rel-
ative velocity vector vn at the point of contact. However, it
is important to note that, in general, the same is not true of
the tangential component of the overlap vector, or tangential
contact displacement, ut and the tangential component of the
relative velocity vector vt . Specifically, they must lie in the
contact plane, but may or may not be parallel to each other.
In particular, even if there is no relative tangential velocity at
the contact point, there may still be a tangential contact force
induced by deformation in the tangential plane, and this force
may be needed to support static friction.

Herein, the tangential contact displacement vector ut is
formulated as

ut =
∫ t

t0
vtdt−

(
n ·

∫ t

t0
vt dt

)
n , (3)

where t is the current time and t0 is the time at the initiation
of contact. For the true tangential contact displacement his-
tory model, the vector ut must be stored and updated at each
time step for each contact point on a given pair of contacting
bodies from the time that contact is initiated until that con-
tact is broken. The tangential (or shear) contact displacement
history vector is then given at time step i by

u∗t,i = ut,i−1 +vt,i ∆ti
ut,i = u∗t,i−

(
ni ·u∗t,i

)
ni ,

(4)

where ∆ti is the integration time step size, ti = ti−1 +∆ti, and
a subscript indicates the time step at which each variable is
evaluated. The projection of u∗t onto the contact plane is nec-
essary to ensure that ut is in the contact plane at each time
step. Note that ut,k−1 is set to zero at the initiation of contact,
for some k.

A simpler but less effective tangential contact displace-
ment model suggested in the literature is a single time step
approximation of Eqn. (4), given for any time step by

ut = vt ∆t . (5)

This model, which we will call pseudo-history, essentially
assumes that contact never persists for more than a single
time step, and it is unable to support a static friction force in
the absence of relative tangential velocity.

To enforce the Coulomb friction law, if |Ft | > µ|Fn| at
any given time step, then before the contributions of the con-
tact forces are added to the resultant force and torque on the
body, the (stored) value of |ut | is scaled so that |Ft |= µ|Fn|,
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Fig. 1. DEM-PM contact model described in this section, with nor-
mal overlap distance δn, contact-normal unit vector n, and tan-
gential displacement vector ut in the plane of contact (top), and
with a Hookean-linear contact force-displacement law with constant
Coulomb sliding friction (bottom).

where µ is the Coulomb (static and sliding) friction coeffi-
cient. For example, if f (x) = 1 in Eqn. (1), then

kt |ut |> µ|Fn| ⇒ ut ← ut
µ|Fn|
kt |ut |

. (6)

Figure 1 illustrates the DEM-PM contact model de-
scribed in this section with a Hookean-linear contact force-
displacement law with constant Coulomb sliding friction.
Once the contact forces Fn and Ft are computed for each
contact and their contributions are summed to obtain a resul-
tant force and torque on each body in the system, the time
evolution of each body in the system is obtained by inte-
grating the Newton-Euler equations of motion, subject to the
Courant-Friedrichs-Lewy (CFL) stability condition, which
requires [18] that ∆t < ∆tcrit ∼

√
mmin/kmax.

3 The Importance of Multi-Step Tangential Contact
Displacement History
To demonstrate the importance of using tangential dis-

placement history in the DEM-PM contact model, we
first perform direct shear simulations of small randomly
packed specimens of 1,800 and 5,000 identical spheres in
Chrono [13] and LIGGGHTS [14]. The inside dimensions
of the shear box are 6 cm in length by 6 cm in width, and
the height of the granular material specimen is also approxi-
mately 6 cm. The spheres have a uniform diameter of 5 mm.
The random packing of 1,800 spheres was initially obtained
by a “rainfall” method, after which the spheres were com-
pacted with friction temporarily turned off to obtain a dense
packing. The resulting void ratio was approximately e = 0.4,
which corresponds to a dense packing [19,20]. For this com-
parison, the material properties for spheres were taken to be
those corresponding to quartz – the density is 2,500 kg/m3,

Fig. 2. Direct shear simulation setup (top) and shear versus
displacement results (bottom) obtained by Chrono [13] and
LIGGGHTS [14] for 1,800 randomly packed uniform spheres
using the true tangential contact displacement history model of
Eqn. (4), the pseudo-history model of Eqn. (5), and no tangential
contact history.

the inter-particle friction coefficient is µ = 0.5, Poisson’s ra-
tio is ν = 0.3, and the elastic modulus is E = 8(1010) Pa.
However, in order to ensure a stable simulation with a rea-
sonable time integration step-size of ∆t = 10−5 s, the elas-
tic modulus was reduced by four orders of magnitude to
E = 8(106) Pa. The shear speed was 1 mm/s. The simu-
lation geometry in its final position is shown in Fig. 2 (top).
Figure 2 (bottom) shows the shear-displacement curves ob-
tained by Chrono and LIGGGHTS with the same normal
and tangential contact force-displacement models. The la-
bels “True History” and “No History” refer to whether or not
tangential contact history is stored and used in the friction
model. Included in this comparison is the “Pseudo-History”
scenario, in which the tangential contact displacement vec-
tor is approximated by the product of the relative tangential
velocity vector at the contact point and the time step-size at
any given time. This pseudo-history approach is attractive,
since unlike the “True History” alternative, it avoids the stor-
age of a tangential contact history vector over multiple time
steps for each contact point. However, Fig. 2 shows that the
pseudo-history approximation is no better than ignoring tan-
gential displacement history altogether for the quasi-static
direct shear test. This is explained by the observation that
under quasi-static (or static) deformation conditions, the de-
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pendence of the pseudo-history approximation on the rela-
tive inter-particle tangential velocity, which is zero, effec-
tively eliminates the inter-particle tangential contact force
and so renders the inter-particle friction coefficient µ effec-
tively zero.

Also noteworthy in Fig. 2 is the fact that the inter-
particle friction coefficient µ for the spheres, which could
also be described as a micro-scale “inter-particle friction
angle” φµ = tan−1 µ, is nowhere close to having the same
value as the macro-scale “material friction coefficient” µmacro
for the bulk granular material. The latter, more commonly
described as a bulk granular material friction angle φ =
tan−1 µmacro, is the material parameter that defines the yield
surface for the bulk granular material according to the Mohr-
Coulomb yield criterion. The material friction angle φ is
also known as the angle of repose for the bulk granular ma-
terial. Nor should it be surprising that φ 6= φµ, since, as
noted in [21], even if the inter-particle friction coefficient
µ, and hence the micro-scale friction angle φµ, is zero, the
bulk granular material friction angle φ will in general not be
zero. Rather, if µ = 0, then φ = ψ, where ψ is the dilation an-
gle of the granular material. Note that typically, ψ ≈ 15◦

for densely packed well-graded sands [22]. In particular,
we note from Fig. 2 that, when the tangential contact dis-
placement history model is used, while µ = 0.5 and hence
φµ ≈ 26.6◦ for the spheres, the peak ratio of shear stress to
normal stress for the bulk granular material is µmacro ≈ 2, and
hence φp ≈ 63◦; and the residual ratio of shear stress to nor-
mal stress for the bulk granular material is µmacro ≈ 1, and
hence φr ≈ 45◦. On the other hand, when the tangential con-
tact displacement history model is not used, µmacro ≈ 0.25
throughout the simulation, and hence φp = φr = φ ≈ 14◦.
Note that all of these results are obtained in the absence of
any rolling or spinning friction.

To emphasize the importance of using multi-step tan-
gential contact displacement history, it should be pointed out
that other factors involved in the model, such as the values
of kn, kt , γn, and γt , turned out to play a secondary role in
the outcome of the simulation. In fact, a significant degree
of variation exists in the literature for the exact values of the
contact stiffness coefficients kn and kt [17]. The same is true
for the mass proportional damping coefficients γn and γt . The
latter are frequently simply chosen sufficiently large to elim-
inate numerical noise in the DEM-PM simulations. For ex-
ample, the results of DEM-PM simulations of direct (ring)
shear tests with periodic boundary conditions on ASTM C
778-06 standard graded (quartz) sand with a log-normal par-
ticle size distribution, mean diameter D50 = 0.35 mm, and
coefficient of uniformity Cu = 1.7 were considered in [23].
In these simulations, which employed the multi-step tangen-
tial contact displacement history model described herein, the
damping coefficients in Eqn. (1) were taken to be γn = 40 s−1

and γt = 20 s−1, and the contact stiffnesses kn and kt were
taken to be constant, with kn = 1012 N/m and kt = 8(1011)
N/m. Despite these simplifications, and the fact that the sim-
ulations performed included no rolling friction and the sand
particles were modeled as spheres of different sizes, the cor-
rect macro-scale residual bulk granular material friction an-

gle of φr = 30◦ [24] was reproduced exactly. The only other
material parameter that needed to be specified, in addition
to the particle size distribution, was the inter-particle fric-
tion coefficient µ = 0.5, which is considered by Mitchell and
Soga [20] to be “reasonable for quartz, both wet and dry.”
Note that the values of the peak and residual friction angles
are strongly dependent on the particle size distribution [25],
which is why the residual friction angle for uniform quartz
spheres cannot be expected to be the same as that of quartz
spheres (or well-rounded quartz sand) with a log-normal par-
ticle size distribution.

4 Validation Against Direct Shear Experiments With
Uniform Glass Beads
Whereas the previous section demonstrated the differ-

ence in results between the “True History” and “No His-
tory” scenarios, herein we compare the “True History”
shear-displacement curves against experimental data re-
ported in [26]. Specifically, to verify that the Chrono
DEM-PM contact model with true tangential displacement
history currently does indeed accurately model the micro-
scale physics and emergent macro-scale properties of a sim-
ple granular material, Fig. 3 shows shear versus displace-
ment curves obtained from both experimental [26] (top) and
Chrono–simulated (center and bottom) direct shear tests,
performed under constant normal stresses of 3.1, 6.4, 12.5,
and 24.2 kPa, on 5,000 uniform glass beads. The simulation
geometry in its final position is similar to that shown in Fig. 2
(top), except that the inside dimensions of the shear box are
now 12 cm in length by 12 cm in width. The height of the
granular material specimen in the box is still approximately
6 cm. In both the experimental and simulated direct shear
tests, the glass spheres have a uniform diameter of 6 mm,
and the random packing of 5,000 spheres was initially ob-
tained by a “rainfall” method, after which the spheres were
compacted by the confining normal stress without adjusting
the inter-particle friction coefficient. The DEM-PM simu-
lations were performed in Chrono using a Hertzian normal
contact force model and true tangential contact displacement
history with Coulomb friction. The material properties of the
spheres in the simulations were taken to be those correspond-
ing to glass [26], for which the density is 2,550 kg/m3, the
inter-particle friction coefficient is µ = 0.18, Poisson’s ratio
is ν= 0.22, and the elastic modulus is E = 4(1010) Pa, except
that the elastic modulus was again reduced by several orders
of magnitude, to E = 4(106) Pa (center) and E = 4(107) Pa
(bottom) for comparison, to ensure a stable simulation with
a reasonable time integration step-size of ∆t = 10−5 s. The
shear speed was 1 mm/s.

Figure 3 (center) shows that the DEM-PM direct shear
simulations performed in Chrono on 5,000 glass spheres
with E = 4(106) Pa matches reasonably well the physical
experiments for all but the highest normal stress of 24.2 kPa.
This observed error in the simulation results, which increases
with increasing normal stress, is consistent with the fact that
the contact stiffness for the spheres in these DEM-PM simu-
lations is four orders of magnitude smaller than the stiffness
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Fig. 3. Direct shear test results for 5,000 randomly packed uniform
glass beads obtained by experiment [26] (top) and DEM-PM simu-
lations using Chrono (center and bottom), under constant normal
stresses of 3.1, 6.4, 12.5, and 24.2 kPa. For the DEM-PM simula-
tions, elastic moduli of E = 4(106) Pa (center) and E = 4(107) Pa
(bottom) are used.

of true glass beads. To explore the effect that the value of the
elastic modulus has on the DEM-PM direct shear results, we
have also performed DEM-PM simulations using an elastic
modulus of E = 4(107) Pa for the spheres, which is still three
orders of magnitude smaller than the true elastic modulus
of glass beads. Figure 3 (bottom) shows that increasing the
value of the elastic modulus of the spheres in the direct shear
simulations by an order of magnitude to E = 4(107) Pa; i.e.,
using a contact stiffness for the spheres that is three rather
than four orders of magnitude smaller than the physically

correct contact stiffness, results in a peak and residual shear
stress that is much closer to the experimentally observed val-
ues for all four of the constant normal stresses tested. This
is a significant observation, since it has often been argued in
the DEM-PM literature that decreasing the value of the elas-
tic modulus to allow a larger stable time step-size should only
affect the elastic portion of the shear displacement curve for
the bulk granular material. A comparison of Figs. 3 (center)
and 3 (bottom), however, while confirming this difference in
the elastic portion of the shear-displacement curve, also re-
veals a significant difference in the plastic or post-yield por-
tion of the shear-displacement curve for the direct shear test,
in particular the peak and residual shear stresses, and the cor-
responding peak and residual friction angles, for all four of
the constant normal stresses tested.

5 Conclusions
In relation to using computer simulation to capture the

dynamics of granular material, this technical note makes the
following two points. First and foremost, contrary to com-
mon perception, eliminating the tangential contact history
in DEM-PM yields wrong results in a shear test that, while
basic and deceptively simple, remains difficult to simulate.
Moreover, a quasi-history approach that only relies on the
tangential deformation at the current time step produces in-
accurate results. Second, a comparison against experimental
data suggests that the simulation results are only moderately
impacted by the values selected for the DEM-PM model pa-
rameters, of which the normal stiffness kn turns out to quan-
titatively influence the most the outcome of the numerical
experiments. Specifically, over a broad spectrum of values
for kt , γn, and γt , the simulation results are qualitatively ac-
ceptable for artificially low values of kn, a compromise made
in order to allow stable numerical integration at larger sim-
ulation time steps. However, more accurate results call for
higher values of kn that come close to the theory predicted
values for this parameter.
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