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1. Introduction

By standard definition, a ceramic crystal is an inorganic, non-metallic, ordered solid. Electronic structures of ceramics fea-
ture ionic and/or covalent bonds rather than metallic bonds found in ductile metals. The nature of inter-atomic forces in
ceramics often correlates with a high Peierls barrier (Peierls, 1940; Nabarro, 1947; Friedel, 1964), inhibiting dislocation mo-
tion at low temperatures and leading to brittleness, i.e., a tendency towards fracture over slip.

Anisotropic and non-cubic crystals are of particular interest in the present work. In certain hexagonal ceramics such as
silicon carbide (Zhang et al., 2005), basal slip is often the preferred inelastic deformation mechanism, with slip resistances
extremely high in directions normal to the basal plane. This phenomenon occurs similarly in many hexagonal metals, includ-
ing certain alloys of zirconium (Tomé et al., 1991a; McCabe et al., 2009), titanium (Schoenfeld and Kad, 2002; Mayeur and
McDowell, 2007), and magnesium (Staroselsky and Anand, 2003; Neil and Agnew, 2009), though in some cases pyramidal
slip modes are possible. Deformation twinning, as opposed to slip, is often the only viable mechanism for accommodating
deformation normal to the basal plane, in lieu of fracture. Twinning is often favored over slip in cubic metals with low stack-
ing fault energies (Christian and Mahajan, 1995; Kalidindi, 1998, 2001); twinning may also influence shear band formation in
cubic metals (Paul et al., 2009). In addition to silicon carbide, other low-symmetry ceramics of interest for high rate appli-
cations, because of their hardness and dynamic compressive strength, include titanium diboride (Bourne and Gray, 2002)
and alumina (Bourne, 2006; Bourne et al., 2007).

At low temperatures and pressures, the stable phase of single crystalline alumina (Al2O3) is a-corundum. Although other
phases exist (Holm et al., 1999), henceforth the term corundum will refer only to the a phase. The Bravais lattice is
r Ltd.

al fo Plasticity in honor of 2008 Khan medal recipient D.L. McDowell.
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rhombohedral (i.e., trigonal), though the unit cell is often described via hexagonal notation (Kronberg, 1957; Snow and Heu-
er, 1973). Corundum is centrosymmetric and hence not piezoelectric. Corundum that is red in color, for example resulting
from chromium doping, is commonly called ruby (Chang, 1960; Klassen-Neklyudova et al., 1970; Inkson, 2000). Corundum of
all other colors is often referred to as sapphire, with blue sapphire containing trace amounts of cobalt, titanium, or iron, for
example. Corundum is extremely hard, with a value of 9 on Mohr’s scale, and exhibits a very high Hugoniot Elastic Limit
(HEL, the usual measure of dynamic yield strength under uniaxial strain conditions, at high pressure), with values in excess
of 20 GPa for single crystals of certain orientations (Graham and Brooks, 1971). Single crystals of adequate purity are trans-
parent, with uses in optics and electronics. However, the HEL and toughness of commercial grade, polycrystalline alumina
are lower than that of single crystalline corundum, often thought a result of porosity and amorphous phases in the vicinity of
grain boundaries (Bourne et al., 2007). Industrial-grade polycrystalline alumina manufactured by sintering is generally not
transparent.

The present study focuses on mechanisms of elasticity, plastic slip, and deformation twinning. Each mechanism is ad-
dressed independently via an individual term within a three-term multiplicative decomposition of the deformation gradient
(Kratochvil, 1972; Clayton et al., 2005). According to this representation, plastic deformation is deemed lattice-preserving
(i.e., dislocation glide does not affect the lattice vectors or stored elastic energy of crystal), following Bilby et al. (1957),
who introduced a two-term multiplicative decomposition for describing elasticity and plasticity of crystalline solids sub-
jected to large deformations. In contrast, twinning is modeled here distinctly from dislocation plasticity via the use of an iso-
choric intermediate term in the deformation gradient decomposition, following Kratochvil (1972), Clayton et al. (2005), who
used intermediate terms within three-term decompositions to account for irreversible deformations that are not lattice-pre-
serving. Microscopic strain fields associated with defects in the lattice may also contribute to the intermediate deformation
mapping. Here, isotropic contributions of the local fields follow from multiscale volume averaging and nonlinear elastic anal-
ysis of self-equilibrated bodies with defects (Seeger and Haasen, 1958; Toupin and Rivlin, 1960; Teodosiu, 1982; Wright,
1982; Clayton and Bammann, 2009). Following the theory of continuum crystal plasticity (Hutchinson, 1976; Teodosiu
and Sidoroff, 1976; Asaro, 1983), plastic deformation takes place via slip on one or more discrete systems. Twinning takes
place via energy invariant shears of predefined magnitude, with the rate of shearing determined by the rate of increase in
volume fraction of the twin relative to the parent (Chin et al., 1969; Van Houtte, 1978; Staroselsky and Anand, 2003). Ther-
modynamically reversible deformation of the lattice is addressed via the elastic term in the decomposition, encompassing
recoverable deformation associated with mechanical stress and stress-free thermal expansion/contraction. Multiscale aver-
aging concepts are invoked to describe effects of twinning on the thermoelastic response, leading to effective anisotropic
elastic coefficients and dissipation rates that evolve in conjunction with the volume fractions of twins in an element of fixed
mass in the crystal.

A constitutive framework based on internal state variable theory provides thermodynamic relationships among indepen-
dent and dependent state variables as well as appropriate driving forces for evolution of internal variables and rates of
inelastic deformations. Here, the former consist of dislocation and twin boundary densities, and the latter include rates of
slip and of twinned volumes. Dislocation densities consist of geometrically necessary dislocations associated with slip gra-
dients (Nye, 1953; Ashby, 1970; Fleck et al., 1994; Arsenlis and Parks, 1999; Rezvanian et al., 2007) and statistically stored
dislocations associated with homogeneous plastic flow and dislocation loops (Ashby, 1970; Arsenlis and Parks, 1999; Rez-
vanian et al., 2007). Interface partial dislocations at propagating twin boundaries (Scott and Orr, 1983) are demonstrated
to also contribute to the geometrically necessary dislocation density tensor, following kinematic arguments regarding inelas-
tic deformation incompatibility in plastically deformed single crystals (Clayton et al., 2004a,b). Thermodynamic restrictions
on kinetic relations follow naturally from energy conservation requirements and the entropy inequality (Eckart, 1948; Cole-
man and Gurtin, 1967; Teodosiu, 1970; McDowell, 2005). Defects in corundum are known to contribute to lattice curvature
(Nye, 1953) and work hardening (Klassen-Neklyudova et al., 1970; Pletka et al., 1977, 1982).

The theoretical model formalized here can be used to represent corundum single crystals within an aggregate of polycrys-
talline alumina, for example in mesoscale numerical simulations (Bourne, 2006) of grain interactions, stress wave propaga-
tion, and defects. Additionally, the model may enable refinement of macroscopic continuum models used in engineering
design (Rajendran, 1994), providing insight into important mechanisms occurring at the scale of individual grains.

The present application focuses on alumina because of the availability of experimental data quantifying the mechanical
(i.e., stress-deformation) response of single crystals of various orientations across a wide range of temperatures and strain
rates (Graham and Brooks, 1971; Tymiak and Gerberich, 2007; Rodriguez et al., 2008). While various kinetic relationships for
slip (Lagerlof et al., 1994) and twinning (Scott and Orr, 1983) have been posited to describe the results of specific experi-
ments, a more general continuum model is needed to collectively explain the behavior of corundum over a range of loading
conditions.

In a previous paper (Clayton, 2009), a theoretical model was developed to address anisotropic nonlinear elasticity, slip,
and twinning in pure sapphire. The focus of that investigation centered on the shock response of oriented single crystals sub-
jected to uniaxial strain, with results of nonlinear elastic calculations combined with experimental HEL data to provide
bounds on critical stresses for dislocation glide and twin nucleation. Here, that theoretical model is extended to delineate
geometrically necessary dislocations resulting from gradients of inelastic stretch and rotation (i.e., deformation incompati-
bility) as well as statistically stored dislocations associated with dislocation dipoles and loops, for example. Inclusion of geo-
metrically necessary dislocations requires introduction of a length scale (Fleck et al., 1994; Regueiro et al., 2002) in the
thermodynamic framework and renders the model nonlocal according to many labeling schemes. The application in the



J.D. Clayton / International Journal of Plasticity 26 (2010) 1357–1386 1359
present paper focuses on strain hardening, defect accumulation, and stored energy of defects in doped corundum, in addition
to the pure sapphire considered previously. A more extensive treatment of volume changes resulting from eigenstress fields
of defects is also given here, including predictions for volume changes resulting from twin boundary energies.

This paper is organized as follows. In Section 2, physical descriptions of elasticity, plasticity, and twinning are provided, in
a more extensive treatment than given previously (Clayton, 2009). The descriptions serve to distinguish among the three
deformation mechanisms and provide sufficient physical basis for the corresponding theoretical framework that follows
in Section 3. The framework of Section 3 is generic enough to apply to any crystalline solid that undergoes large deformations
via elasticity, plasticity, and/or twinning, including metallic and ceramic crystals. In Section 4, the model is specialized to
describe the behavior of corundum single crystals. Section 4 begins with a review of the crystal structure of corundum
(i.e., atomic positions, lattice parameters, and slip and twinning systems) and its fundamental physical properties. Hardening
behaviors of glide and twin systems from the density of dislocations accumulated during basal slip observed in experiments
on pure alumina (Pletka et al., 1977; Castaing et al., 2002) and corundum doped with Cr, Mg, or Ti cations (Pletka et al., 1982)
are addressed. Stored residual energies associated with stress fields of dislocations, stacking faults, and twin boundaries are
quantified. Residual elastic volume changes in pure and doped corundum are predicted from nonlinear elasticity theory and
dislocation line and stacking fault energies. New comparisons of model predictions for rhombohedral twinning with exper-
iments (Scott and Orr, 1983; Castaing et al., 2002) are provided. Finally, comparisons of model features (e.g., basal glide resis-
tance, basal dislocation energy, and expansion associated with basal stacking faults) with results of atomic simulations
performed elsewhere (Marinopoulos and Elsasser, 2001; Bodur et al., 2005; Zhang et al., 2007, 2008; Nishimura et al.,
2009) are reported. The present paper is self-contained; hence, some overlap of material in Sections 3 and 4 with content
of a previous paper (Clayton, 2009) is inevitable because all definitions of mathematical symbols and values of material prop-
erties entering the present, more refined theoretical model and application are included here for completeness. Differences
in theory and results from the previous paper (Clayton, 2009) are highlighted as they appear.

The following notation is used. Scalars and individual components of vectors and tensors are written in italic font, while
vectors and tensors are written in bold font. Einstein’s summation convention applies for repeated indices. The � symbol de-
notes the scalar product of vectors ða � b ¼ aaba ¼ a1b1 þ a2b2 þ a3b3Þ, while � indicates the outer product ðða� bÞab ¼ aabbÞ.
Juxtaposition of second-rank tensors implies summation over one set of adjacent indices ððABÞa�c ¼ AabBbcÞ. Summation over
two sets of adjacent indices is denoted: ðA : B ¼ AabBabÞ. Indices in parentheses are symmetric ð2AðabÞ ¼ Aab þ AbaÞ; indices in
braces are skew ð2A½ab� ¼ Aab � AbaÞ. Superposed �, T, and �1 denote material time differentiation, transposition, and inver-
sion, respectively, and subscripted commas denote partial differentiation.

2. Background: deformation mechanisms

2.1. Elasticity

A crystal is said to deform elastically in the absence of generation or motion of defects. At the atomic scale, elastic defor-
mation alters relative distances and/or orientations among neighboring atoms within each crystallographic unit cell. Result-
ing changes in inter-atomic forces produce mechanical stress when the crystal is viewed as a continuous solid. Removal of
mechanical stresses restores the original inter-atomic bond lengths and angles without dissipation of energy; hence, elastic
deformation is said to be thermodynamically reversible. Here, elastic deformation also includes changes in average inter-
atomic bond vectors induced by changes in temperature. Increases in thermal energy, i.e., local atomic vibrations, usually
correlate with expansion of the lattice in the absence of mechanical stresses. Such thermal deformations are deemed revers-
ible, since atomic nuclei will return to their mean reference positions as the temperature is restored to its original value. Let
FE denote the two-point tensor of possibly large elastic deformation. Let a0 denote the vector between sites in a conventional
unit cell such that a0 ¼ ða0 � a0Þ1=2 is a conventional lattice parameter. Primitive Bravais lattice vectors and conventional lat-
tice vectors deform via the elastic deformation according to the Cauchy–Born hypothesis (Born and Huang, 1954; Ericksen,
1984). This is written a ¼ FEa0, with a the conventional lattice vector in the deformed crystal. An elastic deformation by sim-
ple shear of a non-cubic lattice is shown in Fig. 1(a). In the present description, electric polarization and relative internal
Fig. 1. Deformation mechanisms and lattice vectors: (a) elasticity, (b) slip, and (c) twinning.
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shifts between sub-lattices in non-centrosymmetric crystals (Born and Huang, 1954; Cousins, 1978) are not addressed
explicitly; rather, elastic deformation of a volume element is uniform over all inter-atomic bond vectors within that element.

2.2. Plasticity

Plastic deformation as defined here takes place via glide of dislocations of edge, screw, and/or mixed character, including
loops, and encompassing cross-slip but not climb, the latter which requires further generalization (McDowell and Mooseb-
rugger, 1992). As full dislocations travel through a region of the crystal, the shape of the material will change, but inter-
atomic distances remain the same, so long as no defects are left behind in that region. In this sense, plastic deformation
is said to be lattice-preserving or ‘‘lattice invariant” (Bilby et al., 1957). Mechanical stresses are conventionally required
to enact the net glide of dislocations (apart from random thermal fluctuations). For example, resolved shear stresses must
exceed the Peierls barrier in the context of lattice statics or Schmid’s limit in the context of continuum slip (Hirth and Lothe,
1982). Plastic deformation is thermomechanically irreversible, since the reference shape of the material is not recovered
upon removal of mechanical stresses, and since heat is dissipated by moving dislocations as a result of lattice friction, pho-
non drag, and other mechanisms (Kocks et al., 1975; Gilman, 1979). Because the lattice remains unchanged apart from steps
on the surface of the crystal, plastic deformation itself does not affect the strain energy of the crystal. However, defects gen-
erated during plastic deformation that remain within the material lead to energy storage as a result of local stress fields in-
duced by these defects and their core energies. Let FP denote the two-point tensor of possibly large plastic deformation.
Plastic deformation by simple shear is illustrated for a non-cubic lattice in Fig. 1(b). Lattice vector a0 is unchanged by the
plastic deformation.

2.3. Twinning

Deformation twinning results in two connected regions in the lattice separated by a twin boundary (i.e., the habit plane or
dotted line on the right side of Fig. 1(c)) whose shape deformations differ by a simple shear. The original lattice is termed the
‘‘parent”, while the sheared lattice is termed the ‘‘twin”. Atomic positions, and hence corresponding bond vectors between
these atoms, within each region differ by a finite rotation, typically either a reflection or 180� rotation (Christian and Maha-
jan, 1995), though more general relationships are possible. The stacking sequence of atomic planes in the twin is altered with
respect to that in the parent, and hence crystals with low stacking fault energies are often more prone to twinning than those
with high stacking fault energies. Nucleation and propagation of deformation twins are thought to take place by one or more
mechanisms, often involving formation and motion of partial dislocations (e.g., dissociation of full dislocations into partials)
and atomic shuffles sometimes needed to maintain orientation relationships between twin and parent (Bilby and Crocker,
1965; Zanzotto, 1996). Thus, twinning is not regarded as lattice-preserving in the sense of slip, since twinning involves rota-
tion of the lattice, as evidenced by texture measurements (Van Houtte, 1978; Tomé et al., 1991a). Involvement of partial dis-
locations and atomic shuffles induces the rotational change of the twinned lattice relative to that of the parent. Deformation
twinning is also distinguished from plastic slip in that the former occurs by collective motion of defects, resulting in a quan-
tized amount of shear that preserves the particular orientation relationship between the twin and parent. In contrast, plastic
deformation may result in shearing of any magnitude, with the lower limit of relative displacement of atomic planes asso-
ciated with the Burgers vector for slip. The shear strain associated with twinning is deemed mechanically irreversible, since
twins considered here remain in single crystals after mechanical stresses are removed. Another difference between slip and
twinning is that twinning is polar (i.e., unidirectional) while often slip is not. Lattice geometry precludes twinning shears of
equal magnitude and opposite directions on the same plane, while typically slip may occur in opposite directions on the
same plane, though resistances to slip in opposite directions on the same plane may differ (Lee et al., 1999; Xu et al., 2004).

Unstressed twinned regions of the crystal far from internal boundaries or defects possess the same strain energy density
as the unstressed parent (James, 1981; Zanzotto, 1996); hence, twinning shears are said to be energy invariant. However, the
energy density increases relative to that of a perfect lattice in the vicinity of twin boundaries (e.g., appropriate stacking fault
energies). The mechanical work done during deformation twinning is dissipative, resulting from the defect motion (e.g., par-
tial dislocation glide) associated with shearing. Possible energy storage is associated only with defects left behind in the crys-
tal, for example those comprising the twin boundary. From continuum thermomechanics considerations, the driving force
for twin propagation is the resolved shear stress in the direction of twinning shear. The resistance to deformation twinning
is often modeled analogously to slip, that is, twinning proceeds when the resolved stress attains a critical value that may
depend on temperature (Lagerlof et al., 1994; Wu et al., 2007). With accumulated slip and deformation twinning, strain hard-
ening of the crystal may take place via interactions among different twins in the crystal, interactions among different slip
systems, and interactions between mobile dislocations and twins (e.g., twin boundaries may serve as barriers to dislocation
glide). Twins may also nucleate cracks and vice-versa (Christian and Mahajan, 1995). Detwinning, i.e., restoration of the
twinned lattice to its original orientation, is physically possible, though is often more applicable to phase transformation
phenomena (Bhattacharya, 1991; Thamburaja et al., 2009) and less applicable to mechanical twinning in the context of mon-
atomic loading. In certain metals such as Mg alloys, however, deformation-induced detwinning can be important, especially
during load sequences involving strain path changes (Proust et al., 2009).

Twins are usually classified as type I, type II, or compound. In centrosymmetric crystals, Bravais lattice vectors in the twin
and parent for a type I twin are related by either a reflection in the habit plane or rotation of 180� about the direction normal
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to this plane. For a type II twin, lattice vectors are related by either a rotation of 180� about the shear direction or a reflection
in the plane normal to the shear direction. In crystals with a center of symmetry, the rotation (Van Houtte, 1978; Christian
and Mahajan, 1995)
Q ¼
2m0 �m0 � 1 ðtype IÞ;
2s0 � s0 � 1 ðtype IIÞ;

�
ð1Þ
relates a lattice vector in the parent, a0, to a vector in the twin, a, via a ¼ Qa0, as shown on the right of Fig. 1(c). The unit
normal to the habit plane is m0, and the direction of shear is s0. The second-order unit tensor is denoted by 1. For centro-
symmetric crystals, reflection �Q is often used instead of (1) to describe the orientation of the twin relative to the parent. In
crystals lacking a center of symmetry, the two rotations listed in (1) are augmented by their negatives, i.e., two complemen-
tary reflection operations (Christian and Mahajan, 1995), with all four operations then crystallographically distinct.
3. Continuum theory: nonlinear elasticity, slip, and twinning

A constitutive framework for crystals undergoing large thermoelastic, plastic, and twinning deformations is developed.
The framework conforms to many established principles of continuum mechanics and thermodynamics of single crystal
behavior, as described in Teodosiu (1970), Teodosiu and Sidoroff (1976), Clayton (2005), though these prior works did not
explicitly consider twinning or possible residual volume changes resulting from dislocations and twin boundaries or stacking
faults.

3.1. Kinematics

A small volume element of crystalline material of fixed mass is assigned reference coordinates X. Let x ¼ uðX; tÞ denote
spatial coordinates of the element, with u the motion. Deformation gradient F for the element is
F ¼ @x
@X

; ð2Þ
decomposed multiplicatively into a series of terms:
F ¼ FEJ1=3FIFP ¼ FEFIFP ¼ FEF ¼ FLbF: ð3Þ
Here, FE accounts for recoverable thermoelastic deformation and rigid body rotation, FI ¼ J1=3FI accounts for defect kine-
matics that alter the lattice, and FP accounts for lattice-preserving plastic slip. Twinning is modeled by term FI, accounting
for the average, irreversible shape deformation resulting from one or more twins that may nucleate and propagate in a vol-
ume element of fixed mass of crystal. Volume changes associated with defects are addressed by scalar J. The total irreversible
deformation is F ¼ FIFP. The total elastic lattice deformation (recoverable and residual) is FL ¼ FEJ1=31, and the remaining
deformation from defect motion (dislocation glide and twinning) is bF ¼ FIFP.

Denote by g(x) and G(X) metric tensors associated with possibly curvilinear coordinate systems in configurations B and
B0, with components gab ¼ ga � gb and GAB ¼ GA � GB (Eringen, 1962). Basis vectors in spatial and referential coordinate sys-
tems are ga and GA, respectively ða;A ¼ 1;2;3Þ. Let all intermediate configurations be referred to an external Cartesian coor-
dinate system with metric tensor components dabða ¼ 1;2;3Þ. Let the Jacobian determinants of deformation mappings in (3)
associated with volume changes be formally defined as
J ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det g
det G

r
det F ¼ JEJJIJP ¼ JLJIJP; JE ¼

ffiffiffiffiffiffiffiffiffiffiffi
det g

p
det FE; JI ¼ det FI; JP ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

det G

r
det FP: ð4Þ
As will be demonstrated explicitly later in (12), the isochoric character of slip and twinning leads to the conditions
JI ¼ JP ¼ 1 (no volume changes associated with twinning or slip) and J ¼ JEJ ¼ JL (volume changes associated only with recov-
erable and residual thermoelasticity). The residual elastic volume change J arising from distributed defects such as disloca-
tion lines is derived from the assertion that in continuum nonlinear elasticity, the average strain of a body containing
residual stress fields arising from internal displacement discontinuities need not vanish even if the traction on its external
surfaces vanishes (Toupin and Rivlin, 1960; Teodosiu, 1982; Clayton and Bammann, 2009). Presently, only volume changes
are considered, e.g., corresponding to random defect distributions imparting no preferred directions in average residual elas-
tic strains, though more general treatments allowing for shape changes resulting from residual stresses associated with crys-
tal defects at multiple length scales have been suggested (Clayton and McDowell, 2003; Clayton et al., 2004a, 2005, 2006;
McDowell, 2008; Clayton and Bammann, 2009). In Section 4.4, relationships between J, the line density of dislocations,
and nonlinear thermoelastic properties are given, with explicit formulae for J listed in (65) and (66) following from previous
studies (Zener, 1942; Seeger and Haasen, 1958; Toupin and Rivlin, 1960; Holder and Granato, 1969; Teodosiu, 1982; Clayton
and Bammann, 2009). In the present context, FP and FI account for isochoric deformations resulting from respective motion
of slip dislocations and twinning partials, while J accounts for volume changes resulting from the residual stress fields of the
defects themselves.
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Introduced next are sets of contravariant and covariant vectors denoting directions and planes, respectively, for slip and
twinning. When referred to the reference lattice prior to any reorientation by twinning, these are denoted by si

0;m
i
0

� �
for

each slip system i, and sj
0;m

j
0

n o
for each twin system j. The total number of slip systems is n, and the total number of twin

systems is w. Reference shearing directions and plane normals are all of unit length, and each pair of contravariant shear
direction and covariant plane normal is orthogonal:
Fig. 2.
si
0 �mi

0 ¼ 0; si
0

�� �� ¼ mi
0

�� �� ¼ 1 ð8i ¼ 1; . . . nÞ; sj
0 �m

j
0 ¼ 0; sj

0

��� ��� ¼ mj
0

��� ��� ¼ 1ð8j ¼ 1; . . . wÞ: ð5Þ
During the course of twinning, one or more parts (i.e., twins) of the volume element of crystal undergoes a rotation rel-
ative to the parent. In a volume fraction of the crystal undergoing twinning via mode j, slip directions and slip plane normals
transform in the reference configuration according to the usual rules for contravariant and covariant vectors, that is
si
0j ¼ Q jsi

0; mi
0j ¼mi

0Q jT ð8i ¼ 1; . . . n slip systems;8j ¼ 1; . . . w twin volumesÞ; ð6Þ
where Q j is the rotation found from (1) corresponding to particular twin system j. For example, if j is a type I twin,
Q j ¼ 2mj

0 �mj
0 � 1, while if j is a type II twin, Q j ¼ 2sj

0 � sj
0 � 1. Notice from (6) that, within each twinned volume, updated

slip directions si
0j and slip plane normals mi

0j remain orthogonal and of unit length for each i. For simplicity, successive twin-
ning is not considered. Hence, secondary twins that could form within already twinned regions, leading to reorientation of
the twinning systems fsj

0;m
j
0g, are not represented. Further reorientation of transformed directors in (6) is likewise prohib-

ited once the twin is fully formed. Rotation (6) does not apply to the volume fraction of the grain comprising the parent.
Plastic deformation FP and twinning deformation FI do not directly alter the directions associated with slip and twinning.
The former is lattice-preserving, as discussed in Section 2.2, while the latter affects the lattice orientation indirectly via
(6) and evolution of the twin volume fraction for each twin system j to be discussed later. However, thermoelastic deforma-
tion and residual elastic volume changes both affect the lattice directors:
si ¼ FLsi
0; mi ¼mi

0FL�1; si
0 ¼ J1=3si

0; mi
0 ¼mi

0J�1=3 ð8i ¼ 1; . . . n 2 parentÞ;
si

j ¼ FLsi
0j; mi

j ¼mi
0jF

L�1; si
0j ¼ J1=3si

0j; mi
0j ¼mi

0jJ
�1=3 ð8i ¼ 1; . . . n 2 twins j ¼ 1; . . . wÞ;

sj ¼ FLsj
0; mj ¼mj

0FL�1; sj
0 ¼ J1=3sj

0; mj
0 ¼mj

0J�1=3 ð8j ¼ 1; . . . w 2 parentÞ:

ð7Þ
The effect of J on the slip directors and slip plane normals was omitted in earlier work (Clayton, 2009).
An additional remark on notation is in order. Subscripts and superscripts following mathematical objects in bold font cor-

respond to slip or twin systems (e.g., i or j), and are not subject to usual conventions associated with the index notation such
as Einstein’s summation convention. Furthermore, such subscripts and superscripts do not require placeholder periods fre-
quently used for components of mixed contra-covariant tensors (Schouten, 1954). For example, the deformation gradient is
often written in geometric settings as F ¼ Fa

�Aga � GA (Clayton et al., 2005), while slip direction vector for system i within twin
system j is written here as si

j ¼ sia
j ga and not as si

�j, since i and j do not refer to components of a vector or tensor in this case.
Fig. 2 depicts the physics underlying (2)–(7) for a crystal with a single slip system and a single twin. Multiplicative

decomposition (3) implies a series of configurations of the material element. The reference configuration is labeled B0 with
Deformations and slip system geometry for crystal deforming by elasticity, slip, and twinning: (a) total deformation and (b) residual deformation.
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corresponding coordinates X, the spatial configuration is labeled B with corresponding coordinates x, and the elastically un-
loaded intermediate configuration is labeled B. Since FE�1 and F are in general not integrable, continuous coordinates span-
ning B do not exist (Clayton et al., 2004b, 2005). However, elastic and inelastic deformations act as tangent maps (Marsden
and Hughes, 1983) between configurations via FE : TB ! TB and F : TB0 ! TB. Additional configurations BP and bB are im-
plied by the inelastic tangent maps FP : TB0 ! TBP ; F

I : TBP ! TbB, and J1=31 : TbB ! TB. The total deformation gradient is
illustrated in Fig. 2(a). In Fig. 2(b), individual maps comprising the residual deformation F ¼ FE�1F ¼ J1=3FIFP are shown.
For clarity, the implicit effect of twinning on the orientation of the plastically slipped lattice in configuration BP is not shown;
i.e., only the parent is shown in the illustration of configuration BP .

The spatial velocity gradient following from (2) and (3) is
L ¼ _FF�1 ¼ _FEFE�1 þ FE _FIFI�1FE�1 þ FEFI _FPFP�1FI�1FE�1 þ ð1=3Þ_JJ�11: ð8Þ
The inelastic velocity gradient referred to configuration B is
_FF�1 ¼ _FIFI�1 þ FI _FPFP�1FI�1 þ ð1=3Þ_JJ�11 ¼ LI þ LP þ ð1=3Þ_JJ�11; ð9Þ
where
LI ¼ _FIFI�1 ¼
Xw

j¼1
_f jcjsj

0 �mj
0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

twinning in parent crystal

ð10Þ
results from twinning shears, and
LP ¼ FI _FPFP�1|fflfflffl{zfflfflffl}
LP

FI�1 ¼ ð1� fTÞ
Xn

i¼1
_cisi

0 �mi
0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

slip in parent crystal

þ
Xw

j¼1
f j
Xn

i¼1
_ci

js
i
0j �mi

0j

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

slip in twinned crystal

ð11Þ
results from slip in parent and twinned domains. In (10), cj is the predefined shear associated with twin system j, a positive
scalar that is fixed for all twins in a given family of twin systems. In (11), _ci is the slip rate on system i in the parent grain, and
_ci

j is the slip rate on system i within reoriented twin fraction j. The volume fraction of crystal occupied by twin j, measured
per unit volume in configuration B, is labeled by the scalar f j P 0, with time rate _f j (Chin et al., 1969; Van Houtte, 1978). The
total volume fraction of twinned crystal is fT ¼

P
f j, subject to the restriction 0 6 f T 6 1. Detwinning is not considered;

hence, _f j P 0. In the interior summation within the rightmost term of (11), the slip directors and slip plane normals in
the twinned regions are found according to (6), where the particular form of Q j corresponds to the twin with associated va-
lue of f j in the outer summation.

Since for each slip or twin system, the shear directions and plane normals are orthogonal,
trLI ¼ trLP ¼ 0) _JI ¼ _JP ¼ 0) JI ¼ JP ¼ 1 ðt P 0Þ; ð12Þ
since at t ¼ 0; FI and FP both reduce to the unit tensor in corresponding coordinate systems leading to
JIðt ¼ 0Þ ¼ JPðt ¼ 0Þ ¼ 1, and where trA ¼ Aa

�a for a second-order matrix A. A formal derivation of (12) is given in Appendix
A. Thus, (9)–(11) properly reflect the isochoric nature of slip and twinning, and together with (3) and (4), require that all
volume changes be accommodated thermoelastically via JE and/or by defect generation via J, such that the first of (4) reduces
to J ¼ JEJ ¼ JL.

When J ¼ 1 and _f j ¼ 0 for all j, FI ¼ 1; F ¼ FP, and LP in (11) reduces to its usual definition from crystal plasticity theory
(Teodosiu and Sidoroff, 1976; Asaro, 1983; Clayton, 2005). In this simplified case, all inelastic deformation occurs via slip, F is
lattice-preserving, and the lattice directors remain unchanged between configurations B0 and B. On the other hand, when
twinning does takes place, FI does not act as a true elastic lattice deformation in the sense of (7) and Born and Huang
(1954), since only that part of the lattice within the twinned volume undergoes a transformation, and this transformation
occurs via rotation (6) and does not include any stretch of the lattice directors.

Remarks on the order of terms in multiplicative decomposition (3) are now merited. The recoverable thermoelastic defor-
mation FE is logically placed first in the decomposition, following the usual scheme of crystal plasticity theory (Teodosiu and
Sidoroff, 1976; Asaro, 1983), so that thermoelastic unloading proceeds via pre-multiplication of F by FE�1 and so that the
lattice director vectors are mapped to the current configuration via (7). The remaining three terms in the decomposition
are placed in order of decreasing effect on the crystal lattice (i.e., on the lattice director vectors). Term J1=31 is placed second
in the decomposition because it affects the volume of the crystal and imparts a stretch to the lattice directors as indicated in
(7); however, its precise placement is of apparently lesser mathematical importance because this term is spherical (i.e., iso-
tropic). Term FI is placed next because twinning affects the lattice director vectors implicitly, via the rotation or reflection
operation in (6). Term FP is placed last in the decomposition because plastic slip does not directly affect the lattice directors
(Asaro, 1983). Placement of FI before FP in (3) does not imply that during the time history of a given deformation process,
twinning always takes place before slip, or vice-versa. All elastic and inelastic deformation modes in (3) can occur simulta-
neously in time. This argument applies similarly in the context of traditional crystal plasticity (i.e., no twinning) wherein
F ¼ FEFP holds: for example, elastic deformation and plastic deformation can both occur simultaneously at a given time
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as an increasing load is applied to a strain hardening crystal. An alternative decomposition in which FI and FP are inter-
changed in (3) is explored in Appendix B.

Defect content associated with incompatibility of the total lattice deformation FL (Teodosiu, 1970; Regueiro et al., 2002;
Clayton et al., 2004a,b, 2005) is measured by two-point geometrically necessary dislocation tensor aG satisfying
Ba ¼ �
Z

c
FL�1a
�a dxa ¼ �

Z
C

bFa
�AdXA ¼

Z
A
aaA

G NAdA; aaA
G ¼ eABCbFa

�B;C ¼ eABCbFa
� B;C½ �; ð13Þ
where Ba are components (indices referred to configuration bBÞ of a total Burgers vector associated with circuit c in the spatial
configuration or circuit C in the reference configuration, A is the area enclosed by C with unit normal components NA, and eABC

are contravariant components of the permutation tensor. Stokes’s theorem is used to convert from the line integral to the
area integral in the third equality of (13). From (3),
aaA
G ¼ eABCbFa

�½B;C� ¼ eABCFIa
�b FPb
�B;C|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

slip gradients

þ eABCFIa
�b;CFPb

�B|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
twin gradients

: ð14Þ
Contributions of plastic slip gradients to the geometrically necessary dislocation density tensor corresponding to the first
term following the second equality in (14) are well-documented in papers dealing with the continuum theory of dislocations
(Ashby, 1970; Teodosiu, 1970; Fleck et al., 1994; Arsenlis and Parks, 1999; Voyiadjis and Abu Al-Rub, 2007; Rezvanian et al.,
2007; Clayton et al., 2008). The second term in the sum on the right arises from material gradients of twinning shear, for
example gradients of twin volume fractions arising during propagation of tapered twins (Scott and Orr, 1983); the contribu-
tion to the dislocation density tensor in this case would be partial dislocations at interfaces between twin and parent or be-
tween intersecting twins. Applying Nanson’s formula to (13), the geometrically necessary dislocation tensor in intermediate
configuration bB of Fig. 2(b), labeled â, is
âab ¼ bJ�1bF b
�Aa

aA
G ¼ JLFL�1b

�a eabcFLa
�½b;c� ¼

X
i

qiba1b; ð15Þ
where bJ ¼ JIJP ¼ 1 by (12), and the second equality in (15) reduces to Nye’s relation (Nye, 1953) between the dislocation den-
sity tensor and the lattice curvature in the limit of small elastic deformations. The sum on the far right of (15) is invoked over
dislocation populations of index label i, where qi is the length per unit volume of dislocation segments with unit tangent line
vector 1b and Burgers vector ba. Nye’s original treatment (Nye, 1953) was in part based on observations of slip traces in trans-
parent corundum, and hence is of particular relevance in the present application to ceramics and corundum in particular. In
(13)–(15), sufficient differentiability of FE; FI; FP, and J has been assumed. Discontinuities in the deformation gradient or in
the Bravais lattice, for example singularities across slipped regions or at dislocation cores (Teodosiu, 1970, 1982) and jumps
in deformation gradient across twin boundaries (James, 1981; Bhattacharya, 1991) are not resolved explicitly in the present
continuum framework that addresses defects via continuous distributions (Willis, 1967).

Non-dimensional internal state variables are introduced to represent energetic changes associated with two other kinds
of defects. The first such internal state variable is a measure of the density of statistically stored dislocations (Ashby, 1970;
Arsenlis and Parks, 1999; Bammann, 2001; Clayton et al., 2004a, 2006) that accumulate with homogeneous slip, n ¼ b

ffiffiffiffiffiqS
p

,
where b is a scalar Burgers vector—or a constant on the order of a lattice parameter when the crystal exhibits slip on systems
with different Burgers vectors—and qS is the total length of such dislocations per unit volume in B. Statistically stored dis-
locations include closed loops and dipoles that do not contribute to the total Burgers vector Ba in (13). The second internal
state variable measures the total density of twin boundaries, f ¼

ffiffiffiffiffiffiffiffi
bgT

p
, where gT is the total area of twin boundaries mea-

sured per unit volume in configuration B.

3.2. Constitutive assumptions

Let q and q0 denote mass density of the solid in current and reference configurations, respectively, related by q0 ¼ qJ. Let
q ¼ qJE ¼ q0J�1 denote mass density in configuration B. The forthcoming thermodynamic analysis is conducted in B, the nat-
ural configuration that serves as an evolving reference configuration for the instantaneous thermoelastic response of the
crystal (Eckart, 1948; Scheidler and Wright, 2001; Clayton et al., 2004a, 2006; Clayton, 2005). The Helmholtz free energy
per unit volume in B is W ¼ qw, with w the free energy per unit mass. The free energy exhibits the dependencies
W ¼ W EE; h; â; n; f; ff jg
� 	

; ð16Þ
where h is the absolute temperature. Electric polarization (e.g., of sapphire) is not addressed in (16) since the present study is
limited to situations where electric fields are absent. Variables â; n, and f are, respectively, related to densities of geometri-
cally necessary dislocations, statistically stored dislocations, and twin boundaries, as discussed in Section 3.1. Set ff jg in-
cludes each of the twin volume fractions, and
EE
ab ¼

1
2

CE
ab � dab

� 	
¼ 1

2
FEa
�a gabFEb

�b � dab

� 	
ð17Þ
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is a finite elastic strain tensor associated with elastic deformation tensor CE, with components referred to an assumed extrin-
sic Cartesian frame on B with basis vectors not tangent to possibly anholonomic intermediate material lines (Clayton et al.,
2004b, 2005). In agreement with physical arguments of Sections 2.2 and 2.3, the free energy does not depend explicitly on
plastic deformation or twinning shears.

3.3. Thermodynamics

The standard local forms of the balance of energy and dissipation inequality, respectively, each referred to the reference
configuration, are (Eringen, 1962; Marsden and Hughes, 1983)
q0 _e ¼ R : _E�r0 � Q þ q0r; R : _E� q0
_wþ g _h

� 	
� 1

h
r0h � Q P 0: ð18Þ
In (18), e ¼ wþ hg is internal energy per unit mass, with g the entropy per unit mass. Symmetric second Piola–Kirchhoff
stress R is related to first Piola–Kirchhoff stress P and symmetric Cauchy stress r by
RAB ¼ F�1A
�a PaB ¼ JF�1A

�a rabF�1B
�b : ð19Þ
Symmetric tensor E ¼ ð1=2ÞðFT F� GÞ is the right Cauchy–Green strain, r0 is the covariant derivative on B0, Q is the heat
flux, and scalar r denotes other heat sources of energy per unit mass, e.g., radiation. Stress power per unit intermediate vol-
ume can be written
J�1RAB _EAB ¼ JEFE�1b
�b r�ba FEa

�a

� 	
FE�1a
�e Le

�dFEd
�b

� 	
¼ M�b

a La
�b; ð20Þ
where Mandel’s stress (Mandel, 1974) is M ¼ CER, the symmetric elastic second Piola–Kirchhoff stress is R ¼ JEFE�1
rFE�T , and

the velocity gradient pulled back to B is
L ¼ FE�1LFE ¼ FE�1 _FE þ LI þ LP þ ð1=3Þ_JJ�11: ð21Þ
The time rate of free energy change per unit intermediate configuration volume is
_W ¼ d
dt
ðqwÞ ¼ J�1q0

_w� _Fa
�AF�1A
�a w

� 	
¼ q _w�W_JJ�1; ð22Þ
and following from (21) and the symmetry of R and _EE,
M�b
a La
�b ¼ Rbd _EE

db þM�b
a LIa
�b þM�b

a LPa
�b þ ð1=3Þ_JJ�1M�b

b : ð23Þ
Expanding the rate of W of (16) using the chain rule (Coleman and Gurtin, 1967),
_W ¼ @W

@EE : _EE þ @W
@h

_hþ @W
@â

: _̂aþ @W
@n

_nþ @W
@f

_fþ @W
@f j

_f j; ð24Þ
with summation implied over w twin fractions j, the entropy inequality in (18) can be written
R� @W

@EE


 �
: _EE � N þ @W

@h


 �
_hþP : LI þ LP þ

_J
3J

1

 !
P
@W
@â

: _̂aþ @W
@n

_nþ @W
@f

_fþ @W
@f j

_f j þ 1
h
rh � q; ð25Þ
where N ¼ qg is the entropy per unit intermediate volume, rh ¼ r0hF�1 is the intermediate temperature gradient,
q ¼ J�1FQ is the intermediate heat flux, and
P ¼M�W1 ð26Þ
is a (negative) version of Eshelby’s energy-momentum tensor or Eshelby’s stress tensor (Eshelby, 1975; Maugin, 1994; Clay-
ton et al., 2004a, 2006) mapped to configuration B. Following standard arguments (Coleman and Gurtin, 1967; Scheidler and
Wright, 2001; Clayton, 2005), stress–elastic strain and entropy-temperature relations are deduced:
R ¼ @W

@EE ; N ¼ � @W
@h

; r ¼ JE�1FE @W

@EE FET ; g ¼ �q�1 @W
@h

: ð27Þ
The rightmost term of (25) contributes positively to dissipation upon prescription of the conduction law
q ¼ �Krh; �rh � q ¼ rh � Krh P 0; ð28Þ
where K is a symmetric and positive definite matrix of thermal conductivity. Applying (27) and (28),
P : LI þP : LP þ
_J

3J
trP P

@W
@â

_̂aþ @W
@n

_nþ @W
@f

_fþ @W
@f j

_f j � 1
h
rh � Krh ð29Þ
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is the reduced dissipation inequality. In the absence of temperature gradients, (29) requires that the energy dissipated by
twinning, slip, and residual volume changes exceeds the rate of energy storage associated with defects, specifically geomet-
rically necessary and statistically stored dislocations and twin boundaries. From (9)–(11), energies dissipated from twinning
and slip, respectively, can be written
P : LI ¼
Xw

j¼1

sj _f jcj; P : LP ¼ ð1� fTÞ
Xn

i¼1

si _ci þ
Xw

j¼1

f j
Xn

i¼1

si
j
_ci

j

 !
; ð30Þ
where the driving forces are resolved stresses on each twin or slip plane, acting in the direction of shear:
sj ¼ sja
0 P�ba mj

0b ¼ JEsjar�ba mj
b; si ¼ sia

0 P�ba mi
0b ¼ JEsiar�ba mi

b; si
j ¼ sia

0jP
�b
a mi

0jb ¼ JEsia
j r�ba mi

jb: ð31Þ
Specific heat at constant elastic strain, measured per unit volume in configuration B, is introduced as
c ¼ @E
@h
¼ �h

@2W

@h2 ; ð32Þ
where E ¼ qe is internal energy per intermediate volume. Multiplying the first of (18) by J�1, and using (19)–(24), (26)–(28),
(32), the energy balance can be written in the intermediate configuration as
c _h|{z}
temperature change

¼ P : LIþLP
� 	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dissipation from slip and twinning

þ trPþ3h
@W
@h


 � _J
3J|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dissipation from defect generation

� hb : _EE|fflfflffl{zfflfflffl}
thermoelastic coupling

þ �r�Krh|fflfflfflfflffl{zfflfflfflfflffl}
heat conduction

� @W
@â
�h

@2W
@h@â

 !
: _̂a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

strain energy of geometrically necessary dislocations

� @W
@n
�h

@2W
@h@n

 !
_n|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

strain energy of statistically stored dislocations

� @W
@f
�h

@2W
@h@f

 !
_f|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

surface energy of twin boundaries

� @W
@f j
�h

@2W
@h@f j

 !
_f j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
energy of lattice reorientation from twinning

;

ð33Þ
where source r of (18) is assumed absent in (33) and hereafter. Thermal stress coefficients in (33) are
b ¼ � @2W

@h@EE ; ð34Þ
and the anholonomic covariant derivative in (33) is �ra ¼ ra þ J�1Fb
�ArbðJF�1A

�a Þ with ra ¼ r0AF�1A
�a . Note �ra ¼ ra only when

compatibility condition Fa
�½A;B� ¼ 0 holds and r0Að@J=@Fa

�AÞ ¼ r0AðJF�1A
�a Þ ¼ 0.

3.4. Representative free energy potential

A particular form of (16) is posited for anisotropic crystals that may undergo large elastic deformations, temperature
changes, twinning, and dislocation accumulation. The free energy is decomposed as
W ¼ WE EE; h; ff jg
� 	

þ YðhÞ þWR â; n; f; hð Þ; ð35Þ
where WE accounts for the thermoelastic response, Y accounts for the specific heat content, and WR accounts for residual free
energy of lattice defects. The thermoelastic energy consists of three terms:
WE ¼ 1
2

EE
ab

4CabvdEE
vd þ

1
6

EE
ab

6Cabvde/EE
vdEE

e/ � babEE
abðh� h0Þ; ð36Þ
with the first term in (36) accounting for materially linear, but geometrically nonlinear, mechanical effects, the second
accounting for materially nonlinear elastic effects important at high pressures (Graham and Brooks, 1971; Thurston,
1974), and the third accounting for thermoelastic coupling. Here, h0 is a constant temperature at which the lattice param-
eters exhibit their reference lengths, and remaining coefficients in (36) are partial derivatives of free energy at null elastic
strain:
4Cabvd ¼ @2WE

@EE
ab@EE

vd

�����
EE¼0

; 6Cabvde/ ¼ @3WE

@EE
ab@EE

vd@EE
e/

�����
EE¼0

; bab ¼ � @2WE

@h@EE
ab

�����
EE¼0

: ð37Þ
Coefficients in (37) may depend on temperature; when measured at a particular temperature, these are referred to as iso-
thermal elastic constants. Superscripts 4 and 6 denote fourth- and sixth rank tensors of elastic coefficients, usually referred
to (at fixed temperature) as second- and third-order isothermal elastic constants, respectively (Brugger, 1964; Thurston,
1974). Typically, small differences between isothermal elastic coefficients and their isentropic counterparts measured in
sound speed experiments emerge from thermal expansion (Thurston, 1974).

In anisotropic solids, coefficients (37) depend on the orientation of the Bravais lattice in configuration B. When twinning
takes place, orientations of the original reference lattice (parent) and each twin differ. Here, a straightforward averaging
method is used to define the effective coefficients for a volume element consisting of the parent and one or more twins.
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It is assumed that elastic deformation FE and elastic strain EE act uniformly over the parent and twins comprising this vol-
ume element. Energy (36) is thus partitioned into contributions from the parent and each twin:
WE ¼ 1
2

EE
ab

4C
abvd
0 EE

vdð1� fTÞ þ
1
6

EE
ab

6C
abvde/
0 EE

vdEE
e/ð1� fTÞ � bab

0 EE
abðh� h0Þð1� fTÞ

þ
Xw

j¼1

1
2

EE
ab

4C
abvd
j EE

vd þ
1
6

EE
ab

6C
abvde/
j EE

vdEE
e/ � bab

j EE
abðh� h0Þ

� 
f j; ð38Þ
where 4C
abvd
0 ; 6C

abvde/
0 , and bab

0 refer to coefficients for the parent lattice, and where for each twin j,
4C
abvd
j ¼ 4C

e/uc
0 Q ja

�e Q jb
�/Q jv

�uQ jd
�c;

6C
abvde/
j ¼ 6C

ucgijk
0 Q ja

�uQjb
�cQ jv

�gQjd
�i Q je

�jQj/
�k ; bab

j ¼ bvd
0 Q ja

�vQ jb
�d : ð39Þ
Stress–strain–temperature relations following from (27), (36), and (38) are
Rab ¼ 4CabvdEE
vd þ

1
2

6Cabvde/EE
vdEE

e/ � babðh� h0Þ

¼ 4C
abvd
0 EE

vd þ
1
2

6C
abvde/
0 EE

vdEE
e/ � bab

0 ðh� h0Þ
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ð1� fTÞ þ
Xw

j¼1

4C
abvd
j EE

vd þ
1
2

6C
abvde/
j EE

vdEE
e/ � bab

j ðh� h0Þ
� 

f j; ð40Þ
implying that elastic stress R for a heterogeneous (twinned) crystal is equivalent to the volume average of local stresses sup-
ported by the parent and each twin. Effective material coefficients are thus
4Cabvd ¼ 4C
abvd
0 ð1� fTÞ þ

Xw

j¼1

4C
abvd
j f j; 6Cabvde/ ¼ 6C

abvde/
0 ð1� fTÞ þ

Xw

j¼1

6C
abvde/
j f j;

bab ¼ bab
0 ð1� fTÞ þ

Xw

j¼1

bab
j f j; Kab ¼ Kab

0 ð1� fTÞ þ
Xw

j¼1

Kab
j f j:

ð41Þ
From (41), necessity of inclusion of twin fractions in free energy functions (16) and (35) is evident, since effective ther-
moelastic coefficients depend on evolving twin fractions. For anisotropic crystals undergoing twinning, the effective matrix
of thermal conductivity coefficients in (28) and (33) can be approximated in the same manner as bab, as indicated in the last
of (41), where Kab

j ¼ Kvd
0 Qja

�vQjb
�d is the conductivity tensor of reoriented twin fraction j and Kvd

0 is the conductivity tensor of the
parent. Possible influences of dislocation densities ðâ and nÞ and twin boundaries ðfÞ on effective elastic moduli that may
arise in some crystals at large deformations and large defect densities (Smith, 1953; Chung and Clayton, 2007) are precluded
by (35) since couplings between elastic strain EE and defects ðâ; n; fÞ are not included. Such effects could be incorporated by
generalization of (35) if deemed relevant (Clayton et al., 2004a,b). The associated rate of thermoelastic free energy change
from rates of twin fractions is
@WE

@f j
_f j ¼ Aj

_f j;

Aj ¼
1
2

EE
ab

4C
abvd
j � 4C

abvd
0

� 	
EE

vd þ
1
6

EE
ab

6C
abvde/
j � 6C

abvde/
0

� 	
EE

vdEE
e/ � bab

j � bab
0

� 	
EE

abðh� h0Þ;
ð42Þ
with summation applied over j. Consider a situation in which strains EE
ab ¼ aabðh� h0Þ arise from temperature change. The

following relationship emerges between the thermal stress, thermal expansion constants ðaabÞ, and elasticity coefficients:
bab ¼ 4Cabvdavd þ
1
2

6Cabvde/avdae/ðh� h0Þ; ð43Þ
where the second term on the right is negligible for most crystals with small coefficients aab � 1. Symmetry conditions
4Cabvd ¼ 4CðabÞðvdÞ; 6Cabvde/ ¼ 6CðabÞðvdÞðe/Þ, and bab ¼ bðabÞ follow automatically from (37). Voigt’s notation (Brugger, 1964; Thur-
ston, 1974) exploits symmetry of the elastic stress R, elastic strain EE, and these elastic coefficients, where pairs of indices
11 ! 1;22 ! 2;33 ! 3;23 ! 4;13 ! 5, and 12 ! 6, and Rab ! RA;2EE

ab ! EE
Að1þ dabÞ, where a; b ¼ 1;2;3 and

A ¼ 1;2; . . . 6. Relations between stress, strain, and temperature change in (40) then can be expressed compactly as
RA ¼ CABEE
B þ

1
2

CABCEE
BEE

C � bAðh� h0Þ; ð44Þ
where CAB and CABC are second- and third-order elastic coefficients written in the standard notational scheme of Brugger
(1964) and summation proceeds over duplicate covariant indices. Thermal energy in (35) is prescribed as (Clayton, 2005,
2009)
Y ¼ �ch lnðh=h0Þ: ð45Þ
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Finally, the residual energy of lattice defects in (35) is specified as
1 In a
(33), w
WR ¼ 1
2
l j1n

2 þ j2f
2 þ j3l2Nðâ : âÞN þ j4n

2f2 þ j5l2Nðâ : âÞNn2 þ j6l2Nðâ : âÞNf2
h i

; ð46Þ
where l is an elastic shear modulus that may depend on temperature and j1;j2; . . .j6 are dimensionless constants that
scale energies associated with internal state variables. The proper choice of l for anisotropic materials is discussed in Appen-
dix C. Also, l is scalar with dimensions of length, required from dimensional considerations in gradient theories (Fleck et al.,
1994; Bammann, 2001; Regueiro et al., 2002; Abu Al-Rub and Voyiadjis, 2004; Clayton et al., 2004a,b), and N is a constant.
Recalling from Section 3.1 that n ¼ b

ffiffiffiffiffiqS
p

, the first term on the right of (46) provides a linear dependence of residual energy
on the line density of statistically stored dislocations, following Bammann (2001), Regueiro et al. (2002),Clayton et al. (2004a,
2006), and references therein. Simple arguments lead to 2Eq ¼ j1lb2, where Eq is the total energy per unit line length of
statistically stored dislocations, including self- and interaction energies, core energy, and stacking fault energy if the dislo-
cations are partial. Recalling that f ¼

ffiffiffiffiffiffiffiffi
bgT

p
, the second term provides for a linear dependence of residual energy on the area

per unit volume of twin boundaries gT . Similarly, 2ET ¼ j2lb, where ET is the twin boundary energy per unit area. In many
crystals, 2ET �WSF , where WSF is the intrinsic or extrinsic stacking fault energy (Hirth and Lothe, 1982; Bernstein and Tad-
mor, 2004). The third term accounts for the total line and interaction energy of geometrically necessary dislocations, for
which a number of forms for l, N, and j3 have been suggested for different materials and applications (Fleck et al., 1994;
Regueiro et al., 2002; Abu Al-Rub and Voyiadjis, 2004; Clayton et al., 2004a; Chung and Clayton, 2007). The fifth term ac-
counts for interaction energies between statistically stored and geometrically necessary dislocations. The fourth and sixth
terms in (46) reflect interaction energies between twin boundaries and dislocations, for example energies of dislocation lines
may be amplified at the stress concentration caused by a pile-up at a twin boundary (Christian and Mahajan, 1995).

Methods for determining content of geometrically necessary versus statistically stored dislocations have been forwarded
in recent years (Arsenlis and Parks, 1999; El-Dasher et al., 2003; Hughes et al., 2003), which could facilitate unique selection
of parameters in (46) if defect energies are known. For example, energies can be determined through measurements of cold
work (Clarebrough et al., 1957; Taheri et al., 2006) or atomic simulations of defect energy (Chung and Clayton, 2007). How-
ever, in many cases, only the total scalar line density qT of all dislocations, both geometrically necessary and statistically
stored, may be known from historical data. In such cases, it becomes prudent to employ a reduced form of (46) written
in terms of qT :
WR ¼ 1
2
l j1n̂

2 þ j2f
2 þ j4n̂

2f2
� 	

; ð47Þ
with n̂ ¼ b
ffiffiffiffiffiffiqT
p

. Comparison of (46) and (47) implies
qT ¼ qS þ qG; qG ¼ b�1ðâ : âÞ1=2
; l ¼ b; N ¼ 1=2; j1 ¼ j3; j4 ¼ j6; j5 ¼ 0: ð48Þ
Relations (48) provide for an equal contribution, per line length, of geometrically necessary and statistically stored dis-
locations to the free energy. For uniform straight dislocations of density qi with identical Burgers vectors, (15) and (48) con-
sistently give qG ¼ b�1ðqiba1bqiba1bÞ

1=2 ¼ qib�1ðbabaÞ1=2. Using (35) and (47), the rate of temperature increase in (33) can be
written1
c _h ¼ b0WP þ h
@W
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J
� b : _EE

 !
þ �r � Krh; ð49Þ
where
b0 ¼ 1� l� h
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" #
_f j

( )
WP�1 ð50Þ
is the Taylor–Quinney parameter (Taylor and Quinney, 1934; Clayton, 2005), such that 1� b0 is the ratio of inelastic stress
power WP ¼ P : ½LI þ LP þ ð1=3Þ_JJ�11� converted to stored energy. Definition (50) is framed in terms of the total dislocation
density. A more specific form of (50) accounting for distinct contributions from geometrically necessary and statistically
stored dislocations can be determined in a straightforward manner by substituting (35) and (46) into (33).

3.5. Kinetics

Rate dependent, i.e., viscoplastic, kinetic laws are suggested to describe shearing from slip (Hutchinson, 1976; Teodosiu
and Sidoroff, 1976; Asaro, 1983) and twinning (Wu et al., 2007):
_ci ¼ _cS
si

gi

���� ����m si

sij j ;
_ci

j ¼ _cS
si

j

gi
j

�����
�����
m si

j

si
j

��� ��� ; _f j ¼
_cT

cj

hsji
gj

���� ����p: ð51Þ
previous paper (Clayton, 2009), an incorrect factor of 3 preceded J in the denominator of (49). That misprint is corrected here and is consistent with
hich has also been corrected in a similar manner.
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In (51), _cS and _cT are material parameters with dimensions of 1/t, m and p are dimensionless parameters, and gi and gj are
evolving resistances—positive scalars with dimensions of stress—to deformation in the parent grain by slip on system i and
twinning on system j, respectively. In the second of (51), gi

j denotes resistance on slip system i within reoriented twin j. In the
third of (51), 2 sj

� �
¼ sj þ sj

�� ��. From (30) and (51), these rates are always thermodynamically dissipative since for each slip
system, si _ci P 0 and si

j
_ci

j P 0, and since for each twin, the product _f jsjcj P 0. Because _f j ¼ 0 for sj
6 0, the unidirectional

nature of twinning is respected. In the limit m ! 1 or p ! 1, rate independent behavior is attained, respectively, for slip
or twinning. In a general sense, slip and twin resistances evolve as
_gi ¼ _gi EE; h; â; n; f; ff jg; fgg
� 	

;

_gi
j ¼ _gi

j EE; h; â; n; f; ff jg; fgg
� 	

;

_gj ¼ _gj EE; h; â; n; f; ff jg; fgg
� 	

;

ð52Þ
where the rates depend not only on the set of state variables that explicitly enter the free energy (16), but also on the set of
hidden variables fgg ¼ gi; gj; gi

j

n o
with i ¼ 1; . . . n and j ¼ 1; . . . w, consisting of all possible slip and twinning resistances. Slip

and twin resistances fgg are also referred to as flow stresses. Residual volume change J ¼ J h; â; n; f; ff jg
� �

depends on defect
content and temperature, the latter dependence a result of temperature influences on the elastic coefficients and their pres-
sure derivatives. Specific formulae quantifying J are deferred to (65)–(67) in Section 4.4.

Evolution equations for scalar internal state variables n and f, reflecting respective densities of statistically stored dislo-
cations and twin boundaries, complete the model. An explicit evolution equation for the geometrically necessary dislocation
tensor is not needed since â follows directly from kinematic definition (15). Analogous to hardening in (51), defect densities
may depend upon history of slip and twin activity, as well as crystal structure and material composition. Generic evolution
equations are
_n ¼ _n EE; h; â; n; f; ff jg; fgg
� 	

; _f ¼ _f EE; h; â; n; f; ff jg; fgg
� 	

: ð53Þ
From (52) and (53), free energy (16) thus depends on hidden variables fgg implicitly, via their influence on evolution of
the state variables.

Possible impedance or facilitation of slip or twinning via slip–slip interactions, slip–twin interactions, and twin–twin
interactions depends in a complex manner on a number of factors, including geometrical relationships between interacting
systems, temperature, crystal structure, and defect content (Christian and Mahajan, 1995; Lu et al., 1998; Castaing et al.,
2002; Wu et al., 2007). Experimental data enabling unique quantification of these effects is often scarce, and mechanisms
responsible for hardening are not fully understood in many materials (Lagerlof et al., 1994). Because of the large number
of parameters required for a complete description of interactions between individual deformation mechanisms, many exper-
iments may be required, with delineation of effects of a particular mechanism difficult. Initial values of hardness in (52) may
differ among different slip and twin families in a crystal, and may account for periodic lattice resistance in an initially perfect
crystal (Peierls, 1940; Nabarro, 1947), friction stress (Beltz et al., 1996), and other initial barriers, for example those resulting
from interstitials in crystals with impurities (Kocks et al., 1975). Short range barriers to dislocation motion are often strongly
temperature-dependent (Kuhlmann-Wildsorf, 1960; Kocks et al., 1975), since increases in temperature correlate with in-
creased probability of dislocations overcoming such barriers via thermal activation. Long range barriers typically arise from
interactions of local stress fields between defects, and generally increase with defect densities that tend to accumulate with
strain until saturation. Twinning resistance is often affected by temperature, and at low temperatures may increase less stee-
ply than slip resistance as the temperature is decreased (Christian and Mahajan, 1995). This phenomenon explains the ten-
dency for some solids to favor twinning over slip at low temperatures. Resistance to twinning may even decrease with
decreasing temperature (Christian and Mahajan, 1995). Recent models addressing slip, twinning, and slip-twin interactions
via detailed hardening laws were advanced by Beyerlein and Tomé (2008), Proust et al. (2009), Shiekhelsouk et al. (2009).
Proust et al. (2009) also modeled mechanical detwinning.

The present model assumes that thermoelastic deformation (and hence elastic strain) is uniform over the parent and all
twins comprising a volume element at a given ‘‘material point”, as is clear from developments in Section 3.4. Such an ap-
proach, whereby the total stress at a material point is a volume average of stresses in parent and individual twins, is similar
to earlier models of Kalidindi (1998, 2001). Advantages and disadvantages of this type of approach are discussed by Proust
et al. (2007). Specifically, the present approach allows for straightforward application of hardening laws such as (52). How-
ever, secondary twinning and detwinning are not addressed in the present model. Furthermore, stress equilibrium among
twinned and parent regions with different anisotropic elastic constants is not strictly maintained according to the present
model. Alternative approaches accounting for various equilibrium and compatibility constraints have been formulated, using
micromechanics arguments, for crystals with lamellar structures (Lebensohn, 1999; Proust et al., 2007). Self-consistent mod-
els have also been applied to anisotropic polycrystals with hexagonal (Lebensohn and Tomé, 1993) and trigonal (Tomé et al.,
1991b) symmetry. It is noted that the present theory is intended to be applied at material points associated with a small
length scale within a single crystal, and no assumptions are made regarding interactions among grains in a polycrystal.
The present model also includes a number of features often absent in other treatments: thermodynamics of heat conduction
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or adiabatic temperature rise, thermal expansion, higher-order elastic constants, internal state variables associated with
energies of lattice defects such as dislocations and stacking faults, and possible volume changes induced by defects.
4. Application: corundum single crystals with impurities

The framework of Section 3 is specialized in Section 4 to describe elasticity and inelasticity in pure and doped corundum.
Crystal structure and properties, yield mechanisms, strain hardening, defect accumulation, and residual volume changes are
considered. Initial yield mechanisms are addressed for pure alumina single crystals over a range of temperatures, and for
doped corundum at high temperatures. The quantitative treatment of strain hardening and defect accumulation focuses first
on pure and doped corundum deformed by basal glide at high temperatures. New predictions are then provided for rhom-
bohedral twinning and for basal double slip followed by rhombohedral twinning in pure corundum. New comparisons of
model features to results of atomic calculations performed elsewhere are reported.

Some discussion in Sections 4.1 and 4.2 is abbreviated from a previous paper (Clayton, 2009), wherein a more complete
description of properties of pure alumina single crystals was given, and other calculations of the response of pure single crys-
tals of various orientations to impact loading were reported. Discussion and corresponding tables and figures in Sections. 4.3
and 4.4 contain refinements to the previous model of pure corundum (Clayton, 2009), new results for basal slip and defect-
induced volume changes in doped corundum, and new treatment of twin boundaries. Comparisons with atomic model re-
sults in Section 4.5 are also new.
4.1. Crystal structure and properties

The atomic structure of pure a-corundum is depicted in Fig. 3, following Kronberg (1957). The primitive unit cell is rhom-
bohedral (two formula units per cell, lattice parameter a0 ¼ 0:512 nm, bond angle 55.3�). The hexagonal unit cell, while con-
sisting of more atoms (six formula units per cell), is more convenient for describing mechanical behavior. Two types of
hexagonal cells are encountered in the literature (Kronberg, 1957). One is the morphological cell shown in Fig. 3, with lattice
parameters A1 ¼ 0:475 nm and CM ¼ 0:649 nm. The second is the structural cell, consisting of a second stack of each of three
layers of Al cations and O anions, differing from the morphological unit cell by a rotation of 180� about the c-axis [0001].
Parameters of the structural hexagonal cell are A01 ¼ 0:475 nm and CS ¼ 2CM ¼ 1:297 nm, shown in Fig. 4. Elastic constants
are listed in Table 1. In Table 1 and henceforth, all anisotropic properties are referred to the structural unit cell. Relevant bulk
physical properties with supporting references are listed in Table 2.

Prominent slip and twin systems are listed in Tables 3 and 4, respectively, and are illustrated in Fig. 4. While basal and
prism slip can occur in either direction for a given system, pyramidal slip is thought unidirectional (Heuer et al., 1998) and
only occurs when the resolved shear stress acts in a positive sense with respect to the c-axis, e.g., tensile loading along
[0001]. Twinning is also unidirectional; for example, rhombohedral twinning occurs only when the resolved shear stress
acts in a negative sense with respect to the c-axis, such as occurs in compressive loading along [0001]. Thus, pure tensile
deformation along [0001] can only be accommodated by pyramidal slip, elasticity, or fracture, while pure compression
along [0001] can only be accommodated by rhombohedral twinning, elasticity, or fracture. Slip directions for unidirectional
Fig. 3. Morphological unit cell of sapphire (Kronberg, 1957).



Fig. 4. Prominent slip and twin systems in corundum (structural unit cell notation).

Table 1
Elastic coefficients at room temperature.

Parameter Value [GPa]a Parameter Value [GPa]a Parameter Value [GPa]a

C11 498 C111 �3780 C134 131
C12 163 C112 �1090 C144 �302
C13 117 C113 �963 C155 �1160
C14 23 C114 �55 C222 �4520
C33 502 C123 �289 C333 �3340
C44 147 C124 39 C344 �1090

C133 �922 C444 19

a Winey et al. (2001).
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mechanisms are tabulated here such that the resolved shear stress for that slip or twin system must be positive to enact
shear on that system. Bourne et al. (2007) observed prism and basal dislocations, twins, cleavage fracture, and grain bound-
ary fracture in specimens recovered from impact experiments on polycrystalline alumina, with activity or inactivity of cer-
tain mechanisms dependent on the impact stress. Atomistic simulations of hypervelocity impact of sapphire have also
predicted basal and pyramidal slip and basal and rhombohedral twinning (Zhang et al., 2007, 2008). Quantification of resis-
tances for slip, twinning, and fracture in corundum is currently an area of active research (Tymiak and Gerberich, 2007; Clay-
ton, 2009; Tymiak et al., 2009). Because of alumina’s brittleness at low temperatures, experimental measurements of yield
mechanisms at low temperatures must occur at high pressures that suppress tensile fracture, e.g., indentation (Tymiak and



Table 3
Slip systems and slip dislocations.

Type Direction Plane Burgers vectora b [nm] Remarks

Basal ½11 �20� (0001) 1=3½11 �20� 0.475 Bidirectionalb

½�12 �10� (0001)

½�2110� (0001)

Prism ½1 �100� ð11 �2 0Þ 1=3½1 �1 00� 0.274 Bidirectionalb

½10 �10� ð�12 �1 0Þ
½01 �10� ð�211 0Þ

Pyramidal ½�1101� ð10 �11Þ 1=3½�11 01� 0.512 Unidirectionalc

½0 �111� ð10 �11Þ
½10 �11� ð0 �111Þ
½�1101� ð0 �111Þ
½0 �111� ð�1101Þ
½10 �11� ð�1101Þ

a Kronberg (1957), Tressler and Barber (1974), and Lagerlof et al. (1994).
b Kronberg (1957), Snow and Heuer (1973), and Heuer et al. (1998).
c Tressler and Barber (1974).

Table 4
Twin systems, partial dislocations, and stacking fault energies.

Type Direction Plane Shear Burgers vectora b [nm] WSF ½J=m2�

Basal (type IIb) ½�1010� (0001) 0.635 1=3½�1010� 0.274 1.2–6.7d

½1 �100� (0001)

½01 �10� (0001)
Rhombohedral (type Ic) ½�101 �1� ð�1012Þ 0.202 1=21:9½1 �10 �1� 0.071 0.25e

½01 �1 �1� ð01 �12Þ
½1 �10 �1� ð1 �102Þ

a Kronberg (1957), Geipel et al. (1994), and Heuer et al. (1998).
b Veit (1921) and Kronberg (1957).
c Heuer (1966).
d Kenway (1993) and Marinopoulos and Elsasser (2001).
e Lagerlof et al. (1984).

Table 2
Bulk physical properties (atmospheric pressure).

Parameter Value Remarks

q0 3980 kg/m3 Room temperature mass densitya

c 780 + 0.3(h � 300) J/kg K Specific heat per unit massb

a11 5:0� 10�6=K Thermal expansion coefficienta

a33 5:7� 10�6=K Thermal expansion coefficienta

hM 2325 K Melting temperatureb

K 30 W/mK Thermal conductivityc (300 K)
l 156–70(h=hM) GPa Rhombohedral shear modulus (C44)d

a Burghartz and Schulz (1994).
b Castanet (1984).
c Cahill et al. (1998).
d Zouboulis and Grimsditch (1991).
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Gerberich, 2007; Tymiak et al., 2009) or confined compression (Graham and Brooks, 1971; Castaing et al., 1981; Scott and
Orr, 1983; Lankford et al., 1998).

4.2. Yield in corundum

Flow stresses fgg entering (51)–(53) are decomposed into sums of contributions of various mechanisms, e.g., following
Kocks et al. (1975) and Clayton (2005, 2009):
gi ¼ gi
S þ gi

L; gi
j ¼ gi

jS þ gi
jL; gj ¼ gj

S þ gj
L: ð54Þ



J.D. Clayton / International Journal of Plasticity 26 (2010) 1357–1386 1373
Here, gi
S ¼ gi

t¼0 reflects the initial yield stress for slip in the parent crystal on system i, and gi
L reflects long-range barriers

associated with defects that accumulate during the deformation history. Analogous definitions apply for resistance to slip
within the twins and resistance to twin propagation in the second and third of (54), respectively. Both terms in each sum
in (54) depend on temperature; the first, i.e., initial yield, is reviewed here for commercially pure corundum over a range
of temperatures, following Clayton (2009). Such a review is necessary to provide sufficient background for the discussion
of new results given in Sections. 4.3 and 4.4. The second term on the right side of the first equality in (54), gi

L, is newly ad-
dressed in Section 4.3 for pure and doped alumina deformed plastically at high temperatures.

The initial yield stress depends on short range barriers such as strong Peierls barriers in crystals with low initial defect
densities and non-metallic bonds (Friedel, 1964; Farber et al., 1993), and at high rates also accounts for viscous, phonon,
and electron drag (Kocks et al., 1975; Gilman, 1979). Short range barriers exhibit a strong dependence on temperature for
both slip and twinning in sapphire (Lagerlof et al., 1994), reflected appropriately by
Table 5
Slip and

Para

g0 [G

k

gi
S ¼ gi

0 exp �ki h
hM


 �
; gj

S ¼ gj
0 exp �kj h

hM


 �
; ð55Þ
where gi
0 is an athermal yield stress, hM is the melting temperature, and ki is a dimensionless parameter. Analogous defini-

tions apply for quantities associated with twin system j in the second of (55). Appropriate forms for the temperature depen-
dence of the second of (54), i.e., for slip systems within twinned regions, have not been verified experimentally for sapphire,
but it may be reasonable to assume that short range barriers for a slip system in the parent are transferred to its rotated
counterpart in a twinned region. Relation (55) does not conform to the usual Arrhenius form for thermally activated kinetics
(Kocks et al., 1975) but can be justified physically in terms of activation volumes for cross-slip in alumina (Lagerlof et al.,
1994). Values of g0 and k are compiled in Table 5 for pure alumina crystals for mechanisms of basal, prism, and pyramidal
slip and basal and rhombohedral twinning. Comparisons to experimental data are provided in Fig. 5 (Clayton, 2009). Room
temperature experimental values follow from nonlinear elasticity calculations of driving forces for inelastic shearing mech-
anisms operative at the experimental HEL in single crystals of various orientations (Clayton, 2009) or from values appropri-
ate for indentation (Tymiak and Gerberich, 2007). High temperature data for basal and prism glide are obtained from
Lagerlof et al. (1994). Data for pyramidal slip are obtained from Tressler and Barber (1974). For basal twinning, data are ob-
tained from Castaing et al. (2004), and for rhombohedral twinning, from Scott and Orr (1983). For rhombohedral twinning,
the fits are most appropriate for 300 6 h 6 1300 K, for basal twinning most valid for 300 6 h 6 1600 K, and for slip the
model validly spans the range 300 6 h 6 2100 K. Trend lines extended to the lower limit h ¼ 0 K are extrapolations. Strain
rate dependence of twinning is not thought to be significant, based on experimental observations (Scott and Orr, 1983). Rate
sensitivities of pyramidal slip with m � 10 (Tressler and Barber, 1974) and prism slip with m � 16 (Castaing et al., 1981)
have been observed for sapphire deformed at low rates and high temperatures. Pressure and rate dependence are not con-
sidered in Fig. 5 but could be included in a more refined model when supporting experimental data spanning a wide range of
pressures and strain rates become available for all slip and twin families. Predictions at a temperature of 300 K follow the
sequence
gpyramidal slip
S > gbasal twin

S � gbasal slip
S > gprism slip

S > grhombohedral twin
S ; ð56Þ
in general agreement with trends for slip resistances in indentation (Tymiak and Gerberich, 2007).

4.3. High temperature hardening and defect accumulation in pure and doped alumina

Conceivably, long-range barriers in each of (54) could depend in a complex manner upon activity of the slip or twin sys-
tem under consideration (i.e., self-hardening) as well as the activity of all other slip systems (i.e., latent hardening) and twin
systems (Christian and Mahajan, 1995; Wu et al., 2007). Considered here are phenomena for which supporting experimental
data are available: hardening of basal slip and hardening of rhombohedral twinning by total dislocation line accumulation.
twinning parameters for commercially pure alumina.

meter Value Remarks Parameter Value Remarks

Pa] 12.7 Basal slip gm [GPa] 53.6 Basal slip
6.6 Prism slip x 10.7 Basal slip

10.0 Pyramidal slip h0 8:0� 10�3 Basal slip

11.5 Basal twin h1 9:3� 10�3 Basal slip

3.4 Rhombohedral twin a0 0.54 Basal slip

8.4 Basal slip a1 0.64 Basal slip
5.6 Prism slip hR 0.58 Rhombohedral twin
3.7 Pyramidal slip
7.7 Basal twin

10.2 Rhombohedral twin
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Fig. 5. Shear stresses for initial yield by slip or twinning in pure corundum (Clayton, 2009).
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Addressing first the hardening of slip systems, i.e., the glide resistance, the rate of resistance to long-range barriers in (54)
is prescribed as
_gi
L ¼ 1� gi

L

gi
M


 �
hi
Xn

k¼1

j _ckj; gi
L

��
t¼0 ¼ 0; ð57Þ
where gi
M is a saturation stress (Wu et al., 2007) and hi is a hardening modulus. These quantities depend on the thermody-

namic state of the crystal as follows:
gi
M ¼ gi

m exp �xi h
hM


 �
; hi ¼ l hi

0 � hi
1

h
hM


 �
; ð58Þ
where gi
m;xi; hi

0, and hi
1 are material constants that may differ among different families of slip systems. These constants, as

well as g0 of (55), may also vary with the concentration of impurities or dopants (Klassen-Neklyudova et al., 1970; Pletka
et al., 1982). For example, substitutional atoms such as Cr, Ti, and Mg may be present in natural (e.g., geologic) crystals,
or may be added to a synthetic ceramic to adjust its mechanical, electrical, and/or optical properties (Castaing et al., 2002).

Relations (57) and (58) provide a reasonable fit to the experimental basal slip data of Pletka et al. (1977) for pure sapphire
over the range 1673 6 h 6 1993 K, as shown in Fig. 6(a), with model parameters listed in Table 5. In Fig. 6, cP is the cumu-
lative plastic shear from glide on a single system. As shown in Fig. 6(b), the model accurately describes the response of
corundum doped with cations of Cr3+, Ti3+, Ti4+, or Mg2+; atomic percentages of each dopant and corresponding hardening
parameters are listed in Table 6. For pure alumina and all doped variants, k ¼ 8:4 of Table 5 is used. For all model predictions
and experimental results (Pletka et al., 1982) shown in Fig. 6(b) except those for Cr3+ doping, the temperature is h ¼ 1793 K.
For Cr3+-doped corundum, predictions and experimental results (Pletka et al., 1982) of Fig. 6(b) correspond to h ¼ 1773 K:

As is clear in Fig. 6(a), model predictions do not provide an ideal fit to all experimental data. For example, dips in exper-
imentally observed shear stresses at plastic shear strains on the order of a few percent are not captured by the model of (57)
and (58). Pletka et al. (1977) attributed such dips to an increase in mobile dislocation density associated with dislocation
sources and dipole break-up. Furthermore, the saturation stress at large plastic shear strain is not predicted accurately for
all temperatures; e.g., the model fit is excellent at 1773 K for cP P 0:20, while the saturation stress is under-predicted by
the model by at least 20% at 1673 K. The law used for temperature dependence of glide resistance in the present model
has been selected as a compromise between simplicity (exponential and linear forms in (58), four parameters) and accuracy.
More accurate temperature-dependent hardening/softening laws could always be attempted at the possible expense of addi-
tional model complexity and added fitting parameters.

Dislocation accumulation takes place in conjunction with slip system hardening according to
gi
L ¼ ailb

ffiffiffiffiffiffi
qT
p � ffiffiffiffiffiffiffiffi

qT0
pð Þ; ai ¼ ai

0 � ai
1

h
hM

; ð59Þ
where qT0 is the initial dislocation density and ai
0 and ai

1 are dimensionless constants that may vary among families of slip
systems. Following Pletka et al. (1977), (59) extends the theory of Taylor (1934) of slip impedance from dislocation interac-
tions on parallel planes to conditions wherein the ratio between shear strength and dislocation density decreases with
increasing temperature. Relation (59) improves on a previous relation (Clayton, 2009) that did not allow qT < qT0 as may
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Fig. 6. Shear stresses for slip on the basal plane: (a) pure alumina over range of temperatures and (b) pure and doped alumina at h � 1800 K.

Table 6
Basal slip parameters for doped alumina ð� 1800 KÞ.

Dopant Atomic %a g0 [GPa] gm [GPa] h0 h1 a

Cr3+ 0.20 14.0 100 1:2� 10�2 9:3� 10�3 0.150

Ti3+ 0.047 13.5 55 9:0� 10�3 9:3� 10�3 0.067

Ti4+ 0.047 35.0 160 9:5� 10�3 9:3� 10�3 0.15

Mg2+ 0.002 12.8 30 9:0� 10�3 9:3� 10�3 �0.12

a Pletka et al. (1982).
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result from dislocation annihilation. Parameters are listed in Table 5 for pure alumina, following calibration to data obtained
over the temperature range 1673 6 h 6 1993 K from basal slip experiments at a rate of _cP � _cS ¼ 1:33� 10�4=s (Pletka
et al., 1977). Values of a0 and a1 listed in Table 5 differ from those listed previously (Clayton, 2009) as a result of new relation
(59). Predictions are compared with data (Pletka et al., 1977) for pure sapphire in Fig. 7(a). Predictions of the model are com-
pared with data (Pletka et al., 1982) for doped corundum deformed by basal glide at temperatures h � 1800 K in Fig. 7(b).
Parameter a is listed in Table 6 for each doped variant of alumina, valid at h � 1800 K. Additional experiments at various
temperatures are required to determine the temperature dependence of a in the second of (59) for each of the doped vari-
ants. From Fig. 7, dislocation densities increase with plastic shear strain from initial value qT0 ¼ 108 m�2(Pletka et al., 1977)
to saturation values in the range 1012 m�2 < qT < 1014 m�2 that increase with decreasing temperature.

When all systems in a given family harden equally (Taylor, 1934), for example as in (57), relation (59) can be inverted and
used with (57) to provide an evolution equation for the total accumulated dislocation density (Clayton, 2005). Generalization
of (57)–(59) is required to account for potentially more complex interactions between active and inactive systems (i.e., self-
hardening versus latent hardening), and for interactions between statistically stored and geometrically necessary disloca-
tions (Rezvanian et al., 2007). Both hi of (58) and gi

L of (59) are scaled consistently by the rhombohedral shear modulus l
that depends on temperature (Table 2 and Appendix C).

Experiments also provide quantitative evidence for hardening of rhombohedral twin propagation by accumulation of for-
est dislocations (Castaing et al., 2002). Such behavior is captured by
_gj
L ¼

Xn

i¼1

hj
i _gi

L; gj
L

���
t¼0
¼ 0; ð60Þ
where slip on all systems can contribute to the hardness of twin system j, and hj
i is an interaction matrix relating the hard-

ening rate of slip system i to that of twin fraction j. Setting hj
i ¼ hR for all basal slip systems i and rhombohedral twin systems

j gives _gj
L ¼ hr R

i
_gi

L with the value of hR listed in Table 5, fit to data of Castaing et al. (2002) for hardening of rhombohedral
twinning by basal slip.

Rhombohedral twinning is considered quantitatively in Fig. 8(a). Loading conditions in Fig. 8(a) correspond to uniaxial
compressive stress applied normal to the basal plane (i.e., parallel to the c-axis). For such conditions, the only operative
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Fig. 7. Dislocation density accumulation from slip on the basal plane: (a) pure alumina over range of temperatures and (b) pure and doped alumina at
h � 1800 K.
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inelastic deformation mechanism is rhombohedral twinning, which can occur simultaneously on any of the three rhombo-
hedral twin systems of Table 4, each with a Schmid factor of 0.45 (Scott and Orr, 1983). Representative experimental data
points in Fig. 8(a), corresponding to an axial compressive strain rate of _e ¼ 8:7� 10�6=s, display serrations associated with
load drops that correlate with fast twin nucleation, propagation, and broadening (Scott and Orr, 1983). In Fig. 8(a), e is the
nominal total axial strain and s is the resolved shear stress acting on a twin system. Model predictions in Fig. 8(a) correspond
to s ¼ gj ¼ gj

S computed via (55). Because no slip systems are active, (60) does not result in any hardening associated with
forest dislocations accumulated during slip, so the present model provides a constant twin resistance at a given temperature.
The model correctly predicts a lower twin resistance at the higher temperature observed in experiments at higher strains
ðe > 0:12Þ, but does not predict the converse behavior at lower strains. It is noted that present use of (60) with parameters
in Table 5 is at the upper limit of validity, with regards to temperature, of the fit shown in Fig. 5 for rhombohedral twinning
because shear stresses required for rhombohedral twinning do not decrease significantly as the temperature is increased
above 1200 K (Scott and Orr, 1983; Castaing et al., 2002). The model (at 1173 K) bounds most experimental data in
Fig. 8(a) from above, but does not capture undulations in stress–strain behavior associated in experiments with sequential
activation and fast propagation of individual twins within a single crystal. Some such undulations are artifacts of the limited
velocity of the testing machine (Scott and Orr, 1983; Castaing et al., 2002).

Basal slip followed by rhombohedral twinning is considered quantitatively in Fig. 8(b). Boundary conditions applicable to
Fig. 8(b) are explained by Castaing et al. (2002): a single crystal is compressed in uniaxial stress applied along the ab direc-
tion, at an angle of 57� from [0001] in the ð1210Þ plane, in two stages. In the first stage, the temperature is held at
h ¼ 1567 K, which favors basal slip (two systems each with Schmid factor of 0.4), presuming, as noted above, that stress
needed for rhombohedral twinning does not decrease significantly above 1200 K (Scott and Orr, 1983; Castaing et al.,
2002). The specimen is then cooled to h ¼ 1169 K. In the second stage, the crystal is reloaded in compression along the same
direction, which at this lower temperature, favors rhombohedral twinning (two systems with a Schmid factor of 0.15) be-
cause basal slip resistance increases significantly with decreasing temperature. Model predictions for axial stress r (positive
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twinning (see text) in pure alumina (b).



J.D. Clayton / International Journal of Plasticity 26 (2010) 1357–1386 1377
in compression) are compared with experimental results in Fig. 8(b). The first loading stage activates double basal slip, and
simultaneously leads to hardening of rhombohedral twin systems via (60). After elastic reloading, the second stage activates
rhombohedral twinning on two possible systems. The experiment (Castaing et al., 2002), performed at a strain rate of
_e ¼ 2� 10�5=s, was apparently terminated after first occurrence of twinning. The model predicts constant twin resistance
stress as twinning progresses in the second stage. From Fig. 8(b), the model over-predicts the saturation stress for basal dou-
ble slip by 10–20% (recall that parameters used in (57) and (58) and listed in Table 5 are calibrated independently to single
slip data), but the rhombohedral twin resistance after basal slip appears to be accurately modeled.

Hardening of prism and pyramidal slip and basal twinning systems by dislocation accumulation have not been quantified
but could be addressed by straightforward extension of (57)–(60). Potential twin–twin interactions, hardening of slip sys-
tems within twins, and hardening of slip by twinning also remain to be quantified for pure and doped alumina.

Stored elastic energies of dislocation lines (energy per unit length) and twin boundaries (energy per unit area) are written
β

0.

0.

0.

0.

0.

1.
a

Fig. 9.
alumin
Eq ¼
lb2

4pK
ln

R
RC


 �
þ bE � j1lb2

2
; ET ¼

WSF

2
� j2lb

2
; ð61Þ
where in the first of (61), K accounts for the edge or screw character of the dislocation line as well as elastic anisotropy
(Eshelby, 1949; Foreman, 1955), R is the radial distance from the dislocation core, RC is the cut-off radius for the dislocation
core, and bE is a correction that accounts for the core energy, line curvature, interaction energies from other defects and
boundaries, and stacking faults associated with partial slip dislocations. As a first approximation (Hull and Bacon, 1984; Heu-
er et al., 1998), j1 ¼ 2:0=K is assumed. The value of K depends upon the orientation of the dislocation line with respect to the
anisotropic crystal lattice (Foreman, 1955; Steeds, 1973); for large numbers of dislocation orientations, it becomes prudent
to use isotropic approximations K ¼ 1 for screw dislocations and K ¼ 1� m for edge dislocations. Recall from Section 3.4 and
Table 4 that WSF � 0:25� 10 J=m2 is a typical stacking fault energy associated with twin systems in alumina, from which j2

in residual energy (46) and (61) can be estimated as WSF=ðlbÞ. Kenway, 1993 suggested that the variation in stacking fault
energy with temperature in alumina is small, i.e., @WSF=@h � �1:1� 10�4 J=ðm2KÞ.

Consider now the residual elastic energy accumulated in the crystal during single slip at constant temperature. From (61),
the cumulative value b of dissipation fraction b0 in (50) is approximated as
b ¼
Z

gidci � lb2qT=K

 � Z

gidci


 ��1

ðsingle slipÞ: ð62Þ
Predicted dissipation fraction b is shown in Fig. 9(a) for pure sapphire deformed at various temperatures, and in Fig. 9(b) for
doped alumina single crystals deformed at approximately 1800 K. In each case, b is computed via integration of (57) and use
of (59), (62), and material parameters listed in Tables 5 and 6. Since during experiments (Pletka et al., 1977, 1982) disloca-
tions of families with various Burgers vectors and line orientations were generated, in the computations the representative
value used for b is the rhombohedral lattice parameter and used for l the rhombohedral shear modulus. Shown are results
for edge dislocations and screw dislocations; in corundum, energy storage ratio 1� b differs by a factor of K ¼ 0:76 between
these two kinds of dislocations. In the experiments, curved lines and loops were also observed, whose energies are only
approximated by straight line formula in the first of (61). At all temperatures, the stored energy appears fairly small relative
to the plastic work, since b > 0:75, in agreement with observed trends for many engineering metals (Taylor and Quinney,
1934; Clayton, 2005).
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It is noted that (61) and (62) account for dislocation interactions only in an approximate way, via choice of the empirical pro-
portionality constant j1 ¼ 2:0=K (Hull and Bacon, 1984; Heuer et al., 1998). Specifically, the energy per unit volume of dislo-
cations is assumed proportional to their total line length per unit volume, i.e., energy=volume ¼ energy=length�
length=volume ¼ Eq � qT ¼ ðlb2

=KÞ � qT , with proportionality constant Eq assumed fixed at a given temperature. As demon-
strated later in Section 4.5 and Table 8, the computed value of Eq ¼ 46:3 nJ=m for full edge dislocations on the basal plane at null
temperature from (61) is very close to the value from atomic simulations (Bodur et al., 2005), Eq ¼ 47:4 nJ=m at a dislocation
density qT � 1012 m�2 representative of the application in Figs. 6, 7 and 9. A more detailed approach accounting for differences
in dislocation interaction energies at different dislocation densities would enable a possibly nonlinear relationship between
dislocation density and defect energy per unit volume.

Consider next the energy of twin boundaries. Geometric arguments can be applied to demonstrate that the area of twin
boundaries per unit volume of lamellar twins is approximately
gT ¼ 2
Xw

j¼1

f j=tj; ð63Þ
where tj is the mean thickness of a twin comprising fraction j with volume fraction f j. A proportionality relationship between
characteristic twin thickness and twin volume fraction was also proposed by Proust et al. (2007). For propagation of a single
twin system, the analog of (62) is
b ¼
Z

gjcjdf j � ETgT


 � Z
gjcjdf j


 ��1

¼ 1�WSF tjcjgj
� ��1 ðsingle twin systemÞ; ð64Þ
where gj is assumed here only a function of temperature, and the second of (61) is used. Ranges of thickness spanning
0:1 lm 6 tj

6 500 lm for basal and rhombohedral twins in sapphire have been reported (Heuer, 1966; Scott and Orr,
1983; Inkson, 2000; Castaing et al., 2004). From (64), dissipation factor b increases with increasing thickness, twinning shear,
and twinning stress, and decreases with increasing stacking fault energy. Considering rhombohedral twins (twinning shear
cj ¼ 0:202Þ, a minimum thickness of 0:1 lm, a maximum stacking fault energy of 10 J/m2, and the twin resistance provided
by the second of (55) and Table 5, (64) gives a lower bound of b > 0:999 for 0 6 h 6 2100 K. Hence, omission of the pure
twin boundary contribution to the ratio of stored to dissipated energy appears to be a reasonable assumption in crystal plas-
ticity modeling of alumina. However, interaction energies between twins and dislocations could still be tangible and may
merit consideration via nonzero j4 and j6 in (46)–(48).

4.4. Residual volume changes

Residual volume change J was introduced in Section 3, following (3), (4) and (12). An estimation of this quantity from
nonlinear elasticity theory is (Zener, 1942; Seeger and Haasen, 1958; Teodosiu, 1982; Clayton and Bammann, 2009)
J � 1 ¼ DV
V0
¼ 1

B
@B
@p
� 1


 �
WD þ

1
G

@G
@p
� G

B


 �
WS; ð65Þ
where G and B are isotropic shear and bulk moduli, p ¼ �trr=3 is the Cauchy pressure, and WD and WS are dilatational and
deviatoric strain energy densities per unit volume, respectively, arising from microscopic elastic fields of defects within a
volume element of crystal. Volume change in (65) is measured between reference and intermediate configurations:
DV ¼ V � V0 with V the volume in B. Partitioning the elastic energies per unit dislocation line length in the first of (61) into
dilatational and deviatoric parts, (65) can be written as (Seeger and Haasen, 1958; Teodosiu, 1982)
J � 1 ¼ DV
V0
¼

1
3K

1�m�2m2

ð1�mÞB
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� 	h i
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1
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B

� 	
EqqT ðscrewÞ;

8><>: ð66Þ
with Eq ¼ lb2ð4pKÞ�1 lnðR=RCÞ � lb2
=K. Closed form expressions for residual elastic volume change exist only for single

crystals of isotropic or cubic symmetry (Toupin and Rivlin, 1960; Clayton and Bammann, 2009), and have been applied in
analysis of volume changes from stored energy of cold work in metal polycrystals (Wright, 1982). An exact solution for
the residual elastic volume change, and possibly shape change, in a highly anisotropic (e.g., trigonal) Bravais lattice would
require integration over local elastic displacement gradients induced by defects within the body (Toupin and Rivlin,
1960; Clayton and Bammann, 2009), though simpler methods of approximation of volume changes based on thermodynamic
arguments exist (Zener, 1942; Holder and Granato, 1969). Here, following previous studies (Seeger and Haasen, 1958), the
isotropic approximation (66) is investigated as an order-of-magnitude estimate, consistent with the isotropic approximation
of dislocation energies in (61). Formal derivations and limitations of (65) and (66) are discussed by Clayton and Bammann
(2009).

Table 7 shows values of the normalized volume change DV=ðLb2Þ, where L is the total length of dislocation lines of pure
screw or pure edge character, and b is the magnitude of the Burgers vector. For alumina, effective isotropic constants (Holm
et al., 1999 and Appendix C) and their pressure derivatives (Sarkar et al., 1996) are obtained from the literature. Values of the
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normalized volume change in Al2O3 from dislocation lines are positive in agreement with other solids (Seeger and Haasen,
1958; Wright, 1982), are very to close those for metallic crystal Cu (face centered cubic), and are 	 2=3 of those for ionic
crystal NaCl (cubic rock salt). Data for residual volume changes and dislocation densities are available for Cu polycrystals
(Clarebrough et al., 1957); the range of values for the volume change per line length in the rightmost column of Table 7 cor-
responds to applied compressive strains ranging from 0.3 to 0.7 and dislocation line densities found from energy measure-
ments. The theory thus provides reasonably accurate results for Cu, within a factor of two of the experimental values.

Shown in Fig. 10(a) are volume changes computed from (66) and properties in Table 7, for distributions of pure edge and
pure screw dislocations of line densities predicted by the model in Fig. 7(a) for basal slip at various temperatures. Shown in
Fig. 10(b) are volume changes computed from (66) and the properties in Table 7, for dislocations in pure and doped alumina
of line densities predicted by the model in Fig. 7(b) for basal slip at h � 1800 K. At fixed temperature and composition, the
predicted ratio of residual expansion in alumina for pure screw dislocations to that for pure edge dislocations is � 0:6. As
demonstrated by Clayton and Bammann (2009), the volume change for a crystal containing a mixture of non-interacting
edge and screw dislocations would fall between predictions for densities of pure edge and pure screw dislocations. Volume
changes remain small as saturation levels of dislocation density observed in high temperature basal glide are approached:
DV=V0 � 10�5 corresponds to the volume increase that would result from thermal expansion in alumina from a temperature
rise of � 0:7 K.

According to the theory, volume increases on the order of 1% would be achieved upon generation dislocation densities
qT � 1016 m�2, corresponding to a dislocation spacing on the order of 10 nm. Conceivably, very large dislocation densities
may be required to enable extremely large plastic strain rates in shock physics experiments (Rohatgi and Vecchio, 2002)
if the upper bound on dislocation velocity is limited to the velocity of transverse acoustic waves (Kocks et al., 1975). Den-
sities qT � 1016 m�2 have been approached in such cases (Merala et al., 1988; Rohatgi and Vecchio, 2002). Generation of de-
fect densities of this magnitude could affect the measured pressure–volume response; for example, the pressure required to
offset a 1% volume increase would be on the order of 0:01B � 2:5 GPa. However, it is noted that the approximations in (61)
and (66) may decrease in validity as dislocation spacings decrease and interaction energies among dislocations become
stronger. Atomic simulations offer the possibility of more accurate predictions of effects of large defect densities on volume
changes, effective (tangent) elastic moduli, and stored energies (Dienes, 1952; Bodur et al., 2005; Chung and Clayton, 2007).
Table 7
Effective isotropic elastic properties and volume changes associated with dislocations.

Crystal G [GPa] B [GPa] m @G=@p @B=@p DV=ðLb2Þedge DV=ðLb2Þ screw DV=ðLb2Þ experimentc

Al2O3
a 157 250 0.24 1.7 4.2 1.7 1.0 –

NaClb 15 23 0.24 2.0 5.8 2.5 1.4 –
Cub 47 152 0.36 1.2 5.6 1.8 1.0 1.6–2.3

a Sarkar et al. (1996) and Holm et al. (1999).
b Seeger and Haasen (1958).
c Clarebrough et al. (1957).

γ P

0.00 0.05 0.10 0.15 0.20 0.25

J-
1

0

2e-6

4e-6

6e-6

8e-6

1e-5
1673K edge
1673K screw
1773K edge
1773K screw
1893K edge
1893K screw
1993K edge
1993K screw

γ P

0.00 0.05 0.10 0.15 0.20 0.25

J-
1

0

1e-6

2e-6

3e-6

4e-6

5e-6

6e-6

undoped edge
undoped screw
Cr3+ edge
Cr3+ screw
Ti3+ edge
Ti3+ screw
Ti4+ edge
Ti4+ screw
Mg2+ edge
Mg2+ screw

a b
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For example, Bodur et al. (2005) reported a decrease in energy per unit length Eq of periodically arranged edge dislocation
dipoles on the basal plane by about a factor of 3, from 47 4 nJ/m (Table 8) to 16.5 nJ/m, as the dislocation density is increased
from qT � 1012 m2 to qT � 1016 m�2. Accounting for this decrease, the volume increase computed via (66) at a large disloca-
tion density of qT � 1016 m�2 would be reduced by a factor of 3, to about 0.3%, corresponding to a pressure change on the
order of 0.8 GPa. A procedure for computing residual volume changes (as well as possible shape changes) associated with
defects in a self-equilibrated lattice in terms of anharmonic contributions to inter-atomic potentials is outlined by Clayton
and Bammann (2009).

Finally consider volume changes attributed to twin boundaries (i.e., appropriate stacking fault energies) bounded accord-
ing to the second of (61) and (65) as
Table 8
Compar

Quan

Basa

Basa

Basa

a Zha
b Nis
c Pei
d Bod
e Ma
1
2G

@G
@p
� G

B


 �
WSFgT 6

DV
V0
6

1
2B

@B
@p
� 1


 �
WSFgT : ð67Þ
Holder and Granato (1969) suggested that the lower bound in (67) would be appropriate for low-angle grain boundaries
constructed from arrays of screw dislocations. Using values from Table 7 for elastic constants and their pressure derivatives,
and using a maximum stacking fault energy of 10 J/m2, (67) becomes 3:4� 10�11gT 6 DV=V0 6 6:4� 10�11gT , with the
area per unit volume of twin boundaries gT in dimensions of m�1. From (63), with f j ¼ 1 and a minimum twin thickness
tj ¼ 0:1 lm (Inkson, 2000), bounds for the volume change are 6:8� 10�6

6 DV=V0 6 1:3� 10�5. Comparing with results
in Fig. 10, this maximum volume change from the stored energy of twin boundaries is of the same order of magnitude as
that predicted from dislocation lines accumulated in single crystals of corundum at high temperatures at shear strains on
the order of 0.25. Not considered here are possible effects of doping on elastic coefficients, which could be important if dop-
ing alters the concentration of vacancies or interstitials (Dienes, 1952).
4.5. Comparison with atomic calculations

In Table 8, parameters or predictions of the present model are compared with results of atomic calculations published
elsewhere or with theoretical models. The initial resistance to slip of basal dislocations of the present model in (55) is com-
pared to values obtained from molecular dynamics (MD) simulations of hypervelocity impact (Zhang et al., 2007, 2008) and
consideration of the generalized stacking fault energy gradient (Nishimura et al., 2009) using MD simulations as well as
quantum mechanics (density functional theory or DFT). Also shown are values of the theoretical Peierls–Nabarro stress (Pei-
erls, 1940; Clayton, 2009) for full edge and screw dislocations on the basal plane. The value of initial slip resistance for the
present model at null temperature, 12.7 GPa, falls between Peierls–Nabarro stresses for edge and screw dislocations, and is
	 15—35% lower than the atomic simulation results. It is noted that the present model does not incorporate effects of hydro-
static pressure on the basal slip resistance. Extremely high pressures generated during hypervelocity impact (Zhang et al.,
2008) or indentation (Tymiak and Gerberich, 2007) could conceivably cause an increase in the apparent glide (as well as
twinning) resistance, as has been noted in MD simulations of other materials (Xu et al., 2004). For example, if the glide resis-
tance is assumed proportional to the shear modulus (Peierls, 1940; Nabarro, 1947; Kocks et al., 1975), at a pressure of
100 GPa, the shear modulus and hence the glide resistance would approximately double in magnitude over its value at ambi-
ent pressure, if the pressure derivative of the shear modulus, 1.7 in Table 7, sufficiently describes the variation of shear mod-
ulus up to such pressures. In previous work (Clayton, 2009), the lower value of 4.3 GPa at room temperature was found to
provide a reasonable explanation for possible occurrence of basal slip in plate impact experiments on single crystals (Graham
and Brooks, 1971) at lower pressures on the order of 10–20 GPa.
ison of model features with atomic or theoretical calculations.

tity Present model Atomic/theoretical calculation

Value Equation Value Reference

l glide resistance gi
S

12.7 GPa (0 K) (55) 15 GPa a

4.3 GPa (300 K) (55) 16.3 GPa (MD) b

18.9 GPa (DFT) b

9.6 GPa (edge, 0 K) c

17.9 GPa (screw, 0 K) c

l dislocation energy Eq 46.3 nJ/m (edge, 0 K) (61) 47.4 nJ/m (edge, 0 K) d

35.2 nJ/m (screw, 0 K) (61)
l stacking fault dilatancy ðDV=VÞ=gT 0.028–0.052 nm (67) 0.028–0.096 nm e

ng et al. (2007, 2008).
himura et al. (2009).
erls (1940) and Nabarro (1947).
ur et al. (2005).

rinopoulos and Elsasser (2001).
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The energy per unit length of full dislocations on the basal plane obtained using (61) with j1 ¼ 2=K and l ¼ C44 is com-
pared in Table 8 with results of MD simulations of full basal plane edge dislocations (Bodur et al., 2005). The edge dislocation
energy agrees closely with the atomic calculation, the latter valid for a dislocation line density of � 1012 m�2 (Bodur et al.,
2005) in the null temperature limit.

In the final row of Table 8, the volume increase from basal plane stacking faults computed using the bounds in (67) is
compared with results of molecular simulations (Marinopoulos and Elsasser, 2001). Specifically, the volume change per den-
sity of stacking faults is computed in (67) using a representative stacking fault energy WSF ¼ 4:0 J=m2, multiplied by a factor
of two because here gT represents the stacking fault density rather than the twin boundary density. Atomic simulation re-
sults follow from consideration of computed expansions normal to various kinds of basal plane stacking faults ranging in
magnitude from 5.5% to 18.7% of the rhombohedral lattice parameter a0, computed for relaxed structures at null external
pressure and null temperature (Marinopoulos and Elsasser, 2001). Basal plane stacking faults are associated with partial dis-
locations of type 1=3h1010if0001g, which only involve the cation (i.e., Al) sub-lattice, since 1=3h1010i is a perfect trans-
lation vector in the anion (i.e., O) sub-lattice. Agreement between the present model and the quoted atomic calculations is
reasonable. Dilatancy for various relaxed stacking fault structures on basal and prism planes was also computed by Kenway
(1993).
5. Conclusions

Anisotropic mechanisms of elasticity, plastic slip, and twinning have been addressed in a crystal plasticity model with
consistent thermodynamics. Finite deformation theory is required for addressing large shears arising from slip and twinning,
lattice reorientation arising from twinning, and nonlinear elastic effects. Accordingly, each mechanism has been represented
explicitly within a multiplicative decomposition of the deformation gradient. A constitutive framework with internal state
variables provides thermodynamic relationships among state variables and driving forces for time rates of inelastic deforma-
tions. Internal state variables consist of geometrically necessary and statistically stored dislocation densities, twin boundary
area densities, and twinned volume fractions. Dissipative inelastic deformation rates consist of rates of plastic shear, rates of
twin fractions, and rates of volume changes attributed to defect content. The present theoretical model extends that of pre-
vious work (Clayton, 2009) by its explicit incorporation of geometrically necessary dislocations corresponding to gradients of
inelastic stretch and rotation and statistically stored dislocations associated with dislocation dipoles and closed loops. Kine-
matic identities demonstrate the contributions of slip and twinning to the geometrically necessary dislocation density tensor
(e.g., full, partial, and interfacial dislocations). Both geometrically necessary and statistically stored dislocations are ad-
dressed in the thermodynamic framework.

A fully nonlinear, anisotropic, crystal plasticity model for mechanical and thermodynamic behavior of pure and doped
corundum has been developed and exercised, accounting for lattice defects mentioned above, i.e., dislocation densities, twin
boundary densities, and twinned volume fractions. Specific inelastic deformation modes include basal, prism, and pyramidal
slip and basal and rhombohedral twinning. Hardening from dislocation accumulation during basal slip has been quantified in
pure and doped corundum single crystals, and stored energies associated with dislocations and twin boundaries have been
estimated. The cumulative ratio of stored energy from dislocations to dissipated energy in basal slip is predicted at less than
25% for plastic shears of less than 0.25 and temperatures greater than 1600 K, regardless of dopant concentration. Upon con-
sideration of stacking fault energies and twin thicknesses observed in sapphire, stored energies associated exclusively with
twin boundaries appear orders of magnitude smaller than those of dislocation lines. Volumetric expansions from nucleation
of dislocation lines and twin boundaries have been estimated using formulae originating from nonlinear elasticity theory
(Clayton and Bammann, 2009, and references therein). Such expansions are predicted small in alumina for dislocation line
densities observed in low pressure, high temperature experiments (Pletka et al., 1977, 1982), and are also predicted small for
twin boundaries of spacing (Inkson, 2000) and energy (Lagerlof et al., 1984) observed experimentally. New predictions for
rhombohedral twinning, including hardening by prior basal slip, are provided; these predictions offer a reasonable depiction
of experimental results (Scott and Orr, 1983; Castaing et al., 2002). Finally, model features pertinent to defects on the basal
plane are compared with atomic calculations. Expansion associated with stacking faults predicted via the nonlinear elastic
approach of the present theory compares favorably with predictions of atomic simulations (Marinopoulos and Elsasser,
2001).
Appendix A

Isochoric characteristics of twinning and slip noted in (12) are derived in what follows. The Jacobian determinant of the
deformation gradient in (2) is computed as (Truesdell and Toupin, 1960; Eringen, 1962; Marsden and Hughes, 1983)
J ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det g
det G

r
det F ¼ 1

6
eabceABCFa

�AFb
�BFc
�C ; ðA1Þ
where by notational convention, determinants of metric tensors g and G are absorbed into permutation tensors eabc and eABC ,
respectively. It follows that (Ericksen, 1960; Thurston, 1974)
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To verify the final two equalities in (A2), notice that JF�1A
�a Fa

�A ¼ 3J ¼ ð1=2ÞecdaeCDAFc
�CFd
�DFa
�A. The material time derivative of

(A1) is computed as follows using the chain rule, noting that material time derivatives of metric tensors vanish for stationary
coordinate systems (Eringen, 1962):
_J ¼ @J
@Fa
�A

_Fa
�A ¼ JF�1A

�a
_Fa
�A ¼ J _Fa

�AF�1A
�a ¼ JLa

�a ¼ JtrL; ðA3Þ
where L is the spatial velocity gradient of (8). Applying the same arguments to JI of (4),
JI ¼ 1
6
eabvede/FIa

�d FIb
�e FIv
�/; ðA4Þ
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with LI defined in (9) and (10). From (5) and (10),
_JI ¼ JItrLI ¼ JItr
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Since by definition, JIðt ¼ 0Þ ¼ 1, (A7) yields the isochoric conditions
JI ¼ 1ð8t P 0Þ: ðA8Þ
Now consider the product bF ¼ FIFP. The following equalities apply:
bJ ¼ JIJP ¼ 1
6
eabveABCbFa

�A
bF b
�B
bFv
�C ; ðA9Þ

@bJ
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where definitions in (9) have been used. Applying the product rule to (A9) and using (A7) and (A8) in (A11) gives
_bJ ¼ _JI|{z}
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¼1
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JPðtrLI|{z}
¼0
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Now taking the trace of (11) and using (5) and (6), (A12) reduces to
_JP ¼ JPtrLP ¼ JPtr ð1� fTÞ
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Since by definition, JPðt ¼ 0Þ ¼ 1, (A13) yields
JP ¼ 1ð8t P 0Þ: ðA14Þ
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Appendix B

An alternative to multiplicative decomposition (3) in which the sequence of FI and FP is reversed is considered in what
follows. It is demonstrated that the sequence of FI and FP in the multiplicative decomposition does not significantly affect
other aspects of the theoretical model of Section 3.

Decomposition (3) is replaced with
F ¼ FEJ1=3FPFI ¼ FEF ¼ FLbF; FL ¼ FEJ1=3; bF ¼ FPFI: ðB1Þ
Jacobian determinants of deformation mappings in (4) are instead
J ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det g
det G

r
det F ¼ JEJJPJI; JE ¼

ffiffiffiffiffiffiffiffiffiffiffi
det g

p
det FE; JP ¼ det FP; JI ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

det G

r
det FI: ðB2Þ
Spatial velocity gradient (8) is replaced with
L ¼ _FF�1 ¼ _FEFE�1 þ FE _FPFP�1FE�1 þ FEFP _FIFI�1FP�1FE�1 þ ð1=3Þ_JJ�11: ðB3Þ
Inelastic velocity gradient (9) is instead
_FF�1 ¼ _FPFP�1 þ FP _FIFI�1FP�1 þ ð1=3Þ_JJ�11 ¼ LP þ LI þ ð1=3Þ_JJ�11; ðB4Þ
where the following definitions apply instead of (10) and (11):
LI ¼ FP _FIFI�1FP�1 ¼
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As a consequence of (B5) and (B6), and similarly to (12), twinning and slip are always isochoric:
trLI ¼ trLP ¼ 0) _JI ¼ _JP ¼ 0) JI ¼ JP ¼ 1 ðt P 0Þ; ðB7Þ
so that the first of (B2) reduces to J ¼ JEJ ¼ JL. The total Burgers vector associated with geometrically necessary defects in (13)
is replaced with
Ba ¼ �
Z

C

bFa
�AdXA ¼ �

Z
C

FPa
�b FIb

�AdXA ¼
Z

A
aaA

G NAdA; ðB8Þ
where the two-point dislocation density tensor of (14) is instead
aaA
G ¼ eABCFIb

�BFPa
�b;C|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

slip gradients

þ eABCFPa
�b FIb

�B;C|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
twin gradients

: ðB9Þ
The geometrically necessary dislocation tensor â following the second and third equalities of (15) is unchanged. The treat-
ment of constitutive behavior, thermodynamics, and kinetics in Sections 3.2–3.5 is unchanged except that LI is replaced with
LI of (B5) and LP is replaced with LP of (B6). Notice that the right sides of (B5) and (B6) are, by assumption, identical to right
sides of (10) and (11), respectively, so that _FF�1 is computed identically in terms of slip and twin system activity regardless of
the sequence of FI and FP in the decomposition of F.

Appendix C

The shear elastic constant l entering free energy contribution (46) can be prescribed in a number of ways for anisotropic
materials. When the energy of lattice defects is dominated by a single prominent family of dislocations, l should be chosen
consistently with j1 to yield the correct energy per unit length of dislocation line. Various solutions for the energy factor for
dislocations in anisotropic crystals are given by Foreman (1955), Steeds (1973). When different kinds of dislocations,
stacking faults, and twin boundaries affect the energy as in (46), l is simply viewed as an effective (isotropic) elastic shear
modulus, and coefficients j1;j2; . . .j6 then scale the energy associated with each kind of defect in an appropriate manner.

A number of averaging or self-consistent methods are available for computation of effective elastic constants (Hill, 1952;
Sarkar et al., 1996). Perhaps the most common is the Voigt average (Hill, 1952):
lV ¼
1

15
ðC11 þ C22 þ C33Þ � ðC12 þ C23 þ C13Þ þ 3 ðC44 þ C55 þ C66Þ
� �

; ðC1Þ

BV ¼
1
9

C11 þ C22 þ C33 þ 2ðC12 þ C23 þ C13Þ½ �; ðC2Þ



1384 J.D. Clayton / International Journal of Plasticity 26 (2010) 1357–1386
where lV and BV are, respectively, Voigt-averaged shear and bulk moduli that provide an upper bound to the true effective
elastic constants of an isotropic polycrystal. For sapphire, noting that for a trigonal crystal C11 ¼ C22;C13 ¼ C23;C44 ¼ C55, and
C66 ¼ ð1=2ÞðC11 � C12Þ (Thurston, 1974), (C1) and (C2) yield lV ¼ 166 GPa and BV ¼ 255 GPa. Various experimental and the-
oretically computed values of isotropic shear and bulk moduli quoted by Holm et al. (1999) for a-alumina fall in the range
156 GPa 6 G 6 166 GPa and 245 GPa 6 B 6 255 GPa, with effective Poisson’s ratio 0:23 6 m 6 0:24.

For calculations in Sections 4.2 and 4.3 of the present paper that focus primarily on basal slip, l ¼ C44 has been used, since
this is considered an appropriate shear elastic coefficient for basal slip, and since lðh ¼ 0 KÞ ¼ 156 GPa (Table 2) produces a
value of energy per unit length of basal plane edge dislocations consistent with that predicted by atomic simulations (Ta-
ble 8). For calculations of Section 4.4 of the present paper that rely on isotropic shear and bulk moduli (Table 7), represen-
tative values of B ¼ 250 GPa and m ¼ 0:24 have been used (Holm et al., 1999), leading to effective isotropic shear modulus
G ¼ 3Bð1� 2mÞ=ð2þ 2mÞ ¼ 157 GPa.
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