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Abstract

Privacy is a growing concern in the digital world as more information becomes digital

every day. Often, the implications of how this information could be exploited for nefarious

purposes are not explored until after the fact. The public is becoming more concerned

about the proliferation of private data. An example of their concern comes from 2009

Dutch legislation which rejected the deployment of smart meters due to privacy concerns

of the fine-grained information reporting necessary for the smart grid. Yet, there are clear

benefits of the smart grid that are lost when smart metering is not available. This is true

of many applications which require sensitive information to achieve their purposes. End-

to-end encryption can only go so far in protecting this information. Trusted third parties

could be used to assist in the processing, but they are difficult to find in large systems and

represent a single point of failure.

The security community has long argued for the principle of least privilege access.

In other words, access to sensitive information should only be granted if it is absolutely

necessary to perform the task at hand. Interestingly, in some applications today requiring

access to sensitive, personal data, it is not the actual data the involved parties need, but

instead some function (e.g., sum, mean or standard deviation) of the data is needed. To

follow the principle of least privilege access would be to only reveal the output of functions

of the data, not the data themselves. Yet such an idea can seem paradoxical.

Solutions to this problem, referred to as privacy-preserving computation have existed

since the 1980’s. While initially, mostly theoretical, the solutions have been researched

extensively since their original proposals, and mature enough to be used in certain practical

circumstances. Yet existing protocols are still too inefficient for wide scale deployment in

large systems, as described in this dissertation. This dissertation presents a new technique
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for privacy-preserving computation, which enables more scalable systems in a number of

application scenarios.

Specifically, this dissertation proposes a new paradigm for privacy-preserving

computation called transferable multiparty computation (T-MPC). Protocols for T-MPC in

both the honest-but-curious (or semi-honest) and malicious adversary models are presented.

These protocols are studied in two application scenarios, namely smart metering and

decentralized reputation systems. In both applications, T-MPC enhances the systems. In

smart metering, T-MPC enables massively scalable, in-network computations on private

data. In decentralized reputation systems, T-MPC increases availability of reputation

information via privacy-preserving delegation. Finally, the T-MPC protocols are compared

with protocols from other privacy-preserving computational paradigms to see how their

efficiencies change when switching from honest-but-curious to malicious model protocols.

This is important to understand as privacy-preserving computation techniques become

more widely used by industry and system designers have to decide which adversary model

to operate under.
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THE THEORY AND APPLICATION OF PRIVACY-PRESERVING COMPUTATION

I. Introduction

1.1 Motivation

Whether in business, government, or the military, information can be exploited to

gain a competitive advantage. Each and every day, more information is exploited to make

systems more efficient, more accurate, and more reliable. Consider two simple examples.

A user’s or product’s reputation, as determined by other users’ feedback, is an often used

measure when purchasing products online. This type of information has become almost

ubiquitous in online purchasing. A similar feedback mechanism is also used in a number

of distributed systems in a more decentralized fashion. When one node, say nq, needs to

interact with another, say nt, nq can query its neighbors to find out how much they trust

nt, and therefore, come up with a reputation for nt. Another example is the smart grid.

The smart grid exploits fine-grained data from consumers, suppliers, etc. to enhance the

grid. A common scenario in the smart grid is to have each household’s meter report their

instantaneous usage back to the supplier. This information can be exploited at a supplier

or distributor to better optimize generation, distribution, or to aid in purchasing or selling

excess production.

The increased gathering and use of information comes with tradeoffs. Often, privacy

is traded or forfeited in order to achieve the benefits described above. Privacy is one’s

ability to control what information is collected about them and how it is used. In reputation

system, compromised privacy can lead to incentives to not be truthful when providing

feedback in order to avoid retribution. The compromise of privacy can diminish the utility

of the entire system. In the smart grid, the gathered information can leak other, unintended

1



information. Researchers using this type of information have demonstrated that it can

determine information such as whether or not someone is home, how many people live in a

house, and what appliances are in use [1, 2]. Figure 1.1 shows a graphical example of this.

Smart Meter Information Leakage

Figure 1.1: Example of private data leaked by smart meter reporting [2].

These two examples are a small sample of how privacy considerations can have real-

world consequences. For better or for worse, it appears that the growth in the amount of

private data being collected will continue to grow for the forseeable future. Therefore,

it is imperative that users be empowered with the ability to control their privacy. There

are many areas in which privacy is needed, and targeted solutions are being developed for

specific domains. The most visible area is in limiting what companies are able to collect

on users’ online browsing. These are typically distributed as browser extensions for all

the popular web browsers. They work by blocking certain code from executing within the

browser, code that has been determined by experts to violate privacy in some manner. A

major problem with these sorts of products is that they completely block access to private

data. In the two examples above, private data is necessary for the systems to function. This
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dissertation deals with what to do in cases like that, where private data is necessary for a

system to function.

1.1.1 Solution Techniques.

What if there were a way to still enable the sorts of benefits gained by having

such sensitive information but still limit, to the maximum extent possible, the disclosure

of unnecessary information? Researchers have been working on techniques to enable

that since the 1980’s. Broadly, this body of work is referred to as privacy-preserving

computation. Privacy-preserving computation stems from the observation that, in many

applications, interested parties do not need to know the inputs of the other participants, but

rather they need to know a function of those inputs. In both of the example applications

outlined previously, the interested party really only needs to learn statistics on the inputs

(e.g., mean or standard deviation). Privacy-preserving computation allows one to better

practice the principle of least privilege, that is, that a node should be given access to

only the minimal amount of information necessary to do its job. In both of the example

applications, this could be achieved by allowing the interested party to only learn some

predefined function of the inputs (e.g., the standard deviation of power consumption in a

neighborhood or the average reputation of nt as determined by the neighbors of nq).

Three primary classes of techniques have emerged in the privacy-preserving compu-

tation literature. The following sections describe the techniques and the scenarios where

they are best used as well as review information from the literature on their related efficien-

cies. The contributions of this work is primarily focused on the second, secure multiparty

computation.

1.1.1.1 Homomorphic Encryption.

In mathematics, a homomorphism is a structure preserving map between two algebraic

structures. For example, consider the function f : G → H where G and H are groups under

the operations + and ⊞, respectively. f is called a homomorphism if f (x+ y) = f (x)⊞ f (y)

3



for all x, y ∈ G. If f is a trapdoor function (i.e., one that is easy to compute in the forward

direction, but hard to invert without special information), then f would be a homomorphic

cipher. In particular, given encryptions of values, e.g. f (x) and f (y), homomorphic

encryption allows one to compute f (x + y), or an encryption of x + y. Such a cipher would

be called partially homomorphic with respect to addition. An example of such a cipher

used in practice is the Paillier cryptosystem [3]. The ElGamal cipher is an example of a

multiplicatively homomorphic cipher [4].

In the late 1970’s, Rivest et al. proposed the notion of a privacy homomorphism (which

is the same as a homomorphic cipher) and postulated that a so-called fully homomorphic

cipher could be constructed [5]. While partially homomorphic ciphers can only compute

a limited set of functions on encrypted data, a fully homomorphic cipher could compute

any function. Rivest et al. left the construction of such a cipher as an open problem in

cryptography, which remained an open problem for another three decades. Researchers

proposed several candidate constructions during those three decades, but each was broken

by the cryptographic community.

Finally, in 2009, Craig Gentry proposed a fully homomorphic cipher based on ideal

lattices with a sufficient security reduction to known hard problems to theoretically solve

the open problem [6]. While this represented a major breakthrough in the academic

cryptographic community, the practical results were still greatly lacking. In Gentry’s

original system, public keys were on the order of gigabytes in size, ciphertexts were

also very large. Furthermore, Gentry’s system required an expensive operation called

bootstrapping. Since his original proposal, Gentry and other researchers have developed

much more efficient systems. Currently, fully homomorphic ciphers are still slow, but could

be run on powerful enough machines to evaluate complicated programs, given enough time.

Gentry et al. recently implemented the AES circuit using many of these advances in the

fully homomorphic encryption (FHE) literature [7]. In other words, they could evaluate

4



AES homomorphically, where the key, the ciphertext, and the resulting plaintext (from a

decryption operation) were all privacy protected via the homomorphic cipher. They found

that it took approximately 36 hours to run through the entire AES operation. Using a

certain optimization which allows for SIMD (single instruction, multiple data) operations,

this yields an amortized rate of around 40 minutes per block.

Considerable work remains to make FHE fast enough for real-time use. Significant

advances in recent years make FHE possible in real-world applications where security and

privacy trump efficiency. Partially homomorphic ciphers, however, such as Paillier and

ElGamal, are quite efficient and have seen use in real-world systems.

1.1.1.2 Secure Multiparty Computation.

Around the same time Rivest was looking at privacy homomorphisms, which led to

research in homomorphic encryption, Yao was exploring a related notion for distributed

computation. In his seminal work, Yao proposed a problem which involves two millionaires

who wish to know who is richer, yet do not want to reveal how much they are worth [8].

This formed a basis for decades of research known as secure multiparty computation (MPC

or SMC). The goal of MPC is to solve the general problem of a set of parties, each with

private inputs to a computation, who wish to compute some joint function of their inputs

without revealing the inputs. The problem did not remain open in the theoretical sense for

very long, with initial solutions coming only a few years later [9–11].

Since the initial solutions in the late 1980’s, researchers in the MPC community

have explored various optimizations, stronger adversary models, and better security proof

techniques. Today, MPC is very fast. While Gentry et al. were exploring implementing

AES using homomorphic encryption, Damgard et al. implemented AES via MPC [12].

They found they could evaluate AES in less than half a second per block. In Section 1.1.2

explores some real-world use cases involving MPC.
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1.1.1.3 Functional Encryption.

In 2010, Boneh et al. formalized a new cryptographic primitive called functional

encryption [13]. Functional encryption has its roots in identity-based encryption (IBE) and

attribute-based encryption (ABE). In 2005, Sahai and Waters proposed the first complete

IBE system [14]. IBE systems allow users to use their identity (e.g., email address or

fingerprint) as their public key and retrieve the secret key associated with that identity by

proving ownership of the identity to a trusted third party. The benefit of this is anyone

who knows your identity can send you encrypted messages, even if you, at the moment the

message was sent, do not have your secret key. ABE replaces identities with attributes.

These attributes form a person’s private key. A message is encrypted using a specific

access policy over the attributes, and only someone holding the private key that satisfies

the policy can decrypt the message. For example, in order to decrypt the message you

must have the AFIT attribute and either the Ph.D. Student attribute or the Faculty attribute.

Therefore, someone with the attribute set {AFIT, Staff} in their private key could not decrypt

the message.

Functional encryption (FE) is defined as a cryptosystem in which the secret key

determines what functions of the encrypted plaintext a person can learn. The holder of the

secret key learns the output of the function when run on the encrypted inputs and nothing

else. Both IBE and ABE can be implemented given a FE cryptosystem, but FE is clearly

more powerful as it is the more generic construct. For example, your private key could give

you access to the mean or standard deviation of an encrypted data set. The relationship to

privacy-preserving computation is clear.

Early FE systems could only support limited functionalities (e.g., boolean formulas).

Recent breakthroughs have made it possible to have FE for arbitrary functionalities [15–

17]. This brings FE to the same level as FHE and MPC in terms of theoretical functionality.

Implementation results of FE ciphers are not widely available in the published literature.
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Naveed et al. recently published results on a variant of FE called controlled functional

encryption (C-FE) and found that a single block of AES run via C-FE took approximately

three minutes to run [18]. C-FE differs from FE in that it requires the user to obtain a fresh

key from the authority every time it evaluates a function on a ciphertext. FE supports a

number of very interesting constructs and is an important theoretical break-through. As the

community gains a better understanding of the capabilities of FE, it may become a viable

option for privacy-preserving computation.

1.1.2 Application Domains.

Both homomorphic encryption and secure multiparty computation have been applied

to real-world privacy issues. This section describes other application areas where privacy

needs have been explored and solutions have been proposed which use the building blocks

described above. The purpose of this section is to illustrate the wide applicabilty of privacy-

preserving computation research in general and explore application domains to which T-

MPC could be applied in future work.

1.1.2.1 Electronic Voting.

Cramer et al. list three important properties of private electronic voting schemes [19].

• Verifiability: Any party should be able to verify that the final vote tally was computed

correctly from all the ballots that were correctly cast.

• Privacy: An individual’s vote is kept secret from any reasonably sized group of

parties.

• Robust: The system can recover from faulty behavior of parties involved in the

election.

Most existing systems, unfortunately, do not meet any of the three requirements

above. Researchers, using techniques from privacy-preserving computation, have proposed

numerous electronic voting schemes which do meet the properties listed above. Benaloh
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proposed a system for tally-votes (i.e., yes/no votes) which uses many of the building blocks

used in today’s MPC protocols, including (verifiable) secret sharing [20]. Cramer et al.

proposed a scheme for similar elections using a variant of homomorphic encryption [19].

Baudron et al. proposed a scheme for multi-candidate elections (as opposed to simple

yes/no votes) that uses homomorphic encryption [21]. MPC has not been directly applied

in multi-candidate election systems, it is not hard to imagine how such a system could

be constructed. Enumerating all of the proposed electronic voting schemes is out side the

scope of the objective here, but one very mature electronic voting system worth mentioning

is the Helios voting system [22]. The Helios voting system uses homomorphic encryption

as well as a number of other cryptographic primitives to provide specific security properties.

It has been used in a number of elections including the International Association for

Cryptologic Research’s annual elections since 2010 and was used in campus-wide elections

for student body president at Belgium’s Université Catholique de Louvain. The Helios

project’s website reports that over 100,000 votes have been cast using Helios.

1.1.2.2 Location-based Services.

With the proliferation of mobile devices with fine-grained geolocation (typically

via the global positioning satellite system), location-based services have increased in

popularity [23]. In a dataset of over 310,000 apps from the Google Play Store,

approximately 30% of the apps requested fine location information. Also, four out of the

top ten free Android apps (accessed on 5 December 2014) in the Play Store requested fine

location information.

A person’s current location, or historical location information, may reveal a lot

about the person. Researchers have already begun exploiting this information in order

to optimize services and protocols [24–26]. Bettini et al. studied the privacy-related

issues associated with location information and suggested that, given some amount of

historical location information, people can be uniquely identified [27]. Additionally,
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researchers have developed a number of protocols to deal with the privacy issues. Relating

specifically to privacy-preserving computation, Zhong et al. [28] and Solanas et al. [29]

each proposed protocols which use partially homomorphic encryption to solve the privacy

problem. Researchers have also explored proximity testing protocols, which allow two

people to determine if they are within some distance of each other [30, 31]. All of these

protocols could theoretically be instantiated with MPC techniques, though some authors

have suggested that specialized protocols are faster.

1.1.2.3 Medical Information.

Vanacek [32] summed up the trend and threat in the medical community earlier this

year when she wrote:

In ten years, eighty percent of the work people do in medicine will be replaced

by technology. And medicine will not look anything like it does today... It was

estimated that 90% of all healthcare institutions will experience a data breach

of some kind. Many already have. Each breach costs about $2M in fines, not

to mention the loss of privacy and other incalculable costs to the patient.

Traditional information security can go a long way in the medical community in

protecting private information but judicious application of privacy-preserving computation

techniques can make a huge difference in limiting risk to providers and consumers.

Researchers in the community have begun looking at applying these techniques to specific

problems. This includes protocols that operate on DNA sequences [33–36] and protocols

for classifying electrocardiogram (ECG) data for disease detection [37, 38].

These sorts of medical applications are very interesting as there are many competiting

interests at play. Everyone wants the best possible diagnoses. Patients want their

private data protected, but that private data can be used to make future diagnoses better.

Furthermore, there are medical research companies that are developing algorithms for

better detection. They want to keep their proprietary algorithms safe to maintain a
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competitive advantage. There are even malicious actors who would try to compromise

data or algorithms for their own benefit. The examples cited above all use various

privacy-preserving computation techniques, from homomorphic encryption to multiparty

computation, to enable privacy while not forgoing the advances that are possible if privacy

were not a concern.

1.2 Contributions

The objective addressed in this research effort is to

1. develop new protocols for privacy preserving computation and formally prove their

security,

2. show how these protocols can make privacy preserving computation in the smart grid

orders of magnitude more efficient than existing protocols and

3. show how the protocols can be used to enhance existing work in decentralized

reputation systems, and

4. illustrate the benefits of the protocols in terms of the tradeoffs associated with

adversary models.

1.3 Objectives

1.3.1 New Protocols.

Existing protocols which use homomormorphic encryption for privacy preserving

computation do not scale well [39]. For example, in a smart meter network used to privately

compute the sum of every meter’s usage at an interval of 60 seconds, under the malicious

model, networks of around 50 meters is all that can be supported. An honest-but-curious

model protocol can support around 300 meters. Secure multiparty computation protocols

(MPC) are more efficient but still do not scale well to the types of networks expected in

practice.
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Objective #1: Propose new, more flexible protocols for doing generic privacy

preserving computation. Given MPC is more efficient than homomorphic en-

cryption, these protocols will build upon existing MPC techniques. Protocols

in both the honest-but-curious and the malicious adversary models are pro-

posed. Their security is formally proven according to their respective adver-

sary models.

1.3.2 Applications.

While privacy preserving computation techniques have existed for decades, industry

is only now beginning to turn to these methods to assist in securing their systems. This is

primarily because the proposed protocols are only now becoming efficient enough.

Objective #2: Demonstrate the benefits of the proposed protocols by studying

two applications, smart metering and the decentralized reputation systems.

For each application, system models help to contrast existing protocols with

the proposed protocols to understand the benefits of T-MPC. The smart grid

example illustrates scalability of the network. The decentralized reputation

system example, illustrates adding new functionality to make the system more

stable.

1.3.3 Adversary Model Tradeoffs.

An often overlooked aspect of deploying privacy preserving computation is the choice

of adversary model. The adversary model can have a big impact on the security of

the system in the real world. In the smart grid literature, a number of smart metering

papers suggest the use of anti-tamper mechanisms in order to justify using a weaker

adversary model. This is due to the fact that the meters are, in a sense, located in hostile

environments since their physical security is not guaranteed. A similar problem could

arise if a decentralized reputation system is deployed on a wireless sensor network. Little
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attention has been payed to the tradeoffs of different adversary models and how extra

assumptions, such as anti-tamper, change these tradeoffs.

Objective #3: Develop a method for understanding the tradeoffs between

adversary models.

1.4 Document Organization

Chapter 2 presents the background information needed to understand the remainder

of the prospectus. Chapter 3 presents work related to Objective #1 in developing

new protocols for privacy preserving computation. Chapter 4 presents work related to

application of T-MPC, which is described in Objective #2. Chapter 5 presents work related

to adversary modeling described in Objective #3.
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II. Preliminaries and Related Work

This chapter, presents the background information necessary to understand the

remainder of the dissertation. Furthermore, the information presented in this chapter serves

as a discussion of related works upon which this research builds. This will help the reader

to understand the contributions to the research area.

2.1 Adversary Modeling

There are two primary adversary models seen throughout the privacy preserving

computation literature, the honest-but-curious (HbC) model, which is sometimes referred

to as semi-honest, and the malicious model [40]. In the HbC model, adversaries follow the

protocol exactly as specified. For example, an HbC adversary in the smart grid application

would always use the correct input. The corrupt parties do, however, collude by using

information gathered during the execution of the protocol to attempt to violate an honest

party’s privacy.

The malicious adversary model represents the other end of the spectrum in privacy

preserving computation. Malicious adversaries will deviate from the protocol in any way to

attempt to violate another’s privacy. An example of this would be using non-random values

when the protocol specifies random numbers or having all corrupt parties collaborate to

choose their random values. This model is much stronger than the HbC model because

it makes fewer assumptions about adversary behavior. That comes at a cost, usually in

efficiency and more complex cryptographic protocols.

Another common assumption related to adversary models seen throughout the

literature is an assumption on the number of corrupt parties in a given protocol execution.

Many protocols that use homomorphic encryption are able to achieve full threshold

security. In other words, such protocols can guarantee security as long as there is at least
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one non-corrupt party. Multiparty computation (MPC) protocols have traditionally required

lower thresholds. For example, with HbC an often made assumption is that fewer than half

of the parties are corrupt. In the malicious model, the assumption is often that less than

a third are corrupt. More recent MPC protocols are able to achieve full threshold security

but at the expense of requiring computationally expensive operations (e.g., zero-knowledge

proofs).

2.2 Homomorphic Encryption with the Paillier Cryptosystem

Homomorphic encryption is a special encryption paradigm which can enable privacy

preserving computation. It allows an untrusted party to perform operations on ciphertexts

such that it has a well-defined effect on plaintexts. For example, given the encryptions of

two values, say E(x1),E(x2), computing some operation on the ciphertexts, say ⊞, results

in addition of the plaintexts. Mathematically, this is E(x1)⊞E(x2) = E(x1+ x2). Decrypting

the results reveals x1 + x2. Note that this requires no knowledge of x1 or x2. Fully

homomorphic encryption is a cipher that supports addition and multiplication and allows

us to compute any function. Existing FHE ciphers (e.g., Gentry’s original work [6] and the

BGV cipher [41]) are still not efficient enough to be considered for practical applications

involving large numbers of parties.

The primary cipher used in this work is the Paillier cipher [3]. This cipher is additively

homomorphic, meaning it supports addition operations on the plaintext values using only

ciphertexts. Below is a description of a simplified version of the Paillier cipher and a

description of how to perform the additive homomorphic operation. A public key cipher

consists of three routines: KeyGen which generates a public and a private key, Enc which

returns a ciphertext given the public key and a message, and Dec which returns a message

given a ciphertext and the private key. The mathematics of each routine is given below.
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Routine KeyGen

1. Let p, q be large primes of the same size.

2. n← pq, λ← φ(n) = (p − 1)(q − 1)

3. g← n + 1, µ← λ−1 mod n

4. Encryption (public) key Ke = (n, g), Decryption (private) key Kd = (λ, µ)

Routine Enc

Given: Plaintext m and Ke = (n, g)

1. Choose at random r ∈ Z∗n
2. Ciphertext c← gm · rn mod n2

Routine Dec

Given: Ciphertext c ∈ Z∗n2 and Kd = (λ, µ)

1. Message m← L(cλ mod n2) · µ mod n

Where L(u) returns the quotient of (u − 1)/n.

2.3 Secure Multiparty Computation Protocols

Multiparty computation (MPC) was first introduced in the 80’s with solutions to the

problem falling into two main classes, 1) garbled circuits [9] and 2) secret sharing, both

in the computational setting [10] and in the information theoretic setting [11]. MPC deals

with the problem of having parties p1, . . . , pn with inputs x1, . . . , xn who wish to compute

some function of their inputs, say f (x1, . . . , xn), without revealing their individual inputs.

The output(s) of the function is revealed to potentially any group of the parties or even

authorized third parties. The focus of this work is on the secret sharing variant of MPC,

and in particular, the information theoretic setting with honest majority. These protocols
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are simpler, but the general general ideas behind T-MPC can easily be extended to other

settings (e.g., dishonest majority with computational security).

Below is an overview of MPC that outlines a generic MPC protocol. For simplicity,

some of the details are abstracted away as they are not necessary for the purposes of this

dissertation. Furthermore, malicious model MPC protocols are often divided up into two

phases, preprocessing and computation. Doing this allows the protocols to be proven secure

even in the face of malicious adversaries. For the purposes of this work, the description

below focuses on the computation phase.

Given a finite field, F, and each xi ∈ F for i = 1, . . . , n. Let (s1, . . . , sn) ←

share(xi, seed) be a secret sharing function, which takes the secret to be shared as its first

input and a random seed as its second input. The random seed is used to generate the

random values needed by the specific secret sharing function. The outputs, s1, . . . , sn ∈ F,

form the n shares of the secret. Each party pi uses share to generate n shares of their input

xi. Associated with the function share is a threshold t which determines the number of

shares needed to reconstruct the input. Each other party receives one of the shares over a

secure channel. The most common choices for implementing share in the MPC literature

are Shamir secret sharing [42] and additive secret sharing. Additive secret sharing relaxes

share by requiring a cyclic group, instead of a finite field.

After all inputs are shared among the parties, they represent the function f as an

arithmetic circuit with addition and multiplication gates. They use functions add and mult

to evaluate addition and multiplication gates of the arithmetic circuit. For example, say

the parties hold shares of a and b (called ai and bi) and want to compute c = a + b (resp.,

c = a · b), they each call ci = add(ai, bi) (resp., ci = mult(ai, bi)) to compute a share

ci of c. Full details of the operation of these functions can be found in [10, 11, 43], for

example, for details on how the functions add and mult can be constructed both in the

honest-but-curious and malicious models.
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Embedded within the circuit description are the identities of the parties authorized to

learn the output(s) of the function. At the end of the computation of the circuit, the parties

send the appropriate shares of the output(s) to the party or parties authorized to learn a

given output. The authorized parties run the function recombine which takes n shares of

the output value (only t + 1 shares are necessary, but the adversary models associated with

MPC assumes all n are available) and returns the output value. Many malicious model

MPC protocols also include a preprocessing phase where the parties generate helper data

to increase security of the computation of share, recombine, add, or mult. The helper

data should not depend on the inputs or the function to be computed (beyond minimal

information such as the number of multiplication gates). Preprocessing is discussed in

more detail in Chapter 4.

2.4 Secret Share Redistribution

The main idea of secret share redistribution is that a certain number of parties

receive shares of a secret. Say they wish to redistribute their shares to a new (potentially

overlapping) set of parties that may have a different reconstruction threshold without

reconstructing the original secret. Secret share redistribution protocols aim at solving this

problem.

The simplest redistribution protocol is very similar to the multiplication protocol

already used by MPC and was proposed by Desmedt et al. [44] It is secure in the honest-but-

curious model and works by having each party share their share with the new parties (i.e.,

they create subshares). This will work for any linear secret sharing method such as Shamir

or additive secret sharing. A number of malicious model redistribution protocols have been

proposed (e.g., [45] and subsequent works). Unfortunately, these will not work for for

malicious model T-MPC as they do not provide semantic security. Therefore Chapter 3

presents a new malicious model redistribution protocol.
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2.5 Universally Composable Security Framework

Proving the security of protocols can be a difficult process. One technique that has

been used in many areas of cryptography, and in particular, in multiparty computation, is

the universally composable security (UC) framework due to Ran Canetti [46]. This section

reviews basics of the framework and describes how to prove security in it. For further

details the UC Framework, see Canetti’s work cited above and Sections 1.3 and 3.4 of [47].

The description here focuses primarily on privacy concerns in multiparty computation.

The basic setup of the UC framework begins with two worlds, the ideal world and the

real world, and a number of parties p1, . . . , pn. In the ideal world, an ideal functionality

F is used that is secure by definition (often using a trusted third party). In the real world,

a protocol π which realizes the ideal functionality is run. The goal is to show that π is as

secure as F . In each world there is an entity called the environment, denoted Z. In each

world, there is an additional party, the adversary A in the real world and a simulator S in

the ideal world. These parties communicate their views of their respective worlds back to

Z. To keep the setup as generic as possible, let Z provide the inputs to the parties. This

setup is shown in Figure 2.1.

...

(a) Ideal World.

...

(b) Real World.

Figure 2.1: Basic universally composable security framework setup.
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Cannetti proves two fundamental theorems behind the UC security framework. The

UC security theorem says that if Z cannot distinguish between the two worlds, then the

protocol π, run in the real world, is as secure as the ideal functionalty (which was secure by

definition). Below is a description of how to do this, focusing on privacy concerns. Note,

however, that the UC framework does not only apply to privacy. The description below is

adapted from the description of Cramer et al. in [48].

In the real world, the execution of π leaks information to A, who in turn, shares

his view of the world with Z. Let Lπ be the information leaked during execution of π,

which forms A’s view of the world. In the ideal world, let F leak only very specific

information to S, information that can readily be shown to not violate any party’s privacy.

Call this information LF . The job of S is to use LF to generate Lπ. If S can do this, since

Lπ is generated from LF , it contains no more information (from an information theoretic

prospective) than LF . Since LF , by definition, does not violate anyone’s privacy, Lπ also

does not violate anyone’s privacy. Therefore, π does not violate anyone’s privacy. Note that

in practice, no two runs of π will result in identical Lπ sets. Similarly, the Lπ generated by

S will not be identical to a specific Lπ from the real world. Therefore, instead of requiring

equivalence, it must be shown that the Lπ generated by S be indistinguishible from the

leaked information sets coming from the real world.

The second theorem of Canetti’s work, the composability theorem, states that UC-

secure protocols can be composed with each other and themselves in arbitrary, even

adversary controlled, ways and the resulting composition remains secure. The result

of this second theorem is a complex protocol can be decomposed into many smaller,

subprotocols. The security of the the subprotocols is proven using the first theorem. Finally,

the composition is proven secure using the second theorem. The security proofs of the T-

MPC constructions in Chapter 3 utilize both of the theorems described above.
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III. Transferable Multiparty Computation

Existing methods for privacy-preserving computation using both homomorphic

encryption and secure multiparty computation (MPC) have issues that are described in

Chapter 4, when applied to the applications studied in this dissertation. This chapter

proposes a new paradigm for privacy preserving computation that builds upon MPC to

enable both computations that are more efficient and advanced functionality not previously

available. The protocols are not tied to specific applications, however, and are more

generally useful. The key observation behind the protocols is that prior work has

assumed a static set of computation parties. The protocols presented here remove this

limitation, which creates numerous benefits. The paradigm is called transferable multiparty

computation (T-MPC), and this chapter gives an overview of T-MPC as well as protocol

constructions and security proofs in both the honest-but-curious model and the malicious

model.

3.1 Overview

MPC allows a static set of parties to compute some function of their private inputs

without revealing the inputs. T-MPC relaxes the restriction of having a static set of parties.

While this relaxation might seem simplistic on the surface, constructing T-MPC protocols is

non-trivial and offers numerous benefits, which are described in Chapter 4. For simplicity,

the description below depicts T-MPC as having two sets of parties P1 and P2 (which may

or may not overlap and can have different sizes). T-MPC can support any number of sets

of parties.

Let |P1| = n′ and |P2| = n. The protocol descriptions also assume that one set,

namely P2, is performing a computation and transfers that computation to the other set,

namely P1. This is solely for simplicity as T-MPC allows for more generic constructions.
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Any number of sets can be performing multiparty computations (possibly in parallel) and

can transfer their computation to any other set (or possibly many other sets). Therefore,

while the present description of T-MPC is out of necessity simplified, the application

of T-MPC can vary greatly. In the honest-but-curious case assume that less than ⌈n/2⌉

(⌈n′/2⌉, respectively) parties are corrupt as this is the theoretical maximum for information

theoretic MPC protocols. For the malicious case the theoretic maximum is ⌈n/3⌉ (⌈n′/3⌉,

respectively).

T-MPC builds upon the description of MPC from Section 2.3. T-MPC begins with the

functions share, recombine, add, and mult. T-MPC adds a signaling mechanism called

trigger. This mechanism interrupts an ongoing multiparty computation running among

parties of P2 and forces a transfer of the computation to the parties of P1. The trigger

mechanism can be configured to run, for example, periodically, upon certain events (e.g.,

failure of a party), inserted manually into the arithmetic circuit, etc. Chapter 4 describes

two specific trigger functions for two applications in more detail.

T-MPC adds two additional functions, transfer and recombine transfer. transfer

takes the share of the input to be transferred as the first input and a random seed as the

second input. It outputs n′ subshares of the input. recombine transfer takes n′ subshares

as its input and outputs a new share to be used in private computations. These two

functions exploit a redistribution property of linear secret sharing schemes which allows

an authorized subset of parties holding shares of a secret value, say s, to redistribute s to a

new set of parties without revealing s [44]. In particular, for T-MPC, the parties in P2 run

transfer to generate subshares for parties in P1 of every value needed for P1 to continue

the multiparty computation. Parties in P1 use recombine transfer to compute new shares

of these values. T-MPC is constructed using all of the functions specified above as shown

in Figure 3.1. Section 3.2 presents details for these functions under the HbC model, and

Section 3.3 presents the detailed functions in the malicious model.
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Start

Parties in P2

use share,
add, and mult

to run MPC

trigger event occurs

Parties in P1 and
P2 use transfer and
recombine transfer

to transfer
computation to P1

Continue
computation
with parties

in P1

Computation done

Parties use recombine
to reveal output to
authorized parties

Figure 3.1: T-MPC state diagram.

3.2 Honest-but-Curious Realization

The basic functions of MPC (i.e., share, recombine, add and mult) used by HbC

T-MPC are due to Ben-Or et al. [11]. share and recombine are both handled using Shamir

secret sharing. Briefly, to generate shares si of s such that any subgroup of t + 1 out of the

n parties can reconstruct s, construct the polynomial σ(x) = s+ r1x+ r2x2 + · · ·+ rtxt in the

finite field where the coefficients r j are chosen randomly from the field. The share si = σ(i)

is sent to party i. Any subgroup of at least t + 1 parties can reconstruct s by exchanging

their shares with one another and using Lagrangian interpolation to compute σ(0) = s.

To compute add on two secret inputs, say s and s′, each party simply adds their shares

of the inputs. No communication is required at all because of the linearity of the secret

sharing method. To compute mult on two secret inputs s and s′, each party pi computes

m′i = si · s′i then uses Shamir secret sharing to create subshares of m′i , distributes a subshare

to each of the other parties. Party pi then uses Lagrangian interpolation on the subshares
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they receive from the other parties to compute mi which turns out to be a valid sharing of

m = s · s′. These functions are combined together into a single honest-but-curious MPC

protocol πmpch .

The new functions, transfer and recombine transfer, T-MPC are fairly simple in the

honest-but-curious model. Together these form the honest-but-curious transfer protocol

πTh . Assume that upon a trigger event, parties in P2 must transfer the input value s to

parties in P1. The redistribution function needed for transfer and recombine transfer

works almost exactly like the multiplication protocol just described. Each party p j ∈ P2

with share s j of s, computes n′ subshares of s j using Shamir secret sharing with threshold

t′ and sends subshare s ji to party pi ∈ P1. Party pi, after collecting all subshares, computes

recombine transfer by running Lagrangian interpolation on the subshares to compute the

new share si of s. This process is described in Figure 3.2.

Protocol πTh

Given: P1, P2 ⊆ P where each p j ∈ P2 holds a share s j of s, and |P1| = n′, |P2| = n
and t′ = I(n′/2) and t = I(n/2) respectively (where I is the integer just larger than the
parameter).

transfer: Upon a trigger event

1. Each p j generates subshares s1 j, . . . , sni j of s j using Shamir secret sharing with a
threshold of t′ and a random polynomial with coefficients (s j, r j1, r j2, . . . , r jt′−1).

2. Each p j sends the subshare si j to party pi ∈ P1 over the private channel.

recombine transfer

1. Each pi ∈ P1 receives n subshares si j.

2. pi then uses Lagrangian Interpolation to recover their new share si

Figure 3.2: Honest-but-curious transfer and recombine transfer functions.
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3.2.1 Correctness and Complexity.

Security and correctness proofs for the transfer protocol for redistributing secret

shares from P j to Pi follow easily from [44]. That work guarantees that, first, subsets

of participants in Pi up to size ti have no information about the secret. Second, as long as

at least t j parties of P j erase their information about s (both their original shares and the

subshares they created), then s can only be recovered by parties in Pi. This is guranteed due

to the assumed threshold of corrupt parties. Finally, subsets of parties in Pi and P j cannot

collude to gain extra information about s as long as their sizes are no bigger than ti and t j

respectively.

Since generating shares and recombining shares using interpolation can be done in

parallel by all parties, these methods are quite efficient. Straightforward algorithms for

generating the shares (polynomial evaluation) and recombining (Lagrange interpolation)

are quadratic, but there exist O(n log2 n) algorithms for each [49]. Even the quadratic

algorithms would be sufficiently fast for most applications. As the n j parties must

communicate each of their ni shares, the communication complexity is O(n jni) (assuming

only one communication channel). Since really only the threshold t needs to be satisfied,

the computation and communication requirements can be made even more efficient in

practice.

3.2.2 Security.

It seems to make sense that the T-MPC protocol suggested above is secure as long as

the chosen MPC protocol is secure. This would seemingly follow from the fact that the

transfer protocol itself is secure. A more rigorous approach to proving the security of the

proposed protocol is needed. This is achieved by using the Universal Composability (UC)

framework.

The UC framework provides an elegant approach for proving the security of the T-

MPC protocol as there already exist UC-secure MPC protocols. Therefore, proving security
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of the T-MPC protocol requires proving the UC-security of the transfer protocol as the T-

MPC protocol is the composition of an MPC protocol and the transfer protocol. Since two

UC-secure protocols can be composed in arbitrary ways and still be UC-secure, the security

of the T-MPC protocol follows directly from the composition theorem. Following the UC

framework, descriptions for the ideal functionality and details on howZ cannot distinguish

between the two worlds is presented below.

Ideal Functionality:

1. Each party in P j sends its share of s (i.e., s j) to F .

2. F uses the shares to reconstruct s and generates new shares of s, say s′i , with

threshold ni/2.

3. For each corrupt party p j ∈ P j, F sends s j to S.

4. For each corrupt party pi ∈ Pi, F sends s′i to S.

5. F sends the share s′i to pi ∈ Pi.

Security Proof: The ideal functionality just described is very simple and clearly

secure by definition as F acts as a trusted third party. Furthermore, due to the assumed

threshold of corrupt parties, the shares that F leaks to S do not violate anyone’s privacy.

These shares form the set LF . To prove security of the real world protocol, the S and F

interact to make the ideal world indistinguishable from the real world.

Theorem 1. The environment Z cannot distingiush between the real world and the ideal

world.

Proof. In the real world,Z’s view consists of information learned byA. This includes: 1)

shares held by corrupt parties in P j, 2) new shares held by corrupt parties in Pi, 3) subshares
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generated by corrupt parties in P j, and 4) subshares sent to corrupt parties in Pi. These four

pieces form the set Lπ. In other words, let C j be the set of corrupt parties in P j and Ci be

the set of corrupt parties in Pi, then Lπ = {{s j : j ∈ C j}, {s′i : i ∈ Ci}, {s ji : i ∈ 1, . . . , n′, j ∈

C j}, {s ji : i ∈ Ci, j ∈ 1, . . . , n}}.

Notice thatLF is basically the first two items. In other words,LF = {{s j : j ∈ C j}, {s′i :

i ∈ Ci}}. So, S must compute the third and fourth items using only what is in LF and do

so in a manner which makes the resulting set indistinguishable from Lπ in the real world.

Using the shares of corrupt parties in P j, S can simply create subshares of these to form

number 3 from above.

Number 4 is a litte more difficult to simulate as each corrupt party in Pi will receive

a subshare from each corrupt party in P j. In other words, some of the subshares that S

just generated to satisfy number 3 have to be used directly to satisfy number 4. For the

remaining subshares needed to satisfy number 4, simple random values cannot be used as

the interpolated polynomial would likely not have the correct degree. The degree of the

polynomial, ti, is ⌊ni/2⌋. Let c be the number of corrupt parties in P j. Therefore, for each

corrupt party pi ∈ Pi, the simulator already has c shares to satisfy number 4. S sets a zeroth

share to be the new share for pi that comes from number 2 above. It then picks ni/2 − c

other shares at random. Using these shares, Lagrangian interpolation returns the sharing

polynomial σ. If σ has degree ti, the simulator’s job is done. The other option is that σ has

degree less than ti, this is not likely to occur due to the randomly chosen shares, but if it

does, the process is repeated with new random shares. Once a σ with degree ti is found, ∼,

generates the remaining shares for each corrupt party in Pi to satisfy number 4.

If the set Lπ that the simulator just generated is statistically indistinguishable from

the Lπ that results from executing π from the point of view of Z, then the protocol is UC-

secure. There were basically four parts to these sets described above. Indistinguishability

of the first two comes directly from the fact that the adversary does not control enough
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parties to run Shamir’s reconstruction step. Therefore, they each contain no information

in the information theoretic sense. Indistinguishability of the third comes from the

fact that in both worlds, these subshares are valid subshares. Like generation, showing

indistinguishability of the fourth is a little more difficult. In the real world, the subshares in

number 4 result in valid new shares held by corrupt parties in Pi. Recall though, that since

the adversary does not control enough parties in Pi that the new shares are random from

the adversary’s point of view. Given the way the subshares in number 4 are constructed,

they form valid subshares of the new shares found in number 2 and come from a correct

degree polynomial. Furthermore, the subshares are random. Therefore, they are also

indistinguishable in the two worlds. So, the protocol in Figure 3.2 is UC-secure. □

3.3 Malicious Model Realization

This section presents the malicious model realizaation of T-MPC which builds upon

the HbC realization presented in Section 3.2. Similar to before, the malicious model

realization uses an MPC protocol secure in the malicious model. The malicious model

MPC protocol, built with malicious model variants of share, recombine, add, and mult

used in the T-MPC protocol below comes from [50]. This section focuses on malicious

model variants of transfer and recombine transfer and constructs a single protocol πTm

from these two.

The malicious model transfer protocol works as follows. For transfer, each party in P2

shares their share of s with the parties in P1. recombine transfer exploits an observation

due to McEliece and Sarwate. Since fewer than a third of the parties are corrupt, Shamir

secret sharing reconstruction can be made robust using Reed-Solomon decoding. This is

because Shamir secret sharing is just a special instance of Reed-Solomon coding [51].

Under normal circumstances robustness is not enough for malicious model MPC as it

assumes that the dealer is honest, but in T-MPC, the shares that a party in P1 receives

come from each party in P2. Therefore, there is no one single dealer. Since there are
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enough honest parties in P2, each pi ∈ P1 receives enough honest shares to be guaranteed

to recover the correct new share. Figure 3.3 shows the details of the protocols.

Protocol πTm

Given: P1, P2 ⊆ P where each p j ∈ P2 holds a share s j of s, and |P1| = n′, |P2| = n and
t′ = ⌊n′/2⌋ and t = ⌊n/2⌋ respectively.

transfer: Upon a trigger event

1. Each p j generates subshares s1 j, . . . , sni j of s j using Shamir secret sharing with a
random polynomial with coefficients (s j, r j1, r j2, . . . , r jt′−1).

2. Each p j sends the subshare si j to party pi ∈ P1 over the private channel.

recombine transfer

1. Each pi ∈ P1 receives n subshares si j.

2. pi uses a Reed-Solomon decoder on the subshares to recover si.

For a small number of parties, a simple bruteforce RS decoder is faster than more
sophisticated decoders. For this decoder each subgroup of shares of size t is run
through the regular Lagrangian interpolation algorithm to get a putative secret. The
putative secret that occurs most often is chosen as the secret. Due to the number of
corrupt parties and the threshold used for sharing this will be the correct secret with
overwhelming probability [51].

Figure 3.3: Malicious transfer and recombine transfer functions.

3.3.1 Complexity.

The complexity of the malicious model T-MPC functions transfer and recombine transfer

changes in comparison with the HbC functions due to the fact that a Reed-Solomon decoder

is used to ensure robustness. Fast O(n log2 n) as well as straight forward O(n2) decoders

exist [51]. For small sets of parties, a brute-force, O(n!) decoder is faster. The brute-force

decoder is described in Figure 3.3.
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3.3.2 Security.

Security of the malicious model T-MPC functions is proven using the same paradigm

that was used in the HbC case. The setup in this case, however, is more complex because

corrupt parties can deviate from the protocol specification. A common technique for

handling this is to let the simulator S run a (black box) copy of the adversary’s codeA. The

ideal functionality is shown below. Following the ideal functionality, a high-level overview

of the security proof is given. The details of the proof follow directly from the techniques

used in the HbC proof.

Ideal Functionality:

1. The honest parties in P j send their shares to F .

2. F uses the shares to generate the shares of corrupt parties in P j and sends these

generated shares to S.

3. F creates subshares for each of the honest parties’ shares and sends any of these

which would be delivered to corrupt parties in Pi to S.

4. F receives subshares for the corrupt parties in P j from S and verifies these

subshares by checking the degree of the polynomial and the constant term of

the polynomial from which they came.

5. F uses the valid subshares to generate the new shares, {s′i}
ni
i=0, and sends s′i to

pi ∈ Pi. It also sends s′i to S for each corrupt pi.

Security Proof: Recall that security is shown in the UC framework by specifying how

S interacts withZ to make the real and ideal worlds indistinguishable. The setLπ from the

real world is the same as in the HbC case. Recall that this set has four parts to it. The set
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LF is also the same as it was before and has only two parts to it. The simulator generates

the ideal world view of Lπ using LF in the same manner as above with the exception

of allowing A to choose the subshares of part 3. Some of these (potentially corrupted)

subshares are used in part 4. To generate the remainder of part 4, S follows a process

similar to what was done in the HbC model, but ignores any subshares thatA corrupted.

Indistinguishability between the two worlds changes only slightly in the malicious

case. Recall thatZ’s view in both worlds is defined by Lπ, which consists of the four parts

presented earlier. The first part is the same as in the HbC model, so indistinguishability

follows from that previous discussion. Thanks to the robust reconstruction done in

the malicious model, the second part is also the same as in the HbC case, so again,

indistinguishability follows from that discussion. The subshares generated by corrupt

parties in P j, which form the third part of Lπ, are, in both worlds, generated by A, who

is the same in both worlds, so they are indistinguishable. The fourth part consists of

subsharings of the second part, with some of the subshares potentially corrupted by A.

SinceA is the same in both worlds, using analysis similar to that done in the HbC case for

part 4, this part is also indistinguishable. Therefore, since the sets Lπ are indistinguishable

between the two worlds, and the malicious transfer protocol is UC secure.
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IV. Applications

This chapter describes two application areas to which T-MPC is applied. The purpose

of this is to highlight the benefits that are gained by using T-MPC over MPC. Chapter 1

briefly introduced the application areas. The scenario and setup for each application is fully

defined in this chapter. Prior and related work specific to each application is also discussed.

This chapter then presents the application of T-MPC to the applications and presents how

T-MPC benefits each.

4.1 Smart Grid

4.1.1 Motivation.

In 2010, the United States’ Federal Bureau of Investigation (FBI) issued a report

on smart meter hacking which detailed how one utility could to lose up to $400 million

annually due to meter tampering attacks [52]. The report concludes that “this type of

fraud will also spread because of the ease of intrusion and the economic benefit to both

the hacker and the electric customer.” The specific attack detailed in the report was an

energy stealing attack, or one in which the meter misrepresents the consumption, resulting

in a lower bill for the user. Other published attacks on smart meters aim to allow someone

to read consumption information off of the meters. In one such attack, using just $20 in

hardware, the researcher was able to read consumption information off all smart meters

within range (about 19 meters) [53]. This second attack is a direct attack on privacy as one

could use it to remotely learn another’s consumption information. Published research has

shown that consumption information can reveal very private information such as when a

home is vacant, what appliances are being used, or whether or not expensive electronics

might be present in the home [1, 2].
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A number of privacy preserving data aggregation protocols have been proposed and

studied for application to this problem (see [54] for an overview). Typically these protocols

have focused on spatial (i.e., aggregating information from many meters at one instance in

time) or temporal (i.e., aggregating information from one meter over a period of time)

aggregation and have often focused on computing only the summation function. Secure

multiparty computation (MPC) offers a capability to compute any function (including

summation) while mitigating privacy risks. Due to its perceived complexity, MPC has

not seen a lot of application into smart meter networks. Indeed many of the public-key

based systems use additively-homomorphic ciphers (e.g., [55–59]). Interestingly generic

MPC protocols are actually more efficient than existing protocols that use homomorphic

encryption. T-MPC enables highly scalable and efficient computations.

To better motivate the utility of T-MPC, consider the following scenario. Let four

parties, called Alice, Bob, Chuck and Doug, are interested in compute the sum of their

inputs, xa, xb, xc, xd. Using traditional MPC, if Doug is unavailable, Alice, Bob and Chuck

must wait until he is available to begin the computation. Clearly this is inefficient, as

sum(xa, xb, xc, xd) = sum(sum(xa, xb, xc), xd) and, therefore, Alice, Bob and Chuck could

proceed with computing the sum of their inputs and, when Doug finally arrives, let him

join in on the computation to add his input to get the final result. There are a number of

technical limitations to applying MPC in this manner as traditional MPC assumes a static

set of computation parties. T-MPC solves this problem by allowing partial computations

from one set of parties (e.g., Alice, Bob and Chuck) to be transferred to a new set of parties

(e.g., Alice, Bob, Chuck and Doug) without revealing intermediate computation values.

The new set could be a superset, subset or completely independent of the original set of

parties. This specific example of T-MPC generalizes to cases where f is composed of other

functions, for example f = g(x1, x2, x4, h(x2, x3)).
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Another example of the utility of T-MPC is in optimizing certain computations.

For example, consider a very large set of smart meters, say n = 1, 000, 000 and again

f = sum. Using traditional MPC directly for this computation is very inefficient as all n

must participate in all portions of the computation. Since many standard MPC protocols

rely on secret-sharing inputs, such a computation would require each party to share its

input with the n− 1 other parties. This is very inefficient and becomes unwieldy as n grows

larger and larger. One technique commonly used to fix this inefficiency is to have the

parties share their inputs with a small number of computation servers instead of all other

parties. The computation servers carry out the computation of f on behalf of the parties.

This technique, however, presupposes the availability of such servers and an infrastructure

for communicating with these servers. In the smart grid, wireless sensor networks, and

potentially many other applications, this assumption will not necessarily hold. T-MPC

solves the problem for certain computations without the additional assumptions by allowing

small groups to compute local results and securely transfer the computation. This is best

illustrated by considering a tree structure as depicted in Figure 4.1.

R1 R2 R3 G1 G2 G3 Y1 Y2 Y3

B1 B2 B3

K1

Figure 4.1: Applying transferable multiparty computation to a tree structured network.

Using T-MPC, parties R1, R2 and R3 can compute the sum of their inputs and transfer

the result to B1, B2 and B3 without revealing their individual inputs or the intermediate

33



sum. Similarly G1, G2, G3 and Y1, Y2, Y3 compute the sum of their inputs and transfer

the result up the tree. When B1, B2 and B3 receive input from all of the parties below, they

sum those values privately along with their own inputs and send the necessary information

to K1 to reconstruct the result. More generically, siblings compute their portion of the

computation, combine it with results from their children, and transfer the computation to

the next level up in the tree. Being able to structure computations in this fashion leads to

much more efficient computations while still providing privacy of individual inputs and

intermediate results. T-MPC is orders of magnitude more efficient than simply using

existing MPC protocols for in-network smart grid computations. For instance, for the

standard deviation function and using a common MPC protocol, an example smart meter

network with around 700 meters would take approximately fifteen minutes to complete the

computation. On the other hand, using T-MPC, the standard deviation of over a million

meter nodes takes just a few seconds to compute.

4.1.2 Experimental Setup.

In studying the application of T-MPC to the smart grid, assume a network organization

similar to that of Figure 4.1. The analysis presented here loos at various branching factors

and various numbers of nodes. Assume that nodes can communicate directly with their

sibling nodes, their parent node, and their parent’s siblings. Also assume that the root node

of the tree can communicate with any other node in the tree (either with a fully-connected

network or using routing). To simplify the analysis, assume that each level in the tree is

complete.

In this section, T-MPC is compared with the honest-but-curious MPC protocol

from [47]. In fact, since T-MPC uses a generic MPC protocol with the transfer protocol,

the HbC T-MPC uses the MPC protocol from [47]. Note that the protocol from [47] is UC-

secure and thus composes securely with the transfer protocol. The implementation used in

the experiments comes from the VIFF (http://viff.dk) framework that runs on Python. The
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meter nodes are Gumstix Overo Earths with a 600MHz processor and 256MB of RAM.

While this is more powerful than current smart meters, their performance may be found in

future smart meters, possibly by using custom chips. The final result of the computation

will be reconstructed by the root of the tree. This node is a laptop running an Intel Core

i5-540M CPU and 4GB of RAM in the experimentations. For communications, assume a

half-duplex, 250kbps wireless link with a single communications channel.

4.1.3 Timing.

To assist in the analysis the operations necessary for HbC MPC and malicious MPC

are timed on both the Gumstix and the laptop. As add is a constant time operation, it is

measured by the average time to add two shares in VIFF. The operations share, recombine,

and mult take linear time in the number of parties, thus, they are estimated by calculating

the coefficients of the line by running computations with various numbers of parties and

run linear regression analysis. Table 4.1 shows the computed values for each operation

for the honest-but-curious MPC protocol. For the linear operations, the coefficients of

the line y = c2x + c1 estimate the time to compute each operation for a given number of

parties. Malicious model timing was computed similarly, but the preprocessing operation

genTriple, which is quadratic and is estimated using a quadratic function y = c3x2+c2x+c1.

This information is shown in Table 4.2. These timing values assist in computing the timing

for the additional T-MPC operations transfer and recombine transfer as both operations

are composed of the operations already specified. The time to run transfer in both models

is simply the time to run share in the respective model. For HbC T-MPC, the time to run

recombine transfer is simply the time to run recombine, while for malicious T-MPC the

Reed-Solomon decoder is used, which, for small numbers of parties, the fastest method is

brute force, which has factorial complexity.
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Table 4.1: Timing estimation for HbC MPC.

share recombine add mult
c2 c1 c2 c1 c1 c2 c1

Meter 1.178 −1.019 0.056 0.289 0.07 1.234 −0.66
Sink 0.043 −0.036 0.003 0.01 0.002 0.049 −0.026

Table 4.2: Timing estimation for malicious MPC.

genTriple share recombine add mult
c3 c2 c1 c2 c1 c2 c1 c1 c2 c1

Meter 0.141 4.879 −3.209 1.178 −1.019 0.056 0.289 0.07 0.112 0.58
Sink 0.002 0.181 −0.114 0.043 −0.036 0.003 0.01 0.002 0.006 0.02

4.1.4 Analysis.

The analysis in this section uses the timing values from Tables 4.1 and 4.2 to compute

the total time to execute two functions of interest, namely, summation and standard

deviation. To avoid division and square roots in the computation of the standard deviation
√

1
n

n∑
i=1

(xi − µ)2

, the parties compute only the numerator (it is assumed that the root of the

tree knows n). Note that this leaks no additional information when compared to computing

the standard deviation in its entirety.

T-MPC allows for parallelizing in-grid computations using the tree structure previ-

ously described. This results in a significant optimization of both the sum and standard

deviation. Figure 4.2 shows the time to execute each computation for a fixed network tree

branching factor (i.e., the number of children that each node has) of 10. The benefit of

T-MPC is clear. Using the MPC protocol, one can compute the sum and standard devia-

tions in less than fifteen minutes as long as there are fewer than 2647 and 777 meter nodes,

respectively. Compare this with T-MPC, however, where even at 106 meter nodes, it takes

well under under the fifteen minute mark to run the computation. In fact, the protocol ex-

ecution time with this large of a network takes less than 2 seconds for both the sum and

the standard deviation. Thus, T-MPC greatly enhances the scalability of the network. Fur-
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thermore, this increased scalability allows for more fine-grained information reporting in

reasonably sized networks. This is very significant as prior, specialized summation proto-

cols which use homomorphic encryption can only support networks up to 50 nodes at an

information reporting granularity of 60 seconds [39].

MPC vs. T-MPC in HbC Model
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Figure 4.2: MPC vs. T-MPC (tree branching factor of 10), Honest-but-Curious Model.

The comparison between MPC and T-MPC used a branching factor of 10 in the

construction of the tree. The branching factor determines a number of items including

the number of shares used when secret sharing inputs, the depth of the tree, amount of

parallelism, to name a few. Figure 4.3 plots the time to execute T-MPC for both sum and

standard deviation with various branching factors. From the figure, note that branching

factor does play some role into the efficiency of the protocol. The differences are fairly

minor however. As the branching factor approaches n (the total number of meter nodes),

however, T-MPC in this case becomes equivalent to the underlying MPC protocol. There
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is another underlying aspect to the branching factor. For a subset of parties Pi of size ni

there are ti < ni/2 adversary-controlled parties due to the underlying MPC protocol. In

the case of a tree structured network ni = BF. Therefore, for BF = 3 there can only be

one corrupted party in each subset but for BF = 11 the T-MPC protocol could handle up

to five corrupted parties. Understanding the implications of this is especially important in

real-world deployments.

HbC T-MPC with various Branching Factors
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Figure 4.3: Various branching factors (BF) for Transferable Multiparty Computation,
Honest-but-Curious Model.

The results of the malicious model experiments are very similar in that T-MPC in the

malicious model is far more efficient than MPC. Figure 4.4 shows the comparison between

T-MPC and MPC while Figure 4.5 shows how the branching factor affects execution time.
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MPC vs. T-MPC in Malicious Model
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Figure 4.4: MPC vs T-MPC (tree branching factor of 10), Malicious Model.

4.2 Decentralized Reputation Systems

4.2.1 Motivation.

Reputation in another party is a measure of confidence that that party will conform

to a certain behavior or perform a certain action. For example, consider a mobile ad-hoc

network (MANET) in which a party’s neighbors are used to route messages. A party might

build up reputation information on his neighbors by observing whether or not they forward

messages he sends to them. As new parties join the network, however, they will have

no reputation information on others in the network. A reputation system can be used to

help bootstrap this information. In a typical reputation system, a party can ask others for

their reputation scores on a particular party, and then use, for example, the average of the

responses to bootstrap their own reputation information.

Many online marketplaces have reputation systems built in. They allow users to

provide feedback (or ratings) on products and vendors. The aggregate of this feedback
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Malicious T-MPC with various Branching Factors

101 102 103 104 105

Number of Meter Nodes

10-2

10-1

100

101

102

103

104

Ti
m
e
 t
o
 C
o
m
p
le
te
 (
S
e
co
n
d
s)

15 min.

T-MPC Sum, BF=4
T-MPC Std Dev, BF=4
T-MPC Sum, BF=7
T-MPC Std Dev, BF=7
T-MPC Sum, BF=10
T-MPC Std Dev, BF=10

Figure 4.5: Various branching factors (BF) for Transferable Multiparty Computation,
Malicious Model.

information is displayed to customers in order to help them make choices about what

product to purchase or from whom to purchase the product. These are examples of

centralized reputation systems. These reputation systems can function because the market

operator (e.g., Amazon or eBay) is at least somewhat trusted by both vendors and

consumers. Indeed, it is in the market operator’s best interest to provide honest feedback

to customers.

In many scenarios, however, such a trusted party does not exist. This includes peer-

to-peer systems, MANETs, and others. For this reason, decentralized reputation systems

(DRS) exist. Example systems can be found in [60–63], which are applied to both peer-to-

peer systems and MANETs. These systems are more ad-hoc in nature. In these systems,

a party pq, called the querying party, would like to interact with another party pt, called

the target party, but pq has no reputation information on pt. Therefore, pq forms a set of
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parties, U and asks each party in U to provide their reputation information on pt. pq then

averages these and stores the result. The result is used to help pq know whether or not to

interact with pt.

Recently, researchers have become concerned about privacy issues in DRS. In

particular, if privacy of reputation information is not maintained, parties providing

reputation information to a query could be subject to retaliation, retribution, or attack.

Therefore, it may be in a party’s best interest to not provide honest feedback. To alleviate

this situation, researchers have proposed a number of privacy-preserving decentralized

reputation systems (PDRS). In such systems, instead of providing their reputation

information directly to pi, the parties in U run a protocol which allows them to jointly

compute a function of each of their individual reputation values about pk (typically they

compute the sum) and then reveal the result of the computation to pi. The protocol run by

the parties is specifically designed so that they have strong assurances that their reputation

information has been kept private. Examples of such can be found in [64–68].

All existing PDRS fall into the category of static PDRS. Static means that when a party

leaves the network, all of the reputation information they have built up through interactions

with others in the network leaves with them. In situations where reputation information is

sparse, however, this can be a big problem. The security of these systems is often based

on there being a sufficiently large number of parties in the query set U, some fraction of

which must be honest. This section presents a dynamic, privacy-preserving decentralized

reputation system (Dyn-PDRS) as a solution to this problem. A Dyn-PDRS enables parties

to run a delegation protocol when they want to leave the network. In this protocol, they

delegate their reputation information to a set, D, of other parties in the network. The

delegation is done in such a way that the party’s privacy is still maintained. That party is

then free to leave the network. When that party appears in a query set U, the parties in D

are able to act on its behalf. Furthermore, a Dyn-PDRS provides a redelegation protocol
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which is run when a party in D wants to leave the network. This allows the parties in D to

redelegate to a new set D′. That set D′ can then act on the original party’s behalf.

This section presents the following contributions.

1. A description of existing PDRS from the literature and an illustration of how these

systems fail when parties are allowed to leave the network.

2. A more formal definition of PDRS and Dyn-PDRS and a description of the problem

setting.

3. Four protocols for building a Dyn-PDRS. The first is necessary for a PDRS and is

similar to existing work in the area. The next three are necessary to build the Dyn-

PDRS.

4. Correctness and security analysis of the protocols.

The protocols are secure in the honest-but-curious or semi-honest adversary model [40].

This model assumes that corrupt parties execute the protocol as specified, but use any infor-

mation gleaned during execution to attempt to violate another party’s privacy. This section

presents results of a number of simulations to illustrate the benefits of a Dyn-PDRS over

the traditional PDRS. While the delegation and redelegation protocols given can be run in-

definitely, it turns out this can have a major impact on security. Section 4.2.6 formalizes the

issue and presents two delegation strategies for dealing with it. Section 4.2.7 describes an

implementation of the protocols, and Section 4.2.8 describes timing experiments conducted

using the implementation.

4.2.2 Related Work.

A number of protocols have been proposed to construct PDRS. This section describes

some of the prominent ones and comments on why the problem of operating in networks

where parties are constantly leaving and rejoining the network is a concern. The description

42



focuses on protocols which are secure in the honest-but-curious model as that is the model

used in this section.

4.2.2.1 Pavlov et al.

One of the earliest works in privacy-preserving decentralized reputation systems

comes from Pavlov et al. [64]. An important proof coming from this work is that

if the querying node is corrupt, there must be at least two honest nodes or privacy

cannot be achieved. The authors also present three protocols (of varying strengths and

security guarantees) which enable such a system. Their second protocol is closest to the

present setting (full-threshold security where corrupt parties are allowed to collude) and is

described below. The querying party begins the protocol by running a witness selection

scheme. This results in a set of witnesses who will provide feedback on the target party

and, with high probability, will have at least two honest witnesses. The querying party

sends a description of the set to all parties in the set. Each witness splits his reputation

score on the target party using additive secret sharing and sends one share to each party in

the protocol (including the querying party) and keeps one share for himself. Once a party

has gathered shares from every other party, he sums them all up and sends the result to

the querying party. The querying party then sums all the values he receives to recover the

sum of the reputation values. For security and correctness proofs of this protocol, see the

original work by Pavlov et al.

In the case of dynamic networks, the problem with Pavlov’s protocol is that, while

honest parties which could provide feedback for a particular target party will come and

go due to normal churn in the network, dishonest parties will not necessarily follow this

pattern, making them more likely to be chosen as witnesses. Pavlov et al. prove their

witness selection scheme will result in a witness set with at least two honest witnesses with

probability greater than (1− 1
n )( N−b−1

N−1 ), where n is the number of witnesses, N is the number
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of possible witnesses (i.e., the number of parties with reputation information on the target),

and b is the number of corrupt parties.

For Pavlov’s protocol, a dynamic network has the effect of lowering N while b remains

constant. Figure 4.6 shows how this affects the probability of having at least two honest

witnesses. The probability for a hypothetical static network is also shown in the figure for

reference. Here, the fraction of corrupt parties is fixed at 0.1 and the size of the witness set

is one-tenth of the original network size. It is clear that the dynamic nature of the network

has a significant impact on the security of Pavlov’s protocol.

Existing PDRS in dynamic network
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Figure 4.6: Comparison of security for Pavlov’s protocol [64] in static vs. dynamic
networks.

4.2.2.2 Hasan et al.

Hasan et al. [65] propose the k-shares reputation protocol which builds upon the

work of Pavlov et al. The benefit of the k-shares protocol is that witnesses are able to

maximize and quantify the probability that their reputation information is kept private. In
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this protocol, the querying agent chooses a set of witnesses (the exact method for this is not

specified in the paper). The description of the set of witnesses is sent to each witness. Each

witness chooses a subset of the witnesses of size up to k which he considers trustworthy.

The witness then shares their reputation information with the subset using additive secret

sharing and sends the description of the subset to the querying party. The querying party

informs each witness who they will receive shares from. Each witness, upon receiving

shares from other witnesses, sums them up and sends the result to the querying party. The

querying party sums all of these values to get the sum of the reputation values. Note that if

a witness decides to, he may choose not to input his reputation information if he does not

trust enough parties in the witness set. Furthermore, since each witness is selecting up to k

other witnesses that he trusts, the authors note that this leaks some information about trust

relationships (but not specific reputation information). The authors propose solving this by

allowing the querying party to add a few untrusted parties to the subset and then selecting

the same subset for repeated queries.

Consider the operation of Hasan’s protocol in a dynamic network. As the authors

do not specify how the set of witnesses is chosen, assume it happens in the same manner

as in Pavlov’s protocol. In Hasan’s protocol, as fewer and fewer honest witnesses are

available, the remaining honest witnesses will likely refuse to take part in the computation,

thus preserving their privacy. Note, however, that the fact that more honest parties are

refusing to participate in reputation computations is not a good thing for the system as a

whole. Another issue arises when attempting to use Hasan’s protocol in a dynamic network.

In order to provide high efficiency, the authors require that k << n, where n is the size of the

witness set and k is the maximum size of the subsets chosen by each witness. In a dynamic

network, it is possible that this inequality cannot be met as the number of available (i.e.,

currently part of the network) witnesses could be much smaller than in an entirely static

network.
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4.2.2.3 Other Protocols.

A number of other decentralized, privacy-preserving reputation systems have been

proposed in the literature (e.g., [66, 67]). Of the other protocols available, all have similar

issues with regards to dynamic networks. In particular, the fact that reputation information

from trustworthy parties may not be available at query time impacts the security of

existing reputation systems. This illustrates the importance of availability in decentralized

reputation systems in general. The solution to the problem is non-trivial as privacy of

reputation information used to help the querying party compute a reputation value for the

target party must also be preserved.

4.2.3 Problem Setting and Definitions.

The problem area is that of computing reputation in a privacy-preserving manner, in

dynamic, decentralized networks. This section defines the working environment and other

important details of the setup. Some details are abstracted in order to focus on building

solid protocols to enable such a reputation system.

Let P be the set of parties which form the network. Parties in P may leave and join

the network as they please. Assume that each pair, pi, p j ∈ P, is connected by a secure,

authenticated channel. Party pi stores reputation information that it has generated about

another party p j, say vi j. Let vi j be between 0 and some global maximum reputation vmax if

pi has reputation information on p j, otherwise, vi j = ⊥.

Decentralized reputation systems are useful in the case where pi needs to interact with

some pk but vik = ⊥. In this case, pi forms a set U ⊂ P and queries parties in U about pk to

help it compute vik. For example, if vik =
1
|U |
∑

p j∈U v jk the system is additive. Such a system

is also privacy-preserving if it fits the following definition.

Definition 1 (Privacy-preserving Decentralized Reputation System (PDRS)). A (additive)

PDRS consists of a decentralized protocol πadd which allows a querying party, pi, to
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compute vik =
1
|U |
∑

p j∈U v jk, without any of the v values being leaked to any other party.

Here U is the query set and is chosen by pi.

Definition 2 (Additive Secret Sharing). Let G be a cyclic group. The additive secret

sharing of s ∈ G are the shares s1, . . . , sn ∈ G such that

1. s = s1 + s2 + · · · + sn and

2. s1, s2, . . . , sn−1 are chosen at random from G and

3. sn = s − (s1 + s2 + · · · + sn−1).

Let S n : G→ Gn be the additive secret sharing function which outputs n shares of the

input, that is, S n(s) = (s1, . . . , sn). Let S n(s)[i] be the i-th share of s. Given the n shares,

one can reconstruct s simply by adding the shares together.

Additive secret sharing, defined above, has been used in a number of general secure

multiparty computation protocols as a way to preserve privacy [43, 69], and is used the

Dyn-PDRS presented in this section. It is linear, i.e, given shares of two values, one

can compute a share of the sum of those values without inverting the sharing function,

or mathematically

S n(s)[i] + S n(s′)[i] = S n(s + s′)[i].

Furthermore, any adversary who does not know all the shares cannot compute the secret. In

fact, an adversary with up to n − 1 shares gains no additional information about s. In other

words, additive secret sharing is information-theoretically secure. The subscript is omitted

when it is clear from the context.

Definition 3 (Dynamic, Privacy-preserving Decentralized Reputation System (Dyn-PDRS)).

A (additive) Dyn-PDRS consists of a protocol πadd as in Definition 1 and three additional

protocols: πdel, πact and πre del. Where πdel allows a party to delegate the reputation informa-

tion it holds to a set of parties D while still preserving the privacy of that information. The
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protocol πact allows a set of parties who have been authorized to act on another party’s be-

half to enter that party’s information into the protocol πadd while still preserving the party’s

privacy. Finally, the protocol πre del lets a set of parties, say D, re-delegate reputation infor-

mation that was delegated to it to another set of parties, say D′, in a way which maintains

the privacy of the information.

The next section gives specific instances of these protocols and how they are

composed to form a Dyn-PDRS. There is some tradeoff to be balanced in delegation.

Section 4.2.6 explores delegation strategies in order to balance the tradeoff between

information availability and privacy.

4.2.4 Protocols.

This section presents the four protocols introduced earlier. This section first presents

πadd, the protocol to allow pi to use the set U to compute vik =
1
|U |
∑

p j∈U v jk privately.

The summation is computed via a simple multiparty computation built on additive secret

sharing. The concept is similar to previous work in decentralized reputation systems and

has similar performance characteristics. πadd by itself could be used as the basis of a

PDRS. It is important to note that in a Dyn-PDRS, since delegations are allowed, the set

U may contain parties which are not currently online, as long as the party has delegated

its reputation information. The set U can be generated using methods from prior work,

for example, Pavlov’s witness selection protocol. All parties in U must have reputation

information on the target, pk.

Next, this section presents the remaining three protocols, πdel, πact and πre del to enable

privacy-preserving delegation. Together, these protocols enable a reputation system where

parties can leave the network, yet delegate their reputation information in such a way that

it can still be used to assist other parties in computing reputation. Some details of the

underlying communication system and about how the protocols interact are kept abstract

to keep the discussion focused on the protocols themselves. Section 4.2.7 describes the
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implementation of these protocols in a real system and describe these parts in more detail.

In a general sense, the security of the protocols are secure for up to n − 1 corrupt parties.

However, due to the specific computation, summation, n − 1 corrupt parties can learn the

remaining honest party’s input by subtracting their individual inputs from the output. Only

the querying party should learn the output, so if the querying party is corrupt, there must be

at least two honest parties in U. For simplicity the protocols are presented as if the querying

party is honest. In the case of a dishonest querying party, the only thing that changes is the

number of corruptions tolerated.

4.2.4.1 The PDRS Protocol.

Let pi be the querying party, who wants to compute vik for some party pk. Let U be the

set of witnesses with inputs to the computation. The protocol πadd is shown in Protocol 1.

Note that while not identical to previously proposed protocols for PDRS, the protocol is

very similar, and, taken in its own right, should have similar performance.

Correctness: The correctness of the protocol is guaranteed due to the linear nature of

additive secret sharing. Mathematically,
∑

p j∈U S (v jk), where addition is performed point-

wise on the sharing vectors, is equal to S (
∑

p j∈U v jk). These shares are, in essence, what the

parties in U send to pi in the next to last step. So,

vik =
1
|U |
∑
p j∈U

t j =
1
|U |
∑
p j∈U

v jk.

Security: The security of the protocol comes from the security guarantees of additive

secret sharing. As long as the adversary has not corrupted all of U, all of the individual

reputation values v jk as well as the output value vik are kept private.

4.2.4.2 The Dyn-PDRS Protocols.

Say party pℓ ∈ P is leaving the network. In order to not lose all the reputation

information of pℓ, this section, proposes the necessary protocols to allow pℓ to delegate

its reputation information to a set of parties D ⊂ P. This includes a protocol to allow the

parties in D to act on behalf of pℓ whenever pℓ appears in a query set U, a protocol to
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Protocol 1 πadd.

1. pq sends the description of the set of witnesses U and the identity pt to each party in

U.

2. Each p j ∈ U computes (s1, . . . , s|U |) = S |U |(v jt) and sends one share to each other

party in U and keeps one share for himself.

3. Each p j collects one share from each of the other parties in U. Let (r1, . . . , r|U |) be

the shares p j collects (including his own share).

4. Each p j then computes t j = r1 + r2 + · · · + r|U | and sends t j to pi.

5. Party pi receives |U | shares, t j from p j ∈ U, and sets vit =
1
|U |
∑

p j∈U t j.

allow the parties in D to transfer the delegation of pℓ’s reputation information to a new

set D′. This protocol is used when a party in D is leaving the network. D and D′ may

be of different sizes, overlap or be completely independent. When pℓ rejoins the network,

the parties in D can simply discard pℓ’s reputation information. It would be fairly simple,

however, to also allow the parties in D to return the reputation information back to pℓ. For

now, let the set D be chosen at random. Section 4.2.6 explores other methods for choosing

D and the redelegation sets.

Protocol 2 describes πdel. The correctness and security of this protocol come directly

from the correctness and security of additive secret sharing, discussed earlier. As long as

the adversary does not control all of the parties in D, pℓ’s reputation information is kept

private.

Once the parties in D have received the information sent by pℓ in Protocol 2 and

verified the digital signature, they are ready to act on his behalf. At some later point in time
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Protocol 2 πdel.

1. pℓ chooses a set of delegates D ⊂ P.

2. For each p j ∈ P where vℓ j , ⊥

pℓ computes shares j = S |D|(vℓ j) and sends the identity j and one share to each

party in D.

3. pℓ digitally signs a message signifying that it has delegated its reputation information

to the set D and sends the message and signature to each party in D .

they will see a query set U that contains pℓ when a party, say pi, initiates Protocol 1. At

this point the parties in D run πact, shown in Protocol 3.

At the end of Protocol 3, the parties in U′ can complete the execution of Protocol 1.

Some interesting features of the protocol are that not all of D is required to participate in

the execution of Protocol 1 and that the trust value vℓk is never revealed, either to the parties

in D or the parties in U′.

Correctness: From Protocol 2, the parties in D hold shares of the reputation value

vℓk, say sharesk = (d1, . . . , d|D|) where vℓk = d1 + · · · + d|D|. These shares are then split into

subshares and distributed to the parties in U′. In other words, d j is split into d′j1, . . . , d
′
j|U′ |.

Notice that the sum of all the subshares for every d j is still vℓk. One subshare of each d j is

sent to one party in U′. Since addition is commutative, it turns out that the sum of all the rℓ

shares computed in Step 6 of the protocol is still vℓk. Thus, the parties in U′ have additive

shares of vℓk as needed for the protocol to be correct.

Security: Protocol 3 is secure from the perspective that it does not give the adversary

any additional information about vℓk. This is shown in the worst case, i.e., when the

adversary controls all parties but one in D and all parties but one in U′. Security in the
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Protocol 3 πact.

1. The parties in D notify the parties in U that they are to act on behalf of pℓ by sending

them the message and digital signature received from pℓ.

2. Parties in D select one of them to take pℓ’s place in the set U and notifies the parties

in U of this choice.

3. The parties in U validate the digital signature and replace pℓ in the set U with the

party chosen in the previous step. Call this new set U′.

4. The parties in U use the set U′ for sharing when continuing Protocol 1 with the

exception of computing rℓ (the input shares that would have come from pℓ).

5. Each party in D takes its share of sharesk, say sk, received in Protocol 2 and computes

(s1, . . . , s|U′ |) = S |U′ |(sk) and sends one share to each party in U′.

6. Each party in U′ receives |D| shares from the previous step. Call these shares

(s′1, . . . , s
′
|D|). They then compute rℓ = s′1 + · · · + s′|D|. rℓ takes the place of what

they would have received from pℓ in Step 3 of Protocol 1.

case that the adversary controls fewer parties is an immediate consequence from worst case

security. Let ph ∈ D and p′h ∈ U′ be the honest, uncorrupted parties in each set. Note that

ph and p′h could be the same party. In the protocol, ph will create a number of subshares,

one of which will be sent to p′h. Since the adversary will not know that share, due to the

security of additive secret sharing, the adversary will also not know the rℓ that p′h computes

in Step 6 of the protocol. Without that value, the rℓ values computed by the corrupt parties

give the adversary no additional information about vℓk. This shows that as long as there is

at least one uncorrupted party in D and U′, the protocol leaks no additional information

about the private trust information.
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If a party in D leaves, the remaining parties would not be able to act on pℓ’s behalf.

Therefore, before any party in D leaves the network, πre del is run, as shown in Protocol 4.

Let pℓ′ ∈ D be the party that is leaving the network. Furthermore, recall that from

Protocol 2, the parties in D hold a number of pairs ( j, s j) where j is an identity of a party

and s j is a share of vℓ j. How the set D′ is chosen will be explored in a later section. For

now, assume that D′ is a new random set. The description of πre del focuses on the case

where only one party has delegated information to the set D. The protocol can easily be

adapted to the case where multiple parties have delegated to D by running it once for each

party that has left the network and delegated to D.

Thus, by doing something similar to what was done in Protocol 3, i.e., creating and

distributing subshares, the parties in D are able to transfer all delegated information they

hold for pℓ to the set D′ without revealing the values. Given the results of this protocol,

simple modifications can be made to Protocol 3 to allow the set U to properly validate that

D′ is authorized to act on pℓ’s behalf. Correctness and security proofs for this protocol

follow a similar logic that was used in Protocol 3.

4.2.5 Simulation.

The protocols shown in the previous section can be used to build a dynamic, privacy-

preserving decentralized reputation system (Dyn-PDRS). This section shows the utility of

increasing availability in decentralized reputation systems through a number of simulations.

In order to establish a comparison with previous work, simulation for no delegation

of reputation information is also given. This is what all previous privacy-preserving

decentralized reputation systems do. Thus, in a network with churn, the reputation

information of parties leaves when the parties leave the network. Table 4.3 summarizes

all the symbols used in this section.
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Protocol 4 πre del.

1. pℓ′ sends a message to all other parties in D that it is leaving the network.

2. The parties in D select a new set D′ which will be responsible for acting on behalf of

pℓ.

3. Each party in D creates subshares of each s j it holds and distributes one subshare to

each party in D′ along with the identity j.

4. For each j, each party in D′ receives one subshare s j from each party in D and stores

the sum of these subshares along with j. The sum of these subshares is a new share

of vℓ j.

5. Parties in D also send the message and digital signature they received from pℓ to the

parties in D′. They also each digitally sign a message stating that they are transferring

delegation of pℓ’s reputation information to D′.

4.2.5.1 The Setup.

For the simulation, let N be the total number of parties in the network, a be the

probability that a party is in the network during one iteration of the simulation (1 − a is

the probability that they are not in the network). Let c be the fraction of corrupt parties.

The reputation system initializes by giving each party some reputation information on other

parties in the network. Let b be the fraction of parties for which a given party holds

reputation information at the start of the simulation.

At each iteration of the simulation some fraction, q, of the parties in the network

ask for reputation information on some other in-network party. Also, in each iteration,

some fraction, γ, of the network leaves or rejoins the network. Parties (both those in

the network and those out of the network) will leave the network with probability 1 − a
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Table 4.3: Table of symbols for simulator.

Symbol Description

N Number of parties in the network

a In-network probability

c Fraction of corrupt parties

b Fraction of information to bootstrap

q Fraction that query in an iteration

|D| Cardinality of the delegation set D

δ Bound on delegation chain depth

γ Network churn rate

or join the network (if they were already gone) with probability a. With a = 1 a static

network is achieved. As seen previously, when a party leaves the network, they delegate

their reputation information to a delegation set. If someone in that set leaves before the

original party returns to the network, a redelegation occurs. Let δ be the bound on the total

number of delegations and redelegations. Bounding depth of the delegation chain affects

both efficiency and security. Let δ be the bound on the depth of the delegation chain. In

other words, if δ = 1, when pℓ leaves the network, he will delegate his trust information to

some set D. When one of the parties in D leaves the network, they do not do any further

delegations. With δ = 2, pℓ would delegate to a set D who, in turn, would delegate to

a set D′ when a party in D is leaving the network, but the chain would end there. When

pℓ returns to the network the delegation chain resets (i.e., delegation would occur again if

pℓ left again). In effect, existing privacy-preserving decentralized reputation systems have

δ = 0, i.e., no delegation.
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4.2.5.2 Varied δ.

This section shows how δ affects the level of information availability achieved by

the Dyn-PDRS. Figure 4.7 shows a simulation with N = 10000, a = 0.75, c = 0.2,

b = 0.05, q = 0.05, |D| = 5, γ = 0.25 and various values for δ. The static network

represents the theoretical upper bound, for reference. Information availablity is the fraction

of information available by counting the total number of reputation values available in the

network (either directly from a party or through delegation) divided by the total possible

number of reputation values (N2 − N).
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Figure 4.7: Information availability for various delegation depths (a = 0.75).

The figure shows that even with δ = 1 there is a significant increase in the amount

of available information. Furthermore, with δ = 4 the information availability in the

simulated Dyn-PDRS is very close to that of the fully static network. This plot illustrates

how effective simple delegation can be in a reputation system.
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Dyn-PDRS Simulation with decreased a
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Figure 4.8: Information availability for various delegation depths (a = 0.50).

4.2.5.3 Varied a.

This section describes how changing a affects information availability. Figure 4.8

repeats the previous simulation but lowers a to 0.5. There is still a significant advantage

in delegating reputation information, but it takes a longer delegation chain to approach the

static system. In essence, the effect of a lower probability of availability of the parties is

a slower growth of information availability in the system over time. To combat this in a

deployed system, a deeper delegation chain can be used.

4.2.5.4 Varied γ.

The next simulation focuses on various values for γ. Recall that γ specifies what

fraction of the parties might change their network status. This relates to the churn of the

network. At each iteration of the simulation, γN of the parties will flip a weighted coin

to determine if they should be in the network (either join the network if they were out, or

stay in). a specifies the probability that the party should stay in or join the network. Other
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parameters are fixed at N = 10000, a = 0.75, c = 0.2, b = 0.05, q = 0.05, |D| = 5 and

δ = 4. The simulation uses the following values for γ: 0.25, 0.50, 0.75, 1.00. The results

are shown in Figure 4.9. The plot includes the line for the static network for reference.
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Figure 4.9: Information availability plot with various churn rates.

The figure that, surprisingly, the churn rate has little effect on information availability.

To understand why this is the case, consider what happens when γ is high. Parties are

more likely to leave the network, so they will have to delegate their reputation information.

They are also, however, more likely to come back quickly, which means the delegation

chain limit is less likely to be reached. Contrast this with the case where γ is low. Parties

are less likely to leave the network, so they will not have to delegate their information as

often. When they do leave, however, they stay out longer. But, since the parties in their

delegation (and redelegation) set are less likely to leave also, the delegation chain will not

grow as quickly.
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Dyn-PDRS Simulation for various |D|
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Figure 4.10: Information availability plot with various delegation set sizes.

4.2.5.5 Varied |D|.

This section describes the effect of the size of the delegation and redelegation sets on

information availability. For simplicity, assume that the size of the delegation set and the

redelegation sets are the same. Figure 4.10 shows the results of this simulation. This plot

also shows the static network for reference. The figure shows that the size of the delegation

set indeed has an effect on information availability. The effect is not drastic, but at the

same time is non-negligible. The reason for lower information availability as |D| increases

is that there are more parties who can cause redelegations, thus, it is more likely that the

delegation chain depth limit is reached.

4.2.5.6 Discussion.

From the previous simulations, it is clear that different parameters affect information

availability differently. Network churn has little to no effect on information availability, but

the in-network probability and the delegation chain depth can both have significant impacts.
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Increasing δ increases the y-intercepts and the slopes of the lines in Figure 4.7. Comparing

that figure with Figure 4.8, one can see that decreasing a decreases the y-intercept and the

slope. Increasing churn, γ, has little to no effect on either the y-intercepts or the slopes of

the lines in Figure 4.9. Finally, increasing |D| causes only a small decrease in both the y-

intercepts and the slopes of the lines in Figure 4.10. Therefore, one can see that while the in-

network probability has the biggest negative impact on information availability, increasing

the delegation chain depth limit can be a viable way to significantly increase information

availability.

4.2.6 Delegation Strategies.

Consider a simple delegation strategy in which pℓ chooses a random set D, and any

time πre del is run, a new random set D′ is chosen. With each delegation (or redelegation),

there is some chance that the delegated information will leak. This happens when all

parties in the delegation set are corrupt. Let |D| be the size of the delegation set, which, for

simplicity, is assumed to be constant, but the protocols will work for different sized sets.

Therefore, there are
(

c|P|
|D|

)
sets of size |D| for which all parties in the set are corrupt. (4.1)

gives the probability of choosing a delegation set where all parties are corrupt, or in other

words, the probability of a single delegation (or redelegation) resulting in leaking private

reputation information given the delegation strategy just described.

prob leak =

(
caN
|D|

)(
aN
|D|

) (4.1)

Using the parameters from the first simulation, (N=10000, a = 0.75, c = 0.2 and

|D|=5), prob leak ≈ 0.0003. Therefore, with 1700 delegations or redelegations total, the

probability that the private reputation information would have leaked is 0.0003(1700) =

0.51. With high churn rates in a network, one can expect a lot of delegations and

redelegations and would have to stop delegating at some point in order to guarantee

security. Therefore, a better delegation strategy is needed. This sections studies two
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delegation strategies. One provides strong privacy guarantees but could potentially leak

some information about who pℓ trusts (but not the actual reputation values). The other has

weaker privacy guarantees, but does not leak information about who pℓ trusts.

4.2.6.1 Guaranteed Privacy.

Since pℓ has reputation information on other trusted parties in the network to guarantee

privacy, this information helps pℓ when choosing how delegation should work, i.e., the

initial set D and the delegation chain depth δ. Let pℓ choose δ according to how available he

wants his information to be when out of the network. For example, this could be determined

based on the churn rate of the network. Once δ is set, pℓ forms the set Dh of parties that

he trusts the most (based on reputation values he possesses) where the size of Dh is ⌈ δa⌉.

These parties are known by pℓ to be honest and will help provide strong privacy guarantees

by forming part of D. pℓ also chooses some number of other parties from the network at

random, whose trustworthiness is possibly unknown. Call this set Du. When pℓ would like

to leave the network, he runs protocol πdel with D = in network(Dh∪Du), where in network

returns the subset of the parameter of those parties which are currently in the network. At a

later point when a party, say p′ℓ ∈ D, wants to leave the network, the parties in D run πre del

with D′ = D − {p′ℓ}.

Due to the way Dh is constructed, |in network(Dh)| ≈ δ. Furthermore, there are

approximately (1− c)|Du| honest parties in Du. Therefore, at any moment in time, the set D

will contain at least δ honest parties. Since δ limits the delegation chain, it is guaranteed that

there will always be at least one honest party in the redelegation sets. Therefore, privacy is

ensured.

4.2.6.2 Probabilistic Privacy.

One can make the delegation strategy simpler by relaxing the security guarantees. Let

pℓ choose a set Du at random of size 1−c
aδ where δ is the desired delegation chain depth to

ensure some level of availability. Set D = in network(Du) when pℓ runs πdel. When the
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parties in D run πre del, they set D′ = D− {p′ℓ}. Due to the way Du is chosen, there should be

δ honest parties in D at any instant in time, and since the delegation chain depth is limited

by δ, there will always be at least one honest party in the redelegation sets. In practice, Du

should be somewhat larger in order to have even stronger assurances of privacy.

4.2.6.3 Discussion.

The first delegation strategy is able to provide better privacy guarantees by exploiting

the reputation values that pℓ possesses. There are circumstances where this could leak

information about who pℓ trusts but not the actual reputation values of pℓ. This may or may

not be of concern, depending on the application. The second delegation strategy does not

have this problem, but is not able to provide as strong of privacy guarantees, though this

strategy could be very viable in networks where c, the fraction of corrupt parties, is very

low. The description of the second strategy requires knowledge of c, which is a drawback,

but conservative estimates of c can likely be computed.

4.2.7 Implementation.

This section presents an implementation of the four protocols presented earlier, in

order to better understand the timing characteristics of the protocols. The implementation

is in the Python language, and all communications take place using the Python remote

object functionality provided by Pyro [70]. For the finite field for additive secret sharing,

the implementation uses Z1021. This field is more than sufficient as the maximum reputation

value is 10 and the query set sizes are small.

The primary component of the implementation is the Agent. An agent is a party in the

network. Each agent begins with some amount of reputation information on other parties in

the network. This bootstraps the reputation system. While not done in the experiments, an

agent could start with no reputation information. Agents register with the Pyro nameserver

to make their availability in the network known. They are then free to communicate with

each other. For the purposes of the implementation, query and delegation sets are chosen
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randomly and one can set the size of each of these sets programmatically. Assume the

same sizes across the whole network, though in practice they can differ. For th delegation

strategy, the redelegation set is equal to the previous delegation set minus the party that is

leaving. This sets a natural bound on the delegation chain to be the size of the original

delegation set minus two. That way there will always be at least two parties in the

delegation set. In practice, one would need to be more careful in choosing the delegation

set and setting the bound on the delegation chain depth accordingly, as discussed in the

previous section. For the purposes of the timing experiments, this delegation strategy will

suffice.

4.2.8 Experimentation.

Using the implementation detailed in the previous section, this section reports on

a number of experiments to demonstrate the run-time efficiencies of the Dyn-PDRS

protocols. This section, describes the results. For the experiments, let N = 50, a = 0.9

when delegation is used, s = 0.5 and γ = 0.1 unless otherwise stated. An explanation of

these symbols is given in Table 4.3.

Figure 4.11 shows the timing information for running πadd with various query set sizes

and a fixed delegation set size (|D| = 6). Notice that the time to execute πadd increases

as the query set size increases. This plot also reveals a lot about πact. πact is called as a

subroutine of πadd when delegation is enabled and a party that appears in the query set has

left the network. In which case, the parties in the delegation set act on his behalf. The plot

also shows the effect of πact, both the overall time to execute and the slope increase. Even

with a query set size of ten, however, πadd, both with and without delegation is very fast.

Figure 4.12 shows the results of a similar experiment but this time varied the size of the

delegation set and fixed the size of the query set to five. With no delegation, the delegation

set size has no effect. Again, notice how the time to execute πadd with delegation increases

as the size of the delegation set increases.
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Effect of |U | on πadd execution time
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Figure 4.11: Average time to execute πadd with varying query set size and 95% confidence
interval.

Figures 4.13 and 4.14 plot the average time (with 95% confidence interval) to run

πdel and πre del respectively, with varying delegation set sizes. The query set size has no

effect on the running time of these protocols and is fixed at five for these experiments. In

Figure 4.13, notice that πdel is a very fast protocol and increases linearly as the delegation

set size increases. Figure 4.14 reveals that πre del is the most expensive protocol in the

Dyn-PDRS. With smaller delegation set sizes, however, it is still practical.

All of the previous plots showed the average execution time over the entire experiment.

The time to execute πdel and πre del can vary greatly depending on how much information

needs to be delegated or redelegated. To better understand how the amount of information

affects the running time of these protocols, we plot the individual data points collected

during an experiment in which s (the fraction of information bootstrapped into the

reputation system) is varied and, upon either a delegation or redelegation, counted
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Effect of |D| on πadd execution time
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Figure 4.12: Average time to execute πadd with varying delegation set size and 95%
confidence interval.

the number of reputation values being delegated or redelegated respectively. For this

experiment, the query set size is fixed at five and the delegation set size at six. Figure 4.15

shows the results of this experiment for πdel and Figure 4.16 for πre del. Each plot includes

the linear least squares regression line. For both protocols, the execution time increases

linearly as the amount of information increases, though the slope of the line is much higher

for πre del.
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Effect of |D| on πdel execution time
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Figure 4.13: Average time to execute πdel with varying delegation set size and 95%
confidence interval.

Effect of |D| on πre del execution time
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Figure 4.14: Average time to execute πre del with varying delegation set size and 95%
confidence interval.
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Timing plot for πdel
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Figure 4.15: Timing as amount of information increases for πdel.

Timing plot for πre del
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Figure 4.16: Timing as amount of information increases for πre del.
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V. Adversary Model Tradeoffs

Adversary modeling is a very important tool in the design of security protocols. It

forces a protocol designer to specify exactly the conditions under which the protocol will

be secure and often leads to a formal proof of security. Chapter 3 shows examples of

adversary modeling and security proofs. The two most common adversary models are

the honest-but-curious model (or semi-honest) and the malicious model. Each adversary

model has its advantages and disadvantages. This chapter presents methods to study the

tradeoffs between the two models. Protocols in the honest-but-curious model are often

more lightweight than their malicious model counterparts. They typically have lower

computation requirements, lower communication requirements, or both. The disadvantage

of these protocols is that the honest-but-curious (HbC) assumptions might not be realistic,

especially if the value of an attack is high. This is especially true in smart metering

applications where the meters are geographically separated and thus, not under the physical

protection of some entity with a vested interest in keeping them safe. That is why often HbC

privacy preserving smart metering protocols have the additional assumption that devices

tamper resistant. Malicious model protocols are inherently more resilient and do not require

tamper resistant hardware, but often have a higher cost in computation or communication

or both.

When designing a privacy-preserving system such as in the two applications described

in Chapter 4, choosing a realistic adversary model given the context of the deployed

hardware/software is very important. Previous research has not addressed how much

less efficient malicious model protocols are, and what is the effect of anti-tamper on

HbC protocols. Answering these questions is very important as it could potentially

have a major impact on the efficiency and security of the system. The results in this

chapter present analysis of protocols geared towards the smart grid application that use
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three different paradigms for privacy-preserving computation: homomorphic encryption,

multiparty computation, and transferable MPC.

5.1 Motivation

Consider the problem of spatial aggregation of load data in a network of N meters

and one node called the sink node. The sink node represents the party authorized to learn

the final aggregated value. Erkin and Tsudik [55] present a protocol that is secure in the

honest-but-curious model which requires each meter to perform one encryption, one hash

function computation and generate N − 1 random numbers. The aggregation node then

homomorphically aggregates the information from the N meters and decrypts the result.

Garcia and Jacobs [56], on the other hand, present a protocol that is secure in the malicious

model which requires N − 1 encryptions and one decryption per meter. Furthermore,

the aggregation node must homomorphically aggregate approximately N2 different values

before getting the final result. Clearly the malicious model protocol requires much more

computation for both the aggregation node (N2 aggregations vs. N) and for the meter nodes

(public-key encryptions vs. random number generation).

As illustrated by the previous example, there are many tradeoffs between the two

adversary models. This section presents methods for understanding these tradeoffs in two

different ways. The initial discussion focuses on existing smart meter aggregation protocols

that use homomorphic encryption from the literature. Their respective communication and

computation requirements when applied to sample smart meter hardware is presented.

Next, the discussion turns to generic secure multiparty computation protocols that can

compute almost any function on private inputs. Such protocols have only recently been

studied for their application to the smart grid. These protocols provide an interesting avenue

to help us further understand the implications of the different adversary models when

developing privacy protocols for the smart grid. Protocols for each adversary model are

studied to understand their requirements and compare them to understand better adversary
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model tradeoffs. Furthermore, while a complete, in-depth study of smart meter anti-

tampering is outside the scope of this paper, Section 5.6 presents information on various

anti-tamper protections that are likely candidates to be used in future smart meters and

discuss the costs associated with each. The intent here is not to say categorically which

adversary model is the best, but instead the analysis will give an understanding of the

issues to consider when choosing one adversary model over the other and present methods

for conducting these analyses.

Privacy-preserving protocols based on homomorphic encryption have very high costs

associated with moving from HbC to malicious model protocols. MPC based protocols

are richer since they allow more complex computations. The information in this chapter

presents an understanding of the adversary model tradespace in smart metering systems.

The computations studied are privately computing sums of consumption information

across a neighborhood or city and standard deviation of consumption information across a

neighborhood or city. This chapter proposes metrics for comparing fundamentally similar

protocols from different adversary models.

Meter

Meter

Meter

Meter

Meter

Sink

Figure 5.1: Fully Connected Network Model.

For the protocols of interest to operate properly, any network topology will work as

long as every node can talk to every other node. This can be accomplished via routing
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or direct connections. For simplicity, assume a fully connected topology as shown in

Figure 5.1. The number of meter nodes may vary, but there is always a single sink. Meter

nodes use the Gumstix Overo Earth with a 600MHz processor and 256MB of RAM. The

sink node, is a computer running an Intel Core i5-540M CPU and 4GB of RAM.

5.2 Homomorphic Encryption in Smart Metering

Probably the most common computation found in the literature for privacy preserva-

tion in smart grids is aggregation of usage measurements over a spatially separated area

(e.g., a neighborhood or city). A number of proposed protocols attempt to solve this prob-

lem. This study focuses on two, a protocol due to Erkin and Tsudik, called the ET pro-

tocol [55], and a protocol due to Garcia and Jacobs, called the GJ protocol [56]. These

specific protocols have been chosen for the following reasons: (1) they are built using ho-

momorphic encryption; (2) they are fairly similar in functionality, yet the ET protocol is

secure in the honest-but-curious model while the GJ protocol is secure in the malicious

model; and (3) they fit the network model well. By restricting this section to protocols that

use homomorphic encryption, recent works involving differential privacy (e.g., [71]) are

not considered. Other protocols initially considered include work by Li et al. [59] which

is secure in the HbC model but assumes a different network structure from ours and work

by Shi et al. [58] which appears to be secure in the malicious model (though no adversary

model is claimed or proven in the paper) but uses a different cipher (a modified version of

ElGamal). By using two protocols that use the same cipher and the same network structure,

effects of the different adversary models are best revealed.

The remainder of this section presents an overview of each of these protocols and then

presents timing measurements for the basic operations necessary to carry out the protocols

as measured on the devices in the example network.
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5.2.1 ET Protocol.

In [55], Erkin and Tsudik present protocols for spatial, temporal and spatio-temporal

aggregation in smart meter networks, each secure in the honest-but-curious model. This

section reviews only the spatial aggregation protocol as it will be the only one used in the

experimentation and analysis.

The ET protocol uses a slightly modified version of the Paillier cryptosystem. The

modification is that each ciphertext has a noise component added to it. The noise

components are generated among the meters in such a way that when all the ciphertexts are

homomorphically aggregated, the noise disappears. This allows for correct decryption of

the final aggregated value while making decryption of an individual ciphertext impossible,

thus preserving the privacy of the individual meters. Each meter knows the public key

of the sink node. This is a slight simplification of the protocol in the original paper but

is sufficient for the analysis in this chapter. The following steps outline the protocol to

aggregate the usage data for all meters at one instance in time:

1. Each meter generates N − 1 random values and sends one random value to every
other meter in the network.

2. Each meter uses the N−1 random values it received plus the N−1 random values
it sent to come up with the noise component for encryption.

3. Each meter encrypts the current usage information using the sink’s public key
and the noise component calculated in the previous step.

4. The meters send their respective encrypted information to the sink.

5. The sink takes all N encrypted values, homomorphically aggregates the values
and decrypts to obtain the final result.
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5.2.2 GJ Protocol.

The malicious model protocol used in the analysis below comes from Garcia and

Jacobs [56]. Like the ET protocol, it is a protocol used for spatial aggregation of usage

data preserves privacy. The authors never explicitly state which cryptosystem to use but

mention Paillier as a possibility, which is used in this chapter. Each meter has a public-

private key pair associated with it, and the meters know each other’s public keys. The GJ

protocol works as follows:

1. Meter i takes its current usage reading, mi, and splits it into N shares (ai1, · · · , aiN)
such that mi =

∑N
j=1 ai j mod n (where n is a large number known to all meters).

2. Meter i then encrypts each share using a different meter’s public key, di j =

E(ai j, PK j), except for its own share aii.

3. The meters send the encrypted shares to the sink node.

4. The sink node homomorphically aggregates the shares encrypted with the same
public key. In other words, for PKi the sink aggregates d1i, d2i, · · · , dNi and sends
the aggregated value to meter i.

5. Meter i then decrypts the aggregated value from the previous step, adds in aii and
returns the result to the sink node.

6. The sink node adds up all the values received from the meters which is shown to
equal the aggregate sum of the usage information.

5.2.3 Timing Measurements.

Encrypt Decrypt Aggregate GenRnd
Meter 929ms 903ms 7.3ms 0.15ms
Sink 98ms 97ms 0.47ms N/A

Table 5.1: Timing for homomorphic encryption operations.

This section presents results on the computation and communication requirements for

all of the necessary operations in the ET and GJ protocols. These include the time to
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encrypt and decrypt using Paillier, to homomorphically add two ciphertexts, to transmit

and receive the various message types, etc. Section 5.5 uses this information to extrapolate

the communication and computation requirements of the full protocols. The Paillier

implementation used for the measurements is the thep library (http://thep.googlecode.com/)

which is written in Java but configured to perform the most expensive large integer

operations using GMP (http://gmplib.org/) for better performance. The keys are 2048-bits

and the timing information comes from the over 500 runs for each operation. The results

are shown in Table 5.1.

For communications, assume that each node in the network has a wireless link capable

of 250kbps throughput. Furthermore, assume that processing, propagation and queuing

delays are negligible and that packet headers are negligible in size and do not contribute

significantly to the size of the overall packet. These assumptions are justified due to the

simplicity of the network. Therefore, the only delay under consideration is transmission

delay. Using this information, the estimated time to transmit a 128bit random number is

0.512 milliseconds and a 2048bit ciphertext takes 8.192 milliseconds.

5.3 Multiparty Computation in Smart Metering

Section 2.3 presents a brief introduction to secure multiparty computation (MPC).

MPC could prove to be an important tool in the smart grid as it would allow meters to

perform much more complex computations in the grid without compromising the privacy

of the individual parties, but there has been little research in applying MPC to the smart grid

to date. Danezis, et al. [72] present a protocol for privacy preserving billing and mention

smart metering as one potential application. Their protocols use many of the building

blocks of MPC and are therefore highly related. Thoma, et al. [73] apply multiparty

computation techniques to the smart grid, but only look at secure summation and secure

comparison. Using these two functionalities, the authors propose a system which provides

demand management and billing with verification. They do not look, however, at generic
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multiparty computation which can compute any function. Furthermore, their work only

looks at the honest-but-curious adversary model and does not look at tradeoffs between

the two models. Peter et al. [74] propose using MPC for smart grid computation in a

slightly different model than the one considered here. This work builds privacy-preserving

computations that occur in-network. In their work, Peter et al. look at using MPC in the

outsourcing model where they assume that the meters have access to computation servers

(e.g., the cloud) which perform the computation privately, on behalf of the meters.

In contrast to previous work, generic multiparty computation protocols can compute

advanced functionalities such as standard deviation, statistical hypothesis tests, etc.

Benchmarks for MPC are measured using the VIFF (http://viff.dk) framework. VIFF

provides protocols in both the honest-but-curious and the malicious models. This section

introduces VIFF and presents overviews of both of the protocols of interest. The section

also presents timing measurements for the critical components of each protocol that are

used later use to understand the tradeoffs in adversary models.

5.3.1 Introduction to VIFF.

This section presents a brief overview of VIFF. For an in-depth guide to VIFF, see [47].

VIFF is written in Python and allows a developer to specify multiparty computations using

a simple API and a runtime environment that handles all the complex operations necessary

to carry out the MPC. VIFF includes runtimes which are secure in both the honest-but-

curious model as well as the malicious model and assumes an asynchronous network.

When using VIFF, the four main commands are input, output, multiply, and add.

input allows a party to enter their input to the computation. It uses secret sharing to

securely split an input s into s1, s2, . . . , sn such that any t of those shares can be combined

to recover the original value. The shares are then distributed to the other parties. output

allows the authorized parties to learn the value that corresponds to a previously secret

shared value. In other words, when output is called on s, then the parties would reveal
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their shares of s to the authorized parties. add allows us to add together two secret shared

values such that each party has a share of the result. For example, to compute s = a+b, each

party should end up with a share of s (say si) without the values of a, b, or s being revealed.

Similarly, multiply results in each party holding a share of s such that s = ab without

revealing any of the values. Given these four commands, any arithmetic circuit can be

computed. To compute f , represent it as an arithmetic circuit built up of add and multiply

gates. Secret share the inputs among the parties and use add when at each add gate and

multiply for each multiplication gate. When the circuit is fully executed, use output on the

final gate(s) of the circuit. VIFF runtimes implement the necessary protocols to carry out

these four commands. The specific runtimes of interest are viff.passive.PassiveRuntime and

viff.active.ActiveRuntime. The PassiveRuntime is secure in the honest-but-curious model

for t < n/2 corrupted parties. The ActiveRuntime is secure in the malicious model for

t < n/3 corrupted parties. The subsequent sections, present details on how these protocols

work as they form the basis of the analysis presented in this chapter.

5.3.2 Timing Measurements (honest-but-curious).

Table 5.2: Coefficients for timing estimation polynomial of HbC model operations (y =
c2x + c1 with y and c1 in milliseconds, c2 in milliseconds/party, x is number of parties).

input output add multiply
c2 c1 c2 c1 c1 c2 c1

Meter 1.178 −1.019 0.056 0.289 0.07 1.234 −0.66
Sink 0.043 −0.036 0.003 0.01 0.002 0.049 −0.026

To understand the communication and computation requirements of PassiveRuntime,

which leads to the timing measurements for the runtime, consider how the four commands

listed in Section 5.3.1 operate. Table 5.2 shows timing measurements for the commands

(not including communication time). For the add operation, the table gives the time to add

two numbers. The other commands are not as simple. Note, however, that the remaining
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three are of linear complexity (in the number of parties), so a polynomial fit (c2x + c1) can

be used. The table gives the coefficients of the polynomial.

The input command uses Shamir secret sharing (SSS) [42] to split the input s into n

different shares (s1, . . . , sn) such that any t + 1 of the shares can be used to recover s. To

do this, party pi chooses a random polynomial σ(x) = s + r1x + r2x2 + · · · + rtxt where

s is the secret to be shared and each ri is a random value from some finite field. pi then

computes the shares s j = σ( j) for j from 1 to n and sends s j to party p j and keeps one

share for himself. With fewer than t + 1 shares it is not only impossible to recover s but

additionally no information about s is leaked. The communication cost of this command

is the cost of communicating the n shares. The computation cost is simply the cost of

generating random coefficients then evaluating the polynomial n times. output is really the

reverse of input. At least t shares must be communicated to the parties who are allowed

to learn the output. Those parties then use the shares to reconstruct the output value. If k

parties are allowed to learn the output, the communication cost is that of communicating

kn shares. The computation cost is that of reconstructing the shares. SSS uses Lagrangian

interpolation for reconstruction, which is quite fast. Given at least t+1 shares reconstruction

of s is computed by the following equation.

bi =
∏
j,i

j
j − i

and then s =
∑

i

bisi

The add command is very simple. To compute f = d + e, where each party i holds

shares di and ei, due to the nature of SSS, they simply compute fi = di + ei. The shares

fi are proper shares of f = d + e. Therefore, the computation requirements of add are

very small and there is no communication required. multiply, on the other hand, is a more

expensive operation. To compute shares of f = de, each party first computes f ′i = diei,

then secret shares f ′i so that party j has f ′i j. Each party j then uses the shares f ′1 j, f ′2 j, . . . , f ′n j

to reconstruct f j, which is a proper share of f . Thus the communication cost is that of
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communicating the shares and the computation cost is that of generating n shares and

reconstructing with n shares. This protocol is secure in the HbC model [75].

5.3.3 Timing Measurements (malicious).

The VIFF malicious model protocol is presented in [50]. Table 5.3 presents the timing

measurements for the protocol. The table omits add and output as, for the sizes of parties

considered here, they are roughly the same as in the passive runtime. When working in

the malicious model, a new command (genTriple) is used. Furthermore, the commands

are used in two phases, preprocessing and computation. The genTriple has quadratic

complexity (in the number of parties) so the table presents the coefficients of the equation

y = c3x2 + c2x + c1 in the table.

Table 5.3: Coefficients for timing estimation polynomial of malicious model operations
(y = c3x2 + c2x+ c1 with y and c1 in milliseconds, c2 in milliseconds/party, c3 in milliseconds/party
squared, x is number of parties).

genTriple input multiply
c3 c2 c1 c2 c1 c2 c1

Meter 0.141 4.879 −3.209 1.178 −1.019 0.112 0.578
Sink 0.002 0.181 −0.114 0.043 −0.036 0.006 0.02

The preprocessing phase handles genTriple and input. genTriple generates

shares of multiplication triples, i.e., values d, e, f such that f = de, for each party.

Such multiplication triples can be generated using hyperinvertible matrices [76] or

pseudorandom secret sharing [77] with the latter being more efficient for small values of

n [50], thus the timing measurements here use the hyperinvertible matrices method. input

is also slightly modified from the passive runtime. Instead of secret sharing the input, the

protocol instead secret shares a random value r and broadcast the value plus the input if

preprocessing terminates successfully.

The computation phase is where the other commands take place. add and output

are carried out exactly as in the passive runtime. mult, however, is different. For each
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multiplication that must be performed, each party uses the shares of a multiplication triple

from the preprocessing phase, say di, ei, fi. Furthermore, each party has shares of the values

to be multiplied, say ai, bi. The result of mult should be a share of g = ab for each party.

Let d′i = ai − di and e′i = bi − ei. The parties then publicly reconstruct d′, e′ using output.

Each party then computes gi = d′e′ + d′ei + die′ + fi which is their share of g = ab. Thus,

the communication and computation requirements of mult are almost entirely based on the

requirements for output which is called twice.

5.4 Transferable Multiparty Computation in Smart Metering

In Chapter 3 presents the honest-but-curious and malicious model protocols for

transferable multiparty computation. Recall that T-MPC builds upon existing MPC

protocols, like those listed in the previous section, by adding two additional functions,

transfer and recombine transfer. These functions can be used to privately transfer

computations between sets of parties. Section 4.1 describes how these protocols have been

applied to the smart grid to enable much more efficient computations with much higher

scalability.

5.4.1 Timing Measurements (honest-but-curious).

The timing information for HbC T-MPC is computed in a similar manner as what was

done previously for MPC. In fact, the input, output, add, and multiply functions, are the

same, so the same timing measurements can be used. The function transfer is called by

all parties in one set in order to transfer an intermediate value to a new set of parties. The

parties call transfer with their share of the intermediate value as input. transfer creates

subshares of the share by using Shamir secret sharing with the threshold set to the size of

the new set of parties divided by two. Each party in the original set then sends one subshare

of their intermediate value to each party in the new set.

Upon receiving all the subshares, each party in the new set calls recombine transfer

on those subshares. recombine transfer runs Lagrangian interpolation on these subshares
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to get a new share. Thanks to the linear nature of SSS, the new shares held by the parties in

the new set form shares of the intermediate value transferred by the parties in the old set. If

there are multiple intermediate values that need to be transferred, these two protocols can

be called multiple times.

5.4.2 Timing Measurements (malicious).

T-MPC in the malicious model uses the malicious model MPC protocols from

above. For the transfer and recombine transfer protocols, recall that a result due to

McEliece and Sarwate makes reconstruction robust [51]. They noted that Shamir secret

sharing is basically a special form of Reed-Solomon codes. In particular, if the dealer

is trusted and the fraction of corrupt parties is less than one third, then a Reed-Solomon

decoder can be used instead of Lagrangian interpolation for reconstruction. In this case,

reconstruction is “robust”, i.e., guaranteed to return the correct value. Using this result,

the transfer protocol for the malicious model is the same as what was used in the HbC

case. For recombine transfer, Reed-Solomon decoding replaces Lagrangian interpolation.

Specifically, since the size of the subgroups considered here are will be fairly small, a brute

force Reed-Solomon decoder is sufficiently fast. The malicious adversary model for (T-

)MPC, assumes a threshold of n/3 for the number of corrupt parties. The result of McEliece

and Sarwate described above requires an honest dealer. For T-MPC, however, this is not

necessary. To see that this is not an issue, consider where the subshares come from. Each

party in the new set receives one subshare from each party in the old set. Therefore, there is

no single dealer of the subshares. The “trusted dealer“ requirement is taken care of by the

fact that collectively, the old set of parties acts as a trusted dealer. Specifically, each party

in the new set is guaranteed to receive no more than n/3 corrupt subshares. For timing

recombine transfer, simply multiply the timing information for output, from above, by

the number of times required to guarantee robust reconstruction.
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5.5 Analysis

5.5.1 Homomorphic encryption based aggregation protocols.

Using the descriptions of the aggregation protocols from Section 5.2 one can

determine the time required to run the protocol for any number of nodes in the network.

This is useful in understanding the tradeoffs in the adversary models as it gives a real

world sense as to the size of the network that each protocol can support. Note that

overall asymptotic complexities will not capture this information as, for example, both

aggregation protocols studied here have quadratic complexities overall (communication

plus computation). Figure 5.2 shows the results of this experiment.
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Figure 5.2: Size vs. execution time for aggregation protocols.

As expected the time to execute the GJ protocol is significantly higher than the ET

protocol. What is really interesting about this graph, however, is that it gives us an

idea of the size of network or the granularity of usage information that can be achieved
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using the more expensive yet more secure GJ protocol. For example, if a sink desires

usage information every five minutes, the network size can be up to around 140 meter

nodes. On the other hand, if a sink has networks of around 50 nodes, the protocol

can be run as often as every 60 seconds and still use the malicious model protocol. Of

further interest is which portion of the protocol contributes most to the time to complete

protocol execution. For the ET protocol, once the system size exceeds 43 metering nodes,

communicating the random values contributes most to the execution time. Prior to that,

encryption contributes the most. For the GJ protocol, encryption contributes the most to

execution time up until the network reaches 114 nodes, at which point communicating the

meter value shares contributes most to the execution time. Therefore, for large smart meter

networks, increasing communication bandwidth will have the biggest effect on execution

time for both the ET and GJ protocols.

5.5.2 MPC Protocols.

In order to understand better the application of MPC protocols (and their correspond-

ing adversary models) to the smart grid, the analysis in this section looks at computing

the sum, standard deviation, and neighborhood standard deviation. The sum computed is

identical to the sum that the aggregation protocols ET and GJ compute and therefore makes

an interesting comparison with those works. When computing the standard deviation, the

input for the meters is their current reading while the input for the sink is the current mean.

This avoids computing a division in the multiparty computation which is a very expensive

operation. Furthermore, the typical standard deviation equation involves a square root and

a division, but to avoid the square root and the division, only the numerator is computed

reveald to the sink who can compute the rest. For the regular standard deviation, the values

xi are the individual meter’s readings for the neighborhood standard deviation, the xi val-

ues in the equation are the sum of all meters in a neighborhood. To simplify the analysis,

let each neighborhood contain 100 meters. The neighborhood standard deviation would
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be important to know in the smart grid as a high standard deviation would mean a lot of

variability across neighborhoods, which could identify prime targets for more optimized

generation or distribution methods, or could indicate the need for more detailed analysis.

Figure 5.3 plots the time to complete a protocol execution for each of the computations

and for each of the adversary models. Furthermore, Table 5.4 shows the maximum number

of meters each computation can support in under fifteen minutes. Interestingly, going

from honest-but-curious to malicious when only computing additions almost comes for

free. Additionally, using MPC to compute the sum is faster than using homomorphic

encryption. Prior work on cryptographic methods for privately computing sums in the

smart grid has often focused on additive homomorphic ciphers. Yet this work shows that

in fact MPC would be a faster alternative. As seen with the aggregation protocols, moving

from the honest-but-curious model to the malicious model comes with a fairly significant

performance cost. As evidenced by the neighborhood standard deviation computation,

however, if the number of multiplications can be limited, interesting functions on fairly

large networks are possible.

Table 5.4: Maximum number of meters for less than 15 minutes of computation time.

Sum Std Dev Std Dev
(Neighborhood)

Honest-but-Curious 2647 777 2512
Malicious 2646 172 756

5.5.3 T-MPC Protocols.

Figure 5.4 plots the results of the experiment comparing HbC T-MPC and malicious

model T-MPC for both the sum function and the standard deviation. As expected, executing

the computation using a malicious model protocol is much more expensive. However, the

network sizes in this case are still very large, illustrating the efficiency of T-MPC. From the

figure, notice how the growth of the HbC executions and the malicious model executions
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Timing for MPC protocols
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Figure 5.3: Network size vs execution time for MPC protocols.

are very similar. This means that the expected overhead of going from an HbC protocol to

a malicious protocol is independent of the network size. Note that this is the case for both

sum and standard deviation.

5.5.4 HE vs MPC vs T-MPC.

To finish the analysis by comparing the three types of protocols of interest, homomor-

phic encryption, multiparty computation, and transferable multiparty computation. The

metric for comparing these protocols is the percent overhead when moving from an HbC

protocol to a malicious model protocol. This will, in essence, tell us the cost of moving to

a stronger adversary model and will have a significant impact on whether or not it makes

sense to use an HbC protocol with anti-tamper protections or to simply use a malicious

model protocol in the first place. Protocols that minimize this metric would be nice as then

system designers could use malicious model protocols in the first place, simplifying system

design from an anti-tamper prospective.
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Timing for T-MPC protocols
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Figure 5.4: Network size vs execution time for T-MPC protocols.

Begin with the summation function and plot the percent overhead for increasingly

larger networks in Figure 5.5. As before, MPC has practically no overhead when moving

to a malicious model protocol when computing sums. T-MPC maxes out around 750%

overhead for summation. While this is a significant increase, recall that T-MPC protocols

are still the fastest in either model. Executing the summation function via T-MPC is still

order of magnitude faster than MPC. Homomorphic encryption protocols have the highest

overhead, maxing out around 2500%, but then going back down to just over 1500%.

Figure 5.6 shows a similar plot for the standard deviation function. This plot does

not include homomorphic encryption in the comparison as the Paillier cipher is not able

to compute that function. The comparison here is stark. T-MPC has roughly a constant

overhead, i.e., independent of network size, and comes in at well below 1000%. MPC,

however, does not share this property. The overhead continues to increase with network

size. The fact that the overhead in moving from HbC T-MPC to malicious T-MPC is
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Percent Overhead for Summation
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Figure 5.5: Percent overhead for HbC vs Malicious when computing summation.

independent of network size is very nice when trying to make a decision between HbC

with anti-tamper and malicious model protocols. Network growth is not a concern as the

overhead remains constant for ever larger networks. Combine this with the fact that T-MPC

provided the fastest execution times, and there is good evidence to suggest that T-MPC

provides the best balance in tradeoffs.

5.6 Anti-Tamper Protection

Existing smart meters provide very little in the way of security when it comes

from physical attacks, reverse engineering, password extraction, eavesdropping and meter

spoofing [78]. The threat of attacks has to make one wonder if protocols secure in the

honest-but-curious adversary model are sufficient for real world deployment as an attack

on these protocols that violates the adversary model could render the security mechanisms

useless. Anti-tamper is an oft-cited way to make honest-but-curious protocols more
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Percent Overhead for Standard Deviation
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Figure 5.6: Percent overhead for HbC vs Malicious when computing standard deviation.

realistic in smart metering systems. Both hardware and software anti-tamper technologies

exist which could provide meters which implement honest-but-curious protocols with the

necessary protections to prevent violations of another’s privacy. In fact, one would expect

some combination of each to be present in future tamper resistant smart meters to provide

maximum protection. Designing an anti-tamper solution for smart meters is outside the

scope of this paper. Instead, this section surveys the existing literature and discusses costs

associated with existing techniques. Note that it is possible that one could build honest-

but-curious smart metering protocols for, say, aggregation that lend themselves well to AT

protections to minimize the cost of adding those protections. This, however, is outside

the scope of this work. Therefore, this section focuses on retrofitting existing protocols

with AT protections in a very generic fashion. This section looks at AT protections that

are available in the literature, note their performance costs, assume that a smart meter AT

87



protection strategy would likely use a few of these protections. Generic AT factors represent

using a few of these protections serially.

Work on anti-tamper protections applied to smart meters is scarce and presents an

interesting problem. While there is significant room for improvement in developing a

custom anti-tamper solution for smart meter devices, this is an exercise left to future

work. McLaughlin et al. [79] propose a software technique for smart meters to promote

firmware diversity that enhances a meter’s ability to thwart compromise. Their system adds

extra cycles to computation in order to encrypt and decrypt addresses during execution.

The authors argue that since smart meter workloads are primarily I/O intensive that these

protections should not decrease computation performance significantly. That said, using

privacy preserving protocols on the meters would greatly increase a meter’s computing.

That said, their work does not deal with physical tampering of either hardware or software,

something which would be necessary to thwart attacks on privacy.

The most common hardware approach to increasing a device’s tamper resistance is

to use a trusted processor [80]. These tamper-resistant processors can perform enough

functionality to verify a system’s components and software at boot-up or potentially during

operation. The cost of these devices can range from the tens of dollars to the thousands,

but smart cards are becoming a cheap, viable alternative. In addition to increased hardware

costs, integration can also be an expensive cost up front. Real-time intrusion monitoring is

also a potential avenue for anti-tamper in smart meters. In fact, some newer chips designed

for smart metering have this functionality already built in [81]. On board sensors can check

for physical intrusions and, when detected, can trigger other protection mechanisms (e.g.,

erase memory, warn the sink, etc). This would require a battery, as the mechanism would

have to function even if power is lost. For large deployments, maintenance costs could be

significant even at low false positive rates.
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Software based anti-tamper protections require no additional hardware and can easily

be changed/updated as needed. The problem with these sorts of protections is that

they add computation overhead and therefore would slow down execution. One such

technique, software encryption, aims to prevent an attacker from easily reverse engineering

or tampering with the software by encrypting and only decrypting a certain function

as needed. This of course increased computation time as decryption must occur. In

one example system, computation time increased by up to a factor of eight [82]. Code

obfuscation is another technique that attempts to make code difficult to analyze. If

an attacker cannot analyze the code easily, they also cannot maliciously modify its

functionality. This can be achieved by using a sequence of instructions which has the

same effect as the original instruction. Furthermore adding instructions which will have no

effect on the correctness of the computations performed but are instead aimed to confuse

a reverse engineer, is another method of code obfuscation. One such system reported a

slowdown factor as high as five [83].

To help illustrate how anti-tamper protections contribute to the discussion of tradeoffs

between adversary models, in Figures 5.7, 5.8 and 5.9 plot the timing values of the protocols

identified previously and include hypothetical anti-tamper computation factors. As seen

previously, individual AT protections can result in a 5 to 8x performance hit. Running say

two to three of these serially could easily lead to a 10 to 20x performance hit for the entire

system. Figure 5.7 shows that with an anti-tamper (AT) factor of 20x, the timing of the ET

protocol approaches that of the GJ protocol. For MPC, the contrast is even more stark. For

all three computations, a 10x anti-tamper factor makes the honest-but-curious protocols

less efficient than the malicious model counterparts for up to some number of meter nodes.

This shows that under certain conditions, MPC honest-but-curious protocols operating

under tamper protection can lose their benefit of being less cumbersome protocols. This is
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Homomorphic Encryption with Anti-Tamper
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Figure 5.7: Homomorphic Encryption aggregation with various Anti-Tamper (AT) factors.

further illustrated when looking at the T-MPC protocols as shown in Figure 5.9. In both the

summation and standard deviation functions, a 10x AT factor makes the HbC protocol less

efficient than the malicious model protocol.

The analysis shows that care must be taken when choosing privacy preserving

protocols for smart meter networks and consider the entire cost of that choice. Previous

work often justified the use of the honest-but-curious adversary model by assuming anti-

tamper protections could be added to make the security guarantees better fit the real-world

threat model. Under certain assumptions about anti-tamper protections, malicious model

protocols may be more efficient in the first place, potentially eliminating the need for anti-

tamper protections entirely.
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MPC with Anti-Tamper
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Figure 5.9: Transferable Multiparty Computation (T-MPC) timing with 10x AT factor.
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VI. Conclusion

Historically, privacy was almost implicit, because it was hard to find and

gather information. But in the digital world, whether it’s digital cameras or

satellites or just what you click on, we need to have more explicit rules - not

just for governments but for private companies. - Bill Gates [84]

6.1 Summary

How private data is used is changing rapidly. It is becoming easier for private

companies and governments to get the data and researchers are developing new ways to

use the data. Some of the benefits to increased usage of private data are explored in this

dissertation. Some privacy risks are well understood. Many, however, are not immediately

obvious.

Consider a recent example of how privacy risks were not understood until after the

fact. In 2006, Netflix announced a contest with a one million dollar prize. The goal of the

contest was to develop algorithms to recommend movies to Netflix users. To assist with

the contest, Netflix released a dataset containing over 100 million movie ratings from over

400 thousand of its users. Netflix claimed that ”all customer identifying information has

been removed” from the dataset. In their seminal work, Narayanan and Shmatikov showed

this to not be the case, however. They found that by using publicly available information

on the internet, they were able to de-anonymize much of the Netflix dataset.

The Netflix example is only one in a series of such de-anonymization attacks.

Other examples include de-anonymizing Massachusetts hospital discharge data [85], de-

anonymizing DNA sequence datasets [86], and many others.

While many solutions exist to such problems, the technological advances discussed

in this dissertation focus on privacy-preserving computation techniques. At a high level,

privacy-preserving computation means that inputs to a computation are kept private from
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all except the original owner of the data and the only additional information that is learned

by any party is the output of the computation (and the information that can be directly

inferred by that). A major benefit of privacy-preserving computation techniques is that the

privacy guarantees are highly formalized. Compare this with anonymization techniques

used by Netflix and in other scenarios, where the privacy guarantees are not formalized.

6.2 Contributions

This dissertation presents a new paradigm for privacy-preserving computation,

transferable multiparty computation (T-MPC). In this paradigm, the parties running the

computation are allowed to change over time, while still maintaining high security and

privacy requirements. Chapter 3 presents protocols for T-MPC in both the honest-but-

curious (HbC) and the malicious adversary models. These protocols result in much

more efficient and scalable privacy-preserving smart metering. Under a smart metering

application, T-MPC enables network sizes that are orders of magnitude larger that was

previously possible. This helps solve a significant barrier in deploying smart metering.

Under another application, decentralized reputation systems, T-MPC is used to

significantly increase information availability. Information availability is crucial in

decentralized reputation systems, as without reputation information, the system is useless.

T-MPC enables privacy-preserving delegation of reputation information in such systems,

something that had never before been achieved.

When deploying a privacy-preserving system in the real-world, system designers must

make decisions relating to the security of the protocols they choose to deploy. Often this is

defined by the adversary model that a given protocol is proven secure under. The analysis

in this dissertation shows that T-MPC can greatly reduce the overhead of using more secure

malicious model protocols. Malicious model protocols have often been believed to be far

too inefficient for real-world use. T-MPC has changed this.
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6.3 Recommendations for Future Research

Chapter 1 discusses a number of high-level areas in which researchers are applying

privacy-preserving computation techniques to solve important privacy-related issues. This

illustrates the broad nature of privacy concerns and the state of practical privacy-preserving

computation. Future research conducted in the areas of theory and application are necessary

to further adoption and use in industry. The following are of particular interest, however:

1. Protocols: Recent advances in MPC have focused on the case of a dishonest

majority. The T-MPC protocols in this dissertation focus on honest majority

scenarios, with the exception of the protocol specified in Section 4.2, which falls

under the HbC model. A significant advancement would be to apply the T-MPC

paradigm to a recent dishonest majority protocol such as SPDZ [43]. The foundation

for such a T-MPC enhancement could come from the work in Section 4.2 as both use

additive secret sharing, but the adaptation is non-trivial.

2. Applications: Any of the application domains outlined in Chapter 1 would be of

great interest for applying T-MPC, and there could be significant gains in any of

these using T-MPC. One additional area of interest is outsourced privacy-preserving

computation. As more computation moves to the cloud, privacy issues begin to

become very real. T-MPC could be used to enhance availability of such a service

by privately transferring information as computation servers go offline. Another

interesting application of T-MPC related to this application domain is in computation

hopping. In other words, the set of servers running the computation changes over

time so an attacker has a hard time knowing who to attack.

3. Programming Constructs: Much of the privacy-preserving computation literature

assumes that computations are specified as (boolean or arithmetic) circuits. This

requires a lot of domain-specific knowledge by the implementer. Researchers have
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developed methods to alleviate this by providing constructs that better reflect typical

development environments. As there will likely be specific construct relating to T-

MPC (e.g., when to transfer, when is the optimal point in a program to transfer, etc),

a number of significant contributions could be made to allow developers to build

applications that use T-MPC using programming constructs they are already familiar

with.
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[24] G. Yavaş, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos, “A data mining approach
for location prediction in mobile environments,” Data & Knowledge Engineering,
vol. 54, no. 2, pp. 121–146, 2005.

97

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


[25] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W. Cheung,
“Mining, indexing, and querying historical spatiotemporal data,” in Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 236–245, ACM, 2004.

[26] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations and travel
sequences from gps trajectories,” in Proceedings of the 18th international conference
on World wide web, pp. 791–800, ACM, 2009.

[27] C. Bettini, X. S. Wang, and S. Jajodia, “Protecting privacy against location-based
personal identification,” in Proceedings of Secure Data Management, pp. 185–199,
Springer, 2005.

[28] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, lester and pierre: Three protocols
for location privacy,” in Privacy Enhancing Technologies, pp. 62–76, Springer, 2007.
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