
 
AMOS 2014 Technical Conference 

Propagation of Bayesian belief for near-real time statistical assessment of  

geosynchronous satellite status based on non-resolved photometry data 
 

Anil B Chaudhary, Tamara Payne, Keith Lucas 

Applied Optimization, Inc. 

Dayton, OH 45402 

 

Kimberly K.J. Kinateder 

Wright State University  

Dayton, OH 45435 

 

Phan Dao and Jeremy Murray-Krezan  

Air Force Research Laboratory, Space Vehicles Directorate 

Kirtland AFB, Albuquerque, NM 87117 

 

 

ABSTRACT 

 

The objective of Bayesian belief propagation in this paper is to perform an interactive status assessment of 

geosynchronous satellites as each new data point for the photometric brightness becomes available during the 

synoptic search performed by a space-based sensor as a part of its routine metric mission. The calculations are 

performed by using a dimensionless ratio of observed photometric brightness to its predicted brightness. The 

brightness predictions can be obtained using any analytical model chosen by the user. The inference for a level of 

confidence in the statistical assessment is performed on the basis of propagated values for belief within a cluster of 

satellites that are located within a close proximity to each other. This is meant to render the assessment to be as 

independent of assumptions and algorithms utilized in the analytical model as possible; and to mitigate the effect of 

bias that could be introduced by the choice of analytical model. It considers that a model performs predictions based 

on the geometry of observation conditions and any information that could have been extracted by the inversion of 

prior data on its photometric brightness. Thus, if there is a statistical change in the predictive error for a single 

satellite or a pair of satellites, while remaining unchanged for the rest, there is higher likelihood of anomaly in either 

the operational status of that satellite or an error in object correlation (i.e. cross-tag).  

 

The algorithm in this paper uses a first order Markov chain model to compute a conditional probability value for the 

satellite status to be nominal or anomalous (i.e., NOM or ANOM), given its latest photometry observation. This 

calculation is repeated as data for each new observation becomes available. Also, it is performed for each satellite 

(member) that belongs to a geosynchronous cluster (group). This provides a sequence of conditional probability 

values for each member in a group. This information is mapped to a tree-like directed graph (i.e. Bayesian network) 

of nodes. There is a node for each new data point and it represents a hypothesis test for whether the member status is 

NOM or ANOM at the time of that observation. The conditional probability values for the status of each member in 

the group are utilized in order to compute the marginal probability (i.e. belief) that the status of an individual 

member is NOM or ANOM. The propagation of belief summarizes all preceding computations of belief in order to 

determine a level of confidence in the statistical assessment for its use by an analyst.          
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1. INTRODUCTION 

 

The method reported in this work is constructed as teamwork of three analytical procedures; namely (1) A procedure 

to perform inversion of non-resolved photometry data for the brightness of three-axis stabilized geosynchronous 

satellites. This inversion solves for the individual albedo-area products for the satellite body and its solar panels as a 

function of their respective observation geometry. The observation geometry is defined separately for the body and 

panel in terms of their respective angles for the direction of illumination and the sensor line of sight. This procedure 

is denoted as Inversion Model; (2) A procedure to predict the brightness of a geosynchronous satellite at a given 

future epoch using the computed values for the albedo-area products for the satellite body and its solar panels. This 

procedure is denoted as Predictive Model; (3) A method to perform statistical assessment in near-real time. This is 

denoted as Statistics Model and it is the focus of the present paper. The Inversion and Predictive Models are 

collectively denoted as Photometry Model. The notation used is defined in Appendix A in addition to the first time it 

appears in the technical description.  

 

The Statistics Model is independent of the Inversion Model and the Predictive Model. Each model is constructed as 

a reusable entity. The orchestration of teamwork between the three models is performed within the Statistics Model 

and it is denoted as Control Logic. The flow chart for the Control Logic is shown in Section 16. The Photometry 

Model is assumed to be imperfect but invariant. It is imperfect in that its accuracy changes from one satellite to 

another and from one observation geometry to another. It is invariant in that its analytical competence is fixed. This 

work uses the Photometry Model reported in References 1-3. It is constructed using the principle of material frame 

indifference, which allows the same mathematics to be useful for the processing of ground-based or space-based 

sensor data. This model is implemented as an object-oriented software application [Reference 25]. The Statistics 

Model is newly implemented as its reusable entity within the same software.  

 

The present work is constructed such that its models are useful for the processing of brightness data collected during 

the routine metrics mission performed by the existing ground or space-based sensors in the space surveillance 

network. This is a synoptic search operation and it is the workhorse for the maintenance of geosynchronous satellite 

catalog. The synoptic search data includes both angles-only metric data and single-point visual, panchromatic 

brightness data. The positional information for the satellites is derived from the angles-only data and is utilized 

today for satellite catalog maintenance. The optical cross-section and orientation information for the satellites can be 

derived from the single point panchromatic brightness data, but this information is neither used nor calculated at 

present even though the metric data is not sufficient by itself to maintain accurate satellite catalog due to the 

overcrowding of the geosynchronous (GEO) belt [e.g. Reference 12]. There are two reasons why the single point 

brightness data (or just ‘Brightness data’ or ‘Brightness’ for short) is not used as follows:  

 

The first reason is that photometry analyses are traditionally performed using signature data (denoted as ‘Signature 

Data’ in this work) collected using dedicated ground-based sensors. Such Signature Data is typically at a rate of one 

or more observations per minute. It extends for several minutes or even hours, vividly displaying a clear temporal 

character of satellite signatures to a human eye [Reference 29]. On the contrary, Brightness Data is collected at a 

rate two orders of magnitude slower, hiding the same knowledge in bits and pieces in the sparseness. Considering 

that the solar phase angle changes 15o per hour, if each observation was separated by 90-minutes (which is about 

equal to the orbital period for a notional space-based sensor in LEO), the successive points in the Brightness data 

may be considered to be separated by about 22.5o in phase angle. In addition, there is no data during daytime (Figure 

1.1). A new formulation of mathematics is required to quilt this knowledge together, particularly in the case of 

space-based data.       

 

The second reason is that the mathematics of inversion of photometry comprises more unknowns than the number of 

independent equations. Thus, a mathematical proof cannot be offered for uniqueness of solution, except in special 

situations. This lack of uniqueness translates into lack of confidence in the inference derived from the solution. A 

new formulation of mathematics is required to gain the requisite level of confidence through a mathematical 

evolution of belief (i.e. belief propagation or BP) derived from a sequence of inversions of Brightness Data.     

 

The first reason can be addressed by formulating the governing equations for inversion of Brightness Data using the 

principle of material frame indifference (PMFI) [References 1-3]. This work draws upon the hidden richness of 

information in the Brightness data as compared to the traditional Signature Data. Signature Data has higher frame 

rate that spans the full range of longitudinal phase angles, but for a single value of solar declination. Brightness data 
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has a much slower frame rate, but it samples the full range of longitudinal phase angle, solar declination and, in the 

case of space-based data, also the full range of latitudinal phase angles.  Assuming a new Brightness Data point was 

collected every 90 minutes, there are ~3000 data points collected during the nightly operations each year that sample 

the entire accessible range space for the vector directions of solar illumination and sensor observations for a satellite. 

The record of Brightness Data represents SSA information…hidden in plain sight.  

 

References 1-3 utilize the two-facet model to formulate the governing equations in terms of two satellite-attached 

reference frames (Section 2). First is attached to the satellite body (Body) and the second to its solar panels (Panels). 

The Body points to nadir and the Panels track the sun. The vector directions for solar illumination and sensor 

observations are computed separately for the Body and the Panels. As a result, the Brightness Data is interpreted in 

terms of entities intrinsic to the bidirectional reflectance distribution functions (BRDF) for the Body and the Panels. 

Furthermore, the use of the principle of material frame indifference allows a common procedure for the inversion of 

data collected by ground-base and space-based sensors. The inversion solves for pose-dependent albedo-area values 

for the satellite, Body and Panels, which can be reused in order to predict the expected value of Brightness for future 

observations. Or in summary, the two facet model is used in the Inversion Model as well as the Predictive Model. 

This is fundamental for the statistical assessment as described in the following sections.    

 

 
 

Figure 1.1: An idealized schematic of synoptic search. The West and East designations 

for the Lambertian regions refer to the direction of illumination. 

  

The second reason can be addressed by using the statistical assessment procedure described in this paper. It draws 

upon the Bayes network approach described in Reference 4 where each value of a new Brightness Data point is 

compared with historical values of Brightness Data points under matching conditions of observation geometry in 

order to assess if the satellite Brightness is nominal (NOM) or anomalous (ANOM). A satellite is NOM from the 

viewpoint of photometry if its observed Brightness matches with its expected Brightness based on the historical 

data. A satellite is ANOM otherwise. Such assessment is performed on an ongoing basis in order to visualize 

continuity in the propagated Bayesian belief, where belief is defined as marginal probability [Reference 5].        

 

The use of historical data for assessment of NOM and ANOM conditions for a satellite presents a peculiar challenge. 

For example, consider that a satellite Brightness may be denoted as ANOM due to reasons such as cross-tagging 

with another satellite, visual conjunction, change in the offset angle of its solar panels, 180o turn (yaw rotation) in 

order to dump momentum, becoming unstable, appearance of unexpected objects in the sensor field-of-view, etc. 

[References 7-12]. However, for example, cross-tagging arises due to incorrect association and the satellite itself has 

not become anomalous. Similarly, a change in offset angle or the 180o turn are a part of normal operations and not 

anomalous behavior. Once the cross-tag is corrected, the new offset-angle is computed, or the 180o turn is 

recognized, the satellite status would revert back to NOM, although it would be new NOM for which there may or 
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may not be sufficient historical data available. Also during the period over which the historical data was gathered, , 

if the satellite was cross-tagged, changed its solar panel offset, etc., the new baseline would become inaccurate.  

 

In order to allow the changing of a satellite status from NOM to ANOM and vice versa, it is essential to possess a 

consistent baseline which may be used to compute the expected value of Brightness for new observations. Such a 

baseline can be provided by the Photometry Model. This model can perform inversion of existing Brightness Data 

and then use the computed albedo-area characteristics to predict the satellite Brightness for new observations that 

are collected for the directions of illumination and sensor line of sight that may differ from those in the existing data.  

 

Marginal probability or belief is the probability that an outcome for a random variable equals a specific value 

irrespective of the outcome of the other, correlated random variables [Reference 6]. For example, for jointly 

distributed random variables X and Y, the marginal probability 𝑃(𝑋 = 𝑥) is given by: 

 

𝑃(𝑋 = 𝑥) =  ∑ 𝑃(𝑋 = 𝑥,   𝑌 = 𝑦) = 𝑦 ∑ 𝑃(𝑋 = 𝑥 | 𝑌 = 𝑦) 𝑃(𝑌 = 𝑦)𝑦   

 

Or,     𝑃(𝑋 = 𝑥) =  𝔼𝑌 [𝑃(𝑋 = 𝑥 | 𝑌)]              Equation (1) 

 

Where 𝔼𝑌 denotes the expected value or expectation (i.e. mean) with respect to the probability distribution of Y. Or, 

the marginal probability for 𝑃(𝑋 = 𝑥) is the expected value for the probability of 𝑋 = 𝑥 given that 𝑌 = 𝑦, where all 

possible values of Y are covered and weighted according to their probabilities and 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤  𝑦𝑚𝑎𝑥. In the context 

of denoting the satellite status as NOM or ANOM, it is intrinsic to the satellite itself and is independent of its 

directions of illumination and the sensor line of sight (i.e., its observation geometry) during the collection of 

Brightness Data. Thus, the belief that a satellite is NOM or ANOM is the mean probability of NOM or ANOM 

given any observation geometry. However, there are infinite combinations of observation geometry and the 

Brightness Data collection is sparse. Thus a compromise is to compute the evolving marginal probability (i.e. belief 

propagation) for the satellite status in near-real time, as each new point of Brightness Data becomes available.  

     

2. CHARACTER OF BRIGHTNESS DATA 

 

Figure 2a illustrates a notional cluster of geosynchronous satellites (GEO cluster) and how its size compares with a 

notional field of view (FOV) for a ground or space-based sensor that is utilized for synoptic search. A GEO cluster 

is defined as a collection of closely-spaced satellites that are station kept within 1o angular subtense of the sky with 

respect to a ground-based observer [Reference 7]. Thus the size of a typical GEO cluster is smaller than the FOV for 

a synoptic search sensor and the Brightness Data for the entire GEO cluster can be obtained at the same time.  

 

If a space-based sensor in LEO is to visit each GEO cluster once in each pass, the mean spacing between the 

Brightness Data points for a GEO cluster will be roughly 90 minutes. In Figure 2.1b, the orbital passes are denoted 

with symbol k and the temporal spacing between pass (k-1) and k is denoted as tk. The values for the nightly time 

spacing tk,tk+1 etc. are expected to be unequal due to differences in sensor tasking between passes. There is a long 

daytime gap in Brightness Data that spans between the morning and evening terminators. Figure 2.2 illustrates 

nightly phase angle sampling over three days. For a ground-based sensor, such Brightness Data could be collected 

with a back-and-forth sweeping motion of the telescope whereby the temporal spacing between successive 

Brightness Data points varies as a function of the relative position of a GEO satellite with respect to the sensor.  

 

Among the various satellites in a cluster, denoted as Cj, one or more satellites may utilize a bus type different from 

others and would present themselves with Brightness values that differ significantly from other satellites [Reference 

7-8]. In this regard, a difference in excess of 0.3 visual magnitudes or 2% of nominal Brightness may be considered 

significant [References 10-13]. It is easier to obtain correct tagging for such satellites. References 7-8 discuss 

potential, human inspection method for differentiating between such satellites with as few as 3 to 5 points of data as 

long as the three salient regimes of Brightness data are sampled; namely the west Lambertian region, the central 

specular region, and the east Lambertian region. The west Lambertian region occurs in the hours that follow 

immediately after the evening terminator. The east Lambertian region occurs in the hours prior to the morning 

terminator. The Brightness in these regions is dominated by diffuse reflection from the Body and the Panel. The 

central specular region is closer to midnight and the signature is dominated by specular reflection from the Panel. If 

a nightly collection was performed once every 90-minutes, approximately eight new data points would be collected 

per night, with two to three points each in the specular region and in the west and east Lambertian regions.  
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Figure 2.1: [a] Relative size of a notional GEO cluster and sensor field of view (FOV) 

[b] Notional collection of one set of Brightness Data per orbital pass or sweep 

 

 
Figure 2.2: Illustration of phase angle sampling over three consecutive days 

 

If the Brightness and/or proximity for satellites Ci and Cj are close, these satellites are denoted as cluster peers 

[Reference 12]. There is greater potential for cross-tagging between such cluster peers. There can also be a flip-flop 

in the tagging of cluster peers. In order to mitigate such cross-tagging, the availability of a model for the inversion 

and prediction of Brightness Data is important in order to support the calculations for statistical assessment.     

 

3. INVERSION AND PREDICTION OF BRIGHTNESS DATA 

 

Due to the variable sensor tasking, orbital motion of the space-based sensor and a continuous change in the solar 

declination angle, the observation geometry is different for each pass. Also, the satellite operators periodically 

change the solar panel offset angle and may also subject the spacecraft to 180o turn in order dump momentum. 

Furthermore, the aging of satellite materials reduces the Brightness of the Body and Panel. As a result, it is 

necessary to maintain an updated baseline for the nominal Brightness for the satellite. Such a baseline can be 

extracted by the inversion of Brightness Data using the Photometry Model reported in References 1-3. In this model, 

the satellite is represented with a two facet model and the data inversion is posed to solve for the intrinsic albedo-

areas for the Body and the Panel, as well as the Panel offset angle. The term ‘intrinsic’ is meant to describe the 

scaling factors that appear in a BRDF relationship. For example, Lambert’s cosine law defines the change of 
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Brightness as a function of the phase angle. The numerical value of Brightness contribution by the Body and Panel 

under Lambertian conditions is given by the multiplication of the cosine term with their respective albedo-area 

values. Once the albedo-area and offset angle are known, it is feasible to predict the satellite Brightness for the 

observation conditions in the future passes using the analytical expressions of the BRDF for the Body and Panel.   

 

In order to provide a continuously updated baseline, the Photometry Model application is performed using a time 

slider approach illustrated in Figure 3.1a. The origin of the time slider is positioned at pass k = 0, where it is deemed 

prior knowledge that the satellite is NOM for sufficient number of prior passes. In terms of the notation of Figure 

3.1a, the orbital passes that comprise prior data are assigned values of k less than zero. The new data is when k is 

greater than or equal to zero. The prior data is utilized for the statistical characterization of NOM behavior of the 

satellite. To this end, it is sufficient if the number of prior passes provide a minimum of thirty points of Brightness 

Data for each of the three salient regions; namely the west and east Lambertian region and the specular region. At a 

median rate of two to three points of data per day for the specular and two Lambertian regions, the number of passes 

in two weeks is expected to provide sufficient data to perform inversion using the two-facet model. The Photometry 

Model is used for the inversion of the prior data (k < 0) and for the prediction of Brightness for the new data (k ≥ 0).    

 

 
 

 
Figure 3.1: [a] Model solution from data inversion on prior data is used to predict brightness for new data  

[b] GEO satellite body points to nadir and solar panels track the sun. Offset angle is nonzero 

[c] Model extracts Body and Panel albedo areas and offset angle for the Panel from prior data 

 

In order to determine the location of the time slider, it is useful to consider that the statistical assessment is an 

ongoing process. In order to initialize the assessment, an analyst needs to mark a Brightness Data point as pass k = 0 

such that the satellite is NOM prior to this pass for a minimum of two weeks. Once the statistical assessment begins, 

the time slider is moved forward to a temporal position at which the level of belief for NOM status for a satellite 

fulfills a threshold limit for the level of confidence [Reference 23]. This procedure is described further in Section 15. 

However, this will result in a different location for the time slider for each satellite in the cluster. Thus, it is simpler 

to move the time slider only to the largest pass number for which all satellites in the cluster are NOM.   
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Note that just as the Brightness Data differs from one satellite to another, the Photometry Model accuracy for 

inversion and prediction also varies from one satellite to another and from one type of observation geometry to 

another. Indeed, unless proven otherwise, it is useful to assume that the Photometry Model is imperfect and has 

limited accuracy. Thus, a dimensionless ratio rjk is utilized in order to quantify the difference between the observed 

and predicted Brightness values. This ratio is denoted as Brightness Ratio. Specifically: 

 

𝑟𝑗𝑘 =   𝑣𝑗𝑘 − 1  Equation (2a) 

 

𝑣𝑗𝑘 =  
𝐼𝑜𝑗𝑘

𝐼𝑚𝑗𝑘
  Equation (2b) 

 

where 𝐼𝑜𝑗𝑘  is the Brightness observed for satellite j and pass k, and 𝐼𝑚𝑗𝑘  is the Brightness predicted by the model for 

satellite j and pass k. Thus, if the model was a good predictor for satellite j, rjk would be a zero mean random 

variable. A probability mass function for rjk can now be constructed using prior data (i.e. k < 0). Since 𝑟𝑗𝑘 is 

continuous, a continuous, real random variable R is defined such that its range spans all feasible values of 𝑟𝑗𝑘.  

 

4. ASSUMPTIONS, INPUT DATA REQUIREMENTS AND OUTPUT 

 

The following assumptions are utilized in this work:  

 

1) The NOM or ANOM state of each satellite is independent of other satellites, except for cluster peers.  

2) Cross-tagging is feasible only between cluster peers.  

3) The probability that a satellite is NOM or ANOM during pass (k+1) depends only on its state during pass k 

and not on its state during the passes prior to k. The probability that a satellite is NOM or ANOM during 

pass k depends only on its state during pass (k-1) and not on its state during the passes prior to (k-1), etc.  

4) Each point of observation data for all satellites in a cluster is taken at the same time 

 

Four sets of input data are required as follows: 

 

1) The observations data is available for all satellites in a cluster as soon as it becomes available (i.e., in near 

real time).  

2) The following metadata is provided along with each point observation data: Julian date, Brightness, the 

coordinates for the satellite, sensor and the sun.  

3) The long run probability that a satellite is NOM at any time, 𝜋𝑁. Long run probability means long term 

probability or probability of NOM irrespective of time, which is the same as marginal probability or belief. 

This value is estimated by the fraction of passes in the historical data that spans an extended duration (long 

run historical data) where the state of the satellite is identified as NOM.  

4) The terminator-to-terminator transition probability for a satellite. This is probability that the satellite is 

NOM at the evening terminator given that satellite was NOM at the morning terminator (e.g., this 

probability is lower for cluster peers that are prone to cross-tag). It is denoted by 𝑇𝐺𝑎𝑝𝑁
𝑁  where the subscript 

Gap is in reference to the lack of data during this extended period of time. This is estimated by the fraction 

of days in the long run historical data when the satellite is denoted as NOM at the last pass for the night at 

the morning terminator and then denoted as NOM at the first pass for the following evening terminator.     

 

Note that the estimated values for long run probability 𝜋𝑁 and terminator-to-terminator transition probability 𝑇𝐺𝑎𝑝𝑁
𝑁

 

are based on prior or historical data. They are defined by the user. They can be season or age dependent for each 

satellite. They can be reset by the user in the midst of a long-term, continuous statistical assessment whereby the 

updated values are utilized for all points of Brightness Data thereafter.    

 

The output comprises a numerical value for a measure of belief in the NOM or ANOM state of each satellite in a 

GEO cluster. This output is expected to become available within minutes after the receipt of each new point of 

Brightness Data. The utility of the ANOM notification is to inform a user that the statistical assessment has detected 

evidence that the Brightness Ratio is different from when the satellite was NOM. The ANOM notification can also 

include a likely cause for this difference.   
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5. PRIOR PROBABILITY DISTRIBUTION FUNCTIONS FOR THE BRIGHTNESS RATIO 

 

The probability distribution function (PDF) for the Brightness Ratio, calculated using the prior data (or, prior PDF) 

is needed as baseline for the assessment of occurrence of ANOM status in the new data (Figure 3.1). This 

calculation is at the heart of the statistical assessment. The prior PDF is required for both NOM and ANOM 

conditions. A procedure for the calculation of the NOM and ANOM PDFs is described in the following: 

 

Since the satellite is deemed NOM prior to the placement of the time slider, the prior PDF for NOM can be 

calculated using the Brightness Ratio data for passes k < 0. A continuous two week period for the prior data is 

expected to provide over a hundred values of NOM data for Brightness Ratio. These values will be distributed over 

the west and east Lambertian and specular regions. A longer period of prior data could be considered, but it is not a 

requirement. This is because there are limits on how long a continuous stretch of NOM prior data can be feasible on 

a routine basis. For example, if two cluster peer satellites can become cross-tagged frequently, the mean duration of 

time when these satellites are NOM is shorter. As a result of limiting to a relatively short prior region, the prior PDF 

for the NOM state is, in reality, closer to a probability mass function (PMF), which is estimated by constructing a 

histogram for the values of the Brightness Ratio. Also,  

 

𝑓( 𝑟𝑗𝑘) = 𝑓( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗  ) 𝑃( 𝑁𝑂𝑀𝑗) +  𝑓( 𝑟𝑗𝑘  | 𝐴𝑁𝑂𝑀𝑗) 𝑃( 𝐴𝑁𝑂𝑀𝑗)        Equation (3) 

 

Where 

 𝑓( 𝑟𝑗𝑘) is the PDF for the Brightness Ratio for pass k for satellite Cj 

𝑓( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗  ) is the PDF for the Brightness Ratio for pass k given the satellite Cj is NOM,  

 𝑓( 𝑟𝑗𝑘  | 𝐴𝑁𝑂𝑀𝑗) is the PDF for the Brightness Ratio for pass k given the satellite Cj is ANOM,  

𝑃( 𝑁𝑂𝑀𝑗) is the long run probability that the satellite is NOM, also denoted as 𝜋𝑁, and 

𝑃( 𝐴𝑁𝑂𝑀𝑗) is the long run probability that the satellite is ANOM, also denoted as 𝜋𝐴. 

𝑃( 𝐴𝑁𝑂𝑀𝑗) = 1 - 𝜋𝑁 

 

The calculation of PDF for rjk given ANOM is more detailed because ANOM is defined relative to current state of 

NOM. Also, ANOM is a collective term for a variety of conditions. Assuming that these conditions are mutually 

disjoint,  

 

𝑃( 𝐴𝑁𝑂𝑀𝑗) = 𝑃(𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) + 𝑃(𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) + 𝑃( 𝑇𝑢𝑟𝑛𝑗) + 𝑃( 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) +  𝑃( 𝑈𝐶𝑇𝑗) … 

 

     Equation (4a) 

 

and  𝑃( 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗  | 𝐴𝑁𝑂𝑀𝑗)  =
𝑃(𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗)

𝑃(𝐴𝑁𝑂𝑀𝑗)
 ,  𝑃( 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗  | 𝐴𝑁𝑂𝑀𝑗)  =

𝑃(𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗)

𝑃(𝐴𝑁𝑂𝑀𝑗)
  , etc. Then, 

 

 

𝑓( 𝑟𝑗𝑘  | 𝐴𝑁𝑂𝑀𝑗) =  𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) 𝑃(𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗  | 𝐴𝑁𝑂𝑀𝑗)  

 + 𝑓( 𝑟𝑗𝑘  | 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) 𝑃(𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗  | 𝐴𝑁𝑂𝑀𝑗)  

              + 𝑓( 𝑟𝑗𝑘  | 𝑇𝑢𝑟𝑛𝑗 ) 𝑃(𝑇𝑢𝑟𝑛𝑗  | 𝐴𝑁𝑂𝑀𝑗)  

         + 𝑓( 𝑟𝑗𝑘  | 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗 ) 𝑃(𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗  | 𝐴𝑁𝑂𝑀𝑗)  

    + 𝑓( 𝑟𝑗𝑘  | 𝑈𝐶𝑇𝑗) 𝑃(𝑈𝐶𝑇𝑗  | 𝐴𝑁𝑂𝑀𝑗)  … 

 

    Equation (5a) 

Or, 

 

𝑓( 𝑟𝑗𝑘  ∩  𝐴𝑁𝑂𝑀𝑗) =  𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) 𝑃(𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) 

           + 𝑓( 𝑟𝑗𝑘  | 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) 𝑃(𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) +  𝑓( 𝑟𝑗𝑘  | 𝑇𝑢𝑟𝑛𝑗) 𝑃(𝑇𝑢𝑟𝑛𝑗) 

 + 𝑓( 𝑟𝑗𝑘  | 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) 𝑃(𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) +  𝑓( 𝑟𝑗𝑘  | 𝑈𝐶𝑇𝑗) 𝑃(𝑈𝐶𝑇𝑗) … 

    Equation (5b) 
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Where,  

𝑃(𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) is the long run probability of change in the panel offset angle for satellite Cj 

𝑃(𝐶𝑟𝑜𝑠𝑠𝑡𝑎𝑔𝑗) is the long run probability of cross-tag for Cj 

𝑃( 𝑇𝑢𝑟𝑛𝑗) is the long run probability of a 180o turn for Cj 

𝑃( 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) is the long run probability that satellite Cj is unstable 

𝑃( 𝑈𝐶𝑇𝑗) is the long run probability of a mistag for Cj due to the appearance of UCT in the sensor FOV 

And, 

𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) is the PDF of Brightness Ratio when the Cj panel offset is modified 

𝑓( 𝑟𝑗𝑘  | 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) is the PDF of Brightness Ratio when Cj is cross-tagged with a peer 

𝑓( 𝑟𝑗𝑘  | 𝑇𝑢𝑟𝑛𝑗) is the PDF of Brightness Ratio when Cj is turned 180o 

𝑓( 𝑟𝑗𝑘  | 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) is the PDF of Brightness Ratio when Cj is unstable 

𝑓( 𝑟𝑗𝑘  | 𝑈𝐶𝑇𝑗) is the PDF of Brightness Ratio when a mistag is caused by an unexpected UCT 

 

The long run probability values for the anomalous conditions can be identified from the Brightness Ratios for the 

historical data because each condition has a tell-tale feature. In order to locate these features, it is necessary to 

consider plots of Brightness Ratio versus phase angle for each night of historical data. These plots can be generated 

automatically and visualized in order to locate specific anomalies based on their features as described below: 

 

 Change in the solar panel offset causes the Brightness Ratio to become anomalous only in the specular region. 

The Brightness Ratio in the west and east Lambertian regions is minimally affected because the Panels are 

highly specular and the effect of offset angle change fades significantly at high phase angles. Thus 

𝑃(𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) equals the fraction of passes in the historical data where the Brightness Ratio is ANOM 

only in the specular region.  

 Occurrence of cross-tag causes the Brightness Ratios for cluster peers to become anomalous simultaneously. 

Thus, 𝑃(𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) equals the fraction of passes in the historical data where the Brightness Ratio has become 

simultaneously anomalous for the cluster peers. It would also be feasible to verify the cross-tag. For example, 

let satellite Ci and Cj be the cluster peers that cross-tag.  Then the Brightness Ratio for Ci could be recomputed 

using the term 𝐼𝑚𝑗𝑘  instead of 𝐼𝑚𝑖𝑘 and vice versa for Cj. This would render the Brightness Ratio NOM if the 

peers were cross-tagged.  

 The effect of 180o yaw turn by a satellite causes the sides of the Body to switch with respect to the illumination 

by sunlight as illustrated in Figure 5.1. Imagine that the satellite is shown in a pass prior to the 180o yaw turn. 

The normal to one of the body facets points eastwards. Upon the 180o yaw turn, this normal will point 

westwards. Thus, the ANOM status resulting from a 180o yaw turn causes the values of Brightness Ratio to 

switch. The values that normally occurred in the west Lambertian region will now appear in the east Lambertian 

region, and vice versa (Figure 1.1). Thus 𝑃( 𝑇𝑢𝑟𝑛𝑗) equals the fraction of passes in the historical data where the 

Brightness Ratio is ANOM in a manner that depicts an east-west switch.  

 Effect of gross instability is loss of attitude control. This creates opportunities for the occurrence of specular 

glints in the west and east Lambertian regions and the occurrence of diffuse reflection conditions in the specular 

regions. Thus, the ANOM status for gross instability is plausible if the values of high Brightness are 

uncorrelated to the phase angle. Thus 𝑃( 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) equals the fraction of passes in the historical data where 

the Brightness Ratio is ANOM in a manner that depicts lack of correlation with the phase angle. 

 A orbital debris in LEO or a higher orbit with its velocity vector aligned with the view direction for a ground or 

space-based sensor can cause presence of a UCT (i.e. an extra object in close proximity of a GEO cluster), 

potentially resulting in a mistag when the object association is performed based only on metric data. The same 

UCT is unlikely to be present the next time the sensor visits the GEO cluster and the error due to incorrect 

association may or may not be rectified. Indeed, another UCT may appear subsequently and propagate the cycle 

of incorrect association further [Reference 10]. Thus a situation where the Brightness Ratio is anomalous in one 

pass but is nominal in the subsequent passes may be due to a UCT that appears momentarily in the sensor field 

of view. Thus 𝑃( 𝑈𝐶𝑇𝑗) equals the fraction of passes in the historical data where the Brightness Ratio is ANOM 

in a manner that depicts an isolated anomaly.  

 

The calculation procedure for the conditional PDFs (e.g. 𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗)) is described in Section 7. 
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Figure 5.1: Effect of an 180o yaw turn on the orientation of a GEO satellite 

 

6. BAYES NETWORK  

 

 

 
 

Figure 6.1: Flow of information within the Bayes network for satellite Cj 

 

Figure 6.1 shows a graphical model for the Bayes network to perform statistical assessment of NOM and ANOM 

status for satellite Cj using Brightness Data. This graphical model builds upon the Bayes network reported in 
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Reference 4. As in Reference 4, it contains GEO status notes (blue nodes) that receive Brightness evidence (orange 

nodes) after each pass. The arrows in the network have a direction but they do not loop around. In other words, it is 

a directed acyclic graph. The network is directional in that it defines the qualitative dependencies between the nodes 

[Reference 5].  The number of GEO status nodes is equal to the number of passes performed subsequent to the 

placement of time slider at k = 0. When the time slider is moved forward to a new position, the Bayes Network is 

reset (Sections 15-16). The GEO status node after pass k is the parent node for the GEO status after pass k+1 and the 

dependency between nodes is defined in terms of conditional probability.  The temporal spacing between the nodes 

is non-uniform, which corresponds to the time elapsed between the successive collection of Brightness Data points.  

 

In Figure 6.1, 𝑃 ( 𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ) is the conditional probability that the status of satellite Cj is NOM at pass k given 

the Brightness Ratio for the data collected in pass k. The calculation of this conditional probability is performed 

using Bayes theorem. This calculation is described in Section 7. The quantity 𝑃 ( 𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ) occurs often in the 

following calculations and it is given a simpler notation, Xjk.  Note that the notation 𝑟𝑗𝑘 is meant to imply that the 

value of the continuous random variable R resides in an infinitesimal neighborhood of a given number 𝑟𝑗𝑘. This is 

because R is a continuous random variable and thus the probability that R exactly equals any given number 𝑟𝑗𝑘 is 

zero. This consideration is absent in the case of the probability of NOM or ANOM states because they are discrete.  

 

In Figure 6.1, 𝑃 (𝑁𝑂𝑀𝑗(𝑘+1) | 𝑁𝑂𝑀𝑗𝑘) is the conditional probability that the status of satellite Cj is NOM at the time 

of collection of data in pass (k+1) given satellite Cj status is NOM at the time of collection of data in pass k. The 

term 𝑃 (𝑁𝑂𝑀𝑗(𝑘+1) | 𝐴𝑁𝑂𝑀𝑗𝑘) is the conditional probability that the status of satellite Cj is NOM at the time of 

collection of data in pass (k+1) given satellite Cj status is ANOM at the time of collection of data in pass k. These 

two terms define the probability of transition of the NOM state during the period when no new data is collected. 

These two terms are the first column of the transition probability matrix, which is computed using the Markov chain. 

This calculation is described in Section 8. It uses a simpler notation for the conditional probability terms as follows: 

 

𝑇𝑘+1
𝑘

𝑁
𝑁 =  𝑃 (𝑁𝑂𝑀𝑗(𝑘+1) | 𝑁𝑂𝑀𝑗𝑘)  Equation 6a 

 

𝑇𝑘+1
𝑘

𝑁
𝐴 =  𝑃 (𝑁𝑂𝑀𝑗(𝑘+1) | 𝐴𝑁𝑂𝑀𝑗𝑘) Equation 6b 

 

This notation uses two subscripts and two superscripts. The left and right superscripts denote the state and pass 

number, k. The left and right subscripts denote the state and pass number, k+1. Two additional, related terms are 

defined in Equation 6 and they appear in relation to the Markov matrix calculations in Section 8. 

 
𝑇𝑘+1

𝑘
𝐴
𝑁 =  1 − 𝑇𝑘+1

𝑘
𝑁
𝑁     Equation 6c 

 

𝑇𝑘+1
𝑘

𝐴
𝐴 = 1 − 𝑇𝑘+1

𝑘
𝑁
𝐴     Equation 6d 

 

The flow of information in the network can be visualized using the GEO status node for pass (k+1). The transition 

probability terms are utilized to compute the probability that the satellite is NOM prior to the collection of data in 

pass (k+1) based on the probability that the satellite is NOM for pass k. The evidence of Brightness Ratio for the 

data collected in pass (k+1) is utilized to compute the probability that the satellite is NOM after the data has been 

collected in pass (k+1). Then the transition probability terms are utilized to compute the probability that the satellite 

is NOM prior to the collection of data in pass (k+2); etc. This calculation is performed using the Chapman-

Kolmogorov equation and the Markov chain, and it is described in Section 9.  

 

In following the Bayes Network directed graph, the numerical value of probability that satellite Cj is NOM evolves 

with the collection of each new point of Brightness Data. The value of Brightness in each pass is a function of the 

observation geometry, namely the directions of illumination and the sensor line of sight. Thus, the conditional 

probability that satellite Cj is NOM after pass k given the Brightness Ratio rjk can also be interpreted as the 

conditional probability that satellite Cj is NOM after pass k given the observation geometry for pass k.  

 

The probability density function (PDF) for the Brightness Ratio can be quite different from one satellite to another, 

even if the satellites are cluster peers. This is due to limitation on accuracy that can be achieved by the Inversion 

Model. An empirical description of this PDF is computed using the data for passes k < 0 and it is used subsequently 
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to calculate Xjk for passes k ≥ 0.  In the case of a cross-tag between cluster peers, the values of Xjk get affected 

simultaneously for both peer satellites. In order to detect such simultaneous changes, it is beneficial to transform the 

values of Xjk to z-score in order to support the calculation of a measure of belief and for hypothesis testing to assess 

the probabilities of Type I and Type II errors [References 23 and 26].  

 

In order to assign a numerical value to the belief placed in the status of satellite Cj, we need know the conditional 

probability irrespective of the observation geometry (see Equation 1), which is the marginal probability that satellite 

Cj is NOM. In order to compute such marginal probability, we need to sample the entire range space of observation 

geometry at a sufficient number of locations. This is mostly not feasible because the observation geometry is 

governed by automated tasking for synoptic search by the sensor. As a result, it is necessary to perform an iterative 

assessment of belief based on a limited number of data points for each satellite in a cluster. This is performed using 

the standard z-score, calculation of likelihood rations and hypothesis testing (see Sections 11 to 15). 

 

7. BAYES THEOREM 

 

The purpose of the calculations described in this section is to determine the Brightness evidence, Xjk (Figure 6.1). In 

this regard, the probability that satellite Cj is NOM after pass k and the Brightness Ratio resides in an infinitesimal 

neighborhood of 𝑟𝑗𝑘 can be defined using the expression for conditional probability in two ways as follows:  

 

𝑃{ 𝑁𝑂𝑀𝑗𝑘  ∩  (𝑟𝑗𝑘  ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘) } = 𝑃( 𝑁𝑂𝑀𝑗𝑘 |  (𝑟𝑗𝑘 ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘) ) 𝑃(𝑟𝑗𝑘 ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘)   

                                                                                                                                                       Equation 7a 

𝑃{ 𝑁𝑂𝑀𝑗𝑘  ∩  (𝑟𝑗𝑘 ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘) } = 𝑃{ (𝑟𝑗𝑘 ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘) |  𝑁𝑂𝑀𝑗𝑘} 𝑃( 𝑁𝑂𝑀𝑗𝑘  )  

                                                                                                                                        Equation 7b 

 

Substituting Equation 7a into Equation 7b and rearranging, 

 

𝑃( 𝑁𝑂𝑀𝑗𝑘  | (𝑟𝑗𝑘 ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘) )  =  
𝑃( (𝑟𝑗𝑘 ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘)   | 𝑁𝑂𝑀𝑗𝑘  ) 𝑃( 𝑁𝑂𝑀𝑗𝑘  )

𝑃(𝑟𝑗𝑘 ≤ 𝑅 <  𝑟𝑗𝑘 + Δ𝑟𝑗𝑘)  
 

 

      Equation 8 

 

Equation 8 is now re-written using the probability density function (PDF) for the Brightness Ratio 𝑓( 𝑟𝑗𝑘  ), which is  

suitably interpreted as the probability of R taking values in the small neighborhood about the given value: 

 

𝑃( 𝑁𝑂𝑀𝑗𝑘  |  𝑟𝑗𝑘)  =  
𝑓( 𝑟𝑗𝑘   | 𝑁𝑂𝑀𝑗𝑘  ) 𝑃( 𝑁𝑂𝑀𝑗𝑘  )

𝑓(𝑟𝑗𝑘) 
 

            Equation 9a 

 

𝑓(𝑟𝑗𝑘) =  𝑓( 𝑟𝑗𝑘   | 𝑁𝑂𝑀𝑗𝑘  ) 𝑃( 𝑁𝑂𝑀𝑗𝑘) + 𝑓( 𝑟𝑗𝑘   | 𝐴𝑁𝑂𝑀𝑗𝑘  ) 𝑃( 𝐴𝑁𝑂𝑀𝑗𝑘  )  Equation 9b 

 

The above derivation is essentially Bayes theorem. The left hand side of Equation 9a is Xjk. Equation 9b expresses 

the denominator of Equation 9a using the law of total probability. The calculation of 𝑃( 𝑁𝑂𝑀𝑗𝑘  ) is connected to the 

calculation of transition probability and it is described in Sections 8 and 9.  

 

The conditional PDF 𝑓( 𝑟𝑗𝑘   | 𝑁𝑂𝑀𝑗𝑘  ) is computed as empirical PDF from the prior data, which is denoted by 

passes k < 0 (Figure 3.1). Note that this is permissible because the time slider is positioned such that the satellite 

status is NOM for a minimum of two weeks prior to the location k = 0. This data is utilized as input to the Inversion 

Model and for the calculation of 𝑟𝑗𝑘. Note that such inversion calculation is performed upon the translation of the 

time slider to each new position so that the empirical PDF 𝑓( 𝑟𝑗𝑘   | 𝑁𝑂𝑀𝑗𝑘  ) may evolve with the passage of time.    

 

The 𝑓(𝑟𝑗𝑘)  calculation includes contributions from NOM and ANOM conditions (Equation 3). Note that the first 

term in Equation 3 is the NOM term, which is the same as the numerator of Equation 9 for pass k = 0. The second 

term in Equation 3 is the ANOM term. It is given by Equation 5a by considering the contributions from five disjoint 
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anomalies. Among these anomalous states, the CrossTag, Turn, and Unstable are Boolean states. They are either true 

or false. The OffsetChange and UCT are continuous states. The changed solar panel offset may be any real number 

within a range of permissible values. The Brightness of a UCT may be any real number, although it will typically be 

a fainter object. The PDF calculation for the discrete and continuous ANOM states is described in the following 

based on a combination of arguments derived from the observations data and physical considerations.     

 

The calculation of 𝑓( 𝑟𝑗𝑘  | 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) is performed as follows. Consider that satellite 𝐶𝑗 is incorrectly tagged as its 

cluster peer, denoted as 𝐶𝑗
𝑃𝑒𝑒𝑟 . Then the Brightness Ratio given CrossTag can be expressed as: 

 

𝑣𝑗𝑘
𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔

=  {   𝐼𝑚𝑗𝑘   𝐼𝑚𝑗𝑘
𝑃𝑒𝑒𝑟⁄  } 𝑣𝑗𝑘  Equation 10a 

 

𝑟𝑗𝑘
𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔

=  𝑣𝑗𝑘
𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔

− 1  Equation 10b 

 

In Equation 10a, the value of 𝑣𝑗𝑘 given by Equation 2b. It is scaled by the ratio of predicted Brightness for satellite 

𝐶𝑗 to the predicted Brightness for satellite 𝐶𝑗
𝑝𝑒𝑒𝑟

. The predicted brightness for 𝐶𝑗 and 𝐶𝑗
𝑝𝑒𝑒𝑟

assume both satellites to 

be NOM. The resulting values of 𝑟𝑗𝑘
𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔

 are used to compute the empirical PDF for 𝑓( 𝑟𝑗𝑘  | 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗).  

 

The calculation of 𝑓( 𝑟𝑗𝑘  | 𝑇𝑢𝑟𝑛𝑗) is performed as follows. Consider that satellite 𝐶𝑗 has undergone a 180o yaw turn. 

The turned satellite is denoted as 𝐶𝑗
𝑇𝑢𝑟𝑛. Then the Brightness Ratio given Turn can be expressed as: 

 

𝑣𝑗𝑘
𝑇𝑢𝑟𝑛 =  {   𝐼𝑚𝑗𝑘   𝐼𝑚𝑗𝑘

𝑇𝑢𝑟𝑛⁄  } 𝑣𝑗𝑘   Equation 11a 

 

𝑟𝑗𝑘
𝑇𝑢𝑟𝑛 =  𝑣𝑗𝑘

𝑇𝑢𝑟𝑛 − 1   Equation 11b 

 

In Equation 11a, the value of 𝑣𝑗𝑘 given by Equation 2b. It is scaled by the ratio of predicted Brightness for satellite 

𝐶𝑗 to the predicted Brightness for satellite 𝐶𝑗
𝑇𝑢𝑟𝑛. The rotation of the satellite modifies the Brightness contributions 

of the Body and Panel to the total Brightness for a satellite as described using Figure 5.1. The modified contributions 

of the Body and Panel can be computed using the Predictive Model. The modified projected view upon the yaw turn 

is utilized in order to compute the predicted brightness 𝐼𝑚𝑗𝑘
𝑇𝑢𝑟𝑛. The resulting values of 𝑟𝑗𝑘

𝑇𝑢𝑟𝑛 are used to compute the 

empirical PDF for 𝑓( 𝑟𝑗𝑘  | 𝑇𝑢𝑟𝑛𝑗).   

 

The calculation of 𝑓( 𝑟𝑗𝑘  | 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) is performed as follows. Consider that satellite 𝐶𝑗becomes unstable and it is 

now denoted as 𝐶𝑗
𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒. Then the Brightness Ratio for the 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 condition can be expressed as: 

 

𝑣𝑗𝑘
𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 =  {   𝐼𝑚𝑗𝑘   𝐼𝑚𝑗𝑘

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒⁄  } 𝑣𝑗𝑘 Equation 12a 

 

𝑟𝑗𝑘
𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 =  𝑣𝑗𝑘

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 − 1   Equation 12b 

 

In Equation 12a, the value of 𝑣𝑗𝑘 given by Equation 2b. Note that when a satellite is unstable, its projected view with 

respect to the sensor is independent of the solar phase angle. Or, its Brightness at high phase angles can be larger 

than that at low phase angles. Thus, in the calculation of 𝑣𝑗𝑘
𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 , the value of 𝐼𝑚𝑗𝑘

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒  is randomly distributed 

between the maximum and minimum values possible for the Brightness of satellite Cj while in its NOM state. These 

values are denoted as bounds, which are computed using the Predictive Model. The range for the resulting values for 

𝑟𝑗𝑘
𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 is a function of the phase angle because 𝐼𝑚𝑗𝑘  is a single number. These values for 𝑟𝑗𝑘

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒  are used to 

compute the empirical PDF for 𝑓( 𝑟𝑗𝑘  | 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗). Note that this PDF also becomes a function of the phase angle.  

 

The calculation of 𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) is performed as follows. Consider that satellite 𝐶𝑗changes its solar 

panel offset and it is now denoted as 𝐶𝑗
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

. Then the Brightness Ratio for the 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒 condition 

can be expressed as: 
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𝑣𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

=  {   𝐼𝑚𝑗𝑘   𝐼𝑚𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒⁄  } 𝑣𝑗𝑘 Equation 13a 

 

𝑟𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

=  𝑣𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

− 1  Equation 13b 

 

Note that when a satellite changes its Panel offset, the projected view of the Panel with respect to the sensor changes 

while the projected view of the body remains unchanged. Since the Panels are highly specular, their contribution to 

the satellite Brightness in both Lambertian regions is small as compared to the Body (Figure 1.1). Or, the value of 

𝑣𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

 remains largely unchanged in the Lambertian regions in spite of the change in the offset angle.  

 

In the specular region, 𝐼𝑚𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

 is randomly distributed between the maximum and minimum values of 

Brightness that can occur for a NOM satellite Cj in the specular region. These maximum and minimum values are 

computed using the Predictive Model. The range for the resulting values for 𝑟𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

 is then a function of the 

phase angle in the specular region only. These values for 𝑟𝑗𝑘
𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒

 are used to compute the empirical PDF for 

𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗). Note that this PDF is a function of the phase angle during pass k when it is in the 

specular region. The PDF for 𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) for the Lambertian regions is same as that for the NOM 

state.      

 

The calculation of 𝑓( 𝑟𝑗𝑘  | 𝑈𝐶𝑇𝑗) is performed as follows. This calculation is similar to the 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 state of 

ANOM. Consider that a UCT is incorrectly tagged as satellite 𝐶𝑗. The incorrectly tagged UCT is now denoted as 

𝐶𝑗
𝑈𝐶𝑇. Then the Brightness Ratio for the 𝑈𝐶𝑇 condition can expressed as: 

 

𝑣𝑗𝑘
𝑈𝐶𝑇 =  {   𝐼𝑚𝑗𝑘   𝐼𝑚𝑗𝑘

𝑈𝐶𝑇⁄  } 𝑣𝑗𝑘 Equation 14a 

 

𝑟𝑗𝑘
𝑈𝐶𝑇 =  𝑣𝑗𝑘

𝑈𝐶𝑇 − 1  Equation 14b 

 

Typically a UCT would be a faint object that appears unexpectedly in the sensor field of view. The range of 

Brightness values for such a UCT is a function of the detection limit for the sensor. This range is typically a known 

value and 𝐼𝑚𝑗𝑘
𝑈𝐶𝑇  is randomly distributed between the range of Brightness for the UCT objects. The range for the 

resulting values for 𝑟𝑗𝑘
𝑈𝐶𝑇  changes as function of the phase angle. These values for 𝑟𝑗𝑘

𝑈𝐶𝑇 are used to compute the 

empirical PDF for 𝑓( 𝑟𝑗𝑘  | 𝑈𝐶𝑇𝑗). Note that this PDF also becomes a function of the phase angle.  

 

With the above calculations, all terms on the right hand side of the Bayes expression (Equation 8) are estimable and 

considered known. This allows the calculation of Brightness evidence, denoted as Xjk, which is sent to the GEO 

status node. Even though this calculation requires the determination of a number of individual terms, it is a minor 

computational effort for a desktop computer. It is represented by vertical arrows in Figure 6.1. The calculation 

corresponding to the horizontal arrows is described in Section 8. In this regard, note that  

 

𝑃( 𝐴𝑁𝑂𝑀𝑗𝑘  |  𝑟𝑗𝑘) = 1 −  𝑃( 𝑁𝑂𝑀𝑗𝑘  |  𝑟𝑗𝑘)   Equation 15 

= 1 −  𝑋𝑗𝑘  

    

8. TRANSITION PROBABILITY 

 

The purpose of the calculations described in this section is to compute the terms 𝑇𝑘+1
𝑘

𝑁
𝑁  and 𝑇𝑘+1

𝑘
𝑁
𝐴 , which are shown 

alongside the horizontal arrows in the Bayes network graph (Figure 6.1). They describe the probability of transition 

from NOM to NOM or from ANOM to NOM in the interval of time between pass k and pass k+1 when there is no 

data collected. This interval is denoted as the Inter-pass Time or Δ𝑡𝑘in the following description. Accounting for the 

probability of change of state during the Inter-pass Time is necessary for the following reasons: (1) The Inter-pass 

Time, Δ𝑡𝑘 can change from one pass to the next by over a magnitude. For example, in case of a ground-based sensor 

that executes an east-west, back-and-forth sweeping motion to perform synoptic search, the Brightness Data for the 

satellites located at high zenith angles has an alternating set of large and small values for Δ𝑡𝑘; (2) There is, in effect,  

no collection of Brightness Data 50% of the time due to the daytime gap; (3) The Δ𝑡𝑘 is routinely significant in 
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comparison to the time required for a satellite to maneuver, to change its solar panel offset, or to execute a 180o yaw 

turn or (i.e. to transition towards the occurrence of an ANOM state such as CrossTag, OffsetChange or Turn). The 

Δ𝑡𝑘 can also be significant with respect to a duration over which a satellite may experience degradation of its 

attitude control, progressing towards the occurrence of the ANOM state, Unstable; (4) The Δ𝑡𝑘 is significant in order 

to allow different UCT objects to appear in the successive passes, particularly when the sensor line-of-sight can 

cross a debris field at an altitude lower than the geosynchronous belt.   

 

For the purpose of this section, assume that Δ𝑡𝑘 is constant between all night-time passes and the daytime gap is 

twelve hours. These assumptions are unnecessary in the actual implementation of the algorithm, but they are useful 

to simplify the following description. Let the daytime gap be denoted as Δ𝑡𝐺𝑎𝑝.  

 

The transition probability matrix 𝕋 is defined using the following matrix equation [References 15-17].  

 

𝕋 = [
𝑇𝑁

𝑁 𝑇𝐴
𝑁

𝑇𝑁
𝐴 𝑇𝐴

𝐴 ]  Equation 16 

Where 

 𝑇𝑁
𝑁  is the probability of persistence of NOM state (i.e. no change) over a unit interval of time 

𝑇𝑁
𝐴  is the probability of transition of ANOM to NOM over a unit interval of time 

𝑇𝐴
𝑁  is the probability of transition of NOM to ANOM over a unit interval of time 

𝑇𝐴
𝐴  is the probability of persistence of ANOM over a unit interval of time 

 

The matrix 𝕋  is also called the Markov transition matrix. If Δ𝑡𝑘 = 1, then 

 

[
𝑇𝑘+1

𝑘
𝑁
𝑁 𝑇𝑘+1

𝑘
𝐴
𝑁

𝑇𝑘+1
𝑘

𝑁
𝐴 𝑇𝑘+1

𝑘
𝐴
𝐴

] = 𝕋  Equation 17a 

 

If Δ𝑡𝑘 ≠ 1, the Markov transition matrix is computed using the Chapman-Kolmogorov equation [Reference 17]: 

 

[
𝑇𝑘+1

𝑘
𝑁
𝑁 𝑇𝑘+1

𝑘
𝐴
𝑁

𝑇𝑘+1
𝑘

𝑁
𝐴 𝑇𝑘+1

𝑘
𝐴
𝐴

] = 𝕋Δ𝑡𝑘   Equation 17b 

 

The (Δ𝑡𝑘)𝑡ℎ power of the Markov matrix 𝕋 is computed using the Cayley-Hamilton theorem [References 18-20]. 

This comprises a three step procedure: (1) Compute eigenvectors and eigenvalues of 𝕋; (2) Raise the eigenvalues to 

the (Δ𝑡𝑘)𝑡ℎ power; (3) Compute 𝕋Δ𝑡𝑘 using the eigenvectors for matrix 𝕋 and its eigenvalues raised to the (Δ𝑡𝑘)𝑡ℎ 

power. Note that each row of the Markov matrix 𝕋 sums to one (see Equations 6c and 6d).  

 

A salient property of a Markov matrix is that its first eigenvalue is equal to 1 [References 18 and 21]. Also the sum 

of two eigenvalues of 𝕋 is equal to the sum of its diagonal elements (i.e. its trace) and the product of the two 

eigenvalues is equal to the determinant of 𝕋.  This is because the trace and the determinant of a matrix are its first 

and third invariant, respectively [Reference 22].  Thus, the two eigenvalues for matrix 𝕋, namely 𝜆1and 𝜆2 are given 

directly by Equation 18 and two eigenvectors are computed by solving two sets of 2x2 simultaneous equations: 

 

𝜆1 = 1  Equation 18a 

 

𝜆2 =  𝑇𝑁
𝑁 +  𝑇𝐴

𝐴 − 𝜆1  Equation 18b 

 

Using the same logic to the transition probability for the daytime gap by replacing the (Δ𝑡𝑘)𝑡ℎ power of the Markov 

matrix 𝕋  to the (Δ𝑡𝐺𝑎𝑝)𝑡ℎ power: 

 

  [
𝑇𝐺𝑎𝑝𝑁

𝑁 𝑇𝐺𝑎𝑝𝐴
𝑁

𝑇𝐺𝑎𝑝𝑁
𝐴 𝑇𝐺𝑎𝑝𝐴

𝐴 ] = 𝕋Δ𝑡𝐺𝑎𝑝 Equation 19 

 

The matrix elements on the left hand side of Equation 19 are defined in analogous manner as Equation 17b; except 

that the right superscript and subscript is replaced by the descriptor Gap instead of the pass numbers k and k+1. Note 
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that 𝑇𝐺𝑎𝑝𝑁
𝑁  is user input, as defined in Section 4. This allows the calculation of 𝑇𝐺𝑎𝑝𝐴

𝑁  using Equation 6c. However, 

the matrix elements in the second row of Equation 19 are unknown. They are solved using the user input defined in 

Section 4 for the long run probability that the satellite is NOM at any time. This is described next.   

 

In the limit, long term is defined as being at least two orders of magnitude longer than Δ𝑡𝐺𝑎𝑝, which is 3 to 6 

months. The long run probabilities may now be visualized as saturated or steady-state values resulting from 

successive multiplication of daytime gap transition probability matrix ad infinitum: 

    

[
𝜋𝑁 (1 − 𝜋𝑁)

(1 − 𝜋𝐴) 𝜋𝐴
] = [

𝑇𝐺𝑎𝑝𝑁
𝑁 𝑇𝐺𝑎𝑝𝐴

𝑁

𝑇𝐺𝑎𝑝𝑁
𝐴 𝑇𝐺𝑎𝑝𝐴

𝐴 ]

∞

  Equation 20 

 

Note that 𝜋𝑁 is the user input value of long run probability. Note that the rows of both matrices are consistent with 

Equation 6. However, in the steady state, 𝜋𝐴 is also equal to (1 - 𝜋𝑁) and thus Equation 20 is singular. It is however, 

equivalent to a left eigenvector form as follows: 

 

[𝜋𝑁 𝜋𝐴] =[𝜋𝑁 𝜋𝐴] [
𝑇𝐺𝑎𝑝𝑁

𝑁 𝑇𝐺𝑎𝑝𝐴
𝑁

𝑇𝐺𝑎𝑝𝑁
𝐴 𝑇𝐺𝑎𝑝𝐴

𝐴 ]  Equation 21 

 

Equation 21 is solved using the user-input values for 𝜋𝑁 and 𝑇𝐺𝑎𝑝𝑁
𝑁  to determine every term in the equation. Thus, 

this equation is the starting point for the calculation of the transition probability matrix 𝕋 as the (1/tGap)th root of the 

transition probability matrix for the daytime gap. This is performed using the Cayley-Hamilton theorem.  

 

Note how the procedure is generalized when Δ𝑡𝑘 and Δ𝑡𝐺𝑎𝑝 are non-uniform. Even though this calculation requires 

the determination of a number of individual terms, it is a minor computational effort for a desktop computer because 

it involves a set closed-form analytical procedure; namely the use of Chapman-Kolmogorov equation to calculate 

the multi-step transition matrices and the use of Cayley-Hamilton theorem to perform this calculation quickly.  

    

9. MARKOV CHAIN 

 

Markov chain is utilized to proceed from one GEO status node to the next by combining the calculations from the 

application of Bayes theorem and the transition probability. The two calculations taken together allow computation 

of the term 𝑃( 𝑁𝑂𝑀𝑗(𝑘+1) ) using the assumption that the NOM or ANOM state for a satellite during pass k+1 

depends only on its state during pass k (Section 4). This is Markov chain of memory 1, or order 1, or simply a first 

order Markov chain [References 15 and 17]. It is possible to utilize a higher order Markov chain, but it needs joint 

probability distribution functions. This requires larger amounts of data as input, which conflicts with the user need to 

produce credible statistical assessment while minimizing the input data required. The first order Markov chain 

provides matrix equations for the calculation of 𝑃( 𝑁𝑂𝑀𝑗(𝑘+1) ) and for the calculation of the numerator in Equation 

9 for pass (k+1) as follows:   

[𝑃( 𝑁𝑂𝑀𝑗(𝑘+1) ) 𝑃( 𝐴𝑁𝑂𝑀𝑗(𝑘+1) )] = [𝑋𝑗𝑘 (1 − 𝑋𝑗𝑘)] [
𝑇𝑘+1

𝑘
𝑁
𝑁 𝑇𝑘+1

𝑘
𝐴
𝑁

𝑇𝑘+1
𝑘

𝑁
𝐴 𝑇𝑘+1

𝑘
𝐴
𝐴

]       Equation 22a 

 

          𝑓( 𝑟𝑗(𝑘+1)  | 𝑁𝑂𝑀𝑗(𝑘+1) ) 𝑃( 𝑁𝑂𝑀𝑗(𝑘+1)) =  

 

  𝑓( 𝑟𝑗(𝑘+1)  | 𝑁𝑂𝑀𝑗(𝑘+1) )( 𝑋𝑗𝑘 𝑇𝑘+1
𝑘

   𝑁
𝑁 + ( 1 − 𝑋𝑗𝑘) 𝑇𝑘+1

𝑘
𝑁
𝐴  ) Equation 22b 

 

All entities on the right hand side of Equation 22 are known. This allows the calculation of 𝑃( 𝑁𝑂𝑀𝑗(𝑘+1) ), which is 

used in the application of Bayes theorem as per Equation 8. The Bayes network is begun with a known state for a 

satellite at 𝑘 < 0 and the Markov chain calculation allow the calculations to traverse the network forward. Its result 

is to produce a vector, denoted as 𝕏𝑗, which contains a sequence of numerical values of 𝑃 ( 𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ) or Xjk for 

all k, both in the prior data and the new data (Figure 3.1). Or, the length of vector 𝕏𝑗 is equal to the running total 

number of Brightness Data points in the prior data and new data. The belief or marginal probability of the NOM 

state is the expected value for 𝑃 ( 𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ). Or, 
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𝐵𝑒𝑙𝑖𝑒𝑓 (𝑁𝑂𝑀𝑗𝑘) =  𝔼𝑅[ 𝑃 ( 𝑁𝑂𝑀𝑗𝑘  | 𝑅 = 𝑟𝑗𝑘  ) ] =  𝔼𝑅 [ 𝕏𝑗  ]  Equation 23 

 

Where 𝔼𝑅 denotes the expected value (i.e. mean) with respect to all values of R. The belief can be computed for the 

prior data and compared with the new data (see Section 15). Or it can be computed for a moving set of passes (e.g. 

for a moving block of thirty passes such as from 0 ≤ 𝑘 ≤ 29,  1 ≤ 𝑘 ≤ 30, etc.  

 

 

10. OUTLIERS AND ANOMALY DETECTION  

 

If the belief changes from the prior data to the new data, it implies anomaly or change in the satellite (see Equation 

23). However, the data set corresponding to k ≥ 0 can be very small. For example, in case prior data that spans two 

weeks, there would be about 30 points of Brightness Data for each of the three regions in Figure 2.2, or the length of 

vector 𝕏𝑗 for each region of the prior data would also be 30. The new data for Xjk for each of the three regions may 

be collected at a rate of three points per day. Thus, challenge is to identify change in a satellite based on reference 

data set that has about 30 points and new data that is as small as three points. In such cases, the use of Equation 23 to 

calculate belief is inadequate. As a result, the anomaly detection is performed using a combination of three types of 

evidence; namely 𝑋𝑗𝑘 and two likelihood ratios determined using cluster-based evidence and model-based evidence.   

 

The first evidence is to determine if the Xjk for the current pass is an outlier with respect to the prior data for Xjk, k < 

0.  This evaluation is performed separately for the specular and each Lambertian region so that the outliers 

corresponding to the various anomalies described in Section 5 can be identified. This is described in Section 11.  

The second evidence is based on the values of 𝑋𝑗𝑘
𝑃𝑒𝑒𝑟in order to identify the ripple effect of the outlier in 𝑋𝑗𝑘.  This is 

described in Section 12. The third evidence is to perform model based correction and to re-evaluate 𝑋𝑗𝑘 to assess if it 

continues to be an outlier. For example, in case of 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔,  the term 𝐼𝑚𝑗𝑘  in Equation 2b can be temporarily 

replaced by the predicted brightness for the cluster peer satellite. This is described in Section 13.  

 

These three sets of evidence are combined and propagated as per the Bayes network. This is described in Section 14. 

A change in satellite behavior is detected if the evidence of an outlier persists over multiple cycles. In other words, it 

is an iterative assessment. This calculation can be performed even if the new data comprises very few passes. These 

calculations are simpler but they do not allow well-quantified hypothesis tests, which are essential in order to 

generate probabilities of Type I and Type II errors,  and , which are related to the confidence and power of the 

test. For example,  is the value of the probability that a satellite would be deemed ANOM when it actually NOM.  

This is described further in Section 16.             

    

11. USE OF Z-SCORE FOR DETECTION OF OUTLIERS 

 

The rationale for this test is to consider the (1-Xjk) values for the prior data to be the status quo and examine the (1-

Xjk) for each pass k ≥ 0  in the new data to assess if there has been a change in (1-Xjk) from the status quo. The 

status quo is defined through the mean and standard deviation of (1- Xjk) for passes k < 0 for the prior data. 

Specifically: 

 

𝜇𝑘<0
𝑗

=  𝔼𝑘[ (1 − 𝑋𝑗𝑘)]  k < 0 Equation 24 

 

(𝜎𝑘<0
𝑗

)
2

= 𝑉𝑎𝑟 [(1 −  𝑋𝑗𝑘)]  k < 0 Equation 25 
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Where  

 𝔼𝑘 denotes the expected value  

 𝜇𝑘<0
𝑗

 is the mean of (1-Xjk) for the prior data, k < 0 

 𝜎𝑘<0
𝑗

 is the standard deviation of (1-Xjk) for the prior data, k < 0 

 

The first step is to estimate the quantities 𝜇𝑘<0
𝑗

 and 𝜎𝑘<0
𝑗

 based on a limited set of 𝑋𝑗𝑘 values for the prior data. At 

present, this calculation is performed by assuming that the mean and variance of 𝑋𝑗𝑘 are constant for all k < 0 but 

depend on j. These estimates for the mean and variance are denoted as �̅�𝑜
𝑗
 and 𝑠0

𝑗
, respectively. 

 

In order to determine whether or not there has been a change in Xjk from the status quo, a basic z-score measure 𝜁𝑘
𝑗
 

is defined in the following [Reference 23]. It is useful when only a few observations of new data are available. The 

magnitude of this z-score is meant to prompt the user to assess if the satellite has changed relative to the status quo. 

Specifically, the z-score for pass k is given by: 

 

𝜁𝑘
𝑗

=  
𝑋𝑗𝑘− �̅�𝑜

𝑗

𝑠0
𝑗  Equation 26 

 

The user chooses a threshold level for the magnitude of 𝜁𝑘
𝑗
, outside of which the satellite is expected to be ANOM.  

This calculation is performed at each pass k and the result is a time evolution of the z-score based on which a user 

may make a judgment in regards to a change in a satellite. Note that for this computation, the user can choose to 

update the values of mean and variance that are used as inputs to the z-score calculation.  

 

Note that the knowledge of z-score evolution over time is useful for a basic assessment of the anomaly type for the 

generation of a message for use in the Bayes belief propagation. For example, if the z-score outliers are only for the 

passes corresponding to observation geometry for the specular region, it is likely to be caused by 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒. If 
the outliers occur sporadically within a night, it may be due to repeated occurrences of 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔. If an outlier only 

occurs for an isolated data point and then corrects itself, it may be due to a mistag caused by 𝑈𝐶𝑇. If the outliers are 

persistent at all phase angles and possess a structure, it may be due to a 180o yaw 𝑇𝑢𝑟𝑛 of the satellilte. If the 

outliers are persistent at all phase angles and lack a structure, it may be because the satellite is 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒, etc.    

 

12. CLUSTER BASED SUPPORTING EVIDENCE OF ANOMALY 

 

As illustrated in Figure 2.1, the Brightness Data can be collected for all satellites in a cluster simultaneously. 

Accordingly, it is assumed that the Brightness Data for the entire cluster is available to the statistical assessment 

algorithm for each pass (Figure 6.1).  Indeed, the statistical assessment will run in a sequence for one satellite in the 

cluster after another, creating a separate chain of data for each satellite (Figure 12.1a). The calculation of vector 𝕏𝑗 

and the z-score values can thus be performed sequentially for each satellite Cj that belongs to the cluster. This is 

practical because of the sparse rate at which the Brightness Data is collected. The duration of time between passes is 

expected to be 10x longer than the time required to compute Xjk and 𝜁𝑘
𝑗
 values for each satellite in the cluster.  

 

The cluster data for Xjk and z-score provides a second opportunity to gather evidence. For example, if the z-score is 

an outlier for all satellites in the cluster, it may be due to a noisy observation or due to the crossing of a debris field 

(𝑈𝐶𝑇) in the line of sight of the sensor. If the outliers occur simultaneously for cluster peers, it may be due to 

𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔.  Such cluster-based evidence is expressed in terms of a likelihood ratio such as: 

 

𝑚𝑗𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟 =

𝔏 (𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔)

𝔏 (𝑛𝑜 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔)
=

𝑃(𝐴𝑁𝑂𝑀𝑗𝑘| 𝑟𝑗𝑘)𝑃(𝐴𝑁𝑂𝑀𝑗𝑘
𝑃𝑒𝑒𝑟 | 𝑟𝑗𝑘

𝑃𝑒𝑒𝑟)

𝑃(𝑁𝑂𝑀𝑗𝑘| 𝑟𝑗𝑘)𝑃(𝑁𝑂𝑀𝑗𝑘
𝑃𝑒𝑒𝑟 | 𝑟𝑗𝑘

𝑃𝑒𝑒𝑟)
  Equation 27a 

 

𝑃(𝐴𝑁𝑂𝑀𝑗𝑘| 𝑟𝑗𝑘) = 1 −  𝑃(𝑁𝑂𝑀𝑗𝑘| 𝑟𝑗𝑘) = 1 − 𝑋𝑗𝑘   Equation 27b 

 

Where 𝔏 (𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔) is likelihood for the presence of 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔, and 𝑚𝑗𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟  is the message sent to the GEO 

status node for satellite Cj pass k. Use of 𝑚𝑗𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟  during the belief propagation is described in Section 14. Note that 

multiple such messages can be derived from the cluster-based evidence and sent to the GEO status node.  
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Figure 12.1a: Bayes network for each satellite in the cluster are independent of each other 

 

 
 

Figure 12.1b: Predictive model can be applied to each satellite in the cluster 

 

13. MODEL BASED SUPPORTING EVIDENCE OF ANOMALY  

 

The present work utilizes the two-facet model to perform inversion of prior data to determine the pose-dependnent 

body and solar panel albedo-area products for three-axis stabilized GEO satellites (Figure 12.1b). The Brightness 

prediction for the calculation of rjk is performed by utilizing the previously computed albedo-area products along 

with the specific observation conditions for pass k in the new data. This calculation is a generic process and it is 

applied sequentially to each satellite in the cluster. The ability to use the two-facet model on demand provides a 

third opportunity to gather evidence, which can be communicated back to the GEO status node as a message. This 

evidence is extracted as a likelihood ratio based on the PDF of the Brightness Ratio as follows:  
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For example, consider a situation when the cluster based evidence indicates possibility of 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔 anomaly for 

satellites 𝐶𝑗 and 𝐶𝑗
𝑝𝑒𝑒𝑟

. If the 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔 was true, the Brightness Ratio for the two satellites utilized in the 

calculation of 𝑋𝑖𝑗 and 𝑋𝑖𝑗
𝑃𝑒𝑒𝑟  have been calculated using incorrect values of 𝑣𝑗𝑘 and 𝑣𝑗𝑘

𝑃𝑒𝑒𝑟  as follows (Equation 2): 

 

 For satellite 𝐶𝑗: 𝑣𝑗𝑘 =  
𝐼𝑜𝑗𝑘

𝐼𝑚𝑗𝑘
𝑃𝑒𝑒𝑟    and  𝑟𝑗𝑘 = 1 −  𝑣𝑗𝑘 

 

 For satellite 𝐶𝑗
𝑝𝑒𝑒𝑟

 :  𝑣𝑗𝑘
𝑃𝑒𝑒𝑟 =  

𝐼𝑜𝑗𝑘
𝑃𝑒𝑒𝑟

𝐼𝑚𝑗𝑘
    and  𝑟𝑗𝑘

𝑃𝑒𝑒𝑟 = 1 − 𝑣𝑗𝑘
𝑃𝑒𝑒𝑟  

 

The Predictive Model may be used to perform a numerical trial. If there was 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔, a trial for the resolution of a 

crosstag can be performed by correcting the values of 𝑣𝑗𝑘 and  𝑣𝑗𝑘
𝑃𝑒𝑒𝑟 . This requires that predicted values of 

Brightness used in denominator for the calculation of 𝑣𝑗𝑘 and  𝑣𝑗𝑘
𝑃𝑒𝑒𝑟  are switched from satellite 𝐶𝑗 to 𝐶𝑗

𝑝𝑒𝑒𝑟
 and vice 

versa. Then, 

 

 For satellite 𝐶𝑗: 𝑣𝑗𝑘 =  
𝐼𝑜𝑗𝑘

𝐼𝑚𝑗𝑘
   For satellite 𝐶𝑗

𝑝𝑒𝑒𝑟
 :  𝑣𝑗𝑘

𝑃𝑒𝑒𝑟 =  
𝐼𝑜𝑗𝑘

𝑃𝑒𝑒𝑟

𝐼𝑚𝑗𝑘
𝑃𝑒𝑒𝑟    

 

The likelihood ratio for 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔 may now be computed using the PDF for the corrected values of the Brightness 

Ratio for the cluster peers as follows: 

 

𝑚𝑗𝑘
𝑀𝑜𝑑𝑒𝑙 =

𝔏 (𝑛𝑜 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔 | 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑗𝑘 𝑎𝑛𝑑 𝑟𝑗𝑘
𝑃𝑒𝑒𝑟 )

𝔏 (𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔 | 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑗𝑘 𝑎𝑛𝑑 𝑟𝑗𝑘
𝑃𝑒𝑒𝑟 )

     

 

=
𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑗𝑘 | 𝑁𝑂𝑀𝑗𝑘) 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑗𝑘

𝑃𝑒𝑒𝑟 | 𝑁𝑂𝑀𝑗𝑘
𝑃𝑒𝑒𝑟)

𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑗𝑘 | 𝐴𝑁𝑂𝑀𝑗𝑘)   𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑗𝑘
𝑃𝑒𝑒𝑟 | 𝐴𝑁𝑂𝑀𝑗𝑘

𝑃𝑒𝑒𝑟)
  Equation 28 

 

Where 𝑚𝑗𝑘
𝑀𝑜𝑑𝑒𝑙  is the message from the model to the GEO status node for satellite Cj pass k. Use of 𝑚𝑗𝑘

𝑀𝑜𝑑𝑒𝑙  during 

the belief propagation is described in Section 14. Note that multiple such messages can be derived from the model-

based evidence and sent to the GEO status node.  

 

14. BELIEF PROPAGATION 

 

Belief is marginal probability. Accordingly, Equation 23 can be used to determine belief at each GEO status node. 

However a direct use of Equation 23 requires a minimum of 30 points of new data. In order to be able to assess 

belief even when the size of new data is small, the procedure described in this section is utilized. It propagates a 

representative measure of belief by combining the three different values of evidence described in Sections 11-13. 

Specifically: (1) z-score 𝜁𝑘
𝑗
 for 𝑃(𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘) , which identifies outliers. These are the passes where 

𝑃(𝐴𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘) is high ; (2) Message 𝑚𝑗𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟 , which is a cluster-based likelihood ratio for 𝐴𝑁𝑂𝑀𝑗𝑘; (3) Message 

𝑚𝑗𝑘
𝑀𝑜𝑑𝑒𝑙 , which is a model-based likelihood ratio for the resolution of 𝐴𝑁𝑂𝑀𝑗𝑘. Figure 14.1 illustrates a process for 

the propagation of representative value for belief by combining the three different values of evidence values at each 

GEO status node as follows [Reference 5]:  

 

𝔅 (𝐴𝑁𝑂𝑀𝑘) = 𝜁𝑘
𝑗
 𝑚𝑗𝑘

𝐶𝑙𝑢𝑠𝑡𝑒𝑟  𝑚𝑗𝑘
𝑀𝑜𝑑𝑒𝑙               Equation 29 

 

Where 𝔅 is a representative measure of belief or score for ANOM at pass k. A user can define threshold values for 

𝔅 . The values of 𝔅 cross can be monitored in real-time and a warning issued if the threshold is crossed repeatedly.  
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Figure 14.1: Illustration of the belief propagation process [Reference 5] 

 

15. DECISION TO MOVE THE TIME SLIDER 

 

At the root of the mathematics presented in the preceding sections is the prior data, which is used to calculate 

𝑓( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗). Since the prior data is for the NOM state, which itself can evolve over time, it is necessary to 

exercise due diligence prior to denoting that the satellite is NOM for a set of passes (i.e., over an interval of time). It 

is further necessary that this set comprise at least 30 passes as described in the following.  

 

It is important to attain a balance between the probabilities of false alarm and the probability of missing anomalous 

behavior in a way that fulfills the user requirements. These two values of probability cannot be obtained using the z-

score approach described in Section 11.  These two probabilities can be determined by developing suitable 

hypothesis tests and computing the estimates of Type I and Type II errors [Reference 23]. In order to compute these 

probabilities, it is necessary to develop certain distributional assumptions in regards to 𝑋𝑗𝑘 for the prior data (k < 0), 

and employ a z-score measure for the new data (k≥0) for which a probability distribution can be obtained or 

approximated. This requires sufficiently large number of points for 𝑋𝑗𝑘 for the prior data and new data (such as a 

sample size of 30 or more for each). Upon collecting such data and determining that the satellite behavior is NOM, 

the time slider can be moved forward to new position up to which the satellite is shown to be NOM.  

 

The calculation of probability distribution for the z-score would be easier if 𝑋𝑗𝑘 were independent variables. 

However, this is not likely to be the case as each 𝑋𝑗𝑘 is computed using input from 𝑋𝑗(𝑘−1). Thus, the present 

problem is, in fact, a part of the eternal statistical conflict between small sample sizes and margin of error.  

 

Section 11 defines the z-score measure 𝜁𝑘
𝑗
 using Equation 26. Its simplicity comes at the expense of not being able to 

quantify the probabilities of Type I and Type II errors.  To this end, a second z-score measure 𝜂𝑘
𝑗
 is defined as 

follows [Reference 26]: 

𝜂𝑘
𝑗

=  
�̅�𝑗 −  𝜇𝑘<0

𝑗

𝜎𝑘<0
𝑗

√𝑘+1
⁄

 Equation 30 

where �̅�𝑗denotes the sample mean of observations Xj0,…,Xjk,, k ≥0. If the Xj0,…,Xjk were independent and 

identically distributed, this statistic would have an approximate standard normal distribution for large enough k and 

could be used as a test statistic for a hypothesis test. This test would allow the calculation of Type I and Type II 

errors using standard theory. Specifically: 

 

 Ho :  𝜇𝑘≥0
𝑗

 is equal to 𝜇𝑘<0
𝑗

    Ha : mean 𝜇𝑘≥0
𝑗

 is not equal to 𝜇𝑘<0
𝑗

 

 

where  𝜇𝑘≥0
𝑗

=  𝔼𝑘[ 𝑋𝑗𝑘, ] , k ≥ 0 Equation 31 

 

However, the values for Xj0,…,Xjk are not independent. They are more likely to be α-mixing [Reference 26].  The 

assumption of α-mixing indicates an approximate independence. It is reasonable to assume that the sequence Xjk is 

m-dependent, which is defined as follows: 
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(Xj0,…,Xjh ) is independent of (Xjn, Xj(n+1), .….. ) whenever n-h  > m, for some integer m and any h. 

 

If so, the α-mixing property follows accordingly. Furthermore, assuming that Xjk is stationary (i.e., the joint 

probability distribution of (Xjn,....,Xj(n+k) ) does not depend on n), a Central Limit-type theorem for stationary -

mixing sequences can be employed so that 𝜂𝑘
𝑗

 has an approximately normal distribution, with 𝜎𝑘<0
𝑗

 replaced by 𝜎𝑗 as 

follows [Reference 26]: 

 

𝑙𝑖𝑚𝑖𝑡𝑘⟶∞  
1

𝑘+1
𝑉𝑎𝑟( 𝑋𝑗0 + 𝑋𝑗1+𝑋𝑗2 + ⋯ + 𝑋𝑗𝑘) =  ( 𝜎𝑗)2 Equation 32a 

 

where ( 𝜎𝑗)2 =  𝔼 [(𝑋𝑗0 − 𝜇𝑘≥0
𝑗

)
2

] 

 

+ 2 ∑ 𝔼[(𝑋𝑗0 − 𝜇𝑘≥0
𝑗

)(𝑋𝑗𝑖 − 𝜇𝑘≥0
𝑗

)]𝑖   Equation 32b 

 

Equation 32 is an adjustment of the variance of each Xji to account for the dependence. It is necessary to account for 

this dependence because it affects the accuracy of Type I and Type II error estimates, compromising the calculation 

of the probability for the false positives and false negatives.  

 

Since  𝜂𝑘
𝑗
 is approximately normally distributed for large enough k, the hypothesis is rejected when the observed test 

statistic value is such that 

𝜂𝑘
𝑗

<  −𝑧𝛼/2  or  𝜂𝑘
𝑗

>  𝑧𝛼/2 

 

where 𝑧𝛼/2 denotes the upper (100)(α/2)th normal percentile. Rejecting the null hypothesis means that the test 

procedure concludes that the mean of the Xjk for passes k ≥ 0 is different from its value for passes k < 0.  When the 

hypothesis test is performed at a significance level α, there is a probability of α that the test procedure will cause the 

incorrect assertion that the mean Xjk for new data  ( k > 0  ) is not equal to its estimated mean based on the prior 

data, 𝜇𝑘<0
𝑗

. This is the Type I Error.  

 

To quantify a Type II Error, suppose that the user requirement is to attain at least (1-β) probability that the chosen 

test procedure correctly rejects the null hypothesis, when the true mean based on the process for passes k ≥ 0 is not 

μk<0
j

 but rather it is μk<0
j

+  δ. In this case, it is necessary to consider the sample mean of (Xj0+…+Xjk)/(k+1), where 

sample size k+1 is at least (zα/2+zβ)2σj
2/( δ2 ) [Reference 26]. The justification of this power, as well as the 

distribution of the test statistic itself, assumes that the estimates of  𝜇𝑘<0
𝑗

 and of  𝜎𝑗 are "known" quantities. 

 

There are two drawbacks of this method. First, the test is predicated on full confidence in the estimates 𝜇𝑘<0
𝑗  and 

𝜎𝑘<0
𝑗 . The margins of error associated with these estimates play an underlying role in the error rates of the test. 

Second, estimating 𝜎𝑘<0
𝑗

 is a complex problem related to estimating a covariance matrix of a multivariate 

distribution and it is difficult to compute when the data set is small. As a practical matter, if the prior data set 

contains too few observations, this complicates the estimation of 𝜎𝑘<0
𝑗

 and/or increases the margin of error for the 

estimate. It is anticipated that this situation will lend itself to the bootstrap resampling technique in order to evaluate 

and quantify confidence in this estimate [Reference 24].   
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16. NEAR-REAL TIME ASSESSMENT 

 

Figure 16.1 illustrates how the Control Logic in the Statistics Model is posed such that it is feasible to provide a 

near-real time assessment of NOM or ANOM states for GEO satellites as each new point of Brightness Data is 

received. The procedure is near-real time in that the assessment can be obtained well in advance of the time when 

the next data point for Brightness Data is expected to become available. The salient components of the Statistics 

Model are identified with box numbers in the flow chart. These boxes can be mapped to various figures and 

equations in the paper, as summarized in Table 16.1. Almost all calculations comprise small computational effort for 

a desktop computer. The most computationally intensive part of the method is the utilization of the two-facet model 

for inversion of the prior data (Figure 3.1), taking several minutes per satellite. However, this calculation is required 

only when the time slider is moved to a new location.    

 

The utilization of a Bayes network for statistical assessment has important collateral benefits as follows. It generates 

a chronological chain for photometric characterization data for a satellite, which lends itself naturally to a “last-in 

first-out” type of data archival structure. A chain of such data can be generated for each satellite of interest and then 

used for its life cycle assessment. Furthermore, the Bayes network structure for photometry-based assessment can be 

combined with the Bayes network structure for metrics-based assessment in order to create the ability to perform a 

metric-photometric assessment of satellite status in near-real time[Reference 4].  

 

 

 
 

Figure 16.1: Control Logic in the Statistics Model 
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Table 16.1: Mapping of the flow-chart boxes to technical description 

 

Box Title Mapping to the technical description 

1 Initialize t0 Section 3, Timer slide definition 

2 Set pass k = 0 Figure 3.1: Prior data for k < 0. New data for k ≥0 

3 Compute prior distribution Sections 5 and 7: PDF for NOM and ANOM 

4 Compute transition probability Section 8: Chapman-Kolmogorov equation 

5 Receive data for new pass Section 2: Character of Brightness Data 

6 Compute P(NOMk | rk) Sections 6,7 and 9: Bayes network, Bayes theorem and Markov Chain 

7 Determine belief Sections 10-13: Outlier detection, z-score, cluster and model evidence 

8 Notify user Section 14: Propagate belief and notify user 

8 Update t0 Section 15, Movement of the time slider 

 

17. ONGOING WORK AND CLOSURE 

 

In light of the formulation for belief propagation and anomaly detection described in the preceding sections, future 

work entails computing the probabilities of Type I and Type II errors in light of the unavoidable small sample sizes. 

Even if a large enough training set of prior data exists for belief in satellite status, the user does not want to wait for 

a large number of passes in order to assess whether the satellite has changed from a NOM state.  

 

To this end, the future work will attempt to address this problem in the context by exploring how the margin of error 

can be mitigated in two ways. First, bootstrap analysis will be used to improve the estimate of distributional 

properties of test statistics (𝜂𝑘
𝑗
). Once the distributional properties are established, the calculation for the margin of 

error can be improved in order to provide the user with the critical values associated with rejecting steady-state. 

 

The use of an alternate functional (i.e., a function whose domain is a set of functions) with more desirable statistical 

properties will be explored in order to represent the belief process. Here “more desirable” means that the 

distributional properties of a test statistic derived from this functional can be calculated within the constraints of the 

current problem of anomaly detection. For example, such a statistic may exploit potential independence of 

increments (such as 𝑋𝑗𝑘 −  𝑋𝑗(𝑘+1)), independence of time blocks (such as belief gathered at non-overlapping time 

frames), or other measures of stability (e.g., sample median). 

 

The distribution of the belief process in the larger context of stochastic processes will be explored. Statistical 

analysis involving model fitting is the first step toward this goal, including autoregressive or other mean reverting 

models. Software already exists to obtain parameter estimates for such processes, and as such a comparison of 

estimated parameters in the prior with those of new data could lend itself to improvement in the definition of the 

PDF for prior and new data and an additional test for change in belief in the status of a satellite. 
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APPENDIX A: NOTATION 

 

Text notation: 

 

Brightness: Value of Brightness Data at a single data point 

Brightness Data: Single point brightness data point collected by a ground or space-based sensor during the routine 

synoptic search operation. This data is collected along with the angles only metric data 

Brightness Ratio: Ratio of observed Brightness to predicted Brightness 

Body: Body of a GEO satellite 

Change: Modification of state of a satellite from NOM to ANOM or vice versa. 

Change Detection: To recognize that the state of satellite has undergone Change 

Cluster Peer: A pair of satellite in a cluster can be cross-tagged 

Inter-pass Time: Temporal spacing between successive orbital passes 

NOM: Nominal status of a satellite. This is when the correlation coefficient between the observed Brightness and 

the predicted Brightness exceeds a user-defined threshold limit. 

ANOM: Anomalous status of a satellite. This is when the correlation coefficient between the observed Brightness 

and the predicted Brightness is below the user-defined threshold limit for NOM.  

Panel: Panel term for a GEO satellite (it combines the effect of both solar panels into a single term) 

PDF: Probability distribution function 

Signature Data: A sequence of Brightness measurements collected by a dedicated sensor during a single pass for a 

target satellite. For GEO satellites, such data is collected at a frame rate such as one data point per minute, etc.   

 

Mathematics notation: 

 

𝔅 is a representative measure of belief or a score for ANOM at pass k 

Cj = jth satellite in a GEO cluster 

𝔏 (𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔) is likelihood for the presence of 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔 

𝔼𝑘 denotes the expected value 

𝔼𝑅 denotes the expected value (i.e. mean) with respect to all values of R 

𝔼𝑌 = Expected value or mean for a quantity irrespective of y 

𝑓( 𝑟𝑗𝑘) is the PDF for the Brightness Ratio for pass k for satellite Cj 

𝑓( 𝑟𝑗𝑘  | 𝐴𝑁𝑂𝑀𝑗) is the PDF for the Brightness for pass k Ratio given the satellite Cj is ANOM 

𝑓( 𝑟𝑗𝑘  | 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔𝑗) is the PDF of Brightness Ratio when Cj is cross-tagged with a peer 

𝑓( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗  ) is the PDF for the Brightness Ratio for pass k given the satellite Cj is NOM,  

𝑓( 𝑟𝑗𝑘  | 𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) is the PDF of Brightness Ratio when the Cj panel offset is modified 

𝑓( 𝑟𝑗𝑘  | 𝑇𝑢𝑟𝑛𝑗) is the PDF of Brightness Ratio when Cj is turned 180o 

𝑓( 𝑟𝑗𝑘  | 𝑈𝐶𝑇𝑗) is the PDF of Brightness Ratio when mistag is caused by an unexpected UCT 

𝑓( 𝑟𝑗𝑘  | 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) is the PDF of Brightness Ratio when Cj is unstable 

𝐼𝑚𝑗𝑘 is the Brightness predicted by the model for satellite j and pass k 

𝐼𝑜𝑗𝑘  is observed brightness for satellite j and pass k 

j is the index for satellite number in a GEO cluster 

𝜎𝑘<0
𝑗

 or s0 is the standard deviation of Xjk for the prior data, k < 0 

𝜁𝑘
𝑗
 is standard z-score for anomaly detection 

𝜂𝑘
𝑗
 is another z-score measure utilized to forward the time slider 

k = Index for an orbital pass number. The time slider origin is k = 0. Prior data is for k < 0. New data is for k ≥ 0.  

𝑚𝑗𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟  message based on cluster based evidence 

𝑚𝑗𝑘
𝑀𝑜𝑑𝑒𝑙  message based on model based evidence 

𝔏 (𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔)is likelihood for the presence of 𝐶𝑟𝑜𝑠𝑠𝑇𝑎𝑔 

𝜋𝑁 The long run probability that a satellite is NOM at any time 

𝑃(𝐶𝑟𝑜𝑠𝑠𝑡𝑎𝑔𝑗) is the long run probability of cross-tag for Cj 

𝑃( 𝐴𝑁𝑂𝑀𝑗) is the long run probability that the satellite is ANOM, also denoted as 𝜋𝐴;  𝑃( 𝐴𝑁𝑂𝑀𝑗) = 1 - 𝜋𝑁 

𝑃( 𝑁𝑂𝑀𝑗) is the long run probability that the satellite is NOM, denoted as 𝜋𝑁, and 
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𝑃 ( 𝑁𝑂𝑀𝑘𝑗  | 𝑟𝑘𝑗  ) = Probability that satellite Ci is NOM after pass k given the Brightness Ratio rkj 

𝑃(𝑂𝑓𝑓𝑠𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗) is the long run probability of change in the panel offset angle for satellite Cj 

𝑃( 𝑇𝑢𝑟𝑛𝑗) is the long run probability of a 180o turn for Cj 

𝑃( 𝑈𝐶𝑇𝑗) is the long run probability of mistag for Cj due to the appearance of UCT in the sensor FOV 

𝑃( 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑗) is the long run probability that satellite Cj is unstable 

𝑃( 𝑋 = 𝑥 ) = Probability that an outcome for a random variable X equals x 

𝑃(𝑋 = 𝑥 | 𝑌 = 𝑦)  = Conditional probability for X = x given Y = y 

rjk = Ratio of observed Brightness of satellite j and pass k to predicted Brightness of satellite j and pass k. This ratio 

is defined only at the orbital location when Brightness data is collected 

𝕋 is the pass-to-pass transition probability matrix 

𝑇𝑘+1
𝑘

𝐴
𝐴 = 1 − 𝑇𝑘+1

𝑘
𝑁
𝐴 ; 𝑇𝐴

𝐴  is the probability of persistence of ANOM over a unit interval of time 

𝑇𝑘+1
𝑘  𝑁

𝐴 is the probability of transition of ANOM to NOM over a unit interval of time 

𝑇𝑘+1
𝑘

𝐴
𝑁  is the probability of transition of NOM to ANOM over a unit interval of time 

Δ𝑡𝐺𝑎𝑝 is the daytime gap 

tk is the temporal spacing between pass k and pass (k+1) 

𝜇𝑘<0
𝑗

  is the mean of Xjk for the prior data, k < 0 

𝑣𝑗𝑘 =  
𝐼𝑜𝑗𝑘

𝐼𝑚𝑗𝑘
 is the ratio of observed to modeled brightness at pass k 

𝕏𝑗 is the vector of 𝑋𝑗𝑘 

𝑋𝑗𝑘 =  𝑃 ( 𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  )   

�̅�𝑘
𝑗
 denotes the sample mean of observations Xj1,…,Xjk,, k ≥0. If the Xj1,…,Xjk 

∑ =𝑦  Summation over all permissible values of y 

𝑧𝛼/2 denotes the (100)(α/2)th normal percentile 

 

APPENDIX B: NUMERICAL EXAMPLE: CROSSTAG DETECTION 

 

This numerical example considers the scenario for cross-tag detection in a notional GEO cluster consisting of a pair 

of cluster peers, C1 and C2. The Brightness Data for satellites C1 and C2 was generated using a numerical 

simulation performed by the Optical Signatures Code [Reference 28]. The simulation data emulated one data point 

per pass where the mean gap between the passes was one hour. There was no daytime data. The simulation data was 

considered for a period of two weeks. The first week of data was treated as prior data and the second week as the 

new data. Two cases were considered for the simulations as shown in Table B1. 

 

Table B1: Two cases of numerical simulation for CrossTag analysis 

 

Case  Satellite C1 Satellite C2 

1 Week 1 NOM NOM 

1 Week 2 NOM NOM 

2 Week 1 Same as Case 1 Same as Case 1 

2 Week 2 CrossTag CrossTag 

 

The prior data was assumed to be available at all times and the new data was assumed to become available as one 

Brightness Data point at a point. The belief calculation was performed each time a new Brightness Data point is 

received. The calculations were performed using the two-facet model as the Photometry Model, the Bayes network 

and the control logic as illustrated in Figure 16.1 [Reference 25]. The Statistics Model was implemented such that 

the Control Logic can call any analysis procedure on an as-needed basis. The results are reported in Figures B1 to 

B7. Table B2 provides a key to how the figures are organized. The various different results shown in the figures B1 

to B7 correspond to the Boxes in Figure 16.1. Note that each underlying calculations is a discrete step, simple for a 

desktop computer to execute. Each step was implemented in reusable software modules and the sequence of steps 

was automatically executed by the Control Logic [Reference 25]. The specifics of each step performed in order to 

generate Figures B1 to B7 are given after Table B2.  

\ 
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Table B2: Organization key for the results in Figures B1 to B7 

Week 1 is prior data and Week 2 is new data 

 

Figure Satellite Cases Week 

B1a C1 1 and 2 1 

B1b C1 1 and 2 1 

B2a C2 1 and 2 1 

B2b C2 1 and 2 1 

B3a C1 1 and 2 1 

B3b C1 1 and 2 1 

B4a C2 1 and 2 1 

B4b C2 1 and 2 1 

B5a C1 1 and 2 1 

B5b C1 1 and 2 1 

B6a C2 1 and 2 1 

B6b C2 1 and 2 1 

B7a C1 1 2 

B7b C1 2 2 

B7c C1 2 2 

 

 Figure B1a shows a plot of Brightness data versus time for satellite C1. This is prior data that spans eight days. 

The last data point in this prior data corresponds to pass k = -1. The observed and modeled Brightness Data is 

shown in Figure B1b for satellite C1 as function of the orbit angle. The modeled data consists of individual 

contributions of the Body and the Panels to the satellite signature. The orbit angle is defined in a manner similar 

to the longitudinal phase angle, except that the phase angle is calculated with respect to the equatorial plane and 

the orbit angle is computed with respect to the orbital plane of a satellite. Note that the Figure B1b is for the 

NOM state of the satellite. Figure B2a and B2b show the corresponding calculations for satellite C2.  

 The prior data is utilized to compute the prior probability distribution for 𝑟𝑗𝑘 under NOM conditions. This 

calculation is performed using Equation 2. It corresponds to Box 3 in the Control Logic shown in Figure 16.1 

for satellite C1. The prior distribution is extracted from the histogram and its Gaussian fit shown in Figures B3a 

and B4a, respectively for satellites C1 and C2.   

 The ANOM condition is assumed to only comprise the CrossTag. Or, the only term in the right hand size of 

Equation 4 is assumed to be due to CrossTag. Equation 10 is utilized to determine the prior probability 

distribution under ANOM conditions. This distribution is also extracted from the histogram shown in Figures 

B3b and B4b for the cluster peers C1 and C2. The histograms are quite different for the NOM and ANOM 

conditions even though the visual magnitudes for the two satellites are quite comparable to each other. This is 

because of the specific character of the satellite Brightness as a function of phase angle and it is different for the 

two peer satellites. The NOM distribution is similar to a Gaussian distribution, however it has longer tails. The 

ANOM distribution is unlike a Gaussian distribution. Note that this character of the NOM and ANOM 

distribution also depends on the accuracy of the Photometry Model, which varies from one satellite to another. 

Nonetheless, this difference in the NOM and ANOM distributions is a key to the Statistics Model.  

 The value of long run probability for NOM, N is assumed to be 0.90 for each satellite. The terminator-to-

terminator NOM-to-NOM transition probability is assumed to be 0.95. The transition probability matrix for the 

daytime gap is computed using Equation 21. The pass-to-pass transition probability matrix is computed using 

Equation 17b. This is Box 4 in the Control Logic. 

 Figures B5 considers two situations for satellite C1 and Figure B6 considers the corresponding two situations 

for satellite C2. Figure B5a shows a plot of 𝑟𝑗𝑘 versus orbit angle for satellite C1 if it was correctly tagged in the 

new data (i.e. the second week of Brightness Data). Figure B5b shows a plot of 𝑟𝑗𝑘 versus orbit angle if the 

satellite C1 was cross-tagged with satellite C2 in the new data. Figure B6a shows the plot when satellite C2 was 
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correctly tagged in the new data and Figure B6b when it was cross-tagged in the new data. The calculations for 

the ANOM histogram are performed using Equation 10. 

 Figure B7a considers the case when satellite C1 was correctly tagged. It shows four graphs. The x-axis is the 

orbital pass number, or k. The blue graph is a plot of 𝑟𝑗𝑘. Note the peaks in the values of 𝑟𝑗𝑘 , which can be real 

or due to limitations of the Photometry Model. The red line is the plot of 𝑃( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗𝑘  ), which is obtained 

from the PDF derived from the histogram shown in Figure B3a. The green line is the plot of 𝑃( 𝑟𝑗𝑘  | 𝐴𝑁𝑂𝑀𝑗𝑘  ), 

which is obtained from the PDF derived from the histogram shown in Figure B3b. The purple line is the plot of 

𝑃( 𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ), which is obtained using the Bayes theorem. The values of 𝑃( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗𝑘  ) are close to one 

for much of the time. This is expected since the satellite C1 was correctly tagged in this case. Towards the end, 

there is a drop due to a consecutive set of values of 𝑟𝑗𝑘 for which 𝑃( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗𝑘  ) is low.  This is Box 6 in the 

Control Logic flow chart in Figure 16.1. The persistently high value of  𝑃( 𝑟𝑗𝑘  | 𝑁𝑂𝑀𝑗𝑘  ) may be utilized by a 

user as indicator for correct tagging of a satellite.  

 Figure B7b considers the same calculations, except for the case when satellite C1 was cross-tagged. The purple 

line plot for 𝑃( 𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ) includes large segments where the probability of NOM is close to zero. This may 

be considered an indicator by the user for the presence of CrossTag anomaly.   

 Figure B7c considers the calculations performed for the z-score for 𝑃( 𝐴𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ), the cluster-based 

evidence 𝑚𝑗𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟 , the model-based evidence 𝑚𝑗𝑘

𝑀𝑜𝑑𝑒𝑙 , and the belief 𝔅 ( 𝐴𝑁𝑂𝑀𝑘  ) for CrossTag. This is 

calculated as per Equation 29. The numerical values 𝑚𝑗𝑘
𝐶𝑙𝑢𝑠𝑡𝑒𝑟  and 𝑚𝑗𝑘

𝑀𝑜𝑑𝑒𝑙  are not allowed to become larger than 

a threshold value (e.g. 10) in order to prevent one message from overwhelming the other. The propagated belief 

𝔅 ( 𝐴𝑁𝑂𝑀𝑘 ) shows a significant regime for ANOM, which may be utilized by a user as indicator for the  of 

ANOM conditions. This is Box 8 in Figure 16.1. Figure B7c shows a notional red line, which is meant to denote 

a user defined threshold for the presence of CrossTag.  

 Note that the  𝔅 ( 𝐴𝑁𝑂𝑀𝑘 ) drop significantly after several passes (Figure B7c). This is in conflict with the high 

values of belief computed for the balance of the passes. This occurs because the Cross-tagged satellites are 

equally bright, which is makes it difficult to distinguish between them on the basis of their Brightness.  

 If the level of belief for NOM in the new data is on the same level as the prior data and it exceeds a user-defined 

threshold, the time slider is shifted forward to pass k. This is Box 9 in the Control Logic.  

Note that Figures B1 to B6 represent the calculations performed on the prior data. These calculations need to be 

performed each time the time slider is advanced (Section 15). It takes several minutes of computations in order to 

perform these calculations. Majority of this time is consumed by the Inversion Model. Figure B7 calculations would 

be performed each time a new point of Brightness Data is received. These calculations take only a few seconds to 

complete and thus the evolving belief in NOM or ANOM status can be obtained in near real time.  

 

This example considered an idealized scenario where the cluster comprised only two satellites and the only anomaly 

could occur was CrossTag. In a more realistic scenario, the cluster may contain more satellites and all anomalies are 

possible. The calculations necessary to analyze such a scenario consist of many more of that shown in Figure B7. 

Figures B1 to B6 are for the prior data and they are common to all ANOM assessments.  

 

A salient next step is to synthesize the evolving belief automatically in order to rank the potential ANOM situation.    
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Figure B1a: Brightness Data vs. Time for satellite C1 (prior data) 

 

 
 

Figure B1b: Observed and Predicted (Modeled) Brightness Data for Satellite C1 
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Figure B2a: Brightness Data vs. Time for satellite C2 (prior data) 

 

 

 
 

Figure B2b: Observed and Predicted (Modeled) Brightness Data for Satellite C2 
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Figure B3a: Prior distribution 𝑓(𝑟𝑗𝑘 | 𝑁𝑂𝑀𝑗) for satellite C1 

 

 
 

 

Figure B3b: Prior distribution 𝑓(𝑟𝑗𝑘 | 𝐴𝑁𝑂𝑀𝑗) for satellite C1 
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Figure B4a: Prior distribution 𝑓(𝑟𝑗𝑘 | 𝑁𝑂𝑀𝑗) for satellite C2 

 

 
 

Figure B4b: Prior distribution 𝑓(𝑟𝑗𝑘 | 𝐴𝑁𝑂𝑀𝑗) for satellite C2 
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Figure B5a: Plot of 𝑟𝑗𝑘  for new data (k ≥ 0) versus orbit angle for satellite C1 (NOM) 

 

 
 

 Figure B5b: Plot of 𝑟𝑗𝑘  for new data (k ≥ 0) versus orbit angle for satellite C1 (ANOM) 
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Figure B6a: Plot of 𝑟𝑗𝑘  for new data (k ≥ 0) versus orbit angle for satellite C2 (NOM) 

 

 
 

Figure B6b: Plot of 𝑟𝑗𝑘  for new data (k ≥ 0) versus orbit angle for satellite C2 (ANOM) 
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Figure B7a: Plot of 𝑃(𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ) for new data (k ≥ 0) when satellite C1 is correctly tagged  

 

 
 

 

Figure B7b: Plot of 𝑃(𝑁𝑂𝑀𝑗𝑘  | 𝑟𝑗𝑘  ) for new data (k ≥ 0) when satellite C1 is cross-tagged  
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Figure B7c: Plot of belief that satellites C1 and C2 have been cross-tagged 

 


