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ABSTRACT

Influx is a reasoning component of REALISE, a generic platform for intelligent systems
currently under investigation as part of an ongoing research program conducted by the
CAO Branch. Influx is envisioned to have two major uses: facilitating and mediating rea-
soning processes for intelligent missions, and serving as a tool and framework for reasoning
under uncertainty. This document reports on some initial research and development ef-
forts pertaining to the reasoning aspect of Influx in the latter scenario. Due in part to
its generality, the Dempster-Shafer (D-S) theory is chosen as a theoretical basis for rep-
resenting imperfect knowledge and for reasoning with such knowledge. Since Influx is
intended to deal with real-time and real-life applications, it is of primary importance for
the reasoning tool to practically achieve adequate performance, flexibility, scalability and
system dynamics. To this end, Influx aspires to reach such objectives while attaining a
plausible reasoning mechanism formulated from D-S methods and techniques. The initial
version, Influx1, is a simple, but highly efficient and flexible, nonmonotonic rule-based
system enhanced with D-S based belief representation, fusion and inference. Influx1 has
been applied towards tasks that include situational awareness and network traffic analysis.
This document provides a high-level description of Influx1 from the reasoning perspective.
Research and development pertaining to the implementation of the reasoning tool and
specific applications are not included in this document.
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Influx1: A Tool and Framework for Reasoning
under Uncertainty

Executive Summary

Influx is a reasoning component of a larger platform for intelligent systems currently under
investigation as part of an ongoing research program conducted by the CAO Branch of
CEWD, Defence Science and Technology Group. This document reports on the initial
version Influx1, a tool and framework currently used for developing and executing certain
reasoning tasks under uncertainty. The exposition given throughout the document is
purely focused on the reasoning perspective.

Since uncertainty is a major notion associated with knowledge representation and rea-
soning in Influx, the report begins with an overview of the major paradigms (namely,
numerical and symbolic) for uncertainty representation, which is followed by an identifi-
cation of reasons for adopting a numerical approach on the ground of efficiency and the
accuracy of uncertainty measurement. To further clarify the types of uncertainty and the
specific formalisms suited to Influx1, the document gives a brief introduction and compar-
ison of the three major theories (specifically, probability theory, possibility theory and the
Dempster-Shafer or D-S theory) which are at the foundation of many such quantitative
reasoning approaches. The comparison allows D-S theory to be chosen as a theoretical
basis for the reasoning framework due to its generality.

In order to assist the reader in comprehending the various reasoning aspects of Influx1

to be discussed, the report provides the necessary background for D-S theory, clarifying
common practical concerns (such as computational complexity, evidence independence
assumption, conflict handling and the reliability of sources), and discussing how these
concerns have been addressed in the literature. This is followed by a high-level descrip-
tion of the reasoning framework in Influx1 according to the following major perspectives:
concept representation, belief representation, belief combination and belief propagation.

Regarding concept representation, the report gives an explanation of how knowledge can be
represented in Influx1 and how a complex piece of knowledge can be constructed based on
simpler ones. As the reasoner aims to support real-world applications, a piece of knowledge
in Influx1 is often not known with certainty, but associated with a belief capturing the
degree of uncertainty associated with the piece of knowledge. In this regard, the document
discusses the multiple methods for belief representation in Influx1, allowing for a rich and
informative interpretation of knowledge. As it is possible that there is more than one
belief associated with a piece of knowledge (which is usually the case when beliefs are
provided by multiple sources or induced by a collection of evidence), there is a need to
combine such beliefs. In this regard, the document presents a collection of methods for
belief combination implemented in Influx1. Since such belief combination methods possess
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different characteristics which can prevail in certain scenarios, a broad guideline regarding
how the methods can be applied in various practical contexts is also given. It is also often
the case that only a small portion of the knowledge in the knowledge base has access, or is
visible, to the external world, and thus can receive evidence from dedicated sources. The
majority of the knowledge would receive no direct observations, and therefore assessment
of their belief must be inferred (if possible) from other pieces of knowledge. To this end, the
report explicates how the relationship between any two pieces of knowledge is formulated
in the framework of D-S theory, and presents a collection of belief propagation functions
that allow one to infer the degree of belief for knowledge which the collected evidence does
not directly bear on.

Finally, a summary of the merits and limitations of the reasoning framework with respect
to flexibility, efficiency, scalability and system dynamics is given.
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1 Introduction

Primarily designed as a knowledge and reasoning backbone of a high-level and distributed
reasoning platform, Influx is not intended to provide sophisticated reasoning. Instead, this
reasoning tool aims to offer core reasoning capabilities with imperfect knowledge that can
potentially satisfy many practical requirements, including reasoning in real-time, handling
a potentially very large amount of data, flexibly supporting different reasoning modalities,
and supporting dynamic changes and updates in the knowledge structure. Advanced
and complex reasoning tasks, if desired, would be built on top of Influx, or delegated to
dedicated tools integrated with the reasoning system.

To open the possibility for Influx to flexibly handle and reason with knowledge with differ-
ent natures of ‘imperfectness’, Dempster-Shafer (D-S) theory is adopted as a theoretical
basis for the design of Influx. This line of exploration and investigation has resulted in
the development of two versions of Influx: Influx1 and Influx2.

Influx1 is a simple, but highly flexible and efficient, tool and framework for reasoning under
uncertainty. The high flexibility of Influx1 is due to the utilisation of various methods
and techniques pertaining to D-S belief representation, fusion and inference. The high
efficiency of Influx1 partly owes to the simplified reasoning mechanism, making it possible
to devise highly-optimised techniques for data storage and algorithm execution at the
implementation level. Influx1 has been applied towards tasks that include situational
awareness and network traffic analysis.

Influx2 is motivated by the requirement to enhance the reasoning capability of Influx1 while
attempting to minimise as much as possible the amount of complexity added to the rea-
soning tool, and thus retain the practicability of Influx1. To this end, Influx2 capitalises on
methods and techniques in the paradigm of evidential networks so as to facilitate deductive
and abductive reasoning in a seamless manner and to rectify certain restrictions of Influx1.
Nevertheless, evidential networks and related models, while possessing a mathematically
sound and powerful mechanism to represent and reason with imperfect knowledge, often
bear high computational complexity and memory consumption. Many of them also re-
quire a static and controlled execution environment, rendering themselves impracticable
in many real-life situations. This has led us to implement a simplified and customised
form of an evidential network in Influx2 which potentially offers a significant decrease in
space and time consumption, and potentially promotes system dynamics. As a result, we
have devised nonconventional and approximate representation and reasoning techniques
where conventional and exact methods are no longer possible due to the various restric-
tions imposed on the network structure.

An exposition of Influx2 will be given in another document. This document provides
a high-level description of Influx1 from the reasoning perspective. The organisation of the
document is given below.

Section 2 presents a brief discussion pertaining to the formal representation of uncertainty,
with a focus on numerical formalisms. The section also clarifies the types of uncertainty
to be addressed in Influx, and presents the rationale for choosing D-S theory as the theo-
retical basis for the reasoning system.

Section 3 provides an overview of the applied aspects of D-S theory in the particular con-
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text of information fusion. In addition, the section discusses and addresses major concerns
in the literature pertaining to the application of D-S theory in a practical context.

Section 4 presents a high-level description of Influx1 from the reasoning perspective, de-
tailing how D-S theory serves as a basis for uncertainty representation and reasoning in
the system.

Section 5 concludes the document with a summary of the merits and limitations of Influx1.

In order to make the material accessible to a wide range of audiences, the content of this
report is presented in a conceptual and intuitive manner.

2
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2 Uncertainty representation

The real world is characterised by uncertainty and constantly changing conditions. Any
reasoning system that strives to support real-world applications should be able to appro-
priately handle uncertain information. In this regard, a consideration of the relevant types
of uncertainty, and subsequently of the appropriate formalism to represent and reason with
uncertain knowledge is a prerequisite to the design and development of any practical rea-
soning system.

Figure 1: A taxonomy of ignorance, providing one interpretation of uncertainty [52] (cited
in [38]). In this taxonomy, uncertainty is viewed as one type of incompleteness
within the broad spectrum of ‘ignorance’.

Formal representations of uncertainty1 have drawn substantial research interest, giving
rise to various interpretations and formulations. One such interpretation is illustrated in
Figure 1, while others can be consulted at [56, 60, 63]. The different ways to describe
uncertainty inevitably lead to efforts to devise corresponding modelling and computa-
tional techniques — the multitude of diverse formalisms that result can be categorised as
numerical and symbolic.

In numerical approaches, certainty is quantitatively measured by a numerical value, whether
it is a probability measure (as in probability theory), possibility and necessity measures
(as in possibility theory), or certainty factors (as in rule-based systems). Conversely, in
(purely) symbolic approaches, uncertainty is handled by non-numerical techniques. More
specifically in the framework of modal logics, uncertainty is qualified by symbolic modali-
ties (e.g., possible and necessary), and is expressed by means of relative confidence relations
between propositions, as opposed to numerical evaluations [14]. In other non-monotonic
formalisms (such as default logics [43] and McCarthy’s circumscription [34]), uncertainty

1Please note that in the literature, the term uncertainty is both used to (i) broadly capture the whole
spectrum of possible definitions and interpretations pertaining to anything that is not exact and certain,
and (ii) refer to one specific interpretation of the notion. In this document, uncertainty would bear
the former meaning when used on its own, and adopt the latter interpretation otherwise (i.e., uncertain
knowledge versus incomplete knowledge).
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is addressed by allowing a piece of information to be incomplete, thereby permitting a
previously derived conclusion to be revised in light of new information.

The use of symbolic modalities and the ordinal representation of uncertainty can be more
natural and appealing in certain cases. However by the same token, purely symbolic ap-
proaches are not able to produce answers with a precise degree of certainty which is a
highly desirable feature in many applications. Furthermore, from a computational point
of view, reasoning with a numerical method is usually more efficient than with a symbolic
approach, explaining the predominant application of quantitative reasoning in practice.
To this end, apart from purely numerical systems such as belief networks [39], valua-
tion networks [3, 53, 54] and evidential networks [64, 67], attempts have also been made
to devise systems that tightly integrate logical techniques with numerical representation
of uncertainty such as probabilistic logic [36], possibilistic logic [14] and subjective logic
[27], or hybrid systems that combine symbolic and numerical approaches in a loosely
coupled manner such as ATMS2 augmented with uncertainty management (e.g., proba-
bilistic ATMS [55], possibilistic ATMS [13], and ATMS using Dempster-Shafer methods
[30]), and argumentation systems enhanced with uncertainty treatment (e.g., argumen-
tation systems that incorporate probabilistic information [22] or Dempster-Shafer belief
functions [24, 31]).

Since the efficiency of the reasoning process and the ability to distinguish the degrees of
certainty among hypotheses are critical to effective decision making, numerical methods
are adopted as the representation and reasoning basis to tackle uncertainty in Influx1. In
order to further explore the types of uncertainty and associated formalisms that might be
suited to Influx1, we have considered the three major theories which are at the foundation
of the aforementioned reasoning systems and others: probability theory, Dempster-Shafer
theory and possibility theory. A brief introduction to the theories is given below.

2.1 Probability theory

In this mathematical theory, the uncertainty of information is defined by means of prob-
abilities. To date, the notion of probability has admitted two widely accepted interpreta-
tions, namely, objective and subjective probability. From the viewpoint of the frequentists,
probability is concerned with chance and randomness (and thus, objective). A typical
example of an objective probability is the relative frequency of a particular outcome of
an experiment, provided that there is a sufficient (or infinite) number of outcomes that
can be observed. Conversely, from the standpoint of the subjectivists, probability can be
associated with non-repeatable events; in which case a probability is supposed to reflect
the subjective belief of an agent for the problem at hand (based on its experience and/or
current state of information).

As preliminaries, let S denote the sample space which is is the set of all possible outcomes
associated with an experiment (e.g., the set of possible outcomes for tossing two coins is S
= {HH, HT , TH, TT}). Often, one is interested in a certain aspect of the experiment’s
outcome (such as the number of heads), and thus may wish to represent the sample space
accordingly. This can be done via the use of a random variable X : S → Θ where Θ

2Assumption-based Truth Maintenance System

4
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is a measurable space (such as Θ = {0, 1, 2}, the possible number of heads in such an
experiment). The space Θ is also referred to as the state space of X. Generally, one can
define multiple state spaces corresponding to a sample space, and a sample space in one
context can be a state space in another context and vice versa.

Probability theory measures the uncertainty of an experiment by assigning a probability
P (A) to each event A ⊆ S. These probabilities must obey the following three basic axioms
(known as the Kolmogorov axioms for probability):

P (A) ≥ 0 (1)

P (S) = 1 (2)

if A ∩B = ∅ then P (A ∪B) = P (A) + P (B). (3)

A function that assigns a probability to each of the elements of a sample or state space
(e.g., for unbiased coins: P (HH) = P (HT ) = P (TH) = P (TT ) = 1

4) is referred to as a
probability distribution.

Since any event A can be described as the union of the joint events (A, Bi), the third
axiom also allows the probability for A to be computed from the probabilities associated
with the joint events:

P (A) =

n∑
i=1

P (A,Bi) (4)

where Bi, i = 1, 2,. . . , n, constitute a set of exhaustive and mutually exclusive events.
A probability distribution defined on such joint events (Ai, Bj) is known as a joint prob-
ability distribution. For example, given the joint probability distribution in Table 1, the
probability associated with the occurrence of ‘virusA’ is computed as:

P (virusA) =
∑n

i=1 P (virusA, incidenti) = 1
2 + 1

6 = 2
3 .

virusA virusB

incident1
1
2

1
9

incident2
1
6

2
9

Table 1: An example joint probability distribution.

A probability distribution defined on a set of events is often not static and can be updated
in the light of new evidence. As evidence in probability theory is often an observation show-
ing that a specific event has occurred, a standard way to perform updating is by making
use of conditional probability functions. A conditional probability P (A |B) is a function
which specifies the probability that A will occur, given the condition that B is known to
have occurred and everything else is irrelevant for A. In probability theory, conditional
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probabilities are defined in terms of joint events using Bayes’ rule of conditioning :

P (A |B) =
P (A , B)

P (B)
. (5)

Suppose that incident1 in Table 1 is observed, the probability associated with the occur-
rence of virusA now becomes

P (virusA | incident1) =
P (virusA , incident1)

P (incident1)
=

1
2

1
2 + 1

9

=
9

11
. (6)

Here, if P (B |A) =P (B), A and B are said to be independent. Similarly, if P (B |C,
A)= P (B |C), A and B are said to be conditionally independent given C. Closely related
to Bayes’ rule of conditioning (but with a different emphasis) is the well-known Bayes’
theorem defined as

P (A |B) =
P (B |A)P (A)

P (B)
(7)

According to the above formula, the probability associated with the occurrence of incident1
given virusA can be computed as follows:

P (incident1 | virusA) =
P (virusA | incident1)P (incident1)

P (virusA)
=

9
11(1

2 + 1
9)

1
2 + 1

6

=
3

4
. (8)

Bayes’ theorem is widely used both in theory and applications. The theorem is particularly
useful when the probabilities associated with joint events are absent (which is often the
case in practice) but conditional probabilities (e.g., P (A |B) and P (B |A)) and prior
probabilities (e.g., P (A) and P (B)) are available. Those models which utilise Bayes’
theorem in their computation are commonly referred to as Bayesian models.

Though probability theory is a well-recognised and widely-used mathematical tool to han-
dle uncertainty, the theory has a number of limitations. Our major concerns in utilising
probability theory as a tool to handle uncertainty in Influx1 include the following issues:

• A probabilistic model requires the existence of a probability distribution to capture
the epistemic state of an agent3. When such a probability distribution is unavailable
(thus, the agent is completely ignorant about the situation), it is a standard practice
to apply the principle of insufficient reason (corresponding to the maximum entropy
principle) which effectively assigns a uniform distribution to the state space Θ. This
can cause some difficulties in interpretation and manipulation of the defined proba-
bilities. For instance, a probabilistic model may not be able to distinguish between
whether the uncertainty is due to the lack of information (incomplete information)
or to the variability of past results [14] (as illustrated in Example 1), or may be
susceptible to epistemic inconsistency when the granularity of Θ is manipulated (as

3An agent can be any entity that has the capability to perceive and reason about the current state of
the world.

6
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shown in Example 2). Examples 1 and 2 presented below re-illustrate historical
arguments in the relevant context.

Example 1: Let Θ1 = {virusA, virusB} denote the set of all types of virus
possibly responsible for a security incident. Given the uniform probability
distribution P (virusA) = P (virusB) = 1

2 , one would have difficulty in
determining whether this information is (a) a statement of total ignorance,
or (b) the result of accumulating an equal amount of evidence supporting
both types of virus, respectively.

Example 2: Suppose that a security analyst distinguishes between the
two subtypes of virusA (i.e., virusA now corresponding to {virusA1, vir-
usA2}), hence Θ2 = {virusA1, virusA2, virusB}. Applying the principle
of insufficient reason on Θ2 would yield

P (virusA1) = P (virusA2) = P (virusB) =
1

3

which is, in the case of total ignorance, incompatible with those in Example
1. In the same vein, imagine that the analyst would like to discern between
virusA and virusB only, and thus mapping Θ2 into Θ1. Using the standard
coarsening algorithm in [46], the analyst now obtains P (virusA) = 1

3 + 1
3 =

2
3 and P (virusB) = 1

3 . To this end, it appears that the support for virusA
is generated by itself in the absence of any evidence and known prior
probabilities.

• A probabilistic method is also not able to distinguish between disbelief and lack
of information, as shown in the following example, due to the unity probability
distribution imposed on a proposition and its negation.

Example 3: In another scenario, the analyst is interested in identifying if
a security incident is caused by virusA, thus Θ4 = {virusA, virusA}. Be-
ing able to recognise only some features that may suggest the involvement
of virusA and nothing else, the analyst specifies P (virusA) = 1

3 . Under a
probabilistic interpretation, the probability for the negation of the propo-
sition can be automatically inferred: P (virusA) = 1 - P (virusA) = 2

3 ,
which does not faithfully reflect the belief of the analyst in this particu-
lar situation (since the rest of the features may or may not suggest the
possible involvement of virusA).

The limitations presented above are among the main reasons for alternative theories to be
proposed and developed. Representatives among them are Dempster-Shafer theory and
possibility theory which will now be introduced.

2.2 Dempster-Shafer (D-S) theory

The so-called Dempster-Shafer (D-S) theory4 originates from the mathematical framework
concerning lower and upper probabilities by Dempster [5] which extended classical prob-

4The Dempster-Shafer theory is also referred to as the theory of belief functions.

UNCLASSIFIED
7



DST Group–TR–3142
UNCLASSIFIED

ability theory, subsequently formulated by Shafer as the mathematical theory of evidence
[46], and further studied by Smets in the framework of transferable belief models [51].

Comparisons of D-S theory and its predecessor Bayesian probability theory have con-
tributed to many debates in the literature of evidential reasoning; with a consensus ac-
knowledging the merits of both (c.f., [50]), thus any assessment of their adequacy and
suitability should be subject to the specific scenarios and the problems at hand. In this
regard, most relevant to our concerns is that D-S theory, unlike the Bayesian approach,
tolerates the incompleteness of information. In other words, the theory does not require a
complete probabilistic model to be specified, and thus is more suitable when such a model
is only partially available. To this end, the theory preserves the numerical representa-
tion for uncertainty (in agreement with probability theory), but allows for the modelling
of incompleteness by means of disjunctive sets (just as in classical logics). Consequently,
instead of tackling the elements in the state space Θ themselves (as in the Bayesian formal-
ism), D-S theory deals with all possible subsets of Θ (i.e., elements of 2Θ). The discussion
that follows deals primarily with the applied aspect of the theory.

Figure 2: A discernment space containing all the possible propositions derived from Θ =
{vA1, vA2, vB1, vB2}.

Formally, let a frame of discernment Θ be a set of possible answers to some question,
or possible values for some variable5. The elements of Θ are required to be exhaustive
and mutually exclusive; that is, at any one time, one and only one element in Θ can be
true. A so-called proposition or hypothesis, A, is defined as a subset of Θ, and is said to
be true if the truth lies within A. For example, let A correspond to the proposition ‘the
incident is caused by a virus of type A’ (see Table 1). Then A would be represented as A
= {virusA1, virusA2}, and would be true if either {virusA1} or {virusA2} is true. The set
of all possible propositions derived from Θ constitutes a discernment space and is denoted
as 2Θ.

Figure 2 illustrates the space of discernment derived from a given frame of discernment Θ.
Among the depicted propositions, the root proposition is Θ itself, and those at the bottom

5A frame of discernment in D-S theory corresponds to a state space in probability theory.

8
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are called singletons (i.e., one-element propositions). Please note that the proposition
corresponding to the empty set, ∅, is not included in Figure 2.

The primitive function in D-S theory is a function m : 2Θ→ [0, 1], called a basic probability
assignment (bpa)6, such that:

∑
A⊆2Θ m(A) = 1,

m(∅) = 0

(9)

where m(A) encodes the belief mass assigned to the proposition A.7

A bpa can be considered a generalisation of the probability function in that one can assign
belief mass to elements of the space of discernment, 2Θ, rather than elements of the frame
of discernment Θ, as in the Bayesian fashion. However, it is important to note that one
should not simply interpret m(A) as the probability of the occurrence of A, as m(A) is
the belief mass assigned to A only and to none of its subsets8 (see Example 4).

Example 4: Given Θ = {virusA1, virusA2, virusB} which denotes all the
possible causes for an incident I, and a bpa m reported by an agent as follows

m({virusA1}) = 1
2 ,

m({virusA1, virusA2}) = 1
3 ,

m(Θ) = m({virusA1, virusA2, virusB}) = 1
6 ,

and m(A) = 0 for all other A ⊂ Θ (note that
∑
m(A) = 1).

The quantity 1
2 should be interpreted as the portion of belief committed to

{virusA1}, while the quantity 1
3 is the portion of belief pending over {virusA1,

virusA2} (which is not yet committed to either {virusA1} or {virusA2} due to
lack of knowledge, but can be gradually transferred to {virusA1} or {virusA2}
in light of further evidence). Likewise, the quantity 1 − 1

2 −
1
3 = 1

6 is the
portion of belief pending over the whole frame (which remains unassigned
after allocation of belief to various proper subsets of Θ). When m(Θ) = 1 (i.e.,
when there is no belief mass assigned to any of the proper subsets of Θ), the
agent is said to be completely ignorant. In such a case, the agent believes that
the incident I is certainly caused by one of the elements of Θ, but it does not
have any knowledge to make a more informed judgment (thus, m(Θ) = 1).

With such expressiveness, D-S theory does not experience the aforementioned difficulties
encountered by the Bayesian formalisms due to the fact that incompleteness of information
can be expressed explicitly by assigning belief mass to unions of singletons or to the whole
frame of discernment Θ. More specifically, by representing the state of total ignorance

6The basic probability assignment m is also widely referred to, in its unnormalised form, as basic belief
assignment (bba) by Smets [49], or more generally, a mass assignment.

7Shafer adopts a closed-world assumption and enforces m(∅) to be 0. In the open-world formulation of
D-S theory studied by Smets [51], belief mass can be assigned to ∅ to indicate the fact that the answer for
a problem may lie outside those captured in the current frame of discernment.

8For this reason, a bpa is not required to be inclusion-monotonic [14]: it is plausible to have
m({virusA1}) > m({virusA1, virusA2}) even though {virusA1} ⊂ {virusA1, virusA2}.
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as m(Θ) = 1, D-S theory maintains the difference between the variability of past results
(m({virusA1}) = m({virusA2}) = m({virusB}) = 1

3) and incompleteness (m(Θ) = 1)
discussed in Example 1. As m(Θ) = 1 resists changes in the granularity of Θ, the epistemic
inconsistency illustrated in Example 2 is also eliminated (transformation between Θ2 and
Θ1 does not alter the state of ignorance of the discussed bpas). Likewise in Example 3, the
theory is able to clearly distinguish between the states of disbelief and lack of information.
In this case, since the analyst does not have any evidence that disconfirms {virusA} (i.e.,
confirms {virusA}), this epistemic state can be faithfully reflected in a D-S model by
allocating the rest of the total belief (1 - 1

3) to m(Θ) (instead of {virusA}).

A bpa induces two other important set-functions, respectively known as a belief function
Bel and a plausibility function Pl. Bel and Pl are defined by:

Bel(A) =
∑

B⊆A,B 6=∅

m(B), (10)

Pl(A) =
∑

B∩A6=∅

m(B). (11)

The D-S belief function, Bel, corresponds to a probability function in probability theory.
Bel also obeys basic axioms for probabilities (see Section 2.1) except that it is not additive
(i.e., Eq. (3) is removed):

Bel(A) ≥ 0,

Bel(Θ) = 1,

if A ∩B = ∅ then Bel(A ∪B) ≥ Bel(A) +Bel(B).

Dismissing the additive axiom when dealing with beliefs is a major difference between D-S
and Bayesian models. For example, one can calculate the Bel and Pl values for various
propositions in Example 4 using Eq. (10) and Eq. (11) as

Bel({virusA1}) =
1

2
,

P l({virusA1}) =
1

2
+

1

3
+

1

6
= 1,

Bel({virusA1, virusA2}) =
1

3
+

1

2
=

5

6
,

P l({virusA1, virusA2}) =
1

3
+

1

6
+

1

6
= 1,

Bel({virusB}) = 0,

and

Pl({virusB}) =
1

6
.

It is easy to see from the above example that both the belief and plausibility functions
are non-additive (e.g., Bel({virusA1, virusA2})≥ Bel({virusA1}) + Bel({virusA2}), and

10
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that Bel(Θ) and Pl(Θ) are always equal to 1.

In essence, Bel measures the extent to which an agent believes A, and Pl measures the
degree to which the agent fails to disbelieve A (i.e., A could be true and Pl(A) = 1
- Bel(A)). Subsequently, the size of the interval [Bel(A), Pl(A)] can be regarded as
the amount of uncertainty with respect to A, given the evidence. It is belief that is
committed by the evidence to neither A nor A. The larger the interval is, the more likely
the information or evidence is missing or unreliable. When an agent is in a state of total
ignorance (i.e., m(Θ) = 1, and thus Bel(A) = 0 and Pl(A) = 1 ), the interval [Bel(A),
Pl(A)] would be [0, 1]. At the other extreme, if the agent has complete knowledge about
the situation for it to allocate mass to the singletons of Θ only, the probability, belief and
plausibility measures would become identical (P (B) = Bel(B) = Pl(B) for any A ⊆ Θ)
as well as additive (Bel(A1 ∪A2) = Bel(A1) + Bel(A2) if A1 ∩A2 = ∅). In this case, the
interval [Bel(A), Pl(A)] would collapse into P (A), and reasoning with D-S belief functions
reduces to standard Bayesian reasoning.

Like Bayesian models, beliefs in D-S models can be updated via conditioning where the
notion of conditional belief is defined as:

Bel(A |B) =
Bel(A ∪ B)−Bel(B)

1 − Bel(B)

and

Pl(A |B) =
Pl(A ∩ B)

Pl(B)

Bel(A | B) and Pl(A | B) are collectively referred to as Dempster’s rule of conditioning
which effectively reduces to P (A | B) when probability functions are in place of belief
functions.

Whilst rectifying limitations of Bayesian probability theory, D-S theory is itself not free
of issues. Most notoriously, the expressiveness offered by a D-S model obviously comes
at the cost of higher computational complexity. Limitations of D-S models are clarified,
discussed and addressed in Section 3 of this document.

2.3 Possibility theory

The formal theory of possibility was developed based on the notion of fuzzy sets by Zadeh
[68], though the idea of using possibility measures, as an alternative to probabilities, is
generally attributed to Shackle’s work [45] on modelling expectation and potential sur-
prise in human decision making. Possibility theory addresses uncertainty from another
perspective. Instead of viewing uncertainty from a statistical standpoint as in probability
theory, possibility theory focuses on the uncertainty intrinsic in linguistic information.
That is, the theory is mainly concerned with the meaning of the information (rather than
its measure) [68] and tackles problems such as ambiguity and vagueness.

Taking place of a probability distribution, a possibility distribution is a function π: 2Θ →
[0, 1] such that π(∅) = 0 and π(Θ) = 1. The quantity π(A) = 1 means that A is totally
possible (plausible), while π(A) = 0 implies that A is impossible. In the absence of
information, possibility theory adopts the principle of minimum specificity which assigns
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to each state the highest degree of possibility. Table 2 illustrates an example possibility
distribution in contrast with a probability distribution.

The plausibility and certainty of a proposition A (in terms of distance to an ideally plau-
sible situation) can be evaluated using the possibility measure Π and necessity measure
N :

Π(A) = max
s∈A

π(s),

N(A) = 1−Π(Ā) = min
s/∈A

(1− π(s));

and
Π(A ∪B) = max(Π(A),Π(B)),

N(A ∩B) = min(N(A), N(B)).

Though focusing on a different aspect of uncertainty, measures of uncertainty in possibility
theory hold some connections with those in probability and D-S theories. Whereas a
probability distribution provides precise and disjunct pieces of information, a possibility
distribution encodes imprecise, but consonant9, pieces of information [14]. As a result, if A
is impossible, it is likely to be improbable, but a high degree of possibility does not entail
a high degree of probability, nor does a low degree of probability indicate a low degree
of possibility [68]. For example, as illustrated in Table 2, while it is totally possible that
the incident is caused by either {virusA1} or {virusA2}, it is much more likely that the
incident is caused by {virusA1} rather than {virusA2}. In general, their relationship can
be captured as N(A) < P (A) < Π(A), ∀A.10 With regard to D-S theory, both theories

x {virusA1} {virusA2} {virusB}
π(x) 1 1 2

3

P (x) 3
4

3
16

1
16

Table 2: A possibility distribution π in comparison to a probability distribution P .

correspond to a particular family of probability measures [14]. In particular, the possibility
and necessity measures coincide with the plausibility and belief functions, with Pl ≥ Π
and Bel ≤ N (in the general case) and Pl = Π and Bel = N (in the finite consonant case)
[14].

Possibility theory provides a simple but useful approach to handle the uncertainty and in-
completeness of information. Nevertheless, our focus in designing and developing Influx1

is on modelling the degree of belief (or confidence) regarding the truth of a piece of in-
formation, rather than degree of truth associated with vague and ambiguous information.
Therefore although ideas and models based on possibility theory can be potentially inte-
grated into various elements of the reasoning tool in the future, the theory is not considered
as a theoretical basis for the current design and implementation of Influx1.

9Pieces of information are referred to as consonant if they can be represented in a nested structure.
10Nevertheless, transformation between a probability and possibility measure can be done in certain

circumstances, generally with some information loss (c.f., [14]).
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2.4 Uncertainty formalism adopted in Influx

Influx is intended to be a reasoning system dealing with imperfect information (and knowl-
edge). Of particular interest in regard to the anticipated imperfection are incompleteness
(and thus, imprecision) (i.e., a piece of information is not sufficiently specific for an agent
to answer a relevant question), uncertainty (i.e., a piece of information is not known to be
true or false) and contradiction (i.e., pieces of information provided from different sources
can be contradicting). Thus, unlike the taxonomy presented in Figure 1, uncertainty is not
considered a subtype of incompleteness in Influx. Instead, uncertainty and incomplete-
ness, together with contradiction, characterise a more general notion of imperfectness. To
represent and reason with such imperfect information, a numerical formalism (specifically,
D-S theory) is adopted as the theoretical framework for the development of reasoning
capabilities in Influx.

Though the Bayesian formalism is convenient and efficient in tackling uncertainty, D-S
theory is chosen due to a number of factors. D-S theory provides a more flexible reasoning
framework, allowing one to represent forms of uncertainty difficult to realise within the
framework of probability theory (such as the incompleteness/imprecision of information,
besides the uncertainty). In addition, the literature of evidential reasoning provides a large
collection of DS-related combination rules to fuse information from multiple sources most
appropriately for the situations at hand (as will be discussed in Section 3). Indeed, with
an ability to represent all forms of uncertainty, from total ignorance to full knowledge,
a DS-based reasoning tool can achieve high versatility — being able to accommodate a
wider range of applications and catering for various reasoning scenarios. For instance,
D-S theory, in principle, allows for reasoning using belief functions in situations where
only partial knowledge is available, seamlessly reducing into Bayesian reasoning when full
knowledge is available, and possibly collapsing into standard rule-based inferencing when
such a form of reasoning is desired. Ultimately, each of these reasoning formalisms (and
possibly others) can prevail in different conditions and scenarios — it is highly desirable
to have at one’s disposal a unified framework capable of supporting multiple reasoning
modalities including those presented above. Our decision to adopt D-S theory as a basis
for representing and reasoning with uncertainty is driven by this ultimate vision.

It is important to note that throughout the design and development of Influx, various
restrictions on the expressiveness of the D-S calculus have been, and are to be, made in
order to enhance the practicability of the reasoning tool. In this aspect, D-S theory offers
one the freedom to flexibly derive and apply restrictions that best suit specific goals and
scenarios.
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3 Preliminaries of the Dempster-Shafer theory

This section is devoted to a brief discussion of the applied aspect of D-S theory in the
context of information fusion. Recall that given a finite frame of discernment Θ which
captures all the possible and mutually exclusive answers for a problem at hand, a bpa m is
a primitive function that allows an agent to express its present state of belief by assigning
belief mass to various propositions A such that

m : 2Θ → [0, 1],∑
A⊆2Θ

m(A) = 1, and

m(∅) = 0.

Generally, not every subset A of Θ would receive a non-zero belief assignment. When
A ⊆ Θ and m(A) > 0, A is referred to as a focal set. Bpas may be described according to
their focal sets. More specifically, a bpa m is said to be:

• vacuous, if m(Θ) = 1 (which represents the agent’s state of total ignorance);

• dogmatic, if Θ is not a focal set;

• simple, if it has at most two focal sets, including Θ;

• dichotomous, if it has at most three focal sets (A, Ā and Θ);

• categorical, if it is simple and dogmatic;

• normal, if ∅ is not a focal set, and subnormal otherwise;

• consonant, if all its focal sets A1, ..., AN are nested: ∅ ⊆ A1 ⊆ ... ⊆ AN ⊆ Θ; and

• Bayesian, if all of its focal sets are singletons: m(A) > 0 and |A| = 1.

When there is more than one bpa defined on the same frame of discernment, their effects
need to be combined. Shafer [46] in developing the theory has reformulated Dempster’s
rule of combination (now commonly referred to as the Dempster-Shafer, or D-S rule) to
combine evidence, provided that the bpas being combined are induced by distinct and
independent pieces of evidence.

In many real-world applications dealing with uncertainty, the reliability of information is
often enhanced by means of collecting relevant pieces of information, often with varying
degrees of certainty, from multiple sources, necessitating the availability of methods to
aggregate the beliefs, each associated with each piece of information. In this aspect, the
D-S rule has turned out to be very useful, and thus has been widely investigated in the
field of information fusion to address multiple facets of uncertainty. Using the D-S rule to
combine an agent’s present state of belief (expressed in m1) with a specific state of belief
induced by a new piece of evidence (expressed in m2) allows the agent’s state of belief to
be updated in light of the new evidence. Similarly, fusing a number of ‘uncertain’ opinions
from independent experts is likely to provide a more trustworthy answer for a problem of

14
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interest, and combining various ‘incomplete’ pieces of knowledge would potentially yield
a more ‘complete’ piece of knowledge about a situation.

In the framework of D-S theory, combining independent beliefs pertaining to the same
piece of information is usually carried out through an aggregation of the corresponding
bpas that describe them. Let m1 and m2 be the two bpas to be combined, the combined
bpa m1 ⊗m2 (or m12) is computed using the D-S rule as follows

m12(∅) = 0 and ∀A ∈ 2Θ\∅ :

m12(A) =
1

1−K12

∑
B,C∈2Θ,B∩C=A

m1(B)m2(C). (14)

where the conflict mass K is:

K12 = m12(∅) =
∑

B,C∈2Θ,B∩C=∅

m1(B)m2(C)

In the above formula, K represents a basic probability mass associated with conflicts
among the sources of evidence (which are m1 and m2 in this example). If K12 is close to
zero, the bpas are not in conflict, whereas if K12 is close to 1, the bpas are in conflict.
When K12 = 1, the bpas are said to be in total conflict and thus non-combinable. Eq.
(14) is also referred to as an ‘orthogonal sum’ due to the way it combines belief masses
provided by the evidence. Example 5 presents a simple application of the D-S rule to
information fusion, while Figure 3 graphically illustrates the combination process.

Example 5: Let Θ = {virusA1, virusA2, virusB}, and the bpas m1, m2

provided by the two independent sensors 1 and 2 be as follows:

m1({virusA1})=0.3, m1({virusB})=0.5, m1(Θ)=0.2, and

m2({virusA1, virusA2})=0.7, m2(Θ)=0.3.

In this example, {virusA1} and {virusB} are focal elements of m1 while
{virusA1, virusA2} is the only focal element of m2. The information provided
by sensors 1 and 2 are both uncertain and incomplete (the type of information
that a Bayesian formalism would find difficult to represent in an adequate man-
ner). In particular, the information provided by sensor 2 illustrates a typical
scenario where the sensor can predict that the virus is much more likely to be
of type A (rather than type B), but is incapable of detecting the specific virus.
Bringing together the effect of m1 and m2 on Θ (see Figure 3), the combined
bpa m12 produced by an application of the D-S rule clearly indicates a support
for {virusA1} as the possible answer:

m12({virusA1}) = 0.46,

m12({virusB}) = 0.23,

m12({virusA1, virusA2}) = 0.22,

m12(Θ) = 0.09;
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The D-S rule also possesses attractive algebraic properties: it is both associative (m1 ⊗
(m2 ⊗ m3) = (m1 ⊗ m2) ⊗ m3)) and commutative (m1 ⊗ m2 = m2 ⊗ m1). This means
that the combination process for a large number of bpas is not required to be computed
at once (batch), but can be conducted in a sequential, incremental and local manner.

Figure 3: A graphical representation of the orthogonal sum in Example 5 where {vA1},
{vA2} and {vB} correspond to {virusA1}, {virusA2} and {virusB}, respectively.

Frame coarsenings and refinements In situations where the elements in a frame
of discernment Θ are not specific enough to deal with the problem at hand, Θ can be
transformed into a more refined frame Ω using the following mapping rules:

ω : 2Θ → 2Ω,

ω(A) =
⋃
θ∈A

ω({θ}) (15)

where the sets w({θ}) constitute a disjoint partition of Ω. Shafer [46] called such a mapping
ω a refining, Ω a refinement of Θ, and Θ a coarsening of Ω. In a similar fashion, it is
possible to derive a finer or coarser bpa by discerning a bpa on Ω or Θ (ω : 2Θ → 2Ω)
using the following formulas:

mΩ(ω(A)) = mΘ(A),∀A ⊂ Θ,

mΘ(A) =
∑
B⊂Ω,

A=ω(B)

m(B) (16)
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Example 6: Given the frame of discernment Θ = {virusA1, virusA2, virusB}
and the following bpa expressed on Θ:

mΘ({virusA1}) =
1

3
,

mΘ({virusA2}) =
1

3
,

mΘ({virusB}) =
1

3
,

let us define the two following refinings φ and ω as

ω : 2Θ → 2Ω,

ω({virusA1}) = {virusA1},
ω({virusA2}) = {virusA2},
ω({virusB}) = {virusB1, virusB2},

φ : 2Φ → 2Θ,

φ({virusA}) = {virusA1, virusA2}.
φ({virusB}) = {virusB}.

The refinement of Θ resulting from the application of the refining ω to Θ is

Ω = {virusA1, virusA2, virusB1, virusB2},

and the coarsening of Θ according to the refining φ is

Φ = {virusA, virusB}.

Likewise, the bpa mΘ can be discerned on Φ and Ω (using Eq. (15)) as follows

mΦ({virusA}) =
2

3
,

mΦ({virusB}) =
1

3
;

mΩ({virusA1}) =
1

3
,

mΩ({virusA2}) =
1

3
,

mΩ({virusB1, virusB2}) =
1

3
.

In general, a bpa associated with a frame of discernment is not a Bayesian bpa as rep-
resented in the above example, and thus performing frame coarsening or refinement can
inevitably result in a certain degree of information loss.

Despite its popularity and appealing features, the D-S rule has received a number of
concerns and criticisms regarding its practical usage. A compilation of such concerns
include:

• the produced results may be counter-intuitive in the case of very highly conflicting
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evidence,

• the potentially high computational complexity associated with the D-S rule,

• the bodies of evidence involved in the combination are required to be distinct and
independent, and

• all the sources of evidence (e.g., sensors) are assumed to be reliable.

The sections that follow discuss and address these concerns.

3.1 Combination of highly conflicting evidence

A well-known criticism of the D-S rule is by Zadeh [69, 70, 71] who states that the rule
yields counter-intuitive results when dealing with highly conflicting pieces of evidence. For
instance, fusing the two bpas m1 and m2 (given by two independent experts) using the
D-S rule, one would obtain the combined bpa m12 as illustrated in Table 3. According to

m1 m2 m12

{virusA1} 0.9 0.0 0.0
{virusA2} 0.0 0.9 0.0
{virusB} 0.1 0.1 1.0

Θ 0.0 0.0 0.0

Table 3: An example combination of highly conflicting dogmatic bpas using the D-S rule.

Zadeh, this fusion result is counter-intuitive because it provides strong support for virusB
which is considered the least likely cause by both the experts.

Mathematically, this seemingly counter-intuitive result is directly caused by the com-
bination of the assignment of zero values to m1{virusA2} and m2{virusA1} (which in
effect completely eliminates {virusA2} and {virusA1} as possible answers) and the use of
Bayesian belief functions. Thus, a more careful examination of the illustrated example
would reveal that this is more a problem pertaining to general probabilistic analysis, ren-
dering itself a fairly unfair judgement of the D-S rule [25]. Nevertheless, the problem can
be explained and/or addressed along two main directions. On the one hand, if one looks
for consensus among evidence, this result is indeed not counter-intuitive (i.e., the result
indicates that virusB is the hypothesis that both sources of evidence agree upon). On
the other hand, such counter-intuitive results (if indeed they are) would be resolved if one
does not assume the full reliability of the experts’ knowledge. For instance, if one assigns
a very small value ε (say, 0.01) to Θ, the result given by the D-S rule is no longer counter-
intuitive as illustrated in Table 4 (a deeper treatment of this issue can be consulted at
[25, 4]).

Such an ε value is utilised in the implementation of Influx1 in order to avoid having
unexpected results in cases where the aforementioned situation arises. Since it is plausible
in practice to assume that the belief for a proposition provided by an expert is often
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m1 m2 m12

{virusA1} 0.9 0.0 0.32
{virusA2} 0.0 0.9 0.32
{virusB} 0.09 0.09 0.35

Θ 0.01 0.01 0.01

Table 4: An example combination of highly conflicting non-dogmatic bpas using the D-S
rule and ε.

not fully reliable, and the measurements given by a sensor are not totally precise, the
assignment of ε to Θ is justified.

Furthermore, depending on the specific applications and problems at hand, other combi-
nation rules can be utilised that offer different strategies to deal with highly conflicting
evidence, e.g., allocating conflicting mass to disjunctive propositions when the informa-
tion sources are assumed to be unreliable (as in disjunctive rules) or simply assigning it
to the empty set to indicate the fact that the answer for a problem may lie outside those
captured in the current frame of discernment (as in the unnormalised conjunctive rule).
To this end, a collection of such combination rules has been implemented in Influx1 which
allows users to resolve the problem of highly conflicting information in a most intuitive
and appropriate way.

3.2 Computational complexity

As mentioned in Section 2.2, a major criticism of D-S models is their high computational
complexity — dealing with subsets of Θ rather than elements of Θ. Therefore, the com-
putational complexity is exponential to the size of the frame of discernment. Combining
multiple pieces of evidence expressed on a large frame of discernment is often intractable.
Researchers have attempted to tackle this problem along the following dimensions: (i)
cutting down the number of focal elements involved in the combination, (ii) reducing the
size of the frame of discernment, and (iii) imposing certain restrictions on the discernment
space, thereby allowing the devising of combination algorithms with lower computational
complexity. Methods in the three mentioned categories are elaborated further in the fol-
lowing sections.

Other approaches also exist that are not concerned with the size of the frame of discern-
ment or the structure of the discernment space, but adopts specific techniques to reduce
the time associated with the combination process. Techniques adopted in such approaches
include the Monte-Carlo algorithm (the combined beliefs are estimated by means of ran-
dom sampling of the possible values of the mass functions to be combined) [61, 62], the
Fast Möbiũs Transform (fast transform between different types of belief functions is per-
formed, allowing for beliefs being combined in their most convenient form) [29], efficient set
representation and operations (the computational complexity of the combination process
is reduced due to a novel representation of focal elements using techniques from finite set
theory) [37] and resource-bounded schemes (beliefs are combined in a progressive manner
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so that the achieved accuracy of the result is proportional to the resource (time) available
for the combination process) [23, 21].

3.2.1 Reducing the number of focal elements

As the possible number of focal elements in a bpa can be up to 2n (where n is the size of the
frame of discernment), reducing the number of focal elements in the bpas can significantly
reduce the amount of computation required. Approaches pertaining to this category in-
clude the Bayesian approximation [59], K-l-x [57], summarisation [32], D1 approximation
[2], and inner and outer clustering [6] methods. While the Bayesian approximation method
reduces a given bpa to a probability distribution, the other methods focus on producing a
modified bpa which satisfies pre-defined constraints specified on the mass value of the focal
elements. As a consequence, the K-l-x, summarisation, D1 approximation, and inner and
outer clustering methods are data-driven (i.e., the outcomes are determined by the actual
mass values assigned to a bpa). The Bayesian approximation method, in contrast, allows
the resulting focal elements to be partly determined beforehand. An empirical study of
many of these approaches can be found in [2].

3.2.2 Reducing the size of the frame of discernment

An alternative approach to reduce the number of focal elements is to partition the frame
of discernment into another frame with smaller size using techniques related to frame
coarsening as presented above. Since it is common for a bpa expressed on Θ to include
focal elements that are not discerned by Ω, coarsening a frame of discernment generally
results in some degree of information loss. To this end, multiple attempts have been made
to devise algorithms capable of producing a coarsened frame of discernment from a set of
bpas with minimal information loss. More details about coarsening a frame of discernment
can be found at [66].

3.2.3 Utilising efficient algorithms to combine evidence

Evidence combination algorithms with reduced computational complexity have been in-
vestigated. In particular, Barnett [1], Gorden and Shortliffe [20], Shafer and Logan [47]
devised algorithms that achieve linear computational complexity, with certain assumptions
imposed on the set of bpas involved in the combination. Barnett’s algorithm assumes that
only evidence for singleton hypotheses in a frame of discernment is collected, while the
Gorden-Shortliffe and Shafer-Logan algorithms do not enforce such a restriction, but re-
quire the evidence to have a hierarchical structure as illustrated in Figure 4. In all three
approaches, a bpa reported by a sensor is required to be in the form of a simple or di-
chotomous bpa.

Barnett’s algorithm Barnett’s algorithm combines pieces of evidence collected for the
singleton hypotheses in a frame of discernment. In this algorithm, the evidence provided

20

UNCLASSIFIED



UNCLASSIFIED
DST Group–TR–3142

by each sensor is required to be in the form of a simple or dichotomous bpa. For instance,
given Θ = {virusA1, virusA2, virusB1, virusB2}, and m1, m2, m3 defined on Θ as:

m1({virusA1}) = 0.2,m1(Θ) = 0.8

m2({virusA2}) = 0.6,m2(Θ) = 0.4

m3({virusB1}) = 0.3,m3({virusB1}) = 0.2,m3(Θ) = 0.5

(please note that {virusA1} = {virusA2, virusB1, virusB2} and {virusB1} = {virusA1, vi-
rusA2, virusB2}). Here, m1 and m2 are referred to as simple bpas, and m3 as a dichoto-
mous bpa11. Barnett’s algorithm includes mathematical formulas for the combination of
these simple and dichotomous bpas in linear time. Details of Barnett’s algorithm are
described in [1].

The Gorden-Shortliffe algorithm Gorden and Shortliffe [20] proposed an approxi-
mation algorithm to compute belief values for the propositions defined in a hierarchical
space. A major shortcoming of Barnett’s algorithm is that it is only capable of combining
pieces of evidence bearing on the singleton propositions defined in a frame of discernment.
Gorden and Shortliffe aimed to improve on Barnett’s algorithm by allowing pieces of evi-
dence associated with both singleton propositions and (some) disjunctive propositions to
be involved in the combination. This can be done by having the relevant discernment
space be represented in a strict hierarchical structure. For example, a full graphical repre-
sentation of the discernment space (i.e., 2Θ) of Θ = {vA1, vA2, vB1, vB2} is given in Figure
2. According to Gorden and Shortliffe, not all the subsets in the structure are semantically
meaningful in a particular context. As such, those subsets that are not considered semanti-
cally meaningful should be pruned from the structure. In the above example, subsets such
as {vA1, vA2, vB1}, {vA1, vA2, vB2}, {vA1, vB1, vB2}, {vA2, vB1, vB2}, {vA1, vB1}, {vA1, vB2},
{vA2, vB1}, and {vA2, vB2} can be considered as not carrying meaningful semantics and
thus should be discarded, resulting in a tree-form discernment space illustrated in Figure
4.

Figure 4: A hierarchical structure of subsets of Θ where {vA} = {vA1, vA2} and {vB} =
{vB1, vB2}.

The Gorden-Shortliffe algorithm is an approximation in the sense that only nodes in the
tree may have a non-zero mass value; a non-zero mass value for any subset that is not
represented in the tree will be assigned to its smallest superset that exists in the tree.
Details of the Gorden-Shortliffe algorithm are given in [20].

The Shafer-Logan algorithm Shafer and Logan have identified a few disadvantages
of the Gordon-Shortliffe approximation algorithm. The disadvantages include: (i) the
Gordon-Shortliffe algorithm produces a low-quality result when the degree of conflict
among the pieces of evidence is high, (ii) the algorithm is not capable of computing the
degree of belief for the negation of a proposition, and thus (iii) the algorithm is not capable

11In the terminology used by Shafer [46], a simple bpa corresponds to a simple support function, while
a dichotomous bpa corresponds to a simple separable support function.
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of computing a plausibility value for the proposition.

Rejecting the need for an approximation algorithm, Shafer and Logan proposed an algo-
rithm for the exact computation of belief values for the propositions. Even though the
tree of propositions in the Shafer-Logan algorithm is constructed in a manner similar to
the method used in the Gorden-Shortliffe algorithm, the propositions for which their algo-
rithm is capable of computing belief values are not limited to those explicitly represented
in the tree. Details of the Shafer-Logan algorithm are given in [47].

The algorithms presented above assume a fixed global frame of discernment, and involve
two phases of computation (top-down and bottom-up), and thus are not well suited to
implementation in Influx1. However as will be discussed in subsequent sections, various
ideas investigated from the mentioned work have been capitalised in Influx1 to tackle the
problem of computational complexity associated with belief combination such as the adop-
tion of simplified forms of bpas, the utilisation of coarsened (specifically, binary) frames
of discernment, and the implementation of only the relevant portion of the discernment
space. Generalisation of the Shafer-Logan algorithm is also studied in the context of valu-
ation networks [3, 53, 54] and investigated further in the framework of transferable belief
model (TBM) in the form of directed evidential networks [64, 67]. Valuation networks and
directed evidential networks will be discussed in the document devoted to a description of
Influx2.

3.3 Unreliability of sources of evidence

By default, sources of evidence are treated equally by a combination rule (i.e., the sources
are assumed to be equally reliable). This is not a valid assumption in practical applications,
especially those for which Influx1 is intended. Some examples of this include:

• evidence provided by local/host sensors is more reliable than that provided by re-
mote/network sensors;

• sensors installed at different locations have different degrees of reliability since they
capture different sets of raw data; and

• sensors vary in their ability to capture data and generate relevant information (e.g.,
active sensors may be more reliable than passive sensors in detecting whether there
is a device at a certain address).

If an unreliability rate for a sensor can be determined before it is used, it can be incor-
porated into the bpa reported by the sensor before the combination process commences.
This can be done via the use of a discounting method or importance weight.

Based on a given unreliability rate, a discounting method in general decreases the mass
of the focal elements, increasing ignorance. Various discounting methods exist, the most
popular one proposed by Shafer [46] is given as:

m∗(A) = tm(A), ∀A ⊂ Ω (17)

m∗(Ω) = 1− t+ tm(Ω)
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where t (0 ≤ t ≤ 1) is the unreliability rate of the source.

While a discounting method is quite efficient in reducing the impact of a piece of evi-
dence produced by a sensor across all propositions, the method is not suitable where the
reliability of a sensor varies according to specific propositions defined in the frame of dis-
cernment. In such a situation, a more appropriate method is to adjust the impact of a
piece of evidence on individual propositions. Using a so-called importance weight, one can
specify the reliability of a sensor for each proposition in the frame of discernment (e.g.,
sensor A is twice as reliable as sensor B in detecting proposition X, but is half as reliable
as sensor B in detecting proposition Y ). Fan and Zuo provide a full description of the use
of an importance weight in [16].

If an unreliability rate cannot be determined beforehand (or if it is too hard to do so), it can
be estimated in real-time based on the degree of conflict among pieces of evidence provided
by the sensors. Dynamic detection of the reliability of sensors has been studied by several
research groups. These research groups share the view that a high degree of conflict among
pieces of evidence indicates unreliability of the sources of evidence, and that the sources
that provide conflicting evidence should be considered unreliable and therefore should be
discarded. This view is not valid in the context of Influx1 where conflicting information
is actually of interest and should be investigated rather than discarded. For this reason,
while various discounting methods have been implemented in Influx1, dynamic estimation
of the reliability of sensors is not currently considered for implementation.

3.4 Independent evidence assumption and conflict distribu-
tion

The D-S rule requires pieces of evidence (in the form of belief functions) being combined
to be distinct/independent. In addition, when pieces of evidence to be combined are
conflicting, the D-S rule manages the situation by distributing the conflicting mass (i.e.,
the mass of the empty set) proportionally to the focal sets. Such a conflict management
scheme may not be ideal for all contexts. For this reason, studies have been carried out
which attempt to lift the independence assumption imposed on the pieces of evidence as
well as to offer various ways to manage conflict, resulting in the numerous DS-related
combination rules that can be found in the literature.

Tables 5 and 6 summarise a collection of combination rules studied in the literature, with
the following desirable algebraic characteristics:

• Commutativity: ∀m1,∀m2 : m1 ⊗m2= m2 ⊗m1

Commutativity implies that the order in which the evidence is combined does not
affect the final result.

• Associativity: ∀m1, ∀m2,∀m3: (m1 ⊗m2)⊗m3= m1 ⊗ (m2 ⊗m3)

Associativity allows for (order-independent) pairwise computation, enabling local
computation.

• Quasi-associativity: Associativity that is achieved by preserving certain interme-
diate results throughout the combination process.
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Table 5: Combination rules and their algebraic characteristics.
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m1(Θ)+m2(Θ)−m1(Θ)m2(Θ) ; and

mC(Θ) = m1(Θ)m2(Θ)
m1(Θ)+m2(Θ)−m1(Θ)m2(Θ)

for m1(Θ) = 0 ∧m2(Θ) = 0:{
mC(A) = γ1m1(A) + γ2m2(A),
mC(Θ) = 0

where{
γ1 = limm1(Θ)→0,m2(Θ)→0
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
ΠB⊇A,|B|/∈2N q(B)

ΠB⊇A,|B|∈2N q(B) if|A| ∈ 2N, and
ΠB⊇A,|B|∈2N q(B)

ΠB⊇A,|B|/∈2N q(B)otherwise.
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Table 6: Combination rules and their algebraic characteristics (continue from Table 5).
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• Idempotence: ∀m1: m1 ⊗m1= m1

Idempotence is important where there is non-distinct evidence since it prevents a
combination rule from counting a piece of elementary evidence more than once.

The collection of combination rules can be analysed from a number of perspectives:

• With regards to the reliability of sources, most of the rules are based on two fun-
damental rules: the conjunctive rule (including the open-world conjunctive rule and
closed-world D-S rule) and the disjunctive rule. A conjunctive rule looks for consen-
sus between given bpas where the sources are sufficiently reliable, and a disjunctive
rule tends to average out all the given information and should be used when not all
the sources are reliable (e.g., one, or probably more, sources may be unreliable but
one does not know which one).

Here, one combination rule that is worth noticing is the cumulative rule which does
not strictly belong to either the conjunctive or disjunctive category. The rule forms
its own category; that is, the rule is applicable in situations where the pieces of
evidence are distinct and independent but come from identical sources. In this case,
the evidence is said to be combined in a cumulative fashion.

• In terms of conflict management, the different combination rules can be distinguished
in particular according to the way they distribute conflict mass. Two main cate-
gories can be discerned: redistribution of global conflict mass (such as the D-S and
Yager’s combination rules) and redistribution of the partial conflict mass (such as
the Dubois-Prade and PCR5 combination rules). For instance, the D-S and Yager’s
rules distribute the global conflict mass (the conflict mass between all the focal sets,
if any, of the two combined bpas) to the focal sets and to the empty set, respectively.
Unlike the D-S and Yager’s rules, the Dubous-Prade and PCR5 rules distribute the
partial conflict mass (between a group of focal sets) to the relevant subsets, and thus
are supposed to be more precise when consideration of conflict is a focus.

• With respect to the types of evidence to be combined, the combination rules can
also be discriminated based on the independence/dependence restriction imposed on
the evidence. More specifically, the conjunctive, D-S, Yager’s, Dubois-Prade, PCR5
and disjunctive rules assume the pieces of evidence to be combined are distinct and
independent. Whereas for the averaging and cautious rules, pieces of evidence are
required to be non-independent. To be able to deal with bodies of evidence that are
not distinct and independent, the latter group of rules share one common algebraic
property: they are all idempotent, preventing themselves from counting a piece of
elementary evidence more than once.

Generally, the majority of combination rules discussed in the literature are sensitive to
the independence/dependence assumption of evidence: applying an unsuitable combina-
tion rule to fuse evidence can yield inaccurate results. We have conducted an empirical
comparison of the collection of combination rules presented in Tables 5 and 6. In general,
the experimental results demonstrate the adequacy of the D-S rule as a combination (or
fusion) operator to fuse independent pieces of evidence in various circumstances. More
particularly, when receiving an appropriate treatment for dealing with highly conflicting
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evidence, the D-S rule exhibits behaviour similar to that of the proposed alternatives while
maintaining mathematical simplicity and possessing highly-desirable characteristics such
as commutativity and associativity.
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4 The reasoning framework for Influx1

D-S theory provides a mathematically sound approach for reasoning in situations where the
information may be uncertain and incomplete. The extent to which the theory is realised
in a practical setting naturally depends on the goals and characteristics of the specific
reasoning problem to be addressed. In this regard, Influx is envisaged to be a reasoner
handling real-life situations where the knowledge can be imperfect, the knowledge base
potentially large and distributed, and efficiency (among other qualities) is of significant
importance. As such, complete implementation of D-S theory is not a prime goal in the
design and development of Influx; rather, the theory is utilised as a means to facilitate the
development of appropriate mechanisms to represent and reason with uncertainty.

Nevertheless, realising D-S theory in practical applications is not straight-forward. Despite
its rich literature, the amount of research work devoted to the application of D-S theory
is fairly modest in comparison to the numerous efforts in the field dedicated to theoretical
work. Two main reasons for this may be: (i) the heavy use of mathematical notation
in the majority of work on D-S theory has hindered practitioners in the field of artificial
intelligence, and (ii) the potentially high computational complexity associated with a
straight-forward implementation of the D-S rule in the general case (being exponential
to the size of the frame of discernment). Due to the latter reason, using the theory
for uncertain reasoning in a practical context often necessitates the determination of an
appropriate balance between the merits of the theory and the desired properties of the
reasoning system to be implemented. To this end, Influx1 aspires to achieve, as much as
possible, the desired practical objectives while capitalising on the ideas and techniques
offered by the D-S theory where suitable.

We have developed the first version of Influx, Influx1, a simple nonmonotonic reasoning
tool and framework which takes advantage of the D-S formalism to represent and reason
with uncertainty. Conceptually, development of a reasoning framework is a matter of

• deciding on the representation of the relevant concepts (concept representation),

• determining the representation of the beliefs associated with the concepts (belief
representation),

• specifying the mechanisms for belief combination, should there be more than one
belief pertaining to a concept (belief combination), and

• defining the relationships between concepts which allows inferencing across the con-
cepts to be carried out (belief propagation).

In this section we briefly review the reasoning framework of Influx1 from such perspectives.
Please note that design decisions and techniques pertaining to the implementation of
Influx1 are not discussed in this document.

For the purpose of illustration, Figure 5 graphically depicts a simple example of a rule
network in Influx1, various portions of which will be referred to in the discussions that
follow. Before continuing further, it is important to clarify some of the concepts and
terminology as follows:
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Figure 5: A simple rule network in Influx1, illustrating concept representation, belief rep-
resentation, belief combination and belief propagation. In this figure, ⊗ and ∧
denote the ‘fusion’ and ‘and’ operators, respectively. The notation ∧ will be
defined in Section 4.1.1.

• TcpDump(X), Ping(X), ComputerOn(X) and ClassifiedComputerOn(X) are re-
ferred to as propositions. TcpDump(X) denotes the proposition that ‘the TcpDump
sensor observes packets from computer X’. Similarly, Ping(X) denotes the propo-
sition that ‘the Ping sensor receives responses from X’, ComputerOn(X) denotes
the proposition that ‘X is on’, Classified(X) denotes the proposition that ‘X is
classified’, and ClassifiedComputerOn(X) denotes the proposition that ‘X is on
and classified’ whose truth value reflects the belief pertaining to ComputerOn(X)∧
Classified(X). Each proposition is associated with a binary frame of discernment
(BFoD), e.g., TcpDump(X) is associated with ΘT = {T, T} and Ping(X) associated
with ΘP = {P, P}.

• The degree of certainty regarding the truth of each proposition is defined in the form
of a bpa m, e.g., mT , mP and mC for the propositions TcpDump(X), Ping(X) and
ComputerOn(X), respectively. Such a bpa expresses the belief mass assigned to
all possible states of a proposition (e.g., {T}, {T} and ΘT = {T, T} in the case of
TcpDump(X)). For example, the bpa mT shows that the TcpDump sensor certainly
observes packets from X (mT (T ) = 1). Besides bpas, the belief for a proposition,

UNCLASSIFIED

29



DST Group–TR–3142
UNCLASSIFIED

when required, can be represented in other ways, such as the belief function Bel,
the plausibility function Pl and the pignistic function BetP . The pignistic function
BetP provides a probabilistic interpretation of the belief associated with a piece of
knowledge which will be discussed in Section 4.2. For the sake of simplicity, when the
distinction does not matter, all such functions (m, Bel, Pl and BetP ) are referred
to as belief functions (or simply beliefs).

• Propositions not directly observed (e.g., ComputerOn(X)) may be inferred from
related propositions whose belief may be known (e.g., TcpDump(X) and Ping(X)).
Whether the TcpDump sensor observes packets from X, and whether the Ping sen-
sor receives responses from X, can reveal some information about whether computer
X is on. In this respect, TcpDump(X) and Ping(X) are generally referred to as
information sources for ComputerOn(X), and mT and mP are the beliefs associ-
ated with the information sources. The belief associated with TcpDump(X) (mT )
can be combined with knowledge about the relation between TcpDump(X) and
ComputerOn(X) to produce mT

C , which is the belief about whether the computer
X is on, given mT . Likewise, we can produce mP

C , which is the belief about whether
the computer X is on, given mP . We refer to the propagated beliefs mT

C and mP
C as

opinions about ComputerOn(X) provided by the respective information sources.

• The proposition ComputerOn(X) has two independent opinions (mT
C andmP

C) about
its status. To this end, the belief for ComputerOn (mC), is determined through the
combination of those opinions (mC = mT

C ⊗ mP
C , where ⊗ denotes a conjunctive

fusion operator).

4.1 Concept representation

Concepts in the knowledge base of Influx1 may be simple or complex. For instance, a
concept can be an elementary piece of knowledge such as

ComputerActive,

the knowledge that a computer is active. A concept can also be structured with embedded
contextual information such as

Computer.Software.AntiVirusInstalled(fileserver, SuperAV),

the knowledge that a particular computer (fileserver) has antivirus software installed
(SuperAV ) where AntiV irusInstalled carries the semantics defined within the context
Computer.Software. Within Influx1, this structured representation (or structured ID)
allows knowledge and relationships to be described with a flexible and informal form of
ontology and enables certain techniques for efficient computation and memory use.

As the notion of frames of discernment (FoDs) is fundamental for knowledge representation
in D-S theory, all concepts must be defined with respect to one or more FoDs. To this
end, the building blocks for representing knowledge in Influx1 are the so-called binary
frames of discernment (BFoDs). Each BFoD is associated with a concept, and contains
two elements: the concept and its negation (e.g., ΘA = {A, Ā}).
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Figure 6: An illustration of a proposition constructed from other propositions using the
‘and’ connective.

We group concepts according to their inter-relationships, which is important for the de-
vising and determining of the appropriate mechanisms to combine their beliefs. The first
group refers to those concepts which are not mutually exclusive. This group can be further
divided into two subgroups:

• independent concepts whose beliefs are not correlated (i.e., change in the belief of
one concept has no (or negligible) effect on the belief of the others), and

• dependent concepts whose beliefs are correlated (i.e., change in the belief of one
concept has effect on the belief of the others).

The second group refers to those concepts which are mutually exclusive. The BFoDs
associated with the concepts in this case are considered specific coarsenings (see Section
3) of an implicit frame Ω which includes all such concepts as part or all of its elements.

With respect to belief representation (which will be further discussed in the next section),
each concept A is associated with a bpa mA specifying the degree of belief for {A}, {A} and
ΘA.12 Manipulation of the concept’s belief can be mathematically performed in a manner
similar to that of a logical proposition with infinite truth values, albeit with different
interpretations13. More specifically, a concept, hereby referred to as a proposition, can
be transformed into, or inferred from, a related one; or can be built from more primitive
propositions. For instance, ClassifiedComputerOn(X) can be built from Classified(X)
and ComputerOn(X) using the logical connective and as shown in Figure 6. The following
discussion is concerned with combining beliefs associated with different propositions to
construct a new proposition. Propagation of belief from one proposition to another will
be treated in Section 4.4.

12Hereafter, for the sake of simplicity of notation, we at times do not distinguish between elements and
singleton subsets of a set when it is clear by the context.

13We are dealing with infinite degrees of belief about the truth of a proposition rather than infinite truth
values of the proposition.
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4.1.1 Proposition construction

Proposition construction is essentially concerned with the combination of beliefs expressed
on different frames of discernment. More specifically, a proposition (e.g., B) can be
built from a set A of n other propositions (e.g., A1, A2, . . . , An). This is achieved by
computing the belief of B (i.e., mB) as the combination of the beliefs expressed on ΘAi

(i.e., mA1,mA2, . . . ,mAn). In Influx1, such combination is performed according to the
fundamental criteria of necessity or sufficiency:

• Necessity refers to situations where all elements in A must be confirmed in order for
B to be confirmed. Broadly speaking, the belief value for B is only high when the
belief values for all Ai are high.

• Sufficiency, in contrast, refers to situations where any element in A being confirmed
will result in B being confirmed. Broadly speaking, the belief value for B is high
when the belief value for any Ai is high.

The combination process will reflect the criteria relevant to the concepts, and the type of
relationship they share (independent, dependent or mutually exclusive). To this end, a
number of functions addressing proposition construction have been derived for implemen-
tation in Influx1. The derived functions are depicted in Table 7 and elaborated below.

4.1.1.1 Combination of independent propositions Given a set of propositions
Ai with an independent relationship, the belief for a proposition B can be computed
by combining the beliefs associated with Ai using the logical connectives and (i.e., B =
A1 ∧ A2 ∧ . . . ∧ An if Ai are necessary criteria for B) or or (i.e., B = A1 ∨ A2 ∨ . . . ∨ An
if Ai are sufficient criteria for B). To facilitate reasoning in Influx1, such connectives,
among others, must be redefined to take into account the adopted D-S belief representa-
tion. Multiple efforts to integrate logical reasoning and Dempster-Shafer belief functions
have been made (such as [9], [17], [15] and [18] in the context of information fusion, belief
maintenance systems and non-monotonic deductive reasoning). However the formulation
of the logical connectives in the mentioned works (particularly [17]) assumes a global frame
of discernment on which the bpas of the constituent propositions are defined, and thus
cannot be applied directly in this context.

To this end, it is necessary to derive the formulas for the and and or connectives for any
two propositions A1 and A2. This may be achieved by first computing the associated be-
lief distribution on the Cartesian product Θ(A1,A2) (where ΘA1 and ΘA2 are the frames of
discernment pertaining to A1 and A2, respectively). Such a belief distribution (see Table
8) allows belief associated with a conjunction between every subset of ΘA1 with that of
ΘA2 to be captured. Applying Kleene’s truth tables for and and or for three-valued logic
(see Figure 7) to the computed belief distribution then enables a derivation of the formulas
for the logical connectives (or operators) as given below.

32

UNCLASSIFIED



UNCLASSIFIED
DST Group–TR–3142

Relationship
between A1,
A2 and B

Operator type
Relationship
between A1

and A2

Specific
opera-

tor

Influx1

syntax
Formula

Sufficiency B = or(A1, A2) independent ∨ OR
m(B) = m(A1) + m(A2) -
....m(B) =a−m(A1)m(A2)

m(B) = m(A1)m(A2)

m(ΘB) = 1−m(B)−m(B)

dependent ∨sub MAX m(B) = max(m(A1),m(A2))

m(B) = min(m(A1),m(A2))

m(ΘB) = 1−m(B)−m(B)

mutually
exclusive

∨add ADD m(B) = m(A1) +m(A2)

m(B) = 1
2

(m(A1) + m(A2) -
....m(B) =a−m(A1)−m(A2))

m(ΘB) = 1−m(B)−m(B)

Necessity B = and(A1, A2) independent ∧ AND m(B) = m(A1)m(A2)

m(B) = m(A1) + m(A2) -
....m(B) =a−m(A1)m(A2)

m(ΘB) = 1−m(B)−m(B)

dependent ∧sub MIN m(B) = min(m(A1),m(A2))

m(B) = max(m(A1),m(A2))

m(ΘB) = 1−m(B)−m(B)

Neither B = mean(A1, A2) independent/ mean MEAN m(B) = 1
2

(m(A1) +m(A2))

necessity dependent m(B) = 1
2

(m(A1) +m(A2))

nor aaa m(ΘB) = 1−m(B)−m(B)
sufficiency

Table 7: Combination operators implemented in Influx1 and their notations used in this
document. In the table, the proposition B is constructed from the propositions
A1 and A2 according to the the criteria of sufficiency and necessity.

The and operator Let B denote a proposition that reflects the conjunctive truth of
the two propositions A1 and A2 (B = A1 ∧ A2), the belief function associated with B is
computed as:

m(B) = m(A1)m(A2),

m(B) = m(A1)m(A2) +m(A1)m(A2) +m(A1)m(ΘA2) +m(A2)m(A1) +m(A2)m(ΘA1)

= m(A1) +m(A2)−m(A1)m(A2),

m(ΘB) = 1−m(B)−m(B). (18)

For instance, the proposition ClassifiedComputerOn(X) in Figure 6 is considered con-
firmed only if both Classified(X) and ComputerOn(X) are confirmed, and it is not
confirmed otherwise. Given mCl and mC as depicted in the figure and using the above
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formula, one obtains the following belief computed for ClassifiedComputerOn(X):

mCc(Cc) = 0× 0.44 = 0,

mCc(Cc) = 0.44 + 0− 0.44× 0 = 0.44,

mCc(ΘCc) = 1− 0− 0.44 = 0.56.

A2 A2 ΘA2

A1 m(A1)m(A2) m(A1)m(A2) m(A1)m(ΘA2 )

A1 m(A1)m(A2) m(A1)m(A2) m(A1)m(ΘA2 )

ΘA1 m(ΘA1 )m(A2) m(ΘA1 )m(A2) m(ΘA1 )m(ΘA2 )

Table 8: A belief distribution on Θ(A1,A2) computed from the belief functions associated
with ΘA1 and ΘA2.

Figure 7: Three-valued logic truth tables for ‘and’ and ‘or’, where U represents ‘unknown’.

The or operator Let B denote a proposition that reflects the disjunctive truth of the
two propositions A1 and A2 (B = A1 ∨A2), the belief function associated with B is given
by:

m(B) = m(A1)m(A2) +m(A1)m(A2) +m(A1)m(ΘA2) +m(A2)m(A1) +m(A2)m(ΘA1)

= m(A1) +m(A2)−m(A1)m(A2),

m(B) = m(A1)m(A2),

m(ΘB) = 1−m(B)−m(B). (19)

For example, let V ulnerable(X) correspond to Unpatched(X) ∨ DisabledF irewall(X),
which means the proposition V ulnerable(X) is considered confirmed if Unpatched(X) or
DisabledF irewall(X) is confirmed. Using the above formula, the bpa associated with V
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can be computed as

mV (V ) = 0.44 + 0− 0.44× 0 = 0.44,

mV (V ) = 0.44× 0 = 0,

mV (ΘV ) = 1− 0.44− 0 = 0.56,

where V , U and D denote V ulnerable(X), Unpatched(X) and DisabledF irewall(X),
respectively, and

mU (U) = 0,mU (U) = 0,mU (ΘU ) = 1,

mD(D) = 0.44,mD(D) = 0.44,mD(ΘD) = 0.12.

As presented above, the and and or operators are used when the set A provides necessary
or sufficient criteria for B, respectively. In a number of situations, A1, A2, . . . , An are
criteria for B but each is neither sufficient nor necessary. That is, the confirmation of any
single Ai is not sufficient to lead to the confirmation of B, but at the same time, it is not
necessary for all Ai to be confirmed in order for B to be confirmed. To compute the belief
for B in this case, the mean operator is used which does not rely on the confirmation or
otherwise of any one criteria, but takes into account all of the criteria and ‘balances out’
their respective beliefs.

The mean operator Let B denote a proposition that reflects the overall truth of the
two propositions A1 and A2, the belief function associated with C is given by:

m(B) =
1

2
(m(A1) +m(A2))

m(B) =
1

2
(m(A1) +m(A2)),

m(ΘB) = 1−m(B)−m(B). (20)

For example, FastCPU(X) and BigHardDrive(X) are criteria for the proposition Use-
fulComputer(X). Each of the criteria on its own may not be sufficient for the computer
X to be useful, nor is the absence of one necessary to render the computer not useful.
Using the mean operator, the bpa associated with UsefulComputer(X) can be computed
as

mU (U) =
1

2
(0.44 + 0) = 0.22,

mU (U) =
1

2
(0.44 + 0) = 0.22,

mU (ΘU ) = 1− 0.22− 0.22 = 0.56.

where U , F and B denote UsefulComputer(X), FastCPU(X) and BigHardDrive(X),
respectively, and

mF (F ) = 0,mF (F ) = 0,mF (ΘF ) = 1,

mB(B) = 0.44,mB(B) = 0.44,mB(ΘB) = 0.12.

When the criteria Ai have varying degree of importance to the constructed proposition,
this can be captured by incorporating a relative importance weight to each Ai (see Section
4.3.1.1) before performing the mean operation.
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4.1.1.2 Combination of dependent propositions Suppose that there exist ex-
plicit/implicit relations among the propositions Ai, and thus their beliefs are correlated.
For instance, the two propositions InternetEnabled(X) and EmailActive(X) can be con-
sidered dependent since the belief of one proposition can be inferred from the other. In
this case, the mean operator remains applicable due to its idempotency (i.e., the belief
of a proposition is unchanged when combined with itself). However, using the previously
derived and and or functions (which treat the belief associated with each Ai as an indepen-
dent contribution to the combined belief) would incorrectly amplify the belief computed
for B. To address combination in such a situation, Influx1 offers cautious forms of the and
and or functions which assume a (positive) correlation of belief among the propositions
being combined.

The subsumptive and operator Let the set A represent necessary criteria Ai for B,
where the beliefs associated with Ai are correlated (and thus may be considered to provide
overlapping or duplicate information). In this case, it is plausible for the belief of B to
be computed according to the criteria that are least confirmed (those with the minimum
belief and/or the minimum plausibility). Translated to D-S belief representation, the belief
function associated with B is computed as:

m(B) = min(m(A1), m(A2)),

m(B) = 1− Pl(B)

= 1−min(Pl(A1), P l(A2))

= 1−min(1−m(A1), 1−m(A2)),

= max(m(A1), m(A2)),

m(ΘB) = 1−m(B)−m(B). (21)

The derived function mathematically resembles the weak conjunction of  Lukasiewicz’s
many-valued logic [33]. We refer to this function as a subsumptive and (or andsub, or
∧sub).

The subsumptive or operator Let the set A represent the sufficient criteria Ai for B,
where the beliefs associated with Ai are correlated (and thus may be considered to provide
overlapping or duplicate information). In this case, it is plausible for the belief of B to
be computed according to the criteria that are most confirmed (those with the maximum
belief and/or the maximum plausibility). Translated to D-S belief representation, the
belief function associated with B is computed as:

m(B) = max(m(A1), m(A2)),

m(B) = 1− Pl(B)

= 1−max(Pl(A1), P l(A2))

= 1−max(1−m(A1), 1−m(A2)),

= min(m(A1), m(A2)),

m(ΘB) = 1−m(B)−m(B). (22)
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The derived function mathematically corresponds to the weak disjunction of  Lukasiewicz’s
many-valued logic [33]. We refer to this function as a subsumptive or (or orsub, or ∨sub).

4.1.1.3 Combination of mutually exclusive propositions Suppose the proposi-
tions Ai are mutually exclusive (e.g., Restricted(X), Secret(X) and TopSecret(X)), Ai
are considered to correspond to elements in a common implicit frame Ω, and the BFoD
associated with each Ai is a coarsening of Ω focusing on Ai. As such, the beliefs associ-
ated with Ai can now be expressed on the same space of discernment 2Ω, thereby enabling
direct manipulation of the beliefs by means of set-theoretical operations on the discern-
ment space. Assuming the mutually exclusive relationship between Ai is appropriately
captured (thus, it is always that

∑
i(m(Ai)) ≤ 1 and m(Ai) ≥

∑
j 6=im(Aj)), proposition

combination can be performed as given below.

The additive or operator Let the set A represent sufficient criteria Ai for B, where
Ai are mutually exclusive. In this particular case, the proposition B = A1 ∨A2 ∨ . . .∨An
corresponds to the disjunctive set {A1, A2, . . . , An} defined on Ω, and its belief can be
approximately computed as follows:

m(B) = m(A1) +m(A2),

m(B) =
m(A1) +m(A2)−m(A1)−m(A2)

2
,

m(ΘB) = 1−m(B)−m(B). (23)

The above formula performs exact computation when m(Ai) =
∑

j 6=im(Aj).

A conjunction of mutually exclusive propositions would lead to a contradiction in clas-
sical logics, or an empty set in set theory. As such, constructing B when Ai serve as
necessary criteria, or neither necessary or sufficient criteria, for B is often not of practical
use. Therefore, the implementation of Influx1 does not include functions to perform such
operations.

The formulas for the different versions of and and or presented above are both associative
and commutative, and thus can be efficiently applied in a pairwise fashion to an arbitrary
number of propositions. When the beliefs associated with A and B are certain and A and
B are independent, the formulas simplify to the classical and and or connectives. Unlike
the and - and or -typed operators, the mean operator is only quasi-associative — in Influx1

this is resolved by ensuring the operation is performed in an associative manner, and thus
can be utilised in the same way as other operators.

4.1.2 General discussion

As emphasised at the beginning of the document, Influx1 does not aim to faithfully im-
plement D-S theory, but to capitalise on the ideas and techniques offered by the theory
to represent belief and reason under uncertainty. To this end, the rationale for utilising
BFoDs in Influx1 is multifold, including:

UNCLASSIFIED

37



DST Group–TR–3142
UNCLASSIFIED

• this restricted form of FoD makes possible the derivation of simplified versions of
various combination operators and propagation functions (see Sections 4.3 and 4.4),
thus dramatically reducing the computational complexity of the reasoning process;

• this concept representation also directly facilitates logical reasoning, and significantly
promotes other practically desirable properties (such as uniformity, scalability, dis-
tributivity and supporting changes in the knowledge structure).

Despite the mentioned advantages, one implication of the use of BFoDs is that the full
expressiveness and reasoning power offered by D-S theory is partially compromised. Nev-
ertheless, the theoretically appealing expressiveness offered by the D-S formalism is also
the very reason for the impracticability of many applications based on D-S theory in the
real world — recall that the computational complexity of the D-S rule is exponential to
the size of the frame of discernment. It is thus a common practice to impose certain re-
strictions on the expressiveness of the formalism so as to achieve the practical objectives
of a reasoning system. To this end, it is necessary to speculate on the degree to which
the expressiveness of the D-S caculus can be preserved with the use of BFoDs as primitive
building blocks for knowledge representation in Influx1.

In Influx1, a frame Ω with an arbitrary size can be represented by means of one or more
BFoDs. Such BFoDs correspond to various coarsenings of Ω each focusing on a proposition
of interest. In such cases, while incompleteness pertaining to the belief associated with
each proposition (i.e., the ignorance value) remains intact, a direct expression of incom-
plete knowledge over a set of mutually exclusive propositions is no longer possible (as a
bpa cannot assign a single belief mass to a set of propositions across different frames).
Also, implicit mutual-exclusion or set-inclusion relationships between such propositions is
no longer implicitly handled by the D-S rule. If and as required, what is no longer directly
represented or implicitly captured (with the use of a complex frame of discernment) may
instead be represented by multiple propositions (each associated with a BFoD as a coars-
ening of Ω) with explicit relationships. This effectively allows one to model the useful
portions of the discernment space (2Ω) relevant to the problem at hand.

For the purpose of illustration, given the three propositions Ubuntu(X), RedHat(X),
and Linux(X), the BFoDs associated with the propositions can be considered coarsenings
of an implicit frame OS = {Ubuntu,RedHat,Windows XP,Windows NT} (assuming
that OS is exhaustive). Here, Ubuntu, RedHat and Linux correspond to {Ubuntu},
{RedHat} and {Ubuntu,RedHat}, respectively, and Ubuntu, RedHat and Linux corre-
spond to {RedHat,Windows XP,Windows NT}, {Ubuntu,Windows XP,Windows -
NT} and {Windows XP,Windows NT}, respectively. The frame OS effectively allows
the relationship between the propositions (i.e., the mutual exclusion and set-inclusion) to
be discerned and implicitly captured within the frame. However without expressing the
propositions on the common frame OS, such relationships need to be explicitly specified.
For instance, the set-inclusion relationship between Ubuntu(X) and Linux(X):

Ubuntu(X)
is a→ Linux(X)

(i.e., Ubuntu(X)
1→ Linux(X), Ubuntu(X)

0→ Linux(X)), may be expressed within
Influx1 using the include operator (INC) as
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Linux(X) = INC(Ubuntu(X)).14

The function specified above can be interpreted as ‘if X is Ubuntu, it is certainly Linux;
otherwise it is unknown if X is Linux’. Likewise, given the belief of Ubuntu(X) is known,
the belief for RedHat(X) can be explicitly inferred as

Ubuntu(X)
is not a→ RedHat(X)

(i.e., Ubuntu(X)
1→ RedHat(X), Ubuntu(X)

0→ RedHat(X)), and computed using the
following Influx1 syntax:

RedHat(X) = NOT∧INC(Ubuntu(X)). (24)

In the same vein, if RedHat(X) is known, the belief for Ubuntu(X) can be explicitly
represented and computed in Influx1:

Ubuntu(X) = NOT∧INC(RedHat(X)). (25)

The two functions above indicate that if X is RedHat, it is certainly not Ubuntu (oth-
erwise, it is unknown if X is Ubuntu), and if X is Ubuntu, it is certainly not RedHat
(otherwise, it is unknown if X is RedHat).

It is important to note that when Ubuntu(X) and RedHat(X) both receive evidence and
transfer belief to each other (thus, necessitating that both functions (24) and (25) be
invoked), one faces the problem of circular inferencing (as depicted in Figure 8a). Since
Influx1 does not yet handle bidirectional reasoning, circular inferencing can be problematic.
To this end, circular inferencing can be avoided at the network level by means of ‘divorcing’
elements of a set of mutually exclusive propositions A = {A1, A2, . . . , An}. This can be
done via the use of a dummy proposition A′i for each Ai which collects and combines all
the beliefs induced on Ai (excluding those induced from Aj , j 6= i) before transferring
the combined belief to Ai and, at the same time, acting as evidence to disconfirm Aj
(Aj ∈ A, j 6= i). As shown in Figure 8b, provided that the sources (e and e′) that
give evidence for isRedHat(X) and isUbuntu(X) are independent, the multiple beliefs
associated with RedHat(X) and Ubuntu(X) can be computed using a fusion operator
(such as the D-S rule):

RedHat(X) = DS(isRedHat(X), NOT∧INC(isUbuntu(X)))

Ubuntu(X) = DS(isUbuntu(X), NOT∧INC(isRedHat(X))),

If the beliefs propagated to isRedHat(X) and isUbuntu(X) originate from overlapping
sources, the method that combines the beliefs should appropriately reflect such depen-
dency. Details relevant to the above combination and propagation functions are discussed
in Sections 4.3 and 4.4 of the document.

As shown above, the discernment space 2Ω can be potentially represented by means of
BFoDs and explicit relationships between them. Yet, the presented approach has the
following major implications:

14If the rule is intended to be applied to any computer X, the syntax should read: Linux($X) =

INC(Ubuntu($X)).
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Figure 8: The circular inferencing between Ubuntu(X) and RedHat(X) in (a) can be
resolved by decoupling the two propositions via the use of the dummy propositions
isUbuntu(X) and isRedHat(X) as shown in (b).

• An explicit representation of a portion of the discernment space by means of coars-
ened frames and the relationships between them (instead of having them implicitly
embedded in Ω in the standard approach) generally results in a less compact network,
as a trade-off for attaining the aforementioned practical goals of the reasoner. If Ω
contains many elements, and the portion of interest, S, of the discernment space is
large and complex, an explicit representation of the space of interest can be cumber-
some. Fortunately, in many practical cases, S is relatively small and hierarchically
structured as illustrated in Figure 4 and discussed in Section 3.2.3. Indeed in such
situations, the use of a small number of binary frames (as coarsened frames of Ω),
instead of a large frame of discernment, can provide a more intuitive and transparent
way to capture the expert’s knowledge, as well as eliminate the need to specify the
complex relationship between any two frames with an arbitrary size.

• The transfer of belief between subsets in Ω as carried out by the D-S rule does
not assume any direction. As Influx1 does not yet handle bidirectional reasoning,
inferencing between the propositions in S is carried out according to the direction
explicitly specified, in a uniform manner with the rest of the rule network.

Both of the issues presented above are part of the agenda to be addressed in the design
and implementation of Influx2.

4.2 Belief representation

In Section 3, we presented three basic belief functions to capture imperfect knowledge
expressed on a frame of discernment: basic probability assignment (bpa or m), belief
function (Bel) and plausibility function (Pl). These three functions have direct corre-
spondence and can be converted between each other through linear transformation (i.e,
Möbiũs transform). For this reason, when the distinction between them does not matter,
we will, hereafter, simply refer to them as belief functions.

Due to their mathematical equivalence, any of these functions can, in principle, be used
to encode the knowledge base, and which function to use depends on preference and
convenience. For instance, the function m can be recovered from Bel as

m(A) =
∑
B⊆A

(−1)|A \B| Bel(B) (26)

where | . | denotes the cardinality.

Since a BFoD is used for concept representation in Influx1, it is straight-forward to use the
bpa m for storing and computing knowledge. However, Influx1 supports these three belief
functions, and the user may choose on each occasion which to use. Since a bpa m expresses
belief on a frame of discernment at a primitive level, and thus enables direct manipulation
of the belief mass assigned to individual propositions, it is a natural choice for describing
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input knowledge, and the current state of knowledge. Whereas for knowledge outcomes,
the natural choice is the degree of belief and plausibility of propositions as supported by
evidence.

As BFoDs (e.g., ΘA = {A,A}) are the building blocks for representing knowledge in
Influx1, a bpa m associated with each concept is, in this particular case, defined by the
three numbers m({A}), m({A}), and m(Θ) (or m({A, A})). Then the degree of belief of
A is simply given by:

Bel({A}) = m({A})

while the plausibility of A is computed as:

Pl({A}) = m({A}) +m(ΘA) = 1−Bel({A})

and the quantity m(ΘA) corresponds to the amount of ignorance.

The use of BFoDs and their associated bpas in Influx1 provides the reasoning system a
simple and uniform belief representation (i.e., the belief associated with every concept is
represented in the form (m({A}), m({A}), and m(ΘA)), contributing significantly to the
efficiency of system development and deployment.

4.2.1 Belief and plausibility functions

In general, a belief function is useful in indicating the degree to which a proposition is
believed to be true (due to the available evidence confirming/disconfirming it, and the
defined relationships between the propositions), while the plausibility function suggests
the extent to which a proposition could possibly be true (due to the same evidence and
relationships). Commonly accepted interpretations for the associated interval [Bel, Pl]
are as follows:

• A[0, 1]: no knowledge at all about A.

• A[0, 0]: A is false.

• A[1, 1]: A is true.

• A[0.25, 1]: evidence provides partial support for A.

• A[0, 0.85]: evidence provides partial support for A.

• A[0.25, 0.85]: the evidence simultaneously provides support for both A and A.

4.2.2 Pignistic and ternary logic functions

Besides the belief and plausibility functions which are the two standard criteria for decision
making, Influx1 also provides two additional belief representations using the pignistic
function BetP and the ternary logic function T . The pignistic function endows users with
the flexibility to adopt a probabilistic interpretation of knowledge (which is necessary
when decision making is to be carried out based on how probable a hypothesis is), as well
as the capability to switch to probabilistic reasoning at any point throughout the reasoning
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process. Likewise, the ternary logic function allows reasoning in Influx1 to simplify into
reasoning with three-valued logic (true, false, or unknown) when necessary.

Pignistic function In the framework of transferable belief models (TBMs), Smets [51]
distinguished two different ways to quantify beliefs according to the mental level in which
they are used: at the credal level (where beliefs are entertained), it is essential that beliefs
are represented as belief functions; and at the pignistic level (where beliefs are used to
make decisions), it is necessary that beliefs are represented as probability functions. To
this end, the BetP function allows one to transform a belief measure into a probability
measure as defined below:

BetP (θi) =
∑

θi∈θ⊆Θ

m(θ)

|θ|
,

BetP (θ) =
∑
θi∈θ

BetP (θi), θ ⊆ Θ. (27)

In the case of Influx1 with BFoDs, this simplifies to the equal distribution of m(ΘA) to
m({A}) and m({A}).

Example 7 Given the bpa mCc which expresses the belief associated with the
proposition ClassifiedComputerOn(X) (denoted as Cc) in Figure 9:

mCc({Cc}) = 0,

mCc({Cc}) = 0.44,

mCc(ΘCc) = 0.56,

this belief can be represented with Bel, Pl and BetP as:

Cc [Bel, P l] = Cc [0, 0.56],

and

BetP (Cc) = 0.28,

BetP (Cc) = 0.72.

According to the BetP function, the probability for the fact that ‘a computer
X is on and classified’ is 28%. However, the Bel and Pl functions provides
more insight into this result: (i) this fact is currently not confirmed by the
available evidence (mCc({Cc}) = BelCc({Cc}) = 0) while there is evidence
that partially disconfirms this fact (mCc({Cc}) = BelCc({Cc}) = 0.44); and
(ii) in general this result is not strongly supported (indicated by a reasonably
large amount of belief mass assigned to ignorance: mCc(ΘCc) = 0.56) due to
either a lack of evidence or a weak relation defined between the proposition
and those from which it infers belief.

By supporting multiple modalities for belief representation, Influx1 provides a rich and
informative interpretation of a piece of knowledge. For instance, Figure 10 depicts two
very different situations which give rise to the same answer in terms of probabilistic in-
terpretation. In Figure 10a, the two sensors are not activated, and thus are completely
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Figure 9: An illustration of different ways to represent belief for
ClassifiedComputerOn(X) in Example 7. The bpa mCc (left) is gener-
ally suitable for capturing the input and current state of knowledge, while
the other two representations (middle and right) are useful to summarise the
outcome (specifically, as degrees of belief and plausibility using the Bel and Pl
functions, or as probabilities using the BetP function).

ignorant about whether there is any traffic or ping response from computer X (revealed
in the vacuous bpas mT and mP ), whereas in Figure 10b, TcpDump certainly observes
traffic from X but Ping has not received any response from the computer (revealed in
their total confirmation and disconfirmation bpas). In both cases, the computer X has
an equal probability to be on or off (as indicated by the BetP functions). However, the
information provided by the Bel and Pl functions faithfully reflects the reality: (i) though
it is totally plausible, there is absolutely no evidence informing the status of X in the
former scenario (i.e., C[0, 1] and C [0, 1]), and (ii) there is an equal amount of evidence that

supports both possible states of the computer X (i.e., C[0.44, 0.56] and C [0.44, 0.56]) in the
latter scenario.

Ternary logic function Instead of simplifying reasoning with belief functions into
probabilistic reasoning via the use of the pignistic function, the ternary logic function
T effectively reduces reasoning with belief functions to three-valued logical reasoning in
a seamless manner when the belief supporting a proposition reaches a sufficient degree of
certainty defined by δ. The function T for a BFOD Θ is defined as:

∀A ⊂ Θ, T (A) =

{
1 if m(A) ≥ δ, where δ ∈ [0.5, 1]
0 otherwise

(28)

T (Θ) = 1−
∑
A⊂Θ

T (A)
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Figure 10: An illustration of disparate situations where the output knowledge provides the
same probabilistic answers. In (a), there is absolutely no evidence informing
the status of the computer A while in (b) there is an equal amount of evidence
that supports both possible states of X. However in both cases, the computer
X has an equal probability to be on or off. The propagation functions Y and AS

will be discussed in Section 4.4.

which allows each proposition A to be interpreted as being either true (i.e., A[1, 1]) , false
(i.e., A[0, 0]) or ‘unknown’ (i.e., A[0, 1]).

4.3 Belief combination

In Section 4.1, we discussed how to combine a set of beliefs pertaining to different proposi-
tions, mC1,mC2, . . . ,mCn, to form a new belief for the constructed proposition, mP . For
instance, in Figure 6, the and operator combines the beliefs associated with ComputerOn-
(X) and Classified(X) in order to produce the belief for the compound proposition
ClassifiedComputerOn(X). This section addresses combination of beliefs pertaining to
the same proposition — the situation that arises when there is more than one belief,
mP 1,mP 2, . . . ,mP n, induced on P from multiple sources. For example, ComputerOn(X)
is at one time associated with both mT

C and mP
C propagated from TcpDump(X) and

Ping(X) (see Figure 11).

In Influx1, belief combination receives two major treatments: (i) combination by means
of a fusion operator (if mP 1,mP 2, . . . ,mP n are induced by a set of information sources
E = {E1, E2, . . . , En} serving as evidence for P ), and (ii) combination on the basis of
sufficiency and necessity criteria (if mP 1,mP 2, . . . ,mP n are induced by set of information
sources C = {C1, C2, . . . , Cn} serving as conditions for P ).

The former type of belief combination is extensively studied in the literature of information
fusion and evidential reasoning. In these paradigms, Ei serves as evidence for P — the
evidence Ei may reveal the truth or otherwise of P . With respect to causal knowledge, Ei
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corresponds to an outcome, effect or manifestation of P . For instance, ‘TcpDump observes
packets from X’ (T ) is an outcome (thus, evidence) of ‘the computer X is on’ (C) which
may in turn be an outcome/evidence for ‘the computer X is plugged in’ (Pg). As such,
by observing T or C, one can infer C or Pg, respectively. When there are multiple pieces
of evidence bearing on a proposition (as shown in Figure 11c), the overall belief for the
proposition is obtained through an aggregation of the beliefs induced by the evidence using
a fusion operator. A fusion operator generally does not assume any form of interaction
between the opinions. It aims to find the consensus among the opinions in order to obtain
a better estimate about the situation.

The latter type of belief combination handles the situations where Ci serves as a condition
for P — the condition Ci allows the prediction of P . With respect to causal knowledge,
Ci corresponds to a cause of P . For instance, ‘the computer X is plugged in’ (Pg) may
cause ‘the computer X is on’ (C) which in turn may cause ‘TcpDump observes packets
from X’(T ). As such, given Pg or C, one may predict C or T , respectively. When there
are multiple conditions associated with P , their opinions about the proposition need to be
combined according to the notion of sufficiency and necessity to predict P .

When the multiple beliefs associated with a proposition P are induced by both C and E,
the combined belief for C and the combined belief for E should be separately computed
before being aggregated using a fusion operator. The two types of belief combination are
discussed in more detail below.

4.3.1 Belief combination pertaining to evidence

Influx1 is expected to deal with uncertain, incomplete and conflicting information. Such
imperfect information can be due to the information itself, to the reliability of its sources,
or to errors in measurement, transmission, communication or interpretation of the infor-
mation. When precision and reliability are critical (such as in situational awareness and
mission control systems), information is often collected and fused from multiple sources
in order to enhance the accuracy of the information, and subsequently the quality of
reasoning and decision making processes.

This type of belief combination is extensively studied in the literature of information
fusion and evidential reasoning. Mathematically in the D-S framework, belief combination
involves aggregating beliefs induced by multiple information sources bearing on the same
frame of discernment (i.e., mT

C and mP
C in Figure 11). Here, each information source Ei

(or more precisely, the belief of Ei) serves as evidence for P , and the beliefs induced by a
collection of evidence E on P are combined with a fusion operator.

In the particular example in Figure 11, TcpDump(X) (T ) and Ping(X) (P ) serve as
information sources for ComputerOn(X) (C), and their respective beliefs mT and mP

(e.g., ‘TcpDump(X) believes strongly to have observed packets from X’ or ‘Ping(X)
certainly has received responses from X’) serve as evidence to infer the status of C. Each
individual opinion, mT

C and mP
C , corresponds to distinct beliefs bearing on C, and can

be viewed as opinions of TcpDump(X) and Ping(X) about ComputerOn(X) given mT

and mP . Belief combination using a fusion operator is usually called for in the following
scenarios.
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Figure 11: The belief associated with ComputerOn(X) is likely to be more reliable through
a combination of opinions (expressed in the form of belief functions mT

C and
mP
C) provided by the two sensors TcpDump and Ping.

• When dealing with imperfect knowledge/information, one often does not rely on one
source of information. Rather one attempts to increase the reliability of the infor-
mation by collecting relevant evidence from multiple sources and combining their
respective beliefs about the information in question. Considering the two opinions
mT
C and mP

C provided by the two sensors TcpDump and Ping given in Figure 11a
and Figure 11b, one would obtain a more ‘informed opinion’ about ComputerOn(X)
through an aggregation of the opinions provided by both the sensors (see Figure 11c).
As depicted in the figure, mT

C strongly supports ComputerOn(X) while mP
C strongly

supports its negation ComputerOn(X). By fusing these two belief functions using
the D-S rule, the obtained mT,P

C reflects the reality that both the proposition and
its negation are equally supported by the collected evidence. When an informa-
tion source is totally ignorant about the situation, its belief (which is expressed in
the form of a vacuous bpa) has no impact on the aggregated belief because such a
vacuous bpa (mV ) serves as a neutral element, i.e., mV ⊗m = m.

• It is possible that different reasoning paths in a rule network lead to different conclu-
sions regarding the same proposition (e.g., executing the two rules A ∧B → D and
C → D can result in different states of belief about D). While different conclusions
derived for a proposition would be treated as contradictions and thus rejected in
monotonic reasoning, this is a typical, expected and desirable situation in Influx1

and the conclusions in such a case are simply aggregated through a combination of
their respective belief functions using a fusion operator.

test

4.3.1.1 Fusion operators A fusion operator is generally used when a more ‘informed’
view or a more objective opinion about a situation is required through an aggregation of
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the beliefs pertaining to the different views (or opinions) about the situation. In general,
belief fusion promotes belief confirmation/disconfirmation about a proposition A when
the different information sources (or evidence) agree with each other in their view about
A. More particularly, (i) when the information sources tend to agree with each other in
confirming A, belief of A will be promoted, that is a number of weak confirming beliefs
might produce a strong confirming belief; and (ii) when the information sources tend to
agree with each other in disconfirming A, belief of A will be promoted, that is a number
of weak disconfirming beliefs might produce a strong disconfirming belief. Conversely,
when the information sources are in disagreement, belief fusion appropriately ‘balances-
out’ their opinions (e.g., the D-S rule) or promotes ignorance (e.g., the D-P rule) when
computing belief associated with the aggregated opinion.

Having presented such general characteristics of belief fusion, which method to use to per-
form such aggregation would depend on a number of factors, one being the potential depen-
dency among the opinions (or views) being combined. For instance, let’s assume that both
a person A and a person B give their opinions that the computer X is on, and let’s imagine
the two following scenarios: (i) B has actually learnt about this event directly/indirectly
from A, and (b) B himself/herself has witnessed the event. It is obvious that a fusion op-
erator should not treat the two opinions as having an equal and independent contribution
and thus strengthen the confirmation/disconfirmation of ComputerOn(X) in the former
case, while it should in the latter case. This factor, amongst others, explains the existence
of a collection of different combination rules investigated in the literature which offer al-
ternative methods to aggregate opinions according to specific situations when relevant
knowledge about the opinions is available.

A collection of implemented fusion operators As no single fusion operator investi-
gated in the literature is suitable for all situations, and as Influx1 is intended to support a
wide range of applications, it is necessary for practitioners to have at their disposal a set of
operators covering different fusion/reasoning scenarios. To this end, we have implemented
the collection of combination rules summarised in Tables 5 and 6, the representatives of
which are presented in Table 9.

Due to the adoption of BFoDs as a building block for concept and belief representation
in Influx1, we also include the implementation of a so-called summation rule which is
applicable when the information sources Ei correspond to mutually exclusive propositions.
The summation rule, when applied to combine the two bpas m1 and m2 associated with a
proposition P , simply sums over all the confirmation (m12({P}) = m1({P}) + m2({P}))
and disconfirmation belief masses (m12({P}) = m1({P}) +m2({P})).
Furthermore, the averaging rule given in Table 5 (Section 3) does not treat vacuous bpas
(the bpas that represent total ignorance) as neutral elements as other fusion operators do.
Since it is important that a piece of evidence in a total ignorance state should not have
impact on the confirmation/disconfirmation of a proposition, we implemented a customised
averaging rule in Influx1 which can effectively and appropriately deal with vacuous belief
functions:

m1({A})(1−m1(ΘA)) +m2({A})(1−m2(ΘA))

(1−m1(ΘA)) + (1−m2(ΘA))
, A ⊂ Θ. (29)

From the computational perspective, a bpa m associated with a proposition in Influx1
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is defined only by three numbers, i.e., m(A), m(A) and m(ΘA). This allows simplified
versions of the different combination rules to be derived, significantly reducing the compu-
tational complexity of the combination process. More specifically, in the case of the D-S
rule, a reduced form of this rule is given as

(a b)⊗ (c d) =

[
1− āc̄

1− (ad+ bc)
, 1− b̄d̄

1− (ad+ bc)

]
(30)

where x̄ = 1−x, and x, y in (x y) denote Bel(A), Bel(Ā) of a proposition A, respectively.
This particular representation of the rule makes it possible to formulate an inverse function
[18] to subtract evidence:

(a b)− (c d) =

[
c̄(ad̄− b̄c)

c̄d̄− b̄cc̄− ādd̄
,

d̄(bc̄− ād)

c̄d̄− b̄cc̄− ādd̄

]
(31)

Not only does this permit a significant speed-up in combining a large number of belief
functions (evidence), but the presence of the inverse formula15 allows the belief for a
concept to be efficiently updated (recomputed by subtracting the belief of the evidence
to be removed, and then re-fusing with the belief of the new evidence) without having to
repeat the whole combination process16.

Provided below is a discussion regarding the potential usage of a number of combination
rules implemented in Influx1. In particular, it provides some suggestions on the applicabil-
ity of combination rules in Table 9 as the fusion operator in the various scenarios depicted
in Figure 12.

Combination of belief from independent sources In the typical situations depicted
in Figures 12a and 12b, the beliefs propagated to D (A→ D, B → D, C → D) come from
independent sources, IO-typed operators are the most appropriate ones to combine belief
for D. Provided that the sources are reliable (Figure 12a), the D-S and D-P rules are the
recommended operators. The D-S rule emphasises consensus between mA

D, mB
D, mC

D and
proportionally promotes the states of D in agreement. On the other hand, the D-P rule
emphasises both consensus and conflict — it captures ‘hard’ consensus between opinions
and distributes conflict mass to the relevant disjunctive state (or ignorance, in the case of
Influx1 — thus equivalent to Yager’s rule). For instance, an application of the D-S and
D-P rules to the example in Figure 11 would produce the following combined opinions
(mDS

C and mDP
C , respectively) about ComputerOn(X):

mDS
C ({C}) = 0.49,

mDS
C ({C}) = 0.49,

mDS
C (ΘC) = 0.02;

15Indeed, an inverse formula exists for the class of non-dogmatic bpas — thanks to Dr. Martin Oxenham
for pointing this out to us.

16The inverse formula for the D-S rule is not currently implemented in Influx1 due to the fact that there
does not yet exist such a formula for the other combination rules. However, the inverse formula can be
added to a future version of Influx1 as an optimisation feature, if desired.

48

UNCLASSIFIED



UNCLASSIFIED
DST Group–TR–3142

Evidence type Operator type Specific operator

Evidence from independent sources IO IODS (D-S rule)

IODP (D-P rule)

IOD (disjunctive rule)

Evidence from dependent or partially de-
pendent sources

DO DOC (cautious rule)

DOCS (semi-cautious rule)
DOA (averaging rule)

Independent evidence from a common
source

CO (cumulative rule)

Evidence from mutually exclusive sources DOC (cautious rule)

SO (summation rule)

Table 9: Major fusion operators implemented in Influx1 and their notations used in this
document; where IO, DO, CO and SO stand for independent, dependent, cumulative
and summation, respectively. Please note that as given in Table 5, not all of the
fusion operators illustrated here are both commutative and associative (i.e., the
averaging rule is not associative and the DP-rule is quasi-associative). However,
associativity for these rules is achieved in the implementation of Influx1 through
different treatment of the non-associative/associative components of the rules.

and

mDP
C ({C}) = 0.17,

mDP
C ({C}) = 0.17,

mDP
C (ΘC) = 0.66.

This example suggests that the use of the D-S rule is recommended in a general case where
the information sources are somewhat expected to provide diverging opinions. However,
when such divergence may suggest some abnormality or suspicious event that needs to be
captured, the D-P rule may become more useful. When there are no conflicts among the
opinions, the two rules produce exactly the same results17.

In some extreme scenarios (Figure 12b) where some of the sensors are known (or assumed)
not to provide correct information (e.g., due to sensors being broken) but knowledge of
the specific unreliable sources is unavailable, the more appropriate fusion operator to use
in this case would be the disjunctive rule ( IOD). The disjunctive rule of combination
resolves the problem of combining opinions (e.g., mA

D, mB
D and mC

D) potentially provided
by unreliable sources by distributing the belief masses associated with partial agreement

17Please note that in both cases the degree of conflict associated with the belief functions being combined
can be captured in the K value presented in Section 3.
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and conflict between the opinions to the relevant disjunctive states of the proposition D
(or ignorance, in the case of Influx1). In general the disjunctive rule operates in a very
cautious manner (promoting ignorance), and should only be used when necessary — when
most of the sensors are well known to be possibly unreliable.

Figure 12: An illustration of various scenarios pertaining to belief combination. In this
figure, the belief associated with the information sources for a proposition serve
as evidence for the proposition. For instance, the belief associated with A, B
and C in (a) are evidence which provide multiple opinions, mA

D, mB
D and mC

D,
about D.

Combination of belief from (partly) dependent sources In circumstances where
the belief propagated comes from non-independent sources (Figures 12c and 12d), DO-typed
operators can in turn be leveraged.

• With respect to Figure 12c, the beliefs to be combined at E can all be considered to
be provided by the same source A, but each ‘relayed’ through, and adjusted by B,
C and D. Thus it is plausible in this case to ‘average out’ the belief propagated to
E from B, C and D, justifying the use of the averaging rule.

• Regarding Figure 12d, the direct information sources of F assume a form of partial
dependency (i.e., the belief associated with E is influenced by only C while that
associated with D is influenced by A, B and C), the applicability of the averaging

50

UNCLASSIFIED



UNCLASSIFIED
DST Group–TR–3142

rule presented above (which assumes an equal credibility of mD
F and mE

F ) seems less
justified in this case.

– Customising the averaging rule One possible solution is to customise the
averaging rule and include in its formula the so-called importance weights µi
which reflect the relative importance of each belief function to be combined
mi based on the degree of dependency between their sources. For instance,
given the importance weights for mD

F and mE
F as µ1 and µ2, µ1 and µ2 can be

computed as 1 and 1
3 , respectively, according to the number of sources feeding

evidence toD and E. ThenmD
F⊗mE

F can be combined through an incorporation
of µ1 and µ2 into the averaging rule in Eq. (29) as follows:

µ1m
D
F ({A})(1−mD

F (ΘA)) + µ2m
E
F ({A})(1−mE

F (ΘA))

µ1(1−mD
F (ΘA)) + µ2(1−mE

F (ΘA))
, A ⊂ Θ. (32)

– Utilising the cautious rule Another possible option is to utilise the cau-
tious rule. In some specific scenarios, the cautious rule is able to deal with
non-distinct and non-independent evidence by avoiding counting each body of
evidence more than once, due to its idempotency. In a general setting, the rule
manages the evidence dependency problem by operating in a ‘cautious’ man-
ner. For instance, the rule first decomposes mD

F and mE
F into a collection of

simple bpas, {ms
F ({F})} and {ms

F ({F})}, and then recombines the two simple
bpas that provide the maximal support for {F} or {F}. However, the rule
assumes a strong evidence dependency and at times can be too ‘cautious’. The
adequacy of the cautious rule is somewhat diminished when the opinions or
pieces of evidence have overlapping information sources, and are thus only in
a partial dependency relationship. To this end, Influx1 also offers a so-called
semi-cautious rule (presented below) to deal with such situations. The use-
fulness of the semi-cautious rule prevails in cases where the network structure
is complex, rendering the measurement of evidence dependency nontrivial or
infeasible.

The semi-cautious rule

As previously described, the cautious and D-S rules represent both extremes
of information fusion with respect to the dependence of evidence. On the one
hand, a cautious rule is able to fuse dependent/identical evidence. On the other
hand, the D-S rule mandates that the evidence be distinct and independent.
To fuse partially dependent evidence, one would need to find an intermediate
between these extremes. The idea underpinning the semi-cautious rule is based
on the study by Denœux [8] who proposed to replace the minimum operator
in the cautious rule’s formula (see Table 6) with a parameterised family of
triangular-norms (or t-norms)18 on [0, 1]. One such family of t-norms is the
Dubois-Prade family defined as:

xTDPγ y =
xy

max(x, y, γ)
, where T is a a t-norm and γ ∈ [0, 1] (33)

18A t-norm is a generalisation of set intersection. Mathematically, a t-norm can be defined as a func-
tion from [0, 1] × [0, 1] to [0, 1] with the following fundamental properties: commutativity, monotonicity,
associativity and neutrality of 1.
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which include the product and minimum t-norms as special members. When T
is the minimum operator (i.e., γ = 0), one obtains the cautious rule. Conversely,
when T is the product (i.e., γ = 1), one has the D-S rule. In Influx1, the value
for γ is encoded as

γ = max(x, y) + (1−max(x, y)) ∗ 0.5, (34)

thereby achieving the semi-cautious rule. The fusion result of this rule is inter-
mediate between that of the cautious and D-S rules, therefore appropriate for
combining beliefs from partly dependent sources.

Combination of belief pertaining to independent pieces of evidence from a com-
mon source The cumulative operator should be used when the beliefs being combined
are induced by distinct and independent evidence from a common source. As illustrated
in Figure 12e, the sensor A is monitoring and regularly reporting information pertaining
to B in a temporal manner. For example, TcpDump reports regularly at each time point
ti within a time window t whether it has observed packets generated from the computer
X. Since each observation at A is carried out at the time ti, it is distinct and independent
from each other, yet provided by the same source A. It is intuitive and plausible in this
particular case to compute the belief associated with B for a specific time window t by
accumulating all the opinions from A to B during the time window (i.e., mA

Bt1
, mA

Bt2
, mA

Bt3
,

mA
Bt4

and mA
Bt5

), justifying the use of the cumulative rule in this case.

Combination of belief from mutually exclusive sources As discussed in Section
4.1.1.3, the BFoDs associated with mutually exclusive propositions can be viewed as coars-
enings of an implicit frame Ω. For instance, assuming that A, B and C in Figure 12f
constitute an exhaustive set, their respective BFoDs, ΘA = {A,A}, ΘB = {B,B} and
ΘC = {C,C}, are considered coarsenings of Ω = {A,B,C}. Specifically, A, B and C
correspond to elements (or singleton subsets) of Ω, and A, B and C correspond to {B,C},
{A,C} and {A,B}, respectively. Combination of beliefs associated with D can be treated
in the two following ways, which one is to be used depends on the relationship defined
between each of ΘA, ΘB, ΘC and ΘD.

• Provided that the relationship between an information source (e.g., A) and D is
defined for all elements of ΘA (i.e., A and A), then the opinion propagated from A
to D (mA

D) can be considered an approximation of the opinion to D from its refined
frame Ω (mΩ

D). To this end, mA
D, mB

D and mC
D would correspond to variations of the

same opinion mΩ
D. Thus it is plausible to combine the opinions using the cautious

rule which treats the opinions as carrying overlapping/duplicate information in the
combination process.

• Alternatively, the relationship between an information source (e.g., A) and D may
be only defined for A (i.e, given A, it is ignorant about D). As such, the opinions
mA
D, mB

D and mC
D do not represent variations of the opinion from Ω, but correspond

to the ‘elementary’ opinions induced by individual elements of Ω. In this case, mA
D,

mB
D and mC

D have an additive effect on D and thus should be combined using the
summation rule.
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Figure 13: An illustration that distinguishes the use of the ‘and’ operator to (i) com-
bine opinions propagated to Inaccessible(X) from different information sources
(i.e., mL

I ∧mP
I as in (a)) with the use of the operator to (ii) combine the infor-

mation sources themselves (i.e., mL ∧mP as in (b)) before propagating belief
to Inaccessible(X). The latter situation is appropriate and valid where the
conditions Locked(X) and PasswordLost(X) have a synergistic effect on the
proposition Inaccessible(X).

4.3.2 Belief combination pertaining to conditions

When P may be predicted by of one or more conditions C = {C1, C2, . . . , Cn}, the operator
that combines the beliefs induced by C on P should reflect the sufficiency and/or necessity
of the conditions with respect to P . To this end, belief combination can be performed using
the various operators presented in Table 7 (Section 4.1.1.3) in place of fusion operators.
Practically, such operators can be utilised in one of two ways: (i) constructing a new
proposition (or condition) C ′ from Ci (if elements in C collectively constitute a condition
for P ), and (ii) combining the beliefs (or opinions) induced by each Ci on P (if elements
in C serve as individual conditions for P ).

Elements in C collectively constitute a condition for P The influence on P from C
in this case is captured in a single relation. This requires a new proposition C ′ constructed
from Ci as discussed in Section 4.1.1.3, and a specified relationship between C ′ and P .
Examples are shown in Figures 13b and 14b. This approach is generally applicable in the
following scenarios.

• The truth of all the conditions Ci in C has a synergistic effect on P (see Figure
13b). In this case, it is necessary to construct a new proposition C ′ that reflects
the conjunctive truth of Ci using an and -typed operator. For instance, each of the
propositions Locked(X) and PasswordLost(X) on its own may not have a very
strong effect on whether the computer X is currently inaccessible (see Figure 13a).
However, the fact that both of the conditions are true has a synergistic effect on
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Figure 14: An illustration that distinguishes the use of the ‘or’ operator to i) combine
opinions propagated to Compromised(X) from different information sources
(i.e., mU

Cp∨mD
C p as in (a)) with the use of the operator to (ii) combine the infor-

mation sources themselves (i.e., mP ∨mO as in (b)) before propagating belief to
ComputerOn(X). The latter approach is appropriate when the relationship be-
tween ComputerOn(X) and its conditions PluggedIn(X) and OnBattery(X)
is not sensitive to the specific condition, or conditions, that are true.

the inaccessibility of X, in which case it is necessary and important to express
the influence among the propositions as presented in Figure 13b. Expressing the
influence from C onto P as depicted in Figure 13a would not reflect the reality,
thereby providing an incorrect answer.

• The truth of one or more conditions Ci has an impact on P , however the nature of
the relation between C and P is not sensitive to the specific condition Ci that is true,
nor which combination of Ci that is true (see Figure 14b). In this case, an or -typed
operator (if Ci serve as alternative conditions for P ), or the mean operator (if Ci
are neither necessary nor sufficient) can be used to construct the new proposition
C ′. For instance, ComputerOn(X) can be considered confirmed if one or more of
the conditions (PluggedIn(X) and OnBattery(X)) is confirmed, without a need
to clearly distinguish which condition, or which group of conditions, is confirmed.
As such the relationship between the propositions can be modelled as presented in
Figure 14b.

When the specific knowledge pertaining to the strength of the relation between each
element of C and P is unavailable, this approach can also be used to approximate the
belief computed for P . Practical advantages of this approach include the provision of
a simpler rule network, fewer numerical values required as input, and an alleviation
of the complexity associated with knowledge acquisition, learning and training.

Elements in C serve as individual conditions for P Each condition Ci may have
a different impact on P , and the impact on P may be increased with the number of Ci
that is confirmed. This requires a specified relationship between each Ci and P , and
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combination of the beliefs (or opinions) induced by Ci on P as shown in Figure 14a. In
the figure, Compromised(X) is confirmed to a degree of p and q if either of the condi-
tions Unpatched(X) and DisabledF irewall(X) is confirmed, respectively. The support
for Compromised(X) is only increased (linearly to p and q) if both Unpatched(X) and
DisabledF irewall(X) are confirmed. This necessitates the use of the or operator to com-
bine the belief induced on p from the conditions (as shown in Figure 14a). Similarly,
other operators in Table 7 can be used to combine the opinions from Ci according to the
dependence/independence between Ci, and the sufficiency/necessity between Ci and P .
Exceptions are and/andsub which are generally applicable when elements in C collectively
constitute a condition, and rarely find application in the type of combination discussed in
this approach.

4.4 Belief propagation

The previous section deals with aggregating belief functions defined on the same frame of
discernment induced by different sources (e.g., mT

C and mP
C in Figure 15) for which a col-

lection of combination methods implemented in Influx1 have been presented and discussed.
This section is concerned with belief transfer between different frames of discernment, such
as belief transfer between mT and mT

C , or between mP and mP
C . Here, the context is that

while a portion of propositions in the knowledge base receive evidence from dedicated
sources or sensors, the majority of them would receive no direct observations, and thus
assessment of their belief must be inferred (if possible) from other propositions. To this
end, belief propagation allows one to infer the degree of belief for those propositions which
the collected evidence do not directly bear on.

Figure 15: An illustration of belief combination and belief propagation.

Given any two propositions with a dependency relationship, such a relation can be imple-
mented as an implication (or ‘if-then’) rule which is also associated with a belief quantifying
the strength of the relationship:

A
p→ B, where p ∈ [0, 1]. (35)

For instance, the relation between TcpDump(X) and ComputerOn(X) might be described
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as:
TcpDump(X)

0.8→ ComputerOn(X). (36)

In the Bayesian probabilistic interpretation, p is understood as a probabilistic measure,
and Eq. (35) is the conditional probability of B given A. As such, Eq. (36) can be read
as: given that TcpDump observes packets from X, there is an 80% chance that X is on,
directly entailing a 20% chance that X is off.

Unlike the probabilistic standpoint, D-S reasoning is focused on providing ‘provable’ belief
measuring the truth of hypotheses/propositions based on the available evidence. To this
end, the quantity p in Eq. (35) is not a probabilistic measure, but a belief mass19 indicating
the extent to which B is logically supported by the evidence A. In this sense, Eq. (36)
can no longer automatically infer 0.2 as the degree of support for ComputerOn(X) since
the fact that TcpDump observes packets from X does not serve as a piece of evidence
proving that the computer X is off. Given that TcpDump observes packets from X (i.e.,
mT ({T}) = 1, mT ({T}) = 0 and mT (ΘT ) = 0), it is thus more appropriate to assign belief
masses to ComputerOn(X) (denoted as C) as follows:

mT
C({C}) = 0.8,

mT
C({C}) = 0,

mT
C(ΘC) = mT

C({C,C}) = 0.2,

where 0.8 is the degree of belief for {C} supported by the available knowledge and evidence,
{C} is currently not supported by any evidence, and 0.2 is the amount of uncertainty
waiting to be transferred to either {C} or {C} in light of new evidence. As such, a more
precise presentation of Eq. (35) would be

A
[p, 1]→ B (37)

where [p, 1] corresponds to the belief interval [Bel, P l] associated with the implication
rule. For simplicity of notation, Eq. (35) is usually used in place of Eq. (37) throughout
the document. In a number of cases, the belief of A may influence the belief of both B and
B. For instance, one may assert that if the the computer X is plugged in, it is believed to
be ‘on’ to a degree of p. However, if the person is also aware that X has loose cables, and
thus it may not be on when plugged in to a degree of q. In this case, the relation between
the two propositions is given as

PluggedIn(X)
[p, 1−q]→ ComputerOn(X).

When q = 1− p (i.e., A
[p, p]→ B ), the belief function computed for B will be equivalent to

that of the Bayesian implication.

4.4.1 Belief propagation functions

As stated above, Eq. (35) corresponds to the standard logical implication which provides
an endorsement for the conclusion based on the belief measuring the truth of the premise.

19Such a p value in Influx1 is also referred to as a weight that quantifies the strength of the relation
between any two propositions A and B.
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More specifically, on observing packets generated from X, the sensor TcpDump can predict
with a high degree of confidence (i.e., at least 80%) that a computer X is on. Otherwise,
the sensor is not able to provide any information regarding this proposition (i.e., the fact
that TcpDump has not seen any packets from X does not reveal information regarding
whether the computer is on).

In this formulation, belief can be propagated in a similar way to that of logical rule-based
reasoning where the belief of the premise (a simple or compound proposition) is aggregated
with the belief associated with the rule itself in order to deduce the belief concerning the
conclusion. Our concern here is how to combine the belief associated with the premise
with that associated with the implication rule in such a way that it is consistent with D-S
theory.

Since combination of belief in the D-S framework is based on set-theoretic operations, it
is necessary for the belief functions being combined to be defined on the same frame of
discernment (or the same proposition in the case of Influx1). This means, in order to
express and perform the influence of belief between A and B in Eq. (35) (each associated
with a BFoD, ΘA and ΘB, respectively), a new frame needs to be created in such a way
that it can distinguish all the propositions in the original frames. Provided that ΘA and
ΘB are independent, one such frame is the Cartesian product of ΘA and ΘB:

ΘA,B = {(A,B), (A,B), (A,B), (A,B)}

This new frame is indeed a common refinement of both ΘA and ΘB (more details about
frame coarsenings and refinements can be found in Section 3) on which A and B can be
both expressed using the following mapping rules:

ω1 : 2ΘA → 2ΘAB ,

ω1({A}) = {(A,B), (A,B)}, (38)

ω1({A}) = {(A,B), (A,B)},

ω2 : 2ΘB → 2ΘAB ,

ω2({B}) = {(A,B), (A,B)}, (39)

ω2({B}) = {(A,B), (A,B)}.

Then by combining m(A,B) and mA (which defines the current state of belief for A) using
the D-S rule, and subsequently reducing the resulting belief function on ΘB, one would
obtain mB which defines the belief induced on B (as shown in Example 8).

Example 8 Given the implication rule in Eq. (36), this rule can be interpreted
as not T or C (where T and C denote TcpDump(X) and ComputerOn(X), re-
spectively) and expressed on Θ(T,C) in the form of the following belief function
[51]:

mR
(T,C)({(T,C), (T ,C), (T ,C)}) = 0.8,

mR
(T,C)(Θ(T,C)) = 0.2.

Let’s assume that the sensor TcpDump believes to the degree of at least 90%
of certainty that it has observed packets generated from X. Thus the bpa
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associated with the premise of Eq. (36) is:

mT ({T}) = 0.9,

mT ({T}) = 0,

mT (ΘT ) = 0.1,

which can be defined on Θ(T,C) using Eq. (39) as

mT
(T,C)({(T,C), (T,C)}) = 0.9,

mT
(T,C)(Θ(T,C)) = 0.1,

Expressed on the same frame of discernment, mR
(T,C) and mT

(T,C) can now be
combined using the D-S rule. The combined belief function that results is

mT,R
(T,C)({(T,C)}) = 0.72,

mT,R
(T,C)({(T,C), (T,C)}) = 0.18,

mT,R
(T,C)({(T,C), (T ,C), (T ,C)}) = 0.08,

mT,R
(T,C)(Θ(T,C)) = 0.02.

By reducing mT,R
(T,C) on ΘC , one obtains the following belief function for

ComputerOn(X):

mC({C}) = 0.72,

mC({C}) = 0.0,

mC(ΘC) = 0.18 + 0.08 + 0.02 = 0.28.

Indeed, by defining a relation between A and B as a belief function on Θ(A,B), Influx1

provides a mechanism to express an arbitrary relationship pertaining to A and B, rather
than being limited to a ‘strict’ logical implication (as investigated in [9], [17], [15] and
[18]).

For the purpose of enhancing the usability of the tool and minimising the computational
overhead at run-time, Influx1 reduces the need for users to define a relation between any
two propositions A and B as a belief function on Θ(A,B), by providing a collection of built-
in functions that capture a number of potentially useful relations between propositions
in practice. These functions allow belief propagation to be directly carried out using the
derived formulas, thereby bypassing the whole combination process presented in Example
8.

Table 10 illustrates a subset of the common types of relations between any two propositions
and Table 11 exemplifies how the relations are formulated and implemented in Influx1.
In the case where the known relationship between any two propositions A and B is more
complex, and thus cannot directly be captured using the pre-defined functions (such as
those presented in Table 11), the relation between A and B could be expressed in Influx1

using a generic assignment function with additional parameters:

B() = AS(A() / {{p1, p2}, {q1, q2}, {r1, r2}})
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Type Relation Relation descrip-
tion

Example Example description

Single
relation

A
p→ B Relation between

the two proposi-
tions is known

TcpDump(X)
0.8→ ComputerOn(X) If TcpDump observes

packets originating
from X, it is likely
that the computer X
is on; otherwise it is
unknown whether X
is on

If p = 1 The above becomes
an is a relation

Ubuntu(X)
1→ Linux(X) If X is Ubuntu, X is

certainly Linux.

A
q→ B Relation between

the negation of the
two propositions is
known

pluggedIn(X)
1→ ComputerOn(X) If the computer X is

not plugged in, it is
certainly not on; oth-
erwise, it is unknown
if X is on

Parallel
relation

A
p→ B,

A
q→ B

Relations between
the two proposi-
tions, and between
their negation, are
both known

Ping(X)
0.99→ Computer(X), .

Ping(X)
0.8→ Computer(X)

If Ping receives a re-
sponse from the com-
puter X, it is almost
certain that X is on;
if Ping does not, it is
likely that X is not on

If p = 1,
If q = 1

The above becomes
an equivalent rela-
tion

ComputerOn(X)
1→ PowerUsed(X),

ComputerOn(X)
1→ PowerUsed(X)

If the computer X
is on, it consumes
power; if it is off,
it does not consume
power

A
p→ B,

A
q→ B

Relations between
one proposition
and the negation
of the other, as
well as between
the negation of the
proposition and
the other propo-
sition, are both
known

Ping(X)
0.4→ Firewalled(X), .

Ping(X)
0.7→ Firewalled(X)

If Ping receives a re-
sponse from an ac-
tive computer X, it
is somewhat likely
that X does not have
an active firewall; if
Ping does not, it is
likely that X has an
active firewall

If p = 1,
If q = 1

The above becomes
a not relation

Classified(X)
1→ Unclassified(X), .

Classified(X)
1→ Unclassified(X)

If X is classified, it is
certainly not unclas-
sified and vice versa

If p = 1,
If q = 0,

The above becomes
an is not a relation

Ubuntu(X)
1→ RedHat(X), .

Ubuntu(X)
0→ RedHat(X)

If X is Ubuntu,
it is certainly not
RedHat; otherwise,
it is unknown if X is
RedHat

Table 10: A subset of common types of relation between any two propositions.
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Type Relation Relation expression Direct formula Relation expression

on Θ(A,B)
in Influx1

Single
relation A

p→ B mA,B({(A,B), (A,B), (A,B)}) = p mB(B) = p ∗mA(A) B()=Y(A()/p)

mA,I(Θ(A,B)) = 1− p mB(B) = 0 (Yes transform)
mB(ΘB) = 1−p∗mA(A)

If p = 1 mB(B) = mA(A) B()=Y(A())

mB(B) = 0 B()=INC(A())

mB(ΘB) = 1−mA(A)

A
q→ B mA,B({(A,B), (A,B), (A,B)}) = q mB(B) = 0 B()=N(A()/q)

mA,I(Θ(A,B)) = 1− q mB(B) = q ∗mA(A) (No transform)

mB(ΘB) = 1−q∗mA(A)

Parallel
relation A

p→ B, mA,B({(A,B), (A,B), (A,B)}) = p mB(B) = p ∗mA(A) B()=AS(A()/{p,q})

A
q→ B mA,B(Θ(A,B)) = 1− p mB(B) = q ∗mA(A) (Assignment)

m′A,B({(A,B), (A,B), (A,B)}) = q mB(ΘB) = 1−p∗mA(A)

m′A,B(Θ(A,B)) = 1− q −q ∗mA(A)

If p = q mB(B) = p ∗mA(A) B() = AS(A()/p)

mB(B) = p ∗mA(A)
mB(ΘB) = 1−p∗mA(A)

A
p→ B mA,B({(A,B), (A,B), (A,B)}) = p mB(B) = p ∗mA(A) B()=NOT(A()/{p,q})

A
q→ B mA,B(Θ(A,B)) = 1− p mB(B) = q ∗mA(A) (Not transform)

m′A,B({(A,B), (A,B), (A,B)}) = q mB(ΘB) = 1−p∗mA(A)

m′A,B(Θ(A,B)) = 1− q −q ∗mA(A)

If p = 1,
If q = 1

mB(B) = mA(A) B()=NOT(A())

mB(B) = mA(A)
mB(ΘB) = mA(ΘA)

If p = 1,
If q = 0

mB(B) = mA(A) B()=NOT(A()/{1,0})

mB(B) = 0 B()=NOT∧INC(A())
mB(ΘB) = 1−mA(A)

Table 11: An illustration of how the relations presented in Table 10 are formulated and
implemented in Influx1. Given in the first and second columns are the types of
relation between the two propositions A and B; given in the third column is the
representation of the relations in the form of belief functions on Θ(A,B); detailed
in the fourth column are the direct formulas to compute belief for B derived
from the combination process presented in Example 8, and presented in the last
column are the corresponding expressions in Influx1.
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which defines a wide range of relations between A and B:

A
[p1 , 1−p2]→ B,

A
[q1 , 1−q2]→ B,

{A,A} [r1 , 1−r2]→ B.

Here, p1 and p2 indicate the extent to which B is believed to be confirmed, or disconfirmed,
by A; q1 and q2 the extent to which B is believed to be confirmed, or disconfirmed, by
A, and r1 and r2 the extent to which B is believed to be confirmed, or disconfirmed,
by {A,A} (or ΘA), respectively. This allows the belief to be computed for B using the
following formulas:

m(B) = p1 ∗m(A) + q1 ∗m(A) + r1 ∗m(ΘA), (40)

m(B) = p2 ∗m(A) + q2 ∗m(A) + r2 ∗m(ΘA),

m(ΘB) = 1−m(B)−m(B).

4.4.2 Utility functions

Beyond the collection of functions implemented for the specific purpose of proposition
construction, belief combination and belief propagation as presented, Influx1 also provides
a number of utility functions. These utility functions exist to provide users with ways
to manipulate belief masses associated with propositions in ways that may be useful for
various applications. For instance, the conflict function (to measure the degree of internal
conflict within a belief between a proposition and its negation), and the ignorance function
(to measure the degree of ignorance in a belief function).

4.5 A brief discussion of other reasoning aspects

In this section, we briefly mention other reasoning aspects of Influx1 which are not among
the main topics of discussion in the document, including forward and backward chaining,
dynamic knowledge and belief change, utilisation of predicate calculus, and interfaces to
external programs.

4.5.1 Forward and backward chaining

Forward chaining is a process for propagating belief updates to related propositions (via
directed links), instantiating new propositions if possible. Forward chaining occurs when-
ever the belief for an existing proposition changes, or a new proposition is instantiated.
As an optimisation, only belief changes with a magnitude that exceeds a threshold T are
forward propagated. Since the impact of a belief change may diminish through multiple
propagations, this can become a significant efficiency gain, especially in large networks.

Conversely, beginning with a proposition being queried, backward chaining is a process for
instantiating new propositions as required to derive the query result, following directed
links in a backward direction. This may occur when a proposition is queried that is not
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yet instantiated. When new propositions are instantiated as a result of backward chaining,
forward chaining for each such proposition will occur.

4.5.2 Dynamic knowledge and belief change

Influx1 is designed to operate in real-time with dynamic knowledge and beliefs. More
specifically, Influx1 supports the following operations during run time:

• belief values for propositions can be changed,

• propositions can be added, or removed, and

• rules (that define proposition construction, belief propagation, or belief combination)
can be added.

The above operations may be followed by forward and backward chaining processes to
automatically instantiate and update beliefs. Unless an entire network of propositions
is removed, the removal of a proposition might be inhibited by the network dependency
structure. In such a case, effective removal may instead be achieved by assigning a fixed
belief of ignorance to the proposition.

4.5.3 Representing knowledge with predicates and variables

For many purely numerical approaches for reasoning under uncertainty, propositional rep-
resentations are used. With such a representation, each relation must be explicitly stated
for each object in a domain:

if one can ping 1.1.1.1, it is likely that the computer at 1.1.1.1 is on,
if one can ping 1.1.1.2, it is likely that the computer at 1.1.1.2 is on,
if one can ping 1.1.1.3, it is likely that the computer at 1.1.1.3 is on,
etc.

Instead, Influx1 adopts the predicate calculus, where a predicate acts as a template that
describes a property or relationship represented by variables (denoted by the prefix $),
allowing a relation to be stated for all objects in a domain:

if one can ping $Address, it is likely that the computer at $Address is on,

(i.e., Ping($Address)→ ComputerOn($Address)).

A predicate may be associated with n variables (n-ary predicate). Unary predicates
(n = 1) are used to describe a property or membership of instances represented by the
variable, such as ComputerOn($Address), and n-ary predicates (n > 1) are used to ex-
press relationships among variables, such as Communicating($Sender, $Receiver). The
scope of such variables is limited to the specific relation in which they appear, e.g., the
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variables $Sender and $Receiver in the following relation only take on values within the
relation:

SendingPacket($Sender, $Receiver)→ Communicating($Sender, $Receiver).

To enable reasoning across contexts, Influx1 supports the use of structured predicate names
to embed contextual information. In the example below which states whether the software
MozillaF irefox is installed on the computer fileserver, Installed carries the semantics
defined in the context of Computer.Software:

Computer.Software.Installed(fileserver,MozillaF irefox).

4.5.4 Distributed reasoning

Influx1 also supports the distribution of reasoning, desirable for large reasoning tasks and
applications benefitting from decentralisation. With this capability, a reasoning network
can be divided into fragments each stored and executed in one or more Influx instances.
The collection of such instances is distributed among a pool of computers, sending and
receiving knowledge, and coordinating the results from each other in order to perform a
certain global task. Not only does this allow for rapid reasoning and/or reasoning at scale,
but it also provides flexibility and redundancy to enhance system resilience and robustness
against intentional or accidental incidents.

4.5.5 Interfaces to external programs

Not all types of problems are naturally suited to being entirely modelled and implemented
within Influx1. In general, problems such as those that require complex control knowledge
with significant looping, branching and dependent subprocesses, or that call for compli-
cated arithmetic computation, would be difficult to solve entirely within Influx1. Such
problems might be solved at a meta-level by having an external program that interacts
with instances of Influx1. As such, Influx1 is intended to work in conjunction with exter-
nal programs, such as other reasoning engines and control programs. To this end, Influx1

provides a number of interfaces (currently Unix pipes, network sockets, Influx files and
the console) that provide common services. This allows an application to be built more
naturally, where each tool is used to its particular strength.
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5 Final discussion and remarks about Influx1

Influx1 is a simple, but highly flexible and efficient, tool and framework for general reason-
ing with uncertainty. More specifically, Influx1 is capable of handling imperfect knowledge,
operating in a distributed and dynamic manner, while attaining plausible reasoning due
to its various methods to represent and deal with uncertainty formulated based on D-S
theory. The design and development of Influx1 is driven by the practical objectives stated
at the beginning of the document. The following discussions and remarks are with respect
to these objectives. Empirical results for the application of Influx1 to certain problems of
interest may be found in a forthcoming document.

Flexibility The flexibility of Influx1, due to a large extent to the utilisation of D-S belief
representation, fusion and inference, manifests in many aspects:

• Regarding input knowledge, unlike classical reasoning (which treats knowledge with
an absolute certainty) and those reasoners based on probability theory (which de-
mands ‘completeness’ of knowledge), Influx1 is able to represent and reason with
uncertain and incomplete knowledge. In other words, users are only required to pro-
vide information that is available. If a piece of knowledge is known with an absolute
certainty, it can be entered into Influx1 as a fact. Conversely, if the piece of knowl-
edge is associated with a specific degree of uncertainty, the uncertainty pertaining
to the knowledge can be quantified in the form of objective probability if relevant
statistical data exists, or subjective belief if such statistical information is missing
but expert knowledge is available. In the cases where statistical information or ex-
pert knowledge is available but not complete, one is able to provide such knowledge,
or simply state ‘total ignorance’ in the absence of all the mentioned knowledge or
information.

• With respect to knowledge structure, Influx1 allows a wide range of relations between
propositions to be expressed. For usability and efficiency purposes, direct formulas
for a number of commonly encountered relations between propositions are derived
and implemented in Influx1 in the form of built-in functions available for users.
Influx1 also supports dynamic knowledge structures, with rules having a variable
number of inputs (or information sources).

• In terms of reasoning, the D-S based inference in Influx1 is capable of simplifying into
probabilistic reasoning, or reducing to three-valued logical reasoning in a seamless
manner at any time during its execution as demanded by the users or warranted by
the situations. The reasoning framework of Influx1 can also be directly extended to
facilitate inferences in different modalities, e.g., inferencing in a possibilistic manner
where observations are specified in a form of ‘possibilistic evidence’ and the D-S
rule replaced by a possibilistic fusion operator, or deductive reasoning with binomial
opinions using subjective logic where belief combination is to be carried out using
Jøsang’s consensus rule.

• With respect to output knowledge, Influx1 provides a rich and informative inter-
pretation of knowledge. It provides information which indicates both the degree to
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which a proposition/hypothesis is believed to be true based on the available evidence
(by means of the belief interval [Bel, Pl]) and the degree to which the proposition is
probably true (by means of the BetP function). Reasoners based on Bayesian models
are usually capable of providing answers only for the latter case.

• Influx1 also allows developers to capture the degree of conflict among pieces of ev-
idence or knowledge. Not only does Influx1 offer various ways to resolve conflicts
that best suit the specific applications and situations at hand, but it is also the
case that the captured degree of conflict itself can potentially play an important role
in detecting abnormality and deception. For instance, a deception model could be
built within or on top of Influx1 which utilises application/domain-specific knowl-
edge regarding the information sources and hypotheses (or propositions) of interest,
together with the relevant conflicts dynamically captured at run-time in order to
detect suspicious events and phenomena.

• Influx1 provides interfaces with common services, allowing other programs and tools
to interact with instances of Influx1. This allows each portion of a problem to
be solved using the most appropriate approach, utilising Influx1 and other programs
where favourable, providing greater flexibility in solving problems with the assistance
of Influx1. These same interfaces also allow multiple instances of Influx1 to interact
with each other, which encourages modular and distributed solutions for further
flexibility.

Efficiency The efficiency of Influx1 is due to the combination of highly-optimised tech-
niques and methods for data storage and algorithms utilised at the implementation level,
and the simplicity of the design.

• Regarding the implementation of Influx1, the achieved high performance is due to
its use of Hold (a multiple key hash table implementation with Bloom filters) that
enables rapid lookup, search and match operations (for knowledge queries and rules),
and the compact storage of knowledge, the details of which are for another document.

• Regarding the high-level design, Influx1’s efficiency is gained through local compu-
tations and the utilisation of coarsened (binary) frames of discernment to represent
the portion of the discernment space of interest. This allows the derivation of sig-
nificantly simplified formulas for all DS-related rules and inferences.

Unlike a number of existing rule-based systems which do not (or to a limited degree)
take into account the potential dependency of evidence being combined, Influx1

capitalises on state-of-the-art fusion methods and techniques in the literature in
providing users with mechanisms to more effectively tackle this problem. More
specifically, the reasoner offers a range of operators that allow users to combine beliefs
induced from independent sources, from dependent sources, and to approximate the
combination result when the dependency of evidence is potentially complex beyond
what can be captured and expressed in an intuitive and plausible manner.

Scalability Though the use of numerical values for uncertainty representation is con-
venient and useful, quantitative approaches often raise practical concerns about the po-
tentially large number of numerical values that are involved and their required precision,
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which can hamper both the knowledge acquisition process and the efficiency of reasoning.
However, such concerns appear not to pose a significant hindrance to Influx1 based on the
following grounds.

• The former concern (regarding the number of numerical values required) is commonly
discussed in the context of the practical application of (classical) probabilistic mod-
els. Such probabilistic models require either a global probability distribution, or
joint probability distributions (e.g., Bayesian networks) where the number of nu-
merical values required is exponential to the number of all variables involved (in the
former case) or to the number of parents for the child (in each latter case). Such
distributions are not required in Influx1. Instead of requiring one to assume that
any relation between two or more propositions is certain and deterministic, Influx1

endows one with a capability to express his/her belief (by means of numerical val-
ues) when this is not the case. Therefore, the number of numerical values is only
linear to the number of uncertain/indeterministic relations in the rule network (or
the number of such parents for a child).

• With respect to the latter concern about the necessary precision of the numerical
values, empirical experiments which studied the necessary precision of numerical
values to measure uncertainty in quantitative reasoning (conducted with Bayesian
networks [26, 40]) have shown insensitivity to the precision of those values. Thus
approximations that distinguish different degrees of certainty, rather than precise
reflections of reality, can be considered sufficient when using Influx1 in many practical
cases. For instance when a precise measure is not available, it might be possible for
one to devise a scheme to approximate numerical measures of uncertainty based on
qualitative measures such as

impossible < unlikely < . . .< maybe < often < . . .< usually < likely < certainly

where < denotes the relative degree of strength.

System dynamics Influx1 has been developed to support dynamic applications. There
is no pre-processing or initialisation phase, and changes to the system can be made at
any time without incurring significant penalty. This is achieved by supporting changes to
beliefs and knowledge in real-time, with forward and backward chaining used to propagate
and construct beliefs and networks respectively in response. In this way, applications
can be built that permit constant change and growth, as required for many real world
situations.

Limitations of Influx1 Despite the aforementioned qualities, Influx1 has a number of
limitations. Major limitations of Influx1 are given below.

• Influx1 provides a very flexible framework that offers diverse instruments to tailor a
reasoning task to the available knowledge, specific requirements and specific situation
at hand. However, this flexibility comes at a cost: the requirement that users have a
sufficient understanding of the different methods and techniques provided by the tool
with which to make correct judgments and decisions in constructing a rule network.
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• Influx1 does not yet possess capabilities that ease various modelling efforts. For
instance, it is highly desirable for the tool to (i) automate the process of dependency
analysis to assist the developers in choosing the appropriate combination/fusion
operators (a task that may be demanding when the system is scaled to a large
size with widespread dependencies), and (ii) automatically transfer belief between
mutually exclusive propositions (a task that currently requires explicit modelling).
The lack of these capabilities is felt most at scale, thus restricting scalability. The
potential of automated dependency analysis further raises the prospect of supporting
scenarios with dynamic dependency relationships that change at run-time, something
not yet addressed in Influx1.

• Influx1 currently performs unidirectional reasoning (i.e., belief is propagated between
propositions in one direction). In this respect, the reasoning power of an inferencing
system can be enhanced by allowing for a bidirectional flow of information, thus
achieving both types of reasoning (deductive and abductive) over the same knowl-
edge structure. For instance, given A → B, one can deductively derive B if A is
verified, and conversely, can abductively infer A if B is observed. However, the
same principle does not apply in the presence of uncertainty: given A

p→ B, one
would encounter trouble predicting the belief for A solely based on the occurrence
of B. In this regard, having both types of rule (e.g., A

p1→ B and B
p2→ A) explic-

itly specified in the system would make bidirectional reasoning possible, but could
cause cyclic inferencing, leading to beliefs being amplified and invalid conclusions
being derived. The problem of cyclic inferencing can be eliminated by enabling the
system to remove either of the rules when the other rule is activated [39], in which
case the simplicity and elegance of the inferencing system inevitably diminishes. In
practice, (traditional) expert systems dealing with uncertainty (such as the medical
expert system MYCIN) tackle this problem by simply disallowing bidirectional flows
of information [39].

The design of Influx2 is motivated to rectify the aforementioned limitations and to augment
the reasoning capability of Influx1. More specifically, Influx2 aspires to offer a seamless
integration of deductive and abductive reasoning, as well as to enhance the coherency, us-
ability and scalability of the reasoner, as well as to support dynamic dependency structure
without significantly compromising the efficiency and simplicity of Influx1.
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