

CHARACTERIZING AND IMPLEMENTING EFFICIENT PRIMITIVES
FOR PRIVACY-PRESERVING COMPUTATION

GEORGIA INSTITUTE OF TECHNOLOGY

JULY 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-176

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-176 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
CARL R. THOMAS MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2011 – MAR 2015
4. TITLE AND SUBTITLE

CHARACTERIZING AND IMPLEMENTING EFFICIENT PRIMITIVES
FOR PRIVACY-PRESERVING COMPUTATION

5a. CONTRACT NUMBER
FA8750-11-2-0211

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Patrick Traynor, Kevin Butler

5d. PROJECT NUMBER
PROC

5e. TASK NUMBER
ED

5f. WORK UNIT NUMBER
GA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Georgia Institute of Technology
North Ave NW
Atlanta, GA 30332

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-176
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

While garbled circuits have been known for nearly 30 years, efficient realizations of such schemes have only become
possible recently. However, their use on mobile devices, where the nature of applications are different and the use of
context sensitive information is the norm and not the exception, has just begun to be assessed. The goal of this project is
simple – allow mobile devices to take part in secure computation without significant degradation in performance and
security when compared to their desktop counterparts. When taken as a whole, our work has moved the reality of SFE
on mobile devices from barely possible to equivalent in performance and security when compared against modern two-
party schemes. This document discusses the details of our advances, tangible improvements and remaining challenges.

15. SUBJECT TERMS

Garbled Circuit, Cell Phone, Encryption, Cryptography, Mobile Devices, Secure Multi-party Computation (SMC), Secure
Function Evaluation (SFE)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

 UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

CARL R. THOMAS
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A
Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

143

i

Table of Contents

Summary	..	1

Introduction	...	2

Methods,	Assumptions	and	Procedures	...	4
Efficient	Mobile	Oblivious	Computation	(EMOC)	..	4
Memory	Efficient	Garbled	Circuit	Generation	for	Mobile	Devices	6
Secure	Outsourced	Garbled	Circuit	Execution	for	Mobile	Devices	7
Portable	Circuit	Format	(PCF)	..	10
Partially	Garbled	Circuits	and	Secure	Amortization	...	12
Whitewash:	Outsourcing	Garbled	Circuit	Generation	for	Mobile	Devices	13
Outsourcing	Secure	Two‐Party	Computation	as	a	Black	Box	..	15
Frigate:	A	Validated,	Extensible,	and	Efficient	Compiler	for	Secure	Computation	..	16

Conclusions	..	19

Recommendations	...	20

Appendix	...	21
Published	Papers	(each	included	below)	...	21
Glossary	of	Terminology	...	137

ii

Table of Figures

Figure 1: Location proximity testing. Areas of overlapping interest are determined
by finding values other than "1" in the final cleartext. ... 4

Figure 2: Private Set Intersection. Alice and Bob determine if their social sets
intersect by comparing ciphertexts with additive homomorphic properties. 5

Figure 3: Memory comparison of Fairplay and PAL (FPPALC). Note that many
applications not possible using Fairplay are now possible on a mobile device....7

Figure 4: Our "outsourcing" architecture. Here, a cloud helps a mobile device
perform the evaluation phase of a garbled circuit protocol without loss of
security from the traditional two party model. This approach was able to
reduce execution time by over 98%. .. 9

Figure 5: Performance comparison between fastest peer two party computation
scheme and our outsourcing approach. Note the log scale on the y‐axis. 10

Figure 6: A high‐level	view	of	PCF's design. Loops are no longer unrolled at compile
time, even to perform optimizations on the circuit. Instead, loops can be
evaluated at runtime with gates being	computed	on‐the‐fly. 11

Figure 7: PartialGC overview. The blue box represents a standard evaluation
between the (E)valuator and the (G)enerator. Yellow boxes are executions that
take partial inputs and produce partial outputs. ... 12

Figure 8: A performance comparison between ParialGC and our original outsourcing
scheme (CMTB). Because PartialGC does not have to send entire circuits in each
subsequent iteration, it can reduce execution time. .. 12

Figure 9: The Whitewash Protocol. Instead of outsourcing evaluation, we outsource
circuit generation from the mobile device. .. 13

Figure 10: Our privacy‐preserving navigation application. A user can learn the most
efficient route to their destination without revealing any information about
their path. .. 14

Figure 11: The process of creating	a	blackbox‐ready	a circuit. The initial circuit is
augmented with a MAC prior to execution and re‐encrypted using a	one‐time	
pad prior to release. ... 16

Figure 12: Summary of correctness results. Note that all major SFE compilers
currently produce incorrect outputs. ... 17

Figure 13: Overview of progress during the course of our work on the PROCEED
project. ... 19

Summary

Secure Function Evaluation (SFE) holds the promise of protecting data while still
allowing important computation to be executed upon it. However, the primitives
making such computation possible are extremely expensive, and have long been
viewed as entirely outside of reach for all but the most powerful of computing
platforms. This work focuses on enabling the use of SFE on mobile phones, the most
widely deployed computing infrastructure in the world. This work demonstrates
our progression from the complete inability to run even the most basic such
computations to seamlessly participating in the execution of the largest created
garbled circuits to date without any loss of security.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

Introduction

The	confluence	of	high‐speed	connectivity and device capability has led to the
recent surge in mobile application development. While software common to desktop
computing (e.g., word processing, email) exists in this space, the most popular
mobile applications often provide services based on a user’s current context (e.g.,
location, social interconnections, etc.). Such applications allow users to make more
informed decisions based on their surroundings. However, these applications also
regularly expose sensitive data to potentially untrusted parties.

Cryptographers have long worked to develop mechanisms that allow two parties to
compute shared results without exposing either individual’s sensitive inputs or
requiring assistance from a trusted	third‐party.	Such	techniques are referred to as
Secure	Function	Evaluation	(SFE), and provide a set of powerful primitives for
privacy‐	preserving computation. While garbled circuits have been
known for nearly 30 years [3], efficient realizations of such schemes have only
become possible recently. However, their use on mobile devices, where the nature
of applications are different and the use of context sensitive information is the norm
and not the exception, has just begun to be assessed.

The goal of this project is simple – allow mobile devices to take part in secure
computation without significant degradation in performance and security when
compared to their desktop counterparts. The reasons for this goal are numerous.
First, mobile phones are used by more than six billion people across the globe every
day. When compared to the two billion individuals who currently have access to
traditional computing resources, these platforms by far represent the dominant
form of computing available throughout the world. Second, mobile phones are
increasingly being relied upon to store our most sensitive information, from a
history of our locations and the people with whom we interacted, to personal
conversations and financial information. This data is regularly exfiltrated and mined
by untrustworthy third parties, creating uncontrollable digital footprints in our
daily lives. Finally, mobile phones are increasingly being relied upon by members of
industry and government (especially the military) as a critical platform for
communication while outside of the office or within a theatre of war. Accordingly,
efficient techniques for verifiably protecting the data that is generated, received, and
transmitted by these devices are of great necessity to private citizens, companies
and the government.

The goal of this project is difficult for many reasons. Chief among these is the
comparative lack of processing ability available on mobile phones. With
comparatively slow processors, limited memory, slow and often policy capped
bandwidth and finite battery power, making SFE work at all would prove to be
difficult.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

This work represents nearly four years of concerted effort to make this goal a
reality. As we began this work, it quickly became clear that none of the tools or
theoretical constructions available to the traditional computing community (i.e.,
server‐based	computation,	Yao’s	garbled circuits) would be sufficient to make SFE
possible on mobile platforms. In fact, our early work shows that all but the most
trivial problems were simply beyond the abilities of cutting edge techniques.

With this as our starting point, we first developed a series of efficient custom
protocols that achieved the same ends as protocols written with garbled circuits. We
also dedicated significant effort in our first year to developing a more efficient
compiler for garbled circuits. While both of these efforts dramatically reduced the
performance and bandwidth overheads of the best available garbled circuit
techniques, neither was sufficient to meet our goal. Our solutions would need to
dramatically improve performance and security guarantees in order to erase the
gap between mobile and traditional SFE capabilities.

Our efforts in the second year focused on techniques designed to enable dramatic
improvements in performance of SFE on mobile devices. In particular, we attempted
to offload much of the work done on the mobile device in a secure computation to
another, more powerful node. While the naïve approach would simply trust this
third party to perform the operations on the mobile phone’s behalf, our approach is
able to offload the mobile’s execution without any degradation in the traditional
two‐party	SFE model while dramatically reducing total execution time.

Our efforts in our third year focused on improving performance across iterations of
SFE protocols, allowing for the cost of certain operations to be amortized. We also
expanded our outsourcing techniques to reduce execution time for some
applications by a further 98%, while allowing us to execute the billion‐gate	circuits	
run between server class machines at the same security level. However further
improvements were still necessary.

In our final year, we focused on techniques to substantially improve performance.
On the outsourcing side, we developed a black box lifting technique that allows us to
incorporate improvements made by other researchers directly into an outsourcing
scheme, without having to prove their composition secure. Moreover, we built a
principled compiler that, in addition to proving demonstrably more correct results
than related work, does so orders of magnitude faster.

When taken as a whole, our work has moved the reality of SFE on mobile devices
from barely possible to equivalent in performance and security when compared
against modern two‐party	schemes. This document discusses the details of our
advances, tangible improvements and remaining challenges.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

Methods, Assumptions and Procedures

Efficient Mobile Oblivious Computation (EMOC)

Mobile applications increasingly require users to surrender private information,
such as GPS location or social networking data. To facilitate user privacy when using
these applications, Secure Function Evaluation (SFE) could be used to obliviously
compute functions over encrypted inputs. The dominant construction for desktop
applications is the Yao garbled circuit, but this technique requires significant
processing power and network overhead, making it extremely expensive on
resource‐constrained mobile devices.

In this effort, we developed Efficient	Mobile	Oblivious	Computation	(EMOC), a set of
SFE protocols customized for the mobile platform. Using partially homomorphic
cryptosystems, we developed protocols to meet the needs of two popular
application types: location‐based and social networking. Using these applications as
comparison benchmarks, we demonstrated execution time improvements of 99%
and network overhead improvements of 96% over the most optimized garbled
circuit techniques. These results showed that our protocols provide mobile
application developers with a more practical and equally secure alternative to
garbled circuits.

Figure	1:	Location	proximity	testing.	Areas	of	overlapping	interest	are	determined	by	finding	values	
other	than	"1"	in	the	final	cleartext.	

Location‐based	messaging, especially for advertisements, has recently received
significant attention. Beyond advertising based on location, it offers the potential for
useful applications such as a proximity test to alert two people if they are close
enough to arrange a meeting. It could also be combined with applications like
Twitter to	allow	for	location‐based tweet filtering and following. However, these
applications must query the physical location of a user, which could compromise the
user’s privacy. To resolve this information leakage, we present a protocol for
securely computing when two users are within a chosen proximity of one another.
While used in a specific application here, the protocol can be used	in	any	location‐
based mobile application. The ability to specify an input region of any shape or size

E(g2*b)=

Alice (top pin) selects the area she is willing to receive messages
within. Bob's location (bottom pin) is within this area.

Bob selects the entries from Alice's matrix that correspond to his region,
multiplies them together, and exponentiates to a random power b.

Alice decrypts Bob's
product and finds a

random group element

E(1) E(1)E(1)E(1)E(1)E(1)E(1)

E(1) E(1)E(1)E(1)E(g)E(g)E(1)

E(1) E(1)E(1)E(1)E(g)E(g)E(1)

E(1) E(1)E(1)E(1)E(g)E(g)E(1)

E(1) E(1)E(1)E(1)E(1)E(1)E(1)

E(1) E(1)E(1)E(1)E(1)E(1)E(1)

E(1)E(1)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

allows the proximity test to provide a result at any desired granularity, from the
same building to the same city.

Figure 1 shows our proposed solution. A user Alice creates an M x N matrix overlaid
on an area of interest (e.g., her current city). Alice builds a location matrix with
encryptions of ‘1’ in every entry except those that correspond to the area she is
willing to receive tweets within. In her travel area, she enters encryptions of
generator ‘g’. Bob selects the entries that correspond to his travel area, multiplies
them together, exponentiates by a random blind, and returns the product to Alice.
When Alice decrypts, she knows that: if the value is not ‘1’, Bob’s message is relevant
to her. Otherwise, Bob’s message is irrelevant to her location. As we prove in the
paper, this protocol is secure in the	semi‐honest	model,	similar to the majority of
Yao‐based	systems	available	at the time of the work.

Figure	2:	Private	Set	Intersection.	Alice	and	Bob	determine	if	their	social	sets	intersect	by	comparing	
ciphertexts	with	additive	homomorphic	properties.	

Social networking applications are a popular channel for communicating with a
mobile device. However, they also create a potential channel to leak private
information about a user’s social life. If two mobile users were to meet at a party or
conference, one might only want to allow the other into her social network based on
the friends they already have in common. However, there is currently no mobile
application that allows this without revealing both users’ entire social graphs. This
application offers a means for securely revealing only the friends common to both
users while maintaining the privacy of the rest of both social graphs. Again, we
couch our protocol in an application that is highly relevant to mobile users.
However, the protocol can be used in general to compute the intersection of any two
sets without revealing any element outside of the intersection.

Figure 2 provides our solution to this problem. Bob homomorphically multiplies
each entry in his array by every entry in Alice’s array. He then exponentiates by a
unique blinding factor for all of the resulting values. Alice receives these values and

E(H-1("Charlie")) E(H("Charlie"))

E(H("Dale"))

E(H("Erika"))

E(H("Francis"))

x

x

x
x

E(1b)

E(randomb)

E(randomb)

E(randomb)

Bob multiplies each entry
by all of Alice's encryptions.

If an entry matches, the result will be 1
Raised to Bob's random blinding factor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

decrypts them. If an entry is equal to 1, Alice knows there is a match. While this
approach has O(n2) theoretical complexity, we argue (and demonstrate) that its
execution profile outperforms any garbled circuit implementation because of the
expected size of real datasets.

Table	1:	Performance	profile	of	EMOC	Applications.	In	both	execution	time	and	bandwidth	overhead,	our	
approach	outperforms	garbled	circuit	protocols.	

Table 1 shows the execution times and network overhead of the two proposed
protocols. Our custom protocols far outperform all of the garbled	circuits‐based	
approaches, with improvements as high as 99% for execution time and 96% for
bandwidth. Accordingly, our approaches are more appropriate for resource
constrained mobile devices than the direct application of garbled circuits.

In spite of the significant performance improvements we gained through the use of
custom protocols, a number of challenges remained. For instance, while we were
able to outperform two specific protocols, our custom protocol approach does not
“scale” easily and requires that new custom protocols are created for each potential
application we want to implement. Such efficient protocols may not be available for
all possible applications. Second, while our approach is robust	in	the	semi‐honest	
model, researchers were beginning to explore defenses against malicious
adversaries. Finally, to demonstrate our progress over the entire PROCEED
program, we felt the need to try and match the benchmarks used by other teams
(e.g., AES). Accordingly, we determined that we would need to make substantial and
fundamental advances in garbled circuits in order to support their use on mobile
platforms.

Memory Efficient Garbled Circuit Generation for Mobile Devices

Given our desire to make the benchmark applications used by other PROCEED
performers possible on mobile platforms, our next research effort attempted to
make the use of garbled circuits more efficient. We note that this effort took place in
parallel with our EMOC work, given the early realization that custom protocols
would not be possible for all possible applications.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

This new effort focused on developing	a	memory‐efficient	technique	for	generating	
the garbled circuits needed to perform secure function evaluation on smartphones.
While numerous research initiatives have considered how to evaluate these circuits
more efficiently, little work had focused on efficient generation. Such a
consideration is particularly important given the significant memory constraints of
mobile phones. We achieved this goal by creating the Pseudo Assembly Language
(PAL),	a	mid‐level	intermediate representation (IR) compiled from Fairplay’s SFDL
high‐level	language,	where each instruction represents a pre‐built circuit. These
templates allowed us to represent many complex instructions with a very limited
amount of memory.

Figure	3:	Memory	comparison	of	Fairplay	and	PAL	(FPPALC).	Note	that	many	applications	not	possible	
using	Fairplay	are	now	possible	on	a	mobile	device.	

Figure 3 shows a comparison of the memory profiles of Fairplay and our PAL
system. The first important improvement over standard Fairplay is the significant
reduction in memory required to execute applications such as the Millionaire’s and
Billionaire’s problems (with savings of 55% and 63%, respectively). Second, and
potentially more critically, the use of PAL enabled circuits that were previously too
big to execute on a mobile device (Set Intersection for inputs of larger than size 2, all
Edit Distance problems) to finally run on these systems.

While this work was a significant step forward for the execution of garbled circuits
on mobile devices, many important innovations would need to continue to be made
to ensure that such systems could actually perform relevant privacy preserving
computation.

Secure Outsourced Garbled Circuit Execution for Mobile Devices

Our work up to this point made a number of points clear. In particular, the
processing, bandwidth and memory constraints we encountered represented
significant hurdles to the realization of SFE schemes on mobile phones. While our
improvements thus far took SFE from impossible to useful for extremely small

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

problems, we realized that significant changes would need to be made to our
approach if we ever hoped to make mobile a practical platform for secure
computation. We therefore determined that focusing our efforts on garbled circuits
would be necessary, but that our approaches when compared to the work of other
groups would need to be fundamentally different. Specifically, while all previous
mechanisms assumed that both parties in a two party secure computation are
symmetrically provisioned with massive computing resources, we would need to
find ways to remove the burden of heavy computation from mobile phones.

This thrust of our work developed mechanisms for the secure outsourcing of SFE
computation from constrained devices to more capable infrastructure. Our protocol
maintains the privacy of both participant’s inputs and outputs while significantly
reducing the computation and network overhead required by the mobile device for
garbled circuit evaluation. We developed a number of extensions to allow the
mobile device to check for malicious behavior from the circuit generator or the
cloud and a novel Outsourced Oblivious Transfer for sending garbled input data to
the cloud. We then implemented the new protocol on a commodity Android mobile
device and reasonably provisioned servers and demonstrate significant
performance improvements over evaluating garbled circuits directly on the mobile
device.

Our approach is shown in Figure 4. A mobile device (Alice) acts in a modified
version of the evaluator role from a traditional garbled circuit protocol. After
determining that the generator (Bob, a very well‐provisioned	server) has properly
generated the circuits, Alice performs Outsourced Oblivious Transfers, which
deliver her garbled inputs to the Cloud	(another	well‐provisioned server who is also
untrusted). The cloud then receives Bob’s inputs and the circuits and evaluates the
circuits on Alice’s behalf. Note that because the Cloud does not know either Alice’s
or Bob’s ungarbled inputs and that Alice has approved the circuits that the Cloud
executes, the Cloud learns nothing about the inputs or outputs of the execution of
this protocol. Moreover, unlike previous work, the cloud is able to release the
output(s) of the computation to both parties simultaneously, reducing the ability of
either Alice or Bob to learn the result of a computation without releasing it to the
other party.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

Figure	4:	Our	"outsourcing"	architecture.	Here,	a	cloud	helps	a	mobile	device	perform	the	evaluation	
phase	of	a	garbled	circuit	protocol	without	loss	of	security	from	the	traditional	two	party	model.	This	

approach	was	able	to	reduce	execution	time	by	over	98%.	

Shifting the evaluation phase from a mobile phone to the cloud yielded significant
performance improvements. Figure 5 shows the results of a comparison of
execution times for the Edit Distance problem for inputs ranging from 2 to 128 bits
using our outsourcing approach against	the	KSS	two‐party	scheme (the fastest two‐
party scheme at the time of this work). An interesting observation is that the
previous largest edit distance circuit executed on a mobile device was of input size 8
using our PAL compiler. Not only did our outsourcing scheme far exceed this, but it
was also able to do so 16 times faster than the KSS scheme. Our performance only
continues to improve over KSS as we move towards the malicious adversary model.
When we compare execution over 32 circuits (thereby reducing the chance an
adversary can cheat to 2‐10.2), our execution time over KSS is improved by 98%. Our
approach also reduces bandwidth used to communicate with the mobile device by
as much as 99.95% (or 1900 times less bandwidth).

This work marked the first time that mobile devices were able to participate in the
execution of circuits as large as those being used by their desktop counterparts, but
also the first time in which mobile devices were able to participate in protocols
secure in the malicious model. PROCEED benchmarks made for all other teams,
specifically execution	of	AES‐128,	was now possible one mobile devices. However,
many improvements remained to be made. Performance in the malicious model,
while possible, remained prohibitively expensive for practical usage. Our later work
would further refine this model to further reduce the cost of a mobile device
participating in such a transaction.

1: Circuit generation and check
2: Outsourced Oblivious Transfer

3: Input Consistency Check

1: C
irc

uit g
en

era
tio

n and ch
eck

1: Circuit generation and check
3: I

nput C
onsis

ten
cy

Check
2: Outsourced Oblivious Transfer

5: Output verification 5: O
utput v

eri
fica

tio
n

3: Input consistency check

4: Evaluation

Bob
(generator)

Alice
(evaluator)

Cloud
(outsourcing agent)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

Figure	5:	Performance	comparison	between	fastest	peer	two	party	computation	scheme	and	our	
outsourcing	approach.	Note	the	log	scale	on	the	y‐axis.	

Portable Circuit Format (PCF)

Our previous work on PAL allowed garbled circuit implementations to gain
significant improvements in efficiency through circuit templating. However, as
mentioned in that subsection, additional reductions in overhead would need to be
made for resource constrained mobile devices. Specifically, compact representations
of circuits and functions could dramatically reduce the bandwidth required to
transmit garbled circuits between generator and evaluator, minimizing the power
and time required to execute such applications.

We refer to our circuit representation as the Portable Circuit Format (PCF). When
the SFE system is run, it uses our interpreter to load the PCF program and execute it.
As the PCF program runs, it interacts with the SFE system, managing information
about gates internally based on the responses from the SFE system itself. In our
system, the circuit is ephemeral; it is not necessary to store the entire circuit, and
wires will be deleted from memory once they are no longer required. The key
insight of our approach is that it is not necessary to unroll loops until the SFE
protocol runs. While previous compilers discard the loop structure of the function,
ours emits it as part of the control structure of the PCF program. Figure 6 offers a
high‐level	description of our approach.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

Figure	6:	A	high‐level	view	of	PCF's	design.	Loops	are	no	longer	unrolled	at	compile	time,	even	to	
perform	optimizations	on	the	circuit.	Instead,	loops	can	be	evaluated	at	runtime	with	gates	being	

computed	on‐the‐fly.	

Our system builds upon the PAL and KSS systems to solve the memory scalability
problem without sacrificing the ability to optimize circuits automatically. Two
observations are key to our approach. One of our most important observations was
that it was possible to free the memory required for storing wire values without
computing a reference count for the wire. In previous work, each wire in a circuit is
assigned a unique global identifier, and gate input wires are specified in terms of
these identifiers (output wires can be identified by the position of the gate in the
gate list). Rather than using global identifiers, we observe that wire values are
ephemeral, and only require a unique identity until their last use as the input to a
gate.

These optimizations offered notable improvements in performance over past work.
For instance, when compared to the KSS compiler (viewed as the fastest and most
efficient at the time of this work), PCF produced circuits only 30% as large from the
same source code. With the techniques presented in this work, we also
demonstrated that the RSA algorithm	with	a	real‐world	key	size and real‐world	
security level could be compiled and run in a garbled circuit protocol using a typical
desktop computer. To the best of our knowledge, the RSA‐1024	circuit we tested
was larger than any previous garbled circuit experiment, with more than 42 billion
gates.

OR

Memory

LOC: 65+iLOC: 33+i LOC: 1+i

Loop?

… ...

… ...

YESNO

OR

Memory

LOC: 65+iLOC: 65+i LOC: 97+i

… ...

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

Partially Garbled Circuits and Secure Amortization

Our efforts up to this point made significant improvements in reducing the cost of
executing garbled circuit computations against standard metrics – memory
utilization, execution time and bandwidth overhead. However, these parameters do
not capture every way in which a garbled circuit protocol can be used. One
particular example is how often a computation is made, and whether or not
accommodations can be made for securely reusing pieces of a transaction in order
to amortize costs across protocol iterations. We address this issue through the use
of partially garbled circuits, and a system we refer to as PartialGC.

Figure	7:	PartialGC	overview.	The	blue	box	represents	a	standard	evaluation	between	the	(E)valuator	
and	the	(G)enerator.	Yellow	boxes	are	executions	that	take	partial	inputs	and	produce	partial	outputs.	

Figure	7	presents	a	high‐level	overview of the philosophy behind our PartialGC
system. First, a standard SFE execution (blue) takes place, at the end of which we
“save” some intermediate output values. All further executions use intermediate
values from previous executions. In order to reuse these values, information from
both parties – the generator and the evaluator – has to be saved. In our protocol, it is
the cloud – rather than the evaluator – that saves information. This allows multiple
distinct evaluators to participate in a large computation over time by saving state in
the cloud between different garbled circuit executions. For example, in a scenario
where a mobile phone is outsourcing computation to a cloud, PartialGC can save the
encrypted intermediate outputs to the cloud instead of the phone. This allows the
devices to communicate with each other by storing encrypted intermediate values
in the cloud, which is more efficient than requiring them to directly participate in
the saving of values, as required	by	earlier	2P‐SFE	systems.	

Figure	8:	A	performance	comparison	between	ParialGC	and	our	original	outsourcing	scheme	(CMTB).	
Because	PartialGC	does	not	have	to	send	entire	circuits	in	each	subsequent	iteration,	it	can	reduce	

execution	time.	

By reducing the amount of information that needs to be transmitted between
iterations from entirely new circuits to wire label values, the PartialGC approach
dramatically reduces subsequent executions of an application. Figure 8 shows a
comparison in execution times against our initial outsourcing efforts. Note that

Garbled(
Circuit(

Execu0on(1(

E(

G(

Par0alGC(

Garbled(
Circuit(

Execu0on(2(

Par0alGC(

Garbled(
Circuit(

Execu0on(3(

E(

G(

E(

G(

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

while the first iteration of the protocol is virtually identical in terms of execution
time, execution time is reduced by as much as 10x when portions of the previous
execution can be reused. Bandwidth overhead is similarly reduced, with a reduction
of as much as 98% in one case.

While PartialGC brings substantial improvements to the execution of garbled
circuits on mobile devices, it could potentially benefit from further advances. One
particularly important advancement would be an improved base scheme for
outsourcing mobile computation.

Whitewash: Outsourcing Garbled Circuit Generation for Mobile Devices

Outsourcing SFE computations from a mobile device to a more powerful cloud has
already helped enable dramatic improvements over the direct application of two‐
party computation schemes. However, a number of challenges remain. Execution in
the malicious model, while possible, was still prohibitively expensive for mobile
phones. This fact was only exacerbated by the creation of even larger circuits for
applications such as RSA. We therefore revisited our outsourcing techniques to
ensure that mobile devices could remain part of the larger SFE ecosystem.

Figure	9:	The	Whitewash	Protocol.	Instead	of	outsourcing	evaluation,	we	outsource	circuit	generation	

from	the	mobile	device.	

The	high‐level	change	between this and our previous work is in which work is
outsourced from the mobile. Whereas our previous outsourced circuit evaluation to
the Cloud (leaving circuit generation to the other active party), our “Whitewash”
technique outsources circuit generation from the mobile device to the Cloud
(leaving the other party to perform evaluation). The advantage to this approach is

2: Random seeds & input decommitments

2:
 C

om
m

it
in

pu
t

3:
 C

irc
ui

t p
re

pa
ra

tio
n 2: Com

m
it input

4:
 O

bl
ivi

ou
s

tra
ns

fe
rs

1: Prepare input

6: Prove output correctness
5:

 C
irc

ui
t e

va
lu

at
io

n

6:
 R

el
ea

se
 o

ut
pu

ts

6: Release outputs

1: Prepare input
1: Prepare input

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

that it requires a mobile phone to do very little work – simply generating random
seeds and committing to its inputs. Outside of these very simple operations, the
mobile device simply sits and waits for the two more powerful participants to
perform the computation in question. Figure 9 shows the protocol in greater detail.

The improvements from these changes are dramatic. In addition to a performance
improvement of as much as 92%, we further reduce network costs by as high as
98%. Additionally, because we incorporated the PCF framework for circuit
representation in addition to our protocol improvements, we were able to execute
the largest‐ever	created circuits at the same security levels as traditional	two‐party.	

Figure	10:	Our	privacy‐preserving	navigation	application.	A	user	can	learn	the	most	efficient	route	to	
their	destination	without	revealing	any	information	about	their	path.	

Figure 10 demonstrates a critical byproduct of the success of our approach, a
privacy‐preserving	navigation application for an Android phone. With this
application, a user can query a service for the most efficient route between their
current location and their intended destination without revealing such information.
Moreover, the mapping service can also help the client make this information
without revealing all of its intelligence about the area in question.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

Outsourcing Secure Two‐Party Computation as a Black Box

While our outsourcing techniques now allow a mobile device to participate in a
garbled circuit‐based	computation	as	large	and secure as a traditional	two‐party	
computation, a number of challenges remain. Specifically, while our proofs of
security are robust, each of our outsourcing techniques are secure based on the
specific	sub‐components	we	used	at the time. As newer, faster techniques become
available, such advances cannot easily be applied to our systems without conducting
the expensive process of reproving their security. We would therefore need to
develop a means of automatically incorporating potential performance advances.

This effort focused on creating a generic lifting technique for	taking	any	two‐party	
SFE scheme into a secure outsourced scheme. This tradeoff allows for an
outsourcing scheme that relies on the underlying	two‐party protocol	in	a	black‐box	
manner, meaning the underlying protocol can be swapped for any other protocol
meeting the same definition of security. Figure 11 presents a high‐level	overview	of	
our approach. The outsourcing protocol can be informally broken down as follows:
first, the mobile device prepares its input by encrypting it and producing a MAC tag
for verifying the input is not tampered with before it is entered into the
computation. Since the application server and Cloud are assumed not to collude, one
party receives the encrypted input, and the other party receives the decryption key.
Both of these values are input into	the	secure	two‐party	computation, and are
verified within the secure	two‐party protocol using the associated MAC tags. If the
check fails, the protocol outputs a failure message. Otherwise, the second phase of
the protocol, the actual evaluation of the SMC program, takes place. The third and
final phase encrypts and outputs the mobile device’s result to both parties, who in
turn deliver these results back to the mobile device. Intuitively, since our security
model assumes that the application server and the Cloud are never simultaneously
malicious, at least one of these two will return the correct result to the mobile
device. From this, the mobile will detect any tampering from the malicious party by
a discrepancy in these returned values, eliminating the need for an output MAC. If
no tampering is detected, the mobile device then decrypts the output of
computation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

Figure	11:	The	process	of	creating	a	blackbox‐ready	a	circuit.	The	initial	circuit	is	augmented	with	a	MAC	
prior	to	execution	and	re‐encrypted	using	a	one‐time	pad	prior	to	release.	

The performance analysis in this work differs from our previous efforts. Instead of
showing the improvement for a mobile device over the direct implementation of a
two‐party	SFE technique, we compared the cost of doing a traditional	two‐party	
computation against a blackbox outsourced computation. Our results clearly
demonstrate that, as circuits become large, the overhead added by our technique
vanishes into the confidence intervals of the two‐party	protocol execution. Our
approach also has similar results for bandwidth overhead. Accordingly, mobile
devices will now be able to immediately take advantage of any new two‐party	
scheme with virtually no changes or additional overhead.

We will discuss a number of remaining challenges to outsourcing in the
Recommendations Section.

Frigate: A Validated, Extensible, and Efficient Compiler for Secure Computation

At the beginning of this project, the community had few resources it could use to
develop real systems based on garbled circuits. The Fairplay compiler created a
starting point for a number of other experimental compilers and interpreters, each
of which brought increasing efficiency to this field. The research community has
now become reliant on these artifacts in order to make the prospect of practical
secure computation a reality. Unfortunately as our next work demonstrates, all of
the most prominent SFE compilers available at this time contain a significant
number of stability and correctness issues, drawing into question the security
guarantees they purport.

Throughout the course of the PROCEED project, we gained extensive experience
with research artifacts created by a number of different performers. Throughout our
interactions with these different tools, we noticed significant issues with each of
them. For instance, many compilers failed to generate the correct logic for if

Original circuit

AND

XOR

AND

AND

XOR

D
ec

ry
pt

 o
ne

-t
im

e
pa

d

V
e

rif
y

M
A

C

E
nc

ry
pt

 o
ne

-t
im

e
pa

d

In
pu

t w
ire

s

O
ut

pu
t

w
ire

s

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

statements, whereas others were brittle and crashed when compiling all but a small
number of applications. Figure 12 shows the results of our correctness tests against
the five most popular garbled circuit compilers.

Figure	12:	Summary	of	correctness	results.	Note	that	all	major	SFE	compilers	currently	produce	
incorrect	outputs.	

The reasons for these failures became clearer by our extensive work with each of
the compilers. Specifically, while the compiler design community has extensive sets
of	best‐practices	for designing new compilers, none of these principles appear to
have been applied uniformly during the construction of these popular garbled
circuit compilers. We addressed this problem directly by designing and
implementing the Frigate compiler. We name our compiler after the naval vessel,
known for its speed and adaptability for varying missions. Our compiler is designed
to be validated through an extensive battery of testing all facets of its operation,
modular and extensible to support a variety of research applications, and faster than
the state of the art circuit compilers in the community. In addition, the frigate’s use
as an escort ship parallels the potential for our compiler to facilitate continued
secure computation research.

Frigate is made robust by a number of design decisions. First, we rely on standard
methodology from the compiler community (e.g., lexing, parsing, semantic analysis
and code generation), and use data structures such as abstract syntax trees. Second,
we perform extensive compiler output validation. Finally, we provide useful error
messages when the compiler detects a problem with an application, making
debugging the application significantly easier than with other compilers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

The results of this work provide significant improvements over related efforts. First,
our compiler and interpreter were extensively tested using methodology from the
compiler community to ensure correct operation. Second, by focusing our new
compiler on simple, clean design, we saw a significant improvement in performance.
When compared to the current fastest compiler/interpreter pair (KSS), we were
able to reduce compilation times by 682x.

Accordingly, this artifact represents the most stable and fastest compiler available
to the research community.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

Conclusions

At the beginning of this project, the prospect of running flexible and efficient privacy
preserving protocols on mobile devices was viewed as unworkable. Our work has
made significant progress against this goal, moving a mobile solution from
impossible to invisible when compared to traditional	two‐party	computations. Our
progress can be seen below in Figure 13.

Figure	13:	Overview	of	progress	during	the	course	of	our	work	on	the	PROCEED	project.	

Our mobile solutions are now capable of participating in the execution of the
largest‐ever	generated garbled circuits, at a security level equal to the best
traditional two‐party	schemes	with minimal bandwidth overhead.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

Recommendations

While our work has made crucial progress in realizing practical privacy‐preserving
applications on mobile devices, significant advances must still be made in order to
widely deploy such systems. We offer the following recommendations to ensuring
that these protocols are ultimately realized:

 Fast Navigation: Our work demonstrates that mobile devices can act as	first‐
class participants in secure computation. Our most promising embodiment of
this	is	our	privacy‐preserving navigation application. However, more work
remains in order to move this application from possible to practical.
Specifically, an effort to explore faster shortest‐path algorithms, more
efficient data structures, a reduced adversarial model and map scaling are
necessary to deploy this result.

 Improved Compilers: The research community has developed a number of
important artifacts throughout the duration of this work. However, many of
these research systems are inefficient or suffer from issues of
incompleteness. While our effort to create the Frigate compiler is an
important first step, the community needs to have a set of tools they can rely
upon to make future progress. Accordingly, formal verification (in some
form) of a compiler is necessary to continue to move forward.

 Central Project Repository: We have produced a significant amount of code in
the process of executing this project, as have a number of other groups.
Creating a collection of all software for public use would significantly serve
the research community. At the current time, finding working code can be a
frustrating and ad hoc process, reducing the time that the community is
spending on high quality research.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

Appendix

Published Papers (each included)

All papers are Contracted Fundamental Research (CFR) and do not require Pre‐
Publication Approval

B. Mood, L. Letaw, and K. Butler. Memory‐Efficient	Garbled	Circuit	Generation	
for	Mobile	Devices. 16th IFCA International Conference on Financial Cryptography
and Data Security (FC'12). 2012.

H. Carter, B. Mood, P. Traynor, and K. Butler. Secure	Outsourced	Garbled	Circuit	
Evaluation	for	Mobile	Devices. USENIX Security Symposium (Security'13), 2013.

B. Kreuter, a. shelat, B. Mood, and K. Butler. PCF:	A	Portable	Circuit	Format	For	
Scalable	Two‐Party	Secure	Computation. USENIX Security Symposium
(Security'13), 2013.

H. Carter, C. Amrutkar, I. Dacosta and P. Traynor, For	Your	Phone	Only:	Custom	
Protocols	for	Efficient	Secure	Function	Evaluation	on	Mobile	Devices, Journal of
Security and Communication Networks (SCN), 7(7), p. 1165–1176, 2014.

B. Mood, D. Gupta, K. Butler, and J. Feigenbaum. Reuse	It	Or	Lose	It:	More	Efficient	
Secure	Computation	Through	Reuse	of	Encrypted	Values. ACM Conference on
Computer and Communications Security (CCS'14), Scottsdale, AZ, USA, November
2014.

H. Carter, C. Lever, P. Traynor, Whitewash:	Outsourcing	Garbled	Circuit	
Generation	for	Mobile	Devices, Annual Computer Security Applications
Conference (ACSAC), December 2014.

H. Carter, B. Mood, K. Butler, P. Traynor, Outsourcing	Secure	Two‐Party	
Computation	as	a	Black	Box, In Submission.

B. Mood, D. Gupta, H. Carter, P. Traynor and K. Butler. Frigate:	A	Validated,	
Extensible,	and	Efficient	Compiler	for	Secure	Computation, In Submission.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

Fairplay SFDL Fairplay SHDL
Fairplay compiler

(a) Fairplay compiler process.

Fairplay SFDL Fairplay SHDL

PAL
FPPALC PALC

(b) PAL compiler process.

Fig. 1: Compilation with Fairplay versus PAL.

unrolls variables, transforms the instructions into SHDL, and outputs the file,
either immediately or after further circuit optimizations.

Fairplay’s circuit generation process is very memory-intensive. We performed
a port of Fairplay directly to the Android mobile platform (described further in
Section 4) and found that a large number of circuits were completely unable
to be compiled. We examined the results of circuit compilation on a PC to
determine the scope of memory requirements. From tests we performed on a
64-bit Windows 7 machine, we observed that Fairplay needed at least 245 MB of
memory to run the compilation of the keyed database program, a program that
matches database keys with values and employs SFE for privacy preservation
(described further in Section 4). In order to determine the cause of this memory
usage, we began by analyzing Fairplay’s compiler.

From our analysis, Fairplay uses the most memory during the mapping op-
eration from multi-bit to single-bit instructions. During this phase, the memory
requirements increased by 7 times when the keyed database program ran. We
concluded that it would be easier to create a new system for generating the SHDL
circuit file, rather than making extensive modifications to the existing Fairplay
implementation. To accomplish this, we created an intermediate language that
we called PAL, described in detail in section 3.

2.2 Threat Model

As with Fairplay, which is secure in the random oracle model implemented using
the SHA-1 hash function, our threat model accounts for an honest-but-curious
adversary. This means the participants will obey the given protocol but may look
at any data the protocol produces. Note that this assumption is well-described
by others considering secure function and secure multiparty computation, such
as Kruger et al.’s OBDD protocol [10], Pinkas et al.’s SFE optimizations [16],
the TASTY proposal for automating two-party communication [5], Jha et al.’s
privacy-preserving genomics [8], Brickell et al.’s privacy-preserving classifiers [3]
and Huang et al.’s recent improvements to evaluating SFE [6]. Similarly, we
make the well-used assumption that parties enter correct input to the function.

3 Design

To overcome the intensive memory requirements of generating garbled circuits
within Fairplay, we designed a pseudo assembly language, or PAL, and a pseudo

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

(a) (b)

Fig. 5: Screenshots of editor and password wallet applications.

ings, however, are that our memory-efficient circuit generation is complementary
to other approaches that focus on improving execution time and can be easily
integrated.

5 Discussion

To demonstrate how our memory-efficient compiler can be used in practice, we
developed Android apps capable of generating circuits at runtime. We describe
these below.

5.1 GUI Based Editor

To allow compilation on a phone we have to address one large problem. Our
experience porting Fairplay to Android showed the difficulty of writing a program
on the phone. Figure 5 (a) shows an example of a GUI front-end for picking and
compiling given programs based on parameters. A list of programs is given to
the user who can then pick and choose which program they wish to run. For
some of the programs there is a size variable that can also be changed.

5.2 Password Vault Application

We designed an Android application that introduces SFE as a mechanism to pro-
vide secure digital deposit boxes for passwords. In brief, this “password vault”

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
34

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
35

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
36

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
37

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
38

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
39

employ an extension of therandom seed techniquedevel-
oped by Goyal et al. [11] and implemented by Kreuter et
al. [25]. Essentially, thetechniqueusesacut-and-choose,
where the generator commits to a set of circuits that all
presumably compute thesamefunction. Theparties then
use a fair coin toss to select some of the circuits to be
evaluated and some that will be re-generated and hashed
by the cloud given the random seeds used to generate
them initially. Theevaluating party then inspects the cir-
cuit commitments and compares them to the hash of the
regenerated circuits to verify that all the check circuits
were generated properly.

Selective failure attack: If, when the generator is send-ing
the evaluator’s garbled inputs during the oblivious
transfer, heletstheevaluator choosebetween avalid gar-
bled input bit and a corrupted garbled input, the evalua-
tor’sability to complete the circuit evaluation will reveal to
thegenerator which input bit wasused. To prevent this
attack, weusetheinput encoding technique from Lindell
and Pinkas [29], which lets the evaluator encode her in-
put in such a way that a selective failure of the
circuit reveals nothing about the actual input value. To
prevent thegenerator from swapping garbled wirevalues,
weuse acommitment techniqueemployed by Kreuter et
al. [25].

Input consistency: Since multiple circuits are evaluated to
ensure that a majority of circuits are correct, it is pos-
sible for either party to input different inputs to differ-
ent evaluation circuits, which could reveal information
about the other party’s inputs. To keep the evaluator’s
inputs consistent, we again use the technique from Lin-
dell and Pinkas [29], which sends all garbled inputs for
every evaluation circuit in one oblivious transfer execu-
tion. To keep the generator’s inputs consistent, we use
the malleable claw-free collection construction of shelat
and Shen [41]. This technique is described in further de-
tail in Section 4.

Output consistency: When evaluating a two-output
function, we ensure that outputs of both parties are kept
private from the cloud using an extension of the tech-
nique developed by Kiraz [23]. The outputs of both par-
ties are XORed with random strings within the garbled
circuit, and the cloud uses a witness-indistinguishable
zero-knowledge proof as in the implementation by
Kreuter et al. [25]. This allows the cloud to choose a
majority output valuewithout learning either party’sout-
put or undetectably tampering with the output. At the
same time, the witness-indistinguishable proofs prevent
either party from learning the index of the majority
cir-cuit. This prevents the generator from learning
anything by knowing which circuit evaluated to the
majority out-put value.

Phase 1

Phase 2

Phase 3

Phase 1
Phase 1

Phase 4

Bob
(generator)

Alice
(evaluator)

cloud
(outsourcing agent)

Phase 2Phase 3Phase 5 Phase 3

Phase 5

Figure 1: The complete outsourced SFE protocol.

3.3 Malleable claw-free collections
To prevent the generating party from providing differ-ent
inputs for each evaluation circuit, we implement the
malleable claw-free collections technique developed by
shelat and Shen [41]. Their construction essentially al-
lows the generating party to prove that all of the garbled
input values were generated by exactly one function in a
function pair, while the ability to find an element that is
generated by both functions implies that the genera-tor
can find a claw. It is composed of a four-tuple of
algorithms (G,D,F,R), where G is the index selection
algorithm for selecting a specific function pair, D is an
algorithm for sampling from the domain of the function
pair, F isthealgorithm for evaluating thefunctionsin the
pair (in which it should bedifficult to find aclaw), and R
is the “malleability” function. The function R maps ele-
ments from the domain of F to the range of F such that
for b2 { 0,1} ,any I in the range of G,andany m1,m2 in the
domain of F, we have for the function indexed by I
and bfIb(m1?m2)= fIb(m1) ˜RI (m2), where? and ˜rep-
resent thegroup operations over thedomain and rangeof
F. Weprovidefull definitions of their construction in our
technical report [6].

3.4 Model and Definitions
The work of Kamara et al. [21] presents a definition of
security based on the ideal-model/real-model secu-rity
definitions common in secure multiparty computa-tion.
Because their definition formalizes the idea of a non-
colluding cloud, we apply their definitions to our
protocol for the two-party case in particular. We sum-
marize their definitions below. Real-model execution.
The protocol takes place be-tween two parties (P1,P2)
executing the protocol and a server P3, where each of
the executing parties provides input xi, auxiliary input
zi, and random coins ri and the server provides only
auxiliary input z3 and random coins r3. In the
execution, there exists somesubset of indepen-dent
parties (A1,..,Am),m 3 that are malicious adver-saries.
Each adversary corrupts one executing party and

4

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
40

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
41

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
42

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
43

47
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

44

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
45

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
46

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
47

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
48

32 Circuits Time (ms) 64 Circuits (ms) 128 Circuits (ms) Optimized Gates Unoptimized Gates Size (MB)

RSA128 505000.0 ± 2% 734000.0 ± 4% 1420000.0 ± 1% 116,083,727 192,537,834 774
Dijkstra20 25800.0 ± 2% 49400.0 ± 1% 106000.0 ± 1% 1,653,542 20,288,444 11
Dijkstra50 135000.0 ± 1% 197000.0 ± 3% 389000.0 ± 2% 22,109,732 301,846,263 147
Dijkstra100 892000.0 ± 2% 1300000.0 ± 2% 2560000.0 ± 1% 168,422,382 2,376,377,302 1124

Table 3: Execution time for evaluating a 128-bit blinded RSA circuit and Dijkstra shortest path solvers over
graphs with 20, 50, and 100 vertices. All numbers are for outsourced evaluation, as the circuits are too large to be
computed without outsourcing to a proxy.

(a) 20 identified intersections. (b) 50 identified intersections. (c) 100 identified intersections.

Figure 8: Map of potential presidential motorcade routes through Washington, DC. As the circuit size increases, a
larger area can berepresented at a finer granularity.

garbled circuits to date. While it may be possible for
existing protocols to evaluate circuits of similar size, it is
significant that we are evaluating comparably massive
circuits from a resource-constrained mobile device.

7.2 Privacy-Preserving Navigation
Mapping and navigation are some of the most popular
uses of a smartphone. Consider how directions may be
given using a mobile device and an application such as
Google Maps, without revealing the user’s current
loca-tion, their ultimate destination, or the route that
they are following. That is, the navigation server
should remain oblivious of these details to ensure their
mutual privacy and to prevent giving away potentially
sensitivedetails if the phone is compromised.
Specifically, consider plan-ning of the motorcade route
for the recent Presidential inauguration. In this case, the
route is generally known in advance but is potentially
subject to change if sudden threats emerge. A field
agent along theroute wants to re-ceivedirections
without providing the navigation service any additional
details, and without sensitive information about the
route loaded to the phone. Moreover, because the
threats may be classified, the navigation service does
not want the holder of the phone to be given this infor-
mation directly. In our example, the user of the phone
is trying to determine the shortest path.

To model this scenario, we overlay a graph topology
on a map of downtown Washington D.C., encoding in-
tersections as vertices. Edge weights are a function of
their distance and heuristics such aspotential risks
along a graph edge. Figure 8 shows graphs generated
based on vertices of 20, 50, and 100 nodes,
respectively. Note that the100-nodegraph (Figure8c)
encompasses alarger area and provides finer-grained
resolution of individual

intersections than the 20-node graph (Figure 8a).

Thereisatrade-off between detail and execution
time, however; as shown in Table 3, a 20-vertex
graph can be evaluated in under 26 seconds, while a
100-vertex graph requires almost 15 minutes with 32
circuits in our 64-core server testbed. The 64 circuit
evaluation requires more time: almost 50 seconds for
the 20-vertex graph, and almost 22 minutes for a 100-
vertex graph. We an-ticipate that based on the role a
particular agent might have on aroute, they will beable
to generate aroute that covers their particular
geographical jurisdiction and thus havean
appropriately sized route, with only certain users
requiring the highest-resolution output. Additionally,
as described in Section 6.3, serverswith moreparallel
cores can simultaneously evaluate more circuits,
giving faster results for the 64 circuit evaluation.

Figure 9 reflects two routes. The first, overlaid with a
dashed blue line, is the shortest path under optimal con-
ditions that is output by our directions service, based on
origin and destination points close to the historical start
and end points of the past six presidential inaugural
mo-torcades. Now consider that incidents have
happened along the route, shown in the figure as a car
icon in a hazard zone inside a red circle. The agent
recalculates the optimal route, which has been updated
by the navi-gation service to assign severe penalties to
those corre-sponding graph edges. The updated route
returned by the navigation service is shown in the
figure as a path with a dotted purple line. In the 50-
vertex graph in Fig-ure 8, the updated directions would
be available in just over 135 seconds for 32-circuit
evaluation, and 196 and ahalf seconds for 64-circuit
evaluation.

13APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
49

START
POINT

END
POINT

Optimal Route

Modified Route

Figure 9: Motorcade route with hazards along the route. The dashed blue line represents the optimal route, while
the dotted violet line represents the modified route that takes hazards into account.

8 Conclusion

While garbled circuits offer a powerful tool for secure
function evaluation, they typically assume participants
with massive computing resources. Our work solves this
problem by presenting a protocol for outsourcing garbled
circuit evaluation from a resource-constrained mobile
device to a cloud provider in the malicious setting. By
extending existing garbled circuit evaluation techniques,
our protocol significantly reduces both com-putational
and network overhead on the mobile device while still
maintaining the necessary checks for mali-cious or lazy
behavior from all parties. Our outsourced oblivious
transfer construction significantly reduces the
communication load on the mobile device and can easily
accommodate more efficient OT primitivesasthey are
developed. The performance evaluation of our protocol
shows dramatic decreases in required computation and
bandwidth. For the edit distance problem of size 128 with
32 circuits, computation is reduced by 98.92% and
bandwidth overhead reduced by 99.95% compared to
non-outsourced execution. These savings are illustrated in
our privacy-preserving navigation application, which
allows a mobile device to efficiently evaluate a massive
garbled circuit securely through outsourcing. These
results demonstrate that the recent improvements in
garbled circuit efficiency can be applied in practical
privacy-preserving mobile applications on even the most
resource-constrained devices.

Acknowledgments This material is based on research
sponsored by DARPA under agreement number FA8750-
11-2-0211. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of DARPA or the U.S. Government.
We would like to thank Benjamin Kreuter, abhi shelat,
and Chih-hao Shen for working with us on their garbled
circuit compiler and evaluation framework; ChrisPeikert
for providing helpful feedback on our proofs of security;
Thomas DuBuisson and Galois for their assistance in the
performance evaluation; and Ian Goldberg for his guid-
ance during the shepherding process.

References

[1] M. Bellare and S. Micali. Non-interactive obliv-
ious transfer and applications. In Advances in
Cryptology–CRYPTO, 1990.

[2] M. Ben-Or, S. Goldwasser, and A. Wigder-
son. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proceed-
ings of the annual ACM symposium on Theory of
computing, 1988.

14

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
50

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
51

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
52

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
53

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
54

Gen. PCF
Interpreter

C Code

Evl. PCF
InterpreterLCC

Bytecode

C Compiler LCC to PCF
Compiler

PCF File

Figure 1: High-level design of our system. We take a C
program and compile it down to the LCC bytecode. Our
compiler then transforms the LCC bytecode to our new
language PCF. Both parties then execute the protocol in
their respective role in the SFE protocol. The interpreter
could be any execution system.

sent and the receiver will not learn more than k
strings; this is known as a k-out-of-n oblivious transfer.
Given a public key encryption system it is possible to
construct a 1-out-of-2 oblivious transfer protocol [7],
which is the building block used in Yao’s protocol.
Garbled Circuits The core of Yao’s protocol is the con-
struction of garbled circuits, which involves
encrypting the truth table of each gate in a circuit
description of the function. When theprotocol isrun,
thetruth valuesin the circuit will be represented as
decryption keys for some cipher, with each gate
receiving aunique pair of keysfor itsoutput wire.
Thekeysfor agate’sinput wires arethen used to encrypt
thekeysfor itsoutput wires. Given asin-gle key for each
input wire of the circuit, the party that evaluates the
circuit can decrypt a single key that rep-resents a
hidden truth value for each gate’s output wire, until the
output gates are reached. Since this encryption process
can beapplied to any circuit, and since any com-putable
function has a corresponding circuit family, this
allowstheconstruction of asecureprotocol for any com-
putable function.

The typical garbled circuit protocol has two parties
though it can be expanded to more. Those two parties are
Bob, the generator of the garbled circuit, and Alice, the
evaluator of the garbled circuit. Bob creates the gar-bled
circuit and therefore knowsthedecryption keys, but
doesnot know which specific keysAlice uses. Alice will
receivetheinput keysfrom Bob using an oblivioustrans-
fer protocol, and thus learns only one key for each input
wire; if the keys are generated independent of Bob’s in-
put, Alice will learn only enough to compute the output
of the circuit.

Several variations on the Yao protocol havebeen pub-
lished; a simple description of the garbling and eval-
uation process follows. Let f : { 0,1} A ˜{0,1} B !{ 0,1} j
˜{0,1} k be a computable function, which will receive
input bits from two parties and produce output bits for
each party (not necessarily the same outputs). To garble
the circuit, a block cipher hE,D,Gi will be used.

For each wire in the circuit, Bob computes a pair of
random keys (k0,k1) (G(1n),G(1n)), which represent

logical 0 and 1 values. For each of Alice’s outputs,
Bob uses these keys to encrypt a 0 and a 1 and sends the
pair of ciphertextsto Alice. Bob
recordsthekeyscorrespond-ing to his own outputs. The
rest of the wires in the cir-cuit areinputs to gates. For each
gate, if the truth table is [v0,0,v0,1,v1,0,v1,1], Bob computes
the following cipher-text:

˜
Ekl,0 (Ekr,0 (kv0,0)),Ekl,0 (Ekr,1 (kv0,1))
Ekl,1 (Ekr,0 (kv1,0)),Ekl,1 (Ekr,1 (kv1,1))

where kl,˜and kr,˜arethekeysfor theleft and right input
wires (this can be generalized for gates with more than
two inputs). The order of the four ciphertexts is then
randomly permuted and sent to Alice.

Now that Alice has the garbled gates, she can begin
evaluating the circuit. Bob will send Alice his input wire
keys. Aliceand Bob then usean oblivioustransfer to give
Alice the keys for her input wires. For each gate,
Alice will only be able to decrypt one entry, and will
receive one key for the gate’s output, and will continue
to de-crypt truth table entries until the output wires have
been computed. Alice will then send Bob hisoutput keys,
and decrypt her own outputs.
Optimizations Numerousoptimizations to thebasic Yao
protocol have been published [10, 13, 17, 24, 27]. Of
these, the most relevant to compiling circuits is the “free
XOR trick” given by Kolesnikov and Schneider [17].
This technique allows XOR gates to be evaluated with-
out the need to garble them, which greatly reduces the
amount of datathat must betransferred and theCPU time
required for both thegenerator and theevaluator. Oneba-
sic way to take advantage of this technique is to choose
subcircuits with fewer non-XOR gates; Schneider pub-
lished alist of XOR-optimal circuits for even three-input
functions [27].

Huang et al. noted that there is no need for the eval-
uator to wait for the generator to garble all gates in the
circuit [13]. Once a gate is garbled, it can be sent to the
evaluator, allowing generation and evaluation to oc-cur in
parallel. Thistechnique isvery important for large circuits,
which can quickly become too large to store in RAM
[18]. Our approach unifies this technique with the use of
an optimizing compiler.

3 Bytecode

A common approach to compiler design is to translate a
high level language into a sequence of instructions for a
simple, abstract machine architecture; this is known as
the intermediate representation or bytecode.Bytecode
representations have the advantage of being machine-
independent, thus allowing a compiler front-end to be
used for multiple target architectures. Optimizations per-

3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
55

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
56

formed on bytecodearemachineindependent aswell; for
example, dead code elimination is typically performed
on bytecode, as removing dead code causes programs to
run faster on all realistic machines.

For the purposes of this work, we focus on a com-
monly used bytecode abstraction, the stack machine.In
this model, operands must be pushed onto an abstract
stack, and operations involvepopping operandsoff of the
stack and pushing the result. In addition to the stack, a
stack machine has RAM, which is accessed by instruc-
tions that pop an address off the stack. Instructions in a
stack machine are partially ordered, and are divided
into subroutines in which there is a total ordering. In
addition to simple operations and operations that interact
with RAM, astack machinehasoperations that can mod-
ify the program counter, a pointer to the next instruction to
beexecuted, either conditionally or unconditionally.

At a high level, our system translates bytecode pro-
grams for a stack machine into boolean circuits for SFE.
At first glance, this would appear to be at least highly
inefficient, if not impossible, because of the many ways
such an input program could loop. We show, however,
that imposing only a small set of restrictions on permis-
sible sequences of instructions enables an efficient and
practical translator, without significantly reducing theus-
ability or expressive power of the high level language.

4 System Design

Our system divides the compiler into several stages,
fol-lowing a common compiler design. For testing, we
used the LCC compiler front end to parse C source code
and produceabytecodeintermediate representation (IR).
Our back end performs optimizations and translates the
byte-code into a description of a secure computation
proto-col using our new format. This representation
greatly re-duces thedisk space requirements for
largecircuits com-pared to previous work, while still
allowing optimiza-tions to be done at the bit level. We
wrote our compiler in Common Lisp, using the Steel
Bank Common Lisp system.

4.1 Compact Representations of Boolean
Circuits

In Fairplay and the systems that followed its design, the
common pattern hasbeen torepresent Boolean circuitsas
adjacency lists, with each nodein thegraph being agate.
The introduces a scalability problem, as it requires stor-age
proportional to the size of the circuit. Generating,
optimizing, and storing circuits has been a bottleneck
for previous compilers, even for relatively simple func-
tions like RSA. Loading such large circuits into RAM

OR

Memory

LOC: 65+iLOC: 33+i LOC: 1+i

Loop?

… ...

… ...

YESNO

OR

Memory

LOC: 65+iLOC: 65+i LOC: 97+i

… ...

Figure 2: The high-level concept of the PCF design. It is
not necessary to unroll loops at compile time, even to
perform optimizations on the circuit. Instead, loops can
be evaluated at runtime, with gates being computed on-
the-fly, and loop indices being updated locally by each
party. Wire values are stored in a table, with each gate
specifying which two table entries should be used as in-
puts and where the output should be written; previous
wire values in the table can be overwritten during this
process, if they are no longer needed.

is a challenge, as even very high-end machines may not
have enough RAM for relatively simple functions.

There have been some approaches to addressing this
scalability problem presented in previous work.
The KSS12 system reduced the RAM required for
protocol executions by assigning each gate’s output
wire a refer-encecount, allowing thememory used for
awirevalueto be deallocated once the gate is no longer
needed. How-ever, the compiler bottleneck was not
solved in KSS12, as even computing the reference count
required memory proportional to thesizeof thecircuit.
Even with theengi-neering improvements presented by
Kreuter, shelat, and Shen, theKSS12 compiler
wasunableto compilecircuits with more than a few
billion gates, and required several days to compile their
largest test cases [18].

The PAL system [23] also addresses memory require-
ments, by adding control structures to thecircuit descrip-
tion, allowing parts of the description to be re-used. In
the original presentation of PAL, however, alarge circuit
file would still be emitted in the Fairplay format when
the secure protocol was run. An extension of this work
presented by Mood [22] allowed the PAL description to
be used directly at runtime, but this work sacrificed the
ability to optimize circuits automatically.

Our system builds upon the PAL and KSS12 systems
to solve the memory scalability problem without sacri-

4

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
57

we observed no such functions in our experiments with
LCC.

4.3 Algorithms for Translating Bytecode
Our compiler reads a bytecode representation of the
function, which lacks the structure of higher-level de-
scriptions and poses a unique challenge in circuit gener-
ation. As mentioned above, we do not impose any upper
limit on loop iterations or the depth of the function call
stack. Our approach to translation does not useany sym-
bolic analysis of the function. Instead, we translate the
bytecode into PCF, using conditional branches and func-
tion callsasneeded and translating other instructions into
lists of gates. For testing, we use the IR from the LCC
compiler, which is based on the common stack machine
model; we will use examples of this IR to illustrate our
design, but note that none of our techniques strictly re-
quireastack machine model or any particular features of
the LCC bytecode.

In our compiler, we divide bytecode instructions into
three classes:

Normal Instructions which have exactly one successor
and which can be represented by a simple circuit.
Examples of such instructions are arithmetic and
bitwise logic operations, operations that push data
onto the stack or movedata to memory, etc.

Jump Instructions that result in an unconditional con-
trol flow switch to a specific label. This does not
include function calls, which we represent directly
in PCF. Such instructions areusually used for if/else
constructs or preceding the entry to a loop.

Conditional Instructions that result in control flow
switching to either alabel or thesubsequent instruc-
tion, depending on the result of some conditional
statement. Examples include arithmetic compar-
isons.

In the stack machine model, all operands and the
results of operations are pushed onto a global stack. For
“normal” instructions, the translation procedure is
straightforward: the operands are popped off the stack
and assigned temporary wires, the subcircuit for the op-
eration is connected to these wires, and the output of the
operation is pushed onto the stack. “Jump” instructions
appear, at first, to beequally straightforward, but actually
require special care as we describe below.

“Conditional” instructions present achallenge. Condi-
tional jumpswhosetargetsprecedethejump areassumed to
beloop constructs, and aretranslated directly into PCF
branch instructions. All other conditional jumps require
the creation of multiplexers in the circuit to deal
with

If If[code] [code] [code]
True True

False

False

[code]

Figure 3: Nested if statements, which can be
handled using the stack-based algorithm.

conditional assignments. Therefore, the branch
targets must be tracked to ensure that the appropriate
condition wires are used to control those multiplexers.

In the Fairplay and KSS12 compilers, the condition
wire for an “if” statement is pushed onto a stack along
with a “scope” that is used to track the values (wire as-
signments) of variables. When a conditional block is
closed, the condition wire at the top of the stack is used
to multiplex the value of all the variables in the scope at the
top with the values from the scope second to the top, and
then the stack is popped. This procedure relies on the
grammar of “if/else” constructs, which ensures that
conditional blocks can be arranged as a tree. An exam-
ple of this type of “if/else” construct is in Figure 3. In a
bytecode representation, however, it is possible for con-
ditional blocks to “overlap” with each other without be-
ing nested.

In the sequence shown in Figure 4, the first branch’s
target precedes the second branch’s target, and indirect
loads and assignments exist in the overlapping region of
these two branches. The control flow of such an overlap
isgiven in Figure5. A stack isno longer sufficient in this
case, asthetop of thestack will not correspond to theap-
propriate branch when the next branch target is encoun-
tered. Such instruction sequences are not uncommon in
the code generated by production compilers, as they are a
convenient way to generate code for “else” blocks and
ternary operators.

To handle such sequences, we use a novel algorithm
based on a priority queue rather than a stack, and we
maintain a global condition wire that is modified as
branches and branch targets are reached. When a branch
instruction is reached, the global condition wire is up-
dated by logically ANDing the branch condition with the
global condition wire. The priority queue is updated with
the branch condition and a scope, as in the stack-based
algorithm; the priority is the target, with lower targets
having higher priority. When an assignment is
performed, the scope at the top of the priority queue is
updated with the value being assigned, the location be-
ing assigned to, the old value, and a copy of the global
condition wire. When a branch target is reached, multi-
plexers are emitted for each assignment recorded in the
scope at the top of the priority queue, using the copy of
the global condition wire that was recorded. After the

6

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
58

EQU4 A
INDIRI4 16
EQU4 B
INDIRI4 24
LABELV A
ASGNI 4
LABELV B
ASGNI 4

Figure 4: A bytecode sequence where overlapping con-
ditional blocks are not nested; note that the target of the
first branch, “A,” precedes the target of the second
branch, “B.”

[code] [code]
A:

[code]

False False

True

True

B:
[code]

EQU4: BEQU4: A

Figure 5: A control flow with overlapping conditional
blocks.

multiplexersareemitted, theglobal condition wire isup-
dated by ORing the inverse of the condition wire at the
top of the priority queue, and then the top is removed.

Unconditional jumps are only allowed in the forward
direction, i.e., only if the jump precedes its target. When
such instructionsareencountered, they aretranslated into
conditional branches whose condition wire is the inverse
of the conjunction of the condition wires of all enclos-
ing branches. In the case of a jump that is not in any
conditional block, the condition wire is set to false; this
does not necessarily mean that subsequent assignments
will not occur, as the multiplexers for these assignments
will be emitted and will depend on a global control line
that may be updated as part of a loop construct. The op-
timizer is responsible for determining whether such as-
signments can occur, and will rewrite themultiplexersas
direct assignments when possible.

Finally, it is possible that the operand stack will have
changed in the fall-through path of a conditional jump.
In that case, the stack itself must be multiplexed.
For simplicity, we require that the depth of the stack
not change in a fall-through path. We did not observe
any such changes to the stack in our experiments with
LCC.

4.4 Optimization
One of the shortcomings of the KSS12 system was the
amount of time and memory required to perform opti-
mizations on the computed circuit. In our system, opti-
mization isperformed beforeloops areunrolled but after
the functionality is translated into a PCF representation.
This allows optimizations to be performed on a smaller

representation, but increases the complexity of the
opti-mization process somewhat.

The KSS12 compiler bases its optimization on a rudi-
mentary dataflow analysis, but without any conditional
branches or loops, and with single assignments to each
wire. In our system, loops are not eliminated and wires
may be overwritten, but conditional branches are elim-
inated. As in KSS12, we use an approach based on
dataflow analysis, but we must make multiple passes to
find a fixed point solution to the dataflow equations. Our
dataflow equations take advantage of the logical rules of
each gate, allowing more gates to beidentified for elimi-
nation than the textbook equations identify.

We perform our dataflow analysis on individual PCF
instructions, which allowsusto removesinglegateseven
whereentirebytecodeinstructions could not beremoved,
but which carries the cost of somewhat longer compila-
tion time, on theorder of minutes for theexperiments we
ran. Currently, our framework only performs optimiza-
tion within individual functions, without any interproce-
dural analysis. Compile times in our system can be re-
duced by splitting a large procedure into several smaller
procedures.

Optimization 128 mult. 5x5 matrix 256 RSA

None 707,244 260,000 904,171,008
Const. Prop. 296,960 198,000 651,504,495
Dead Elim. 700,096 255,875 883,307,712

Both 260,073 131,875 573,156,735

Table 1: Effects of constant propagation and dead code
elimination on circuit size, measured with simulator that
performs no simplification rules. For each function, the
number of non-XOR gatesaregiven for all combinations
of optimizations enabled.

4.4.1 Constant Propagation

The constant propagation framework we use is straight-
forward, similar to the methods used in typical compil-
ers. However, for somegates, simplification rulescan re-
sult in constants being computed even when theinputs to
a gate are not constant; for example, XORing a variable
with itself. The transfer function we use is augmented
with acheck against logic simplification rules to account
for this situation, but remains monotonic and so conver-
gence is still guaranteed.

4.4.2 Dead Gate Removal

The last step of our optimizer is to remove gates whose
output wires are never used. This is a standard bit vector
dataflow problem that requires little tailoring for our sys-
tem. As is common in compilers, performing this step

7

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
59

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
60

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
61

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
62

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
63

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
64

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
65

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
66

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
67

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
68

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
69

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
70

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
71

E(g2*b)=

Alice (top pin) selects the area she is willing to receive messages
within. Bob's location (bottom pin) is within this area.

Bob selects the entries from Alice's matrix that correspond to his region,
multiplies them together, and exponentiates to a random power b.

Alice decrypts Bob's
product and finds a

random group element

E(1) E(1)E(1)E(1)E(1)E(1)E(1)

E(1) E(1)E(1)E(1)E(g)E(g)E(1)

E(1) E(1)E(1)E(1)E(g)E(g)E(1)

E(1) E(1)E(1)E(1)E(g)E(g)E(1)

E(1) E(1)E(1)E(1)E(1)E(1)E(1)

E(1) E(1)E(1)E(1)E(1)E(1)E(1)

E(1)E(1)

Figure 1. Proximity Test Protocol. We denote E n cp k (·) as E (·) . Alice builds a location matrix with encryptions of ‘1’ in every entry
except those that correspond to the area she is willing to receive tweets within. In her travel area, she enters encryptions of generator
‘g’. Bob selects the entries that correspond to his travel area, multiplies them together, exponentiates by a random blind, and returns
the product to Alice. When Alice decrypts, she knows that: if the value is not ‘1’, Bob’s tweet is relevant to her. Else, Bob’s tweet is

irrelevant to her location.

could also be combined with applications like Twitter to
allow for location-based tweet filtering and following.
However, these applications must query the physical
location of a user, which could compromise the user’s
privacy. To resolve this information leakage, we present a
protocol for securely computing when two users are within a
chosen proximity of one another. While used in a specific
application here, the protocol can be used in any location-
based mobile application. The ability to specify an input
region of any shape or size allows the proximity test to
provide a result at any desired granularity, from the same
building to the samecity.

Problem Definition Assume two Twitter users, a follower
Alice and a tweeter Bob. Alice selects as her input an area
around her current location where, if Bob tweets close to this
area, she wants to receive the tweet. Bob inputs an area
around his current location where his tweets are relevant.
Both of these areas are defined arbitrarily by the user,
meaning they can be of any chosen size and do not haveto
becentered on theuser’sgeographic location.The goal is to
compute whether the area where Alice wishes to receive
Bob’s tweets intersects with the area where Bob’s tweets are
relevant.

Protocol Definition
Common input:A matrix L of size M˜N where each cell
corresponds to a physical region within the city where Alice
and Bob are located. Imagine the matrix as a grid laid over a
city map. Each cell has a publicly known correlation to the
city location beneath it.
Input of Alice:A setof matrix entriesA corresponding to her
general location in L
Input of Bob:A set of matrix entriesB corresponding to his
general location in L
Cryptographic primitives: An encryption scheme

(Gen(),Encpk (·),Decsk (·)) meeting the requirements in
Section 3.

1. Alice generates a public/private keypair pk, sk =
Gen().

2. Alice generates a matrix L A = L .For eachentry ei

2A,LA [ei]= g,whereg is a generator of the message
space G. 8ei /2A,LA [ei]= 1.

3. Alice encrypts each entry of L A as follows: 8ei 2 L
A ,ei = Encpk (ei). Alice send L A to Bob.

4. Bob homomorphically combines his inputs from L A

into the single ciphertext Q as follows: 8ei 2 B, Q = e1

˜e2 ˜...˜e|B | .
5. Bob blinds Q by exponentiating the ciphertext by a

random integer b2 { 1..|G|} , generating the result R
= Qb.BobreturnsR to Alice.

6. Alicedecrypts R.If Decsk (R) = 1, Alicesendsan output
bit o = 0 to Bob, meaning Aliceand Bob are not within
a close enough proximity to exchange tweets. If
Decsk (R) =6 1, Alice sends o =1to Bob, and Alice
receivesBob’stweet.

Correctness: If any of the elements in A and B overlap, then
the multiplied messages will result in o = gn ,where n is the
number of overlapping entries multiplied by the random
blind b. If no entries overlap, the result will be o =1|B |˜b =1.

4.2. Private Set Intersection

Social networking applications are a popular channel for
communicating with a mobile device. However, they are
also a potential channel to leak private information about a
user’s social life. If two mobile users were to meet at a
party or conference, one might only want to allow the
other into her social network based on the friends they
already have in common. However, there is currently no
application which allowsthiswithout revealing both users’

4

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
72

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
73

E(H-1("Charlie")) E(H("Charlie"))

E(H("Dale"))

E(H("Erika"))

E(H("Francis"))

x

x

x

x

E(1b)

E(randomb)

E(randomb)

E(randomb)

Bob multiplies each entry
by all of Alice's encryptions.

If an entry matches, the result will be 1
Raised to Bob's random blinding factor

Figure 2. Private set intersection: We denote E n cp k (·) as E (·) . Bob homomorphically multiplies each entry in his array by every
entry in Alice’s array. He then exponentiates by a unique blinding factor for all of the resulting values. Alice receives these values and

decrypts them. If an entry is equal to 1, Alice knows there is a match.

proximity test protocol is secure in the presence of semi-
honest adversaries.

Proof
We prove the security of the protocol separately for each
participant.

When Alice is corrupt, her view of the protocol
vi ew�

A ((a, b), o) consists only of the message R. We run
the following protocol for simulator S1(A, o):

1. S1 receivesL A from Alice. If o = 0, S1 selectsany
entry e 2 L A such that e /2 A and setsQ = e. Else,
S1 sets Q = e 2 L A such that e 2 A .

2. S1 chooses a random integer b0, generates R0 =
Qb0

, and returns R0 to Alice.

Proof
If o = 0, the message D ecsk (R) is identical in both the

real and simulated execution, implying that S1(a, o)
c
�

vi ew�
A ((a, b), o). If o = 1, by the DDH problem in

Definition 2, we have that |P r [A (G, q, g, gn , gb, gb0
) =

1] − Pr [A (G, q, g, gn , gb, gn b) = 1]| 1
p (n) for some

polynomial p. This implies again that S1(a, o)
c
�

vi ew�
A ((a, b), o). Therefore, the proximity test protocol is

secure when Alice is corrupt.

When Bob is corrupt, his view of the protocol
vi ew�

B ((a, b), o) consists of the messages L A and o. We
run the following protocol for simulator S2(B , o):

1. S2 generates L 0
A by filling each entry with random

values from theciphertext spaceCof theencryption
scheme and sends L 0

A to Bob.
2. When Bob replieswith R, S2 sends o to Bob.

Proof
By the definition of semantic security in
Definition 1, |P r [B (1n , Zn , pk, E pk (L A) =
1] − Pr [B (1n , Zn , pk, E pk (L 0

A)) = 1]| < 1
p(n) for

some polynomial p and arbitrary information Zn about
the plain texts. The final output o is identical in both

executions, implying that S2(b, o)
c
� vi ew�

B ((a, b), o).
Therefore, the proximity test protocol is secure when Bob
is corrupt.

Given the existence of simulators S1 , S2 , this proves the
theorem.

5.3. Private Set Intersection Privacy

Theorem 2
Private Set Intersection Privacy: Assuming the encryption
scheme used in the private set intersection protocol is
semantically secure and that the secure hash function
used is pseudorandom and one-way, the private set
intersection protocol is secure in the presence of semi-
honest adversaries.

Proof
Again, weproveseparately thesecurity of our protocol for
Alice and Bob.

When Alice is corrupt, her view of the protocol
vi ew�

A ((a, b), o) consistsonly of themessageQR . Werun
the following protocol for simulator S1(A, o):

1. S1 receives (QA , pk, h) from Alice. S1 generates
QB by hashing the names in o using h, finding
the multiplicative inverse of each hash in G, and
encrypting using pk (as defined in the protocol). If
|o| < N , SA fills the remaining entrieswith aset of
hashed, inverted, and encrypted names F such that
8e 2 F, e /2 A . S1 shuffles the entries of QB .

2. S1 performs the homomorphic operations as
defined in the protocol, blinds each entry of Q0

R

with arandom exponent b0, and returnsQ0
R to Alice.

Proof
By Definition 2, we have for every entry in

6

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
74

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
75

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
76

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
77

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
78

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
79

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
80

approaches to the creat ion of reusable garbled circuit s [13,
10, 5], and previous work on reusing encrypted values in the
ORAM model [30, 11, 31], but these earlier schemes have
not been implemented. By cont rast , we have implemented
our scheme and found it to be both pract ical and efficient ;
we provide a performance analysis and a sample applicat ion
to illust rate its feasibility (Sect ion 6), as well as a simplified
example execut ion (Appendix C).

By breaking a large program into smaller pieces, our sys-
tem allows interact ive I/ O throughout the garbled circuit
computat ion. To the best of our knowledge this is the first
pract ical protocol for performing interact ive I/ O in the mid-
dle of a cut -and-choose garbled circuit computat ion.

Our system comprises three part ies - a generator, an eval-
uator, and a third party (“ the cloud”), to which the evaluator
outsources it s part of the computat ion. Our protocol is se-
cure against a malicious adversary, assuming that there is
no collusion with the cloud. We also provide a semi-honest
version of the protocol.

Figure 1 shows how Part ialGC works at a high level: First ,
a standard SFE execut ion (blue) takes place, at the end of
which we“ save” some intermediate output values. All further
execut ions use intermediate values from previous execut ions.
In order to reuse these values, informat ion from both part ies
– the generator and the evaluator – has to be saved. In our
protocol, it is the cloud – rather than the evaluator – that
saves informat ion. This allows mult iple dist inct evaluators
to part icipate in a large computat ion over t ime by saving
state in the cloud between di�erent garbled circuit execu-
t ions. For example, in a scenario where a mobile phone is
outsourcing computat ion to a cloud, Part ialGC can save the
encrypted intermediate outputs to the cloud instead of the
phone (Figure 2). This allows the phones to communicate
with each other by storing encrypted intermediate values in
the cloud, which is more efficient than requiring them to
direct ly part icipate in the saving of values, as required by
earlier 2P-SFE systems. Our friend finder applicat ion, built
for an Android device, reflects this usage model and allows
mult iple friends to share their intermediate values in a cloud.
Other friends use these saved values to check whether or not
someone is in the same map cell as themselves without hav-
ing to copy and send data.

By incorporat ing our opt imizat ions, we give the following
cont ribut ions:

1. Reusable Encrypted Values – We show how to reuse an
encrypted value, using only garbled circuit s, by mapping
one garbled value into another.

2. Reduced Runtime and Bandwidth – We show how reusable
encrypted values can be used in pract ice to reduce the ex-
ecut ion t ime for a garbled-circuit computat ion; we get a
96% reduct ion in runt ime and a 98% reduct ion in band-
width over CMTB.

3. Outsourcing Stateful Applications – We show how our sys-
tem increases the scope of SFE applicat ions by allowing
mult iple evaluat ing part ies over a period of t ime to op-
erate on the saved state of an SFE computat ion without
the need for these part ies to know about each other.

The remainder of our paper is organized as follows: Sect ion 2
provides some background on SFE. Sect ion 3 int roduces the
concept of part ial garbled circuit s in detail. The Part ialGC
protocol and it s implementat ion are described in Sect ion 4,
while it s security is analyzed in Sect ion 5. Sect ion 6 evalu-
ates Part ialGC and int roduces the friend finder applicat ion.

Garbled(
Circuit(

Execu0on(1(

E(

G(

Par0alGC(

Garbled(
Circuit(

Execu0on(2(

Par0alGC(

Garbled(
Circuit(

Execu0on(3(

E(

G(

E(

G(

Figure 1: Part ialGC Overview. E is evaluator and G is gen-
erator. T he blue box is a standard execut ion that produces
part ial outputs (garbled values); yellow boxes represent exe-
cut ions that take part ial inputs and produce part ial outputs.

Generator

Phone1

Cloud

Generator

Phone2

Cloud

Outsourced SFE Computation 1 Outsourced SFE Computation 2

Saved Values

Saved Values

Figure 2: Our system has three part ies. Only the cloud and
generator have to save intermediate values - this means that
we can have di�erent phones in di�erent computat ions.

Sect ion 7 discusses related work and Sect ion 8 concludes.

2. BACKGROUND
Secure funct ion evaluat ion (SFE) addressesscenarioswhere

two or more mutually dist rust ful part ies P1 , . . . , Pn , wit h
private input s x1 , . . . , xn , want to compute a given funct ion
yi = f (x1 , . . . , xn) (yi is the output received by Pi), such
that no Pi learns anything about any xj or yj , i 6= j that is
not logically implied by xi and yi . Moreover, there exists no
t rusted third party – if there was, the Pi s could simply send
their inputs to the t rusted party, which would evaluate the
funct ion and return the yi s.

SFE was first proposed in the 1980s in Yao’s seminal pa-
per [39]. The area has been studied extensively by the cryp-
tography community, leading to the creat ion of the first gen-
eral purpose plat form for SFE, Fairplay [32] in the early
2000s. Today, there exist many such plat forms [6, 9, 16, 17,
26, 37, 40].

The classic plat forms for 2P-SFE, including Fairplay, use
garbled circuit s. A garbled circuit is a Boolean circuit which
is encrypted in such a way that it can be evaluated when
the proper input wires are entered. The party that evaluates
this circuit does not learn anything about what any part ic-
ular wire represents. In 2P-SFE, the two part ies are: the
generator , which creates the garbled circuit , and the evalua-
tor , which evaluates the garbled circuit . Addit ional crypto-
graphic techniques are used for input and output ; we discuss
these later.

A two-input Boolean gate has four t ruth table ent ries. A
two-input garbled gate also has a t ruth table with four en-
t ries represent ing 1s and 0s, but these ent ries are encrypted
and can only be ret rieved when the proper keys are used.
T he values that represent the 1s and 0s are random st rings
of bit s. The t ruth table ent ries are permuted such that the
evaluator cannot determine which ent ry she is able to de-
crypt , only that she is able to decrypt an ent ry. The ent irety
of a garbled gate is the four encrypted output values.

Each garbled gate is then encrypted in the following way:
Each ent ry in the t ruth table is encrypted under the two
input wires, which leads to the result , tr uthi = E nc(i nput x ||
i nput y) � output i , where tr uthi is a value in the t ruth table,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
81

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
82

Input
Garbled Circuit Input 0

Garbled Circuit Input N
Input

Partial input
Gate 0

Partial input
Gate N ...

...

Remainder
of Garbled

Circuit

AND

OR

Figure 3: This figure shows how we create a single partial
input gate for each input bit for each circuit and then link
the partial input gates to the remainder of the circuit .

made up of two pieces: the part ial input gates and the re-
mainder of the garbled circuit .
3. R eveal ing I ncor r ect Tr ansfor m at ions

Our last goal is to let E inform G that incorrect values
have been detected. Without a way to limit leakage, G could
gain informat ion based on whether or not E informs G that
she caught him cheat ing. This is a select ive failure at tack
and is not present in our protocol.

4. PARTIALGC PROTOCOL
We start with the CMT B protocol and add cut -and-choose

operat ions from sS13 before int roducing the mechanisms
needed to save and reuse values. We defer to the original
papers for full details of the outsourced oblivious t rans-
fer [8] and the generator’s input consistency check [38] sub-
protocols that we use as primit ives in our protocol.

Our system operates in the same threat model as CMTB
(see Sect ion 2.1.1): we are secure against a malicious adver-
sary under the assumpt ion of non-collusion. A descript ion of
the CMT B protocol is available in Appendix A.

4.1 Preliminar ies
There are three part icipants in the protocol:
G ener at or – The generator is the party that generates

the garbled circuit for the 2P-SFE.
Evaluat or –The evaluator is the other party in the 2P-

SFE, which is outsourcing computat ion to a third party, the
cloud.

C loud – The cloud is the party that executes the garbled
circuit outsourced by the evaluator.

N ot at ion

Ci - T he i th circuit .

CK eyi - Circuit key used for the free XOR opt imizat ion [25].
The key is randomly generated and then used as the di�er-
ence between the 0 and 1 wire labels for a circuit Ci .

CSeedi - This value is created by the generator’s PRNG and
is used to generate a part icular circuit Ci .

POut# i , j - The partial output values are the encrypted wire
valuesoutput from an SFE computat ion. T heseareencrypted
garbled circuit values that can be reused in another garbled
circuit computat ion. # is replaced in our protocol descrip-
t ion with either a 0, 1, or x, signifying whether it represents a
0, 1, or an unknown value (from the cloud’s point of view). i
denotes the circuit the POut value came from and j denotes
the wire of the POut i circuit .

PI n# i , j - T he partial input values are the re-entered POut
values after they have been obfuscated to remove the circuit
key from the previous computat ion. These values are input
to the partial input gates. # , i , and j , are the same as above.

GI n# i , j - The garbled circuit input values are the result s
of the part ial input gates and are input into the remaining
garbled circuit , as shown in Figure 3. # , i , and j , are the
same as above.

Partial Input Gates - These are garbled gates that take in
PI n values and output GI n values. Their purpose is to
t ransform the PIn values into values that are under CK eyi

for the current circuit .

4.2 Protocol
Each computat ion is self-contained; other than what is

explicit ly described as saved in the protocol, each value or
property is only used for a single part of t he computat ion
(i .e. randomness is di�erent across computat ions).

A lgor i t hm 0: Part ialComputat ion
I n p u t : Ci rcui t F i le, B i t Secur i t y, Number of Circui t s, I nput s,

I s F i rst Execut ion
O u t p u t : Ci rcui t F i le Out put
Cut _and_Choose(i s F i r st Execut i on)
Eval Garbled I nput Eval uat or _I nput (Eval Select B i ts,
Possi ble Eval I nput)
Gener at or _I nput _Check(Gen I nput)
Par t ial Garbled I nput Par t i al _I nput (Par t i al Ou t pu t t i m e− 1)
Garbled Out put , Par t ial Out put
Ci r cui t _Execut i on(Gar bled I nput (Gen, Eval, Par t i al))
Ci r cui t _Out put (Gar bled Output)
Par t i al _Out put (Par t i al Output)

Com m on I nput s: T he program circuit fi le, the bit level
security, the circuit level security (number of circuit s) S,
and encrypt ion and commitment funct ions.

P r ivat e I nput s: The evaluator’s input evl I nput and gen-
erator’s input genI nput .

Out put s: Theevaluator and generator can both receive gar-
bled circuit outputs.

Phase 1: Cut -and-choose
We modify the cut -and-choose mechanism described in

sS13 as we have an ext ra party involved in the computat ion.
In this cut -and-choose, the cloud selects which circuit s are
evaluat ion circuit s and which circuit s are check circuit s,

ci r cui tSelect ion = r and()

where circuitSelection is a bit vector of size S; N evaluat ion
circuit s and S− N check circuit s are selected where N = 2

5 S.
T he generator does not learn the circuit select ion.

The generator generates garbled versions of his input and
circuit seeds for each circuit . He encrypts these values using
unique 1-t ime XOR pad keys. For 0 i < S,

CSeedi = r and()

gar bledGenI nput i = gar ble(genI nput, r and())

checkK eyi = r and()

evlK eyi = r and()

encSeedI ni = CSeedi � evlK eyi

encGar bledI ni = gar bledGenI nput i � checkK eyi

T he cloud and generator perform an oblivious t ransfer where
the generator o�ers up decrypt ion keys for his input and
decrypt ion keys for the circuit seed for each circuit . The
cloud can select the key to decrypt the generator’s input or
the key to decrypt the circuit seed for a circuit but not both.
For each circuit , if t he cloud selects the decrypt ion key for
the circuit seed in the oblivious t ransfer, then the circuit is
used as a check circuit .

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
83

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
84

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
85

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
86

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
87

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
88

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
89

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
90

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
91

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
92

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
93

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
94

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
95

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
96

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
97

2: Random seeds & input
decommitments

2:
 C

om
m

it
in

pu
t

3:
 C

irc
ui

t p
re

pa
ra

tio
n 2: C

om
m

it input

4:
 O

bl
iv

io
us

 tr
an

sf
er

s

1: Prepare
input

6: Prove output

correctness

5:
 C

irc
ui

t e
va

lu
at

io
n

6:
 R

el
ea

se
 o

ut
pu

ts

6: Release outputs

1: Prepare
input

1: Prepare
input

Figure 1: The complete Whitewash protocol. Note that M O-
BI L E per forms very little work compared to SERVER and
CL OUD.

execution. Then the i t h partial output of a real protocol execution
with input x is defined as:

RE AL (i) (k, x ; r) = { OUTj : j 2 H } [OUTi

Where H is the set of honest parties, r is all random coins of all
participants, and k is the security parameter.

In the ideal world, each party provides the same inputs as in the
real world, however, they are sent to a trusted oracle which per-
forms the secure computation. Once the trusted oracle completes
the computation, it returns the output to the participating parties
and no output to the outsourcing party. If any party aborts early or
sends no input to the oracle, the oracle aborts and does not send
the output to any party. For the i t h honest party, let OUTi be its
output to theoracle, and for the i t h corrupted party, let OUTi bean
arbitrary output value produced by the party. Then the i t h partial
output of an ideal protocol execution in thepresenceof independent
malicious simulators S = (S1 , S2 , S3) isdefined as:

I D E AL (i) (k, x ; r) = { OUTj : j 2 H } [OUTi

WhereH , r, and k aredefined asbefore. Given thismodel, security
is formally defined as:

DEFINITION 1. An outsourcing protocol securely computes the
function f if thereexistsa set of probabilistic polynomial-time (PPT)
simulators { Simi } i 2 [3] such that for all PPT adversaries
(A1 , A 2 , A3), inputs x, auxiliary inputs z, and for all i 2 [3]:

{ RE AL (i) (k, x ; r)} k 2 N
c
� { I D E AL (i) (k, x ; r)} k 2 N

Where S = (S1 , S2 , S3), Si = Si mi (Ai), and r is uniformly
random.

4. PROTOCOL

4.1 Participants
Given amobile deviceand aweb or application server who wish

to jointly compute a function, there are three participating parties
in the Whitewash protocol:

• SERVER: “SERVER” refers to the web or application server
participating in the joint computation. She is assumed to have
largecomputational resourcesand isresponsible for evaluating
the garbled circuits.

• M OBI L E: “ MOBILE” refers to the mobile device participating
in the joint computation. He is assumed to have limited pro-
cessing power, memory, and communication bandwidth. MO-
BIL E is tasked with garbling the circuit to be evaluated by
SERVER.

• CL OUD: The outsourcing party “CLOUD” is responsible for
relieving MOBIL E of the majority of his computational load,
but isnot trusted with knowing either party’s input to or output
from the joint computation.

4.2 Protocol
Common Inputs: Security parameters k (key length) and σ (the
number of circuits generated for the cut-&-choose); a commitment
scheme com(x ; c) with committed valuex and commitment key c;
and a function f (x, y).
Pr ivate Inputs: MOBIL E inputs x and SERVER inputs y.
Outputs: Two outputs f s , f m for SERVER and MOBILE, respec-
tively.

Phase 1: Pre-computation
1. Prepar ing inputs: MOBILE randomly generates

r 2 { 0, 1} 2k + l og(k) as his input to the 2-universal circuit. He
also generates e 2 { 0, 1} | f m | as a one-time pad for his out-
put. SERVER computes her k-probe-resistant matrix M and y
such that M · y = y. MOBILE’ S input to the circuit will be
x = xkekr and SERVER’ S input will be y. We denote the set
of indices [ms] = { 1, · · · , |y|} and [mm] = { 1, · · · , |x|} .

2. Prepar ing circuit randomness: MOBILE generates random
seeds { �(j) } j 2 [σ] for generating the circuits and sends them to
CLOUD.

Phase 2: Input commitments
1. Committing to M OBI L E’ S inputs: For each circuit j 2 [σ],

input bit i 2 [mm], and b 2 { 0, 1} MOBIL E uses �(j) to
generatecommitment keys✓(j)

i ,b . Using thesamerandom seeds,
these keys will later be generated by CLOUD to commit to the
input wire labels corresponding to MOBILE’ S input. MOBIL E

then commits to his own inputs as { Γ (j) } j 2 [σ] as:

Γ (j) = { com(✓(j)
i , x i

; γ (j)
i)} i 2 [m m]

using independently generated random commitment keysγ (j)
i .

MOBILE sends { Γ (j) } j 2 [σ] to SERVER and the commitment

keys { γ (j)
i } i 2 [m m], j 2 [σ] to CLOUD.

2. Committing to CL OUD’ S inputs: To allow for a fair release
of the outputs, CLOUD inputs one-time pads to blind both par-
ties’ outputs. CLOUD randomly generates ps 2 { 0, 1} | f s | and
pm 2 { 0, 1} | f m | , as well as r c 2 { 0, 1} 2k + log(k) as its in-
put to the 2-universal circuit. We denote CLOUD’ S input as
z = pskpm kr c , and the indices of CLOUD’ S input wires as
[mc] = { 1, · · · , |z|} .
For each circuit j 2 [σ] and input bit i 2 [mc], CLOUD uses
{ �(j) } j 2 [σ] to generates the garbled input wire keys

(K (j)
i ,0 , K (j)

i ,1 , �(j)
i), where K (j)

i ,0 , K (j)
i ,1 2 { 0, 1} k and the per-

mutation bit �(j)
i 2 { 0, 1} . To locate the correct key for

bit b on input wire wi of circuit j , we designate the label
W (j)

i ,b = (K (j)
i ,b , b� �(j)

i).
Let { wm s + i } i 2 [m c] be the input wires for CLOUD. CLOUD

then commitsto thelabel pairsfor itsinput wiresas{ (j) } j 2 [σ] ,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
98

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
99

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
100

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
101

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
102

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
103

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
104

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
105

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
106

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
107

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
108

3

1 & 6

2

5

2

5

2PC
4 4

Figure 1: The complete black box outsourcing protocol. Note that the mobile device performs very little work com-
pared to the application server and the Cloud, which execute a two-party SMC (2PC) protocol.

4.1 Par ticipants

• SERVER: the application or web server participat-
ing in asecure computation with the mobile device.
Thisparty provides input to the function being eval-
uated.

• M OBI L E: the mobile device accessing SERVER to
jointly compute some result. This party also pro-
vides input to the function being evaluated.

• CL OUD a Cloud computation provider tasked with
assisting MOBILE in the expensive operations of
the secure computation. This party executes a two-
party SMC protocol in a black-box manner with
SERVER, but does not provide an input to the func-
tion being evaluated.

4.2 Overview

Theoutsourcing protocol can beinformally broken down
as follows: first, the mobile device prepares its input by
encrypting it and producing a MAC tag for verifying the
input is not tampered with before it is entered into the
computation. Since the application server and Cloud are
assumed not to collude, one party receives the encrypted
input, and the other party receives the decryption key.
Both of these values are input into the secure two-party
computation, and areverified within thesecure two-party
protocol using the associated MAC tags (see Figure 2).
If the check fails, the protocol outputs a failure message.
Otherwise, the second phase of the protocol, the actual
evaluation of the SMC program, takes place. The third

and final phase encrypts and outputs the mobile device’s
result to both parties, who in turn deliver these results
back to the mobile device. Intuitively, since our security
model assumes that the application server and the Cloud
are never simultaneously malicious, at least one of these
two will return the correct result to the mobile device.
From this, the mobile will detect any tampering from the
malicious party by a discrepancy in these returned val-
ues, eliminating the need for an output MAC. If no tam-
pering is detected, the mobile device then decrypts the
output of computation.

4.3 Protocol

Common Input: All parties agree on a computational
security parameter k, a message authentication code
(MAC) scheme (Gen(),Mac(),Ver()), and a malicious
secure two-party computation protocol 2PC(). All
parties agree on a two-output function f (x,y) ! fm, fs
that is to be evaluated.

Pr ivate Input: MOBILE inputs x while SERVER inputs
y. We denote the bit length of a value as |x| and
concatenation as x||y.

Output: SERVER receives fs and MOBIL E receives fm.

1. Input preparation: MOBILE generates a one-time
pad kf m where |kf m| = | fm|. Mobile then generates
two MAC keys vs = Gen(k) and vc = Gen(k). Fi-

5

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
109

Original circuit

AND

XOR

AND

AND

XOR

D
e

cr
yp

t o
ne

-t
im

e
pa

d

V
er

ify
 M

A
C

E
nc

ry
pt

 o
ne

-t
im

e
 p

ad

In
p

ut
 w

ire
s

O
u

tp
ut

 w
ire

s

Figure 2: The process of augmenting a circuit for outsourcing. The original circuit is boxed in red. Essentially, we
require that the mobile device’s input be verified using a MAC and decrypted using a one-time pad before it is input
into the function. After the result is computed, it must be re-encrypted using a one-time pad and delivered to both
parties to guarantee that the mobile device will detect if either party tampers with the result.

nally, MOBILE generates a one-time pad km where
|km| = |x| + |kf m|.

2. Input delivery: MOBILE encrypts its input as
a = (x||kf m) � km. It then generates two tags ts =
Mac(a||vc,vs) and tc = Mac(km||vs,vc). MOBILE

delivers a,vc, and ts to SERVER and km,vs, and tc to
CLOUD.

3. Augmenting the target function (Algor ithm 1):
All parties agree on the following augmented func-
tion g(y,a,vc,ts;km,vs, tc) to be run as a two-party
SMC computation:

(a) If Ver(a||vc,ts,vs) 6= 1 or Ver(km||vs,tc,vc) 6= 1
output ? .

(b) Set x||kf m = a� km

(c) Run the desired function fs, fm = f (x,y)

(d) Set output values os = fs and om = fm� kf m

(e) Output os||om to SERVER and om to CLOUD

4. Two-par ty computation: SERVER and CLOUD

execute a secure two-party computation proto-
col 2PC(g();y,a,vc, ts;km,vs,tc) evaluating the aug-
mented function.

5. Output ver ification: CLOUD delivers its output
from the two-party computation, om to MOBILE.
SERVER also delivers the second half of its output
o0

m to MOBILE. MOBILE verifies that om = o0
m.

6. Output recovery: SERVER receives output fs = os

and MOBILE receives output fm = om� kf m

Input : CLOUD inputs km,vs,tc and SERVER inputs
y,a,vc,ts

Output: CLOUD receives om and SERVER receives
os||om

if Ver(a||vc, ts,vs) 6= 1 then
return ?

else if Ver(km||vs,tc,vc) 6= 1 then
return ?

else
x,kf m = a� km

fm, fs = f (x,y)
os = fs(x,y)
om = fm(x,y) � kf m

end

Algor ithm 1: The augmented function

5 Secur ity

Our black box outsourcing protocol is secure under the
following theorem satisfying thesecurity definition from
Section 3:

Theorem 1. The black box outsourced two-party proto-
col securely computes a function f (x,y) in the follow-
ing two corruption scenarios: (1) Any one party is mali-
cious and non-cooperative with respect to the rest of the
parties; (2) The Cloud and the mobile device are mali-
ciousand colluding, while theapplication server issemi-
honest.

Note that these scenarios correspond exactly with the

6

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
110

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
111

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
112

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
113

Image
Processing

Black Box
SMC

Result

Figure 5: An example of the facial recognition application.

Program Name SS13 BB Increase

Dijkstra10 16 ± 1% 33 ± 1% 2.1x

Dijkstra20 77 ± 1% 100 ± 1% 1.3x

Dijkstra50 940 ± 2% 980 ± 2% 1.0x

MatrixMult3x3 28.6 ± 0.8% 73.2 ± 0.5% 2.6x

MatrixMult5x5 110 ± 2% 200 ± 2% 1.9x

MatrixMult8x8 400 ± 2% 627 ± 0.9% 1.6x

MatrixMult16x16 2900 ± 1% 3800 ± 2% 1.3x

RSA128 4700 ± 2% 4900 ± 3% 1.0x

Table 3: Comparing SS13 and Black Box runtime. All
times in seconds. Note that as the circuit size increases,
the increase in execution time caused by outsourcing be-
comes insignificant.

Program Name SS13 BB Increase

Dijkstra10 2.44 x 109 3.87 x 109 1.6x

Dijkstra20 1.52 x 1010 1.73 x 1010 1.1x

Dijkstra50 2.02 x 1011 2.05 x 1011 1.0x

MatrixMult3x3 3.43 x 109 7.66 x 109 2.2x

MatrixMult5x5 1.57 x 1010 2.56 x 1010 1.6x

MatrixMult8x8 6.43 x 1010 8.73 x 1010 1.4x

MatrixMult16x16 5.11 x 1011 6.01 x 1011 1.2x

RSA128 8.69 x 1011 8.72 x 1011 1.0x

Table 4: Comparing SS13 and Black Box bandwidth us-
age between the parties performing the generation and
evaluation of the garbled circuit. All bandwidth in bytes.
Note that the size of the original circuit dominates the
bandwidth required between the two servers. As this cir-
cuit grows in size, the overhead bandwidth required for
outsourcing is amortized.

width isnearly minimal and easily calculated for any test
program, we focused our experimentation on examining
thebandwidth overhead incurred between theapplication
server and the Cloud.

As in the case of execution time, Table 4 shows
an inverse relation between circuit size and overhead
cost. Before running the experiment, we predicted that
the bandwidth overhead would approximately match the
overhead in circuit size shown in Table 1. The experi-
ments confirmed that theactual bandwidth overhead was
equal to or slightly larger than the overhead in non-
XOR gates in the circuit. The reason for this correla-
tion is twofold. First, the free-XOR techniqueused in the
shelat-Shen protocol allowsXOR gates to berepresented
without sending any dataover thenetwork. Thus, adding
additional XOR gates does not incur bandwidth cost.
Second, in cases where the actual overhead is slightly
larger than the circuit size overhead, we determined that
the added cost was a result of additional oblivious trans-
fers. These operations require the transmission of large
algebraic group elements, so the test circuits which in-
curred increased overhead from the growth of the mo-
bile input showed a slightly larger bandwidth overhead
as well. Ultimately, as in the case of execution time, our
experiments demonstrate that the black box outsourcing
scheme incurs minimal bandwidth usage at the mobile
device with diminishing bandwidth overhead between
the application server and the Cloud.

7 Application: Facial Recognition

The growing number of mobile applications available
present a wealth of potential for applying privacy-
preserving computation techniques to the mobile plat-
form. Carter et al. [8] demonstrated one potential ap-
plication with their privacy-preserving navigation app,
and Mood et al. [35] presented a friend-finding appli-
cation. We present a third mobile-specific application:
facial recognition. In this setting, a secret operative or
law enforcement agent carrying a mobile device needs
to analyze a photo of a suspected criminal using an in-
ternational crime database (see Figure 5). The database,

10

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
114

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
115

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
116

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
117

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
118

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
119

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
120

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
121

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
122

126
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

123

 127

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
124

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
125

Operators Description
+ - � signed arithmetic operators
/ % unsigned arithmetic operators

| ^ & � bitwise operators
= assignment operator

== != equality test operators
> < < = > = conditional operators

< < > > shift operators
< < > rotate left operator

. struct operator
[] array operator

{ } { :} wire operators

Table 1: A table showing the operators in Frigate’s input
language

simplicity to ensure for easier validation. Our language
has control structures for functions, for loops, and if/else
statements. We include the ability to define types of ar-
bitrary length and combination as in SFDL, the language
used by Fairplay, combined with an operator that selects
somebits from avariable used in theKSScompiler input
language. For modularity, we have #include statements
to allow the use of external files and #define to replace
a term with an expression. The list of operators in our
language is in Table 1, with an example of our input lan-
guage in Appendix B.

Every program begins with a declaration of the num-
ber of parties participating in the computation. Since not
every participant is required to provide input or receive
output, the input and output types for any subset of the
participants may then be specified.

To further maintain simplicity, only two primitive
types are defined in our programing language. int t types
arenumbersdefined to aspecific bit length while struct t
types may consist of int t and struct t types. Developers
may specify their own types using these two types and
the typedef command. These two types can be combined
to create any complex data type. To formally define the
typing of each operator in our language, we giveaselec-
tion of typing rules in Figure 2. The remainder of these
rules are available in Appendix A.

One feature we were compelled to omit from our lan-
guage was global variables. We removed this feature af-
ter we realized the significant overhead they represent
within a Boolean circuit program. Allowing global vari-
ables requires keeping track of whether each function is
called under an if statement and adding a MUX gate ev-
ery time a global variable wire is assigned a value. Our
language iscapable of expressing equally functional pro-
gramsby passing in “global” variables and returning any
new values for this variables.

A ssn
Γ t i : T

Γ t1 = t2 : T

A dd
Γ t i : N umL i

Γ t1 + t2 : N umL i

Less
Γ t i : N umL i

Γ t1 < t2 : N um1

I f -El se
Γ t i : T σ : N um1

Γ i f (σ){ t1} el se { t2} : T

Func-Cal l
Γ t i : Ti f : F

Γ f (t0...t n− 1) : R

Figure 2: Example typing rules for basic operators and
control flow statements

Parsing
Includes

Type Check and
Program Errors

Circuit Output

Gate Optimization

Input Analysis and Transformation Output

Defines

Figure 3: Overall design of the Frigate compiler. There
are six separate blocks of the compiler. We have sepa-
rated blocks into three different stages instead of the tra-
ditional two stages.

6.2 Compiler Design

With our input language defined, we next examine the
design of the Frigate compiler itself. Written in approxi-
mately 20,000 lines of C++, the compiler is designed to
be simple enough to validate each output code path and
modular for expansion to fit specialized secure compu-
tation applications. We plan to make our code available
upon publication.

6.2.1 Compilation stages

Frigate represents programs in the standard compiler
data structure, the abstract syntax tree (AST). In ac-
cordance with our first design principle, this allows
for straightforward static analysis and transformation of
each program. Each type of operation has its own node
where construction, type checking, and output of its sub-
circuit (among other functions) takes place.

Compilation of a program follows three phases as
shown in Figure 3. The input section of Frigate takes
in a program and creates an AST representation of the
program. We used Flex [2] and Bison [3] to generate
the scanner and parser used in this phase. In the second
phase, any #include statements are replaced with the in-
cluded file’s generated AST. All #define statements re-
place any terms in the AST with a deep copy of the de-
fined expression tree. To conclude this phase, the type
checker takes the AST and checks that it is a valid pro-
gram as defined by Frigate’s input language. The final
phase of compilation takes in the AST and outputs the
circuit while performing gate-level optimizations. If a
developer wishes to extend the functionality of Frigate,

7

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
126

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
127

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
128

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
129

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
130

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
131

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
132

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
133

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
134

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
135

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
136

Glossary of Terminology

AES: Advanced Encryption Standard

Blackbox: A means of viewing a cryptographic protocol such that it can be viewed as
secure as a whole without necessarily proving the composition of its components
(which are known to be secure).

CBMC: A Garbled Circuit Compiler

CMTB Outsourcing: Built on the KSS framework, the CMTB evaluation framework
outsources the evaluation of garbled circuits to allow mobile devices to participate
more efficiently in garbled circuit computation.

EMOC: Efficient Mobile Oblivious Computation: EMOC is a set of protocols using
partially homomorphic cryptosystems to compare encrypted elements.

Evaluator: The party responsible for running a garbled circuit.

Fairplay: A Garbled Circuit Compiler

Garbled circuit: A scrambled representation of	a	low‐level	circuit designed to
prevent its evaluator from understanding the inputs or outputs.

Generator: The party responsible for garbling a circuit and inputs.

GPS: Global Positioning System

IR: Intermediate Representation

KSS: A Garbled Circuit Compiler, The KSS compiler and evaluation framework
combines a number of garbled circuit optimizations into a malicious secure protocol
for	two‐party	garbled	circuit evaluation.

MAC: Message Authentication Code

OBDD: Ordered Binary Decision Diagrams

OT: Oblivious Transfer: A cryptographic protocol wherein a user is able to learn 1
out of n secret values held by a server, and the server is unable to determine which
value the user learned.

PAL: Pseudo Assembly Language: A Garbled Circuit Compiler, The PAL compiler
uses circuit templates to save memory when compiling garbled circuits on a
resource‐constrained	platform, such as a mobile device.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
137

PCF: Portable Circuit Format, A Garbled Circuit Compiler

RSA: Rivest‐Shamir‐Adleman	Cryptosystem: A	Public‐Key	Cryptosystem based on
two large prime numbers and an auxiliary value.

SFE: Secure Function Evaluation: A protocol by which a function can be evaluated
such that its inputs remain private, and only its output is exposed.

Whitewash Outsourcing: Whitewash	builds	on	the	Shelat‐Shen	protocol (CCS 2013)
for garbled circuit SMC, allowing mobile devices to securely and efficiently
outsource the costly operations associated with circuit garbling.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
138

