AFRL-RI-RS-TR-2015-176

CHARACTERIZING AND IMPLEMENTING EFFICIENT PRIMITIVES
FOR PRIVACY-PRESERVING COMPUTATION

GEORGIA INSTITUTE OF TECHNOLOGY
JULY 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE B ROME, NY 13441

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-176 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

IS/ IS/
CARL R. THOMAS MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing

& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE e 0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
JULY 2015 FINAL TECHNICAL REPORT MAY 2011 — MAR 2015
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

FA8750-11-2-0211
5b. GRANT NUMBER

CHARACTERIZING AND IMPLEMENTING EFFICIENT PRIMITIVES
FOR PRIVACY-PRESERVING COMPUTATION

N/A
5c. PROGRAM ELEMENT NUMBER
62303E
6. AUTHOR(S) 5d. PROJECT NUMBER
PROC
Patrick Traynor, Kevin Butler
5e. TASK NUMBER
ED
5f. WORK UNIT NUMBER
GA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Georgia Institute of Technology
North Ave NW
Atlanta, GA 30332
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory/RITA AFRL/RI
525 Brooks Road 11. SPONSOR/MONITOR’S REPORT NUMBER
Rome NY 13441-4505
AFRL-RI-RS-TR-2015-176

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

While garbled circuits have been known for nearly 30 years, efficient realizations of such schemes have only become
possible recently. However, their use on mobile devices, where the nature of applications are different and the use of
context sensitive information is the norm and not the exception, has just begun to be assessed. The goal of this project is
simple — allow mobile devices to take part in secure computation without significant degradation in performance and
security when compared to their desktop counterparts. When taken as a whole, our work has moved the reality of SFE
on mobile devices from barely possible to equivalent in performance and security when compared against modern two-
party schemes. This document discusses the details of our advances, tangible improvements and remaining challenges.

15. SUBJECT TERMS
Garbled Circuit, Cell Phone, Encryption, Cryptography, Mobile Devices, Secure Multi-party Computation (SMC), Secure
Function Evaluation (SFE)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES CARL R THOMAS
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
U U U uu 143 N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Table of Contents

B 0 01011 = 1 1
00T 0T L0 U0) 2
Methods, Assumptions and Procedures ... 4
Efficient Mobile Oblivious Computation (EMOC)cccouummmmsmsssmssssssssmssssssssssssssssssssssssens 4
Memory Efficient Garbled Circuit Generation for Mobile Devices.........coosmsmseresesmsesesnns 6
Secure Outsourced Garbled Circuit Execution for Mobile Devices........cuummmnesmsisinseneas 7
Portable Circuit Format (PCF)cccommssssssssssssssssssssssssssssssssssssaes 10
Partially Garbled Circuits and Secure AmMOTItiZation. ... 12
Whitewash: Outsourcing Garbled Circuit Generation for Mobile Devices.................. 13
Outsourcing Secure Two-Party Computation as a Black BoXcccconnnmnmnnssssssssssesenss 15
Frigate: A Validated, Extensible, and Efficient Compiler for Secure Computation.. 16
L0701 0] 11T 1) 1 1, 19
Recommendations........mss s 20
FL 0] 013 11 21
Published Papers (each included Below) ... 21
Glossary of Terminology ... ————————— 137

Table of Figures

Figure 1: Location proximity testing. Areas of overlapping interest are determined
by finding values other than "1" in the final cleartext........erneenneeneeneesseeneenn. 4
Figure 2: Private Set Intersection. Alice and Bob determine if their social sets
intersect by comparing ciphertexts with additive homomorphic properties.5
Figure 3: Memory comparison of Fairplay and PAL (FPPALC). Note that many
applications not possible using Fairplay are now possible on a mobile device....7
Figure 4: Our "outsourcing" architecture. Here, a cloud helps a mobile device
perform the evaluation phase of a garbled circuit protocol without loss of
security from the traditional two party model. This approach was able to

reduce execution time bY OVer 9820.coerrerererrerneeerseesessessessssssessessessesssesssessesssesens 9
Figure 5: Performance comparison between fastest peer two party computation
scheme and our outsourcing approach. Note the log scale on the y-axis. 10

Figure 6: A high-level view of PCF's design. Loops are no longer unrolled at compile
time, even to perform optimizations on the circuit. Instead, loops can be
evaluated at runtime with gates being computed on-the-fly.....cconrnereerrencn. 11

Figure 7: PartialGC overview. The blue box represents a standard evaluation
between the (E)valuator and the (G)enerator. Yellow boxes are executions that
take partial inputs and produce partial QULPULS.......cccvererrerernerssensenseseresseessessesessesnens 12

Figure 8: A performance comparison between ParialGC and our original outsourcing
scheme (CMTB). Because PartialGC does not have to send entire circuits in each

subsequent iteration, it can reduce execution time.oneoreneensenseenseseessesseens 12
Figure 9: The Whitewash Protocol. Instead of outsourcing evaluation, we outsource
circuit generation from the mobile deViCe. ... 13

Figure 10: Our privacy-preserving navigation application. A user can learn the most
efficient route to their destination without revealing any information about
ENEIT PN 14

Figure 11: The process of creating a blackbox-ready a circuit. The initial circuit is
augmented with a MAC prior to execution and re-encrypted using a one-time

PAA PIIiOL t0 TEIEASE. oot 16
Figure 12: Summary of correctness results. Note that all major SFE compilers
currently produce inCOrrect OULPULS.oeereneseressessesssessssessesessessessssssssssssssessessessssens 17

Figure 13: Overview of progress during the course of our work on the PROCEED
PTOJECE. ottt eses e s s s s s s R e R AR 19

ii

Summary

Secure Function Evaluation (SFE) holds the promise of protecting data while still
allowing important computation to be executed upon it. However, the primitives
making such computation possible are extremely expensive, and have long been
viewed as entirely outside of reach for all but the most powerful of computing
platforms. This work focuses on enabling the use of SFE on mobile phones, the most
widely deployed computing infrastructure in the world. This work demonstrates
our progression from the complete inability to run even the most basic such
computations to seamlessly participating in the execution of the largest created
garbled circuits to date without any loss of security.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

Introduction

The confluence of high-speed connectivity and device capability has led to the
recent surge in mobile application development. While software common to desktop
computing (e.g., word processing, email) exists in this space, the most popular
mobile applications often provide services based on a user’s current context (e.g.,
location, social interconnections, etc.). Such applications allow users to make more
informed decisions based on their surroundings. However, these applications also
regularly expose sensitive data to potentially untrusted parties.

Cryptographers have long worked to develop mechanisms that allow two parties to
compute shared results without exposing either individual’s sensitive inputs or
requiring assistance from a trusted third-party. Such techniques are referred to as
Secure Function Evaluation (SFE), and provide a set of powerful primitives for
privacy- preserving computation. While garbled circuits have been

known for nearly 30 years [3], efficient realizations of such schemes have only
become possible recently. However, their use on mobile devices, where the nature
of applications are different and the use of context sensitive information is the norm
and not the exception, has just begun to be assessed.

The goal of this project is simple - allow mobile devices to take part in secure
computation without significant degradation in performance and security when
compared to their desktop counterparts. The reasons for this goal are numerous.
First, mobile phones are used by more than six billion people across the globe every
day. When compared to the two billion individuals who currently have access to
traditional computing resources, these platforms by far represent the dominant
form of computing available throughout the world. Second, mobile phones are
increasingly being relied upon to store our most sensitive information, from a
history of our locations and the people with whom we interacted, to personal
conversations and financial information. This data is regularly exfiltrated and mined
by untrustworthy third parties, creating uncontrollable digital footprints in our
daily lives. Finally, mobile phones are increasingly being relied upon by members of
industry and government (especially the military) as a critical platform for
communication while outside of the office or within a theatre of war. Accordingly,
efficient techniques for verifiably protecting the data that is generated, received, and
transmitted by these devices are of great necessity to private citizens, companies
and the government.

The goal of this project is difficult for many reasons. Chief among these is the
comparative lack of processing ability available on mobile phones. With
comparatively slow processors, limited memory, slow and often policy capped
bandwidth and finite battery power, making SFE work at all would prove to be
difficult.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

This work represents nearly four years of concerted effort to make this goal a
reality. As we began this work, it quickly became clear that none of the tools or
theoretical constructions available to the traditional computing community (i.e.,
server-based computation, Yao's garbled circuits) would be sufficient to make SFE
possible on mobile platforms. In fact, our early work shows that all but the most
trivial problems were simply beyond the abilities of cutting edge techniques.

With this as our starting point, we first developed a series of efficient custom
protocols that achieved the same ends as protocols written with garbled circuits. We
also dedicated significant effort in our first year to developing a more efficient
compiler for garbled circuits. While both of these efforts dramatically reduced the
performance and bandwidth overheads of the best available garbled circuit
techniques, neither was sufficient to meet our goal. Our solutions would need to
dramatically improve performance and security guarantees in order to erase the
gap between mobile and traditional SFE capabilities.

Our efforts in the second year focused on techniques designed to enable dramatic
improvements in performance of SFE on mobile devices. In particular, we attempted
to offload much of the work done on the mobile device in a secure computation to
another, more powerful node. While the naive approach would simply trust this
third party to perform the operations on the mobile phone’s behalf, our approach is
able to offload the mobile’s execution without any degradation in the traditional
two-party SFE model while dramatically reducing total execution time.

Our efforts in our third year focused on improving performance across iterations of
SFE protocols, allowing for the cost of certain operations to be amortized. We also
expanded our outsourcing techniques to reduce execution time for some
applications by a further 98%, while allowing us to execute the billion-gate circuits
run between server class machines at the same security level. However further
improvements were still necessary.

In our final year, we focused on techniques to substantially improve performance.
On the outsourcing side, we developed a black box lifting technique that allows us to
incorporate improvements made by other researchers directly into an outsourcing
scheme, without having to prove their composition secure. Moreover, we built a
principled compiler that, in addition to proving demonstrably more correct results
than related work, does so orders of magnitude faster.

When taken as a whole, our work has moved the reality of SFE on mobile devices
from barely possible to equivalent in performance and security when compared
against modern two-party schemes. This document discusses the details of our
advances, tangible improvements and remaining challenges.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

Methods, Assumptions and Procedures

Efficient Mobile Oblivious Computation (EMOC)

Mobile applications increasingly require users to surrender private information,
such as GPS location or social networking data. To facilitate user privacy when using
these applications, Secure Function Evaluation (SFE) could be used to obliviously
compute functions over encrypted inputs. The dominant construction for desktop
applications is the Yao garbled circuit, but this technique requires significant
processing power and network overhead, making it extremely expensive on
resource-constrained mobile devices.

In this effort, we developed Efficient Mobile Oblivious Computation (EMOC), a set of
SFE protocols customized for the mobile platform. Using partially homomorphic
cryptosystems, we developed protocols to meet the needs of two popular
application types: location-based and social networking. Using these applications as
comparison benchmarks, we demonstrated execution time improvements of 99%
and network overhead improvements of 96% over the most optimized garbled
circuit techniques. These results showed that our protocols provide mobile
application developers with a more practical and equally secure alternative to
garbled circuits.

Alice (top pin) selects the area she is willing to receive messages Bob selects the entries from Alice's matrix that correspond to his region,

within. Bob's location (bottom pin) is within this area. multiplies them together, and exponentiates to a random power b.
LSO, s ° i Fiie
; & “ E(1 E(L E(1 E(1 EQ1 E(1 E(L
i park & ‘:w @ @ o W m)) Alice decrypts Bob's
. s E product and finds a
Virgiia) random group element
A e ke D) | EQ | E@ | E@ | E® | E® | EQ®
z 3
L, Larw 7 ® @ E(1) EQ) | E@) E(1) E(1)
North Avenup NE- o
e Y
e =
ove Bt : G({“ i P E(1) EQ) | E@) E(1) EQ1)
et 3 SD) @
Park Werrs B £ 2% ils o
o] | e @ o 1 Ew | E® | EQ® Ew | e
isiUs ClarfAtiantay | @ A 55 yke i
e T, T RS S B En | E® | E® | E® | E® | E®W | EQ@
nles | Ll
S oA = o

Figure 1: Location proximity testing. Areas of overlapping interest are determined by finding values
other than "1" in the final cleartext.

Location-based messaging, especially for advertisements, has recently received
significant attention. Beyond advertising based on location, it offers the potential for
useful applications such as a proximity test to alert two people if they are close
enough to arrange a meeting. It could also be combined with applications like
Twitter to allow for location-based tweet filtering and following. However, these
applications must query the physical location of a user, which could compromise the
user’s privacy. To resolve this information leakage, we present a protocol for
securely computing when two users are within a chosen proximity of one another.
While used in a specific application here, the protocol can be used in any location-
based mobile application. The ability to specify an input region of any shape or size

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

allows the proximity test to provide a result at any desired granularity, from the
same building to the same city.

Figure 1 shows our proposed solution. A user Alice creates an M x N matrix overlaid
on an area of interest (e.g., her current city). Alice builds a location matrix with
encryptions of ‘1’ in every entry except those that correspond to the area she is
willing to receive tweets within. In her travel area, she enters encryptions of
generator ‘g’. Bob selects the entries that correspond to his travel area, multiplies
them together, exponentiates by a random blind, and returns the product to Alice.
When Alice decrypts, she knows that: if the value is not ‘1’, Bob’s message is relevant
to her. Otherwise, Bob’s message is irrelevant to her location. As we prove in the
paper, this protocol is secure in the semi-honest model, similar to the majority of
Yao-based systems available at the time of the work.

Bob multiplies each entry If an entry matches, the result will be 1
by all of Alice's encryptions. Raised to Bob's random blinding factor
X " Al b
E(H'("Charlie")) > E(H('Charlie”)) | [EP> E(1P)
X
X E(H("Dale")) ‘ E(randomb)
X
E(H(Erike") | EED> E(randomP)
E(H("Francis")) » E(randomb)
S —

Figure 2: Private Set Intersection. Alice and Bob determine if their social sets intersect by comparing
ciphertexts with additive homomorphic properties.

Social networking applications are a popular channel for communicating with a
mobile device. However, they also create a potential channel to leak private
information about a user’s social life. If two mobile users were to meet at a party or
conference, one might only want to allow the other into her social network based on
the friends they already have in common. However, there is currently no mobile
application that allows this without revealing both users’ entire social graphs. This
application offers a means for securely revealing only the friends common to both
users while maintaining the privacy of the rest of both social graphs. Again, we
couch our protocol in an application that is highly relevant to mobile users.
However, the protocol can be used in general to compute the intersection of any two
sets without revealing any element outside of the intersection.

Figure 2 provides our solution to this problem. Bob homomorphically multiplies
each entry in his array by every entry in Alice’s array. He then exponentiates by a
unique blinding factor for all of the resulting values. Alice receives these values and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

decrypts them. If an entry is equal to 1, Alice knows there is a match. While this
approach has 0(n?) theoretical complexity, we argue (and demonstrate) that its
execution profile outperforms any garbled circuit implementation because of the
expected size of real datasets.

Table 1: Performance profile of EMOC Applications. In both execution time and bandwidth overhead, our
approach outperforms garbled circuit protocols.

Protocol Input size | SFE scheme | Avg. exec. time (sec.) | Network use (KB)
EMOC 0.0165 (£ 0.0001) 128.256
OBDD 23.1480 (£ 0.0351) 1,765.764
.. Parallelized 26.2353 (£ 0.0836) 1,854.049
Proximity Test 500 cells PAL 35.1888 (< 0.0487) 2,029.439
Pipelined 11.1293 (£ 0.0332) 603.497
Fairplay NA NA
EMOC 3.7466 (4 0.0042) 107.520
OBDD 124.4921 (£ 0.2809) 2,879.016
Private Set Intersection 20 friends | Parallelized | 107.8990 (£ 0.4249) 2,669.284
PAL 130.7570 (£ 0.2013) 3,025.966
Fairplay NA NA
16 friends Pipelined 45.7061 (4 0.1254) 3,401.133

Table 1 shows the execution times and network overhead of the two proposed
protocols. Our custom protocols far outperform all of the garbled circuits-based
approaches, with improvements as high as 99% for execution time and 96% for
bandwidth. Accordingly, our approaches are more appropriate for resource
constrained mobile devices than the direct application of garbled circuits.

In spite of the significant performance improvements we gained through the use of
custom protocols, a number of challenges remained. For instance, while we were
able to outperform two specific protocols, our custom protocol approach does not
“scale” easily and requires that new custom protocols are created for each potential
application we want to implement. Such efficient protocols may not be available for
all possible applications. Second, while our approach is robust in the semi-honest
model, researchers were beginning to explore defenses against malicious
adversaries. Finally, to demonstrate our progress over the entire PROCEED
program, we felt the need to try and match the benchmarks used by other teams
(e.g., AES). Accordingly, we determined that we would need to make substantial and
fundamental advances in garbled circuits in order to support their use on mobile
platforms.

Memory Efficient Garbled Circuit Generation for Mobile Devices

Given our desire to make the benchmark applications used by other PROCEED
performers possible on mobile platforms, our next research effort attempted to
make the use of garbled circuits more efficient. We note that this effort took place in
parallel with our EMOC work, given the early realization that custom protocols
would not be possible for all possible applications.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

This new effort focused on developing a memory-efficient technique for generating
the garbled circuits needed to perform secure function evaluation on smartphones.
While numerous research initiatives have considered how to evaluate these circuits
more efficiently, little work had focused on efficient generation. Such a
consideration is particularly important given the significant memory constraints of
mobile phones. We achieved this goal by creating the Pseudo Assembly Language
(PAL), a mid-level intermediate representation (IR) compiled from Fairplay’s SFDL
high-level language, where each instruction represents a pre-built circuit. These
templates allowed us to represent many complex instructions with a very limited
amount of memory.

‘ | Memory (KB) |

Program Fairplay | FPPALC
Millionaires 658 296
Billionaires 1188 441

CoinFlip 1488 384
KeyedDB 16 NA 688

Setlnter 2 10667 469

SetInter 4 NA 522

SetInter 8 NA 617

Levenshtein Dist 2| NA 392
Levenshtein Dist 4| NA 405
Levenshtein Dist 8] NA 429

Figure 3: Memory comparison of Fairplay and PAL (FPPALC). Note that many applications not possible
using Fairplay are now possible on a mobile device.

Figure 3 shows a comparison of the memory profiles of Fairplay and our PAL
system. The first important improvement over standard Fairplay is the significant
reduction in memory required to execute applications such as the Millionaire’s and
Billionaire’s problems (with savings of 55% and 63%, respectively). Second, and
potentially more critically, the use of PAL enabled circuits that were previously too
big to execute on a mobile device (Set Intersection for inputs of larger than size 2, all
Edit Distance problems) to finally run on these systems.

While this work was a significant step forward for the execution of garbled circuits
on mobile devices, many important innovations would need to continue to be made
to ensure that such systems could actually perform relevant privacy preserving
computation.

Secure Outsourced Garbled Circuit Execution for Mobile Devices

Our work up to this point made a number of points clear. In particular, the
processing, bandwidth and memory constraints we encountered represented
significant hurdles to the realization of SFE schemes on mobile phones. While our
improvements thus far took SFE from impossible to useful for extremely small

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

problems, we realized that significant changes would need to be made to our
approach if we ever hoped to make mobile a practical platform for secure
computation. We therefore determined that focusing our efforts on garbled circuits
would be necessary, but that our approaches when compared to the work of other
groups would need to be fundamentally different. Specifically, while all previous
mechanisms assumed that both parties in a two party secure computation are
symmetrically provisioned with massive computing resources, we would need to
find ways to remove the burden of heavy computation from mobile phones.

This thrust of our work developed mechanisms for the secure outsourcing of SFE
computation from constrained devices to more capable infrastructure. Our protocol
maintains the privacy of both participant’s inputs and outputs while significantly
reducing the computation and network overhead required by the mobile device for
garbled circuit evaluation. We developed a number of extensions to allow the
mobile device to check for malicious behavior from the circuit generator or the
cloud and a novel Outsourced Oblivious Transfer for sending garbled input data to
the cloud. We then implemented the new protocol on a commodity Android mobile
device and reasonably provisioned servers and demonstrate significant
performance improvements over evaluating garbled circuits directly on the mobile
device.

Our approach is shown in Figure 4. A mobile device (Alice) acts in a modified
version of the evaluator role from a traditional garbled circuit protocol. After
determining that the generator (Bob, a very well-provisioned server) has properly
generated the circuits, Alice performs Outsourced Oblivious Transfers, which
deliver her garbled inputs to the Cloud (another well-provisioned server who is also
untrusted). The cloud then receives Bob’s inputs and the circuits and evaluates the
circuits on Alice’s behalf. Note that because the Cloud does not know either Alice’s
or Bob’s ungarbled inputs and that Alice has approved the circuits that the Cloud
executes, the Cloud learns nothing about the inputs or outputs of the execution of
this protocol. Moreover, unlike previous work, the cloud is able to release the
output(s) of the computation to both parties simultaneously, reducing the ability of
either Alice or Bob to learn the result of a computation without releasing it to the
other party.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

Alice

Bob (evaluator)

(generator) o .
1: Circuit generation and check —

2: Outsourced Oblivious Transfer
3: Input Consistency Check

Cloud
(outsourcing agent)

Figure 4: Our "outsourcing” architecture. Here, a cloud helps a mobile device perform the evaluation
phase of a garbled circuit protocol without loss of security from the traditional two party model. This
approach was able to reduce execution time by over 98%.

Shifting the evaluation phase from a mobile phone to the cloud yielded significant
performance improvements. Figure 5 shows the results of a comparison of
execution times for the Edit Distance problem for inputs ranging from 2 to 128 bits
using our outsourcing approach against the KSS two-party scheme (the fastest two-
party scheme at the time of this work). An interesting observation is that the
previous largest edit distance circuit executed on a mobile device was of input size 8
using our PAL compiler. Not only did our outsourcing scheme far exceed this, but it
was also able to do so 16 times faster than the KSS scheme. Our performance only
continues to improve over KSS as we move towards the malicious adversary model.
When we compare execution over 32 circuits (thereby reducing the chance an
adversary can cheat to 2-102), our execution time over KSS is improved by 98%. Our
approach also reduces bandwidth used to communicate with the mobile device by
as much as 99.95% (or 1900 times less bandwidth).

This work marked the first time that mobile devices were able to participate in the
execution of circuits as large as those being used by their desktop counterparts, but
also the first time in which mobile devices were able to participate in protocols
secure in the malicious model. PROCEED benchmarks made for all other teams,
specifically execution of AES-128, was now possible one mobile devices. However,
many improvements remained to be made. Performance in the malicious model,
while possible, remained prohibitively expensive for practical usage. Our later work
would further refine this model to further reduce the cost of a mobile device
participating in such a transaction.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

1e+06

100000
0
E
< 10000
£
F_

1000

100

T T]
Outsourced EXX= 1
Non-Outsourced E=ZZd]

T
X XRRXRAXRAXY
S RREEKI
IR
oo et %0t %0 e % o%es

R

o
2558
QI

2
%5
RRRXXK]
X

St tototete%s)

IR
XXX

<
<

09S

XXX
XK

XK

S5

%

908
5
39098

9008
QXL

7
X
<

<4
A

BBKK

=%
XXX
X5

T
3%
58S
29359

o
SRR

2
o
<

3>
R

X
XX
XX
2
%
%
5

<

R
<X
oS

VaS

%
029

%
XX

o
5

X
o

o3
o

2

%
S0
5
XX
o2

2

293s
29388

R

X
<
o
%

%
oteld
%
%
<SS

<
oo
5

<%

%
%
S5

o
o2
oo onteootes.

03

0
R,

<
S

%5
R

<

2L
o
R

o
gos
o

IR

3%

25
dotetotetotete]

%

2eles

3
plete

5
2eS

0%
%

2
o
o

%
S
2

325
35

Sesesssssesetes

<
2

XKL

5

%5

00t

3

v’

5
o

o

0
55
%K

-
%
K

%%
o
o

<55
25
%
o
55

%4t
XX

Se%0%s
o230

<
<

%
%

<X

2ok

e

%5
%

o2

%
%
S

9%
0$;
55

o
o

%
S
0%
QRIS
RIS

2

<

RIS
KK
oSS
toteatetetotetetes

o
%
5
2
5

o2
O RRIEREE

5%

%
o

SO
5
58
200t

BRI

25
2900%8Y
295989

5
RL
o
0

XX

J
22
2
XXX

IRRRRKM
&

%
2S
ks

ST
XX
S

2
S

]
XX
o
XX
SIS

S
RIZL
2R
<R

&

5%

I
o,
otef]

RIS
35
305

%
o2
X

XXX

o

5
%%
o%e?
9
%%
o
3
&

50X

ote
%

X
o3

%

026!

detet

$9%8S
S

<X

9509
<

RS

X KRGS IR K IK K

X
KRR

S|

o

2

T
s

%
St

R
RS

o
XK
293
<5
K

77
RS
CREKEEKE:
2etote%etete
XX

%
X
o

658

%
255
o2

%!
23
<X

5%

<

0589

S

""‘q’r AV
N

X
botele%

X
8

=
oo
o
<X
o
%
53

%
2
X
o

o
X
1550
&

%
<
R
%5
5%

390
%5
55

o
s
RS

2%
o
o

<

%

%
%

<

2e%t

RIIZZ
R
X QRRK
o2e%ets
>
o%e%
%
ote%

K
et

oo
%
55
%%
%
3
5
o6

2%
%
5%
o

735
RS

v,v,v
"'
VAVAS
%
XX

55

R
2R
%
fate
2
o0%
0%

%
o

098
ote?

5
305
XX

o%e%s
o%

2%
fo

—
S
X

23
3%
%
%%

v'
3%
2K
ot
X
oS
5
&
%
%
%

X
5

S
ot

%
<5
oo

RRT
2%
5

KRS
B

XXX
XXX
R85

3

%
RS
%
ool

I 1 f1i0e%!
ED2 ED4 ED8 ED16 ED32 ED64 ED128
Program Size

%
S
%
<
bt

4

Figure 5: Performance comparison between fastest peer two party computation scheme and our

outsourcing approach. Note the log scale on the y-axis.

Portable Circuit Format (PCF)

Our previous work on PAL allowed garbled circuit implementations to gain
significant improvements in efficiency through circuit templating. However, as
mentioned in that subsection, additional reductions in overhead would need to be
made for resource constrained mobile devices. Specifically, compact representations
of circuits and functions could dramatically reduce the bandwidth required to
transmit garbled circuits between generator and evaluator, minimizing the power
and time required to execute such applications.

We refer to our

circuit representation as the Portable Circuit Format (PCF). When

the SFE system is run, it uses our interpreter to load the PCF program and execute it.
As the PCF program runs, it interacts with the SFE system, managing information
about gates internally based on the responses from the SFE system itself. In our
system, the circuit is ephemeral; it is not necessary to store the entire circuit, and
wires will be deleted from memory once they are no longer required. The key
insight of our approach is that it is not necessary to unroll loops until the SFE
protocol runs. While previous compilers discard the loop structure of the function,

ours emits it as

part of the control structure of the PCF program. Figure 6 offers a

high-level description of our approach.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

v

Memory

LOC: 65+i OC: 97+ LOC: 65+i

|

Figure 6: A high-level view of PCF's design. Loops are no longer unrolled at compile time, even to
perform optimizations on the circuit. Instead, loops can be evaluated at runtime with gates being
computed on-the-fly.

Our system builds upon the PAL and KSS systems to solve the memory scalability
problem without sacrificing the ability to optimize circuits automatically. Two
observations are key to our approach. One of our most important observations was
that it was possible to free the memory required for storing wire values without
computing a reference count for the wire. In previous work, each wire in a circuit is
assigned a unique global identifier, and gate input wires are specified in terms of
these identifiers (output wires can be identified by the position of the gate in the
gate list). Rather than using global identifiers, we observe that wire values are
ephemeral, and only require a unique identity until their last use as the input to a
gate.

These optimizations offered notable improvements in performance over past work.
For instance, when compared to the KSS compiler (viewed as the fastest and most
efficient at the time of this work), PCF produced circuits only 30% as large from the
same source code. With the techniques presented in this work, we also
demonstrated that the RSA algorithm with a real-world key size and real-world
security level could be compiled and run in a garbled circuit protocol using a typical
desktop computer. To the best of our knowledge, the RSA-1024 circuit we tested
was larger than any previous garbled circuit experiment, with more than 42 billion
gates.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

Partially Garbled Circuits and Secure Amortization

Our efforts up to this point made significant improvements in reducing the cost of
executing garbled circuit computations against standard metrics - memory
utilization, execution time and bandwidth overhead. However, these parameters do
not capture every way in which a garbled circuit protocol can be used. One
particular example is how often a computation is made, and whether or not
accommodations can be made for securely reusing pieces of a transaction in order
to amortize costs across protocol iterations. We address this issue through the use
of partially garbled circuits, and a system we refer to as PartialGC.

Garbled(
Circuit(

Garbled(
Circuit(

Figure 7: PartialGC overview. The blue box represents a standard evaluation between the (E)valuator
and the (G)enerator. Yellow boxes are executions that take partial inputs and produce partial outputs.

Figure 7 presents a high-level overview of the philosophy behind our PartialGC
system. First, a standard SFE execution (blue) takes place, at the end of which we
“save” some intermediate output values. All further executions use intermediate
values from previous executions. In order to reuse these values, information from
both parties - the generator and the evaluator - has to be saved. In our protocol, it is
the cloud - rather than the evaluator - that saves information. This allows multiple
distinct evaluators to participate in a large computation over time by saving state in
the cloud between different garbled circuit executions. For example, in a scenario
where a mobile phone is outsourcing computation to a cloud, PartialGC can save the
encrypted intermediate outputs to the cloud instead of the phone. This allows the
devices to communicate with each other by storing encrypted intermediate values
in the cloud, which is more efficient than requiring them to directly participate in
the saving of values, as required by earlier 2P-SFE systems.

16 Circuits 64 Circuits 256 Circuits
CMTB | PartialGC CMTB Partial GC CMTB Partial GC

KeyedDB 64 6.6 - 4% 1.4+ 1% | 4.7x | 27 £ 4% 51+2% [53x | 110 £ 2% | 249 £ 0.3% | 4.4x
KeyedDB 128 13 £ 3% 1.8 £2% | 7.2x | 54 + 4% 58 2% | 9.3x | 220 £ 5% | 27.9 £+ 0.5% | 7.9x
KeyedDB 256 25 + 4% 25+ 1% | 10x | 110 £ 7% | 7.3 £ 2% 15x | 420 + 4% | 33.5 £ 0.6% 13x
MatrixMult8x8 42 + 3% 41 £ 4% | 1.0x | 94 + 4% 79 + 3% 1.2x | 300 4+ 10% 310 + 1% 0.97x
Edit Distance 128 | 18 + 3% 18 £3% [1.0x | 40 £ 8% 40 + 6% 1.0x [120 £ 9% 150 £+ 3% 0.8x
Millionaires 8192 13 £ 4% 32+ 1% | 4.1x | 52 + 3% 8.5 +2% | 6.1x | 220 £ 5% | 384+ 0.9% | 5.7x

Figure 8: A performance comparison between ParialGC and our original outsourcing scheme (CMTB).

Because PartialGC does not have to send entire circuits in each subsequent iteration, it can reduce
execution time.

By reducing the amount of information that needs to be transmitted between
iterations from entirely new circuits to wire label values, the PartialGC approach
dramatically reduces subsequent executions of an application. Figure 8 shows a
comparison in execution times against our initial outsourcing efforts. Note that

12

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

while the first iteration of the protocol is virtually identical in terms of execution
time, execution time is reduced by as much as 10x when portions of the previous
execution can be reused. Bandwidth overhead is similarly reduced, with a reduction
of as much as 98% in one case.

While PartialGC brings substantial improvements to the execution of garbled
circuits on mobile devices, it could potentially benefit from further advances. One
particularly important advancement would be an improved base scheme for
outsourcing mobile computation.

Whitewash: Outsourcing Garbled Circuit Generation for Mobile Devices

Outsourcing SFE computations from a mobile device to a more powerful cloud has
already helped enable dramatic improvements over the direct application of two-
party computation schemes. However, a number of challenges remain. Execution in
the malicious model, while possible, was still prohibitively expensive for mobile
phones. This fact was only exacerbated by the creation of even larger circuits for
applications such as RSA. We therefore revisited our outsourcing techniques to
ensure that mobile devices could remain part of the larger SFE ecosystem.

1: Prepare input

2: Random seeds & input decommitments

6: Release outputs

1: Prepare input

1: Prepare input

Figure 9: The Whitewash Protocol. Instead of outsourcing evaluation, we outsource circuit generation
from the mobile device.

The high-level change between this and our previous work is in which work is
outsourced from the mobile. Whereas our previous outsourced circuit evaluation to
the Cloud (leaving circuit generation to the other active party), our “Whitewash”
technique outsources circuit generation from the mobile device to the Cloud
(leaving the other party to perform evaluation). The advantage to this approach is

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

that it requires a mobile phone to do very little work - simply generating random
seeds and committing to its inputs. Outside of these very simple operations, the
mobile device simply sits and waits for the two more powerful participants to
perform the computation in question. Figure 9 shows the protocol in greater detail.

The improvements from these changes are dramatic. In addition to a performance
improvement of as much as 92%, we further reduce network costs by as high as
98%. Additionally, because we incorporated the PCF framework for circuit
representation in addition to our protocol improvements, we were able to execute
the largest-ever created circuits at the same security levels as traditional two-party.

Mourt Vemon Squw'-il Q I:‘|
I r—

K

Figure 10: Our privacy-preserving navigation application. A user can learn the most efficient route to
their destination without revealing any information about their path.

Figure 10 demonstrates a critical byproduct of the success of our approach, a
privacy-preserving navigation application for an Android phone. With this
application, a user can query a service for the most efficient route between their
current location and their intended destination without revealing such information.
Moreover, the mapping service can also help the client make this information
without revealing all of its intelligence about the area in question.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

Outsourcing Secure Two-Party Computation as a Black Box

While our outsourcing techniques now allow a mobile device to participate in a
garbled circuit-based computation as large and secure as a traditional two-party
computation, a number of challenges remain. Specifically, while our proofs of
security are robust, each of our outsourcing techniques are secure based on the
specific sub-components we used at the time. As newer, faster techniques become
available, such advances cannot easily be applied to our systems without conducting
the expensive process of reproving their security. We would therefore need to
develop a means of automatically incorporating potential performance advances.

This effort focused on creating a generic lifting technique for taking any two-party
SFE scheme into a secure outsourced scheme. This tradeoff allows for an
outsourcing scheme that relies on the underlying two-party protocol in a black-box
manner, meaning the underlying protocol can be swapped for any other protocol
meeting the same definition of security. Figure 11 presents a high-level overview of
our approach. The outsourcing protocol can be informally broken down as follows:
first, the mobile device prepares its input by encrypting it and producing a MAC tag
for verifying the input is not tampered with before it is entered into the
computation. Since the application server and Cloud are assumed not to collude, one
party receives the encrypted input, and the other party receives the decryption key.
Both of these values are input into the secure two-party computation, and are
verified within the secure two-party protocol using the associated MAC tags. If the
check fails, the protocol outputs a failure message. Otherwise, the second phase of
the protocol, the actual evaluation of the SMC program, takes place. The third and
final phase encrypts and outputs the mobile device’s result to both parties, who in
turn deliver these results back to the mobile device. Intuitively, since our security
model assumes that the application server and the Cloud are never simultaneously
malicious, at least one of these two will return the correct result to the mobile
device. From this, the mobile will detect any tampering from the malicious party by
a discrepancy in these returned values, eliminating the need for an output MAC. If
no tampering is detected, the mobile device then decrypts the output of
computation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

Input wires

Verify MAC

Decrypt one-time pad
é
Encrypt one-time pad
Output wires

Original circuit

Figure 11: The process of creating a blackbox-ready a circuit. The initial circuit is augmented with a MAC
prior to execution and re-encrypted using a one-time pad prior to release.

The performance analysis in this work differs from our previous efforts. Instead of
showing the improvement for a mobile device over the direct implementation of a
two-party SFE technique, we compared the cost of doing a traditional two-party
computation against a blackbox outsourced computation. Our results clearly
demonstrate that, as circuits become large, the overhead added by our technique
vanishes into the confidence intervals of the two-party protocol execution. Our
approach also has similar results for bandwidth overhead. Accordingly, mobile
devices will now be able to immediately take advantage of any new two-party
scheme with virtually no changes or additional overhead.

We will discuss a number of remaining challenges to outsourcing in the
Recommendations Section.

Frigate: A Validated, Extensible, and Efficient Compiler for Secure Computation

At the beginning of this project, the community had few resources it could use to
develop real systems based on garbled circuits. The Fairplay compiler created a
starting point for a number of other experimental compilers and interpreters, each
of which brought increasing efficiency to this field. The research community has
now become reliant on these artifacts in order to make the prospect of practical
secure computation a reality. Unfortunately as our next work demonstrates, all of
the most prominent SFE compilers available at this time contain a significant
number of stability and correctness issues, drawing into question the security
guarantees they purport.

Throughout the course of the PROCEED project, we gained extensive experience
with research artifacts created by a number of different performers. Throughout our
interactions with these different tools, we noticed significant issues with each of
them. For instance, many compilers failed to generate the correct logic for if

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

statements, whereas others were brittle and crashed when compiling all but a small
number of applications. Figure 12 shows the results of our correctness tests against
the five most popular garbled circuit compilers.

Q(‘\\%
Correctness \eﬁQ
% o
\q, Q{\ \\% ‘Q\®
& & 6‘@0 o Sl S .
O AN RN SR\ x@
¢ oF ° & SN e"Qo
R <« 7S S FESF &
FairPlay NA NA
7
§ PAL NA NA
a
g KSS NA
O CBMC NA
PCF

Pass . Fail

Figure 12: Summary of correctness results. Note that all major SFE compilers currently produce
incorrect outputs.

The reasons for these failures became clearer by our extensive work with each of
the compilers. Specifically, while the compiler design community has extensive sets
of best-practices for designing new compilers, none of these principles appear to
have been applied uniformly during the construction of these popular garbled
circuit compilers. We addressed this problem directly by designing and
implementing the Frigate compiler. We name our compiler after the naval vessel,
known for its speed and adaptability for varying missions. Our compiler is designed
to be validated through an extensive battery of testing all facets of its operation,
modular and extensible to support a variety of research applications, and faster than
the state of the art circuit compilers in the community. In addition, the frigate’s use
as an escort ship parallels the potential for our compiler to facilitate continued
secure computation research.

Frigate is made robust by a number of design decisions. First, we rely on standard
methodology from the compiler community (e.g., lexing, parsing, semantic analysis
and code generation), and use data structures such as abstract syntax trees. Second,
we perform extensive compiler output validation. Finally, we provide useful error
messages when the compiler detects a problem with an application, making
debugging the application significantly easier than with other compilers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

The results of this work provide significant improvements over related efforts. First,
our compiler and interpreter were extensively tested using methodology from the
compiler community to ensure correct operation. Second, by focusing our new
compiler on simple, clean design, we saw a significant improvement in performance.
When compared to the current fastest compiler/interpreter pair (KSS), we were
able to reduce compilation times by 682x.

Accordingly, this artifact represents the most stable and fastest compiler available
to the research community.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

Conclusions

At the beginning of this project, the prospect of running flexible and efficient privacy
preserving protocols on mobile devices was viewed as unworkable. Our work has
made significant progress against this goal, moving a mobile solution from
impossible to invisible when compared to traditional two-party computations. Our
progress can be seen below in Figure 13.

Start 8/2011 8/2012 172013 112014 3/2015
No Mobile Dijkstra Dijkstra Dijkstra RSA 128 RSA 256 M-Mulc RSA 512
Support Fairplay: 3 nodes PAL: 20 nodes Outsource: 100 nodes Outsource ww WW: I6x16 Frigate
Cireuit Si Circuit Si Circuit Si Circuit Si Circuit Si Circuit Si Circuit Si
78 gates ~48K gates ~2 Billion gates ~116M gates ~934M gates ~64.5M gates ~8 Billion gates
. c " c " c . c . c) c "
91 gates/sec 283 gates/sec 28K gates/sec 8.8K gates/sec ~ ~30K gates/sec~|04K gates/sec ~|.2M* gates/sec

® ~8 orders of magnitude circuit size
® >4 orders of magnitude performance improvement.

® [xact same security parameters as best server-class work with
indistinguishable performance characteristics.

Figure 13: Overview of progress during the course of our work on the PROCEED project.

Our mobile solutions are now capable of participating in the execution of the
largest-ever generated garbled circuits, at a security level equal to the best
traditional two-party schemes with minimal bandwidth overhead.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

Recommendations

While our work has made crucial progress in realizing practical privacy-preserving
applications on mobile devices, significant advances must still be made in order to
widely deploy such systems. We offer the following recommendations to ensuring
that these protocols are ultimately realized:

Fast Navigation: Our work demonstrates that mobile devices can act as first-
class participants in secure computation. Our most promising embodiment of
this is our privacy-preserving navigation application. However, more work
remains in order to move this application from possible to practical.
Specifically, an effort to explore faster shortest-path algorithms, more
efficient data structures, a reduced adversarial model and map scaling are
necessary to deploy this result.

Improved Compilers: The research community has developed a number of
important artifacts throughout the duration of this work. However, many of
these research systems are inefficient or suffer from issues of
incompleteness. While our effort to create the Frigate compiler is an
important first step, the community needs to have a set of tools they can rely
upon to make future progress. Accordingly, formal verification (in some
form) of a compiler is necessary to continue to move forward.

Central Project Repository: We have produced a significant amount of code in
the process of executing this project, as have a number of other groups.
Creating a collection of all software for public use would significantly serve
the research community. At the current time, finding working code can be a
frustrating and ad hoc process, reducing the time that the community is
spending on high quality research.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

Appendix

Published Papers (each included)

All papers are Contracted Fundamental Research (CFR) and do not require Pre-
Publication Approval

B. Mood, L. Letaw, and K. Butler. Memory-Efficient Garbled Circuit Generation
for Mobile Devices. 16th [FCA International Conference on Financial Cryptography
and Data Security (FC'12). 2012.

H. Carter, B. Mood, P. Traynor, and K. Butler. Secure Outsourced Garbled Circuit
Evaluation for Mobile Devices. USENIX Security Symposium (Security'13), 2013.

B. Kreuter, a. shelat, B. Mood, and K. Butler. PCF: A Portable Circuit Format For
Scalable Two-Party Secure Computation. USENIX Security Symposium
(Security'13), 2013.

H. Carter, C. Amrutkar, I. Dacosta and P. Traynor, For Your Phone Only: Custom
Protocols for Efficient Secure Function Evaluation on Mobile Devices, Journal of
Security and Communication Networks (SCN), 7(7), p. 1165-1176, 2014.

B. Mood, D. Gupta, K. Butler, and]J. Feigenbaum. Reuse It Or Lose It: More Efficient
Secure Computation Through Reuse of Encrypted Values. ACM Conference on
Computer and Communications Security (CCS'14), Scottsdale, AZ, USA, November
2014.

H. Carter, C. Lever, P. Traynor, Whitewash: Outsourcing Garbled Circuit
Generation for Mobile Devices, Annual Computer Security Applications
Conference (ACSAC), December 2014.

H. Carter, B. Mood, K. Butler, P. Traynor, Outsourcing Secure Two-Party
Computation as a Black Box, In Submission.

B. Mood, D. Gupta, H. Carter, P. Traynor and K. Butler. Frigate: A Validated,
Extensible, and Efficient Compiler for Secure Computation, In Submission.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

Memory-Efficient Garbled Circuit Generation for
Mobile Devices

Benjamin Mood, Lara Letaw, and Kevin Butler

Department of Compter & Information Science
University of Oregon, Eugene, OR 97405 USA
{bmood,zephron,butler}@cs.uoregon.edu

Abstract. Secure function evaluation (SFE) on mobile devices, such
as smartphones, creates compelling new applications such as privacy-
preserving bartering. Generating custom garbled circuits on smartphones,
however, is infeasible for all but the most trivial problems due to the high
memory overhead incurred. In this paper, we develop a new methodology
of generating garbled circuits that is memory-efficient. Using the stan-
dard SFDL language for describing secure functions as input, we design
a new pseudo-assembly language (PAL) and a template-driven compiler
that generates circuits which can be evaluated with Fairplay. We deploy
this compiler for Android devices and demonstrate that a large new set
of circuits can now be generated on smartphones, with memory overhead
for the set intersection problem reduced by 95.6% for the 2-set case. We
develop a password vault application to show how runtime generation of
circuits can be used in practice. We also show that our circuit generation
techniques can be used in conjunction with other SFE optimizations.
These results demonstrate the feasibility of generating garbled circuits
on mobile devices while maintaining high-level function specification.

1 Introduction

Mobile phones are extraordinarily popular, with adoption rates unprecedented
in the history of product adoption by consumers. Smartphones in particular have
been embraced, with over 296 million of these devices shipped in 2010 [4]. The in-
creasing importance of the mobile computing environment requires functionality
tailored to the limited resources available on a phone. Concerns of portability
and battery life necessitate design compromises for mobile devices compared
to servers, desktops, and even laptops. In short, mobile devices will always be
resource-constrained compared to their larger counterparts. However, through
careful design and implementation, they can provide equivalent functionality
while retaining the advantages of ubiquitous access.

Privacy-preserving computing is particularly well suited to deployment on
mobile devices. For example, two parties bartering in a marketplace may wish
to conveal the nature of their transaction from others, and share minimal infor-
mation with each other. Such a transaction is ideally suited for secure function
evaluation, or SFE. Recent work, such as by Chapman et al. [6], demonstrates
the myriad applications of SFE on smartphones.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

However, because of computational and memory requirements, performing
many of these operations in the mobile environment is infeasible; often, the only
hope is outsourcing computation to a cloud or other trusted third party, thus
raising concerns about the privacy of the computation.

In this paper, we describe a memory-efficient technique for generating the
garbled circuits needed to perform secure function evaluation on smartphones.
While numerous research initiatives have considered how to evaluate these cir-
cuits more efficiently [16,7], little work has gone towards efficient generation.
Our port of the canonical Fairplay [12] compiler for SFE to the Android mobile
operating system revealed that because of intensive memory requirements, the
majority of circuits could not be compiled in this environment. As a result, our
main contribution is a novel design to compile the high-level Secure Function
Definition Language (SFDL) used by Fairplay and other SFE environments into
garbled circuits with minimal memory usage. We created Pseudo Assembly Lan-
guage (PAL), a mid-level intermediate representation (IR) compiled from SFDL,
where each instruction represents a pre-built circuit. We created a Pseudo As-
sembly Language Compiler (PALC), which takes in a PAL file and outputs the
corresponding circuit in Fairplay’s syntax. We then created a compiler to compile
SEFDL files into PAL and then, using PALC, to the Secure Hardware Definition
Language (SHDL) used by Fairplay for circuit evaluation.

Using these compilation techniques, we are able to generate circuits that were
previously infeasible to create in the mobile environment. For example, the set
intersection problem with sets of size two requires 469 KB of memory with our
techniques versus over 10667 KB using a direct port of Fairplay to Android,
a reduction of 95.6%. We are able to evaluate results for the set intersection
problem using four and eight sets, as well as other problems such as Levenshtein
distance; none of these circuits could previously be generated at all on mobile
devices due to their memory overhead. Combined with more efficient evaluation,
our techniques provide a new arsenal for making privacy-preserving computation
feasible in the mobile environment.

The rest of this paper is organized as follows. Section 2 provides background
on secure function evaluation, garbled circuits, and the Fairplay SFE compiler.
Section 3 describes the design of PAL, our pseudo assembly language, and our
associated compilers. Section 4 describes our testing environment and method-
ology, and provides benchmarks on memory and execution time. Section 5 de-
scribes applications that demonstrate circuit generation in use, while Section 6
describes related work and Section 7 concludes.

2 Background

2.1 Secure Function Evaluation with Fairplay

The origins of SFE trace back to Yao’s pioneering work on garbled circuits [18].
SFE enables two parties to compute a function without knowing each other’s
input and without the presence of a trusted third party. More formally, given

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

participants Alice and Bob with input vectors a = ag, a1, -a,—1 and b =
bo, by, - - - by—1 respectively, they wish to compute a function f(a,b) without re-
vealing any information about the inputs that cannot be gleaned from observing
the function’s output. Fundamentally, SFE is predicated on two cryptographic
primitives. Garbled circuits allow for the evaluation of a function without any
party gaining additional information about the participants. This is possible
since one party creates a garbled circuit and the other party evaluates the circuit
without knowing what the wires represent. Secondly, oblivious transfer allows the
party executing the garbled circuit to obtain the correct wires for setting inputs
from the other party without gaining additional information about the circuit;
in particular, a 1-out-of-n OT protocol allows Bob to learn about one piece of
data without gaining any information on the remaining n — 1 pieces.

A garbled circuit is composed of many garbled gates, with inputs represented
by two random fixed-length strings. Like a normal boolean gate, the garbled
gate evaluates the inputs and gives a single output, but alterations are made
to the garbled gate’s truth table: aside from the randomly chosen input values,
the output values are uniquely encrypted by the input wires and an initialization
vector. The order of the entries in the table is then permuted to prevent the order
from giving away the value. Consequently, the only values saved for the truth
table are the four encrypted output values. A two-input gate is thus represented
by the two inputs and four encrypted output values.

The garbled circuit protocol requires that both parties are able to provide
inputs. If Bob creates the circuit and Alice receives it, Bob can determine which
wires to set, and Alice performs an oblivious transfer to receive her input wires.
Once she knows her input wires she runs the circuit by evaluating each gate in
order. To evaluate a gate, she uses the input values as the key to decrypt the
output value. To find the correct entry in the table, Alice uses a decryption step
using the input wires as keys. To find her output, Alice acquires a translation
table, a hash of the wires, from Bob for her possible output values. She then can
perform the hash on her output wires to see which wires were set. Alice sends
Bob’s output in garbled form since she cannot interpret it.

Fairplay is the canonical tool for generating and evaluating garbled circuits
for secure function evaluation. The Fairplay group is notable for creating the
abstraction of a high-level language, known as SFDL. This language describes
secure evaluation functions and is compiled SHDL, which is written in the style
of a hardware description language such as VHDL and describes the garbled
circuit. The circuit evaluation portion of Fairplay provides for the execution
of the garbled circuit protocol and uses oblivious transfer (OT) to exchange
information. Fairplay uses the 1-out-of-2 OT protocols of Bellare et al. [1] and
Naor et al. [14] which allows for Alice to pick one of two items that Bob is offering
and also prevents Bob from knowing which item she has picked.

Examining the compiler in more detail, Fairplay compiles each instruction
written in SFDL into a so-called multi-bit instruction. These multi-bit (e.g. inte-
ger) instructions are transformed to single-bit instructions (e.g., the 32 separate
bits to represent that integer). From these single-bit instructions, Fairplay then

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

FPPALC PALC
Fairplay SFDL | Fairplay compiler [eiy 5y SHDIL]

(a) Fairplay compiler process. (b) PAL compiler process.

Fig. 1: Compilation with Fairplay versus PAL.

unrolls variables, transforms the instructions into SHDL, and outputs the file,
either immediately or after further circuit optimizations.

Fairplay’s circuit generation process is very memory-intensive. We performed
a port of Fairplay directly to the Android mobile platform (described further in
Section 4) and found that a large number of circuits were completely unable
to be compiled. We examined the results of circuit compilation on a PC to
determine the scope of memory requirements. From tests we performed on a
64-bit Windows 7 machine, we observed that Fairplay needed at least 245 MB of
memory to run the compilation of the keyed database program, a program that
matches database keys with values and employs SFE for privacy preservation
(described further in Section 4). In order to determine the cause of this memory
usage, we began by analyzing Fairplay’s compiler.

From our analysis, Fairplay uses the most memory during the mapping op-
eration from multi-bit to single-bit instructions. During this phase, the memory
requirements increased by 7 times when the keyed database program ran. We
concluded that it would be easier to create a new system for generating the SHDL
circuit file, rather than making extensive modifications to the existing Fairplay
implementation. To accomplish this, we created an intermediate language that
we called PAL, described in detail in section 3.

2.2 Threat Model

As with Fairplay, which is secure in the random oracle model implemented using
the SHA-1 hash function, our threat model accounts for an honest-but-curious
adversary. This means the participants will obey the given protocol but may look
at any data the protocol produces. Note that this assumption is well-described
by others considering secure function and secure multiparty computation, such
as Kruger et al.’s OBDD protocol [10], Pinkas et al.’s SFE optimizations [16],
the TASTY proposal for automating two-party communication [5], Jha et al.’s
privacy-preserving genomics [8], Brickell et al.’s privacy-preserving classifiers [3]
and Huang et al.’s recent improvements to evaluating SFE [6]. Similarly, we
make the well-used assumption that parties enter correct input to the function.

3 Design

To overcome the intensive memory requirements of generating garbled circuits
within Fairplay, we designed a pseudo assembly language, or PAL, and a pseudo

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

‘ Possible Operations

Operation Syntax

Addition DEST + V1 V2

Greater than or Equal to DEST >= V1 V2

Equal to DEST == V1 V2

Bitwise AND DEST & V1 V2

If Conditional DEST IF COND V1 V2

Input line INPUT V1 a (or INPUT V1 b)
Output line INPUT V1 a (or INPUT V1 b)

For loop V1 FOR X (an integer) to Y (an integer)
Call a procedure V1 PROC

Call a function DEST,...,DEST = FunctionName(param, ... ,param)
Multiple Set Equals DEST,....DEST=V,....,V

Table 1: PAL Operations

assembly language compiler called PALC. As noted in Figure 1, we change Fair-
play’s compilation model by first compiling SFDL files into PAL using our FP-
PALC compiler, and generating the SHDL file which can then be run using
Fairplay’s circuit evaluator with our PALC compiler.

3.1 PAL

We first describe PAL, our memory-efficient language for garbled circuit cre-
ation. PAL resembles an assembly language where each instruction corresponds
to a pre-optimized circuit. PAL is composed of at least two parts: variable dec-
larations and instructions. PAL files may also contain functions and procedures.
A full table showing all headings can be found in the full technical report [13]
and is elided here because of space constraints.

Table 1 lists an abbreviated set of operations that are available in PAL along
with their instruction signatures. The full set can be found in our technical
report [13]. Each operation consists of a destination, an operator, and one to
three operands. DEST, V1, V2, and COND are variables in our operation listing.
PAL also has operations not found in Fairplay, such as shift and rotate.

Note that conditionals can be reduced to the IF conditional. Unlike in regular
programs, all parts of an IF circuit must be executed on every run.

The first part of a PAL program is the set of variable declarations. These con-
sist of a variable name and bit length, and the section is marked by a Variables:
label. In this low-level language there are no structs or objects, only integer vari-
ables and arrays. Each variable in a PAL file must be declared before it can be
used. Array indices may be declared at any point in the variable name.

Figure 2 shows an example of variables declared in PAL. Alicekey and
Bobkey have a bit length of 6, Bobin and Aliceout have a bit length of 32,
COND is a boolean like variable which has a bit length of 1, and Array[7] is an
array of seven elements where each have a bit length of 5. All declared variables

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

Variables:
Alicekey 6

Instructions:
Bobin IN b

Bobin 32 Bobkey IN b

Bobkey 6 Alicekey IN a

Aliceout 32 COND == Alicekey Bobkey

COND 1 Aliceout IF COND Bobin Aliceout

Array [7] 5 Aliceout O0UT a

Fig.3: Example of number comparison
(for keyed database problem) in PAL.

Fig. 2: Example of variable dec-
larations in PAL.

Variables: $cO0 = $tO
i 6 out.a IF $cO0 in.b[i].data out.a
in.a 6

Instructions:
in.b[16] .data IN b

in.b[16].data 24
in.b[16].key 6

out.a 24 in.b[16].key IN Db
$cO 1 in.a IN a
$t0 1 DBsize = 16
DBsize 64 i FOR 0 15

$p0 PROC

Procedure: $p0 out.a 0OUT a

$t0 == in.a in.b[i].key

Fig. 4: Representation of keyed database program in PAL.

are initialized to 0. After variable declarations, a PAL program can have function
and procedure definitions preceding the instructions, which is the main function.

Figure 3 shows the PAL instructions for comparing two keys as used in the
keyed database problem, described more fully below. The first two statements
are input retrieval for Bob, while the third retrieves input for Alice. A boolean
like variable COND is set based on a comparison and the output is set accordingly.
Note that constants are allowed in place of V1, V2, or COND in any instruction.
PAL supports loops, functions, and procedures.

To illustrate a full program, Figure 4 shows the keyed database problem
in PAL, where a user selects data from another user’s database without any
information given about the item selected. In this program, Bob enters 16 keys
and 16 data entries and Alice enters her key. If Alice’s key matches one of
Bob’s then Alice’s output of the program is Bob’s data entry that held the
corresponding key. The PAL program shows how each key is checked against
Alice’s key. If one of those keys matches, then the output is set.

3.2 PALC

Circuits generated by our PALC compiler, which generates SHDL files from PAL,
are created using a database of pre-generated circuits matching instructions to

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

their circuit representations. These circuits, other than equality, were generated
using simple Fairplay programs that represent equivalent functionality. Any op-
eration that does not generate a gate is considered a free operation. Assignments,
shifts, and rotates are free.

Variables in PALC have two possible states: they are either specified by a
list of gate positions or they have a real numerical value. If an operation is
performed on real value variables, the result is stored as a real value. These real
value operations do not need a circuit to be created and are thus free.

When variables of two different sizes are used, the size of the operation is
determined by the destination. If the destination is 24 bits and the operands are
32 bits, the operation will be performed 24-bit operands. This will not cause an
error but may yield incorrect results if false assumptions are made.

There are currently a number of known optimizations, such as removing static
gates, which are not implemented inside PALC; these optimization techniques
are a subject of future work.

3.3 FPPALC

To demonstrate the feasibility of compileing non-trivial programs on a phone, we
modified Fairplay’s SFDL compiler to compile into PAL and then run PALC to
compile to SHDL. This compiler is called FPPALC. Compiling in steps greatly
reduces the amount of memory that is required for circuit generation.

We note our compiler will not yield the same result as Fairplay’s compiler
in two cases, which we believe demonstrate erroneous behavior in Fairplay. In
these instances, Fairplay’s circuit evaluator will crash or yield erroneous results.
A more detailed explanation can be found in our technical report [13], To sum-
marize, unoptimized constants in SFDL can cause the evaluator to crash, while
programs consisting of a single if statement can produce inconsistent variable
modifications. Apart from these differences, the generated circuits have equiva-
lent functionality.

For our implementation of the SFDL to PAL compiler we took the original
Fairplay compiler and modified it to produce the PAL output by removing all
elements besides the parser. From the parser we built our own type system,
support for basic expressions, assignment statements, and finally if statements
and for loops. All variables are represented as unsigned variables in the output
but input and other operations treat them as signed variables. Our implemen-
tation of FPPALC and PALC, which compile SEDL to PAL and PAL to SHDL
respectively, comprises over 7500 lines of Java code.

3.4 Garbled Circuit Security

A major question posed about our work is the following: Does using an in-
termediate metalanguage with precompiled circuit templates change the security
guarantees compared to circuits generated completely within Fairplay? The sim-
ple answer to this question is no: we believe that the security guarantees offered
by the circuits that we compile with PAL are equivalent to those from Fairplay.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

‘ Memory (KB) ‘ Time (ms) ‘

Program Initial| SFDL—PAL|PAL—SHDL|SFDL—PAL|PAL—SHDL|Total
Millionaires 4931 5200 5227 90 29 119
Billionaires 4924 5214 5365 152 54 206

CoinFlip 5042 5379 5426 139 122 261

KeyedDB 4971 5365 5659 142 220 362

SetInter 2 5064 5393 5533 161 305 466

SetInter 4 5078 5437 5600 135 1074 1209

SetInter 8 5122 5542 5739 170 6659 6829

Levenshtein Dist 2| 5184 5431 5576 183 336 519
Levenshtein Dist 4| 5233 5436 5638 190 622 802
Levenshtein Dist 8| 5264 5473 5693 189 2987 3172

Table 2: FPPALC on Android: total memory application was using at end of
stages and the time it took.

Because there are no preconditions about the design of the circuit in the de-
scription of our garbled circuit protocol, any circuit that generates a given result
will work: there are often multiple ways of building a circuit with equivalent
functionality. Additionally, the circuit construction is a composition of existing
circuit templates that were themselves generated through Fairplay-like construc-
tions. Note that the security of Fairplay does not rely on how the circuits are
created but on the way garbled circuit constructs work. Therefore, our circuits
will provide the same security guarantees since our circuits also rely on using
the garbled circuit protocol.

4 Evaluation

In this section, we demonstrate the performance of our circuit generator to show
its feasibility for use on mobile devices. We targeted the Android platform for
our implementation, with HTC Thunderbolts as a deployment platform. These
smartphones contain a 1 GHz Qualcomm Snapdragon processor and 768 MB of
RAM, with each Android application limited to a 24 MB heap.

4.1 Testing Methodology

We benchmarked compile-time resource usage with and without intermediate
compilation to the PAL language. We tested on the Thunderbolts; all results
reported are from these devices. Memory usage on the phones was measured
by looking at the PSS metric, which measures pages that have memory from
multiple processes. The PSS metric is an approximation of the number of pages
used combined with how many processes are using a specific page of memory.
Several SFDL programs, of varying complexity, were used for benchmarking.
Each program is described below. We use the SFDL programs representing the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

Millionaires, Billionaires, and Keyed Database problems as presented in Fair-
play [11]. The other SFDL files that we have written can be found in the full
technical report [13]. We describe these below in more detail.

The Millionaire’s problem describes two users who want to determine which
has more money without either revealing their inputs. We used a 4-bit integer
input for this problem. The Billionaire’s problem is identical in structure but
uses 32-bit inputs instead. The CoinFlip problem models a trusted coin flip
where neither party can determine the program’s outcome deterministically. It
takes two inputs of 24-bit inputs per party. In the Keyed database program, a
user performs a lookup in another user’s database and returns a value without
the owner being aware of which part of the database is looked up — we use a
database of size 16. The keys are 6-bits and the data members are 24-bits. The
Set intersection problem determines elements two users have in common, e.g.,
friends in a social network. We measured with sets of size 2, 4, and 8 where 24-bit
input was used. Finally, we examined Levenshtein distance, which measures edit
distance between two strings. This program takes in 8-bit inputs.

4.2 Results

Below the results of the compile-time tests performed on the HTC Thunderbolts.
We measured memory allocation and time required to compile, for both the
Fairplay and PAL compilers. In the latter case, we have data for compiling to
and from the PAL language. Our complete compiler is referred to FPPALC in
this section.

Memory Usage & Compilation Time Table 2 provides memory and execu-
tion benchmarks for circuit generation, taken over at least 10 trials per circuit.
We measure the initial amount of memory used by the application as an SFDL
file is loaded, the amount of memory consumed during the SFDL to PAL com-
pilation, and memory consumed at the end of the PAL to SHDL compilation.

As an example of the advantages of our approach, we successfully compiled
a set intersection of size 90 that had 33,000,000 gates on the phone. The output
file was greater than 2.5 GB. Android has a limit of 4 GB per file and if this was
not the case we believe we could have compiled a file of the size of the memory
card (30 GB). This is because the operations are serialized and the circuit never
has to fully remain in memory.

Although we did not focus on speed, Table 2 gives a clear indication of where
the most time is used per compilation: the PAL to SHDL phase, where the circuit
is output. The speed of this phase is directly related to the size of the program
that is being output, while the speed of the SFDL to PAL compliation is related
to the number of individual instructions.

Comparison to Fairplay Table 3 compares the Fairplay compiler with FP-
PALC. Where results are not present for Fairplay are situations where it was
unable to compile these programs on the phone. For the set intersection problem

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

‘ | Memory (KB) |

Program Fairplay| FPPALC
Millionaires 658 296
Billionaires 1188 441

CoinFlip 1488 384
KeyedDB 16 NA 688

SetInter 2 10667 469

SetInter 4 NA 522

SetInter 8 NA 617

Levenshtein Dist 2| NA 392
Levenshtein Dist 4] NA 405
Levenshtein Dist 8] NA 429

Table 3: Comparison of memory increase by Fairplay and FPPALC during circuit
generation.

’ ‘ Memory (KB) ‘ Time (ms)
Program Initial| Open File| End |Open File|Fairplay|Nipane
Millionaires 5466 5556 5952 197 533 406
Billionaires 5451 5894 6287 579 1291 981
CoinFlip 5461 5933 | 6426 789 1795 | 1320

KeyedDB 16 5315 6197 7667 1600 1678 1593
SetInter 2 5423 5993 6932 1511 2088 1719
SetInter 4 5414 7435 11711 8619 7714 7146

Levenshtein Dist 2| 5617 6134 7162 1799 2220 | 2004
Levenshtein Dist 4| 5615 7215 |10787| 7448 6538 6150
Levenshtein Dist 8| 5537 | 12209 [20162| 29230 29373 | 27925

Table 4: Evaluating FPPALC circuits on Fairplay’s evaluator with both Nipane
et al.’s OT and the suggested Fairplay OT.

with set 2, FPPALC uses 469 KB of memory versus 10667 KB by Fairplay, a re-
duction of 95.6%. Testing showed that the largest version of the keyed database
problem that Fairplay could handle is with a database of size 10, while we easily
compiled the circuit with a database of size 16 using FPPALC.

Circuit Evaluation Table 4 depicts the memory and time of the evaluator
running the programs compiled by FPPALC. Consider again the two parties
Bob and Alice, who create and receive the circuit respectively in the garbled
circuit protocol. This table is from Bob’s perspective, who has a slightly higher
memory usage and a slightly lower run time than Alice. We present the time
required to open the circuit file for evaluation and to perform the evaluation using
two different oblivious transfer protocols. Described further below, we used both
Fairplay’s evaluator and an improved oblivious transfer (OT) protocol developed

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

‘ Memory (KB) ‘ Time (ms) ‘

Program Initial| After File Opening| End |File Opening|Evaluating
Millionaires 5640 5733 5995 194 302
Billionaires 5536 5885 6303 631 958
+CoinFlip 5528 5796 6280 428 1062

KeyedDB 16 5551 6255 7848 2252 1955

SetInter 2 5439 6018 7047 1663 2131

SetInter 4 5553 7708 13507 10540 9555
+Levenshtein Dist 2| 5568 5872 6316 529 781
+Levenshtein Dist 4| 5577 6088 7178 1704 2213

Levenshtein Dist 8 | 5488 7670 13011 9745 8662

Table 5: Results from programs compiled with Fairplay on a PC evaluated with
Nipane et al.’s OT.

by Nipane et al. [15]. Note that Fairplay’s evaluator was unable to evaluate
programs with around 20,000 mixed two and three input gates on the phone.
This limit translates to 209 32-bit addition operations in our compiler.

While the circuits we generate are not optimized in the same manner as
Fairplay’s circuits, we wanted to ensure that their execution time would still
be competitive against circuits generated by Fairplay. Because of the limits of
generating Fairplay circuits on the phone, we compiled them using Fairplay on a
PC, then used these circuits to compare evaluation times on the phone. Table 5
shows the results of this evaluation. Programs denoted with a + required edits
to the SHDL to run in the evaluator, in order to prevent their crashing due
to the issues described in Section 3.3. In many cases, evaluating the circuit
generated by FPPALC resulted in faster evaluation. One anomaly to this trend
was Levenshtein distance, which ran about three times slower using FPPALC.
We speculate this is due to the optimization of constant addition operations and
discuss further in Section 5. Note, however, that these circuits are unable to be
generated on the phone using Fairplay and require pre-compilation.

4.3 Interoperability

To show that our circuit generation protocol can be easily used with other im-
proved approaches to SFE, we used the faster oblivious transfer protocol of
Nipane et al. [15], who replace the OT operation in Fairplay with 1-out-of-2 OT
scheme based on a two-lock RSA cryptosystem. Shown in Table 5, these pro-
vide an over 24% speedup for the Billionaire’s problem and 26% speedup for the
Coin Flip protocol. On average, there was an 13% decrease in evaluation time
across all problems. For the Millionaires, Billionaires, and CoinFlip programs
we disabled Nagle’s algorithm as described by Nipane et al., leading to better
performance on these problems. The magnitude of improvement decreased as
circuits increased in size, a situation we continue to investigate. Our main find-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

Tl @ 5:05em

Host a Fairplay “

. Millionaires
o Billionaires
.Coin

M B 2:24 an

Host a Fairplay “

PA$$VVOrD
(**777%jdd
83*3kd.
Ak#3jd)
10.0.1.2

Q Encrypt
. Decrypt

password3 password4

. KeyedDB
. SetInter
. Levenshtein

Fig. 5: Screenshots of editor and password wallet applications.

ings, however, are that our memory-efficient circuit generation is complementary
to other approaches that focus on improving execution time and can be easily
integrated.

5 Discussion

To demonstrate how our memory-efficient compiler can be used in practice, we
developed Android apps capable of generating circuits at runtime. We describe
these below.

5.1 GUI Based Editor

To allow compilation on a phone we have to address one large problem. Our
experience porting Fairplay to Android showed the difficulty of writing a program
on the phone. Figure 5 (a) shows an example of a GUI front-end for picking and
compiling given programs based on parameters. A list of programs is given to
the user who can then pick and choose which program they wish to run. For
some of the programs there is a size variable that can also be changed.

5.2 Password Vault Application

We designed an Android application that introduces SFE as a mechanism to pro-
vide secure digital deposit boxes for passwords. In brief, this “password vault”

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

can work in a decentralized fashion without reliance on the cloud or any third
parties. If Alice fears that her phone may go missing and wants Bob to have
a copy of her passwords, she and Bob can use their “master” passwords, along
with a seed value, as input to a pseudorandomly generated hash function. These
master inputs are not revealed to either party, nor is the output of the hash,
which is used to encrypt the password. If the passwords are ever lost, Alice
can call Bob and jointly recover the passwords; both must present their master
passwords to decrypt the password file, ensuring that neither can be individ-
ually coerced to retrieve the contents. Figure 5 (b) shows a screenshot of this
application. which can encrypt passwords from the user or decrypt those in the
database. Our evaluation shows that compiling the hash function requires 6407
KB of memory and approximately 7348 ms, with 85% of that time is the PAL
to SHDL conversion. Evaluating the circuit is more time intensive. Opening the
file takes 28.1 seconds, and performing the OTs and gate evaluation takes 23.2
seconds. We are exploring efficiencies to reduce execution time.

5.3 Experiences with Garbled Circuit Generation

One of the most important lessons from our implementation efforts was observing
the large burden on mobile devices caused when complete circuits must be kept
in memory. Better solutions only use small amounts of memory to direct the
actual computation, for instance, one copy of each circuit instead of N for N of
the same type of statement.

The largest difficulty of the full circuit approach is the need for the full circuit
to be created. Circuits for O(n?) algorithms and beyond scale extremely poorly.
A different approach is needed for larger scalabiltiy. For instance, doubling the
Levenshtien distance n paremeter increased the circuit size by a factor of about
4.5 (decreasing the larger n grows), when n is 8 there are 11,268 gates, 16 is
51,348 gates, 32 is 218,676 gates, and 64 is 902,004 gates.

The original PAL did not scale well due to the fact it did not have loops,
arrays, procedures, or functions. Once those programming structures were added
the length of the PAL files were decreased dramaticly. Instead of unrolling all
programming control flow constructs we added them for smaller PAL programs.
The resulting circuits generated from the new PAL were very similar to the
original circuits.

6 Related work

Other research has primarily focused on optimizing the actual evaluation for
SFE, while we focus on generating circuits in a memory efficient manor. Kolesnikov
et al. [9] demonstrated a “free XOR” evaluation technique to improve execution
speed, while Pinkas et al. [16] implement techniques to reduce circuit size of the
circuits and computation length. We plan to implement these enhancements in
the next version of the circuit evaluator.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
34

Huang et al. [7] have similarly focused on optimizing secure function evalua-
tion, focusing on execution in resource-constrained environments. The approach
differs considerably from ours in that users build their own functions directly at
the circuit level rather than using high-level abstractions such as SFDL. While
the resulting circuit may execute more quickly, there is a burden on the user
to correctly generate these circuits, and because input files are generated at
the circuit level in Java, compiling on the phone would require a full-scale Java
compiler rather than the smaller-scale SFDL compiler that we use.

Another way to increase the speed of SFE has been to focus on leverag-
ing the hardware of devices. Pu et al. [17] have considered leveraging Nvidia’s
CUDA-based GPU architecture to increase the speed of SFE. We have con-
ducted preliminary investigations into leveraging vector processing capabilities
on smartphones, specifically single-instruction multiple-data units available on
the ARM Cortex processing cores found within many modern smartphones, as
a means of providing better service for certain cryptographic functionality.

Kruger et al. [10] described a way to use ordered binary decision diagrams
(OBDDs) to evaluate SFE, which can provide faster execution for certain prob-
lems. Our future work will involve determining whether the process of preparing
OBDDs can benefit from our memory-efficient techniques. TASTY [5] also uses
different methods of privacy-preserving computation, namely homomorphic en-
cryption (HE) as well as garbled circuits, based on user choices. This approach
requires the user to explicitly choose the computation style, but may also benefit
from our generation techniques for both circuits and the homomorphic construc-
tions. FairplayMP [2] showed a method of secure multiparty computation. We
are examining how to extend our compiler to become multiparty capable.

7 Conclusion

We introduced a memory efficient technique for making SFE tractable on the
mobile platform. We created PAL, an intermediate language, between SFDL and
SHDL programs and showed that by using pre-generated circuit templates we
could make previously intractable circuits compile on a smartphone, reducing
memory requirements for the set intersection circuit by 95.6%. We demonstrate
the use of this compiler with a GUI editor and a password vault application. Fu-
ture work includes incorporating optimizations in the circuit evaluator and de-
termining whether the pre-generated templates may work with other approaches
to both SFE and other privacy-preserving computation primitives.

Acknowledgements

We would like to thank Patrick Traynor for his insights regarding the narrative
of the paper, and Adam Bates and Hannah Pruse for their comments.

This material is based on research sponsored by DARPA under agreement
number FA8750-11-2-0211. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
35

notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

References

1.

2.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Bellare and S. Micali. Non-Interactive Oblivious Transfer and Applications. In
International Crytology Conference, 1990.

A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a System for Secure Multi-
Party Computation. In 15th ACM Conference on Computer and Communications
Security (CCS’08), Alexandria, VA, 2008.

J. Brickell and V. Shmatikov. Privacy-Preserving Classifier Learning. In Proceed-
ings of Financial Cryptography and Data Security, Feb. 2009.

Gartner. Gartner Says Worldwide Mobile Device Sales to End Users Reached
1.6 Billion Units in 2010; Smartphone Sales Grew 72 Percent in 2010.
http://www.gartner.com/it/page.jsp?id=1543014, 2011.

W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY:
Tool for Automating Secure Two-Party Computations. In 17th ACM Conf. on
Computer and communications security (CCS’10), Chicago, IL, Oct. 2010.

Y. Huang, P. Chapman, and D. Evans. Privacy-Preserving applications on smart-
phones: Challenges and opportunities. In USENIX HotSec, Aug. 2011.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Computation
Using Garbled Circuits. In 20th USENIX Security Symposium, Aug. 2011.

S. Jha, L. Kruger, and V. Shmatikov. Towards Practical Privacy for Genomic
Computation. In 2008 IEEE Symp. on Security and Privacy, Nov. 2008.

V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and
Applications. In Proceedings of ICALP 08, Reykjavik, Iceland, 2008.

L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure Function Evaluation with
Ordered Binary Decision Diagrams. In 13th ACM conference on Computer and
communications security (CCS’06), Alexandria, VA, Oct. 2006.

D. Malkhi, N. Nisan, and B. Pinkas. Fairplay Project,
http://www.cs.huji.ac.il/project/Fairplay/.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay: a Secure Two-Party Com-
putation System. In 13th USENIX Security Symposium, San Diego, CA, 2004.

B. Mood, L. Letaw, and K. Butler. Memory-Efficient Garbled Circuit Generation
for Mobile Devices. Technical Report CIS-TR-2011-04, Department of Computer
and Information Science, University of Oregon, Eugene, OR, USA, Sept. 2011.
M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In Proceedings of
SODA ’01, Washington, DC, 2001.

N. Nipane, I. Dacosta, and P. Traynor. “Mix-In-Place” Anonymous Networking
Using Secure Function Evaluation. In Proceedings of ACSAC, Dec. 2011.

B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure Two-Party
Computation Is Practical. In Proceedings of ASIACRYPT, Tokyo, Japan, 2009.
S. Pu, P. Duan, and J.-C. Liu. Fastplay—A Parallelization Model and Implemen-
tation of SMC on CUDA based GPU Cluster Architecture. Cryptology ePrint
Archive, Report 2011/097, 2011. http://eprint.iacr.org/.

A. C.-C. Yao. How to Generate and Exchange Secrets. In Proceedings of the 27th
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
162-167, Washington, DC, USA, 1986. IEEE Computer Society.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
36

Secure Outsourced Garbled Circuit Evaluation for Mobile Devices

Henry Carter

Georgia Institute of Technology

carterh@ gatech.edu

Patrick Traynor

Georgia Institute of Technology

traynor@cc.gatech.edu

Abstract

Garbled circuits provide a powerful tool for jointly
evaluating functions while preserving the privacy of each
user’s inputs. While recent research has made the use
of this primitive more practical, such solutions generally
assume that participants are symmetrically provisioned
with massive computing resources. In reality, most peo-
ple on the planet only have access to the comparatively
sparse computational resources associated with their mo-
bile phones, and those willing and able to pay for ac-
cess to public cloud computing infrastructure cannot be
assured that their data will remain unexposed. We ad-
dress this problem by creating a new SFE protocol that
allows mobile devices to securely outsource the major-
ity of computation required to evaluate a garbled circuit.
Our protocol, which builds on the most efficient gar-
bled circuit evaluation techniques, includes a new out-
sourced oblivious transfer primitive that requires signifi-
cantly less bandwidth and computation than standard OT
primitives and outsourced input validation techniques
that force the cloud to prove that it is executing all pro-
tocols correctly. After showing that our extensions are
secure in the malicious model, we conduct an extensive
performance evaluation for a number of standard SFE
test applications as well as a privacy-preserving naviga-
tion application designed specifically for the mobile use-
case. Our system reduces execution time by 98.92% and
bandwidth by 99.95% for the edit distance problem of
size 128 compared to non-outsourced evaluation. These
results show that even the least capable devices are ca-
pable of evaluating some of the largest garbled circuits
generated for any platform.

1 Introduction

Secure Function Evaluation (SFE) allows two parties to
compute the result of a function without either side hav-
ing to expose their potentially sensitive inputs to the
other. While considered a generally theoretical curios-

1

Benjamin Mood
University of Oregon
bmood@cs.uoregon.edu

Kevin Butler
University of Oregon
butler@cs.uoregon.edu

ity even after the discovery of Yao’s garbled circuit [43],
recent advances in this space have made such computa-
tion increasingly practical. Today, functions as complex
as AES-128 and approaching one billion gates in size are
possible at reasonable throughputs, even in the presence
of a malicious adversary.

While recent research has made the constructions in
this space appreciably more performant, the majority of
related work makes a crucial assumption - that both par-
ties are symmetrically provisioned with massive comput-
ing resources. For instance, Kreuter et al. [25] rely on the
Ranger cluster at the Texas Advanced Computing Center
to compute their results using 512 cores. In reality, the
extent of a user’s computing power may be their mobile
phone, which has many orders of magnitude less compu-
tational ability. Moreover, even with access to a public
compute cloud such as Amazon EC2 or Windows Azure,
the sensitive nature of the user’s data and the history of
data leakage from cloud services [40,42] prevent the di-
rect porting of known SFE techniques.

In this paper, we develop mechanisms for the secure
outsourcing of SFE computation from constrained de-
vices to more capable infrastructure. Our protocol main-
tains the privacy of both participant’s inputs and outputs
while significantly reducing the computation and net-
work overhead required by the mobile device for garbled
circuit evaluation. We develop a number of extensions
to allow the mobile device to check for malicious behav-
ior from the circuit generator or the cloud and a novel
Outsourced Oblivious Transfer for sending garbled input
data to the cloud. We then implement the new proto-
col on a commodity mobile device and reasonably provi-
sioned servers and demonstrate significant performance
improvements over evaluating garbled circuits directly
on the mobile device.

We make the following contributions:

e Outsourced oblivious transfer & outsourced con-

sistency checks: Instead of blindly trusting the
cloud with sensitive inputs, we develop a highly

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

37

efficient Outsourced Oblivious Transfer primitive
that allows mobile devices to securely delegate the
majority of computation associated with oblivious
transfers. We also provide mechanisms to outsource
consistency checks to prevent a malicious circuit
generator from providing corrupt garbled values.
These checks are designed in such a way that the
computational load is almost exclusively on the
cloud, but cannot be forged by a malicious or “lazy”
cloud. We demonstrate that both of our additions
are secure in the malicious model as defined by Ka-
mara et al. [21].

o Performance Analysis: Extending upon the imple-
mentation by Kreuter et al. [25], we conduct an ex-
tensive performance analysis against a number of
simple applications (e.g., edit distance) and crypto-
graphic benchmarks (e.g., AES-128). Our results
show that outsourcing SFE provides improvements
to both execution time and bandwidth overhead. For
the edit distance problem of size 128, we reduce ex-
ecution time by 98.92% and bandwidth by 99.95%
compared to direct execution without outsourcing
on the mobile device.

e Privacy Preserving Navigation App: To demon-
strate the practical need for our techniques, we de-
sign and implement an outsourced version of Dijk-
stra’s shortest path algorithm as part of a Naviga-
tion mobile app. Our app provides directions for
a Presidential motorcade without exposing its loca-
tion, destination, or known hazards that should be
avoided (but remain secret should the mobile device
be compromised). The optimized circuits generated
Jor this app represent the largest circuits evaluated
to date. Without our outsourcing techniques, such
an application is far too processor, memory and
bandwidth intensive for any mobile phone.

While this work is similar in function and provides
equivalent security guarantees to the Salus protocols re-
cently developed by Kamara et al. [21], our approach
is dramatically different. The Salus protocol frame-
work builds their scheme on a completely different as-
sumption, specifically, that they are outsourcing work
from low-computation devices with high communication
bandwidth. With provider-imposed bandwidth caps and
relatively slow and unreliable cellular data connections,
this is not a realistic assumption when developing solu-
tions in the mobile environment. Moreover, rather than
providing a proof-of-concept work demonstrating that
offloading computation is possible, this work seeks to
develop and thoroughly demonstrate the practical poten-
tial for evaluating large garbled circuits in a resource-
constrained mobile environment.

The remainder of this work is organized as follows:
Section 2 presents important related work and discusses

2

how this paper differs from Salus; Section 3 provides
cryptographic assumptions and definitions; Section 4 for-
mally describes our protocols; Section 5 provides secu-
rity discussion - we direct readers to our technical re-
port [6] for full security proofs; Section 6 shows the re-
sults of our extensive performance analysis; Section 7
presents our privacy preserving navigation application
for mobile phones; and Section 8 provides concluding
remarks.

2 Related Work

Beginning with Fairplay [32], several secure two-party
computation implementations and applications have
been developed using Yao garbled circuits [43] in the
semi-honest adversarial model [3, 15, 17, 19, 26, 28, 31,
38]. However, a malicious party using corrupted in-
puts or circuits can learn more information about the
other party’s inputs in these constructions [23]. To re-
solve these issues, new protocols have been developed to
achieve security in the malicious model, using cut-and-
choose constructions [30], input commitments [41], and
other various techniques [22,34]. To improve the perfor-
mance of these schemes in both the malicious and semi-
honest adversarial models, a number of circuit optimiza-
tion techniques have also been developed to reduce the
cost of generating and evaluating circuits [8, 11,24, 35].
Kreuter et al. [25] combined several of these techniques
into a general garbled circuit protocol that is secure in
the malicious model and can efficiently evaluate circuits
on the order of billions of gates using parallelized server-
class machines. This SFE protocol is currently the most
efficient implementation that is fully secure in the mali-
cious model. (The dual execution construction by Huang
et al. leaks one bit of input [16].)

Garbled circuit protocols rely on oblivious transfer
schemes to exchange certain private values. While sev-
eral OT schemes of various efficiencies have been de-
veloped [1, 30,36, 39], Ishai et al. demonstrated that any
of these schemes can be extended to reduce k¢ oblivi-
ous transfers to k oblivious transfers for any given con-
stant ¢ [18]. Using this extension, exchanging potentially
large inputs to garbled circuits became much less costly
in terms of cryptographic operations and network over-
head. Even with this drastic improvement in efficiency,
oblivious transfers still tend to be a costly step in evalu-
ating garbled circuits.

Currently, the performance of garbled circuit protocols
executed directly on mobile devices has been shown to
be feasible only for small circuits in the semi-honest ad-
versarial model [5, 13]. While outsourcing general com-
putation to the cloud has been widely considered for im-
proving the efficiency of applications running on mobile
devices, the concept has yet to be widely applied to cryp-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

38

tographic constructions. Green et al. began exploring
this idea by outsourcing the costly decryption of ABE
ciphertexts to server-class machines while still maintain-
ing data privacy [12]. Considering the costs of exchang-
ing inputs and evaluating garbled circuits securely, an
outsourcing technique would be useful in allowing lim-
ited capability devices to execute SFE protocols. Naor
et al. [37] develop an oblivious transfer technique that
sends the chooser’s private selections to a third party,
termed a proxy. While this idea is applied to a limited
application in their work, it could be leveraged more gen-
erally into existing garbled circuit protocols. Our work
develops a novel extension to this technique to construct
a garbled circuit evaluation protocol that securely out-
sources computation to the cloud.

In work performed concurrently and independently
from our technique, Kamara et al. recently developed
two protocols for outsourcing secure multiparty compu-
tation to the cloud in their Salus system [21]. While their
work achieves similar functionality to ours, we distin-
guish our work in the following ways: first, their protocol
is constructed with the assumption that they are outsourc-
ing work from devices with low-computation but high-
bandwidth capabilities. With cellular providers impos-
ing bandwidth caps on customers and cellular data net-
works providing highly limited data transmission speed,
we construct our protocol without this assumption using
completely different cryptographic constructions. Sec-
ond, their work focuses on demonstrating outsourced
SFE as a proof-of-concept. Our work offers a rigorous
performance analysis on mobile devices, and outlines a
practical application that allows a mobile device to par-
ticipate in the evaluation of garbled circuits that are or-
ders of magnitude larger than those evaluated in the Salus
system. Finally, their protocol that is secure in the ma-
licious model requires that all parties share a secret key,
which must be generated in a secure fashion before the
protocol can be executed. Our protocol does not require
any shared information prior to running the protocol, re-
ducing the overhead of performing a multiparty fair coin
tossing protocol a priori. While our work currently con-
siders only the two-party model, by not requiring a pre-
liminary multiparty fair coin toss, expanding our proto-
col to more parties will not incur the same expense as
scaling such a protocol to a large number of participants.
To properly compare security guarantees, we apply their
security definitions in our analysis.

3 Assumptions and Definitions

To construct a secure scheme for outsourcing garbled cir-
cuit evaluation, some new assumptions must be consid-
ered in addition to the standard security measures taken
in a two-party secure computation. In this section, we
discuss the intuition and practicality of assuming a non-

colluding cloud, and we outline our extensions on stan-
dard techniques for preventing malicious behavior when
evaluating garbled circuits. Finally, we conclude the sec-
tion with formal definitions of security.

3.1 Non-collusion with the cloud

Throughout our protocol, we assume that none of the
parties involved will ever collude with the cloud. This
requirement is based in theoretical bounds on the effi-
ciency of garbled circuit evaluation and represents a re-
alistic adversarial model. The fact that theoretical limi-
tations exist when considering collusion in secure multi-
party computation has been known and studied for many
years [2,7,27], and other schemes considering secure
computation with multiple parties require similar restric-
tions on who and how many parties may collude while
preserving security [4,9,10,20,21]. Kamara et al. [21]
observe that if an outsourcing protocol is secure when
both the party generating the circuit and the cloud eval-
uating the circuit are malicious and colluding, this im-
plies a secure two-party scheme where one party has
sub-linear work with respect to the size of the circuit,
which is currently only possible with fully homomor-
phic encryption. However, making the assumption that
the cloud will not collude with the participating parties
makes outsourcing securely a theoretical possibility. In
reality, many cloud providers such as Amazon or Mi-
crosoft would not allow outside parties to control or af-
fect computation within their cloud system for reasons
of trust and to preserve a professional reputation. In
spite of this assumption, we cannot assume the cloud
will always be semi-honest. For example, our protocol
requires a number of consistency checks to be performed
by the cloud that ensure the participants are not behaving
maliciously. Without mechanisms to force the cloud to
make these checks, a “lazy” cloud provider could save
resources by simply returning that all checks verified
without actually performing them. Thus, our adversar-
ial model encompasses a non-colluding but potentially
malicious cloud provider that is hosting the outsourced
computation.

3.2 Attacks in the malicious setting

When running garbled circuit based secure multiparty
computation in the malicious model, a number of well-
documented attacks exist. We address here how our sys-
tem counters each.

Malicious circuit generation: In the original Yao gar-
bled circuit construction, a malicious generator can gar-
ble a circuit to evaluate a function f” that is not the func-
tion f agreed upon by both parties and could compromise
the security of the evaluator’s input. To counter this, we

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

39

employ an extension of therandom seed techniquedevel-
oped by Goyal et al. [11] and implemented by Kreuter et
al. [25]. Essentially, thetechniqueusesacut-and-choose,
where the generator commits to a set of circuits that all
presumably compute thesamefunction. Theparties then
use a fair coin toss to select some of the circuits to be
evaluated and some that will be re-generated and hashed
by the cloud given the random seeds used to generate
them initially. Theevaluating party then inspects the cir-
cuit commitments and compares them to the hash of the
regenerated circuits to verify that all the check circuits
were generated properly.

Selective failure attack: If, when the generator is send-ing
the evaluator’s garbled inputs during the oblivious
transfer, heletstheevaluator choosebetween avalid gar-
bled input bit and a corrupted garbled input, the evalua-
tor’sability to complete thecircuit evaluation will reveal to
thegenerator which input bit wasused. To prevent this
attack, weusetheinput encoding technique from Lindell
and Pinkas [29], which lets the evaluator encode her in-
put in such a way that a selective failure of the
circuit reveals nothing about the actual input value. To
prevent thegenerator from swapping garbled wirevalues,
weuse acommitment techniqueemployed by Kreuter et
al. [25].

Input consistency: Since multiple circuits are evaluated to
ensure that a majority of circuits are correct, it is pos-
sible for either party to input different inputs to differ-
ent evaluation circuits, which could reveal information
about the other party’s inputs. To keep the evaluator’s
inputs consistent, we again use the technique from Lin-
dell and Pinkas [29], which sends all garbled inputs for
every evaluation circuit in one oblivious transfer execu-
tion. To keep the generator’s inputs consistent, we use
the malleable claw-free collection construction of shelat
and Shen [41]. This technique is described in further de-
tail in Section 4.

Output consistency: When evaluating a two-output
function, we ensure that outputs of both parties are kept
private from the cloud using an extension of the tech-
nique developed by Kiraz [23]. The outputs of both par-
ties are XORed with random strings within the garbled
circuit, and the cloud uses a witness-indistinguishable
zero-knowledge proof as in the implementation by
Kreuter et al. [25]. This allows the cloud to choose a
majority output valuewithout learning either party’sout-
put or undetectably tampering with the output. At the
same time, the witness-indistinguishable proofs prevent
either party from learning the index of the majority
cir-cuit. This prevents the generator from learning
anything by knowing which circuit evaluated to the
majority out-put value.

4

Alice
(evaluator)

Phase 1
Phase 2

Bob
(generator)

.

cloud
(outsourcing agent)

Figure 1: The complete outsourced SFE protocol.

3.3

To prevent the generating party from providing differ-ent
inputs for each evaluation circuit, we implement the
malleable claw-free collections technique developed by
shelat and Shen [41]. Their construction essentially al-
lows the generating party to prove that all of the garbled
input values were generated by exactly one function in a
function pair, while the ability to find an element that is
generated by both functions implies that the genera-tor
can find a claw. It is composed of a four-tuple of
algorithms (G,D,F,R), where G is the index selection
algorithm for selecting a specific function pair, D is an
algorithm for sampling from the domain of the function
pair, F isthealgorithm for evaluating thefunctionsin the
pair (in which it should bedifficult to find aclaw), and R
is the “malleability” function. The function R maps ele-
ments from the domain of F to the range of F such that
for 62 { 0,1} ,any [in the range of G,andany m1,m; in the
domain of F, we have for the function indexed by /

and bfP(m1?my)= fP(m1) "Ry (my), where? and rep-
resent thegroup operations over thedomain and rangeof
F. Weprovidefull definitions of their construction in our
technical report [6].

Malleable claw-freecollections

3.4 Model and Definitions

The work of Kamara et al. [21] presents a definition of
security based on the ideal-model/real-model secu-rity
definitions common in secure multiparty computa-tion.
Because their definition formalizes the idea of a non-
colluding cloud, we apply their definitions to our
protocol for the two-party case in particular. We sum-
marize their definitions below. Real-model execution.
The protocol takes place be-tween two parties (P1,P2)
executing the protocol and a server P3, where each of
the executing parties provides input xj, auxiliary input
zj, and random coins 7j and the server provides only
auxiliary input z3 and random coins 3. In the
execution, there exists somesubset of indepen-dent
parties (A41,..,4m),m 3 thatare malicious adver-saries.
Each adversary corrupts one executing party and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

40

does not share information with other adversaries. For all
honest parties, let OUT; be its output, and for corrupted
parties let OUT; be its view of the protocol execution.
The " partial output of a real execution is defined as:

REALY (k,x;r) = {OUT; : j € H}UOUT;

where H is the set of honest parties and r is all random
coins of all players.

Ideal-model execution. In the ideal model, the setup of
participants is the same except that all parties are inter-
acting with a trusted party that evaluates the function. All
parties provide inputs x;, auxiliary input z;, and random
coins r;. If a party is semi-honest, it provides its actual
inputs to the trusted party, while if the party is malicious
(and non-colluding), it provides arbitrary input values.
In the case of the server P;, this means simply providing
its auxiliary input and random coins, as no input is pro-
vided to the function being evaluated. Once the function
is evaluated by the trusted third party, it returns the result
to the parties P; and P,, while the server P3 does not re-
ceive the output. If a party aborts early or sends no input,
the trusted party immediately aborts. For all honest par-
ties, let OUT; be its output to the trusted party, and for
corrupted parties let OUT; be some value output by P,.
The ith partial output of an ideal execution in the pres-
ence of some set of independent simulators is defined as:

IDEALY (k,x;r) = {OUT; : j € HYUOUT;

where H is the set of honest parties and r is all random
coins of all players. In this model, the formal definition
of security is as follows:

Definition 1. A protocol securely computes a function
f if there exists a set of probabilistic polynomial-time
(PPT) simulators {Sim;};c(3 such that for all PPT ad-
versaries (A1, ...,A3), x, z, and for all i € [3]:

{REALY (k,x;7) }xen ~ {IDEALY (k,x;7) hken

Where S = (Sy,...,83), Si = Sim;(A;), and r is random
and uniform.

4 Protocol

Our protocol can be divided into five phases, illustrated
in Figure 1. Given a circuit generator Bob, and an eval-
uating mobile device Alice, the protocol can be summa-
rized as follows:

e Phase 1: Bob generates a number of garbled cir-
cuits, some of which will be checked, others will be
evaluated. After Bob commits to the circuits, Alice
and Bob use a fair coin toss protocol to select which
circuits will be checked or evaluated. For the check

5

Inputs: Alice has a string of encoded input bits ea of
length £-n and Bob has pairs of input values (xo_j, X1, ;)
forj=1..4-n.

1. Setup: Alice generates random matrix 7T of size
{-n xt, Bob generates random string s of length
t.

2. Primitive OT: Alice and Bob execute ¢ 1-
out-of-2 oblivious transfers with Alice inputting
(T',T' ®ea) and Bob inputting selection bits s (7"
denotes the i’ column of the 7 matrix). Bob sets
the resulting columns as matrix Q.

3. Permuting the output: Alice generates random
string p of length - n and sends it to Bob.

4. Encrypting the output: Bob sets the en-
crypted output pairs yg j,y1,; where y; ; = x;, ; ©
H,(j,Q;® (b-s)) (Q; denotes the j™ row of the
O matrix).

5. Permuting the outputs: Bob permutes the en-
crypted output pairs as Yogp,,j,Yiep;,j and sends
the resulting set of pairs Y to the cloud.

6. Decrypting the output: Alice sends & = ea ®
p and T to the cloud. The cloud recovers z; =
Vi, @ Hi(j,Tj) for j=1..L-n (T; denotes the

j™ row of the 7' matrix).

Figure 2: The Outsourced Oblivious Transfer protocol

circuits, Bob sends the random seeds used to gener-
ate the circuits to the cloud and the hashes of each
circuit to Alice. These are checked to ensure that
Bob has not constructed a circuit that is corrupted
or deviates from the agreed-upon function.

e Phase 2: Alice sends her inputs to Bob via an out-
sourced oblivious transfer. Bob then sends the cor-
responding garbled inputs to the cloud. This allows
the cloud to receive Alice’s garbled inputs without
Bob or the cloud ever learning her true inputs.

e Phase 3: Bob sends his garbled inputs to the cloud,
which verifies that they are consistent for each eval-
uation circuit. This prevents Bob from providing
different inputs to different evaluation circuits.

e Phase 4: The cloud evaluates the circuit given Alice
and Bob’s garbled inputs. Since the cloud only sees
garbled values during the evaluation of the circuit,
it never learns anything about either party’s input or
output. Since both output values are blinded with
one-time pads, they remain private even when the
cloud takes a majority vote.

e Phase 5: The cloud sends the encrypted output val-
ues to Alice and Bob, who are guaranteed its au-
thenticity through the use of commitments and zero-
knowledge proofs.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

41

4.1 Participants

Our protocols reference three different entities:
Evaluator: The evaluating party, called Alice, is as-
sumed to be a mobile device that is participating in a
secure two-party computation.

Generator: The party generating the garbled circuit,
called Bob, is an application- or web- server that is the
second party participating with Alice in the secure com-
putation.

Proxy: The proxy, called cloud, is a third party that is
performing heavy computation on behalf of Alice, but is
not trusted to know her input or the function output.

4.2 Outsourced Protocol

Common inputs: a function f(x,y) that is to
be securely computed, a claw-free collection
(GCLW sDcrw , Fcow , Reow) , two hash functions
H, : {0,1}* — {0,1}" and H, : {0,1}* — {0,1}",
a primitive 1-out-of-2 oblivious transfer protocol, a per-
fectly hiding commitment scheme comp (key, message),
and security parameters for the number of circuits built
k, the number of primitive oblivious transfers ¢, and the
number of encoding bits for each of Alice’s input wires
L.

Private inputs: The generating party Bob inputs a bit
string b and a random string of bits b, that is the length
of the output string. The evaluating party Alice inputs a
bit string a and a random string of bits a, that is the length
of the output string. Assume without loss of generality
that all input and output strings are of length |a| = n.
Output: The protocol outputs separate private values fa
for Alice and fb for Bob.

Phase 1: Circuit generation and checking

1. Circuit preparation: Before beginning the protocol,
both parties agree upon a circuit representation of
the function f(a,b), where the outputs of the func-
tion may be defined separately for Alice and Bob as
fa(a,b) and fp(a,b). The circuit must also meet the
following requirements:

(a) Additional XOR gates must be added such that
Bob’s output is set to fb = fg(a,b) P b, and
Alice’s output is set to fa = fa(a,b) Da,.

(b) For each of Alice’s input bits, the input wire
w; is split into ¢ different input wires w;;
such that w; = wy; @ w2; @ ... & wy,; follow-
ing the input encoding scheme by Lindell and
Pinkas [29]. This prevents Bob from correlat-
ing a selective failure attack with any of Al-
ice’s input bit values.

2. Circuit garbling: the generating party, Bob, con-
structs k garbled circuits using a circuit garbling

6

technique Garble(-,-). When given a circuit rep-
resentation C of a function and random coins
re, Garble(C,rc) outputs a garbled circuit GC
that evaluates C. Given the circuit C and ran-
dom coins rcy...rci, Bob generates garbled circuits
Garble(C,rc;) = GC; for i = 1...k. For Bob’s j™* in-
put wire on the i'" circuit, Bob associates the value
H(PBy,j;) with the input value b, where B, ;; =
Ferw (b1, 0y ;). For Alice’s 7" input wire, Bob as-
sociates the value H»(6p ;) with the input value b,
where 5;,’1",' = Fow (b,], '}’b.j,i)o All the values Op ji
and v, j; for b= {0,1},j = l..n,i = l...k are se-
lected randomly from the domain of the claw-free
pair using D.

. Circuit commitment: Bob generates commitments

for all circuits by hashing H(GC;) = HC; for i =
1...k. Bob sends these hashes to Alice. In addition,
for every output wire wy, ; ; for b= {0,1}, j=1...n
and i = 1...k, Bob generates commitments CO;; =
ComH(ijyi,(Hz(W()’j’i),Hz(lej’j))) U.SiIlg commit-
ment keys ck;; for j=1..n and i = 1...k and sends
them to both Alice and the cloud.

. Input label commitment: Bob commits to Alice’s

garbled input values as follows: for each gener-
ated circuit i = 1...k and each of Alice’s input wires
Jj=1...0-n, Bob creates a pair of commitment keys
iko j i ik j; and commits to the input wire label
seeds &, j; and 8y j; as Cly, j; = comy (ikp_ j i, Op j i)
For each of Alice’s input wires j = 1...¢-n, Bob ran-
domly permutes the commitments within the pair
Clo,j;i,Cl j; across every i = 1...k. This prevents
the cloud from correlating the location of the com-
mitment with Alice’s input value during the OOT
phase.

. Cut and choose: Alice and Bob then run a fair coin

toss protocol to agree on a set of circuits that will
be evaluated, while the remaining circuits will be
checked. The coin toss generates a set of indices
Chk C {1,...,k} such that |Chk| = 3k, as in shelat
and Shen’s cut-and-choose protocol [41]. The re-
maining indices are placed in the set Ev/ for eval-
uation, where |Evi| = e = %k. For every i € Chk,
Bob sends rc; and the values [0), ...,] and
(Yo,105-> Ybemi) for b ={0,1} to the cloud. Bob
also sends all commitment keys ck;; for j = 1...n
and i € Chk to the cloud. Finally, Bob sends the
commitment keys ik, ; ; for b= {0, 1}, i € Chk, and
Jj=1..4-n to the cloud. The cloud then gener-
ates Garble(C,rc;) = GC] for i € Chk. For each
i € Chk, the cloud then hashes each check circuit
H;(GC}) = HC] and checks that:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

42

e cach commitment COj; for j = 1...n is well
formed

e the value H (B ; ;) is associated with the input
value b for Bob’s j input wire

o the value H(Jj j;) is associated with the input
value b for Alice’s j* input wire

e for every bit value b and input wire j, the val-
ues committed in Clj, ; ; are correct

If any of these checks fail, the cloud immediately
aborts. Otherwise, it sends the hash values H le for
i € Chk to Alice. For every i € Chk, Alice checks
if HC; = HC]. If any of the hash comparisons fail,
Alice aborts.

Phase 2: Outsourced Oblivious Transfer (OOT)

1. Input encoding: For every bit j = 1...n in her input

a, Alice sets encoded input ea; as a random string
of length £ such that ea; j S ear ;... Dea;; = a;
for each bit in ea;. This new encoded input string
ea is of length £ - n.

. OT setup: Alice initializes an £-n x t matrix T with
uniformly random bit values, while Bob initializes
a random bit vector s of length 7. See Figure 2 for a
more concise view.

. Primitive OT operations: With Alice as the sender
and Bob as the chooser, the parties initiate ¢ 1-out-
of-2 oblivious transfers. Alice’s input to the i in-
stance of the OT is the pair (T, T’ @ ea) where T’
is the i"" column of T, while Bob’s input is the i
selection bit from the vector s. Bob organizes the ¢
selected columns as a new matrix Q.

. Permuting the selections: Alice generates a random
bit string p of length £ - n, which she sends to Bob.

. Encrypting the commitment keys: Bob gen-
erates a matrix of keys that will open the
committed garbled input values and proofs of
consistency as follows: for Alice’s ;" in-
put bit, Bob creates a pair (xoj,x1;), wWhere
Xpj = [ikp jEviysikp jEvlys s ik j BV)| [V Evy *
(Vb,, j,E\rll)_lvyhj.j.Evl3 * (th,j,Evll)_17-~~7ij,j,Evze *
(}’b,-.j.Evll)_l] and Evl; denotes the " index in the
set of evaluation circuits. For j = 1...¢-n, Bob pre-
pares (yo,j,y1,;) Where y, j = x ; @ H((j,Q; ® (b-
5)). Here, Q; denotes the j" row in the Q matrix.
Bob permutes the entries using Alice’s permutation
vector as (Yowp;,j: Y1ep;,j)- Bob sends this permuted
set of ciphertexts Y to the cloud.

. Receiving Alice’s garbled inputs: Alice blinds her
input as h = ea® p and sends h and T to the
cloud. The cloud recovers the commitment keys

7

1. Delivering

and consistency proofs x, j = yu; ;j ® Hi(j,T;) for
j=1..L-n. Here, h; denotes the j bit of the
string & and 7; denotes the 7" row in the T ma-
trix. Since for every j € Evl, the cloud only has
the commitment key for the b garbled value (not the
b& 1 garbled value), the cloud can correctly decom-
mit only the garbled labels corresponding to Alice’s
input bits.

. Verifying consistency across Alice’s in-
puts: Given the decommitted values
[0b1is--sOprni] and the modified pre im-
ages Wojibvty * (Wojibnt) ™S WojjEvty

i J.EVL) s Vbij Eve b j.Evl)]
(Wojjviy) ™ oo W * (W jey) '], the
cloud checks that:

Op;.ji = O, j.Eviy ©Reww (1, ijAin*(ij.j,Evll)il)

for i = 2...e. If any of these checks fails, the cloud
aborts the protocol.

Phase 3: Generator input consistency check

inputs: Bob delivers the hash
seeds for each of his garbled input values
[Bb] s Bb2,2,l‘? .. .,ﬁb” ,n,i] for every evaluation
circuit i € Evl to the cloud, which forwards a copy
of these values to Alice. Bob then proves the
consistency of his inputs by sending the modified
preimages [abj.j.Evlz * (abj,j,E\fll)_l»ab,-,j,Evl; *
(0 vty) ™5y Oty j i, % (0 j vty) '] such that
FCLW(bi;L ab,-,j,i) = ﬁb;,j,i for j=1..nandi € Evl
such that GC; was generated with the claw-free
function pair indexed at /.

. Check consistency: Alice then checks that all the

hash seeds were generated by the same function by
checking if:

ﬁb,,,iﬁi = Bbj,j,Evl] oRerw (1, Op, j,i* (Oébj,_,:,Euzl)N

for i = 2...e. If any of these checks fails, Alice
aborts the protocol.

Phase 4: Circuit evaluation

1. Evaluating the circuit:For each evaluation circuit,

the cloud evaluates GC;(ga;, gb;) for i € Evl in the
pipelined manner described by Kreuter et al. in
[25]. Each circuit produces two garbled output

strings, (gfa;, gfbi).

. Checking the evaluation circuits: Once these output

have been computed, the cloud hashes each evalua-
tion circuit as H; (GC;) = HC| for i € Evl and sends
these hash values to Alice. Alice checks that for ev-
ery i, HC; = HC]. If any of these checks do not pass,
Alice aborts the protocol.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

43

Phase 5: Output check and delivery

1. Committing the outputs:The cloud then generates
random commitment keys ka;, kb; and commits the
output values to their respective parties according to
the commitment scheme defined by Kiraz [23], gen-
erating CAj,i = commit (kaj,i,gfa_,‘,,‘) and CBj’i =
commit(kbj;,gfb;;) for j=1.nandi=1...e. The
cloud then sends all CA to Alice and CB to Bob.

. Selection of majority output: Bob opens the com-
mitments CO;; for j =1...n and i = 1...e for both
Alice and the Cloud. These commitments contain
the mappings from the hash of each garbled output
wire Ha (wp j ;) to real output values b ; for j=1...n
and i = 1...e. The cloud selects a circuit index maj
such that the output of that circuit matches the ma-
jority of outputs for both Alice and Bob. That is,
Sfamaj = fa;and fby,; = fb; for i in a set of indices
IND that is of size |IND| > §

. Proof of output consistency: Using the OR-proofs
as described by Kiraz [23], the cloud proves to
Bob that CB contains valid garbled output bit val-
ues based on the de-committed output values from
the previous step. The cloud then performs the same
proof to Alice for her committed values CA. Note
that these proofs guarantee the output was generated
by one of the circuits, but the value maj remains
hidden from both Alice and Bob.

. Output release: The cloud then decommits g fa,,j
to Alice and gfb;,; to Bob. Given these garbled
outputs and the bit values corresponding to the hash
of each output wire, Alice recovers her output string
fa, and Bob recovers his output string fb.

. Output decryption: Alice recovers her output
fala,b) = fa&® a,, while Bob recovers fg(a,b) =
fobDb,.

5 Security Guarantees

In this section, we provide a summary of the security
mechanisms used in our protocol and an informal se-
curity discussion of our new outsourced oblivious trans-
fer primitive. Due to space limitations, we provide fur-
ther discussion and proofs of security in our technical
report [6].

Recall from Section 3 that there are generally four se-
curity concerns when evaluating garbled circuits in the
malicious setting. To solve the problem of malicious cir-
cuit generation, we apply the random seed check vari-
ety of cut-&-choose developed by Goyal et al. [11]. To

8
47

solve the problem of selective failure attacks, we em-

ploy the input encoding technique developed by Lin-

dell and Pinkas [29]. To prevent an adversary from us-
ing inconsistent inputs across evaluation circuits, we em-
ploy the witness-indistinguishable proofs from shelat and

Shen [41]. Finally, to ensure the majority output value

is selected and not tampered with, we use the XOR-

and-prove technique from Kiraz [23] as implemented by

Kreuter et al. [25]. In combination with the standard

semi-honest security guarantees of Yao garbled circuits,

these security extensions secure our scheme in the mali-
cious security model.

Outsourced Oblivious Transfer: Our outsourced obliv-

ious transfer is an extension of a technique developed by

Naor et al. [37] that allows the chooser to select entries

that are forwarded to a third party rather than returned

to the chooser. By combining their concept of a proxy
oblivious transfer with the semi-honest OT extension by

Ishai et al. [18], our outsourced oblivious transfer pro-

vides a secure OT in the malicious model. We achieve

this result for four reasons:

1. First, since Alice never sees the outputs of the OT
protocol, she cannot learn anything about the gar-
bled values held by the generator. This saves us
from having to implement Ishai’s extension to pre-
vent the chooser from behaving maliciously.

Since the cloud sees only random garbled values

and Alice’s input blinded by a one-time pad, the

cloud learns nothing about Alice’s true inputs.

. Since Bob’s view of the protocol is almost identical
to his view in Ishai’s standard extension, the same
security guarantees hold (i.e., security against a ma-
licious sender).

. Finally, if Alice does behave maliciously and uses
inconsistent inputs to the primitive OT phase, there
is a negligible probability that those values will hash
to the correct one-time pad keys for recovering ei-
ther commitment key, which will prevent the cloud
from de-committing the garbled input values.

It is important to note that this particular application of

the OOT allows for this efficiency gain since the evalua-

tion of the garbled circuit will fail if Alice behaves ma-
liciously. By applying the maliciously secure extension
by Ishai et al. [18], this primitive could be applied gen-
erally as an oblivious transfer primitive that is secure in
the malicious model. Further discussion and analysis of
this general application is outside the scope of this work.

We provide the following security theorem here,
which gives security guarantees identical to the Salus
protocol by Kamara et al. [21]. However, we use dif-
ferent constructions and require a completely different
proof, which is available in our technical report [6].

Theorem 1. The outsourced two-party SFE protocol se-
curely computes a function f(a,b) in the following two

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

44

corruption scenarios: (1)The cloud is malicious and
non-cooperative with respect to the rest of the parties,
while all other parties are semi-honest, (2)All but one
party is malicious, while the cloud is semi-honest.

6 Performance Analysis

We now characterize how garbled circuits perform in the
constrained-mobile environment with and without out-
sourcing.! Two of the most important constraints for
mobile devices are computation and bandwidth, and we
show that order of magnitude improvements for both fac-
tors are possible with outsourced evaluation. We begin
by describing our implementation framework and testbed
before discussing results in detail.

6.1 Framework and Testbed

Our framework is based on the system designed by
Kreuter et al. [25], hereafter referred to as KSS for
brevity. We implemented the outsourced protocol and
performed modifications to allow for the use of the
mobile device in the computation. Notably, KSS uses
MPI [33] for communication between the multiple nodes
of the multi-core machines relied on for circuit evalu-
ation. Our solution replaces MPI calls on the mobile
device with sockets that communicate directly with the
Generator and Proxy. To provide a consistent compari-
son, we revised the KSS codebase to allow for direct eval-
uation between the mobile device (the Evaluator) and the
cloud-based Generator.?

Our deployment platform consists of two Dell R610
servers, each containing dual 6-core Xeon processors
with 32 GB of RAM and 300 GB 10K RPM hard drives,
running the Linux 3.4 kernel and connected as a VLAN
on an internal 1 Gbps switch. These machines perform
the roles of the Generator and Proxy, respectively, as de-
scribed in Section 4.1. The mobile device acts as the
Evaluator. We use a Samsung Galaxy Nexus phone with
a 1.2 GHz dual-core ARM Cortex-A9 processor and 1
GB of RAM, running the Android 4.0 “Ice Cream Sand-
wich” operating system. We connect an Apple Airport
Express wireless access point to the switch attaching the
servers, The Galaxy Nexus communicates to the Airport
Express over an 802.11n 54Mbps WiFi connection in
an isolated environment to minimize co-channel interfer-
ence. All tests are run 10 times with error bars on figures
representing 95% confidence intervals.

'We contacted the authors of the Salus protocol [21] in an attempt
to acquire their framework to compare the performance of their scheme
with ours, but they were unable to release their code.

2The full technical report [6] describes a comprehensive list of mod-
ifications and practical improvements made to KSS, including fixes that
were added back into the codebase of KSS by the authors. We thank
those authors for their assistance.

9

1e+06

T T
Outsourced E===
Non-Outsourced Ezzzzza

100000

10000 |

Time (ms)

oo

—
otolel

1000

[
[:’0
is¢
K

%
X

_
5%

0% %%
5

%
b4

%%
!
<)

%

—
20

XXX

v
XXX
%
%%
R

—
20

XX
Se2es
~
R
—
R

5
X5
X

"%
2%

R

—
R

=
et
X

ED16
Program Size

m

D2

m

D4 ED32 ED64 ED128

Figure 3: Execution time for the Edit Distance program
of varying input sizes, with 2 circuits evaluated.

We measured both the total execution time of the pro-
grams and microbenchmarks for each program. All re-
sults are from the phone’s standpoint. We do not mea-
sure the time the programs take to compile as we used
the standard compiler from Kreuter et al. For our mi-
crobenchmarks, the circuit garbling and evaluation pair
is referred to as the ‘evaluation’.

6.2 Execution Time

Our tests evaluated the following problems:
Millionaires: This problem models the comparison of
two parties comparing their net worth to determine who
has more money without disclosing the actual values. We
perform the test on input values ranging in size from 4 to
8192 bits.

Edit (Levenshtein) Distance: This is a string compari-
son algorithm that compares the number of modifications
required to covert one string into another. We performed
the comparison based on the circuit generated by Jha et
al. [19] for strings sized between 4 and 128 bytes.

Set Intersection: This problem matches elements be-
tween the private sets of two parties without learning
anything beyond the intersecting elements. We base our
implementation on the SCS-WN protocol proposed by
Huang et al. [14], and evaluate for sets of size 2 to 128.
AES: We compute AES with a 128-bit key length, based
on a circuit evaluated by Kreuter et al. [25].

Figure 3 shows the result of the edit distance compu-
tation for input sizes of 2 to 128 with two circuits evalu-
ated. This comparison represents worst-case operation
due to the cost of setup for a small number of small
circuits—with input size 2, the circuit is only 122 gates in
size. For larger input sizes, however, outsourced compu-
tation becomes significantly faster. Note that the graph
is logarithmic such that by the time strings of size 32
are evaluated, the outsourced execution is over 6 times

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

45

1e+06

T T
Evaluation E==3
Checks &2z
OoT ——

100000 |

10000 |

Time (ms)

1000
ouTNON ouT

i £

OUT \on

100

L1 E— b1
ED2 ED4 ED8 ED16 ED32 ED64 ED128

Progam

Figure 4: Execution time for significant stages of garbled
circuit computation for outsourced and non-outsourced
evaluation. The Edit Distance program is evaluated with
variable input sizes for the two-circuit case.

faster than non-outsourced execution, while for strings of
size 128 (comprising over 3.4 million gates), outsourced
computation is over 16 times faster.

The reason for this becomes apparent when we exam-
ine Figure 4. There are three primary operations that
occur during the SFE transaction: the oblivious transfer
(OT) of participant inputs, the circuit commit (including
the circuit consistency check), and the circuit generation
and evaluation pair. As shown in the figure, the OT phase
takes 292 ms for input size 2, but takes 467 ms for input
size 128. By contrast, in the non-outsourced execution,
the OT phase takes 307 ms for input size 2, but increases
to 1860 ms for input size 128. The overwhelming fac-
tor, however, is the circuit evaluation phase. It increases
from 34 ms (input size 2) to 7320 ms (input size 128)
for the outsourced evaluation, a 215 factor increase. For
non-outsourced execution however, this phase increases
from 108 ms (input size 2) to 98800 ms (input size 128),
a factor of 914 increase.

6.3 Evaluating Multiple Circuits

The security parameter for the garbled circuit check is
2-0-32k 1251, where k is the number of generated cir-
cuits. To ensure a sufficiently low probability (278) of
evaluating a corrupt circuit, 256 circuits must be eval-
uated. However, there are increasing execution costs
as increasing numbers of circuits are generated. Fig-
ure 5 shows the execution time of the Edit Distance
problem of size 32 with between 2 and 256 circuits be-
ing evaluated. In the outsourced scheme, costs rise as
the number of circuits evaluated increases. Linear re-
gression analysis shows we can model execution time
T as a function of the number of evaluated circuits k
with the equation T = 243.2k + 334.6 ms, with a coef-

10

1e+06

T
Outsourced EX=A
Non-Outsourced E223

100000

10000

Time (ms)

%%
ototete)

1000

%%
plete!

2%
oSt

%%
otet

100

Circuits Evaluated

Figure 5: Execution time for the Edit Distance problem
of size 32, with between 2 and 256 circuits evaluated. In
the non-outsourced evaluation scheme, the mobile phone
runs out of memory evaluating 256 circuits.

ficient of determination R? of 0.9971. However, note
that in the non-outsourced scheme, execution time in-
creases over 10 times as quickly compared to outsourced
evaluation. Regression analysis shows execution time
T = 5435.7k + 961 ms, with R? = 0.9998. Because in
this latter case, the mobile device needs to perform all
computation locally as well as transmit all circuit data
to the remote parties, these costs increase rapidly. Fig-
ure 6 provides more detail about each phase of execution.
Note that the OT costs are similar between outsourced
and non-outsourced execution for this circuit size, but
that the costs of consistency checks and evaluation vastly
increase execution time for non-outsourced execution.

Note as well that in the non-outsourced scheme, there
are no reported values for 256 circuits, as the Galaxy
Nexus phone ran out of memory before the execution
completed. We observe that a single process on the
phone is capable of allocating 512 MB of RAM before
the phone would report an out of memory error, provid-
ing insight into how much intermediate state is required
for non-outsourced evaluation. Thus, to handle circuits
of any meaningful size with enough check circuits for
a strong security parameter, the only way to be able to
perform these operations is through outsourcing.

Table 1 presents the execution time of a representative
subset of circuits that we evaluated. It spans circuits from
small to large input size, and from 8 circuits evaluated to
the 256 circuits required for a 278 security parameter.
Note that in many cases it is impossible to evaluate the
non-outsourced computation because of the mobile de-
vice’s inability to store sufficient amounts of state. Note
as well that particularly with complex circuits such as set
intersection, even when the non-outsourced evaluation is
capable of returning an answer, it can require orders of

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

46

[| 8 Circuits 32 Circuits | 128 Circuits 256 Circuits |
[Program | Outsourced | KSS | Outsourced | KSS | Outsourced | KSS | Outsourced | KSS |
Millionaires 128 2150.0 + 1% 6130.0 + 0.6% 8210.0 + 3% 23080.0 + 0.6% 38100.0 + 7% 91020.0 + 0.8% 75700.0 + 1% 180800.0 + 0.5%
Millionaires 1024 4670.0 + 6% 46290.0 + 0.4% 17800.0 + 1% 180500.0 + 0.3% 75290.0 + 1% 744500.0 + 0.7% 151000.0 + 1% 1507000.0 + 0.5%
Millionaires 8192 17280.0 + 0.9% 368800.0 + 0.4% 76980.0 + 0.5% 1519000.0 + 0.4% 351300.0 + 0.7% - 880000.0 + 20% -
Edit Distance 2 1268.0 + 0.9% 794.0 + 1% 4060.0 = 1% 2125.0 +0.7% 19200.0 + 2% 7476.0 + 0.5% 42840.0 + 0.4% 14600.0 = 0.8%
Edit Distance 32 2860.0 + 3% 44610.0 +0.7% 7470.0 =+ 5% 175600.0 + 0.5% 30500.0 + 3% 699000.0 + 2% 63600.0 + 1% -
Edit Distance 128 12800.0 + 2% 702400.0 £ 0.5% 30300.0 = 2% 2805000.0 + 0.8% 106200.0 + 0.6% - 213400.0 £ 0.3% -
Set Intersection 2 1598.0 = 0.8% 1856.0 + 0.9% 5720.0 £ 0.7% 6335.0 £ 0.4% 26100.0 + 2% 24420.0 + 0.6% 56350.0 = 0.8% 48330.0 = 0.6%
Set Intersection 32 5200.0 + 10% 96560.0 + 0.6% 13800.0 = 1% 400800.0 & 0.6% 59400.0 + 1% - 125300.0 £ 0.9% -
Set Intersection 128 24300.0 = 2% 1398000.0 + 0.4% 55400.0 = 3% 5712000.0 + 0.4% 1998000.0 + 0.5% - 395200.0 £ 0.8% -
AES-128 2450.0 = 2% 15040.0 + 0.7% 9090.0 = 5% 58920.0 + 0.5% 39000.0 + 2% 276200.0 + 0.6% 81900.0 = 1% 577900.0 = 0.5%

Table 1: Execution time (in ms) of outsourced vs non-outsourced (KSS) evaluation for a subset of circuits. Results
with a dash indicate evaluation that the phone was incapable of performing.

1e+06

T
Evaluation E===a
Checks &zzz28
oT——

NON

100000 |

10000 ou

Time (ms)

1000

100

16 32
Circuits Evaluated

64 128 256

Figure 6: Microbenchmarks of execution time for Edit
Distance with input size 32, evaluating from 2 to 256
circuits. Note that the y-axis is log-scale; consequently,
the vast majority of execution time is in the check and
evaluation phases for non-outsourced evaluation.

magnitude more time than with outsourced evaluation.
For example, evaluating the set intersection problem with
128 inputs over 32 circuits requires just over 55 seconds
for outsourced evaluation but over an hour and a half
with the non-outsourced KSS execution scheme. Out-
sourced evaluation represents a time savings of 98.92%.
For space concerns, we have omitted certain values; full
results can be found in our technical report [6].

Multicore Circuit Evaluation We briefly note the ef-
fects of multicore servers for circuit evaluation. The
servers in our evaluation each contain dual 6-core CPUs,
providing 12 total cores of computation. The compu-
tation process is largely CPU-bound: while circuits on
the servers are being evaluated, each core was reporting
approximately 100% utilization. This is evidenced by
regression analysis when evaluating between 2 and 12
circuit copies; we find that execution time 7 = 162.6k +
1614.6 ms, where k is the number of circuits evaluated,
with a coefficient of determination R*> of 0.9903. As
the number of circuits to be evaluated increases beyond
the number of available cores, the incremental costs of

11

1e+09

T T
Outsourced EX=3
Non-Outsourced EZZZ3

1e+08 |

1e+07 |

1e+06 |

100000

Bandwidth (bytes)

10000

X
X

———
R

1000 |

%
K

%%
X

%
o

[
X2

100

m

Program Size

Figure 7: Bandwidth measurements from the phone to
remote parties for the Edit Distance problem with vary-
ing input sizes, executing two circuits.

adding new circuits becomes higher; in our observation
of execution time for 12 to 256 circuits, our regression
analysis provided the equation T = 247.4k —410.6 ms,
with R? = 0.998. This demonstrates that evaluation of
large numbers of circuits is optimal when every evalu-
ated circuit can be provided with a dedicated core.

The results above show that as many-way servers are
deployed in the cloud, it becomes easier to provide op-
timal efficiency computing outsourced circuits. A 256-
core machine would be able to evaluate 256 circuits in
parallel to provide the accepted standard 278 security
parameter. Depending on the computation performed,
there can be a trade-off between a slightly weaker se-
curity parameter and maintaining optimal evaluation on
servers with lower degrees of parallelism. In our testbed,
optimal evaluation with 12 cores provides a security pa-
rameter of 27384 Clearly more cores would provide
stronger security while keeping execution times propor-
tional to our results. A reasonable trade-off might be 32
circuits, as 32-core servers are readily available. Evalu-
ating 32 circuits provides a security parameter of 210-2,
equivalent to the adversary having less than a 5% chance
of causing the evaluator to compute over a majority of
corrupt circuits. Stronger security guarantees on less par-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

47

32 Circuits Factor
Program Outsourced [KSS Improvement

Millionaires 128 336749 1445369 4.29X
Millionaires 1024 2280333 11492665 5.04X
Millionaires 8192 17794637 91871033 5.16X
Edit Distance 2 56165 117245 2.09X

Edit Distance 32 134257 41889641 312.01X

Edit Distance 128 350721 682955633 1947.29X
Set Intersection 2 117798 519670 441X
Set Intersection 32 1173844 84841300 72.28X

Set Intersection 128 4490932 1316437588 293.13X
AES-128 367364 9964576 27.12X

Table 2: Total Bandwidth (Bytes) transmitted to and
from the phone during execution.

allel machines can be achieved at the cost of increasing
execution time, as individual cores will not be dedicated
to circuit evaluation. However, if a 256-core system is
available, it will provide optimal results for achieving a
2780 security parameter.

6.4 Bandwidth

For a mobile device, the costs of transmitting data are in-
trinsically linked to power consumption, as excess data
transmission and reception reduces battery life. Band-
width is thus a critical resource constraint. In addition,
because of potentially uncertain communication chan-
nels, transmitting an excess of information can be a rate-
limiting factor for circuit evaluation. Figure 7 shows
the bandwidth measurement between the phone and re-
mote parties for the edit distance problem with 2 circuits.
When we compared execution time for this problem in
Figure 3, we found that trivially small circuits could ex-
ecute in less time without outsourcing. Note, however,
that there are no cases where the non-outsourced scheme
consumes less bandwidth than with outsourcing.

This is a result of the significant improvements gar-
nered by using our outsourced oblivious transfer (OOT)
construction described in Section 4. Recall that with the
OOT protocol, the mobile device sends inputs for eval-
uation to the generator; however, after this occurs, the
majority of computation until the final output verifica-
tion from the cloud occurs between the generator and
the cloud, with the mobile device only performing mi-
nor consistency checks. Figure 7 shows that the amount
of data transferred increases only nominally compared
to the non-outsourced protocol. Apart from the ini-
tial set of inputs transmitted to the generator, data de-
mands are largely constant. This is further reflected
in Table 2, which shows the vast bandwidth savings
over the 32-circuit evaluation of our representative pro-
grams. In particular, for large, complex circuits, the sav-
ings are vast: outsourced AES-128 requires 96.3% less
bandwidth, while set intersection of size 128 requires
99.7% less bandwidth than in the non-outsourced evalua-

12

tion. Remarkably, the edit distance 128 problem requires
99.95%, over 1900 times less bandwidth, for outsourced
execution. The full table is in our technical report [6].

The takeaway from our evaluation is simple: outsourc-
ing the computation allows for faster and larger circuit
evaluation than previously possible on a mobile device.
Specifically, outsourcing allows users to evaluate garbled
circuits with adequate malicious model security (256 cir-
cuits), which was previously not possible on mobile de-
vices. In addition, outsourcing is by far the most efficient
option if the bandwidth use of the mobile devices is a
principle concern.

7 Evaluating Large Circuits

Beyond the standard benchmarks for comparing garbled
circuit execution schemes, we aimed to provide com-
pelling applications that exploit the mobile platform with
large circuits that would be used in real-world scenar-
ios. We discuss public-key cryptography and the Dijk-
stra shortest path algorithm, then describe how the latter
can be used to implement a privacy-preserving naviga-
tion application for mobile phones.

7.1 Large Circuit Benchmarks

Table 3 shows the execution time required for a blinded
RSA circuit of input size 128. For these tests we used
a more powerful server with 64 cores and 1 Terabyte
of memory. Our testbed is able to give dedicated CPUs
when running 32 circuits in parallel. Each circuit would
have 1 core for the generation and 1 core for the evalu-
ation. As described in Section 6, larger testbeds capable
of executing 128 or 256 cores in parallel would be able to
provide similar results for executing the 256 circuits nec-
essary for a 2789 security parameter as they could evalu-
ate the added circuits in parallel. The main difference in
execution time would come from the multiple OT's from
the mobile device to the outsourced proxy. The RSA cir-
cuit has been previously evaluated with KSS, but never
from the standpoint of a mobile device.

We only report the outsourced execution results, as the
circuits are far too large to evaluate directly on the phone.
As with the larger circuits described in Section 6, the
phone runs out of memory from merely trying to store
a representation of the circuit. Prior to optimization, the
blinded RSA circuit is 192,537,834 gates and afterward,
comprises 116,083,727 gates, or 774 MB in size.

The implementation of Dijkstra’s shortest-path algo-
rithm results in very large circuits. As shown in Table 3,
the pre-optimized size of the shortest path circuit for
20 vertices is 20,288,444 gates and after optimization
is 1,653,542 gates. The 100-node graph is even larger,
with 168,422,382 gates post optimization, 1124 MB in
size. This final example is among the largest evaluated

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

48

\ | 32 Circuits Time (ms) | 64 Circuits (ms) | 128 Circuits (ms) | Optimized Gates | Unoptimized Gates | Size (MB) |

RSA128 505000.0 + 2% 734000.0 £ 4% | 1420000.0 £ 1% 116,083,727 192,537,834 774
Dijkstra20 25800.0 + 2% 49400.0 £ 1% 106000.0 + 1% 1,653,542 20,288,444 11
Dijkstra50 135000.0 + 1% 197000.0 + 3% 389000.0 + 2% 22,109,732 301,846,263 147
Dijkstra100 892000.0 + 2% | 1300000.0 + 2% | 2560000.0 + 1% 168,422,382 2,376,377,302 1124

Table 3: Execution time for evaluating a 128-bit blinded RSA circuit and Dijkstra shortest path solvers over
graphs with 20, 50, and 100 vertices. All numbers are for outsourced evaluation, as the circuits are too large to be

computed without outsourcing to a proxy.

(b) 50 identified intersections.

(c) 100 identified intersections.

Figure 8: Map of potential presidential motorcade routes through Washington, DC. As the circuit size increases, a

larger area can berepresented at a finer granularity.

garbled circuits to date. While it may be possible for
existing protocols to evaluate circuits of similar size, it is
significant that we are evaluating comparably massive
circuits from a resource-constrained mobile device.

7.2 Privacy-PreservingNavigation

Mapping and navigation are some of the most popular
uses of a smartphone. Consider how directions may be
given using a mobile device and an application such as
Google Maps, without revealing the user’s current
loca-tion, their ultimate destination, or the route that
they are following. That is, the navigation server
should remain oblivious of these details to ensure their
mutual privacy and to prevent giving away potentially
sensitivedetails if the phone is compromised.
Specifically, consider plan-ning of the motorcade route
for the recent Presidential inauguration. In this case, the
route is generally known in advance but is potentially
subject to change if sudden threats emerge. A field
agent along theroute wants to re-ceivedirections
without providing the navigation service any additional
details, and without sensitive information about the
route loaded to the phone. Moreover, because the
threats may be classified, the navigation service does
not want the holder of the phone to be given this infor-
mation directly. In our example, the user of the phone
is trying to determine the shortest path.

To model this scenario, we overlay a graph topology
on a map of downtown Washington D.C., encoding in-
tersections as vertices. Edge weights are a function of
their distance and heuristics such aspotential risks
along a graph edge. Figure 8 shows graphs generated
based on vertices of 20, 50, and 100 nodes,
respectively. Note that thel00-nodegraph (Figure8c)
encompasses alarger area and provides finer-grained
resolution of individual

intersections than the 20-node graph (Figure 8a).

Thereisatrade-off between detail and execution
time, however; as shown in Table 3, a 20-vertex
graph can be evaluated in under 26 seconds, while a
100-vertex graph requires almost 15 minutes with 32
circuits in our 64-core server testbed. The 64 circuit
evaluation requires more time: almost 50 seconds for
the 20-vertex graph, and almost 22 minutes for a 100-
vertex graph. We an-ticipate that based on the role a
particular agent might have on aroute, they will beable
to generate aroute that covers their particular
geographical jurisdiction and thus havean
appropriately sized route, with only certain users
requiring the highest-resolution output. Additionally,
as described in Section 6.3, serverswith moreparallel
cores can simultaneously evaluate more circuits,
giving faster results for the 64 circuit evaluation.

Figure 9 reflects two routes. The first, overlaid with a
dashed blue line, is the shortest path under optimal con-
ditions that is output by our directions service, based on
origin and destination points close to the historical start
and end points of the past six presidential inaugural
mo-torcades. Now consider that incidents have
happened along the route, shown in the figure as a car
icon in a hazard zone inside a red circle. The agent
recalculates the optimal route, which has been updated
by the navi-gation service to assign severe penalties to
those corre-sponding graph edges. The updated route
returned by the navigation service is shown in the
figure as a path with a dotted purple line. In the 50-
vertex graph in Fig-ure 8, the updated directions would
be available in just over 135 seconds for 32-circuit
evaluation, and 196 and ahalf seconds for 64-circuit
evaluation.

APPROVED FOR PUBLIC RELEA%E; DISTRIBUTION UNLIMITED

49

KStNw K STNW P —— i; St NV
M) Farragut _ | @s auny, McPherson] i h\"ﬂ\
West | ' 5q Metro udald ‘_\eﬁ,“w ..'--.r‘-,'.'
O Modified Route 4
= ®.=Q=0e
2 START =
= POINT Mo e @ = GSthw
f'_ﬁ:) E
< I FStNa S = f
Tl ke = G
N) ¢
Washington Han, "May
Federal —
= Triangle Metro
2
4
S
= Constitution Ave NW

Gallery Place
Chinatown Metro

WTVErmon
" Triangle

Square NGt Capiol x s e 8 R aE

Street e

K St NW

St Aloysius
n A B
Church "™

AN 1S g

H St NW

B Washington
Union Station

fence Ave SW Independence Ave SE

Figure 9: Motorcade route with hazards along the route. The dashed blue line represents the optimal route, while
the dotted violet line represents the modified route that takes hazards into account.

8 Conclusion

While garbled circuits offer a powerful tool for secure
function evaluation, they typically assume participants
with massive computing resources. Our work solves this
problem by presenting a protocol for outsourcing garbled
circuit evaluation from a resource-constrained mobile
device to a cloud provider in the malicious setting. By
extending existing garbled circuit evaluation techniques,
our protocol significantly reduces both com-putational
and network overhead on the mobile device while still
maintaining the necessary checks for mali-cious or lazy
behavior from all parties. Our outsourced oblivious
transfer construction significantly reduces the
communication load on the mobile device and can easily
accommodate more efficient OT primitivesasthey are
developed. The performance evaluation of our protocol
shows dramatic decreases in required computation and
bandwidth. For the edit distance problem of size 128 with
32 circuits, computation is reduced by 98.92% and
bandwidth overhead reduced by 99.95% compared to
non-outsourced execution. These savings are illustrated in
our privacy-preserving navigation application, which
allows a mobile device to efficiently evaluate a massive
garbled circuit securely through outsourcing. These
results demonstrate that the recent improvements in
garbled circuit efficiency can be applied in practical
privacy-preserving mobile applications on even the most
resource-constrained devices.

14

Acknowledgments This material is based on research
sponsored by DARPA under agreement number FA8750-
11-2-0211. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of DARPA or the U.S. Government.
We would like to thank Benjamin Kreuter, abhi shelat,
and Chih-hao Shen for working with us on their garbled
circuit compiler and evaluation framework; ChrisPeikert
for providing helpful feedback on our proofs of security;
Thomas DuBuisson and Galois for their assistance in the
performance evaluation; and Ian Goldberg for his guid-
ance during the shepherding process.

References

[1] M. Bellare and S. Micali. Non-interactive obliv-
ious transfer and applications. In Advances in
Cryptology—CRYPTO, 1990.

M. Ben-Or, S. Goldwasser, and A. Wigder-
son. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proceed-
ings of the annual ACM symposium on Theory of
computing, 1988.

(2]

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

50

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

[13]

J. Brickell and V. Shmatikov. Privacy-preserving
graph algorithms in the semi-honest model. In Pro-
ceedings of the international conference on Theory
and Application of Cryptology and Information Se-
curity, 2005.

R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai.
Universally composable two-party and multi-party
secure computation. In Proceedings of the annual
ACM symposium on Theory of computing, 2002.

H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor.
For your phone only: custom protocols for effi-
cient secure function evaluation on mobile devices.
Journal of Security and Communication Networks
(SCN), To appear 2013.

H. Carter, B. Mood, P. Traynor, and K. Butler. Se-
cure outsourced garbled circuit evaluation for mo-
bile devices. Technical Report GT-CS-12-09, Col-
lege of Computing, Georgia Institute of Technol-
ogy, 2012.

D. Chaum, C. Crépeau, and I. Damgard. Multiparty
unconditionally secure protocols. In Proceedings of
the annual ACM symposium on Theory of comput-
ing, 1988.

S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou.
On the security of the "free-xor” technique. In Pro-
ceedings of the international conference on Theory
of Cryptography, 2012.

I. Damgérd and Y. Ishai. Scalable secure multi-
party computation. In Proceedings of the annual
international conference on Advances in Cryptol-
0gy, 2006.

I. Damgérd and J. B. Nielsen. Scalable and un-
conditionally secure multiparty computation. In
Proceedings of the annual international cryptology
conference on Advances in cryptology, 2007.

V. Goyal, P. Mohassel, and A. Smith. Efficient two
party and multi party computation against covert
adversaries. In Proceedings of the theory and ap-
plications of cryptographic techniques annual in-
ternational conference on Advances in cryptology,
2008.

M. Green, S. Hohenberger, and B. Waters. Out-
sourcing the decryption of abe ciphertexts. In
Proceedings of the USENIX Security Symposium,
2011.

Y. Huang, P. Chapman, and D. Evans. Privacy-
Preserving Applications on Smartphones. In Pro-
ceedings of the USENIX Workshop on Hot Topics
in Security, 2011.

15

[14]

[19]

[22]

[24]

[25]

Y. Huang, D. Evans, and J. Katz. Private set in-
tersection: Are garbled circuits better than custom
protocols? In NDSS ’12: Proceedings of the 19th
ISOC Symposium on Network and Distributed Sys-
tems Security, San Diego, CA, USA, Feb. 2012.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled cir-
cuits. In Proceedings of the USENIX Security Sym-
posium, 2011.

Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-
tocols: Strengthening semi-honest protocols with
dual execution. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2012.

A. Tliev and S. W. Smith. Small, stupid, and scal-
able: Secure computing with faerieplay. In The
ACM Workshop on Scalable Trusted Computing,
2010.

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Ex-
tending oblivious transfers efficiently. In Proceed-

ings of the Annual International Cryptology Con-
ference, 2003.

S. Jha, L. Kruger, and V. Shmatikov. Towards prac-
tical privacy for genomic computation. In Proceed-
ings of the IEEE Symposium on Security and Pri-
vacy, 2008.

S. Kamara, P. Mohassel, and M. Raykova. Out-
sourcing multi-party computation. Cryptology
ePrint Archive, Report 2011/272, 2011. http:
//eprint.iacr.org/.

S. Kamara, P. Mohassel, and B. Riva. Salus: A sys-
tem for server-aided secure function evaluation. In
Proceedings of the ACM conference on Computer
and communications security (CCS), 2012.

M. S. Kiraz. Secure and Fair Two-Party Compu-
tation. PhD thesis, Technische Universiteit Eind-
hoven, 2008.

M. S. Kiraz and B. Schoenmakers. A protocol is-
sue for the malicious case of yaos garbled circuit
construction. In Proceedings of Symposium on In-
formation Theory in the Benelux, 2006.

V. Kolesnikov and T. Schneider. Improved gar-
bled circuit: Free xor gates and applications. In
Proceedings of the international colloquium on
Automata, Languages and Programming, Part II,
2008.

B. Kreuter, a. shelat, and C. Shen. Billion-gate se-
cure computation with malicious adversaries. In

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

51

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

Proceedings of the USENIX Security Symposium,
2012.

L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Se-
cure function evaluation with ordered binary deci-
sion diagrams. In Proceedings of the ACM con-

ference on Computer and communications security

(CCS), 2006.

Y. Lindell. Lower bounds and impossibility results
for concurrent self composition. Journal of Cryp-
tology, 21(2):200-249, 2008.

Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Proceedings of the Annual International
Cryptology Conference on Advances in Cryptology,
2000.

Y. Lindell and B. Pinkas. An efficient protocol
for secure two-party computation in the presence of
malicious adversaries. In Proceedings of the annual
international conference on Advances in Cryptol-
ogy, 2007.

Y. Lindell and B. Pinkas. Secure two-party com-
putation via cut-and-choose oblivious transfer. In
Proceedings of the conference on Theory of cryp-
tography, 2011.

L. Malka. Vmcrypt: modular software architecture
for scalable secure computation. In Proceedings of
the 18th ACM conference on Computer and com-
munications security, 2011.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay—a secure two-party computation system.
In Proceedings of the USENIX Security Sympo-
sium, 2004.

Message Passing Interface Forum. The
message passing interface (mpi) standard.
http://www.mcs.anl.gov/research/
projects/mpi/, 2009.

P. Mohassel and M. Franklin. Efficiency tradeoffs
for malicious two-party computation. In Proceed-
ings of the Public Key Cryptography conference,
2006.

B. Mood, L. Letaw, and K. Butler. Memory-
efficient garbled circuit generation for mobile de-
vices. In Proceedings of the IFCA International
Conference on Financial Cryptography and Data
Security (FC), 2012.

M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In Proceedings of the annual ACM-SIAM
symposium on Discrete algorithms, 2001.

16

[37]

[41]

M. Naor, B. Pinkas, and R. Sumner. Privacy pre-
serving auctions and mechanism design. In Pro-

ceedings of the ACM conference on Electronic com-
merce, 1999.

N. Nipane, I. Dacosta, and P. Traynor. “Mix-In-
Place” anonymous networking using secure func-
tion evaluation. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC),
2011.

C. Peikert, V. Vaikuntanathan, and B. Waters. A
framework for efficient and composable oblivious

transfer. In Advances in Cryptology (CRYPTO),
2008.
W. Rash. Dropbox password breach high-

lights cloud security weaknesses.
//www.eweek.com/c/a/Security/
Dropbox—-Password-Breach-Highlights
—Cloud-Security-Weaknesses-266215/,
2012.

http:

a. shelat and C.-H. Shen. Two-output secure com-
putation with malicious adversaries. In Proceed-
ings of the Annual international conference on The-
ory and applications of cryptographic techniques,
2011.

K. Thomas. Microsoft cloud data breach heralds
things to come. http://www.pcworld.com/
article/214775/microsoft_cloud_
data_breach_sign_of_future.html,
2010.

A. C. Yao. Protocols for secure computations. In
Proceedings of the Annual Symposium on Founda-
tions of Computer Science, 1982.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

52

PCF: A Portable Circuit Format For Scalable Two-Party Secure
Computation

Ben Kreuter Benjamin Mood abhi shelat
Computer Science Dept. Computer and Info. Science Dept. Computer Science Dept.
U. Virginia U. Oregon U. Virginia
Kevin Butler
Computer and Info. Science Dept.
U. Oregon
Abstract evaluation, it was only recently that researchers began

A secure computation protocol for a function f(x,y)
must leak no information about inputs x,y during its ex-
ecution; thus it is imperative to compute the function f
in a data-oblivious manner. Traditionally, this has been
accomplished by compiling f into a boolean circuit. Pre-
vious approaches, however, have scaled poorly as the cir-
cuit size increases. We present a new approach to com-
piling such circuits that is substantially more efficient
than prior work. Our approach is based on online cir-
cuit compression and lazy gate generation. We imple-
mented an optimizing compiler for this new representa-
tion of circuits, and evaluated the use of this representa-
tion in two secure computation environments. Our eval-
uation demonstrates the utility of this approach, allow-
ing us to scale secure computation beyond any previous
system while requiring substantially less CPU time and
disk space. In our largest test, we evaluate an RSA-1024
signature function with more than 42 billion gates, that
was generated and optimized using our compiler. With
our techniques, the bottleneck in secure computation lies
with the cryptographic primitives, not the compilation or
storage of circuits.

1 Introduction

Secure function evaluation (SFE) refers to several related
cryptographic constructions for evaluating functions on
unknown inputs. Typically, these constructions require
an oblivious representation of the function being eval-
uated, which ensures that the control flow of the algo-
rithm will not depend on its input; in the two party case,
boolean circuits are most frequently seen. These oblivi-
ous representations are often large, with millions and in
some cases billions of gates even for relatively simple
functions, which has motivated the creation of software
tools for producing such circuits. While there has been
substantial work on the practicality of secure function

1

investigating the practicality of compiling such oblivious
representations from high-level descriptions.

The work on generating boolean circuits for SFE has
largely focused on two approaches. In one approach,
a library for a general purpose programming language
such as Java is created, with functions for emitting cir-
cuits [13,20]. For convenience, these libraries typically
include pre-built gadgets such as adders or multiplex-
ers, which can be used to create more complete func-
tions. The other approach is to write a compiler for a
high level language, which computes and optimizes cir-
cuits based on a high level description of the functional-
ity that may not explicitly state how the circuit should
be organized [18,21]. It has been shown in previous
work that both of these approaches can scale up to cir-
cuits with at least hundreds of millions of gates on mod-
ern computer hardware, and in some cases even billions
of gates [13,18].

The approaches described above were limited in terms
of their practical utility. Library-based approaches like
HEKM [13] or VMCrypt [20] require users to understand
the organization of the circuit description of their func-
tion, and were unable to apply any optimizations across
modules. The Fairplay compiler [21] was unable to scale
to circuits with only millions of gates, which excludes
many interesting functions that have been investigated.
The poor scalability of Fairplay is a result of the com-
piler first unrolling all loops and inlining all subroutines,
storing the results in memory for later compiler stages.
The PALC system [23] was more resource efficient than
Fairplay, but did not attempt to optimize functions, re-
lying instead on precomputed optimizations of specific
subcircuits. The KSS12 [18] system was able to apply
some global optimizations and used less memory than
Fairplay, but also had to unroll all loops and store the
complete circuit description, which caused some func-
tions to require days to compile. Additionally, the lan-
guage used to describe circuits in the KSS12 system was

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

53

brittle and difficult to use; for example, array index val-
ues could not be arbitrary functions of loop indices.

1.1 Ouwur Approach

In this work, we demonstrate a new approach to compil-
ing, optimizing, and storing circuits for SFE systems. At
a high level, our approach is based on representing the
function to be evaluated as a program that computes the
circuit representation of the function, similar to the cir-
cuit library approaches described in previous work. Our
compiler then optimizes this program with the goal of
producing a smaller circuit. We refer to our circuit rep-
resentation as the Portable Circuit Format (PCF).

When the SFE system is run, it uses our interpreter
to load the PCF program and execute it. As the PCF
program runs, it interacts with the SFE system, managing
information about gates internally based on the responses
from the SFE system itself. In our system, the circuit is
ephemeral; it is not necessary to store the entire circuit,
and wires will be deleted from memory once they are no
longer required.

The key insight of our approach is that it is not neces-
sary to unroll loops until the SFE protocol runs. While
previous compilers discard the loop structure of the func-
tion, ours emits it as part of the control structure of the
PCF program. Rather than dealing directly with wires,
our system treats wire IDs as memory addresses; a wire
is “deleted” by overwriting its location in memory. Loop
termination conditions have only one constraint: they
must not depend on any secret wire values. There is no
upper bound on the number of loop iterations, and the
programmer is responsible for ensuring that there are no
infinite loops.

To summarize, we present the following contributions:

e A new compiler that has the same advantages as the
circuit library approach

e A novel, more general algorithm for translating con-
ditional statements into circuits

e A new representation of circuits that is more com-
pact than previous representations which scales to
arbitrary circuit sizes.

e A portable interpreter that can be used with differ-
ent SFE execution systems regardless of the security
model.

Our compiler is a back end that can read the byte-
code emitted by a front end; thus our compiler allows
any language to be used for SFE. Instead of focusing on
global optimizations of boolean functions, our optimiza-
tion strategy is based on using higher-level information

2

from the bytecode itself, which we show to be more ef-
fective and less resource-intensive. We present compar-
isons of our compiler with previous work and show ex-
perimental results using our compiler in two complete
SFE systems, one based on an updated version of the
KSS12 system and one based on HEKM. In some of our
test cases, our compiler produced circuits only 30% as
large as previous compilers starting from the same source
code. With the techniques presented in this work, we
demonstrate that the RSA algorithm with a real-world
key size and real-world security level can be compiled
and run in a garbled circuit protocol using a typical desk-
top computer. To the best of our knowledge, the RSA-
1024 circuit we tested is larger than any previous garbled
circuit experiment, with more than 42 billion gates. We
also present preliminary results of our system running
on smartphones, using a modified version of the HEKM
system.

For testing purposes, we used the LCC compiler [§]
as a front-end to our system. A high-level view of our
system, with the LCC front-end, is given in Figure 1.

The rest of this paper is organized as follows: Sec-
tion 2 is a review of SFE and garbled circuits; Section 3
presents an overview of bytecode languages; Section 4
explains our compiler design and describes our represen-
tation; Section 5 discusses the possibility of using dif-
ferent bytecode and SFE systems; Section 6 details the
experiments we performed to evaluate our system and re-
sults of those experiments; Section 7 details other work
which is related to our own; and Section 8 presents future
lines of research.

2 Secure Function Evaluation

The problem of secure two-party computation is to allow
two mutually distrustful parties to compute a function
of their two inputs without revealing their inputs to the
opposing party (privacy) and with a guarantee that the
output could not have been manipulated (correctness).
Yao was the first to show that such a protocol can be
constructed for any computable function, by using the
garbled circuits technique [30]. In his original formula-
tion, Yao proposed a system that would allow users to de-
scribe the function in a high level language, which would
then be compiled into a circuit to be used in the garbled
circuits protocol. The first complete implementation of
this design was the Fairplay system given by Malkihi et
al. [21].

Oblivious Transfer One of the key building blocks
in Yao’s protocol is oblivious transfer, a cryptographic
primitive first proposed by Rabin [25]. In this primitive,
the “sender” party holds a database of n strings, and the
“receiver” party learns exactly k strings with the guar-
antee that the sender will not learn which & strings were

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

54

Gen. PCF
Interpreter
Evl. PCF
Interpreter

Figure 1: High-level design of our system. We take a C
program and compile it down to the LCC bytecode. Our
compiler then transforms the LCC bytecode to our new
language PCF. Both parties then execute the protocol in
their respective role in the SFE protocol. The interpreter
could be any execution system.

) [o F LCCtoPCF | ; -
C Compiler , Compiler L

Lcc

€ Code Bytecode

PCF File

sent and the receiver will not learn more than &
strings; this is known as a k-out-of-n oblivious transfer.
Given a public key encryption system it is possible to
construct a 1-out-of-2 oblivious transfer protocol [7],
which is the building block used in Yao’sprotocol.
Garbled Circuits The core of Yao’s protocol is the con-
struction of garbled circuits, which involves
encrypting the truth table of each gate in acircuit
description of the function. When theprotocol isrun,
thetruth valuesin the circuit will be represented as
decryption keys for some cipher, with each gate
receiving aunique pair of keysfor itsoutput wire.
Thekeysfor agate’sinput wires arethen used to encrypt
thekeysfor itsoutput wires. Given asin-gle key for each
input wire of the circuit, the party that evaluates the
circuit can decrypt a single key that rep-resents a
hidden truth value for each gate’s output wire, until the
output gates are reached. Since this encryption process
can beapplied to any circuit, and since any com-putable
function has a corresponding circuit family, this
allowstheconstruction of asecureprotocol for any com-
putable function.

The typical garbled circuit protocol has two parties
though it can be expanded to more. Those two parties are
Bob, the generator of the garbled circuit, and Alice, the
evaluator of the garbled circuit. Bob creates the gar-bled
circuit and therefore knowsthedecryption keys, but
doesnot know which specific keysAlice uses. Alice will
receivetheinput keysfrom Bob using an oblivioustrans-
fer protocol, and thus learns only one key for each input
wire; if the keys are generated independent of Bob’s in-
put, Alice will learn only enough to compute the output
of the circuit.

Several variations on the Yao protocol havebeen pub-
lished; a simple description of the garbling and eval-
uation process follows. Let £: {0,1} 40,1} 8/70,1}/
~/0,1} ¥be a computable function, which will receive
input bits from two parties and produce output bits for
each party (not necessarily the same outputs). To garble
the circuit, a block cipher #E,D,Gi will be used.

For each wire in the circuit, Bob computes a pair of
random keys (ko, k1) (G(1"),G(1")), whichrepresent

3

logical 0 and 1 values. For each of Alice’s outputs,
Bob uses these keys to encrypt a 0 and a 1 and sends the
pair of ciphertextsto Alice. Bob
recordsthekeyscorrespond-ing to his own outputs. The
rest of the wires in the cir-cuit areinputs to gates. For each
gate, if the truth table is [vg 0,v0,1,V1,0,v1,1], Bob computes
the following cipher-text:

Ek/yo (Ek,.yo (kvOy()))rEk/yo (EkH (kV()Y 1))
Ek“ (Ek,.yo (kvlj())))Eklyl (Ek,ﬂ (kvu))

where k;-and k. -arethekeysfor theleft and right input
wires (this can be generalized for gates with more than
two inputs). The order of the four ciphertexts is then
randomly permuted and sent to Alice.

Now that Alice has the garbled gates, she can begin
evaluating the circuit. Bob will send Alice his input wire
keys. Aliceand Bob then usean oblivioustransfer to give
Alice the keys for her input wires. For each gate,
Alice will only be able to decrypt one entry, and will
receive one key for the gate’s output, and will continue
to de-crypt truth table entries until the output wires have
been computed. Alice will then send Bob hisoutput keys,
and decrypt her own outputs.

Optimizations Numerousoptimizations to thebasic Yao
protocol have been published [10, 13, 17, 24,27]. Of
these, themost relevant to compiling circuitsisthe“free
XOR trick” given by Kolesnikov and Schneider [17].
This technique allows XOR gates to be evaluated with-
out the need to garble them, which greatly reduces the
amount of datathat must betransferred and theCPU time
required for both thegenerator and theevaluator. Oneba-
sic way to take advantage of this technique is to choose
subcircuits with fewer non-XOR gates; Schneider pub-
lished alist of XOR-optimal circuits for even three-input
functions [27].

Huang et al. noted that there is no need for the eval-
uator to wait for the generator to garble all gates in the
circuit [13]. Once a gate is garbled, it can be sent to the
evaluator, allowing generation and evaluation to oc-cur in
parallel. Thistechnique isvery important for large circuits,
which can quickly become too large to store in RAM
[18]. Our approach unifies this technique with the use of
an optimizing compiler.

3 Bytecode

A common approach to compiler design is to translate a
high level language into a sequence of instructions for a
simple, abstract machine architecture; this is known as
the intermediate representation or bytecode.Bytecode
representations have the advantage of being machine-
independent, thus allowing a compiler front-end to be
used for multiple target architectures. Optimizations per-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

55

ficing the ability to optimize circuits automatically. Two
observations are key to our approach.

Our first observation is that it is possible to free the
memory required for storing wire values without com-
puting a reference count for the wire. In previous work,
each wire in a circuit is assigned a unique global identi-
fier, and gate input wires are specified in terms of these
identifiers (output wires can be identified by the position
of the gate in the gate list). Rather than using global
identifiers, we observe that wire values are ephemeral,
and only require a unique identity until their last use as
the input to a gate.

‘We therefore maintain a table of “active” wire values,
similar to KSS12, but change the gate description. In
this format, wire values are identified by their index in
the table, and gates specify the index of each input wire
and an index for the output wire; in other words, a gate
is a tuple (z,i;,i»,0), where t is a truth table, iy, i, are the
input wire indexes, and o is the output wire index. When
a wire value is no longer needed, its index in the table
can be safely used as an output wire for a gate.

Now, consider the following example of a circuit
described in the above format, which accumulates the
Boolean AND of seven wire values:

(ANDy,1,2,0
(AND>,0,3,0
(AND3,0,4,0
(AND4,0,5,0
(ANDs,0,6,0
(ANDs,0,7,0

R AN Ay 4

Our second observation is that circuits such as this can
be described more compactly using a loop. This builds
on our first observation, which allows wire values to be
overwritten once they are no longer needed. A simple ap-
proach to allowing this would add a conditional branch
operation to the description format. This is more general
than the approach of PAL, which includes loops but al-
lows only simple iteration. Additionally, it is necessary
to allow the loop index to be used to specify the input or
output wire index of the gates; as a general solution, we
add support for indirection, allowing wire values to be
copied.

This representation of Boolean circuits is a bytecode
for a one-bit CPU, where the operations are the 16 pos-
sible two-arity Boolean gates, a conditional branch, and
indirect copy. In our system, we also add instructions
for function calls (which need not be inlined at compile
time) and handling the parties’ inputs/outputs. When the
secure protocol is run, a three-level logic is used for wire
values: 0, 1, or L, where L represents an “unknown”
value that depends on one of the party’s inputs. In the
case of a Yao protocol, the L value is represented by a

garbled wire value. Conditional branches are not allowed
to depend on L values, and indirection operations use
a separate table of pointers that cannot computed from
L values (if such an indirection operation is required, it
must be translated into a large multiplexer, as in previous
work).

We refer to our circuit representation as the Portable
Circuit Format or PCF. In addition to gates and branches,
PCF includes support for copying wires indirectly, a
function call stack, data stacks, and setting function pa-
rameters. These additional operations do not emit any
gates and can therefore be viewed as “free” operations.
PCF is modeled after the concept of PAL, but instead
of using predefined sub-circuits for complex operations,
a PCF file defines the sub-circuits for a given function
to allow for circuit structure optimization. PCF includes
lower level control structures compared to PAL, which
allows for more general loop structures.

In Appendix A, we describe in detail the semantics of
the PCF instructions. Example PCF files are available at
the authors’ website.

4.2 Describing Functions for SFE

Most commonly used programming languages can de-
scribe processes that cannot be translated to SFE; for ex-
ample, a program that does not terminate, or one which
terminates after reading a specific input pattern. It is
therefore necessary to impose some limitation on the de-
scriptions of functions for SFE. In systems with domain
specific languages, these limitations can be imposed by
the grammar of the language, or can be enforced by
taking advantage of particular features of the grammar.
However, one goal of our system is to allow any pro-
gramming language to be used to describe functionality
for SFE, and so we cannot rely on the grammar of the
language being used.

We make a compromise when it comes to restricting
the inputs to our system. Unlike model checking sys-
tems [2], we impose no upper bound on loop iterations or
on recursive function calls (other than the memory avail-
able for the call stack), and leave the responsibility of en-
suring that programs terminate to the user. On the other
hand, our system does forbid certain easily-detectable
conditions that could result in infinite loops, such as
unconditional backwards jumps, conditional backwards
jumps that depend on input, and indirect function calls.
These restrictions are similar to those imposed by the
Fairplay and KSS12 systems [18,21], but allow for more
general iteration than incrementing the loop index by a
constant. Although false positives, i.e., programs that
terminate but which contain such constructs are possible,
our hypothesis is that useful functions and typical com-
pilers would not result in such instruction sequences, and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

56

formed on bytecodearemachineindependent aswell; for
example, dead code elimination is typically performed
on bytecode, as removing dead code causes programs to
run faster on all realistic machines.

For the purposes of this work, we focus on a com-
monly used bytecode abstraction, the stack machine.In
this model, operands must be pushed onto an abstract
stack, and operations involvepopping operandsoff of the
stack and pushing the result. In addition to the stack, a
stack machine has RAM, which is accessed by instruc-
tions that pop an address off the stack. Instructions in a
stack machine are partially ordered, and are divided
into subroutines in which there is a total ordering. In
addition to simple operations and operations that interact
with RAM, astack machinehasoperations that can mod-
ify the program counter, apointer to the next instruction to
beexecuted, either conditionally or unconditionally.

At a high level, our system translates bytecode pro-
grams for a stack machine into boolean circuits for SFE.
At first glance, this would appear to be at least highly
inefficient, if not impossible, because of the many ways
such an input program could loop. We show, however,
that imposing only a small set of restrictions on permis-
sible sequences of instructions enables an efficient and
practical translator, without significantly reducing theus-
ability or expressive power of the high level language.

4 System Design

Our system divides the compiler into several stages,
fol-lowing a common compiler design. For testing, we
used the LCC compiler front end to parse C source code
and produceabytecodeintermediate representation (IR).
Our back end performs optimizations and translates the
byte-code into a description of a secure computation
proto-col using our new format. This representation
greatly re-duces thedisk space requirements for
largecircuits com-pared to previous work, while still
allowing optimiza-tions to be done at the bit level. We
wrote our compiler in Common Lisp, using the Steel
Bank Common Lisp system.

4.1 Compact Representations of Boolean
Circuits

In Fairplay and the systems that followed its design, the
common pattern hasbeen torepresent Boolean circuitsas
adjacency lists, with each nodein thegraph being agate.
Theintroduces ascalability problem, asit requires stor-age
proportional to the size of the circuit. Generating,
optimizing, and storing circuits has been a bottleneck
for previous compilers, even for relatively simple func-
tions like RSA. Loading such large circuits into RAM

4

e)

LOC: 33+ LOC: 1+i LOC: 65+i

: B

v

e)

LOC: 65+i OC: 97+ LOC: 65+i

/

Figure 2: The high-level concept of the PCF design. It is
not necessary to unroll loops at compile time, even to
perform optimizations on the circuit. Instead, loops can
be evaluated at runtime, with gates being computed on-
the-fly, and loop indices being updated locally by each
party. Wire values are stored in a table, with each gate
specifying which two table entries should be used as in-
puts and where the output should be written; previous
wire values in the table can be overwritten during this
process, if they are no longer needed.

is a challenge, as even very high-end machines may not
have enough RAM for relatively simple functions.

There have been some approaches to addressing this
scalability problem presented in previous work.
The KSS12 system reduced the RAM required for
protocol executions by assigning each gate’s output
wire a refer-encecount, allowing thememory used for
awirevalueto be deallocated once the gate is no longer
needed. How-ever, the compiler bottleneck was not
solved in KSS12, as even computing the reference count
required memory proportional to thesizeof thecircuit.
Even with theengi-neering improvements presented by
Kreuter, shelat, and Shen, theKSS12 compiler
wasunableto compilecircuits with more than a few
billion gates, and required several days to compile their
largest test cases [18].

The PAL system [23] also addresses memory require-
ments, by adding control structures to thecircuit descrip-
tion, allowing parts of the description to be re-used. In
the original presentation of PAL, however, alarge circuit
file would still be emitted in the Fairplay format when
the secure protocol was run. An extension of this work
presented by Mood [22] allowed the PAL description to
be used directly at runtime, but this work sacrificed the
ability to optimize circuits automatically.

Our system builds upon the PAL and KSS12 systems
to solve the memory scalability problem without sacri-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

57

we observed no such functions in our experiments with
LCC.

4.3 Algorithms for Translating Bytecode

Our compiler reads a bytecode representation of the
function, which lacks the structure of higher-level de-
scriptions and poses a unique challenge in circuit gener-
ation. As mentioned above, we do not impose any upper
limit on loop iterations or the depth of the function call
stack. Our approach to translation does not useany sym-
bolic analysis of the function. Instead, we translate the
bytecode into PCF, using conditional branches and func-
tion callsasneeded and translating other instructions into
lists of gates. For testing, we use the IR from the LCC
compiler, which is based on the common stack machine
model; we will use examples of this IR to illustrate our
design, but note that none of our techniques strictly re-
quireastack machine model or any particular features of
the LCC bytecode.
In our compiler, we divide bytecode instructions into

three classes:

Normal Instructions which have exactly one successor
and which can be represented by a simple circuit.
Examples of such instructions are arithmetic and
bitwise logic operations, operations that push data
onto the stack or movedata to memory, etc.

Jump Instructions that result in an unconditional con-
trol flow switch to a specific label. This does not
include function calls, which we represent directly
in PCF. Such instructions areusually used for if/else
constructs or preceding the entry to a loop.

Conditional Instructions that result in control flow
switching to either alabel or thesubsequent instruc-
tion, depending on the result of some conditional
statement. Examples include arithmetic compar-
isons.

In the stack machine model, all operands and the
results of operations are pushed onto a global stack. For
“normal” instructions, the translation procedure is
straightforward: the operands are popped off the stack
and assigned temporary wires, the subcircuit for the op-
eration is connected to these wires, and the output of the
operation is pushed onto the stack. “Jump” instructions
appear, at first, to beequally straightforward, but actually
require special care as we describe below.

“Conditional” instructions present achallenge. Condi-
tional jumpswhosetargetsprecedethejump areassumed to
beloop constructs, and aretranslated directly into PCF
branch instructions. All other conditional jumps require
the creation of multiplexers in the circuit to deal
with

6

False

True True
(If H[code}H If }—{[code]H[code]H[code]j

False

Figure 3: Nested if statements, which can be
handled using the stack-based algorithm.

conditional assignments. Therefore, the branch
targets must be tracked to ensure that the appropriate
condition wiresareused to control those multiplexers.

In the Fairplay and KSS12 compilers, the condition
wire for an “if” statement is pushed onto a stack along
with a “scope” that is used to track the values (wire as-
signments) of variables. When a conditional block is
closed, the condition wire at the top of the stack is used
to multiplex the value of all the variables in the scope at the
top with the values from the scope second to the top, and
then the stack is popped. This procedure relies on the
grammar of “if/else” constructs, which ensures that
conditional blocks can be arranged as a tree. An exam-
ple of this type of “if/else” construct is in Figure 3. In a
bytecode representation, however, it is possible for con-
ditional blocks to “overlap” with each other without be-
ing nested.

In the sequence shown in Figure 4, the first branch’s
target precedes the second branch’s target, and indirect
loads and assignments exist in the overlapping region of
these two branches. The control flow of such an overlap
isgiven in FigureS5. A stack isno longer sufficient in this
case, asthetop of thestack will not correspond to theap-
propriate branch when the next branch target is encoun-
tered. Such instruction sequences are not uncommon in
the code generated by production compilers, as they are a
convenient way to generate code for “else” blocks and
ternary operators.

To handle such sequences, we use a novel algorithm
based on a priority queue rather than a stack, and we
maintain a global condition wire that is modified as
branches and branch targets are reached. When a branch
instruction is reached, the global condition wire is up-
dated by logically ANDing the branch condition with the
global condition wire. The priority queue is updated with
the branch condition and a scope, as in the stack-based
algorithm; the priority is the target, with lower targets
having higher priority. When an assignment is
performed, the scope at the top of the priority queue is
updated with the value being assigned, the location be-
ing assigned to, the old value, and a copy of the global
condition wire. When a branch target is reached, multi-
plexers are emitted for each assignment recorded in the
scope at the top of the priority queue, using the copy of
the global condition wire that was recorded. After the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

58

EQU4 A
INDIRI4 16
EQuU4 B
INDIRI4 24
LABELV A
ASGNI 4
LABELV B
ASGNI 4

Figure 4: A bytecode sequence where overlapping con-
ditional blocks are not nested; note that the target of the
first branch, “A,” precedes the target of the second
branch, “B.”

False False A B:
(EQU4: A [code] EQU4: B [code] [code] [code]
al

True

True

Figure 5: A control flow with overlapping conditional
blocks.

multiplexersareemitted, theglobal condition wire isup-
dated by ORing the inverse of the condition wire at the
top of the priority queue, and then the top is removed.

Unconditional jumps are only allowed in the forward
direction, i.e., only if the jump precedes its target. When
such instructionsareencountered, they aretranslated into
conditional branches whose condition wire is the inverse
of the conjunction of the condition wires of all enclos-
ing branches. In the case of a jump that is not in any
conditional block, the condition wire is set to false; this
does not necessarily mean that subsequent assignments
will not occur, as the multiplexers for these assignments
will be emitted and will depend on a global control line
that may be updated as part of a loop construct. The op-
timizer is responsible for determining whether such as-
signments can occur, and will rewrite themultiplexersas
direct assignments when possible.

Finally, it is possible that the operand stack will have
changed in the fall-through path of a conditional jump.
In that case, the stack itself must be multiplexed.
For simplicity, we require that the depth of the stack
not change in a fall-through path. We did not observe
any such changes to the stack in our experiments with
LCC.

44 Optimization

One of the shortcomings of the KSS12 system was the
amount of time and memory required to perform opti-
mizations on the computed circuit. In our system, opti-
mization isperformed beforeloops areunrolled but after
the functionality is translated into a PCF representation.
This allows optimizations to be performed on a smaller

7

representation, but increases the complexity of the
opti-mization process somewhat.

The KSS12 compiler bases its optimization on a rudi-
mentary dataflow analysis, but without any conditional
branches or loops, and with single assignments to each
wire. In our system, loops are not eliminated and wires
may be overwritten, but conditional branches are elim-
inated. As in KSS12, we use an approach based on
dataflow analysis, but we must make multiple passes to
find a fixed point solution to the dataflow equations. Our
dataflow equations take advantage of the logical rules of
each gate, allowing more gates to beidentified for elimi-

nation than the textbook equations identify. =
We perform our dataflow analysis on individual PCF

instructions, which allowsusto removesinglegateseven
whereentirebytecodeinstructions could not beremoved,
but which carries the cost of somewhat longer compila-
tion time, on theorder of minutes for theexperiments we
ran. Currently, our framework only performs optimiza-
tion within individual functions, without any interproce-
dural analysis. Compile times in our system can be re-
duced by splitting a large procedure into several smaller
procedures.

Optimization \ 128 mult. 5x5 matrix 256 RSA
None | 707,244 260,000 904,171,008
Const. Prop. | 296,960 198,000 651,504,495
Dead Elim. | 700,096 255,875 883,307,712
Both | 260,073 131,875 573,156,735

Table 1: Effects of constant propagation and dead code
elimination on circuit size, measured with simulator that
performs no simplification rules. For each function, the
number of non-XOR gatesaregiven for all combinations
of optimizations enabled.

4.4.1 Constant Propagation

The constant propagation framework we use is straight-
forward, similar to the methods used in typical compil-
ers. However, for somegates, simplification rulescan re-
sult in constants being computed even when theinputs to
a gate are not constant; for example, XORing a variable
with itself. The transfer function we use is augmented
with acheck against logic simplification rules to account
for this situation, but remains monotonic and so conver-
gence is still guaranteed.

4.4.2 Dead Gate Removal

The last step of our optimizer is to remove gates whose
output wires are never used. This is a standard bit vector
dataflow problem that requires little tailoring for our sys-
tem. As is common in compilers, performing this step

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

59

Function With Without Ratio
16384-bit Comp. 32,228 49314 65%
128-bit Sum 345 508 67%
256-sit Sum 721 1,016 70%
1024-bit Sum 2,977 4,064 73%
128-bit Mult. 76,574 260,073 20%
256-bit Mult. 300,634 1,032,416 20%
1024-bit Mult. | 8,301,962 19,209,120 21%

Table 2: Non-XOR gates in circuits computed by the in-
terpreter with and without the application of simplifica-
tion rules by the runtime system.

last yields the best results, as large numbers of gates be-
come dead following earlier optimizations.

4.5 Externally-Defined Functions

Some functionality is difficult to describe well in byte-
code formats. For example, the graph isomorphism ex-
periment presented in Section 6 uses AES as a PRNG
building block, but the best known description of the
AES S-box is given at the bit-level [4], whereas the
smallest width operation supported by LCC is a single
byte. To compensate for this difficulty, we allow users to
specify functions with the same language used internally
to translate bytecode operations into circuits; an example
of this language is shown in Section 5.1. This allows for
possible combinations of our compiler with other circuit
generation and optimization tools.

4.6 PCF Interpreter

To use a PCF description of a circuit in a secure protocol,
an interpreter is needed. The interpreter simulates the ex-
ecution of the PCF file for a single-bit machine, emitting
gates as needed for the protocol. Loops are not explicitly
unrolled; instead, PCF branch instructions are condition-
ally followed, based on the logic value of some wire, and
each wire identifier is treated as an address in memory.
This is where the requirement that loop bounds be in-
dependent of both parties’ inputs is ultimately enforced:
the interpreter cannot determine whether or not to take a
branch if it cannot determine the condition wire’s value.

For testing purposes, we wrote two PCF interpreters:
one in C, which is packaged as a reusable library, and
one in Java that was used for tests on smartphones. The
C library can be used as a simulator or for full protocol
execution. As a simulator it simply evaluates the PCF file
without any garbling to measure the size of the circuit
that would have been garbled in a real protocol. This
interpreter was used for the LAN tests, using an updated
version of the KSS12 protocol. The Java interpreter was

Function With (s) Without (s)

16384-bit Comp. 4.41+0.3% 444+ 0.3%
128-bit Sum | 0.05814+0.3% 0.060+ 2%
256-bit Sum 0.103+0.3% 0.105+ 0.3%
1024-bit Sum 0.365+0.3% 0.367+ 0.2%
128-bit Mult. 0.8924+0.1% 0.894+ 0.1%
256-bit Mult. 3.024+0.1% 3.04+ 0.1%
1024-bit Mult. 39.74+0.2% 39.94+0.06%

Table 3: Simulator time with simplification rules versus
without, using the C interpreter. Times are averaged over
50 samples, with 95% confidence intervals, measured us-
ing the time function implemented by SBCL.

incorporated into the HEKM system for the smartphone
experiments, and can also be used in a simulator mode.

4.7 Threat Model

The PCF system treats the underlying secure computa-
tion protocol as a black box, without making any as-
sumptions about the threat model. In Section 6, we
present running times for smaller circuits in the mali-
cious model version of the KSS12 protocol. This ma-
licious model implementation simply invokes multiple
copies of the same PCF interpreter used for the semi-
honest version, one for each copy of the circuit needed
in the protocol.

4.8 Runtime Optimization

Some optimizations cannot be performed without un-
rolling loops, and so we defer these optimizations until
the PCF program is interpreted. As an example, logic
simplification rules that eliminate gates whose output
values depend on no more than one of their input wires
can only be partially applied at compile time, as some
potential applications of these rules might only be possi-
ble for some iterations of a loop. While it is possible to
compute this information at compile time, in the general
case this would involve storing information about each
gate for every iteration of every loop, which would be as
expensive as unrolling all loops at compile time.

A side effect of applying such logic simplification
rules is copy propagation. A gate that always takes on
the same value as one of its inputs is equivalent to a copy
operation. The application of logic simplification rules to
such a gate results in the interpreter simply copying the
value of the input wire to the output wire, without emit-
ting any gate. As there is little overhead resulting from
the application of simplification rules at runtime, we are
able to reduce compile times further by not performing
this optimization at compile time.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

60

Function This Work KSS12 HFKV
16384 Comp. 32,229 49,149 -
RSA 256 | 235,925,023 332,085,981 -
Hamming 160 880 - 3,003
Hamming 1600 9,625 - 30,318
3x3 Matrix 27,369 160,949 47,871
5x5 Matrix 127,225 746,177 221,625
8x8 Matrix 522,304 3,058,754 907,776
16x16 Matrix 4,186,368 24,502,530 7,262,208

Table 4: Comparisons between our compiler’s output and
the output of the KSS12 and Holzer et al. (HFKV) com-
pilers, in terms of non-XOR gates.

For each gate, the interpreter checks if the gate’s value
can be statically determined, i.e., if its output value does
not rely on either party’s input bits. This is critical, as
some of the gates in a PCF file are used for control flow,
e.g., to increment a loop index. Additionally, logic sim-
plification rules are applied where possible in the inter-
preter. This allows the interpreter to not emit gates that
follow an input or which have static outputs even when
their inputs cannot be statically determined. As shown
in Table 2, we observed cases where up to 80% of the
gates could be removed in this manner. Even in a sim-
ulator that performs no garbling, applying this runtime
optimization not only shows no performance overhead,
but actually a very slight performance gain, as shown in
Table 3. The slight performance gain is a result of the
transfer of control that occurs when a gate is emitted,
which has a small but non-trivial cost in the simulator. In
a garbled circuit protocol, this cost would be even higher,
because of the time spent garbling gates.

5 Portability

5.1 Portability Between Bytecodes

Our compiler can be given a description of how to trans-
late bytecode instructions into boolean circuits using a
special internal language. An example, for the LCC in-
struction “ADDU,” is shown in Figure 6. The first line is
specific to LCC, and would need to be modified for use
with other front-ends. The second line assumes a stack
machine model: this instruction reads two instructions
from the stack. Following that is the body of the transla-
tion rule, which can be used in general to describe circuit
components and how the input variables should be con-
nected to those components.

The description follows an abstraction similar to VM-
Crypt, in which a unit gadget is “chained” to create a
larger gadget. It is possible to create chains of chains,
e.g., for a shift-and-add multiplier as well. For more
complex operations, Lisp source code can be embedded,

9

(Y'ADDU’'’ nil second normal nil nil
(two-stack-arg (x y) (var var)

(chain [0l = il + 12 + i3,
02 = 11 + (il + 1i2) * (i1l + 13)]
(02 -> i3
x —> il
y —> 12
ol —> stack)
(0 => 13))))

Figure 6: Code used in our compiler to map the bytecode
instruction for unsigned integer addition to the subcircuit
for that operation.

which can interact directly with the compiler’s internal
data structures.

5.2 Portability Between SFE Systems

Both the PCF compiler and the interpreter can treat the
underlying secure computation system as a black box.
Switching between secure computation systems, there-
fore, requires work only at the “back end” of the inter-
preter, where gates are emitted. We envision two pos-
sible approaches to this, both of which we implemented
for our tests:

1. A single function should be called when a gate
should be used in the secure computation proto-
col. The Java implementation of PCF uses this ap-
proach, with the HEKM system.

2. Gates should be generated as if they are being read
from a file, with the secure computation system call-
ing a function. The secure computation system may
need to provide “callback” functions to the PCF in-
terpreter for copying protocol-specific data between
wires. The C implementation we tested uses this
abstraction for the KSS12 system.

6 Evaluation

We compiled a variety of functions to test our com-
piler, optimizer, and PCF interpreter. For each circuit,
we tested the performance of the KSS12 system on a
LAN, described below. For the KSS12 timings, we av-
eraged the runtime for 50 runs, alternating which com-
puter acted as the generator and which as the evaluator to
account for slight configuration differences between the
systems. Compiler timings are based on 50 runs of the
compiler on a desktop PC with an Intel Xeon 5560 pro-
cessor, 8GB of RAM, a 7200 RPM hard disk, Scientific
Linux 6.3 (kernel version 2.6.32, SBCL version 1.0.38).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

61

Function ‘ Total Gates non-XOR Gates Compile Time (s) Simulator Time (s)
16384-bit Comp. \ 97,733 32,229 340+ 4% 4.40+0.2%
Hamming 160 4,368 880 981+ 1% 0.0810+0.3%
Hamming 1600 32912 6,375 11.0+0.4% 052+ 8%
Hamming 16000 389,312 97,175 10.8+0.2% 4.834+0.5%
128-bit Sum 1,443 345 470+ 3% 0.0433 +0.4%
256-bit Sum 2,951 721 460+ 3% 0.0732+0.4%
1024-bit Sum 11,999 2,977 460+ 3% 0.2504+0.5%
64-bit Mult. 105,880 24,766 71.7+0.2% 0.3324+0.4%
128-bit Mult. 423,064 100,250 74.94+0.1% 0.9034+0.3%
256-bit Mult. 1,659,808 400,210 79.54+0.9% 3.07+0.2%
1024-bit Mult. 25,592,368 6,371,746 74.0+£0.2% 40.9+0.4%
256-bit RSA 673,105,990 235,925,023 381.+£0.2% 980.+0.3%
512-bit RSA 5,397,821,470 1,916,813,808 350.£0.2% 7,330+0.2%
1024-bit RSA | 42,151,698,718 15,149,856,895 564.+0.2% 56,000+ 0.3%
3x3 Matrix Mult. 92,961 27,369 306. £ 1% 0.2564+0.5%
5x5 Matrix Mult. 433,475 127,225 343.£0.7% 094+ 2%
8x8 Matrix Mult. 1,782,656 522,304 109.4£0.1% 3.14+0.3%
16x16 Matrix Mult. 14,308,864 4,186,368 109.4+0.1% 23.7+0.3%
4-Node Graph Iso. 482,391 97,819 684.£0.2% 3.63+£0.5%
16-Node Graph Iso. 10,908,749 4,112,135 1040+0.1% 47.0+0.1%

Table 5: Summary of circuit sizes for various functions and the time required to compile and interpret the PCF files
in a protocol simulator. Times are averaged over 50 samples, with 95% confidence intervals, except for RSA-1024
simulator time, which is averaged over 8 samples. Run times were measured using the time function implemented in

SBCL.

Source code for our compiler, our test systems, and our
test functions is available at the authors’ website.

6.1 Effect of Array Sizes on Timing

Some changes in compile time can be observed as some
of the functions grow larger. The dataflow analysis deals
with certain pointer operations by traversing the entire
local variable space of the function and all global mem-
ory, which in functions with large local arrays or pro-
grams with large global arrays is costly as it increases the
number of wires that optimizer must analyze. Reducing
this cost is an ongoing engineering effort.

6.2 Experiments

We compiled and executed the circuits described below
to evaluate our compiler and representation. Several of
these circuits were tested in other systems; we present
the non-XOR gate counts of the circuits generated by our
compiler and other work in Table 4. The sizes, compile
times, and interpreter times required for these circuits are
listed in Table 5. By comparison, we show compile times
and circuit sizes using the KSS12 and HFKV compilers
in Table 6. As expected, the PCF compiler outperforms

10

these previous compilers as the size of the circuits grow,
due to the improved scalability of the system.
Arbitrary-Width Millionaire’s Problem As a simple
sanity check for our system, we tested an arbitrary-width
function for the millionaire’s problem; this can be viewed
as a string comparison function on 32 bit characters. It
outputs a 1 to the party which has the larger input. We
found that for this simple function, our performance was
only slightly better than the performance of the KSS12
compiler on the same circuit.

Matrix Multiplication To compare our system with the
work of Holzer et al. [12], we duplicated some of their
experiments, beginning with matrix multiplication on
32-bit integers. We found that our system performed fa-
vorably, particularly due to the optimizations our com-
piler and PCF interpreter perform. On average, our sys-
tem generated circuits that are 60% smaller. We tested
matrices of 3x3, 5x5, 8x8, and 16x16, with 32 bit integer
elements.

Hamming Distance Here, we duplicate the Hamming
distance experiment from Holzer et al. [12]. Again, we
found that our system generated substantially smaller cir-
cuits. We tested input sizes of 160, 1600, and 16000 bits.

Integer Sum We implemented a basic arbitrary-width in-
teger addition function, using ripple-carry addition. No

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

62

HFKV KSS12

Function | Total Gates non-XOR gates Time (s) ‘ Total Gates non-XOR gates Time (s)
16384-bit Comp. 330,784 131,103 105. +0.1% 98,303 49,154 4.66 + 0.5%
3x3 Matrix Mult. 172,315 47,871 22+ 4% 424,748 160,949 10.5 + 0.5%
5x5 Matrix Mult. 797,751 221,625 8.40 £ 0.3% 1,968,452 746,177 482 +0.2%
8x8 Matrix Mult. 3,267,585 907,776 59.4 £ 0.3% 8,067,458 3,058,754 210+ 2%
16x16 Matrix Mult. | 26,140,673 7,262,208 2,600 = 7% | 64,570,969 24,502,530 2200+ 1%
32-bit Mult. 65,121 26,624 643 £ 0.3% 15,935 5,983 055+ 5%
64-bit Mult. 321,665 126,529 71.4 £ 0.3% 64,639 24,384 1.6+ 2%
128-bit Mult. 1,409,025 546,182 999. + 0.1% 260,351 97,663 6.10 £ 0.6%
256-bit Mult. 5,880,833 2,264,860 16,000 £ 2% 1,044,991 391,935 245+ 0.2%
512-bit Mult. - - - 4,187,135 1,570,303 105. £ 0.2%
1024-bit Mult. - - - 16,763,518 6,286,335 430. £ 0.3%

Table 6: Times of HFKV and KSS12 compilers with circuit sizes. The Mult. program uses a Shift-Add implementa-
tion. All times are averaged over 50 samples with the exception of the HFKV 256-bit multiplication, which was run
for 10 samples; times are given with 95% confidence intervals.

array references are needed, and so our compiler easily
handles this function even for very large input sizes. We
tested input sizes of 128, 256, and 1024 bits.

Integer Multiplication Building on the integer addition
function, we tested an integer multiplication function that
uses the textbook shift-and-add algorithm. Unlike the in-
teger sum and hamming distance functions, the multipli-
cation function requires arrays for both input and out-
put, which slows the compiler down as the problem size
grows. We tested bit sizes of 64, 128, 256, and 1024.

RSA (Modular Exponentiation) In the KSS12 sys-
tem [18], it was possible to compile an RSA circuit for
toy problem sizes, and it took over 24 hours to compile
a circuit for 256-bit RSA. This lengthy compile time and
large memory requirement stems from the fact that all
loops are unrolled before any optimization is performed,
resulting in a very large intermediate representation to
be analyzed. As a demonstration of the improvement
our approach represents, we compiled not only toy RSA
sizes, but also an RSA-1024 circuit, using only modest
computational resources. We tested bit sizes of 256, 512,
and 1024.

Graph Isomorpism We created a program that allows
two parties to jointly prove the zero knowledge proof
of knowledge for graph isomorphism, first presented by
Goldreich et al. [9]. In Goldreich et al.’s proof system,
the prover has secret knowledge of an isomorphism be-
tween two graphs, g and g>. To prove this, the prover
sends the verifier a random graph g3 that is isomorphic
to g1 and g», and the verifier will then choose to learn
either the g; — g3 isomorphism or the g» — g3 isomor-
phism. We modify this protocol so that Alice and Bob
must jointly act as the prover; each is given shares of
an isomorphism between graphs g; and g», and will use
the online protocol to compute g3 and shares of the two
isomorphisms.

11

Our implementation works as follows: the program
takes in XOR shares of the isomophism between g; and
g» and a random seed from both participants. It also
takes the adjacency matrix representation of g as input
by a single party. The program XORs the shares together
to create the g — g» isomorphism. The program then
creates a random isomorphism from g; — g3 using AES
as the PRNG (to reduce the input sizes and thus the OT
costs), which effectively also creates g3.

Once the random isomorphism g; — g3 is created, the
original isomorphism, g; — g2, is inverted to get an iso-
morphism from g» — g;. Then the two isomorphisms
are “followed” in a chain to get the g, to g3 isomor-
phism, i.e., for the " instance in the isomorphic ma-
trix, isop 3[i] = iso13[iso21[i]]. The program outputs
shares of both the isomorphism from g; to g3 and the
isomorphism from g, to g3 to both parties.

An adjacency matrix of g3 is also an output for the
party which input the adjacency matrix g;. This is calcu-
lated by using g; and the g; — g3 isomorphism.

6.3 Online Running Times

To test the online performance of our new format, we
modified the KSS12 protocol to use the PCF interpreter.
Two sets of tests were run: one between two computers
with similar specifications on the University of Virginia
LAN, a busy 100 megabit Ethernet network, and one be-
tween two smartphones communicating over a wifi net-
work.

For the LAN experiments, we used two comput-
ers running ScientificLinux 6.3, a four core Intel Xeon
E5506 2.13GHz CPU, and 8GB of RAM. No time limit
on computation was imposed on these machines, so we
were able to run the RSA-1024 circuit, which requires a
little less than two days. To compensate for slight con-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

63

Function | CPU (s) Network (s) | CPU (s) Network (s)
\ Generator Evaluator

16384-bit Comp. | 99.84+0.2% 5.634+0.6% | 26.0+0.6% 79.4+0.2%
Hamming 1600 9.134+0.4% 0.64+ 4% 29+ 4% 6.87+ 2%
Hamming 16000 91.2+0.2% 5.67+0.7% 28.+£3% 69.£ 2%
64-bit Mult. 0.749+0.3% 0.158+£0.7% 0.409 £0.3% 0.494 £ 0.6%
128-bit Mult. 2.044+0.3% 052+ 1% 1.25+0.2% 1.31+0.6%
256-bit Mult. 5.744+0.5% 12+ 2% 42+ 2% 27+ 3%
1024-bit Mult. 72.74+0.2% 28.+ 4% 60.+ 2% 40.+£ 3%
256-bit RSA 1940 +0.2% 767.+0.7% 1620+ 2% 1080+ 3%
1024-bitRSA | 1.15x10°+0.5% 4.4x10*+ 4% | 95x10°+ 5% 6.5x10*+ 7%
3x3 Matrix Mult. 5.334+0.4% 0.403 £0.6% 1.45+0.8% 4.28+0.6%
5x5 Matrix Mult. 24.4+0.2% 1.81+£0.4% 6.75+0.9% 19.5+0.4%
8x8 Matrix Mult. 100. £0.2% 7.39+0.4% 26.84+0.7% 81.1+0.3%
4-node 1ISO 10.14£0.1% 1.05+0.7% 4.96+0.3% 6.15+0.4%
16-node ISO 116.+0.2% 15.7+0.6% 71.6+0.3% 60.3+0.6%

Table 7: Total running time, including PCF operations and protocol operations such as oblivious transfer, for online
protocols using the PCF interpreter and the KSS12 two party computation system, on two computers communicating
over the University of Virginia LAN. With the exception of RSA-1024, all times are averaged over 50 samples; RSA-
1024 is averaged over 8 samples. Running time is divided into time spent on computation and time spent on network

operations (including blocking).

figuration differences between the two systems, we alter-
nated between each machine acting as the generator and
acting as the evaluator.

We give the results of this experiment in Table 7. We
note that while the simulator times given in Table 5 are
more than half the CPU time measured, they are also on
par with the time spent waiting on the network. Non-
blocking I/O or a background thread for the PCF inter-
preter may improve performance somewhat, which is an
ongoing engineering task in our implementation.

6.4 Malicious Model Tests

The PCF system is not limited to the semi-honest model.
We give preliminary results in the malicious model ver-
sion of KSS12. These experiments were run on the same
test systems as above, using two cores for each party.
We present our results in Table 9. The increased running
times are expected, as we used only two cores per party.
In the case of 16384-bit comparison, the increase is very
dramatic, due to the large amount of time spent on obliv-
ious transfer (as both parties have long inputs).

6.5 Phone Execution

We created a PCF interpreter for use with the HEKM ex-
ecution system and ported it to the Android environment.
We then ran it on two Galaxy Nexus phones where one

12

phone was the generator and another phone was the eval-
uator. These phones have dual core 1.2Ghz processors
and were linked over Wi-Fi using an Apple Airport.

6.6 Phone Trials

As seen in Table 8, we were able to run the smaller pro-
grams directly on two phones. Since the interpreter ex-
ecutes slower on a phone and what would have taken
a week of LAN trials would have taken years of phone
time, we did not complete trials of the larger programs.
Not all of the programs had output for the generator, al-
lowing the generator to finish before the evaluator. This
leads to a noticeable difference in total running time be-
tween the two parties.

Mood’s work on designing SFE applications for mo-
bile devices [22] found that allocation and deallocation
was a bottleneck to circuit execution. This issue was
addressed by substituting the standard Biglnteger type
for a custom class that reduced the amount of alloca-
tion required for numeric operations, resulting in a four-
fold improvement in execution time. The lack of this
optimization in our mobile phone experiments may con-
tribute to the reduced performance that we observed.

In future work, we will port the C interpreter and
KSS12 system to Android and run the experiment with
that execution system. Since overhead appears to be tied
to Android’s Dalvik Virtual Machine (DVM), running
programs natively should reduce overhead and hence re-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

64

Function | CPU (s) Network (s) |~ CPU (s) Network (s)

\ Generator Evaluator
16384-bit Comp. 163.£05% 12.+ 3% 142.4£05% 68.+ 1%
128-bit Sum 5.84+8.2% 1.+30% 56+ 8% 3.420%
256-bit Sum 7.3+£5.0% 1.+30% 6.+ 5% 4.420%
1024-bit Sum 16.+£3.1% 2.£20% 16.+ 3% 64+ 7%
64-bit Mult. 63.3+0.5% 1.+£10% 66.3+0.6% 5.+10%
128-bit Mult. 257.4£02% 3.8+ 5% 280.£03% 12.+ 6%
3x3 Matrix Mult. 76.9+04% 12.4+ 2% 82.0+0.5% 8.5+ 4%
5x5 Matrix Mult. 352.4£03% 49.+ 2% 371.4£03% 32.+ 4%
8x8 Matrix Mult. | 1,588.+0.1% 82.4+ 3% | 1,550.£0.1% 120.+ 1%

Table 8: Execution results from the phone interpreter using the HEKM execution system on two Galaxy Nexus phones.
Times are averages of 50 samples, with 95% confidence intervals.

Function ‘ CPU (s) Network (s) ‘ CPU (s) Network (s)

‘ Generator Evaluator
16384-bit comp. | 3900+ 3% 76+ 4% | 2820+ 2% 1200+ 10%
128-bit sum 23.+ 2% 21+ 2% 33.3+0.5% 11.2+0.2%
256-bit sum 63.0+0.4% 10+ 20% 49.+ 6% 27.+ 4%
1024-bit sum 260+ 10% 16+ 6% 187.+£ 2% 100+ 40%
128-bit mult. 192.£0.3% 47.2+0.6% 168. +£0.4% 70.1£ 1%
256-bit mult. 637.£0.5% 160+ 1% 577.£0.3% 210+ 2%

Table 9: Online running time in the malicious model for several circuits. Times are averaged over 50 samples, with

95% confidence intervals.

duce the performance differential between the phone and
PC environments. Additionally, the KSS12 system uses
more efficient cryptographic primitives, potentially fur-
ther improving performance.

7 Related Work

Compiler approaches to secure two-party computation
have attracted significant attention in recent years. The
TASTY system presented by Henecka et al. [11] com-
bines garbled circuit approaches with homomorphic en-
cryption, and includes a compiler that emits circuits that
can be used in both models. As with Fairplay and
KSS12, TASTY requires functions to be described in a
domain-specific language. The TASTY compiler per-
forms optimizations on the abstract syntax tree for the
function being compiled. Kruger et al. developed an or-
dered BDD compiler to test the performance of their sys-
tem relative to Fairplay [19]. Mood et al. focused on
compiling secure functions on mobile devices with the
PALC system, which involved a modification to the Fair-
play compiler [23].

Recently, a compiler approach based on bounded
model checking was present by Holzer et al. [12]. In that

13

work, the CBMC system [5] was used to construct cir-
cuits, which were then rewritten to have fewer non-XOR
gates. This approach had several advantages over pre-
vious approaches, most prominent being that functions
could be described in the widely used C programming
language, and that the use of CBMC allows for more
advanced software engineering techniques to be applied
to secure computation protocols. Like KSS12, however,
this approach unrolls all loops (up to some fixed number
of iterations), and converts a high level description di-
rectly to a boolean circuit which must then be optimized.

In addition to SFE, work on efficient compilers for
proof systems has also been presented. Almeida et al.
developed a zero-knowledge proof of knowledge com-
piler for X-protocols, which converts a protocol specifi-
cation given in a domain-specific language into a pro-
gram for the prover and the verifier to run [1]. Setty
et al. presented a system for verifiable computation that
uses a modification of the Fairplay compiler, which com-
putes a system of quadratic constraints instead of boolean
circuits, and emits executables for the prover and veri-
fier [28,29]. Our system is somewhat similar to these
approaches, in that the circuit representation we present
can be viewed as a program that is executed by the par-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

65

ties in the SFE system; however, our approach is unique
in its handling of control flow and iterative constructs.

Closely related to our work is the Sharemind sys-
tem [3, 14], which uses secure computation as a building
block for privacy-preserving distributed applications. As
in our approach, the circuits used in the secure compu-
tation portions of Sharemind are not fully unrolled until
the protocol is actually run. Functions in Sharemind are
described using a domain-specific language called Se-
creC. Although there has been work on static analysis
for SecreC [26], the SecreC compiler does not perform
automatic optimizations. By contrast, our approach is fo-
cused on allowing circuit optimizations at the bit-level to
occur without having to unroll an entire circuit.

Kerschbaum has presented work on automatically op-
timizing secure computation at the protocol level, with
an approach based on term and expression rewriting [15,
16]. This approach is based on maximizing the use of of-
fline computation by inferring what each party can com-
pute without knowledge of the other party’s input, and
does not treat the underlying secure computation primi-
tives as a black box. It therefore requires additional work
to remain secure in the malicious model. Our techniques
could conceivably be combined with Kerschbaum’s to re-
duce the overhead of online components.

8 Future Work

Our compiler can conceivably read any bytecode repre-
sentation as input; one immediate future direction is to
write translations for the instructions of another byte-
code format, such as LLVM or the JVM, which would
allow functions to be expressed in a broader range of
languages. Additionally, we believe that our techniques
could be combined with Sharemind, by having our com-
piler read the bytecode for the Sharemind VM and com-
pute optimized PCF files for cases where garbled circuit
computations are used in a Sharemind protocol.

The PCF format does not convey high-level informa-
tion about data operations or types. Such information
may further reduce the size of the circuits that are com-
puted. Static analysis of such information by compilers
has been widely studied, and it is possible that our com-
piler could be extended to support further reductions in
the sizes of circuits emitted by the PCF interpreter. High-
level information about data structures could also be used
to improve the generation of circuits prior to optimiza-
tion, using techniques recently presented by Evans and
Zahur [6].

Our system and techniques can likely be generalized to
the multiparty case, and to other representations of func-
tions, such as arithmetic circuits. This would require sig-
nificant changes to the optimization strategies and goals
in our compiler, but fewer changes would be necessary

14

for the PCF interpreter. Similar modifications to support
homomorphic encryption systems are also possible.

9 Conclusion

We have presented an approach to compiling and stor-
ing circuits for secure computation systems that requires
substantially lower computational resources than previ-
ous approaches. Empirical evidence of the improve-
ment and utility of our approach is given, using a vari-
ety of functions with different circuit sizes and control
flow structures. Additionally, we have presented a com-
piler for secure computation that reads bytecode as an in-
put, rather than a domain-specific language, and have ex-
plored the challenges associated with such an approach.
We also presented interpreters, which evaluate our new
language on both PCs and phones.

The code for the compiler, PCF interpreters, and test
cases will be available on the authors’ website.

Acknowledgments We would like to thank Elaine Shi
for her helpful advice. We also thank Chih-hao Shen for
his help with porting KSS12 to use PCF. This material is
based on research sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under contract FA8750-
11-2-0211. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those
of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Gov-
ernment.

References

[1]1 J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R.
Sadeghi, and T. Schneider. A Certifying Compiler For Zero-
Knowledge Proofs of Knowledge Based on X-Protocols. In Pro-
ceedings of the 15th European conference on Research in com-
puter security, ESORICS’ 10, pages 151-167, Berlin, Heidelberg,
2010. Springer-Verlag.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Anal-
ysis of Systems, TACAS 99, pages 193-207, London, UK, UK,
1999. Springer-Verlag.

[2]

[3] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A Frame-
work for Fast Privacy-Preserving Computations. In Proceedings
of the 13th European Symposium on Research in Computer Secu-

rity - ESORICS’08, 2008.

J. Boyar and R. Peralta. A New Combinational Logic Minimiza-
tion Technique with Applications to Cryptology. In P. Festa, ed-
itor, Experimental Algorithms, volume 6049 of Lecture Notes in
Computer Science, pages 178—189. Springer Berlin / Heidelberg,
2010.

[4]

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

66

[5]

[6

—

[7

—_

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-
C Programs. In K. Jensen and A. Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages
168-176. Springer, 2004.

D. Evans and S. Zahur. Circuit structures for improving efficiency
of security and privacy tools. In IEEE Symposium on Security and
Privacy (to appear), 2013.

S. Even, O. Goldreich, and A. Lempel. A randomized protocol
for signing contracts. Commun. ACM, 28(6):637-647, June 1985.

C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: De-
sign and Implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in np have zero-
knowledge proof systems. J. ACM, 38(3):690-728, July 1991.

V. Goyal, P. Mohassel, and A. Smith. Efficient Two Party and
Multi Party Computation Against Covert Adversaries. In Pro-
ceedings of 27th annual international conference on Advances
in cryptology, EUROCRYPT’08, pages 289-306, Berlin, Heidel-
berg, 2008. Springer-Verlag.

W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY
computations. In ACM Conference on Computer and Communi-
cations Security, 2010.

A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure Two-
Party computations in ANSI C. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS *12,
pages 772-783, New York, NY, USA, 2012. ACM.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-
Party Computation Using Garbled Circuits. In USENIX Security
Symposium, 2011.

R. Jagomigis. SecreC: a Privacy-Aware Programming Language
with Apllications in Data Mining. Master’s thesis, University of
Tartu, 2010.

F. Kerschbaum. Automatically optimizing secure computation.
In Proceedings of the 18th ACM conference on Computer and
communications security, CCS *11, pages 703-714, New York,
NY, USA, 2011. ACM.

F. Kerschbaum. Expression rewriting for optimizing secure com-
putation. In Conference on Data and Application Security and
Privacy, 2013.

V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free
XOR Gates and Applications. In L. Aceto, I. Damgard, L. Gold-
berg, M. Halldérsson, A. Ing6lfsdéttir, and I. Walukiewicz, edi-
tors, ALP 2008, volume 5126 of LNCS, pages 486—498. Springer,
2008.

B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure com-
putation with malicious adversaries. In Proceedings of the 21st
USENIX conference on Security symposium, Security’12, pages
14-14, Berkeley, CA, USA, 2012. USENIX Association.

L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function
evaluation with ordered binary decision diagrams. In Proceedings
of the 13th ACM conference on Computer and communications
security (CCS’006), Alexandria, VA, Oct. 2006.

L. Malka. VMCrypt: modular software architecture for scalable
secure computation. In ACM Conference on Computer and Com-
munications Security, pages 715-724, 2011.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay: A Secure
Two-Party Computation System. In /3th Conference on USENIX
Security Symposium, volume 13, pages 287-302. USENIX Asso-
ciation, 2004.

15

[22] B. Mood. Optimizing Secure Function Evaluation on Mobile De-

vices. Master’s thesis, 2012, University of Oregon.
B. Mood, L. Letaw, and K. Butler. Memory-Efficient Garbled
Circuit Generation for Mobile Devices. In Financial Cryptogra-

phy and Data Security, volume 7397. Springer Berlin Heidelberg,
2012.

[23]

[24] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure Two-
Party Computation Is Practical. In M. Matsui, editor, Asiacrypt,

volume 5912 of LNCS, pages 250-267. Springer, 2009.

M. Rabin. How to Exchange Secrets by Oblivious Transfer.
Technical Report TR-81, Harvard Aiken Computation Labora-
tory, 1981.

[25]

[26] J. Ristioja. An analysis framework for an imperative privacy-
preserving programming language. Master’s thesis, Institute of

Computer Science, University of Tartu, 2010.

[27] T. Schneider. Engineering Secure Two-Party Computation Proto-
cols - Design, Optimization, and Applications of Efficient Secure

Function Evaluation. Springer, 2012.

S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Mak-
ing Argument Systems for Outsourced Computation Practical
(Sometimes). In NDSS, 2012.

S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In Proceedings of the 21st USENIX confer-
ence on Security symposium, Berkeley, CA, USA, 2012.

[28]

[29]

[30] A. Yao. Protocols for Secure Computations. In 23rd Sympo-

sium on Foundations of Computer Science, pages 160—164. IEEE
Computer Society, 1982.

A PCF Semantics

The PCEF file format consists of a header section that de-
clares the input size, followed by a list of operations that
are divided into subroutines. At runtime, these opera-
tions manipulate the internal state of the PCF interpreter,
causing gates to be emitted when necessary. The inter-
nal state of the PCF interpreter consists of an instruction
pointer, a call stack, an array of wire values, and an ar-
ray of pointers. The pointers are positive integers. Wire
values are 0, 1, or L, where _L represents a value that de-
pends on input data, which is supplied by the code that
invokes the interpreter. Each position in the wire table
can be treated as a stack.

Each PCF instruction can take up to 3 arguments. The
instructions and their semantics are as follows:

CLABEL/SETLABELC Appears only in the header,
used for setting the input size for each party. CLA-
BEL declares the bit width of a value, SETLA-
BELC sets the value.

FUNCTION Denotes the beginning of a subroutine.
When the subroutine is called, the instruction
pointer is set to the position following this instruc-
tion.

GADGET Denotes a branch target

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

67

BRANCH Takes two arguments: a target, declared with
GADGET, and a location in the wire table. In the
wire value is 0, the instruction pointer is set to the
instruction following the target. If the wire value is
1, the instruction pointer is incremented. If the wire
value is L, evaluation halts with an error.

FUNC Calls a subroutine, pushing the current instruc-
tion pointer onto the call stack.

PUSH Pushes a copy of the wire value at a specified
position onto the stack at that position.

POP Pops a stack at a specified position. If there is only
one value on that stack, evaluation halts with an er-
ror.

ALICEIN32/BOBIN32 Fetches 32 input bits from one
party, beginning at a specified bit position in that
party’s input. The bit position is specified by an
array of 32 values in the wire table. If any of the
values is L, evaluation halts with an error. The input
values will all have the value L, and will be stored
in the wire table at positions 0 through 31.

SHIFT OUT Outputs a single bit for a given party

RETURN Return from a subroutine. The instruction
pointer is repositioned to the value popped from the
top of the call stack.

STORECONSTPTR Sets a value in the pointer table

OFFSETPTR Adds a value to a pointer, specified by an
array of 32 wire values starting at a position in the
wire table. If any value in the array is L, evaluation
halts with an error.

PTRTOWIRE Saves a pointer value as a 32 bit un-
signed integer. Each of the bits is pushed onto the
stack at a location in the wire table.

PTRTOPTR Copies a value from one position in the
pointer table to another.

CPY121 Copy a wire value from a position specified by
a pointer to a statically specified position.

CPY32 Copy a wire value from a statically specific po-
sition to a position specified by a pointer.

80,080,181,081,1 Compute a gate with the specified truth
table on two input values from the wire table, with
output stored at a specified position. Logic simpli-
fication rules are applied when one or both of the
input values is L. If no simplification is possible,
then the output will be | and the interpreter will
emit a gate. This is used for both local computa-
tions such as updating a loop index, and for com-
puting the gates used by the protocol.

16

A.1 Example PCF Description

Below is an example of a PCF file. It iterates over a loop
several times times, XORing the two parties’ inputs with
a bit from the internal state.

GADGET: main

CLABEL ALICEINLENGTH 32
CLABEL BOBINLEGNTH 32
CLABEL xxx 32

SETLABELC ALICEINLENGTH 128
SETLABELC ALICEINLENGTH 128
FUNCTION: main

1111 32 0 O

0000 33 0 O

0000 34 0 O

0000 35 0 O

GADGET: L

0110 36 35 34

0001 35 36 36

0110 36 34 33

0001 34 36 36

0110 36 33 32

0001 33 36 36

ALICEINPUT32 0 O

0001 36 0 O

BOBINPUT32 0 O

0001 37 0 O

0110 38 37 36

0110 39 33 38
SHIFT OUT ALICE 39
BRANCH L 35

RETURN xxx

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

68

SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2013; 00:1—11
DOI: 10.1002/sec

RESEARCH ARTICLE

For your phone only: custom protocols for efficient secure
function evaluation on mobile devices

Henry Carter'*, Chaitrali Amrutkar®, Italo Dacosta?, and Patrick Traynor!

tSchool of Computer Science, Georgia Institute of Technology
2KU Leuven, Belgium

ABSTRACT

Mobile applications increasingly require users to surrender private information, such as GPS location or social networking
data. To facilitate user privacy when using these applications, Secure Function Evaluation (SFE) could be used to
obliviously compute functions over encrypted inputs. The dominant construction for desktop applications is the Yao
garbled circuit, but this technique requires significant processing power and network overhead, making it extremely
expensive on resource-constrained mobile devices. In this work, we develop Efficient Mobile Oblivious Computation
(EMOC), a set of SFE protocols customized for the mobile platform. Using partially homomorphic cryptosystems, we
develop protocols to meet the needs of two popular application types: location-based and social networking. Using these
applications as comparison benchmarks, we demonstrate execution time improvements of 99% and network overhead
improvements of 96% over the most optimized garbled circuit techniques. These results show that our protocols provide

mobile application developers with a more practical and equally secure alternative to garbled circuits.

Copyright (© 0000 John Wiley & Sons, Ltd.

KEYWORDS

Secure Function Evaluation, Partially Homomorphic Encryption, Garbled Circuits, Mobile Applications, Privacy

*Correspondence

Henry Carter, School of Computer Science, Georgia Institute of Technology.

E-mail: carter@gatech.edu

Received ...

1. INTRODUCTION

The confluence of high-speed connectivity and device
capability has led to the recent surge in mobile
application development. While software common to
desktop computing (e.g., word processing, email) exists
in this space, the most popular mobile applications
often provide services based on a user’s current context
(e.g., location [1], social interconnections [2], etc.). Such
applications allow users to make more informed decisions
based on their surroundings. However, these applications
also regularly expose sensitive data to potentially untrusted
parties.

Cryptographers have long worked to develop mecha-
nisms that allow two parties to compute shared results
without exposing either individual’s sensitive inputs or
requiring assistance from a trusted third-party. Such tech-
niques are referred to as Secure Function Evaluation
(SFE), and provide a set of powerful primitives for privacy-
preserving computation. While garbled circuits have been

Copyright © 2013 John Wiley & Sons, Ltd.
Prepared using secauth.cls [Version: 2010/06/28 v2.00]

known for nearly 30 years [3], efficient realizations of such
schemes have only become possible recently [4, 5, 6, 7, 8].
However, their use on mobile devices, where the nature of
applications are different and the use of context sensitive
information is the norm and not the exception, has just
begun to be assessed [9]. In the past, special-purpose
protocols using partially homomorphic encryption [10, 11,
12, 13] have been developed and optimized for specific
SFE applications (e.g. cryptographically verifiable voting).
This technique promises significant performance gains, but
has yet to be applied to mobile applications.

In this paper, we develop custom protocols designed
to perform privacy-preserving versions of operations com-
monly found in applications running on mobile phones.
Our Efficient Mobile Oblivious Computation (EMOC)
techniques use partially homomorphic cryptosystems to
restate secure computation as a series of simple arith-
metic operations over encrypted inputs. Specifically, we
design and implement two privacy-preserving protocols
and demonstrate their use in two popular applications:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

69

location-based Twitter feeds (a geographic proximity test)
and a social networking tool to identify nearby “friends
of friends” (a private set intersection). Comparing these
applications with equivalent garbled circuit constructions,
we demonstrate that our applications can produce the same
results at computational and bandwidth costs reduced by
orders of magnitude in some cases. In so doing, we make
the following contributions:

e Design privacy-preserving mobile applications
replacing garbled circuit constructions with par-
tially homomorphic cryptographic primitives:
We design custom privacy-preserving protocols to
meet the specific resource constraints of the mobile
platform. We then implement these protocols in
applications representative of two of the most popu-
lar mobile application classes: location-based mes-
saging and social networking. We prove that our
applications provide equivalent security guarantees
to their SFE-based counterparts.

e Propose canonical evaluation tests for mobile
SFE applications: In the desktop world, canonical
tests for SFE efficiency have existed for several
years. The existence of this common frame
of reference for performance between varying
techniques has fostered significant growth in the
number of schemes available and the performance
efficiencies of those schemes. However, these
desktop applications are not representative of the
types of privacy-preserving computation that would
be most useful on the mobile platform (e.g. it is
unlikely two mobile users need to securely compute
AES). As no such representative test applications
have been developed for the mobile platform, we
propose a set of test applications to facilitate further
study in developing efficient mobile SFE. We will
soon open www . foryourphoneonly.orgasa
common repository for mobile SFE applications,
providing the research community with a set of
existing mobile SFE techniques to compare new
techniques as they are developed.

e Characterize SFE mobile performance profiles:
The relative performance capabilities of garbled
circuits on the mobile platform is largely unknown
up to this point. In this work, we use our proposed
test applications to conduct an extensive perfor-
mance analysis of five well-known SFE compilers
on the Android mobile platform to determine their
feasibility in practice. The development of efficient
custom privacy-preserving protocols has received
significant attention in the past [13, 14, 15, 16,
17, 10]. However, as Huang et al. [7] claim that
general circuit compilers provide equivalent perfor-
mance to the best of these custom protocols, we
focus our performance evaluation on demonstrating
the performance gains of using custom protocols
instead of garbled circuits, and leave the evaluation
of existing custom protocols for later work. We

demonstrate that our custom-designed SFE proto-
cols offer improvements in execution time as high
as 99% and network overhead improvements as
high as 96% over the most optimized garbled circuit
techniques. Moreover, we examine several garbled
circuit optimizations that have never been compared
on any platform [5, 7, 8, 18], providing a set of test
data to build on in future mobile SFE research.
Our research demonstrates that the performance gains
achievable through partially homomorphic constructions
merit custom protocols for certain functions. Moreover,
our results call for the reevaluation of the recent claims
made by Huang et al. [19] that general circuit compilers
provide comparable efficiency to custom protocols - we
show empirically and rigorously that this claim does
not hold for functions representing the most common
applications on the resource-constrained mobile platform.

2. RELATED WORK

With the development of the “garbled circuit” SFE
protocol, Yao demonstrated the possibility of two peer
users computing a function without exposing their private
inputs [3]. In 2004, Malkhi et al. produced the first
practical implementation of Yao garbled circuits in the
program Fairplay [4]. Fairplay provided a high-level
language and compiler for building the logical circuits that
are used to compute functions securely. Fairplay offers the
same privacy guarantees as the trusted third party model
without requiring an actual third party. Building upon the
Fairplay compiler, several techniques have been developed
to optimize the generation and evaluation of garbled
circuits for various applications [5, 7, 8, 18, 20, 21]. Even
with these performance improvements, and considering
the assertion of Kerschbaum et al. that communication
overhead is of little importance in secure computation [22],
garbled circuits are likely to be too expensive for the
hardware constraints of mobile devices. Huang et al.
began exploring this question in a work examining the
performance of pipelined circuits on mobile phones [9].
We thoroughly evaluate this question in our work.

One possible solution to this problem lies in the
relatively young area of homomorphic encryption.
Henecka et al. demonstrated that homomorphic encryption
can be used in conjunction with garbled circuits to provide
performance improvements for some SFE problems [6].
However, many special-purpose protocols have been
designed to use only partially homomorphic encryption
to preserve privacy in applications such as private set
intersection [10, 14, 13], voting applications [11], and
distributed location privacy [12]. In addition, several
protocols for private information retrieval [23] and private
stream search [24, 25] leverage this partially homomorphic
property of certain encryption schemes. The benefit of
the currently available partially homomorphic encryption
schemes is that they are efficient, even on mobile

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

70

devices [26]. Considering the extreme processing and
memory constraints found on the mobile platform, a new
set of custom protocols developed for the mobile platform
is necessary. While Huang challenges this notion [19],
our paper presents privacy-preserving protocols that
demonstrate the efficiency gains of custom-designing SFE
protocols over general garbled circuit compilers on the
mobile platform.

3. CRYPTOGRAPHIC ASSUMPTIONS

Before we define and prove the security of our
applications, we specify the requirements for the
underlying primitives. We also state basic assumptions that
are necessary for the security of our protocols to hold.

3.1. Homomorphic Cryptosystem

The main tool our protocols use in guaranteeing the
privacy of all inputs is the homomorphic property of
certain cryptosystems. Specifically, we require that any
encryption scheme used be multiplicatively homomorphic.
That is, given two encryptions of two values, the product
of the ciphertexts is equivalent to an encryption of the
product of the underlying values. We also require that a
ciphertext can be exponentiated by a constant integer such
that the result is an encryption of the original plaintext
exponentiated by the same integer. Finally, we assume any
encryption scheme is semantically secure (i.e., IND-CPA
secure) by the following definition from Goldreich [27]
(and equivalently Odelu et al. [28]).

Definition 1

Let X,(f), eri) be any messages from the message space
of an encryption scheme (G, E,D), Z, be arbitrary
information about the message ensembles X, Y, and
G1(1™") be the public encrypting key output by the
generation algorithm G. This encryption scheme has
uniformly indistinguishable encryptions in the public-
key model if for every two polynomials t,l, every

probabilistic polynomial-time distinguisher D', every

polynomial-time constructible ensemble T et {T, =

yn?nzn}neNs with Y’ﬂ = (Xr(ll)7 "'7X7(‘t(n)))’?" =
W, LN and (X = VP = i(n), it holds
that

|Pr[D'(1", Zn,G1(1"), Eg,amy(Xn)) = 1]— (1)
n ny N 1

PriD'(1", Zn, G1(1"), Eg,1n) (Ya)) = 1]| <)
for every positive polynomial p and all sufficiently large
n’s. Here, Fg,1n)(Xn) denotes the set of ciphertexts
output by an encryption oracle for the input values in X,.
The probability is taken over T, = X, Y, Z, as well as
over the internal coin tosses of the relevant algorithms.

We instantiate such an encryption scheme using
ElGamal, where the message and ciphertext spaces

M,C = G, where G is a prime-order group. We use a
prime-order group because the Decisional Diffie-Hellman
(DDH) problem, defined as follows, is known to be hard
over prime-order groups. We take our definition from Katz
and Lindell [29].

Definition 2

Let GG be a group, ¢ be the order of (G, g be a generator
of G, and z,y, z be exponents in Z4. The DDH problem
is hard for the group G if for all probabilistic polynomial-
time distinguishers D’ there exists a positive polynomial p
such that

|Pr(D"(G,q,9.9",9",97) = 1]— (@)
, 1
PTD/ G’q? b 1:7 y7 xy :1 S
[D(9,9%,9%,9"") = 1] o)

3.2. Threat Model

We assume that all privacy guarantees in Section 5 hold
against a semi-honest adversary. This means that an
adversary will follow the protocol as written, using valid
inputs, but will attempt to learn as much as possible
outside the jointly computed results by studying logs of
all communications [30]. Since this protocol is meant to
guarantee the privacy of inputs, we can do nothing if the
user chooses false inputs designed to corrupt the protocol.
Many garbled circuit implementations also makes this
same assumption, proving security based on semi-
honest adversaries [4, 5, 6, 7]. Our protocols developed
under this threat model will provide a foundation for
building protocols that can guarantee privacy against other
adversarial models.

4. EMOC APPLICATION PROTOCOLS

In this section, we describe in detail the EMOC protocols,
applied in two sample applications. We first present a
protocol for geographic proximity testing in a Location-
Based Twitter application, which allows Alice to subscribe
to Bob’s tweets without either party revealing their
location. Second, we present a private set intersection
protocol in our Social Graph connectivity tool, which
allows Alice and Bob to determine where their social
networks overlap without exposing the identities of all
of their friends - an application with potential use when
meeting new (and untrusted) people. As a simplified proof
of concept, we develop a protocol for solving the canonical
millionaire’s problem in the technical report version of this
work [31].

4.1. Geographic Proximity Test

Location-based messaging, especially for advertisements,
has recently received significant attention. Beyond
advertising based on location, it offers the potential for
useful applications such as a proximity test to alert two
people if they are close enough to arrange a meeting. It

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

71

Alice (top pin) selects the area she is willing to receive messages
within. Bob's location (bottom pin) is within this area.

Bob selects the entries from Alice's matrix that correspond to his region,
multiplies them together, and exponentiates to a random power b.

Pk > 3 > 7 e
i oy il ! £ # £ E1 E(1 E(L E(E(E(
frr! ‘é__ i 4 k! @ @ ® ® @ @) @) Alice decrypts Bob's
_— = L ¥ - product and finds a
NS N random group element
TR el Vo By | EW | B | E@ | E® | E® | E@
= p
3 &
o P NWS?N NE D @ EQ) | EQ | E@) EW | EQ
R Q i » -
z Cane
Jone Bk \ 2 mé@i\; il Pa E(1) E(1) E(9) E(1) E(1)
b {R(D) Coy
Park o o & o i
o=l fuerdus @ P] EQL) | EQ | EQ EQ) | EQ
Lstus Clart tanta o i P g WS]
[—fAtianta
£
sl 12 g P e | e | Ew | Ew | E@ | E® | EQ
Chiles” " cdlags s @ =
o StEW-

Figure 1. Proximity Test Protocol. We denote Enc,«(-) as E(-). Alice builds a location matrix with encryptions of ‘1’ in every entry

except those that correspond to the area she is willing to receive tweets within. In her travel area, she enters encryptions of generator

‘g’. Bob selects the entries that correspond to his travel area, multiplies them together, exponentiates by a random blind, and returns

the product to Alice. When Alice decrypts, she knows that: if the value is not ‘“1’, Bob’s tweet is relevant to her. Else, Bob’s tweet is
irrelevant to her location.

could also be combined with applications like Twitter to
allow for location-based tweet filtering and following.
However, these applications must query the physical
location of a user, which could compromise the user’s
privacy. To resolve this information leakage, we present a
protocol for securely computing when two users are within a
chosen proximity of one another. While used in a specific
application here, the protocol can be used in any location-
based mobile application. The ability to specify an input
region of any shape or size allows the proximity test to
provide a result at any desired granularity, from the same
building to the samecity.

Problem Definition Assume two Twitter users, a follower
Alice and a tweeter Bob. Alice selects as her input an area
around her current location where, if Bob tweets close to this
area, she wants to receive the tweet. Bob inputs an area
around his current location where his tweets are relevant.
Both of these areas are defined arbitrarily by the user,
meaning they can be of any chosen size and do not haveto
becentered on theuser’sgeographic location.The goal is to
compute whether the area where Alice wishes to receive
Bob’s tweets intersects with the area where Bob’s tweets are
relevant.

Protocol Definition
Common input: A matrix L of size M"N where each cell
corresponds to a physical region within the city where Alice
and Bob are located. Imagine the matrix as a grid laid over a
city map. Each cell has a publicly known correlation to the
city location beneath it.

Input of Alice:Asetofmatrixentries4 corresponding to her
general location in L

Input of Bob:AsetofmatrixentriesB corresponding to his
general location in L
Cryptographic primitives: An

encryption scheme

(Gen(),Encpi(-),Decg(-)) meeting the requirements in
Section 3.

1. Alice generates a public/private keypair pk, sk =
Gen().

2. Alice generates a matrix L 4 = L .Foreachentry e;
24,L4 [e; |= g,whereg is a generator of the message
space G. 8e; /24,L4[ei]=1.

3. Alice encrypts each entry of L4 as follows: 8e; 2 L
4.,ei = Ency(e;). AlicesendL 4 to Bob.

4. Bob homomorphically combines his inputs from L 4
into the single ciphertext Q as follows: 8¢;2 B, O = e,
~62 ~...~€‘B| .

5. Bob blinds Q by exponentiating the ciphertext by a
random integer b2 {1..|G|}, generating the result R
= O BobreturnsR to Alice.

6. Alicedecrypts R.If Decy (R) = 1, Alicesendsan output
bit 0 = 0to Bob, meaning Aliceand Bob are not within
a close enough proximity to exchange tweets. If
Decg (R) =6 1, Alice sends o =1to Bob, and Alice
receivesBob’stweet.

Correctness: If any of the elements in 4 and B overlap, then
the multiplied messages will result in 0 = g" ,where n is the
number of overlapping entries multiplied by the random
blind b. If no entries overlap, the result will be 0 =1%1?=1.

4.2. Private Set Intersection

Social networking applications are a popular channel for
communicating with a mobile device. However, they are
also a potential channel to leak private information about a
user’s social life. If two mobile users were to meet ata
party or conference, one might only want to allow the
other into her social network based on the friends they
already have in common. However, there is currently no
application which allowsthiswithout revealing both users’

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

72

entire social graphs. This application offers a means for
securely revealing only the friends common to both users
while maintaining the privacy of the rest of both social
graphs. Again, we couch our protocol in an application
that is highly relevant to mobile users. However, the
protocol can be used in general to compute the intersection
of any two sets without revealing any element outside of
the intersection. We stress that while our protocol does
have a theoretical complexity of O(n?), our experimental
results show that for practical input sizes, our protocol still
executes faster than any garbled circuit implementations
available. This result illustrates that theoretical efficiency
does not always carryover into practical, usably efficient
algorithms.

Problem Definition Assume two participants, Alice
and Bob, who are both members of a social network.
Each participant assigns a subset of the social network
members as their friends. Given both Alice and Bob’s lists
of friends, we wish to compute which members of the
social network are friends with both Alice and Bob while
keeping the rest of their friend lists private.

Protocol Definition

Common input: A predetermined number of friends N to
compare.

Input of Alice: A set of bit strings A corresponding to her
friend list.

Input of Bob: A set of bit strings B corresponding to his
friend list.

Cryptographic primitives: An encryption scheme
(Gen(), Encyi (), Decsi () meeting the requirements
in Section 3 and a one-way, collision-resistant keyed hash
function H : {0,1}* x {0,1}* — G, given a random key
of length k. We assume this hash produces pseudorandom
outputs.

1. Alice generates a random hash key h € {0, 1}* and
a public/private key pair pk, sk = Gen().

2. Alice hashes and encrypts each of her friends’
into a query array (a, where for each
entry e; € Qa,e; = Encyi(H(A[Z],h)) for
1 € {1..N}. Alice sends Q 4, pk, h to Bob.

3. Bob hashes each of his friends’ names from his
input B and finds the multiplicative inverse of the
hash in the group G, then encrypts his query @B,
where Ve € Qg, e; = Encpr,(H(B[i],h)™") for
i€ {l.N}.

4. Bob generates a result array (Qr by homomor-
phically multiplying each entry of his query with
all the entries of Alice’s query. Ve; € Qr,e; =
Qa[i%N] x Qgpli/N], for i € {1..N?}. Here, %
is short for the modulus operator, and / is short for
integer division.

5. Bob blinds each entry in () g by exponentiating each
entry with a random blind. Bob sets N? random
blinds as b;,i € {1..N?}. Bob blinds each entry

of Qr, Vei € Qr,e; = el for i € {1..N?}. Bob
sends Qg to Alice.

6. Alice decrypts each entry of Qr, where Ve €
QRr,e; = Decsi(ei). Alice defines the set of
matching indices as M such that if Qgrli] =1
then 1% N € M. Alice returns the output array o =
Ali] € Awherei € M.

Correctness: If a string matches in both Alice and Bob’s
inputs, then the product of that matching string = will be
H(x,h) * H(z,h)™" = 1. Otherwise, the product will be
two pseudorandom elements x, i from G as (x * y)°.

5. PRIVACY GUARANTEES

In this section, we define our threat model and prove the
privacy guarantees of both EMOC protocols. For each
protocol, we show two properties: the security of the two-
party computation and the amount of information revealed
by the result of computation.

5.1, Definitions

In all of our protocols, we assume the standard definition of
a semi-honest adversary, described in Lindell and Pinkas’
work [30]. Essentially, this states that both parties will
follow the protocol as written but will attempt to learn
information beyond the computed result from transcripts
of the interaction. This assumption is also made by
related efforts in this space [4, 5, 6, 7, 30]. To prove a
protocol secure against semi-honest adversaries, we use
the concept of indistinguishability between Alice’s view
in a real execution and a simulator’s generation in an ideal
execution. In the ideal world, two participants A, B send
their inputs a, b to a trusted third party which performs
some computation and returns the result f(a, b). The proof
idea is to show that a simulator S in the ideal world can
simulate A’s view in the real protocol.

Definition 3

Semi-honest security: For any deterministic functionality
f(z,y) and semi-honest parties P; and P>, we say that
protocol 7 securely computes f in the presence of semi-
honest adversaries if there exists ppt algorithms S1 and S
such that:

c

Si(x, f(2,9))eyeio}s =
viewy ((z,y), output”™ (2, 9)), ye 01y 3

c
SQ (?J7 f(l', y))m,ye{oﬁl}* ~
vier((ayy),output”(:c,y))m’ye{o,l}* “)

5.2. Location Privacy

Theorem 1
Location Privacy: Assuming the encryption scheme used
in the proximity test protocol is semantically secure, the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

73

Bob multiplies each entry
by all of Alice's encryptions.

-1

If an entry matches, the result will be 1
Raised to Bob's random blinding factor

E(H ' ("Charlie"))

X /X [X X

E(H("Charlie")) » E(1P)
E(H("Dale")) » E(randomb)
E(H("Erika")) » E(randomP)

E(H("Francis")) » E(randomb)

Figure 2. Private set intersection: We denote Encpk () as E(-). Bob homomorphically multiplies each entry in his array by every
entry in Alice’s array. He then exponentiates by a unique blinding factor for all of the resulting values. Alice receives these values and
decrypts them. If an entry is equal to 1, Alice knows there is a match.

proximity test protocol is secure in the presence of semi-
honest adversaries.

Proof
We prove the security of the protocol separately for each
participant.

When Alice is corrupt, her view of the protocol
view, ((a, b), 0) consists only of the message R. We run
the following protocol for simulator S1(A, 0):

1. SireceivesL o from Alice. If o = 0, Sy selectsany
entrye2 L, suchthate 2 A andsets Q = e. Else,
SisetsQ=e2 L, suchthate 2 A.

2. S chooses a random integer b°, generates R®=
Q" and returns R°to Alice.

Proof

If o= 0, the message D ecsk (R) is identical in both the
real and simulated execution, implying that Si(a, 0) 4
view, ((a, b),0). If o= 1, by the DDH problem in
Définition 2, we have that |Pr[A(G, g 9,¢", ", ¢") =
- PriA(G,q 9.9, ¢ ¢"°) = 1l < ;{5 for some
polynomial p. This implies again that Si(a,0) 4
view, ((a, b), 0). Therefore, the proximity test protocol is
secure when Aliceis corrupt. O

When Bob is corrupt, his view of the protocol
viewg ((a, b), 0) consists of the messages L » and 0. We
run the following protocol for simulator Sz(B, 0):

1. S, generates L § by filling each entry with random
values from the ciphertext space Cof the encryption
scheme and sends L to Bob.

2. When Bob replieswith R, S; sends o to Bob.

Proof

By the definition of semantic security in
Definition 1, |PriB(1",Zn, pk, Epk(La) =
1= PriB(1", Zn, pk, Epi(L3)) = 11| < 555 for

some polynomia p and arbitrary information Z, about
the plain texts. The final output o is identica in both
executions, implying that Sx(b 0) G viewg ((a, b), 0).
Therefore, the proximity test protocol is secure when Bob
is corrupt. O

Given the existence of simulators Sy, Sy, this proves the
theorem. O

5.3. Private Set Intersection Privacy

Theorem 2

Private Set Intersection Privacy: Assuming the encryption
scheme used in the private set intersection protocol is
semantically secure and that the secure hash function
used is pseudorandom and one-way, the private set
intersection protocol is secure in the presence of semi-
honest adversaries.

Proof
Again, we prove separately the security of our protocol for
Alice and Bob.

When Alice is corrupt, her view of the protocol
view, ((a, b), 0) consists only of the message Qr . We run
the following protocol for simulator S1(A, 0):

1. St receives (Qa, pk, h) from Alice. S1 generates
Qs by hashing the names in o using h, finding
the multiplicative inverse of each hash in G, and
encrypting using pk (as defined in the protocoal). If
lo] < N, Sa fillsthe remaining entries with a set of
hashed, inverted, and encrypted names F such that
8e2 F,e? A.S; shufflesthe entriesof Qg .

2. Sy peforms the homomorphic operations as
defined in the protocol, blinds each entry of Q%
with arandom exponent £, and returns Q% to Alice.

Proof

By Definition 2, we have for every entry in

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

74

Decak (QR[i) = g” |Pr{A(G.q,9,9%,9",g") =
1] - Pr[A(G,q,9,9%, g% ¢"%) =1]| < p(ln) for some
polynomial p (note here that g” is the hashed name of
one of Bob’s friends multiplied by the hashed name

of one of Alice’s different friends). Thus, we have that

Si(a,0) ~ view] ((a,b), 0) when the hash function H is

one-way, collision-resistant, and pseudorandom.
Therefore, the private set intersection protocol is secure

when Alice is corrupt. O

When Bob is corrupt, his view of the protocol
viewx((a,b), 0) consists of the messages Q4 and o. We
run the following protocol for simulator Sz (B, 0):

1. Sy generates @’y by filling an array of length
N with elements from the ciphertext space C of
the encryption scheme. S» generates a random
public key pk and a random hash key h and sends
(Q's, pk, h), to Bob.

2. When Bob replies with @z, S2 sends o to Bob.

Proof

By Definition 1, we
|Pr{B(1", Zo, pk, By (Qu) = 1] —
Pr(B(1", Zn,pk, Epi(Q')) = 1]| < 5y for some
polynomial p and arbitrary information Z,, about the plain
texts. The distributions of pk and h in both executions are
identical. The final output o is identical in both executions,

have that

implying that Sz (b, o) ~ view}((a, b), 0). Therefore, the
private set intersection protocol is secure when Bob is
corrupt. O

Given the existence of simulators S, .S2, this proves the
theorem. O

6. PERFORMANCE ANALYSIS

While developing new SFE protocols is useful, the main
contribution of our work is the establishment of an
efficient technique for performing SFE on the mobile
platform. Another contribution is our canonical test set that
will facilitate future comparisons between techniques and
encourage additional development of efficient mobile SFE
schemes. Using these tests, our results demonstrate that
through custom designed protocols, we can take advantage
of optimizations that are not available to general-purpose
garbled circuit compilers. This allows our protocols to
execute in time that would be usable by the average mobile
user. We also provide baseline statistics that compare a
variety of garbled circuit techniques that have yet been
untested on the mobile platform. We note that we do not
evaluate any other custom protocols as Huang et al. [19]
claims to have equivalent performance.

6.1. Mobile SFE Benchmarking Applications and
Metrics

To demonstrate the efficiency of a given secure function
evaluation technique, we chose two protocols that are

widely applicable in mobile applications: a geographic
proximity test and a private set intersection protocol.
As we have already shown, these particular functions
would be very useful in some of the most popular mobile
applications. As such, they are a critical benchmark when
examining new mobile SFE techniques.

In addition to presenting these test applications, we
propose a set of metrics to compare efficiency between
techniques executing the test applications. The first is
average execution time, taken over 10 executions with 95%
confidence in the error margin. To demonstrate feasibility
for practical use, we use inputs that correspond to real
values a user might present to such an application. We
found that the execution time for large input sizes tended to
be the limiting factor in performance rather than memory
usage. If an input size caused the application to exceed
the 24 MB automatically allotted by the Android OS,
we increased the heap size and retried the experiment.
Even when allotted extra memory, these executions still
failed to complete. So, if an input exceeded the standard
allocation of 24 MB, we considered it unable to complete.
The second metric is total network usage between both
parties, measured as the number of bytes exchanged during
the protocol. To capture the amount of data exchanged,
we used the “Shark for Root” Android application to
capture network traffic [32], then examined the data in
Wireshark [33]. As mobile devices are often required
to function with costly network connections (both in
terms of energy and billing), minimizing the amount of
traffic required between two parties is critical to efficient
performance.

To demonstrate the practicality of our protocols
in comparison to existing garbled circuit compilation
techniques, we perform the experiments defined above for
our scheme as well as five other garbled circuit compilation
techniques. We selected these techniques because they
represent the full range of general garbled circuit compilers
available. We opted not to include the TASTY framework
by Henecka et al. [6] in this work, as this framework
requires circuits to be constructed and optimized by hand
on a per-function basis. The focus of our work is to show
the performance benefits of our scheme against garbled
circuit compilers designed to compile any general secure
function from a higher level language.

The first garbled circuit technique we evaluate is
Fairplay [4], the standard desktop implementation of Yao’s
garbled circuit technique. Next, we examine Kruger’s
Ordered Binary Decision Diagram optimization [5], which
produces smaller, more efficient garbled circuits through a
modified representation. Third, the Parallelized scheme by
Kreuter et al. [18] incorporates a number of optimizations
for evaluating large circuits in parallel on server-class
machines. The fourth scheme we evaluate is the Pseudo-
Assembly Language (PAL) Compiler by Mood et al. [8],
which produces circuits in a memory-efficient manner
using an intermediate circuit compiler language. Finally,
we examine the pipelined evaluation technique of Huang

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

75

Protocol Input size | SFE scheme | Avg.exec. time (sec.) | Network use (KB)
EMOC 0.0165 (4 0.0001) 128.256
OBDD 23.1480 (+ 0.0351) 1,765.764
.. Parallelized 26.2353 (+ 0.0836) 1,854.049
Proximity Test 500 cells PAL 35.1888 (& 0.0487) 2,029.439
Pipelined 11.1293 (4 0.0332) 603.497
Fairplay NA NA
EMOC 3.7466 (£ 0.0042) 107.520
OBDD 124.4921 (£ 0.2809) 2,879.016
Private Set Intersection 20 friends | Parallelized | 107.8990 (£ 0.4249) 2,669.284
PAL 130.7570 (£ 0.2013) 3,025.966
Fairplay NA NA
16 friends Pipelined 45.7061 (£ 0.1254) 3,401.133

Table I. Our experimental results. Values are present for the maximum input size measure across all applications for accurate
comparison. In the private set intersection protocol, the Pipelined execution environment required input size to be a power of two.

40 w \ \ 12 : ; ; ‘
EMOC —o— EMOC —o— 4

35+ OBDD 10t Pipeline - A =
> Parallelized ---#-- o
;% 30 PAL ---@-- i})‘/ g
a 10 g | &

5 E:f;.—/- 4

R —

50 100 150 200 250 300 350 400 450 500

Input size (matrix entries)

(a) Evaluation phase

50 100 150 200 250 300 350 400 450 500

Input size (matrix entries)

(b) Total Execution Time

Figure 3. Proximity test execution times. Note that for the online execution, for all input sizes our application runs in a fixed amount of
time while all garbled circuits show increasing execution times with increasing input size.

et al. [7], which splits garbled circuits into layers that can
be generated and evaluated separately.

For all of the garbled circuit compilation techniques
except the pipelined evaluation, we split the scheme
into two phases: preprocessing and execution. For the
preprocessing phase, we compiled the garbled circuits
on a desktop and then examined their evaluation times,
the execution phase, on the mobile device. To assure
fair representation across techniques, we either compiled
the circuits ourselves using compiler framework provided
by the technique author or had the author compile the
same SFDL circuit description on their own machines.
In our own protocols, we consider the time Alice
takes to generate her query as the preprocessing phase,
while the online communication between Alice and Bob
constitutes the evaluation phase. In the case of pipelined
circuit evaluation, no such preprocessing phase exists,
since the circuits are generated in layers during the
online evaluation between the two parties. While this
inability to amortize computation costs is a performance

weakness when compared to other SFE techniques, we
chose to perform separate experiments that compare
their pipelining execution time against our combined
preprocessing and online execution time. For these
experiments, we acquired the same mobile implementation
developed by Huang et al. [9] for pipelining the generation
and evaluation of garbled circuits on a mobile device.
While this does not provide a true picture of the
efficiency gains in our amortized execution, it still
shows the significant performance gains of using partially
homomorphic encryption instead of garbled circuits for
mobile SFE applications.

We evaluated all precompiled garbled circuits (i.e. not
pipelined circuits) on the standard Java Fairplay platform,
which we ported to an Android application. Our own
protocols were written in C and cross-compiled to run
natively using the Android toolchain [34]. We use ElGamal
with 1024-bit keys to encrypt and HMAC-mdS5 to hash. All
performance figures were taken on the Samsung Nexus S
smartphone.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

76

140 w w w w
EMOC —6—
120 | OBDD
5 Parallelized --- -
& 100 | PAL ---@---
> L
E 80t]
=
g 60|]
g
) 40 1
M
20 1
0 o o= ¢

4 6 8 10 12 14 16 18 20

Input size (number of friends)

(a) Evaluation phase

1200 ‘ ‘ ‘
EMOC —¢— S

1000 | Pipeline - A

800 | |
600

400

Execution Time (sec)

200

0 50 100 150 200 250 300

Input size (number of friends)

(b) Total Execution Time

Figure 4. Private set intersection execution times. For every garbled circuit technique except the pipelined circuits, we were only able
to run experiments up to inputs of size 20 due to the large memory requirements of Fairplay.

6.2. Results

The results in Table I clearly demonstrate the advantages of
our custom protocols over every garbled circuit technique
tested. In both test applications, we see a significant
increase in execution time and network usage for all
garbled circuit implementations, even in the comparison of
total execution time in Figures 3b and 4b. Because general
purpose compilers cannot take advantage of optimizations
inherent to specific functions, they tend to produce circuits
with irregular performance profiles. This is clearly seen in
Figures 3a and 4a, where garbled circuit techniques do not
consistently outperform one another between applications.
For example, in the proximity test protocol, the OBDD
scheme outperforms the parallelized scheme. However,
this ordering is reversed for the private set intersection
protocol. Ultimately, these fluctuations in performance
are eclipsed by the gains achieved through our custom
designed protocols, where online execution times were at
least 96% better than the fastest garbled circuit technique.
In the best case, our techniques reduced execution time by
three orders of magnitude.

One advantage of our protocols is that for increasing
input sizes, our proximity test protocol only requires
an increase in preprocessing time, while the online
execution remains constant across all input sizes. By
contrast, every garbled circuit technique showed increasing
execution times as input size increased, emphasizing
this significant benefit of our customized protocols. In
addition, the optimizations that are incorporated into
garbled circuit schemes do not consistently provide any
benefit on the constrained mobile platform. For example,
the highly parallelized scheme performs about as well
as non-parallelized garbled circuits, simply because most
mobile phone hardware contains single-core processors.
In the case of the pipelined evaluation circuits, we see

2.5e+06 — 11—
EMOC —o—
OBDD

2e+06

Parallelized -®

1.5e+06

le+06

500000

Network overhead (bytes)

0
50 100 150 200 250 300 350 400 450 500

Input size (cells)

Figure 5. Proximity test network usage. Note that even the most
optimized garbled circuit evaluation technique requires over four
times the amount of network traffic used by EMOC.

an optimization that solves the problem of memory-
intensive preprocessing (i.e., circuit generation), but does
not allow for amortized execution time. EMOC provides
a solution with an efficient preprocessing phase, where
each precomputed ciphertext requires only 256 bytes of
memory, as well as faster amortized execution. Contrary to
Huang et al. [19], these results show that custom protocols
significantly outperform the best available garbled circuit
optimizations on mobile devices.

6.3. Network Overhead

In addition to faster execution, our protocols significantly
reduce the amount of network overhead compared to
garbled circuit techniques. For the proximity test protocol
(Figure 5), we observed a 78% reduction from the
best garbled circuit technique, pipelined execution. In

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

77

3.5e+06 i

"EMOC ——

2 3e+06 | OBDD .

‘QS), Parallelized
< 2.5e+06 PAL @ i
% 2e+06 |
& 1.5e+06 | |
E 1e+06 r s |
2 500000 | |

.
- ————H4
0

4 6 8 10 12 14 16 18 20

Input size (friends)

(a) Excluding Circuit Garbling

le+08 ‘ : : ‘ :
EMOC —o— a
~ 9e+07 1 pipclined e VA
Q L -~ 4
g set07
% 7e+07 t 1
3 6e+07) 1
T 5e407 |]
> -
S 4et07 T A |
g 3e+07 yd B
5 2407 | P 1
1e407 A/ |
0 44 : ‘ ‘ ‘
0 50 100 150 200 250 300

Input size (friends)

(a) Including Circuit Garbling

Figure 6. Private set intersection network traffic. For every garbled circuit technique shown in graph (a), we were only able to run

experiments up to inputs of size 20 before Fairplay was unable to complete execution. Figure (b) shows the network usage for large

inputs in our scheme and the pipelined evaluation scheme. Since the pipelined evaluation scheme implementation of private set
intersection only accepts inputs of size 2%, we show these results separately.

the private set intersection protocol (Figure 6), the
improvement swelled to 96% over the best garbled circuit
technique, the parallelized circuits. This improvement is
due largely to the fact that our protocol does not use
oblivious transfers to exchange inputs. In theory, there
exist a number of oblivious transfer schemes that perform
with efficient (O(n)) communication overhead [35].
However, it is clear that these efficiencies do not always
carry over in practice. In the case of our private set
intersection protocol, we exchange theoretical “efficiency”
for practical usefulness by employing techniques that use
less network overhead in exchange for complexity that is
theoretically less efficient (O(n?)). It is important to note
that for all garbled circuit techniques except the pipelined
circuit evaluation, these graphs do not include the data
required to initially send the circuit from the generating
party to the evaluating party. Depending on the application
and input size, these circuit files could require as much
as 935 KB of additional bandwidth over the measured
amounts further decreasing the feasibility of garbled circuit
protocols.

7. CONCLUSION

As mobile phones become more popular, new techniques
will be needed to protect the private information used in
many of their applications. Garbled circuit constructions
offer an increasingly realistic solution in the desktop
space, but require too much processing power and network
overhead to be practical on the mobile platform. By
replacing garbled circuits with homomorphic encryption
operations, our EMOC protocols demonstrate that certain
privacy-preserving functions can be evaluated with
great efficiency on the mobile platform. In addition,

10

our canonical test applications provide a common
reference point when comparing SFE techniques on the
mobile platform. Using these metrics, our performance
evaluation demonstrates improvements in our protocols of
greater than 99% over the most efficient garbled circuit
constructions, as well as an initial characterization of
the performance capabilities of several garbled circuit
optimizations on the mobile platform. Based on these
results, we present our protocols as an efficient method
for implementing SFE into some location-based and
social networking applications. To foster further research
into efficient mobile SFE, we make our test metrics
and applications available to the research community at
www . foryourphoneonly.org and encourage other
authors working in this space to post their implementations
as well.

ACKNOWLEDGEMENTS

This material is based on research sponsored by DARPA
under agreement number FA8750-11-2-0211. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA
or the U.S. Government. We would also like to thank Kevin
Butler, Peter Chapman, Yan Huang, Benjamin Kreuter,
Louis Kruger, Benjamin Mood, Abhi Shelat and Chih-
hao Shen for their assistance in generating garbled circuits
under their respective schemes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
78

REFERENCES

9.

. Constandache I, Bao X, Azizyan M, Choudhury R. Did you

see Bob?: human localization using mobile phones. Proceedings
of the ACM International Conference on Mobile Computing and
Networking (Mobicom), Chicago, IL, USA, 2010.

. Banerjee N, Agarwal S, Bahl P, Chandra R. Virtual compass: relative

positioning to sense mobile social interactions. Technical Report,
Microsoft Research 2010. URL http://www.springerlink.
com/index/K81H08U2767N2117.pdf.

. Yao AC. How to generate and exchange secrets. Proceedings of

the IEEE Symposium on Foundations of Computer Science (FOCS),
Toronto, Canada, 1986.

. Malkhi D, Nisan N, Pinkas B, Sella Y. Fairplay — A Secure Two-

Party Computation System. Proceedings of the USENIX Security
Symposium (SECURITY), San Diego, CA, USA, 2004.

. Kruger L, Jha S, Goh EJ, Boneh D. Secure Function Evaluation

with Ordered Binary Decision Diagrams. Proceedings of the ACM
conference on Computer and communications security (CCS),
Alexandria, VA, USA, 2006.

. Henecka W, Kogl S, Sadeghi Ar, Schneider T, Wehrenberg I. TASTY

: Tool for Automating Secure Two-partY computations. Proceedings
of the ACM conference on Computer and Communications Security
(CCS), Chicago, IL, USA, 2010.

. Huang Y, Evans D, Katz J, Malka L. Faster Secure Two-Party

Computation Using Garbled Circuits. Proceedings of the USENIX
Security Symposium, San Francisco, CA, USA, 2011.

. Mood B, Letaw L, Butler K. Memory-Efficient Garbled Circuit

Generation for Mobile Devices. Proceedings of the IFCA
International Conference on Financial Cryptography and Data
Security (FC), Kralendijk, Bonaire, 2012.

Huang Y, Chapman P, Evans D. Privacy-Preserving Applications on
Smartphones. Proceedings of the USENIX Workshop on Hot Topics

in Security, San Francisco, CA, USA, 2011.

. Freedman M, Nissim K, Pinkas B. Efficient private matching and set

intersection. EUROCRYPT, Interlaken, Switzerland, 2004.

. Hirt M, Sako K. Efficient Reciept-free voting based on homomorphic

encryption. Proceedings of the International Conference on Theory
and Application of Cryptographic Techniques (EUROCRYPT),
Bruges, Belgium, 2000.

. Zhong G, Goldberg I, Hengartner U. Louis, Lester and Pierre: Three

Protocols for Location Privacy. Privacy Enhancing Technologies
Symposium, Ottawa, Canada, 2007.

. De Cristofaro E, Tsudik G. Practical private set intersection protocols

with linear complexity. Proceedings of the IFCA International
Conference on Financial Cryptography and Data Security (FC),
Canary Islands, Spain, 2010.

. Camenisch J, Zaverucha G. Private intersection of certified sets.

Proceedings of the IFCA International Conference on Financial
Cryptography and Data Security (FC), Christ Church, Barbados,
2009.

. Kim M, Lee HT, Cheon JH. Mutual private set intersection with

linear complexity. Proceedings of the international conference on
Information Security Applications, Jeju Island, Korea, 2011.

. De Cristofaro E, Kim J, Tsudik G. Linear-complexity private set

intersection protocols secure in malicious model. International
Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), Singapore, 2010.

. Kissner L, Song D. Privacy-preserving set operations. Advances in

Cryptology (CRYPTO), Santa Barbara, CA, USA, 2005.

. Kreuter B, Shelat A, Shen Ch. Billion-Gate Secure Computation

with Malicious Adversaries. Proceedings of the USENIX Security
Symposium, Bellevue, WA, USA, 2012.

. Huang Y, Evans D, Katz J. Private Set Intersection: Are Garbled

Circuits Better than Custom Protocols? Proceedings of the isoc
Network and Distributed Systems Security (NDSS) Symposium, San

11

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Diego, CA, USA, 2012.

Carter H, Mood B, Traynor P, Butler K. Secure Outsourced Garbled
Circuit Evaluation for Mobile Devices. Proceedings of the USENIX
Security Symposium, Washington, D.C., USA, 2013.

Nipane N, Dacosta I, Traynor P. “Mix-In-Place” anonymous
networking using secure function evaluation. Proceedings of the
Annual Computer Security Applications Conference (ACSAC),
Orlando, FL, USA, 2011.

Kerschbaum F, Schropfer A, Dahlmeier D, Biswas D. On the
Practical Importance of Communication Complexity for Secure
Multi-Party Computation Protocols. Proceedings of the ACM
Symposium on Applied Computing (SAC), Honolulu, HI, USA, 2009.
Nakamura T, Inenaga S, Tkeda D, Baba K, Yasuura H. Anonymous
Authentication Systems Based on Private Information Retrieval.
International Comference on Networked Digital Technologies
(NDT), Ostrava, The Czech Republic, 2009.

Bethencourt J, Song D, Waters B. Analysis-Resistant Malware.
Proceedings of the ISOC Network and Distributed Systems Security
(NDSS) Symposium, 2008.

Ostrovsky R, III WES. Private Searching On Streaming Data.
Journal of Cryptology 2007; 20(4):397-430.

Ramachandran A, Zhou Z, Huang D. Computing Cryptographic
Algorithms in Portable and Embedded Devices. Proceedings of the
IEEE International Conference on Portable Information Devices
(PORTABLE), Orlando, FL, USA, 2007.

Goldreich O. Foundations of Cryptography Volume II: Basic
Applications. Cambridge University Press, 1996.

Odelu V, Das A, Goswami A. An effective and secure key-
management scheme for hierarchical access control in e-medicine
system. Journal of Medical Systems 2013; 37(2):1-18.

Katz J, Lindell Y. Introduction to Modern Cryptography. Chapman
and Hall/CRC, 2007.

Lindell Y, Pinkas B. A Proof of Yao’s Protocol for Secure Two-Party
Computation. Journal of Cryptology 2009; 22(2):161-188.

Carter H, Amrutkar C, Dacosta I, Traynor P. Efficient Oblivious
Computation Techniques for Privacy-Preserving Mobile Applica-
tions. Technical Report GT-CS-11-11, College of Computing, Geor-
gia Institute of Technology 2011.
Kustans E. Shark
https://play.google.com/store/apps/details?id=Iv.n30.shark 2012.
The Wireshark Foundation. Wireshark. https://www.wireshark.org/
2012.

Google. Android project. http://source.android.com 2010.

Naor M, Pinkas B. Efficient oblivious transfer protocols. Proceed-
ings of the ACM-SIAM symposium on Discrete algorithms, Wash-
ington, D.C., USA, 2001.

for root.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
79

Reuse It Or Lose It: More Efficient Secure Computation
Through Reuse of Encrypted Values

Benjamin Mood
University of Florida

bmood@ufl.edu

Kevin R. B. Butler
University of Florida
butler@ufl.edu

ABSTRACT

Two-party secure-function evaluation (SFE) has become sig-
nificantly more feasible, even on resource-constrained de-
vices, because of advances in server-aided computation sys-
tems. However, there are still bottlenecks, particularly in the
input-validation stage of a computation. Moreover, SFE re-
search has not yet devoted sufficient attention to the impor-
tant problem of retaining state after a computation has been
performed so that expensive processing does not have to be
repeated if a similar computation is done again. This paper
presents PartialGC, an SFE system that allows the reuse of
encrypted values generated during a garbled-circuit compu-
tation. We show that using Partial GC can reduce computa-
tion time by as much as 96% and bandwidth by as much as
98% in comparison with previous outsourcing schemes for
secure computation. We demonstrate the feasibility of our
approach with two sets of experiments, one in which the
garbled circuit is evaluated on a mobile device and one in
which it is evaluated on a server. We also use PartialGC
to build a privacy-preserving “friend-finder” application for
Android. The reuse of previous inputs to allow stateful eval-
uation represents a new way of looking at SFE and further
reduces computational barriers.

1. INTRODUCTION

Secure function evaluation, or SF'E, allows multiple parties
to jointly compute a function while maintaining input and
output privacy. The two-party variant, known as 2P-SFE,
was first introduced by Yao in the 1980s [39] and was largely
a theoretical curiosity. Developments in recent years have
made 2P-SFE vastly more efficient [18, 27, 38]. However,
computing a function using SFE is still usually much slower
than doing so in a non-privacy-preserving manner.

As mobile devices become more powerful and ubiquitous,
users expect more services to be accessible through them.
When SFE is performed on mobile devices (where resource
constraints are tight), it is extremely slow — if the com-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CCS’14, November 3-7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660285.

Debayan Gupta

Yale University

debayan.gupta@yale.edu

Joan Feigenbaum
Yale University

joan.feigenbaum@yale.edu

putation can be run at all without exhausting the mem-
ory, which can happen for non-trivial input sizes and algo-
rithms [8]. One way to allow mobile devices to perform SFE
is to use a server-aided computational model [8, 22], allow-
ing the majority of an SFE computation to be “outsourced”
to a more powerful device while still preserving privacy. Past
approaches, however, have not considered the ways in which
mobile computation differs from the desktop. Often, the mo-
bile device is called upon to perform incremental operations
that are continuations of a previous computation.

Consider, for example, a “friend-finder” application where
the location of users is updated periodically to determine
whether a contact is in proximity. Traditional applications
disclose location information to a central server. A privacy-
preserving friend-finder could perform these operations in a
mutually oblivious fashion. However, every incremental lo-
cation update would require a full re-evaluation of the func-
tion with fresh inputs in a standard SFE solution. Our ex-
amination of an outsourced SFE scheme for mobile devices
by Carter et al. [8] (hereon CMTB), determined that the
cryptographic consistency checks performed on the inputs
to an SFE computation themselves can constitute the great-
est bottleneck to performance.

Additionally, many other applications require the ability
to save state, a feature that current garbled-circuit imple-
mentations do not possess. The ability to save state and
reuse an intermediate value from one garbled circuit execu-
tion in another would be useful in many other ways, e.g., we
could split a large computation into a number of smaller
pieces. Combined with efficient input validation, this be-
comes an extremely attractive proposition.

In this paper, we show that it is possible to reuse an en-
crypted value in an outsourced SFE computation (we use
a cut-and-choose garbled circuit protocol) even if one is re-
stricted to primitives that are part of standard garbled cir-
cuits. Our system, PartialGC, which is based on CMTB,
provides a way to take encrypted output wire values from
one SFE computation, save them, and then reuse them as
input wires in a new garbled circuit. Our method vastly re-
duces the number of cryptographic operations compared to
the trivial mechanism of simply XOR’ing the results with a
one-time pad, which requires either generating inside the cir-
cuit, or inputting, a very large one-time pad, both complex
operations. Through the use of improved input validation
mechanisms proposed by shelat and Shen [38] (hereon sS13)
and new methods of partial input gate checks and evalu-
ation, we improve on previous proposals. There are other

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

80

approaches to the creation of reusable garbled circuits [13,
10, 5], and previous work on reusing encrypted valuesin the
ORAM model [30, 11, 31], but these earlier schemes have
not been implemented. By contrast, we have implemented
our scheme and found it to be both practical and efficient;
we provide a performance analysis and a sample application
toillustrate its feasibility (Section 6), as well as a simplified
example execution (Appendix C).

By breaking a large program into smaller pieces, our sys-
tem allows interactive |/ O throughout the garbled circuit
computation. To the best of our knowledge this is the first
practical protocol for performing interactive I/ O in the mid-
dle of a cut-and-choose garbled circuit computation.

Our system comprises three parties - a generator, an eval-
uator, and a third party (“the cloud”), to which the evaluator
outsources its part of the computation. Our protocol is se-
cure against a malicious adversary, assuming that there is
no collusion with the cloud. We also provide a semi-honest
version of the protocaol.

Figure 1 shows how PartialGC works at a high level: First,
a standard SFE execution (blue) takes place, at the end of
which we" save” someintermediate output values. All further
executions use intermediate values from previous executions.
In order to reuse these values, information from both parties
— the generator and the evaluator — has to be saved. In our
protocol, it is the cloud — rather than the evaluator — that
saves information. This allows multiple distinct evaluators
to participate in a large computation over time by saving
state in the cloud between diCerent garbled circuit execu-
tions. For example, in a scenario where a mobile phone is
outsourcing computation to a cloud, PartialGC can save the
encrypted intermediate outputs to the cloud instead of the
phone (Figure 2). This allows the phones to communicate
with each other by storing encrypted intermediate values in
the cloud, which is more efficient than requiring them to
directly participate in the saving of values, as required by
earlier 2P-SFE systems. Our friend finder application, built
for an Android device, reflects this usage model and allows
multiple friendsto share their intermediate valuesin a cloud.
Other friends use these saved values to check whether or not
someone is in the same map cell as themselves without hav-
ing to copy and send data.

By incorporating our optimizations, we give the following
contributions:

1. Reusable Encrypted Values — We show how to reuse an
encrypted value, using only garbled circuits, by mapping
one garbled value into another.

2. Reduced Runtime and Bandwidth —\We show how reusable
encrypted values can be used in practice to reduce the ex-
ecution time for a garbled-circuit computation; we get a
96% reduction in runtime and a 98% reduction in band-
width over CMTB.

3. Outsourcing Stateful Applications—We show how our sys-
tem increases the scope of SFE applications by allowing
multiple evaluating parties over a period of time to op-
erate on the saved state of an SFE computation without
the need for these parties to know about each other.

Theremainder of our paper isorganized as follows: Section 2
provides some background on SFE. Section 3 introduces the
concept of partial garbled circuits in detail. The PartialGC
protocol and its implementation are described in Section 4,
while its security is analyzed in Section 5. Section 6 evalu-
ates PartialGC and introduces the friend finder application.

Garbled(
Circuit(

Figure 1: PartialGC Overview. E is evaluator and G is gen-
erator. The blue box is a standard execution that produces
partial outputs (garbled values); yellow boxes represent exe-
cutionsthat take partial inputsand produce partial outputs.

AN

Outsourced SFE Computation 1 Outsourced SFE Computation 2
Figure 2: Our system has three parties. Only the cloud and
generator have to save intermediate values - this means that
we can have dilerent phones in diCerent computations.

Section 7 discusses related work and Section 8 concludes.

2. BACKGROUND

Secure function evaluation (SFE) addresses scenarios where
two or more mutually distrustful parties Ps,..., Py, with
private inputs x4, ..., x,, want to compute a given function
yi = f(X1,...,%xn) (yi is the output received by P;), such
that no P; learns anything about any x; or y;, i 6 j that is
not logically implied by x; and y;. Moreover, there exists no
trusted third party — if there was, the P;s could simply send
their inputs to the trusted party, which would evaluate the
function and return the y;s.

SFE was first proposed in the 1980s in Yao’s seminal pa-
per [39]. The area has been studied extensively by the cryp-
tography community, leading to the creation of the first gen-
eral purpose platform for SFE, Fairplay [32] in the early
2000s. Today, there exist many such platforms [6, 9, 16, 17,
26, 37, 40].

The classic platforms for 2P-SFE, including Fairplay, use
garbled circuits. A garbled circuit is a Boolean circuit which
is encrypted in such a way that it can be evaluated when
the proper input wires are entered. T he party that evaluates
this circuit does not learn anything about what any partic-
ular wire represents. In 2P-SFE, the two parties are: the
generator, which creates the garbled circuit, and the evalua-
tor, which evaluates the garbled circuit. Additional crypto-
graphic techniques are used for input and output; we discuss
these later.

A two-input Boolean gate has four truth table entries. A
two-input garbled gate also has a truth table with four en-
tries representing 1s and Os, but these entries are encrypted
and can only be retrieved when the proper keys are used.
The values that represent the 1s and Os are random strings
of bits. The truth table entries are permuted such that the
evaluator cannot determine which entry she is able to de-
crypt, only that sheis ableto decrypt an entry. The entirety
of a garbled gate is the four encrypted output values.

Each garbled gate is then encrypted in the following way:
Each entry in the truth table is encrypted under the two
input wires, which leadsto theresult, truth; = Enc(inputx||
input,) [output;, where truth; isavaluein the truth table,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

81

input, is the value of input wire x, input, is the value of
input wire y, and output; is the non-encrypted value, which
represents either 0 or 1.We use AES as the Enc function.
If the evaluator has input, and input,, then she can also
receive output;, and the encrypted truth tables are sent to
her for evaluation.

For the evaluator’s input, l-out-of-2 oblivious transfers
(OTs) [1, 20, 34, 35] are used. In a 1-out-of-2 OT, one party
offers up two possible values while the other party selects
one of the two values without learning the other. The party
that offers up the two values does not learn which value was
selected. Using this technique, the evaluator gets the wire
labels for her input without leaking information.

The only way for the evaluator to get a correct output
value from a garbled gate is to know the correct decryption
keys for a specific entry in the truth table, as well as the
location of the value she has to decrypt.

During the permutation stage, rather than simply ran-
domly permuting the values, the generator permutes values
based on a specific bit in input, and input,, such that, given
input, and input, the evaluator knows that the location of
the entry to decrypt is bit, * 2 + bit,. These bits are called
the permutation bits, as they show the evaluator which en-
try to select based on the permutation; this optimization,
which does not leak any information, is known as point and
permute [32].

2.1 Threat Models

Traditionally, there are two threat models discussed in
SFE work, semi-honest and malicious. The above description
of garbled circuits is the same in both threat models. In
the semi-honest model users stay true to the protocol but
may attempt to learn extra information from the system
by looking at any message that is sent or received. In the
malicious model, users may attempt to change anything with
the goal of learning extra information or giving incorrect
results without being detected; extra techniques must be
added to achieve security against a malicious adversary.

There are several well-known attacks a malicious adver-
sary could use against a garbled circuit protocol. A protocol
secure against malicious adversaries must have solutions to
all potential pitfalls, described in turn:

Generation of incorrect circuits If the generator does
not create a correct garbled circuit, he could learn extra
information by modifying truth table values to output the
evaluator’s input; he is limited only by the external structure
of the garbled circuit the evaluator expects.

Selective failure of input If the generator does not offer
up correct input wires to the evaluator, and the evaluator
selects the wire that was not created properly, the generator
can learn up to a single bit of information based on whether
the computation produced correct outputs.

Input consistency If either party’s input is not consis-
tent across all circuits, then it might be possible for extra
information to be retrieved.

Output consistency In the two-party case, the output
consistency check verifies that the evaluator did not modify
the generator’s output before sending it.

2.1.1 Non-collusion

CMTB assumes non-collusion, as quoted below:
“The outsourced two-party SF'E protocol securely computes
a function f(a,b) in the following two corruption scenarios:

(1)The cloud is malicious and non-cooperative with respect
to the rest of the parties, while all other parties are semi-
honest, (2)All but one party is malicious, while the cloud is
semi-honest.”

This is the standard definition of non-collusion used in
server-aided works such as Kamara et al. [22]. Non-collusion
does not mean the parties are trusted; it only means the
two parties are not working together (i.e. both malicious).
In CMTB, any individual party that attempts to cheat to
gain additional information will still be caught, but collu-
sion between multiple parties could leak information. For
instance, the generator could send the cloud the keys to de-
crypt the circuit and see what the intermediate values are
of the garbled function.

3. PARTIAL GARBLED CIRCUITS

We introduce the concept of partial garbled circuits (PGCs),
which allows the encrypted wire outputs from one SFE com-
putation to be used as inputs to another. This can be ac-
complished by mapping the encrypted output wire values to
valid input wire values in the next computation. In order to
better demonstrate their structure and use, we first present
PGCs in a semi-honest setting, before showing how they can
aid us against malicious adversaries.

3.1 PGCs in the Semi-Honest Model

In the semi-honest model, for each wire value, the gen-
erator can simply send two values to the evaluator, which
transforms the wire label the evaluator owns to work in an-
other garbled circuit. Depending on the point and permute
bit of the wire label received by the evaluator, she can map
the value from a previous garbled circuit computation to a
valid wire label in the next computation.

Specifically, for a given wire pair, the generator has wires
wéfl and w:tfl, and creates wires w§ and wt. Here, t refers
to a particular computation in a series, while 0 and 1 cor-
respond to the values of the point and permute bits of the
t — 1 values. The generator sends the values w{™' ® w§ and
wi_l @ w! to the evaluator. Depending on the point and
permute bit of the wffl value she possesses, the evaluator
selects the correct value and then XORs her w!™" with the
(w!™" @ w}) value, thereby giving her w!, the valid partial
input wire.

3.2 PGCs in the Malicious Model

In the malicious model we must allow the evaluation of a
circuit with partial inputs and verification of the mappings,
while preventing a selective failure attack. The following fea-
tures are necessary to accomplish these goals:

1. Verifiable Mapping

The generator G is able to create a secure mapping from
a saved garbled wire value into a new computation that can
be checked by the evaluator E, without E being able to re-
verse the mapping. During the evaluation and check phase,
FE must be able to verify the mapping G sent. G must have
either committed to the mappings before deciding the parti-
tion of evaluation and check circuits, or never learned which
circuits are in the check versus the evaluation sets.

2. Partial Generation and Partial Evaluation

G creates the garbled gates necessary for F to enter the
previously output intermediate encrypted values into the
next garbled circuit. These garbled gates are called partial
input gates. As shown in Figure 3 each garbled circuit is

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

82

Partial input

Gate 0 Remainder
Garbled Circuit Input 0| of Garbled
lb Circuit
Partial input AND
Gate N
'» Garbled Circuit Input N

Figure 3: This figure shows how we create a single partial
input gate for each input bit for each circuit and then link
the partial input gates to the remainder of the circuit.

made up of two pieces: the partial input gates and the re-
mainder of the garbled circuit.
3. Revealing Incorrect Transformations

Our last goal is to let E inform G that incorrect values
have been detected. Without a way to limit leakage, G could
gain information based on whether or not E informs G that
she caught him cheating. This is a selective failure attack
and is not present in our protocol.

4. PARTIALGC PROTOCOL

Westart with the CMT B protocol and add cut-and-choose
operations from sS13 before introducing the mechanisms
needed to save and reuse values. We defer to the original
papers for full details of the outsourced oblivious trans-
fer [8] and the generator’s input consistency check [38] sub-
protocols that we use as primitives in our protocol.

Our system operates in the same threat model as CMTB
(see Section 2.1.1): we are secure against a malicious adver-
sary under the assumption of non-collusion. A description of
the CMTB protocol is available in Appendix A.

41 Preiminaries

There are three participants in the protocol:

Generator — The generator is the party that generates
the garbled circuit for the 2P-SFE.

Evaluator —The evaluator is the other party in the 2P-
SFE, which is outsourcing computation to a third party, the
cloud.

Cloud — Thecloud isthe party that executes the garbled
circuit outsourced by the evaluator.

Notation
C; - Theith circuit.

CK ey; - Circuit key used for the free XOR optimization [25].
The key is randomly generated and then used as the diler-
ence between the 0 and 1 wire labels for a circuit C;.

CSeed; - Thisvalueiscreated by the generator’'s PRNG and
is used to generate a particular circuit C;.

POut# ;; - The partial output values are the encrypted wire
values output from an SFE computation. T heseare encrypted
garbled circuit values that can be reused in another garbled
circuit computation. # is replaced in our protocol descrip-
tion with either a0, 1, or x, signifying whether it representsa
0, 1, or an unknown value (from the cloud’s point of view). i
denotes the circuit the POut value came from and j denotes
the wire of the POut; circuit.

PlIn#;; - The partial input values are the re-entered POut
values after they have been obfuscated to remove the circuit
key from the previous computation. These values are input
tothe partial input gates. # , i, and j, are the same as above.

Gln#;; - The garbled circuit input values are the results
of the partial input gates and are input into the remaining
garbled circuit, as shown in Figure 3. #, i, and j, are the
same as above.

Partial Input Gates - These are garbled gates that take in
Pl n values and output G/n values. Their purpose is to
transform the PIn values into values that are under CK ey;
for the current circuit.

4.2 Protocol

Each computation is self-contained; other than what is
explicitly described as saved in the protocol, each value or
property is only used for a single part of the computation
(i.e. randomness is dilerent across computations).

Algorithm 0: PartialComputation

: Circuit_File, Bit_Security, Number_of_Circuits, Inputs,
Is_First_Execution

Output: Circuit File Output

Qut _and_Choose(is_First_Execution)

Eval_Garbled_Input Eval uat or _| nput (Eval_Select_Bits,
Possible_Eval_Input)

Gener at or _| nput _Check(Gen_Input)

Partial_Garbled_Input Partial _I nput (Partial_-Outputtime-1)
Garbled_Output, Partial_Output

O rcuit_Execution(Garbled_Input (Gen, Eval, Partial))
Qrcuit_Qutput(Garbled_Output)

Partial _Qutput (Partial_Output)

Input

Common Inputs: The program circuit file, the bit level
security, the circuit level security (number of circuits) S,
and encryption and commitment functions.

Private Inputs: The evaluator’s input ev// nput and gen-
erator’s input genl nput.

Outputs: Theevaluator and generator can both receive gar-
bled circuit outputs.

Phase 1. Cut-and-choose

We modify the cut-and-choose mechanism described in
sS13 as we have an extra party involved in the computation.
In this cut-and-choose, the cloud selects which circuits are
evaluation circuits and which circuits are check circuits,

circuitSelection = rand()

where circuitSelection is a bit vector of size S; N evaluation
circuitsand S— N check circuits are selected where N = %S.
The generator does not learn the circuit selection.

The generator generates garbled versions of his input and
circuit seeds for each circuit. He encrypts these values using
unique 1-time XOR pad keys. For 0 <j < S,

CSeed; = rand(

)

garbledGenl nput; = garble(genl nput, rand())
checkK ey; = rand()

eviK ey;i = rand()

encSeedl n; = CSeed; [evIK ey;

encGarbledl n; = garbledGenl nput; [checkK ey;

The cloud and generator perform an oblivious transfer where
the generator olers up decryption keys for his input and
decryption keys for the circuit seed for each circuit. The
cloud can select the key to decrypt the generator’s input or
the key to decrypt the circuit seed for a circuit but not both.
For each circuit, if the cloud selects the decryption key for
the circuit seed in the oblivious transfer, then the circuit is
used as a check circuit.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

83

Algorithm 1: Cut_and Choose
Input : is First_Execution
if is_First_Ezecution then
L circuitSelection < rand() // bit-vector of size S

N + 25 // Number of evaluation circuits
//Generator creates his garbled input and circuit seeds for each
circuit
for i <+ 0 to S do
CSeed; < rand()
garbledGenInput; < garble(genInput, rand())
//generator creates or loads keys
if is_First_Ezecution then
checkKey; < rand()
eviKey; < rand()
else
loadKeys();
checkKey; + hash(loadedCheckKey;)
evliKey; < hash(loadedEvlKey;)

// encrypts using unique 1-time XOR pads
encSeedIn; < CSeed; @ evlKey;
encGarbledIn; < garbledGenInput; & checkKey;

if is_First_FEzecution then

// generator offers input OR keys for each circuit seed
selectedKeys <+

OT (circuitSelection, {eviKey, checkKey})

else
| loadSelectedKeys()

for i + 0 to S do
genSendToEval(hash(checkKey;),
hash(evaluationKey;))

for i <~ 0 to S do
| cloudSendToEval(hash(selectedK ey;), isCheckCircuit;)

// If all values match, the evaluator learns split, else abort.
for i < 0 to S do

j + isCheckClircuit;

correct < (recievedGen,; j == recievedEwvl;)

if /correct then

| abort()

selectedKeys = OT (circuitSelection, {eviKey, checkKey})

If the cloud selects the key for the generator’s input then
a given circuit is used as an evaluation circuit. Otherwise,
the key for the circuit seed was selected and the circuit is
a check circuit. The decryption keys are saved by both the
generator and cloud in the event a computation uses saved
values from this computation.

The generator sends the encrypted garbled inputs and
check circuit information for all circuits to the cloud. The
cloud decrypts the information he can decrypt using its keys.
The evaluator must also learn the circuit split. The generator
sends a hash of each possible encryption key the cloud could
have selected to the evaluator for each circuit as an ordered
pair. For 0 <i < S,

genSend(hash(checkKey;), hash(evaluationKey;))

The cloud sends a hash of the value received to the evaluator
for each circuit. The cloud also sends bits to indicate which
circuits were selected as check and evaluation circuits to the
evaluator. For 0 <17 < S,

cloudSend(hash(selectedKey;), isCheckCircuit;)

The evaluator compares each hash the cloud sent to one of
the hashes the generator sent, which is selected by the circuit
selection sent by the cloud. For 0 < ¢ < S,

j = isCheckClircuit;

correct = (receivedGen;, ; == received Evl;)

If all values match, the evaluator uses the isCheckClircuit;
to learn the split between check and evaluator circuits. Oth-
erwise the evaluator safely aborts.

We only perform the cut-and-choose oblivious transfer for
the initial computation. For any subsequent computations,
the generator and evaluator hash the saved decryption keys
and use those hashes as the new encryption and decryption
keys. The circuit split selected by the cloud is saved and
stays the same across computations.

Phase 2: Oblivious Transfer

Algorithm 2: Evaluator_Input

Input : Eval_Select_Bits, Possible_Eval_Input
Output: Eval_Garbled_Input
// cloud gets selected input wires // generator offers both
possible input wire values for each input wire; evaluator selects
its input
outSeeds = BaseOOT (bitsEvl, possibleInputs).
// the generator sends unique IKey values for each circuit to the
evaluator
for i + 0 to S do

L genSendToEval(IKey;)

// the evaluator sends IKey values for all evaluation circuits to
the cloud
for i +— 0 to S do
if lisCheckClircuit(i) then
| EvalSendToCloud(IKey;)

// cloud uses this to learn appropriate inputs
for i + 0 to S do
for j < 0 to len(evlInputs) do
if lisCheckCircuit(i) then
L input Evl;; < hash(IKeys;, outSeeds;)

return inputEvl

We use the base outsourced oblivious transfer (OOT) of
CMTB. In this transfer the generator inputs both possible
input wire values for each evaluator’s input wire while the
evaluator inputs its own input. After the OOT is performed,
the cloud has the selected input wire values, which represent
the evaluator’s input.

As with CMTB, which uses the results from a single OOT
as seeds to create the evaluator’s input for all circuits, the
cloud in our system also uses seeds from a single base OT
(called “BaseOOT” below) to generate the input for the eval-
uation circuits. The cloud receives the seeds for each input
bit selected by the evaluator.

outSeeds = BaseOOT (evlInputSeeds, evlInput).

The generator creates unique keys, I Key, for each circuit
and sends each key to the evaluator. The evaluator sends the
keys for the evaluation circuits to the cloud. The cloud then
uses these values to attain the evaluator’s input. For 0 < i <
S, for 0 < j < len(evlInputs) where lisCheckCircuit(i),

inputEvl;; = hash(IKey;, outSeeds;)

Phase 3: Generator’s Input Consistency Check

We use the input consistency check of sS13. In this check, a
universal hash is used to prove consistency of the generator’s
input across each evaluation circuit. Simply put, if the hash
is different in any of the evaluation circuits, we know the
generator did not enter consistent input. More formally, a
hash of the generator’s input is taken for each circuit. For
0 < i < S where lisCheckCircuit(i),

t; = UHF(garbledGenlInput;, C;)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

84

Algorithm 3: Generator_Input_Check

Algorithm 4: Partial Input

Input : Generator_Input
// The cloud takes a hash of the generator’s input or each
evaluation circuit for i <~ 0 to S do
if isCheckClircuit(i) then
| ti «+ UHF(garbledGenlInput;)

//If a single hash is different then the cloud knows the generator
tried to cheat.

correct < ((t() == tl)&(to == tQ)& . &(to == tN—l))

if Icorrect then

| abort()

The results of these universal hashes are compared. If a sin-
gle hash is different then the cloud knows the generator tried
to cheat and safely aborts.

correct = ((to == t1)&(to == t2)& ... &(to == tn—_1))

Phase 4: Partial Input Gate Generation, Check,
and Evaluation

Generation

For 0 < i< S, for 0 < j < len(savedWires), the gener-
ator creates a partial input gate, which transforms a wire’s
saved values, POut0;,; and POutl; ;, into wire values that
can be used in the current garbled circuit execution, GIn0; ;
and GInl; ;. For each circuit, C;, the generator creates a
pseudorandom transformation value R;, to assist with the
transformation.

For each set of POut0;; and POutl; ;, the generator
XORs each value with R;. Both results are then hashed, and
put through a function to determine the new permutation
bit, as hashing removes the old permutation bit.

t0 = hCLSh(POutOi,j (&%) Rq,)
tl = hash(POutli,j D Rz)
PInQ; ;, PInl; ;j = setPPBitGen(t0,t1)

This function, setPPBitGen, pseudo-randomly finds a bit
that is different between the two values of the wire and notes
that bit to be the permutation bit. setPPBitGen is seeded
from C'Seed;, allowing the cloud to regenerate these values
for the check circuits.

For each PIn0; ;, PInl; ; pair, a set of values, GIn0; ; and
GInl; ;, are created under the master key of C;, CKey;, —
where C'Key; is the difference between 0 and 1 wire labels
for the circuit. In classic garbled gate style, two truth table
values, TT0; ; and TT1; ;, are created such that:

TTO0;; ® PIn0;; = GInO; ;
TT1;; ® PInl; ; = GInl;

The truth table, T70;; and T7'1;;, is permuted so that
the permutation bits of PIn0;; and PInl; ; tell the cloud
which entry to select. Each partial input gate, consisting of
the permuted T7T0;;, TT1;; values and the bit location
from set PP BitGen is sent to the cloud. Each R; is also sent
to the cloud.

Check

For 0 < i < S where isCheckCircuit(i), for 0 < j <
len(savedWires), the cloud receives the truth table informa-
tion, TT0; ;,TT1; ;, and bit location from setPPBitGen,
and proceeds to regenerate the gates based on the check cir-
cuit information. The cloud uses R; (sent by the generator),
POut0;,; and POutl;; (saved during the previous execu-
tion), and C'Seed; (recovered during the cut-and-choose) to

Input : Partial_ Output
Output: Partial Garbled_Input
// Generation: the generator creates a partial input gate, which
transforms a wire’s saved values, POut0; ; and POutl; j, into
values that can be used in the current garbled circuit execution,
GInOM and GITL].@M,' .
for i < 0 to S do
R; + PRNG.random()
for j <+ 0 to len(savedWires) do
t0 hash(POutOi‘j (&) RL)
tl hash(POutli,j (5] Rl)
PIn0;,;, PInl; j < setPPBitGen(t0,t1)
GIn0;,; < TTO0;,; ® PIn0; ;
GInl; j < TT1; ; ® PInl;
GenSendToCloud(Permute([TT0;,;, TT1; ;]),
permute_bit_locations)

| GenSendToCloud(R;)

// Check: The cloud checks the gates to make sure the generator
idn’t cheat

for i < 0 to S do

if isCheckCircuit(i) then

for j < 0 to len(savedWires) do

// the cloud has received the truth table
information, TT0; j, TT1; ;, bit locations from
setPPBitGen, and R;

correct < (generateGateFromInfo() ==
receivedGateFromGen())

// If any gate does not match, the cloud knows the
generator tried to cheat.

if !correct then

L abort();

=%

// Evaluation

for i +— 0 to S do

if lisCheckClircuit(i) then

for j < 0 to len(savedWires) do

//The cloud, using the previously saved POutz; ;
value, and the location (point and permute) bit sent
by the generator, creates PInz; ;

Plnx; g

setPPBitEval(hash(R; & POutz; j), location)

// Using PInz; ;, the cloud selects the proper
truth table entry TTz; ; from either TT0; ; or
TT1,,; to decrypt

// Creates GInx; ; to enter into the garbled circuit
Glnzi,j — TT{Ei,]' D PO’u,t:L’i’j

return Gln;

generate the partial input gates in the same manner as de-
scribed previously. The cloud then compares these gates to
those the generator sent. If any gate does not match, the
cloud knows the generator tried to cheat and safely aborts.

Evaluation

For 0 < i < S where lisCheckClircuit(i), for 0 < j <
len(savedWires) the cloud receives the truth table informa-
tion, TTa;,;, TTb; ; and bit location from setPPBitGen. a
and b are used to denote the two permuted truth table val-
ues. The cloud, using the previously saved POutz; ; value,
creates the PInx; ; value:

PlInx; ; = setPPBitEval(hash(R; & POutz; ;), location)

location is the location of the point and permute bit sent by
the generator. Using the point and permute bit of PInz; j,
the cloud selects the proper truth table entry TTx; ; from
either TTa;,; or TTh; ; to decrypt, creates GInz; ; and then
enters GInx; ; into the garbled circuit.

GInz;; =TTz ; & POutx; j

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

85

Phase 5: Circuit Generation and Evaluation

Algorithm 5: Circuit_Execution

Input : Generator_Input, Evaluator_Input, Partial Input
Output: Partial Output, Garbled_Output
// The generator generates each garbled gate and sends it to the
cloud. Depending on whether the circuit is a check or evaluation
circuit, the cloud verifies that the gate is correct or evaluates the
gate.
for i «+— 0 to S do
for j + 0 to len(circuit) do

g < genGate(C;, j)

send(g)

// the cloud receives all gates for all circuits, and then checks
OR evaluates each circuit
for i <+ 0 to S do
for j + 0 to len(circuit) do

g < recvGate()

if isCheckCircuit(i) then

if !werifyCorrect(g) then

L abort()

else

L eval(g)

return Partial Output, Garbled_Output

Circuit Generation

The generator generates each garbled gate for each circuit
and sends them to the cloud. Since the generator does not
know the check and evaluation circuit split, nothing changes
for the generation for check and evaluation circuits. For 0 <
i < S, For 0 < j < len(circuit),

g = genGate(Cs, j), send(g)

Circuit Evaluation and Check

The cloud receives each garbled gate for all circuits. For
evaluation circuits the cloud evaluates those garbled gates.
For check circuits the cloud generates the correct gate, based
on the circuit seed, and is able to verify it is correct.

For 0 < ¢ < S, For 0 < j < len(circuit), g = recvGate(),
i f(isCheckCircuit(y)) verifyCorrect(g) else eval(g)

If a garbled gate is found not to be correct, the cloud
informs the evaluator and generator of the incorrect gate
and safely aborts.

Phase 6: Output and Output Consistency Check

Algorithm 6: Circuit_Output

Input : Garbled_Output
// a MAC of the output is generated inside the garbled circuit,
and both the resulting garbled circuit output and the MAC are
encrypted under a one-time pad.
outEviComplete = out Evl||M AC (outEvl)
result = (outEvIMAC == M AC (outEvl))
if Iresult then
L abort() // output check fail

As the final step of the garbled circuit execution, a MAC
of the output is generated inside the garbled circuit, based
on a k-bit secret key entered into the function.

out EviComplete = out Evl||M AC(out Evl)

Both the resulting garbled circuit output and the MAC are
encrypted under a one-time pad. The generator can also
have output verified in the same manner. The cloud sends
the corresponding encrypted output to each party.

The generator and evaluator then decrypt the received
ciphertext, perform a MAC over real output, and verify the
cloud did not modify the output by comparing the generated
MAC with the MAC calculated within the garbled circuit.

result = (out EviM AC == M AC(outEwvl))

Phase 7: Partial Output

Algorithm 7: Partial Output

Input : Partial_ Output

for i <+ 0 to S do

for j + 0 to len(Partial_ Output) do
//The generator saves both possible wire values
GenSave(Partial_Output0; ;)
GenSave(Partial_Outputl; ;)

for i <+ 0 to S do
or j <+ 0 to len(Partial_Output) do
if isCheckClircuit(i) then
EvlSave(Partial_Output0; ;)
EvlSave(Partial_Outputl; ;)
else
// circuit is evaluation circuit
EvlSave(Partial_OutputX; ;)

-

The generator saves both possible wire values for each
partial output wire. For each evaluation circuit the cloud
saves the partial output wire value. For check circuits the
cloud saves both possible output values.

4.3 Implementation

As with most garbled circuit systems there are two stages
to our implementation. The first stage is a compiler for cre-
ating garbled circuits, while the second stage is an execution
system to evaluate the circuits.

We modified the KSS12 [27] compiler to allow for the sav-
ing of intermediate wire labels and loading wire labels from
a different SFE computation. By using the KSS12 compiler,
we have an added benefit of being able to compare circuits
of almost identical size and functionality between our sys-
tem and CMTB, whereas other protocols compare circuits
of sometimes vastly different sizes.

For our execution system, we started with the CMTB sys-
tem and modified it according to our protocol requirements.
Partial GC automatically performs the output consistency
check, and we implemented this check at the circuit level.
We became aware and corrected issues with CMTB relat-
ing to too many primitive OT operations performed in the
outsourced oblivious transfer when using a high circuit pa-
rameter and too low a general security parameter in general.
The fixes reduced the run-time of the OOT.

S. SECURITY OF PARTIALGC

In this section, we provide a basic proof sketch of the
Partial GC protocol, showing that our protocol preserves the
standard security guarantees provided by traditional garbled
circuits - that is, none of the parties learns anything about
the private inputs of the other parties that is not logically
implied by the output it receives. Since we borrow heavily
from [8] and [38], we focus on our additions, and defer to the
original papers for detailed proofs of those protocols. Due to
space constraints, we do not provide a formal proof here; a
complete proof will be provided in the technical report.

We know that the protocol described in [8] allows us to
garble individual circuits and securely outsource their eval-
uation. In this paper, we modify certain portions of the pro-
tocol to allow us to transform the output wire values from
a previous circuit execution into input wire values in a new

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

86

circuit execution. These transformed values, which can be
checked by the evaluator, are created by the generator using
circuit “seeds.”

We also use some aspects of [38], notably their novel cut-
and-choose technique which ensures that the generator does
not learn which circuits are used for evaluation and which
are used for checking - this means that the generator must
create the correct transformation values for all of the cut-
and-choose circuits.

Because we assume that the CMTB garbled circuit scheme
can securely garble any circuit, we can use it individually on
the circuit used in the first execution and on the circuits used
in subsequent executions. We focus on the changes made at
the end of the first execution and the beginning of subse-
quent executions which are introduced by Partial GC.

The only difference between the initial garbled circuit ex-
ecution and any other garbled circuit in CMTB is that the
output wires in an initial Partial GC circuit are stored by the
cloud, and are not delivered to the generator or the evalua-
tor. This prevents them from learning the output wire labels
of the initial circuit, but cannot be less secure than CMTB,
since no additional steps are taken here.

Subsequent circuits we wish to garble differ from ordinary
CMTB garbled circuits only by the addition, before the first
row of gates, of a set of partial input gates. These gates don’t
change the output along a wire, but differ from normal gar-
bled gates in that the two possible labels for each input wire
are not chosen randomly by the generator, but are derived
by using the two labels along each output wire of the initial
garbled circuit.

This does not reduce security. In Partial GC, the input
labels for partial input gates have the same property as the
labels for ordinary garbled input gates: the generator knows
both labels, but does not know which one corresponds to the
evaluator’s input, and the evaluator knows only the label
corresponding to its input, but not the other label. This is
because the evaluator’s input is exactly the output of the
initial garbled circuit, the output labels of which were saved
by the evaluator. The evaluator does not learn the other
output label for any of the output gates because the output
of each garbled gate is encrypted. If the evaluator could learn
any output labels other than those which result from an
evaluation of the garbled circuit, the original garbled circuit
scheme itself would not be secure.

The generator, which also generated the initial garbled
circuit, knows both possible input labels for all partial eval-
uation gates, because it has saved both potential output
labels of the initial circuit’s output gates. Because of the
outsourced oblivious transfer used in CMTB, the generator
did not know which input labels to use for the initial garbled
circuit, and therefore will not have been able to determine
the output labels for that circuit. Therefore, the generator
will likewise not know which input labels are being used for
subsequent garbled circuits.

Generator’s Input Consistency Check

We use the generator’s input consistency check from sS13.
We note there is no problem with allowing the cloud to per-
form this check; for the generator’s inconsistent input to
pass the check, the cloud would have to see the malicious
input and ignore it, which would violate the non-collusion
assumption.

Correctness of Saved Values
Scenarios where either party enters incorrect values in the

next computation reduce to previously solved problems in
garbled circuits. If the generator does not use the correct
values, then it reduces to the problem of creating an incor-
rect garbled circuit. If the evaluator does not use the correct
saved values then it reduces to the problem of the evaluator
entering garbage values into the garbled circuit execution;
this would be caught by the output consistency check.
Abort on Check Failure

If any of the check circuits fail, the cloud reports the in-
correct check circuit to both the generator and evaluator. At
this point, the remaining computation and any saved values
must be abandoned. However, as is standard in SFE, the
cloud cannot abort on an incorrect evaluation circuit, even
when she knows that it is incorrect.
Concatenation of Incorrect Circuits

If the generator produces a single incorrect circuit and the
cloud does not abort, the generator learns that the circuit
was used for evaluation, and not as a check circuit. This leaks
no information about the input or output of the computa-
tion; to do that, the generator must corrupt a majority of
the evaluation circuits without modifying a check circuit. An
incorrect circuit that goes undetected in one execution has
no effect on subsequent executions as long the total amount
of incorrect circuits is less than the majority of evaluation
circuits.
Using Multiple Evaluators

One of the benefits of our outsourcing scheme is that the
state is saved at the generator and cloud allowing the use of
different evaluators in each computation. Previously, it was
shown a group of users working with a single server using
2P-SFE was not secure against malicious adversaries, as a
malicious server and last k parties, also malicious, could re-
play their portion of the computation with different inputs
and gain more information than they can with a single com-
putation [15]. However, this is not a problem in our system
as at least one of our servers, either the generator or cloud,
must be semi-honest due to non-collusion, which obviates
the attack stated above.
Threat Model

As we have many computations involving the same gen-
erator and cloud, we have to extend the threat model for
how the parties can act in different computations. There can
be no collusion in each singular computation. However, the
malicious party can change between computations as long as
there is no chain of malicious users that link the generator
and cloud — this would break the non-collusion assumption.

6. PERFORMANCE EVALUATION

We now demonstrate the efficacy of PartialGC through a
comparison with the CMTB outsourcing system. Apart from
the cut-and-choose from sS13, Partial GC provides other ben-
efits through generating partial input values after the first
execution of a program. On subsequent executions, the par-
tial inputs act to amortize overall costs of execution and
bandwidth.

We demonstrate that the evaluator in the system can be a
mobile device outsourcing computation to a more powerful
system. We also show that other devices, such as server-
class machines, can act as evaluators, to show the generality
of this system. Our testing environment includes a 64-core
server containing 1 TB of RAM, which we use to model
both the Generator and Outsourcing Proxy parties. We run
separate programs for the Generator and Outsourcing Proxy,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

87

giving them each 32 threads. For the evaluator, we use a
Samsung Galaxy Nexus phone with a 1.2 GHz dual-core
ARM Cortex-A9 and 1 GB of RAM running Android 4.0,
connected to the server through an 802.11 54 Mbps WiFi
in an isolated environment. In our tests, which outsource
the computation from a single server process we create that
process on our 64-core server as well. We ran the CMTB
implementation for comparison tests under the same setup.

6.1 Execution Time

The Partial GC system is particularly well suited to com-
plex computations that require multiple stages and the sav-
ing of intermediate state. Previous garbled circuit execution
systems have focused on single-transaction evaluations, such
as computing the “millionaires” problem (i.e., a joint evalua-
tion of which party inputs a greater value without revealing
the values of the inputs) or evaluating an AES circuit.

Our evaluation considers two comparisons: the improve-
ment of our system compared with CMTB without reusing
saved values, and comparing our protocol for saving and
reusing values against CMTB if such reuse was implemented
in that protocol. We also benchmark the overhead for sav-
ing and loading values on a per-bit basis for 256 circuits, a
necessary number to achieve a security parameter of 2730
in the malicious model. In all cases, we run 10 iterations of
each test and give timing results with 95% confidence inter-
vals. Other than varying the number of circuits our system
parameters are set for 80-bit security.

The programs used for our evaluation are exemplars of
differing input sizes and differing circuit complexities:
Keyed Database: In this program, one party enters a data-
base and keys to it while the other party enters a key that
indexes into the database, receiving a database entry for that
key. This is an example of a program expressed as a small
circuit that has a very large amount of input.

Matrix Multiplication: Here, both parties enter 32-bit
numbers to fill a matrix. Matrix multiplication is performed
before the resulting matrix is output to both parties. This
is an example of a program with a large amount of inputs
with a large circuit.

Edit (Levenstein) Distance: This program finds the dis-
tance between two strings of the same length and returns
the difference. This is an example of a program with a small
number of inputs and a medium sized circuit.
Millionaires: In this classic SFE program, both parties en-
ter a value, and the result is a one-bit output to each party
to let them know whether their value is greater or smaller
than that of the other party. This is an example of a small
circuit with a large amount of input.

Gate counts for each of our programs can be found in Ta-
ble 1. The only difference for the programs described above
is the additional of a MAC function in PartialGC. We dis-
cuss the reason for this check in Section 6.4.

Table 2 shows the results from our experimental tests. In
the best case, execution time was reduced by a factor of
32 over CMTB, from 1200 seconds to 38 seconds, a 96%
speedup over CMTB. Ultimately, our results show that our
system outperforms CMTB when the input checks are the
bottleneck. This run-time improvement is due to improve-
ments we added from sS13 and occurs in the keyed database,
millionaires, and matrix multiplications programs. In the
other program, edit distance, the input checks are not the
bottleneck and Partial GC does not outperform CMTB. The

CMTB PartialGC
KeyedDB 64 6,080 20,891
KeyedDB 128 12,160 26,971
KeyedDB 256 24,320 39,131
MatrixMult8x8 3,060,802 3,305,113
Edit Distance 128 1,434,888 1,464,490
Millionaires 8192 49,153 78,775
LCS Incremental 128 | 4,053,870 87,236
LCS Incremental 256 | 8,077,676 160,322
LCS Incremental 512 | 16,125,291 306,368
L.CS Full 128 2,978,854 N
LCS Full 256 13,177,739 -

Table 1: Non-XOR gate counts for the various circuits. In the
first 6 circuits, the difference between CMTB and PartialGC
gate counts is in the consistency checks. The explanation
for the difference in size between the incremental versions of
longest common substring (LCS) is given in Reusing Values.

total run-time increase for the edit distance problem is due
to overhead of using the new sS13 OT cut-and-choose tech-
nique which requires sending each gate to the evaluator for
check circuits and evaluation circuits. This is discussed fur-
ther in Section 6.4. The typical use case we imagine for our
system, however, is more like the keyed database program,
which has a large amount of inputs and a very small circuit.
We expand upon this use case later in this section.
Reusing Values

For a test of our system’s wire saving capabilities we tested
a dynamic programming problem, longest common substring,
in both PartialGC and CMTB. This program determines
the length of the longest common substring between two
strings. Rather than use a single computation for the solu-
tion, our version incrementally adds a single bit of input to
both strings each time the computation is run and outputs
the results each time to the evaluator. We believe this is
a realistic comparison to a real-world application that in-
crementally adds data during each computation where it is
faster to save the intermediate state and add to it after see-
ing an intermediate result than rerun the entire computation
many times after seeing the result.

For our testing, PartialGC uses our technique to reuse
wire values. In CMTB, we save each desired internal bit
under a one-time pad and re-enter them into the next com-
putation, as well as the information needed to decrypt the
ciphertext. We use a MAC (the AES circuit of KSS12) to
verify that the party saving the output bits did not modify
them. We also use AES to generate a one-time pad inside
the garbled circuit. We use AES as this is the only cryp-
tographically secure function used in CMTB. Both parties
enter private keys to the MAC functions. This program is
labeled CMTB-Inc, for CMTB incremental. The size of this
program represents the size of the total strings. We also cre-
ated a circuit that computes the complete longest common
substring in one computation labeled CMTB-Full.

The resulting size of the PartialGC and CMTB circuits
are shown in Table 1, and the results are shown in Figure 4.
This result shows that saving and reusing values in Par-
tialGC is more efficient than completely rerunning the com-
putation. The input consistency check adds considerably to
the memory use on the phone for CMTB-Inc and in the case
of input bit 512, the CMTB-Inc program will not complete.
In the case of the 512-bit CMTB-Full, the program would
not complete compilation in over 42 hours. In our CMTB-
Inc program, we assume the cloud saves the output bits so
that multiple phones can have a shared private key. We do

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

88

16 Circuits 64 Circuits 256 Circuits
CMTB Partial GC CMTB Partial GC CMTB Partial GC

KeyedDB 64 18 £ 2% | 3.5+ 3% 5.1x 72 £ 2% 8.3 + 5% 8.7x 290 + 2% 26 + 2% 11x
KeyedDB 128 33+2% | 4.4+ 8% 7.5x | 140 £ 2% | 9.5 £ 4% 15x 580 £+ 2% 31 £ 3% 19x
KeyedDB 256 65 + 2% | 4.6 + 2% 14x 270 + 1% 12 + 6% 23x 1200 + 3% 38 + 5% 32x
MatrixMult8x8 48 £+ 4% 46 + 4% 1.0x [110 £ 8% | 100 £ 7% 1.1x | 400 & 10% | 370 £ 5% 1.1x
Edit Distance 128 | 21 4+ 6% 22 + 3% 0.95x | 47 £ ™% 50 £ 9% 0.94x | 120 £ 9% 180 + 6% | 0.67x
Millionaires 8192 | 35 + 3% | 7.3 + 6% 4.8x | 140 £ 2% 20 + 2% 7.0x 580 + 1% 70 + 2% 8.3x

Table 2: Timing results comparing PartialGC to CMTB without saving any values. All times in seconds.

10000 -
PartialGC Inc &===x1
CMTB Inc m==xxzxy
CMTB Full
1000 . k!
oA
RS
[o%os%
£x554
K 2
z lototenllé
) XX
[l
@ 100 £ sssess E
£ K%<
i (22X
= [5%59
K5
[
[R%<
K5
logeses
(950595
g5
10 ¢ R | E
[
[R2X
[R2%
loosoili
[
[R5 [
(R
(05058
L L

1LargestSubstring128 LargestSubstring256
Program

Figure 4: Results from testing our largest common substring
(LCS) programs for PartialGC and CMTB. This shows
when changing a single input value is more efficient un-
der Partial GC than either CMTB program. CMTB crashed
on running LCS Incremental of size 512 due to memory re-
quirements. We were unable to complete the compilation of
CMTB Full of size 512.

LargestSubstring512

not provide a full program due to space requirements.

Note that the growth of CMTB-Inc and CMTB-Full are
different. CMTB-Full grows at a larger rate (4x for each
2x factor increase) than CMTB-Inc (2x for each 2x factor
increase), implying that although at first it seems more ef-
ficient to rerun the program if small changes are desired in
the input, eventually this will not be the case. Even with a
more efficient AES function, CMTB-Inc would not be faster
as the bottleneck is the input, not the size of the circuit.

The overhead of saving and reusing values is discussed
further in Appendix B.

Outsourcing to a Server Process

Partial GC can be used in other scenarios than just out-
sourcing to a mobile device. It can outsource garbled circuit
evaluation from a single server process and retain perfor-
mance benefits over a single server process of CMTB. For
this experiment the outsourcing party has a single thread.
Table 4 displays these results and shows that in the KeyedDB
256 program, PartialGC has a 92% speedup over CMTB.
As with the outsourced mobile case, keyed database prob-
lems perform particularly well in PartialGC. Because the
computationally-intensive input consistency check is a greater
bottleneck on mobile devices than servers, these improve-
ments for most programs are less dramatic. In particular,
both edit distance and matrix multiplication programs ben-
efit from higher computational power and their bottlenecks
on a server are no longer input consistency; as a result, they
execute faster in CMTB than in PartialGC.

256 Circuits
CMTB | PartialGC

KeyedDB 64 64992308 3590416 18x
KeyedDB 128 129744948 3590416 36x
KeyedDB 256 259250228 3590416 72x
MatrixMult8x8 71238860 35027980 2.0x
Edit Distance 128 2615651 4108045 | 0.64x
Millionaires 8192 155377267 67071757 2.3x

Table 3: Bandwidth comparison of CMTB and Partial GC.
Bandwidth counted by instrumenting PartialGC to count
the bytes it was sending and receiving and then adding them
together. Results in bytes.

6.2 Bandwidth

Since the main reason for outsourcing a computation is
to save on resources, we give results showing a decrease in
the evaluator’s bandwidth. Bandwidth is counted by making
the evaluator to count the number of bytes Partial GC sends
and receives to either server. Our best result gives a 98%
reduction in bandwidth (see Table 3). For the edit distance,
the extra bandwidth used in the outsourced oblivious trans-
fer for all circuits, instead of only the evaluation circuits,
exceeds any benefit we would otherwise have received.

6.3 Secure Friend Finder

Many privacy-preserving applications can benefit from us-
ing PartialGC to cache values for state. As a case study,
we developed a privacy-preserving friend finder application,
where users can locate nearby friends without any user di-
vulging their exact location. In this application, many differ-
ent mobile phone clients use a consistent generator (a server
application) and outsource computation to a cloud. The gen-
erator must be the same for all computations; the cloud must
be the same for each computation. The cloud and generator
are two different parties. After each computation, the map
is updated when Partial GC saves the current state of the
map as wire labels. Without PartialGC outsourcing values
to the cloud, the wire labels would have to be transferred
directly between mobile devices, making a multi-user appli-
cation difficult or impossible.

We define three privacy-preserving operations that com-
prise the application’s functionality:

MapStart - The three parties (generator, evaluator, cloud)
create a “blank” map region, where all locations in the map
are blank and remain that way until some mobile party sets
a location to his or her ID.

MapSet - The mobile party sets a single map cell to a
new value. This program takes in partial values from the
generator and cloud and outputs a location selected by the
mobile party.

MapGet - The mobile party retrieves the contents of a sin-
gle map cell. This program retrieves partial values from the
generator and cloud and outputs any ID set for that cell to
the mobile.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

89

16 Circuits 64 Circuits 256 Circuits
CMTB | PartialGC CMTB Partial GC CMTB Partial GC

KeyedDB 64 6.6 + 4% 1.4+ 1% | 4.7x 27 + 4% 5.1 + 2% 5.3x 110 + 2% 24.9 + 0.3% 4.4%
KeyedDB 128 13 + 3% 1.8 +2% | 7.2x | b4 + 4% 5.8 +2% [93x | 220+ 5% [279+ 05% | 7.9x
KeyedDB 256 25 + 4% 2.5 + 1% 10x | 110 = 7% | 7.3 + 2% 15x 420 + 4% | 33.5 £ 0.6% 13x
MatrixMult8x8 42 4+ 3% 41 £ 4% | 1.0x | 94 + 4% 79 £ 3% 1.2x | 300 &+ 10% 310 + 1% 0.97x
Edit Distance 128 18 + 3% 18 + 3% | 1.0x | 40 + 8% 40 £+ 6% 1.0x | 120 £ 9% 150 £+ 3% 0.8x
Millionaires 8192 13 £ 4% 32+1% [41x | 52 £ 3% 85+ 2% [6.1x | 220 £ 5% | 384 £ 0.9% | 5.7x

Table 4: Timing results from outsourcing the garbled circuit evaluation from a single server process. Results in seconds.

Qw0 ¥ 8] 100 ‘ Map size 256 — |
Map Size 2048 =3
i) mapfinder i

80 1
o 60 4

o

E

=
40 <

User 1 is nearby!

Back 20 F 4

User ID:

(b) After computation.
Figure 5: Screenshots from our application. (a) shows the
map with radio buttons a user can select to indicate position.
(b) show the result after “set new position” is pressed when
a user is present. The application is set to use 64 different
map locations. Map image from Google Maps.

(a) Location selected.

In the application, each user using the Secure Friend Finder
has a unique ID that represents them on the map. We divide
the map into ‘cells’, where each cell is a set amount of area.
When the user presses “Set New Location’, the program will
first look to determine if that cell is occupied. If the cell is
occupied, the user is informed he is near a friend. Otherwise
the cell is updated to contain his user ID and remove his ID
from his previous location. We assume a maximum of 255
friends in our application since each cell in the map is 8 bits.

Figure 6 shows the performance of these programs in the
malicious model with a 275" security parameter (evaluated
over 256 circuits). We consider map regions containing both
256 and 2048 cells. For maps of 236 cells, each operation
takes about 30 seconds.’ As there are three operations for
each “Set New Location” event, the total execution time is
about 90 seconds, while execution time for 2048 cells is about
3 minutes. The bottleneck of the 64 and 256 cell maps is the
outsourced oblivious transfer, which is not affected by the
number of cells in the map. The vastly larger circuit associ-
ated with the 2048-cell map makes getting and setting values
slower operations, but these results show such an application
is practical for many scenarios.

Example - As an example, two friends initiate a friend
finder computation using Amazon as the cloud and Face-

'Our 64-cell map, as seen the application screenshots, also
takes about 30 seconds for each operation.

MapStart MapGet
Program
Figure 6: Run time comparison of our map programs

two different map sizes.

with

book as the generator. The first friend goes out for a coffee
at a café. The second friend, riding his bike, gets a message
that his friend is nearby and looks for a few minutes and
finds him in the café. Using this application prevents either
Amazon or Facebook from knowing either user’s location
while they are able to learn whether they are nearby.

6.4 Discussion

Analysis of improvements

We analyzed our results and found the improvements came
from three places: the improved s513 consistency check, the
saving and reusing of values, and the fixed oblivious trans-
fer. In the case of the 8513 consistency check, there are two
reasons for the improvement, first there is less network traf-
fic and second it does not use exponentiations. In the case of
saving and reusing values, we save time by the faster input
consistency check and not requiring a user to recompute a
circuit multiple times. Lastly, we reduced the runtime and
bandwidth by fixing parts of the OOT. The previous out-
sourced oblivious transfer performed the primitive OT S
times instead of a single time, which turn forced many ex-
tra exponentiations. Each amount of improvement varies de-
pending upon the circuit.
Output check

Although the garbled circuit is larger for our output check,
this check performs less cryptographic operations for the
outsourcing party, as the evaluator only has to perform a
MAC on the output of the garbled circuit. We use this check
to demonstrate using a MAC can be an efficient output check
for a low power device when the computational power is not
equivalent across all parties.
Commit Cut-and-Choose vs OT Cut-and-Choose

Our results unexpectedly showed that the sS13 OT cut-
and-choose used in Partial GC is actually slower than the
KSS12 commit cut-and-choose used in CMTB in our ex-
perimental setup. Theoretically, s513, which requires fewer

APPROVED FOR PUBLIC RELI%al E; DISTRIBUTION UNLIMITED

90

cryptographic operations, as it generates the garbled circuit
only once, should be the faster protocol. The difference be-
tween the two cut-and-choose protocols is the network usage
— instead of 2 of the circuits (CMTB), all the circuits must
be transmitted in sS13. The sS13 cut-and-choose is required
in our protocol so that the cloud can check that the gener-
ator creates the correct gates.

7. RELATED WORK

SFE was first described by Yao in his seminal paper [39]
on the subject. The first general purpose platform for SFE,
Fairplay [32], was created in 2004. Fairplay had both a com-
piler for creating garbled circuits, and a run-time system for
executing them. Computations involving three or more par-
ties have also been examined; one of the earliest examples
is FairplayMP [2]. There have been multiple other imple-
mentations since, in both semi-honest [6, 9, 16, 17, 40] and
malicious settings [26, 37].

Optimizations for garbled circuits include the free-XOR
technique [25], garbled row reduction [36], rewriting compu-
tations to minimize SFE [23], and pipelining [18]. Pipelining
allows the evaluator to proceed with the computation while
the generator is creating gates.

KSS12 [27] included both an optimizing compiler and an
efficient run-time system using a parallelized implementa-
tion of SFE in the malicious model from [37].

The creation of circuits for SFE in a fast and efficient man-
ner is one of the central problems in the area. Previous com-
pilers, from Fairplay to KSS12, were based on the concept of
creating a complete circuit and then optimizing it. PAL [33]
improved such systems by using a simple template circuit,
reducing memory usage by orders of magnitude. PCF [26]
built from this and used a more advanced representation to
reduce the disk space used.

Other methods for performing MPC involve homomorphic
encryption [3, 12], secret sharing [4], and ordered binary
decision diagrams [28]. A general privacy-preserving com-
putation protocol that uses homomorphic encryption and
was designed specifically for mobile devices can be found
in [7]. There are also custom protocols designed for partic-
ular privacy-preserving computations; for example, Kamara
et al. [21] showed how to scale server-aided Private Set In-
tersection to billion-element sets with a custom protocol.

Previous reusable garbled-circuit schemes include that of
Brandao [5], which uses homomorphic encryption, Gentry
et al. [10], which uses attribute-based functional encryption,
and Goldwasser et al. [13], which introduces a succinct func-
tional encryption scheme. These previous works are purely
theoretical; none of them provides experimental performance
analysis. There is also recent theoretical work on reusing
encrypted garbled-circuit values [30, 11, 31] in the ORAM
model; it uses a variety of techniques, including garbled cir-
cuits and identity-based encryption, to execute the underly-
ing low-level operations (program state, read/write queries,
etc.). Our scheme for reusing encrypted values is based on
completely different techniques; it enables us to do new kinds
of computations, thus expanding the set of things that can
be computed using garbled circuits.

The Quid-Pro-Quo-tocols system [19] allows fast execu-
tion with a single bit of leakage. The garbled circuit is ex-
ecuted twice, with the parties switching roles in the latter
execution, then running a secure protocol to ensure that the
output from both executions are equivalent; if this fails, a

single bit may be leaked due to the selective failure attack.

8. CONCLUSION

This paper presents Partial GC, a server-aided SFE scheme
allowing the reuse of encrypted values to save the costs of in-
put validation and to allow for the saving of state, such that
the costs of multiple computations may be amortized. Com-
pared to the server-aided outsourcing scheme by CMTB, we
reduce costs of computation by up to 96% and bandwidth
costs by up to 98%. Future work will consider the general-
ity of the encryption re-use scheme to other SFE evaluation
systems and large-scale systems problems that benefit from
the addition of state, which can open up new and intriguing
ways of bringing SFE into the practical realm.

Acknowledgements: This material is based on research
sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory under
contracts FA8750-11-2-0211 and FA8750-13-2-0058. It is also
supported in part by the U.S. National Science Founda-
tion under grant numbers CNS-1118046 and CNS-1254198.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA, NSF,
or the U.S. Government.

9. REFERENCES
[1] M. Bellare and S. Micali. Non-Interactive Oblivious

Transfer and Applications. In Proceedings of
CRYPTO, 1990.

[2] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP:
a system for secure multi-party computation. In
Proceedings of the ACM conference on Computer and
Communications Security, 2008.

[3] R. Bendlin, I. Damgard, C. Orlandi, and S. Zakarias.
Semi-Homomorphic Encryption and Multiparty
Computation. In Proceedings of EUROCRYPT, 2011.

[4] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
A Framework for Fast Privacy-Preserving
Computations. In Proceedings of the 13th European
Symposium on Research in Computer Security -
ESORICS’08, 2008.

[5] L. T. A. N. Brandao. Secure Two-Party Computation

with Reusable Bit-Commitments, via a

Cut-and-Choose with Forge-and-Lose Technique.

Technical report, University of Lisbon, 2013.

M. Burkhart, M. Strasser, D. Many, and

X. Dimitropoulos. Sepia: Privacy-preserving

aggregation of multi-domain network events and

statistics. In Proceedings of the 19th USENIX

Conference on Security, USENIX Security’10, pages

15-15, Berkeley, CA, USA, 2010. USENIX

Association.

H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor.

For your phone only: custom protocols for efficient

secure function evaluation on mobile devices. In

Journal of Security and Communication Networks

(SCN), To appear 2014.

[8] H. Carter, B. Mood, P. Traynor, and K. Butler.
Secure outsourced garbled circuit evaluation for

6

[7

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

mobile devices. In Proceedings of the USENIX
Security Symposium, 2013.

1. Damgard, M. Geisler, M. Krgigaard, and J. B.
Nielsen. Asynchronous multiparty computation:
Theory and implementation. In Proceedings of the
12th International Conference on Practice and Theory
in Public Key Cryptography: PKC 09, Irvine, pages
160179, Berlin, Heidelberg, 2009. Springer-Verlag.
C. Gentry, S. Gorbunov, S. Halevi,

V. Vaikuntanathan, and D. Vinayagamurthy. How to
compress (reusable) garbled circuits. Cryptology
ePrint Archive, Report 2013/687, 2013.
http://eprint.iacr.org/.

C. Gentry, S. Halevi, S. Lu, R. Ostrovsky,

M. Raykova, and D. Wichs. Garbled ram revisited. In
Advances in Cryptology-EUROCRYPT 2014, pages
405-422. Springer Berlin Heidelberg, 2014.

C. Gentry, S. Halevi, and N. P. Smart. Homomorphic
Evaluation of the AES Circuit. In Proceedings of
CRYPTO, 2012.

S. Goldwasser, Y. Kalai, R. A. Popa,

V. Vaikuntanathan, and N. Zeldovich. Reusable
Garbled Circuits and Succinct Functional Encryption.
In Proceedings of the ACM Symposium on Theory of
Computing (STOC), STOC ’13, 2013.

V. Goyal, P. Mohassel, and A. Smith. Efficient two
party and multi party computation against covert
adversaries. In Proceedings of the theory and
applications of cryptographic techniques annual
international conference on Advances in cryptology,
2008.

S. Halevi, Y. Lindell, and B. Pinkas. Secure
Computation on the Web: Computing without
Simultaneous Interaction. In CRYPTO’11, 2011.

W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. Tasty: tool for automating secure
two-party computations. In Proceedings of the ACM
conference on Computer and Communications
Security, 2010.

A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith.
Secure two-party computations in ansi c¢. In
Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS 12,
pages 772-783, New York, NY, USA, 2012. ACM.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In Proceedings of the USENIX Security Symposium,
2011.

Y. Huang, J. Katz, and D. Evans.
Quid-Pro-Quo-tocols: Strengthening Semi-Honest
Protocols with Dual Execution. IEEE Symposium on
Security and Privacy, (33rd), May 2012.

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In
Proceedings of CRYPTO, 2003.

S. Kamara, P. Mohassel, M. Raykova, and

S. Sadeghian. Scaling private set intersection to
billion-element sets. Technical Report
MSR-TR-2013-63, Microsoft Research, 2013.

S. Kamara, P. Mohassel, and B. Riva. Salus: A system
for server-aided secure function evaluation. In
Proceedings of the ACM conference on Computer and

23]

24]

[25]

[26]

27]

(28]

29]

30]

31]

32]

33]

34]

(35]

(36]

37]

(38]

(39]

communications security (CCS), 2012.

F. Kerschbaum. Expression rewriting for optimizing
secure computation. In Conference on Data and
Application Security and Privacy, 2013.

M. S. Kiraz and B. Schoenmakers. A protocol issue for
the malicious case of yao’s garbled circuit
construction. In Proceedings of Symposium on
Information Theory in the Benelux, 2006.

V. Kolesnikov and T. Schneider. Improved Garbled
Circuit: Free XOR Gates and Applications. In
Proceedings of the international colloguium on
Automata, Languages and Programming, Part 11, 2008.
B. Kreuter, B. Mood, a. shelat, and K. Butler. PCF:
A Portable Circuit Format for Scalable Two-Party
Secure Computation. In Proceedings of the USENIX
Security Symposium, 2013.

B. Kreuter, a. shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In
Proceedings of the USENIX Security Symposium, 2012.
L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure
function evaluation with ordered binary decision
diagrams. In Proceedings of the ACM conference on
Computer and communications security (CCS), 2006.
Y. Lindell and B. Pinkas. An efficient protocol for
secure two-party computation in the presence of
malicious adversaries. In Proceedings of the annual
international conference on Advances in Cryptology,
2007.

S. Lu and R. Ostrovsky. How to garble ram programs.
In Advances in Cryptology-EUROCRYPT 20183, pages
719-734. Springer Berlin Heidelberg, 2013.

S. Lu and R. Ostrovsky. Garbled ram revisited, part
ii. Cryptology ePrint Archive, Report 2014/083, 2014.
http://eprint.iacr.org/.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay—a secure two-party computation system. In
Proceedings of the USENIX Security Symposium, 2004.
B. Mood, L. Letaw, and K. Butler. Memory-efficient
garbled circuit generation for mobile devices. In
Proceedings of the IFCA International Conference on
Financial Cryptography and Data Security (FC), 2012.
M. Naor and B. Pinkas. Oblivious transfer and
polynomial evaluation. In Proceedings of the annual
ACM Symposium on Theory of Computing (STOC),
1999.

M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In Proceedings of the annual ACM-SIAM
Symposium on Discrete algorithms (SODA), 2001.

B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure Two-Party Computation is Practical.
In ASTACRYPT, 2009.

a. shelat and C.-H. Shen. Two-output secure
computation with malicious adversaries. In
Proceedings of EUROCRYPT, 2011.

a. shelat and C.-H. Shen. Fast two-party secure
computation with minimal assumptions. In Conference
on Computer and Communications Security (CCS),
2013.

A. C. Yao. Protocols for secure computations. In
Proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS), 1982.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[40] Y. Zhang, A. Steele, and M. Blanton. PICCO: A
General-purpose Compiler for Private Distributed
Computation. In Proceedings of the ACM Conference
on Computer Communications Security (CCS), 2013.

APPENDIX

A. CMTB PROTOCOL

As we are building off of the CMTB garbled circuit exe-
cution system, we give an abbreviated version of the proto-
col. In our description we refer to the generator, the cloud,
and the evaluator. The cloud is the party the evaluator out-
sources her computation to.

Circuit generation and check: The template for the gar-
bled circuit is augmented to add one-time XOR pads on the
output bits and split the evaluator’s input wires per the in-
put encoding scheme. The generator generates the necessary
garbled circuits and commits to them and sends the com-
mitments to the evaluator. The generator then commits to
input labels for the evaluator’s inputs.

CMTB relies on Goyal et al.’s [14] random seed check,
which was implemented by Kreuter et al. [27] to combat
generation of incorrect circuits. This technique uses a cut-
and-choose style protocol to determine whether the genera-
tor created the correct circuits by creating and committing
to many different circuits. Some of those circuits are used
for evaluation, while the others are used as check circuits.

Evaluator’s inputs: Rather than a two-party oblivious
transfer, we perform a three-party outsourced oblivious trans-
fer. An outsourced oblivious transfer is an OT that gets the
select bits from one party, the wire labels from another, and
returns the selected wire labels to a third party. The party
that selects the wire labels does not learn what the wire la-
bels are, and the party that inputs the wire labels does not
learn which wire was selected; the third party only learns
the selected wire labels. In CMTB, the generator offers up
wire labels, the evaluator provides the select bits, and the
cloud receives the selected labels. CMTB uses the Ishai OT
extension [20] to reduce the number of OTs.

CMTB uses an encoding technique from Lindell and Pinkas
[29], which prevents the generator from finding out any in-
formation about the evaluator’s input if a selective failure
attack transpires. CMTB also uses the commitment tech-
nique of Kreuter et al. [27] to prevent the generator from
swapping the two possible outputs of the oblivious transfer.
To ensure the evaluator’s input is consistent across all cir-
cuits, CMTB uses a technique from Lindell and Pinkas [29],
whereby the inputs are derived from a single oblivious trans-
fer.

Generator’s input and consistency check: The gener-
ator sends his input to the cloud for the evaluation circuits.
Then the generator, evaluator, and cloud all work together
to prove the input consistency of the generator’s input. For
the generator’s input consistency check, CMTB uses the
malleable-claw free construction from shelat and Shen [37].

Circuit evaluations: The cloud evaluates the garbled cir-
cuits marked for evaluation and checks the circuits marked
for checking. The cloud enters in the generator and eval-
uator’s input into each garbled circuit and evaluates each
circuit. The output for any particular bit is then the ma-
jority output between all evaluator circuits. The cloud then

0.003

0.0025

0.002

0.0015

Time (s,

0.001

0.0005

/A
Keyed128
Program
Figure 7: The amount of time it takes to save and load a bit

in PartialGC when using 256 circuits.

Keyed64

Keyed256

recreates each check circuit. The cloud creates the hashes of
each garbled circuit and sends those hashes to the evaluator.
The evaluator then verifies the hashes are the same as the
ones the generator previously committed to.

Output consistency check and output: The three par-
ties prove together that the cloud did not modify the output
before she sent it to the generator or evaluator. Both the
evaluator and generator receive their respective outputs. All
outputs are blinded by the respective party’s one-time pad
inside the garbled circuit to prevent the cloud from learning
what any output bit represents.

CMTB uses the XOR one-time pad technique from Ki-
raz [24] to prevent the evaluator from learning the gener-
ator’s real output. To prevent output modification, CMTB
uses the witness-indistinguishable zero-knowledge proof from
Kreuter et al. [27].

B. OVERHEAD OF REUSING VALUES

We created several versions of the keyed database program
to determine the runtime of saving and loading the database
on a per bit basis using our system (See Figure 7). This
figure shows it is possible to save and load a large amount
of saved wire labels in a relatively short time. The time to
load a wire label is larger than the time to save a value since
saving only involves saving the wire label to a file and loading
involves reading from a file and creating the partial input
gates. Although not shown in the figure, the time to save or
load a single bit also increases with the circuit parameter.
This is because we need S copies of that bit - one for every
circuit.

C. EXAMPLE PROGRAM

In this section we describe the execution of an attendance
application. Imagine a building where the host wants each
user to sign in from their phones to keep a log of the guests,
but also wants to keep this information secret.

This application has three distinct programs. The first
program initializes a counter to a number input by the eval-
uator. The second program, which is used until the last pro-
gram is called, takes in a name and increments the counter
by one. The last program outputs all names and returns the
count of users.

For this application, users (rather, their mobile phones)
assume the role of evaluators in the protocol (Section 4).

First, the host runs the initial program to initialize a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

93

database. We cannot execute the second program to add
names to the log until this is done, lest we reveal that there
is no memory saved (i.e., there is no one else present).
Protocol in Brief: In this first program, the cut-and-choose
OT is executed to select the circuit split (the circuits that
are for evaluation and generation). Both parties save the de-
cryption keys: the cloud saves the keys attained from the OT
and the generator saves both possible keys that could have
been selected by the cloud. The evaluator performs the OOT
with the other parties to input the initial value into the pro-
gram. There is no input by the generator so the generator’s
input check does not execute. There is no partial input so
that phase of the protocol is skipped. The garbled circuit to
set the initial value is executed; while there is no output to
the generator or evaluator, a partial output is produced: the
cloud saves the garbled wire value, which it possesses, and
the generator saves both possible wire values (the generator
does not know what value the cloud has, and the cloud does
not know what the value it has saved actually represents).
The cloud also saves the circuit split.

Saved memory after the program execution (when the
evaluator inputs 0 as the initial value):

Count
0

Saved Guests

Guest 1 then enters the building and executes the pro-
gram, entering his name (“Guest 1”) as input.
Protocol in Brief: In this second program, the cut-and-
choose OT is not executed. Instead, both the generator and
cloud load the saved decryption key values, hash them, and
use those values for the check and evaluation circuit infor-
mation (instead of attaining new keys through an OT, which
would break security). The new keys are saved, and the eval-
uator then performs the OOT for input. The generator does
not have any input in this program so the check for the gen-
erator’s input is skipped. Since there exists a partial input,
the generator loads both possible wire values and creates
the partial input gates. The cloud loads the attained values,
receives the partial input gates from the generator, and then
executes (and checks) the partial input gates to receive the
garbled input values. The garbled circuit is then executed
and partial output saved as before (although there is more
data to save for this program as there is a name present in
the database).

After executing the second program the memory is as fol-
lows:

Count
1
Saved Guests
Guest1

Guest 2 then enters the dwelling and runs the program.
The execution is similar to the previous one (when Guest 1
entered), except that it’s executed by Guest 2’s phone.

At this point, the memory is as follows:

Count
2
Saved Guests
Guestl
Guest2

Guest 3 then enters the dwelling and executes the program
as before. At this point, the memory is as follows:

Count
3
Saved Guests
Guest1
Guest2
Guest3

Finally, the host runs the last program that outputs the
count and the guests in the database. In this case the count
is 3 and the guests are Guestl, Guest2, and Guest3.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

94

Whitewash: Outsourcing Garbled Circuit Generation for
Mobile Devices

Henry Carter
Georgia Institute of
Technology

carterh@gatech.edu

ABSTRACT

Garbled circuits offer a powerful primitive for computation on a
user’s personal data while keeping that data private. Despite re-
cent improvements, constructing and evaluating circuits of any use-
ful size remains expensive on the limited hardware resources of a
smartphone, the primary computational device available to most
users around the world. In this work, we develop a new tech-
nique for securely outsourcing the generation of garbled circuits
to a Cloud provider. By outsourcing the circuit generation, we are
able to eliminate the most costly operations from the mobile de-
vice, including oblivious transfers. Our proofs of security show
that this technique provides the best security guarantees of any ex-
isting garbled circuit outsourcing protocol. We also experimentally
demonstrate that our new protocol, on average, decreases execu-
tion time by 75% and reduces network costs by 60% compared to
previous outsourcing protocols. In so doing, we demonstrate that
the use of garbled circuits on mobile devices can be made nearly as
practical as it is becoming for server-class machines.

1. INTRODUCTION

Mobile devices have become one of the dominant computing
platforms, with approximately 57% market penetration in the United
States alone [9]. These devices are capable of gathering and storing
all of a user’s personal data, from current location and social con-
tacts to banking and electronic payment information. Because of
the personal nature of these devices, it is critical that a user’s infor-
mation be protected at all times. Unfortunately, many smartphone
applications that require users to send data to application servers
make preserving the privacy of this data difficult.

To resolve this issue, a variety of secure multiparty computa-
tion techniques exist that could be leveraged to perform compu-
tation over encrypted inputs [6, 11, 12, 28]. Currently, the most
practically efficient two-party technique is the Yao Garbled Cir-
cuit [43]. Despite recent improvements in the efficiency of gar-
bled circuits [27, 41], this technique still requires significant com-
putation and communication resources, rendering it impractical for
most smartphones. One possible solution to this imbalance of re-
sources is to blindly outsource the heavy computation to the Cloud.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

ACSAC ’14 December 08 - 12 2014, New Orleans, LA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3005-3/14/12:.$15.00

http://dx.doi.org/10.1145/2664243.2664255

Charles Lever
Georgia Institute of
Technology

chazlever@gatech.edu

Patrick Traynor
University of
Florida
traynor@cise.ufl.edu

However, because of the untrusted nature of Cloud providers [42],
such a solution fails to provide measurable guarantees for applica-
tions requiring high assurance.

In this work, we develop a new protocol for securely outsourc-
ing garbled circuit generation to an untrusted Cloud. We construct a
protocol that offloads the role of generating the garbled circuit from
the mobile device to the Cloud without exposing any private inputs
or outputs. By choosing to outsource this portion of the protocol,
we eliminate a significant number of expensive public-key cryptog-
raphy operations and rounds of communication used in oblivious
transfer. The result is a more computationally and bandwidth effi-
cient outsourcing protocol with the strongest security guarantees of
any outsourcing technique to date [8, 23].

In this paper, we make the following contributions:

e Develop a new outsourcing protocol: We develop the White-
wash' outsourcing protocol, which allows a mobile device par-
ticipating in a two-party secure function evaluation to outsource
the generation of the garbled circuit. Our protocol assigns the
mobile device the role of circuit generator instead of circuit
evaluator, outsourcing a completely different set of operations
from previous outsourcing protocols [8, 23]. By reversing the
functions of the two players, we fully eliminate the require-
ment for any oblivious transfers, outsourced or otherwise, to
or from the mobile device. This “simple” role reversal requires
fundamentally redesigning the outsourcing techniques used in
previous work, as well as new security proof formulations.

e Formal verification and analysis: We formally prove the se-
curity of our outsourcing techniques in the malicious model
defined by Kamara et al. [23]. Unlike previous work [8, 23],
our protocol provides security when the mobile device is col-
Iuding with its Cloud provider against the application server.
This added security guarantee makes our protocol the most se-
cure outsourcing protocol to date. We then provide an anal-
ysis of the reduction in operations between our work and the
outsourced oblivious transfer of Carter et al. [8], as well as
the Salus framework by Kamara et al. [23]. Specifically, our
protocol requires more executions of a pseudorandom number
generator in exchange for fewer algebraic group operations and
zero-knowledge proofs. Moreover, we significantly reduce the
number of rounds of communication required to the mobile
device.

e Implement and evaluate the performance of our protocol:
In our performance evaluation, we demonstrate a maximum
improvement of 98% in execution time and 92% improvement
in bandwidth overhead compared to Carter et al. [8] (with 75%
and 60% average improvement, respectively). For a different

'A reference to Tom Sawyer, who “outsourced” his chores to his
friends without ever revealing the true nature of the work.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

95

test application, when compared to performing computation
directly on the mobile device [28], we demonstrated a 96%
and 90% improvement in execution time and bandwidth, re-
spectively. These improvements allow for the largest circuits
evaluated on any platform to be computed from a mobile de-
vice efficiently and with equivalent security parameters to non-
mobile protocols.

The rest of this work is organized as follows: Section 2 provides
detail on related research; Section 3 describes our threat model and
security definition; Section 4 provides a description of the White-
wash protocol; Section 5 compares the operations required in our
protocol to the protocols by Carter et al. and Kamara et al.; Sec-
tion 6 describes our empirical performance analysis; and Section 7
provides concluding remarks.

2. RELATED WORK

Fairplay [35] provided the first practically efficient implementa-
tion of Yao’s garbled circuit protocol [43], requiring only simple
hash and symmetric key operations to securely evaluate an arbi-
trary function. Since then, a variety of garbled circuit-based se-
cure function evaluation (SFE) protocols have been developed in
the semi-honest adversarial model [5, 16, 20, 21, 29, 31, 34, 39].
The latest of these, developed by Huang et al. [16], allows gar-
bled circuits to be evaluated in stages, which makes it the most
efficient semi-honest garbled circuit evaluation technique, both in
computation and memory requirements. In recent work, several
garbled circuit SFE protocols have been developed in the malicious
security model, which require significantly more computational re-
sources than semi-honest protocols, but are secure against arbitrary
polynomial-time adversaries [18, 26, 28, 30, 33, 37, 40]. The pro-
tocol by shelat and Shen [41] provides a two-party garbled circuit
protocol which uses only symmetric-key constructions outside of
the oblivious transfer. When combined with Huang’s pipelining
approach and the PCF compiler by Kreuter et al. [27], their proto-
col is among the most efficient maliciously-secure garbled circuit
protocols implemented to date. Some efforts have been made to
improve the efficiency of these protocols by slightly reducing the
adversary model. Many schemes have been developed in the covert
adversary model, which allows for some efficiency gains at the cost
of security [2, 10, 15, 36]. Huang et al. [17] developed a protocol
that leaks only one bit of input to a malicious adversary through
dual execution, which was later implemented on GPUs by Husted
et al. [19]. In order to further improve the efficiency of garbled
circuit protocols, Gordon et al. [13] developed a protocol that com-
bined Oblivious RAM with garbled circuits, allowing sub-linear
amortized complexity. However, this protocol only allows this per-
formance gain for functions that can be computed efficiently on a
random-access machine. Other work has focused on making circuit
compilation and garbling more efficient [4, 38]. These techniques
improve the underlying operations found in all garbled circuit exe-
cution protocols, providing improvement in all existing techniques.

To further improve the speed of cryptographic protocols on de-
vices with minimal computational resources, the idea of outsourc-
ing cryptographic operations has been explored for many years in
the field of Server-assisted cryptography [3]. More recently, Green
et al. [14] developed a technique for outsourcing the costly decryp-
tion of attribute-based encryption schemes to the cloud without re-
vealing the contents of the ciphertext. Atallah and Frikken [1] de-
veloped a set of special-purpose protocols for securely outsourc-
ing Linear Algebra computations to a single cloud server. For
data mining applications, Kerschbaum recently developed an out-
sourced set intersection protocol using homomorphic encryption
techniques [24]. While all of these applications provide significant

performance gains for specific cryptographic applications, none of
them address outsourcing of general secure computation.

In their Salus protocol, Kamara et al. [22, 23] developed two pro-
tocols for securely outsourcing the computation of arbitrary func-
tions to the cloud. Following Salus, Carter et al. [8] developed an
outsourcing protocol based on the maliciously secure garbled cir-
cuit protocol by Kreuter et al. [28]. Carter’s protocol outsources the
evaluation of garbled circuits by adding in an Outsourced Oblivious
Transfer primitive. Their participant configuration is the same con-
figuration found in Kamara’s maliciously secure protocol, where
the cloud is made responsible for evaluating the garbled circuit. In
this work, we choose to build on shelat and Shen’s latest proto-
col [41] since the symmetric execution environment of Huang et
al. [18] does not lend itself to outsourcing, and the bootstrapping
technique used by Lindell [30] has not been implemented or evalu-
ated in practice. Unlike previous work, we choose to fundamentally
rearrange the roles of the participants, outsourcing the generation
of the garbled circuits as in Kamara’s covertly secure protocol.

3. OVERVIEW AND DEFINITIONS

3.1 Protocol Goals and Summary

The primary reason for developing an outsourcing protocol for
secure function evaluation is to allow two parties of asymmetrical
computing ability to securely compute some result. Current two-
party computation protocols assume both parties are equipped with
equivalent computing resources and so require both parties to per-
form comparable operations. However, when a mobile device is
taking part in computation with an application server, some tech-
nique is necessary to reduce the complexity of the operation on the
mobile device. Ideally, we can make the mobile device perform
some small number of operations that is independent of the size of
the circuit being evaluated.

In constructing such a protocol, there are four goals that we
would like to satisfy. The first of these goals is correctness. It
is necessary that an outsourcing protocol must produce correct out-
put even in the face of malicious players attempting to corrupt the
computation. The second desirable guarantee is security. SFE pro-
tocols frequently use a simulation-based approach to defining and
proving security, which we outline in detail below. Essentially, the
goal is to show that each party can learn the output of the computed
function and nothing else. Third, an ideal protocol would provide
some guarantee of fair release. This guarantee ensures that either
both parties receive their outputs from the computation, or neither
party receives their output. Our protocol achieves this in all but one
corruption scenario by treating the Cloud as an arbiter, who will
simultaneously and fairly release the outputs of the protocol using
one-time pads. In the scenario where the mobile device and Cloud
are colluding, it is possible for the Cloud to terminate the protocol
after the mobile device receives output but before the application
server receives output. However, this is inherently possible in most
two-party garbled circuit protocols. The fourth goal of our protocol
is efficiency. Our outsourcing protocol balances a minimal set of
operations on the mobile device with efficient multiparty computa-
tion operations on the application server and Cloud.

Given these goals, we build our protocol in the two-party server-
aided multiparty computation setting. This setting is composed of
two parties, the mobile device and an application server, who wish
to run a two-party secure computation while keeping both of their
inputs private. To assist the mobile device, the server-aided setting
adds a third party Cloud provider, which is independent and non-
colluding with the application server (more on non-collusion in the
following section). The Cloud performs cryptographic operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

96

for the mobile device, but is not allowed to see any party’s input or
output from the computation.

To achieve our goals in this setting, we first select the most ef-
ficient two-party garbled circuit computation protocol to date that
provides guarantees of correctness and security in the malicious
model. We assign the mobile device the role of circuit generator in
this protocol, and the application server is assigned the role of cir-
cuit evaluator. To outsource the circuit generation operations from
the mobile device, we allow the device to generate short random
seeds and pass these values to a Cloud computation provider, which
then generates the garbled circuits using these seeds to generate
randomness. Thus, the mobile device’s work is essentially reduced
to (1) generating random strings on the order of a statistical secu-
rity parameter, and (2) garbling and sending its input values to the
evaluating party. In this way, we develop a secure computation pro-
tocol where the mobile device performs work that is independent of
the size of the function being evaluated. We provide a formal proof
of security for our protocol in our technical report [7].

3.2 Non-collusion

To maintain security, previous outsourcing protocols assume that
neither party colludes with the Cloud [8, 23]. The theoretical in-
tuition for this constraint, outlined by Kamara et al. [23], is that
the existence of an outsourcing protocol where parties can arbitrar-
ily collude would imply a two-party secure multiparty computation
protocol where one party performs sub-linear work with respect to
the size of the circuit. While this has been shown to be possible
using fully homomorphic encryption and, in some cases, oblivious
RAM [13], it is not clear that these techniques can be efficiently
applied to a garbled circuit outsourcing scheme. Because of this,
previous work has left the more complex security model for fu-
ture study. However, while previous protocols restrict collusion
between the Cloud and any party, the sub-linear work implication
only applies to cases when the Cloud is generating circuits and col-
ludes with the evaluating party, or vice versa. In the Whitewash
protocol, we prove security when the mobile device colludes with
the Cloud against the evaluating web application. While this collu-
sion scenario removes the fair release guarantee of our protocol, it
in no way compromises the security guarantees of confidentiality of
participant’s inputs and outputs. Essentially, it reduces to the two-
party computation scenario that the underlying protocol is proven
to be secure in. Since the mobile device is paying the Cloud for
computation services, we believe it is a more realistic assumption
to assume that a Cloud provider could collude maliciously with the
paying customer, and note that our protocol is the first outsourcing
protocol to provide any security guarantees in the face of collusion
with the Cloud.

3.3 Security Constructions

In the two-party computation protocol underlying our work, she-
lat and Shen implement a number of new and efficient crypto-
graphic checks to ensure that none of the parties participating in the
computation behave maliciously. We provide an overview of these
security checks in the following section. We refer the reader to she-
lat and Shen’s work for more formal definitions and proofs [41].

3.3.1 k-probe-resistant input encoding

When working with garbled circuit protocols in the malicious
model, the generator has the ability to learn information about the
evaluator’s input by corrupting the wire labels sent during the obliv-
ious transfer. This attack, known as selective failure, was first pro-
posed by Mohassel and Franklin [37] as well as Kiraz and Schoen-
makers [25]. In the server-aided setting, it is possible that the mo-

bile device and the Cloud could collude and carry out this attack to
recover the application server’s input. To prevent this attack, she-
lat and Shen [41] implement an improved version of the k-probe-
resistant input encoding mechanism originally proposed by Lindell
and Pinkas [32]. In their protocol, the evaluator does not input her
real input y to the computation, but chooses her input 3 such that
M -y = y for a k-probe resistant matrix M. Intuitively, the idea
is that the generator would have to probe the evaluator’s input ap-
proximately 2* times before learning anything about her input ¥.

3.3.2 2-Universal Hash Function

A second concern with garbled circuits in the malicious model
is that the generator may send different input values for each of the
evaluated circuits from the cut-&-choose. As in the two-party set-
ting, it is possible for the mobile device to submit inconsistent in-
puts to the application server in the server-aided setting. To ensure
that the generator’s inputs are consistent across evaluation circuits,
shelat and Shen implement an efficient witness-indistinguishable
proof, which computes a randomized, 2-universal hash of the in-
put value using only arithmetic operations on matrices. Because of
the regularity guarantees of a 2-universal hash, the outputs of these
hash operations can be seen by the evaluator without revealing any
information about the generator’s inputs. However, if any of the
hashed input values is inconsistent across evaluation circuits, the
evaluator can infer that the generator provided inconsistent inputs,
and can terminate the protocol.

3.3.3 Output proof of consistency

When a function being evaluated using garbled circuits has sep-
arate, private outputs for the generating and evaluating parties, it is
necessary to ensure that the evaluating party does not tamper with
the generating party’s output. Since the output must be decoded
from the garbled output wires for the majority check at the end of
the protocol, if the output is only blinded with a one-time pad, this
allows the evaluator the opportunity to change bits of the genera-
tor’s output. Our setting faces the same potential for attack from the
application server, who is responsible for evaluating the circuit and
distributing the blinded output. Several techniques for preventing
this kind of tampering have been proposed, but shelat and Shen’s
latest protocol [41] implements a witness-indistinguishable proof
that uses only symmetric key cryptographic operations. After the
evaluator sends the blinded output of computation to the genera-
tor, the proof guarantees to the generator that the output value he
received was actually generated by one of the garbled circuits he
generated. However, it keeps the index of the circuit that produced
the output hidden, as this could leak information to the generator.

3.4 Security Model and Definition

Our definition of security is based on the definition proposed by
Kamara et al. [23], which we specify for the two-party setting as
in Carter et al. [8]. We provide a brief description of the real/ideal
world model here and direct readers to the previous work in this
space for a more formal definition.

In the real world, both parties participating in the computation
(the mobile device and application server) provide an input to the
computation and an auxiliary input of random coins, while the sin-
gle party designated as the outsourcing party (the Cloud) provides
only random auxiliary input. The party evaluating the circuit in this
computation is assumed to be non-colluding with the outsourcing
party, as defined by Kamara et al. Some subset of these parties
A = (A1, Az, As) are corrupted and can deviate arbitrarily from
the protocol. For the i*" honest party, let OUT; be its output, and
for the ‘" corrupted party, let OUT; be its view of the protocol

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

97

2: Random seeds & input
decommitments

6: Release outputs

1: Prepare

input 1: Prepare

input
Figure 1: The complete Whitewash protocol. Note that M o-
BILE performs very little work compared to SERVER and
CLouD.

execution. Then the i'" partial output of areal protocol execution
with input x is defined as:

REALY) (k,x;r)= {OUT; :j 2 H} [OUT;

Where H is the set of honest parties, r is al random coins of all
participants, and k is the security parameter.

In the ideal world, each party provides the same inputs as in the
real world, however, they are sent to a trusted oracle which per-
forms the secure computation. Once the trusted oracle completes
the computation, it returns the output to the participating parties
and no output to the outsourcing party. If any party aborts early or
sends no input to the oracle, the oracle aborts and does not send
the output to any party. For the i'" honest party, let OUT; be its
output to the oracle, and for the /" corrupted party, let OUT; bean
arbitrary output value produced by the party. Then the i'" partial
output of anideal protocol execution in the presence of independent
malicious simulators S = (S1, Sz, S3) isdefined as:

IDEALY) (k,x;r)= {OUT; :j 2 H} [OUT;

Where H, r, and k are defined as before. Given this model, security
isformally defined as:

DEFINITION 1. Anoutsourcing protocol securely computes the
function f ifthereexists a set of probabilistic polynomial-time (PPT)
smulators {Sim;} ;,s; such that for all PPT adversaries
(A1, Az, Az), inputs x, auxiliary inputs z, and for all i 2 [3]:

{REALY (K, x;r)}ken & {IDEALY (K, X;r)}kzn

Where S = (S1,S2,S3), Si
random.

Simj(Ai), and r is uniformly

4. PROTOCOL
41 Participants

Given amobile device and aweb or application server who wish
to jointly compute a function, there are three participating parties
in the Whitewash protocol:

* SERVER: “SERVER” refers to the web or application server
participating in the joint computation. She is assumed to have
large computational resources and is responsible for evaluating
the garbled circuits.

* MoOBILE: “MOBILE” refers to the mobile device participating
in the joint computation. He is assumed to have limited pro-
cessing power, memory, and communication bandwidth. Mo-
BILE is tasked with garbling the circuit to be evaluated by
SERVER.

* CLouUD: The outsourcing party “CLOUD” is responsible for
relieving MOBILE of the majority of his computational load,
but is not trusted with knowing either party’s input to or output
from the joint computation.

4.2 Protocol

Common Inputs: Security parameters k (key length) and o (the
number of circuits generated for the cut-& -choose); a commitment
scheme com(x; ¢) with committed value x and commitment key c;
and afunction f (x, y).

Private Inputs: MOBILE inputs x and SERVER inputs y.
Outputs: Two outputs fs, f, for SERVER and MOBILE, respec-
tively.

Phase 1: Pre-computation

1. Preparing inputs: MOBILE randomly generates
r 2 {0,1}2k*1°9(5) g5 his input to the 2-universal circuit. He
dso generates e 2 {0, 1}!"m | as a one-time pad for his out-
put. SERVER computes her k-probe-resistant matrix M and y
suchthat M -y = y. MOBILE’S input to the circuit will be
X = xkekr and SERVER’S input will bey. We denote the set
of indices[ms] = {1, ---,|yl} and[mn]1= {1, -, |X|}.

2. Preparing circuit randomness: MOBILE generates random
seeds { (V/)} »(0; for generating the circuits and sends them to
CLoub.

Phase 2: Input commitments

1. Committing to MOBILE’ S inputs: For each circuitj 2 [o],
input bit i 2 [mm], and b 2 {0,1} MOBILE uses [¥/) to
generate commitment keys .}* b) . Using the same random seeds,
these keys will |ater be generated by CLOUD to commit to the
input wire labels corresponding to MOBILE’ S input. MOBILE
then commits to hisown inputs as { TV}, 5(,; as:

r9 = feom() s vP "V iztmm

using independently generated random commitment keys V,U).
MOBILE sends {TY)}; (5 to SERVER and the commitment
keys{y,(/)}j2[mm Li2io tO CLoub.

2. Committing to CLouD’ sinputs: To alow for afair release
of the outputs, CLOUD inputs one-time pads to blind both par-
ties outputs. CLOUD randomly generates ps 2 {0, 1}!"s! and
pm 2 {0, }1"m! aswdlasr. 2 {0,1)2k* 109K a5ijts in-
put to the 2-universal circuit. We denote CLOUD’S input as
Z = pskpmkrc, and the indices of CLOUD’S input wires as
[me] = {1, -, |z|}.

For each circuitj 2 [o0] and input bit i 2 [m:], CLOUD uses
{9} 2100 to generates the garbled input wire keys
(KY, K, oV, where K %), K) 2 {0, 1}* and the per-

mutation bit ij) 2 {0,1}. To locate the correct key for

bit b on input wire w; of circuit j, we designate the label

Wiy = (Kb o).

Let {Wm+i}i2im,) be the input wires for CLouD. CLOUD

then commitsto thelabel pairsforitsinput wiresas{ '}, (01,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

98

where

9 = {eom(W
mg+i, OEBW

com(W
ms+i, l@ﬂ
(49)

i,b

)
(J)’w (J))

1, 0@7\'
00?5 Yietmal

i1em (J)

using commitment keys 1,”; generated with the random seed

p¥). CLOUD then commits to its inputs as {E(j)}je[a] as:

/(J) (4 >)}i€[7n)

using independently generated random commitment keys.
CLoUD sends { ¥} ,c(,1 and {10} () to SERVER.
Phase 3: Circuit construction

1. Constructing the objective circuit: SERVER sends M to
CLOUD, then SERVER and CLOUD run a coin flipping proto-
col to randomly determine the 2-universal hash matrix H €
{0,1}**™m These two matrices can be used to generate
the new circuit C' that computes the function g : (Z,7) —
(L, (hm, heyCsyCm)), where by, = H - T, he = H - 2,9, =
f5($7M . y)7cm = gm De @pm,gs = fs(fl',M . g)’ and
cs = gs D ps. MOBILE will need the values h.||c,, to recover
his output. We denote the set of indices corresponding to these
values as O, = {1, - , |he| + |cm|}-

2. Committing to input and output wire label palrs Using the
same method as in Phase 2, CLOUD uses {p'/)} ;¢(,] to gener-
ate the input wire keys for both SERVER and MOBILE’S input
as well as the output wire keys for MOBILE’S output (these
output keys must be committed for the witness indistinguish-
able proof of MOBILE’S output correctness). Let {w; }ic]
be the input wires for MOBILE, {Wm,,, +4 }ic[m,] be the input
wires for SERVER, and {w; }ic0,,. CLOUD then commits to
the label pairs in MOBILE’S input, SERVER’S input, and MO-
BILE’S output as {0, Q) &} .\ 1 where

e —{wm(Wm (”,91(70)@7rm)
com(W(J) ;9)}i
2773 1@ () /i€ lmm]
QW :{com(Wﬁnjzn i, oiwi), com(W(J) i, 1w)}v.e[mg]

dW :{com(WL-(;Q; ¢§J))’ Com(Wi(,jl)? (ZS,EJ))}z'e()m
using commitment keys generated with the random seed p)
CLOUD then sends these commitments to SERVER.
Phase 4: Oblivious transfers (OT)
1. Oblivious transfers: CLOUD and SERVER execute m input
oblivious transfers and o circuit oblivious transfers as follows:
(a) Input: For each i € [m.], both parties run a (7)-OT
where CLOUD inputs

(VD 40w st AW i) sero)

while SERVER inputs ;. Once SERVER receives all of
her garbled input wire labels, she uses the decommitment
keys obtained in the OTs to check the committed wire
values in {Q9)},c(,). If any of the labels received in
the OT do not match the committed wire labels, SERVER
terminates the protocol.

Circuit: SERVER selects a set of circuits to be evaluated
S C [o] such that |S| = 22, as in shelat and Shen’s
protocol [40]. She represents this set with a bit string
s € {0,1} such that the j*" bit s; = 1if j € S
and s; = 0 otherwise. SERVER and CLOUD perform o
(%)-OTs where, for every j € [o], CLOUD inputs

(b)

Protocol SYM GROUP OoT | CT
CMTB || Z(yl+1) | k | yes
Salus || 2 (Jz[+ [y| + [f (=, 9)]) - - | yes
LA o([z] + Z[fm(z,9)]) - - | mo

Table 1: Operations required on the mobile device by three out-
sourcing protocols. Here, SYM is the symmetric cryptographic
operations, GROUP is the group algebraic operations, OT is
the oblivious transfers, and CT is whether the protocol requires
a coin toss. Recall that & is the security parameter, o is the num-
ber of circuits generated, x is the mobile device’s input, and y
is the application server’s input.

(09, (7Y icmm I{EY Yicim.))), while SERVER in-
puts s;. This allows SERVER to learn either the ran-
domness used to generate the check circuits or MOBILE
and CLOUD’S inputs for the evaluation circuits without
CLoUD knowing which circuits are being checked or eval-
uated.

Phase 5: Evaluation

1. Circuit evaluation: Using p'/), CLOUD garbles the objective
circuit C' as G(C)"Y) for all j € [o] and pipelines these cir-
cuits to SERVER using Huang’s technique [16]. Depending on
whether the circuit is a check circuit or an evaluation circuit,
SERVER performs one of two actions:

(a) Check: For each j € [0]\S, SERVER checks to see if
p(j) can correctly regenerate the committed wire values
{09 Q) & W)Y and the circuit G(C)).

(b) Evaluate: For each j € S, SERVER checks that she can
correctly decommit MOBILE’S input by recovering half
of ©) from the keys committed in ') She does the
same for CLOUD’S input recovering half of U from
the keys committed in ()

If any of the above checks fail, SERVER aborts the protocol.
Otherwise, she evaluates the circuits {G(C)“)} ;¢ (5], s. Each
circuit outputs the values (k%) b, ¢ ¢3) for j € [0]\S.

2. Majority output selection and consistency check: Let
(Rm, he, cs, cm) be the output of the majority of the evaluated
circuits. If no majority value exists, SERVER aborts the proto-
col. Otherwise, she checks that hs,];) = h,, and hgj) = h. for
all j € [o]\S. If any of MOBILE or CLOUD’S hashed input
values do not match, SERVER aborts the protocol.

Phase 6: Output proof and release

1. Proof of output authenticity: SERVER and MOBILE perform
the proof of output authenticity from shelat and Shen’s pro-
tocol [41] using the commitments to MOBILE’S output wires
{®9}c(0)\s and the values he||cpm.

2. Output release: CLOUD simultaneously releases the input one-
time pads ps and p.,, to SERVER and MOBILE. SERVER and
MOBILE then hash the pads and check to see if the hash values
output by the circuit he = H - ps||pm. If the hashes do not
match, SERVER and MOBILE abort the protocol. Otherwise,
SERVER receives ¢s @ ps as her output and MOBILE receives
cm @ pm @ e as his output.

S. COMPARISON WITH PREVIOUS OUT-
SOURCING PROTOCOLS

In this section, we compare the asymptotic complexity and se-
curity guarantees of the Whitewash protocol to two previous out-
sourcing techniques: the protocol developed by Carter et al. [8],
which we call “CMTB” for the remainder of this work, and the
Salus framework developed by Kamara et al. [23]. We refer to our

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

99

Whitewash protocol as WW.

When examining the complexity of each protocol, recall that one
of our main goals is to optimize the efficiency on the mobile de-
vice. Thus, we examine the number of operations each protocol
requires on the mobile device itself. When compared to the un-
derlying shelat-Shen protocol, Whitewash adds extra input values
from the Cloud, but does not add any steps to the computation that
increase the complexity of operations performed on the application
server or the Cloud. Thus, for a discussion of the application server
and Cloud protocol complexity, we refer the reader to the original
work by shelat and Shen [41].

5.1 Comparison to CMTB

The underlying two-party computation protocols of Whitewash
and CMTB follow similar structures in terms of the security checks
that are performed. However, Kreuter, shelat, and Shen’s (KSS)
protocol [28], which underlies CMTB, uses a number of algebraic
operations to perform input consistency checks and output proofs
of consistency. The protocol developed by shelat and Shen [41],
which underlies Whitewash, removes these expensive cryptographic

primitives in favor of constructions that use only efficient, symmetric-

key operations. In addition to the improvements to the underly-
ing protocol, Whitewash outsources the generation side of two-
party computation, while CMTB outsources the evaluation side. In
CMTB, since neither the mobile device or the Cloud could garble
inputs before computation, a specially designed Outsourced Obliv-
ious Transfer (OOT) protocol is necessary to deliver the mobile de-
vice’s inputs to the evaluating Cloud in a secure, privacy-preserving
manner. By swapping roles in the Whitewash protocol, we allow
the mobile device to garble its own inputs, removing the need for
an OT protocol to be performed from the mobile device. While
Whitewash still requires OT's between the Cloud and the evaluating
party, these operations can be parallelized, while the OOT protocol
acts as a non-parallelizable bottleneck in computation.

5.1.1 Asymptotic Complexity

Table 1 shows this complexity for both Whitewash and CMTB.
Note that for the mobile device, Whitewash requires significantly
more symmetric key operations for garbling its own input and ver-
ifying the correctness of its output. By contrast, the OOT protocol
in CMTB requires very few symmetric key operations, but requires
several instantiations of an oblivious transfer. In addition, CMTB
requires that the mobile device check the application server’s input
consistency and verify the correctness of the output using algebraic
operations (e.g., modular exponentiations and homomorphic oper-
ations). Considering the fact that modular exponentiation is signif-
icantly more costly than symmetric key operations, removing these
public key operations from the phone is a significant efficiency im-
provement for Whitewash. We also note that CMTB requires a
two-party fair coin toss at the mobile device, which is not required
by Whitewash.

5.1.2 Security Guarantees

The removal of the OOT protocol in Whitewash not only in-
creases its efficiency when compared to CMTB, it also allows for
stronger security guarantees. In CMTB, security was only possible
if none of the parties collude, since the mobile device possessed
information that would allow the Cloud to recover both input wire
labels for all of the mobile input wires after the OOT. If the mo-
bile device and Cloud collude in the Whitewash protocol, it simply
removes the guarantee of fair release and makes the protocol equiv-
alent to the underlying two-party computation protocol. Thus, the
only guarantee lost is that of fair release at the end of the proto-

col, since a colluding mobile device and Cloud may not release the
one-time pad used to blind the evaluating party’s output. We be-
lieve that this represents a more realistic security setting, since the
mobile device is paying for the assistance of the Cloud and may
collude.

5.2 Comparison to Salus

When considering the operations performed on the mobile de-
vice, the Salus protocol and the Whitewash protocol both make the
mobile device responsible for generating circuit randomness and
garbling its own inputs. However, the Whitewash protocol requires
an added proof of output consistency that is not included in Salus.
While this proof adds some complexity to the protocol, it allows
Whitewash to handle functions where both parties get different out-
put values, while Salus is designed to handle functions with a sin-
gle, shared output value. In addition, the Whitewash protocol out-
sources the generation of the garbled circuit, while the malicious
secure Salus protocol outsources the evaluation. By swapping the
roles of the outsourced task and adding in consistency checks at
the evaluating party, the Whitewash protocol guarantees security in
a stronger adversarial model.

5.2.1 Asymptotic Complexity

Both the Whitewash and Salus protocols use only efficient, sym-
metric key operations, but there is a slight tradeoff in the number
of operations required (Table 1). Salus only requires operations for
the 27)" evaluated circuits, but requires those operations for each bit
of both party’s inputs and the shared output. By contrast, White-
wash requires that the mobile device’s input be committed for all &
circuits generated, but then only requires correctness proof of the
output wires on the 2?" evaluated circuits. When the application
server’s input is significantly longer than the mobile device’s, this
will cause the Salus protocol to be less efficient than Whitewash.
However, in the average case where both inputs are approximately
the same length, this will mean that Whitewash requires more oper-
ations. This small tradeoff in efficiency is justified by the fact that
Whitewash provides security in a stronger adversarial model than
Salus. We also note that Salus requires a two-party fair coin toss
before the protocol begins, which is not required by Whitewash.

5.2.2 Security Guarantees

The Salus protocol provides equivalent security guarantees to
CMTB, guaranteeing security when none of the parties are collud-
ing. This is a result of outsourcing the evaluation to the Cloud while
allowing the mobile device to generate circuit randomness. If the
mobile device colludes with the Cloud, they can trivially recover
all of the other party’s inputs. By outsourcing the generation of the
garbled circuit and adding in additional consistency checks at the
evaluating party, Whitewash guarantees security under this type of
collusion. As stated above, the only guarantee lost is that of fair
output release, which ultimately reduces Whitewash to the security
of the underlying two-party computation protocol.

6. PERFORMANCE EVALUATION

Our protocol significantly expands upon the implementations of
the PCF garbled circuit generation technique [27] and shelat and
Shen’s garbled circuit evaluation protocol [41]. For experimental
comparison to previous protocols, we acquired the code implemen-
tation of the outsourcing protocol by Carter et al. [8] directly from
the authors, as well as an Android port of the two-party garbled
circuit protocol developed by Kreuter, shelat, and Shen [28]. We
would like to thank the authors of [8, 27, 28, 41] for making their

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

100

Input Size Total Gates Non-XOR Gates
Circuit (Bits) KSS PCF KSS PCF
HAM (1600) 1,600 24,379 32,912 17,234 6,375
HAM (16384) 16,384 262,771 376,176 186,326 101,083
MAT (3x3) 288 424,748 92,961 263,511 27,369
MAT (5x5) 800 1,968,452 433,475 1,221,475 127,225
MAT (8x8) 2,048 8,067,458 1,782,656 5,006,656 522,304
MAT (16x16) 8,192 64,570,969 14,308,864 40,076,631 4,186,368
DIJK 10 112/1,040 259,232 530,354 118,357 291,490
DIJK 20 192/2,080 1,653,380 2,171,088 757,197 1,192,704
DIJK 50 432/5,200 || 22,109,330 13,741,514 10,170,407 7,549,370
RSA-256 256/512 934,092,960 | 673,105,990 || 602,006,981 | 235,925,023
Table 2: Input size and circuit size for all test circuits evaluated.
3000 wWw 2500 T
EcMTB E‘é"“‘z\’TB
2500
BKsSs 2000l |
AZOOO 1
@) —
2 3 15001 1
2 1500] o
(0]
£ £ 1000/]
1000] =1
500] 500]
0 Hamming 1600 . Hamming 16384 0
Circuit 3x3 5x5 =~ 8x8 16x16
Circuit

Figure 2: Execution time (ms) for Hamming Distance with in-
put sizes of 1,600 and 16,384 bits for 0 = 256 (note: log scale).
Note that without outsourcing, only very small inputs can be
computed over. Additionally, even for a large number of in-
put bits, performing OTs on the servers still produces a faster
execution time.

code available and for assisting us with our evaluation®.

6.1 Test Environment

For evaluating our test circuits, we perform our experiments with
a single server performing the role of Cloud and Application server,
communicating with a mobile device over an 8§02.11g wireless con-
nection. The server is equipped with 64 cores and 1TB of memory,
and we partition the work between cores into parallel processing
nodes using MPI. The mobile device used is a Samsung Galaxy
Nexus with a 1.2 GHz dual-core ARM Cortex-A9 processor and 1
GB of RAM, running Android 4.0.

The large input sizes examined in the Hamming Distance trials
required us to use a different testbed. For inputs as large as 16,384
bits, the phone provided by the above computing facility would
overheat and fail to complete computation. Because the gate counts
for Hamming Distance are significantly smaller than the other test
circuits, we were able to run these experiments on a local testbed.
We used two servers with Dual Intel Xeon E5620 processors, each

2We contacted the authors of the Salus protocol [23] in an attempt
to acquire their framework to compare the actual performance of
their scheme with ours. Because they were unable to release their
code, no sound comparison to their work beyond an asymptotic
analysis was possible. Our code is available at http://www.
foryourphoneonly.org.

Figure 3: Execution time (ms) for the Matrix-Multiplication
problem with input size varying between 3 x 3 matrices and
16 x 16 matrices for 0 = 256 (note: log scale). This figure
clearly shows that the oblivious transfers, consistency checks,
and larger circuit representations of CMTB add up to a sig-
nificant overhead as input size and gate count increase. By
contrast, Whitewash requires less overhead and increases more
slowly in execution time as gate counts and input size grow.

with 4 hyper-threaded cores at 2.4 GHz each for the Cloud and the
Application server. Each server is running the Linux kernel version
2.6, and is connected by a VLAN through a 1 Gbps switch. Our mo-
bile device is a Samsung Galaxy Note II with a 1.6 GHz quad-core
processor with Arm Cortex A9 cores and 2 GB of RAM, running
the Android operating system at version 4.1. The phone connects
to the two servers through a Linksys 802.11g wireless router with a
maximum data rate of 54 Mbps. While this test environment repre-
sents optimistic connection speeds that may not always be available
in practice, it allows us to consider the performance of the protocol
without interference from variable network conditions, and mirrors
the test environments used in previous work [8, 28, 41]. For all
experiments except RSA-256, we take the average execution time
over ten test runs, with a confidence interval of 95%. For RSA-256,
we ran 3 executions.

6.2 Experimental Circuits

To evaluate the performance of our protocol, we run tests over
the following functions. We selected the following test circuits be-
cause they exercise a range of the two major variables that affect
the speed of garbled circuit protocols: input size and gate counts.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

101

Ww

CMTB

Figure 4: Microbenchmarking execution times (ms) for White-
wash and CMTB over the Matrix-Multiplication problem. We
denote the total time spent in computation for Whitewash as
“MOBI”. Since the mobile device is linked with “CHKS” and
“OT” in CMTB, we do not separate out the mobile time for
that protocol. Notice the dominating amount of time required
to perform oblivious transfers. Moving these operations off the
mobile device removes a significant computation bottleneck.

In addition, these programs are becoming somewhat standard test
applications, having been used as benchmarks in a large amount of
the related literature [8, 27, 28, 41]. All of the programs are im-
plemented with the algorithms used by Kreuter et al. [27] except
for Dijkstra’s algorithm, which matches the implementation used
by Carter et al. [8]:

o Hamming Distance (HAM): The Hamming Distance circuit
accepts binary string inputs from both parties and outputs the
number of locations at which those strings differ. This circuit
demonstrates performance for a small number of gates over a
wide range of input sizes. We consider input strings of length
1,600 bits and 16,384 bits.

o Matrix Multiplication (MAT): Matrix multiplication takes an
n X n matrix of 32-bit integer entries from each party and out-
puts the result of multiplying the matrices together. This cir-
cuit demonstrates performance when both input size and gate
count vary widely. We consider square matrix inputs where
n = 3,5,8, and 16.

e Dijkstra’s Algorithm (DIJK): This version of Dijkstra’s algo-
rithm takes an undirected weighted graph with a grid structure
and a maximum node degree of four from the first party, and
a start and end node from the second party. The circuit out-
puts the shortest path from the start node to the end node to
the second party, and nothing to the first. For an n node graph,
the graph description from the first party requires 104n input
bits, while the start and end node descriptions require 8n + 32
bits. We consider graphs with n = 10, 20, and 50 nodes. Due
to an error in the PCF compiler, we were unable to compile a
program for graphs larger than 50 nodes.

o RSA Function (RSA): The RSA function (i.e., modular ex-
ponentiation) accepts an RSA message from one party and an
RSA public key from the other party and outputs the encryp-
tion of the input plaintext under the input public key. Specifi-
cally, one party inputs the modulus n = pq for primes p and ¢,
as well as the encryption key e € Zy (). The other party inputs

®

a message * € Zj,, and the circuit computes z°¢ (mod n).

2000

[ww
BcvTtB
1500]
)
O
2
o 1000¢]
£
|_
500]
Dijkstra 10 Dijkstra 20 Dijkstra 50
Circuit

Figure 5: Execution time (s) for Dijkstra’s algorithm with input
sizes of 10, 20, and 50 node graphs for ¢ = 256. This figure
shows that the Whitewash protocol allows for computation that
was only feasible to be executed in a close to practically useful
time frame.

This circuit demonstrates performance for small input sizes
over very large gate counts. We consider the case where the
input values z,n, and e are 256 bits each. While these are
not secure parameters in practice, the function itself provides
a complex circuit that is scalable on input size and useful for
benchmarking our protocol.

For each test circuit, we consider the time required to execute
and the bandwidth overhead to the mobile device. Table 2 shows
the input size and gate counts for each test circuit, showing the
exact range of values tested for these two circuit variables.

6.3 Execution Time

In all experiments, the efficiency gains of removing oblivious
transfers and public key operations are immediately apparent. To
examine how Whitewash compares to generating garbled circuits
directly on the mobile device, we considered Hamming Distance
as a simple problem (Figure 2). Even with a relatively small gate
count, garbling the circuit directly on the mobile device is only pos-
sible for the small input size of 1,600 bits. Whitewash is capable of
executing this protocol in 96 seconds, while running the computa-
tion directly on the mobile device takes 2,613 seconds, representing
a 96% performance improvement through our outsourcing scheme.
For the very large input size of 16,384 bits, computation directly
on the mobile device ceases to be possible. When comparing to
CMTB, this circuit further illustrates the cost of oblivious transfers
on the mobile device. Even with the significantly reduced num-
ber of OTs allowed by the OOT protocol in CMTB (80 OTs), per-
forming 16,384 malicious secure oblivious transfers between two
servers in Whitewash still runs 30% faster than CMTB.

The matrix-multiplication circuit provides a good overview of
average-case garbled circuit performance, as it represents a large
range of both gate counts and size of inputs. For the input size of
a 3 x 3 matrix, the Whitewash protocol runs in an average of 12
seconds, while CMTB requires 493 seconds, representing a 98%
improvement (see Figure 3). Upon inspecting the micro bench-
marking breakdown of each protocol’s execution in Figure 4, we
observe a significant speedup simply by moving oblivious transfers
off of the mobile device. Even though the number of OTs required
by CMTB is essentially constant based on their application of the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

102

Ishai OT extension, performing standard malicious secure oblivi-
ous transfers in parallel between the servers is much more efficient
than requiring that the phone perform these costly operations. In
addition, if we examine the amount of execution time where the
phone participates in Whitewash, we see that the mobile device
(“MOBI" in Figure 4), takes around 1 second, and is idle during the
majority of computation. By contrast, both the OT and consistency
check phases of CMTB require the mobile device to participate in
a significant capacity, totaling to almost 8 minutes of the compu-
tation. Having the phone perform as little work as possible means
that the Whitewash protocol performance is nearly equivalent to
running the same computation between two server-class machines.

To examine the performance of Whitewash for a more practical
application, we considered the Dijkstra’s algorithm circuit used to
implement privacy-preserving navigation by Carter et al. [8]. They
point out that this application, which has uses from military con-
voys to industrial shipping routes, is a significant first step in pro-
viding privacy for the growing genre of location-based mobile ap-
plications. Unfortunately, the PCF compiler does not optimize the
Dijkstra’s circuit as well as the previous experimental programs,
which is evident in Table 2. In the 10 and 20 node graphs, the
PCF compiler even produces a larger circuit than the compiler used
by KSS. However, despite evaluating larger circuits, the White-
wash protocol still outperforms CMTB in execution time, running
88%,76%, and 51% faster in the 10, 20, and 50 node cases respec-
tively (shown in Figure 5). As circuit compilers continue to im-
prove and produce smaller circuits, the performance gains of the
Whitewash protocol will be even larger. In this experiment, we also
noticed that because Whitewash evaluates and checks circuits si-
multaneously, it created contention for the network stack in our test
server. In a truly distributed environment where each server node
has dedicated network resources, the highly parallelizable struc-
ture of shelat and Shen’s protocol would allow Whitewash to exe-
cute faster. Given that Whitewash can execute Dijkstra’s algorithm
obliviously on the order of minutes, it allows computation consid-
ered only feasible for previous schemes to be performed in a nearly
practical execution time.

The previous experiments clearly show that outsourcing is neces-
sary to run circuits of any practical size. For our final test circuit, we
consider an extremely complex problem to demonstrate the ability
of outsourcing protocols in the worst-case. The RSA-256 circuit
evaluated by Kreuter et al. in [27] and shelat and Shen in [41] rep-
resents one of the largest garbled circuits ever evaluated by a mali-
cious secure protocol. For the RSA-256 problem, Whitewash com-
pleted the computation in 515 minutes. CMTB was unable to com-
plete one execution of the protocol. A large part of this efficiency
improvement results from the underlying protocol of Whitewash,
which uses only symmetric-key operations outside of the oblivious
transfers between the servers. The reduced non-XOR gate counts
and more compact circuit representation of the PCF compiler also
contribute to this improvement. Ultimately, because Whitewash
ensures that the phone participates minimally in the protocol, it no
longer acts as a bottleneck on computation. We essentially reduce
performance of our outsourcing protocol to that of the underlying
two-party protocol, allowing this technique for outsourcing to ben-
efit as more improvements are made in non-outsourced garbled cir-
cuit protocols. In addition, this minimal level of interactivity allows
us to run these protocols with 256 circuits, equivalent to a security
parameter of approximately 80-bit security, which is agreed by the
research community to be an adequate security parameter. Finally,
the phone is only active for a few seconds during this large compu-
tation, keeping its system resources free for other user applications
(or to preserve battery power) while the servers complete the com-

Bandwidth (MB) Reduction Over
[Circuit WW | CMTB | KSS CMTB | KSS
HAM (1600) 23.56 41.05 | 240.33 || 42.62% | 90.20%
HAM (16384) | 241.02 | 374.03 X 35.56% X
MAT (3x3) 4.26 11.50 X 62.97% X
MAT (5x5) 11.79 23.04 X 48.82% X
MAT (8x8) 30.15 51.14 X 41.05% X
MAT (16x16) | 120.52 | 189.52 X 36.41% X
DIJK 10 1.67 20.21 X 91.73% X
DIJK 20 2.85 35.28 X 91.93% X
DIJK 50 6.38 80.49 X 92.08% X
RSA-256 3.97 X X X X

Table 3: Bandwidth measures for all experiment circuits. Note
that there is as much as a 84% reduction in bandwidth when
using the Whitewash protocol.

putation. This shows that Whitewash is capable of evaluating the
same circuits as the most efficient desktop-based garbled circuit
protocols with a minimal overhead cost. Exact execution times are
shown in our technical report [7].

6.4 Network Bandwidth

The Whitewash protocol not only improves the speed of execu-
tion when outsourcing garbled circuit computation, it also signif-
icantly reduces the amount of bandwidth required by the mobile
device to participate in the computation. Table 3 shows the band-
width used by the mobile device for each test circuit. In the best
case, for Dijkstra’s algorithm over 50 node graphs, we observed a
92% reduction in bandwidth between Whitewash and CMTB. This
is a result of the mobile device not performing OTs and only send-
ing relatively small symmetric-key values instead of algebraic el-
ements for consistency checks. For all test circuits, we observed
a small decrease in the amount of improvement between the two
protocols as the input size increased. This is because the number of
commitments sent by the phone in Whitewash increases as the size
of the input grows, while CMTB performs a fixed number of OT's
as the input size increases. However, the oblivious transfers still
require a significant enough amount of bandwidth to make remov-
ing them the most efficient option. When comparing to not out-
sourcing garbled circuit generation, the cost of oblivious transfers
and sending several copies of the garbled circuit to the evaluator
quickly adds up to a significant bandwidth cost. For the small-
est circuit evaluated, outsourcing the circuit garbling reduces the
required amount of bandwidth by 90%. The importance of these
bandwidth reductions is further highlighted when considering mo-
bile power savings. With data transmission costing roughly 100
times as much power as computation on the same amount of data,
any reduction in the bandwidth required by a protocol implies a
critical improvement in practicality.

One challenge encountered during the implementation of the
Whitewash protocol was the extensive use of hardware-specific func-
tions used to implement commitment schemes in shelat and Shen’s
code. Rather than try to port this code over to Android, which
would require significant development of hardware-specific libraries,
we chose to implement the protocol in an equivalent manner by
having the Cloud generate the part of the commitments which re-
quires these functions and send them to the mobile device. The
mobile device then finishes generating the commitments that match
its input and forwards them to the evaluator. Our proofs of secu-
rity remain valid even with this small protocol modification. Our
preliminary implementation using instructions specific to the ARM
architecture has shown that we could further reduce the measured
bandwidth values by over 60%. With already significant bandwidth

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

103

reductions from previous outsourcing schemes, our protocol will
see further improvements as mobile hardware begins to incorpo-
rate more machine-specific libraries.

7. CONCLUSION

With the increasingly pervasive and personal nature of mobile
computing, garbled circuits provide a solution that preserves both
privacy and application functionality. However, to make these com-
putationally expensive protocols usable on mobile devices, secure
outsourcing to the cloud is necessary. We develop a new scheme
that eliminates the most costly operations, including oblivious trans-
fers, from the mobile device. By requiring that the mobile device
instead produce the randomness required for circuit generation, we
significantly reduce the number of algebraic group operations and
communication rounds for the mobile device. At the same time, we
bolster the security guarantees against certain types of collusion,
yielding a more secure protocol than any other in this space. Our
performance evaluation shows average gains of 75% for execution
time and 60% for bandwidth over the previous outsourcing proto-
col. These improvements allow large circuits representing practical
applications to be computed efficiently from a mobile device. As a
result, we show that garbled circuit protocols can be made nearly
as efficient for mobile devices as they are for server-class machines.

Acknowledgments This material is based on research sponsored
by DARPA under agreement number FA8750-11-2-0211. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References
[

M. J. Atallah and K. B. Frikken. Securely outsourcing linear algebra compu-
tations. In Proceedings of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2010.

Y. Aumann. Security Against Covert Adversaries: Efficient Protocols for Real-
istic Adversaries. Journal of Cryptology, 18(3):554-343, 2010.

D. Beaver. Server-assisted cryptography. In Proceedings of the workshop on
New security paradigms (NSPW), 1998.

M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling
from a fixed-key blockcipher. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, 2013.

J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-
honest model. In Proceedings of the international conference on Theory and
Application of Cryptology and Information Security, 2005.

H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor. For your phone only: cus-
tom protocols for efficient secure function evaluation on mobile devices. Jour-
nal of Security and Communication Networks (SCN), 7(7):1165-1176, 2014.
H. Carter, C. Lever, and P. Traynor. Whitewash: Outsourcing garbled circuit
generation for mobile devices. Cryptology ePrint Archive, Report 2014/224,
2014. http://eprint.iacr.org/.

H. Carter, B. Mood, P. Traynor, and K. Butler. Secure Outsourced Garbled
Circuit Evaluation for Mobile Devices. In Proceedings of the USENIX Security
Symposium, 2013.

comScore. comScore Reports February 2013 U.S. Smartphone Subscriber
Market Share. http://www.comscore.com/Insights/Press_
Releases/2013/4/comScore_Reports_February_2013_U.S.
_Smartphone_Subscriber_Market_Share, 2013.

1. Damgard, M. Geisler, and J. B. Nielsen. From passive to covert security
at low cost. In Proceedings of the 7th international conference on Theory of
Cryptography, 2010.

1. Damgard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Proceedings of the Annual Interna-
tional Cryptology Conference on Advances in Cryptology, 2012.

C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES
circuit. In Advances in Cryptology - CRYPTO, 2012.

S. D. Gordon, J. Katz, V. Kolesnikov, A.-1. B. Labs, F. Krell, and M. Raykova.
Secure Two-Party Computation in Sublinear (Amortized) Time. In Proceed-

[2]
[3]
[4]

[5

[6]

[7

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[40]

[41]

[42]

[43]

ings of the ACM conference on Computer and communications security (CCS),
2012.

M. Green, S. Hohenberger, and B. Waters. Outsourcing the Decryption of ABE
Ciphertexts. In Proceedings of the USENIX Security Symposium, 2011.

C. Hazay and Y. Lindell. Efficient Protocols for Set Intersection and Pattern
Matching with Security Against Malicious and Covert Adversaries. Journal of
Cryptology, 23(3):422-456, 2008.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Compu-
tation Using Garbled Circuits. In Proceedings of the USENIX Security Sympo-
sium, 2011.

Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-
honest protocols with dual execution. In Proceedings of the IEEE Symposium
on Security and Privacy, 2012.

Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Advances in Cryptology—CRYPTO, 2013.

N. Hustead, S. Myers, abhi shelat, and P. Grubbs. GPU and CPU paralleliza-
tion of honest-but-curious secure two-party computation. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC), 2013.

A. Iliev and S. W. Smith. Small, Stupid, and Scalable: Secure Computing with
Faerieplay. In The ACM Workshop on Scalable Trusted Computing, 2010.

S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. In Proceedings of the IEEE Symposium on Security and Privacy,
2008.

S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computa-
tion. Cryptology ePrint Archive, Report 2011/272,2011. http://eprint.

iacr.org/.

S. Kamara, P. Mohassel, and B. Riva. Salus: A system for server-aided secure
function evaluation. In Proceedings of the ACM conference on Computer and
communications security (CCS), 2012.

F. Kerschbaum. Collusion-resistant outsourcing of private set intersection. In
Proceedings of the ACM Symposium on Applied Computing, 2012.

M. Kiraz and B. Schoenmakers. A Protocol Issue for The Malicious Case of
Yao’s Garbled Circuit Construction. In Proceedings of the Symposium on In-

formation Theory in the Benelux, 2006.

M. S. Kiraz. Secure and Fair Two-Party Computation. PhD thesis, Technische
Universiteit Eindhoven, 2008.

B. Kreuter, a. shelat, B. Mood, and K. Butler. PCF: A portable circuit format for
scalable two-party secure computation. In Proceedings of the USENIX Security
Symposium, 2013.

B. Kreuter, a. shelat, and C. Shen. Billion-Gate Secure Computation with Ma-
licious Adversaries. In Proceedings of the USENIX Security Symposium, 2012.
L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure Function Evaluation with
Ordered Binary Decision Diagrams. In Proceedings of the ACM conference on
Computer and communications security (CCS), 2006.

Y. Lindell. Fast cut-and-choose based protocols for malicious and covert ad-
versaries. In Advances in Cryptology—-CRYPTO, 2013.

Y. Lindell and B. Pinkas. Privacy preserving data mining. In Proceedings of
the Annual International Cryptology Conference on Advances in Cryptology,
2000.

Y. Lindell and B. Pinkas. An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In Proceedings of the annual
international conference on Advances in Cryptology, 2007.

Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In Proceedings of the conference on Theory of cryptography,
2011.

L. Malka. Vmcrypt: modular software architecture for scalable secure compu-
tation. In Proceedings of the 18th ACM conference on Computer and commu-
nications security, 2011.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party
computation system. In Proceedings of the USENIX Security Symposium, 2004.
A. Miyaji and M. S. Rahman. Privacy-preserving data mining in presence of
covert adversaries. In Proceedings of the international conference on Advanced
data mining and applications: Part I, 2010.

P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party com-
putation. In Proceedings of the Public Key Cryptography conference, 2006.

B. Mood, L. Letaw, and K. Butler. Memory-efficient garbled circuit generation
for mobile devices. In Proceedings of the IFCA International Conference on
Financial Cryptography and Data Security (FC), 2012.

N. Nipane, I. Dacosta, and P. Traynor. “Mix-In-Place” anonymous network-
ing using secure function evaluation. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2011.

a. shelat and C.-H. Shen. Two-output secure computation with malicious adver-
saries. In Proceedings of the Annual international conference on Theory and
applications of cryptographic techniques, 2011.

a. shelat and C.-H. Shen. Fast two-party secure computation with minimal
assumptions. In Proceedings of the ACM conference on Computer and commu-
nications security (CCS), 2013.

D. Talbot. Security in the ether. http://www.technologyreview.
com/featuredstory/416804/security—-in-the-ether/, 2009.
A. C. Yao. Protocols for secure computations. In Proceedings of the Annual
Symposium on Foundations of Computer Science, 1982.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

104

Outsourcing Secure Two-Party Computation as a Black Box

Abstract

Secure multiparty computation (SMC) offers a tech-
nique to preserve functionality and data privacy in mo-
bile applications. Current protocols that make this costly
cryptographic construction feasible on mobile devices
securely outsource the bulk of the computation to a cloud
provider. However, these outsourcing techniques are
built on specific secure computation assumptions and
tools, and applying new SMC ideas to the outsourced set-
ting requires the protocols to be completely rebuilt and
proven secure. In this work, we develop a generic tech-
nique for lifting any secure two-party computation pro-
tocol into an outsourced two-party SMC protocol. By
augmenting the function being evaluated with auxiliary
consistency checks and input values, we can create an
outsourced protocol with low overhead cost. Our im-
plementation and evaluation show that in the best case,
our outsourcing additions execute within the confidence
intervals of two servers running the same computation,
and consume approximately the same bandwidth. In
addition, the mobile device itself uses minimal band-
width over a single round of communication. This work
demonstrates that efficient outsourcing is possible with
any underlying SMC scheme, and provides an outsourc-
ing protocol that is efficient and directly applicable to
current and future SMC techniques.

1 Introduction

As the mobile computing market continues to grow, an
increasing number of mobile applications are requiring
users to provide personal or context-sensitive informa-
tion. However, as the recent iCloud breach demon-
strates [25], these application servers cannot necessar-
ily be trusted to maintain the security of the data they
possess. To better preserve privacy and the functionality
of mobile applications, secure multiparty computation
(SMC) techniques offer protocols that allow application

servers to process user data while it remains encrypted.
Unfortunately, while a plethora of SMC techniques exist,
they currently require too much processing power and
device memory to be practical on the mobile platform.
Furthermore, the bandwidth and power requirements for
these SMC protocols will always be a limiting require-
ment for mobile applications even as the computational
resources of mobile devices grow.

To bring SMC to the mobile platform in a more effi-
cient way, recent work has focused on developing secure
techniques for outsourcing the most expensive computa-
tion. Rather than naively trusting the Cloud to stand in
for the mobile device in a standard SMC protocol, these
outsourced protocols seek to use the Cloud for compu-
tation without revealing any input or output values. A
number of these protocols have been specifically devel-
oped to outsource garbled circuit protocols [24, 8, 7].
These protocols attempt to optimize the outsourcing op-
erations without increasing the complexity of the circuit
being evaluated. However, because of this optimization
goal, they are constructed and proven secure using spe-
cific garbled circuit evaluation techniques. As new tech-
niques for SMC are developed that modify the garbled
circuit construction (or use completely different under-
lying constructions), it is unclear whether these specific
outsourcing protocols will be able to take advantage of
the new developments.

In this work, we develop a technique for outsourcing
secure two-party computation for any two-party SMC
technique. Rather than avoiding changes to the func-
tion being evaluated, we add a small amount of over-
head to the evaluated function itself. This tradeoff allows
for an outsourcing scheme that relies on the underlying
two-party protocol in a black-box manner, meaning the
underlying protocol can be swapped for any other proto-
col meeting the same definition of security This makes
the task of securely incorporating newly developed SMC
techniques trivial. This protocol enables mobile devices
to participate in any secure two-party SMC protocol with

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

105

minimal cost to the device and with nominal overhead
to the servers running the computation. Specifically, we
make the following contributions:

e Develop a black-box outsourcing protocol: We
develop a novel outsourcing technique for lifting
any two-party SMC protocol into the two-party
outsourced setting. To do this, we add a small
amount of overhead to the function being evalu-
ated to ensure that none of the inputs are modi-
fied by malicious participants. This technique of
augmenting the evaluated circuit has been success-
fully used in other SMC protocols to balance per-
formance with security guarantees [19, 29, 41]. In
addition, we leverage the non-collusion assumption
used throughout the related work to produce an out-
put consistency check that incurs trivial overhead.
While this approach slightly increases the cost of
evaluation, it minimizes the computation and band-
width required by the mobile device.

Prove security for any underlying two-party
SMC protocol: We provide simulation proofs of
security to demonstrate that our protocol is secure
in the malicious threat model. The only require-
ment of the underlying two-party SMC protocol is
that it satisfy the canonical ideal/real world simula-
tion definition of security against malicious adver-
saries [14]. This allows any future SMC protocols
that are developed to be used in a plug-&-play man-
ner with our outsourcing technique.

Implement and evaluate the overhead cost of the
outsourcing operations: Using the garbled circuit
two-party SMC protocol of shelat and Shen [41], we
implement our protocol and evaluate the complete
overhead cost of outsourcing. Rather than com-
pare to previous outsourcing schemes, we instead
measure the overhead incurred by augmenting the
desired functionality, as well as the input and out-
put preparation and checking. This measurement of
cost better represents the value of the scheme, as
a direct comparison to previous outsourcing proto-
cols would drastically change depending on the un-
derlying two-party SMC protocol implemented in
our scheme. Our results show that for large cir-
cuits, black-box outsourcing incurs negligible over-
head (i.e., the confidence intervals for outsourced
and server only execution intersect) in evaluation
time and in bandwidth required when compared to
evaluating the unmodified function. To demonstrate
the practical performance of our protocol, we de-
velop a mobile-specific facial recognition applica-
tion and analyze its performance.

2

The rest of this work is organized as follows: Section 2
describes related research, Section 3 outlines definitions
of security, Section 4 formally defines the protocol, Sec-
tion 5 provides an overview of security, Section 6 de-
scribes our implementation and performance evaluation,
Section 7 presents a new mobile-specific application for
SMC, Section 8 compares the overhead of our black box
technique to previous work, and Section 9 provides con-
cluding remarks.

2 Related Work

Since it was initially conceived in the early 1980’s [42,
15], secure multiparty computation (SMC) has grown
from a theoretical novelty to a potentially useful and
practical cryptographic construction. The FairPlay im-
plementation [33] provided one of the first schemes for
performing secure multiparty computation in practice.
Since then, a number of other protocols and implemen-
tations have shown that privacy-preserving computation
in the semi-honest threat model can be performed rela-
tively efficiently [18, 4, 1]. However, this security model
is weak in practice, and does not provide enough secu-
rity for most real-world situations. To resolve this, re-
cent study has focused on developing protocols that are
secure in the malicious setting. For two-party compu-
tation, the garbled circuit construction has seen a large
amount of new development [30, 31, 34, 39, 28, 40, 41]
that has drastically reduced the cost of circuit checking
and the associated consistency verification. Because the
cut-&-choose construction that is typically applied in this
setting is very costly, recent work has sought to mini-
mize the cost of the cut-&-choose [12, 29, 20] or amor-
tize that cost over a batch of circuit executions [32, 21].
Besides the garbled circuit technique, other techniques
using somewhat homomorphic encryption [10, 9] and
oblivious transfer [37] have shown promise of produc-
ing efficient protocols for secure multiparty computation
in the malicious threat model. However, all of these
techniques still have significant overhead cost that makes
them infeasible to execute without sizable computational
resources.

With smartphone applications retrieving private user
data at an increasing rate, secure multiparty compu-
tation could potentially offer a way to maintain pri-
vacy and functionality in mobile computing. However,
the efficiency challenges of secure multiparty computa-
tion are compounded when considered in the resource-
constrained mobile environment. Previous work has
shown that smartphones are generally limited to simple
functions in the semi-honest setting [6, 17]. Demmler
et al. [11] showed how to incorporate pre-computation
on hardware tokens to improve efficiency on mobile de-
vices, but still in the semi-honest setting. In addition

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

106

to the cost of evaluating these SMC protocols, Mood et
al. [36] and Kreuter et al. [27] demonstrated that even
with significant optimization, the task of compiling cir-
cuits on the mobile device can also be quite costly.

Given these limitations, evaluating SMC protocols di-
rectly on mobile hardware does not seem to be possi-
ble in the immediate future. Because of this, mobile se-
cure computation research has recently focused on ap-
plying techniques from server-assisted cryptography [3]
to move the most costly cryptographic operations off of
the mobile device and onto a more capable cloud server.
To achieve this, many authors have focused on develop-
ing protocols for outsourcing secure computation of spe-
cific algorithms such as graph algorithms [5], set inter-
section [26], and linear algebra functions [2]. The first
protocol to outsource secure multiparty computation for
any function was developed by Kamara et al. [23, 24].
In this work, the authors established a definition of se-
curity that assumes specific parties in the computation,
while malicious, are not allowed to collude. Following
on this definition, several other protocols and efficiency
improvements have been developed for the outsourced
setting [8, 35, 7]. Unfortunately, all of these protocols are
built on specific secure multiparty computation assump-
tions and techniques. With new and varying techniques
for SMC being developed at a rapid pace, it is unclear
how to apply the outsourcing techniques used in these
protocols to new schemes to allow them to benefit from
new efficiency improvements. In this work, we seek to
develop a protocol that can lift any two-party SMC pro-
tocol into the outsourced setting with little overhead.

In concurrent work to our own, Jakobsen et al. [22] de-
velop a framework for outsourcing secure computation
that can be used to describe our protocol. However, our
protocol uses techniques modified to fit the mobile appli-
cation model. Furthermore, our work provides an imple-
mentation, an empirical performance analysis, and de-
velops a mobile-specific application with a performance
characterization.

3 Definitions of Security

Outsourced two-party SMC protocols are designed to al-
low two parties of asymmetric computational capability
to engage in a privacy-preserving computation with the
assistance of an outsourcing party. We consider the situ-
ation where a mobile device possessing limited compu-
tational resources wishes to run an SMC protocol with
an application server or other well-provisioned entity. To
allow this, outsourcing protocols move the majority of
the costly operations off of the mobile device and onto
a Cloud provider without revealing to the Cloud either
party’s input or output to the computation. These pro-
tocols aim to provide security guarantees of privacy and

correctness, and also attempt to minimize the computa-
tion required at the mobile device while still maintaining
efficiency between the application server and the Cloud.
To meet these goals in the outsourced setting, a number
of careful security assumptions must be made.

3.1 Two-party SMC security

Our black box protocol is based on the execution
of a two-party SMC protocol to obliviously compute
the result. We make no assumptions about the tech-
niques used or structure of this underlying protocol ex-
cept that it meets the canonical definition of security
against malicious adversaries using the ideal/real world
paradigm [14]. Informally, this states that for any adver-
sary participating in the two-party SMC protocol, there
exists a simulator in an ideal world with a trusted third
party running the computation where the output in both
worlds is computationally indistinguishable. In this def-
inition, the simulator in the ideal world is given oracle
access to the adversary in the real world. Particularly in
the two-party setting, there are a few caveats that must
be assumed to make this definition feasible, and must be
considered when designing an outsourced protocol that
uses a two-party protocol in a black box manner.

First, it is known that two-party protocols cannot fully
prevent early termination. In any execution, one party
will receive their output of computation before the other
party does. While certain techniques have been devel-
oped to partially solve this problem, there is no com-
plete solution. While other outsourcing protocols have
added in a fair-release guarantee, this guarantee comes at
a cost. Either the protocol must provide additional com-
mitments not guaranteed in a standard two-party proto-
col [8, 7], or the protocol must incorporate additional
costly MAC operations to ensure the output is not tam-
pered with [24, 35]. However, our black box protocol
shows that if we treat the outsourced model like a stan-
dard two-party execution where fair release is not guar-
anteed, we can reduce the output consistency check to
a single comparison on the mobile device. This allows
the application server to recover its input first and poten-
tially disrupt the mobile device’s output, but mirrors the
two-party execution guarantees exactly. Thus, our proto-
col optimizes execution overhead by not assuming a fair
output release.

Second, it is possible that a malicious party can pro-
vide arbitrary input to the computation that may or may
not correspond to their “real” input. While we cannot
control what another party provides as input to the com-
putation, this potential behavior must be handled by the
definition of security. To handle this, the simulator in the
ideal world, which has oracle access to the adversary in
the real world, must not only be able to simulate the ad-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

107

versary’s view of the protocol. Upon running the adver-
sary with a given input, the simulator must also be able
to recover the actual input used by the adversary. In our
proofs of execution, the ideal world will invoke this sim-
ulator often as a mechanism to recover the adversary’s
input before initiating computation with the trusted third
party. This ensures that the output in both worlds is in-
distinguishable.

Given these assumptions, a secure two-party SMC
protocol provides two guarantees. The first is privacy,
which means that a malicious adversary cannot learn
anything about the other party’s input or output value
beyond what is revealed by his own output value. The
second guarantee is correctness. This implies that even
in the presence of a malicious adversary, the output of
the protocol will be the correct output of the agreed upon
function except with negligible probability.

For a formal definition of security and further discus-
sion, refer to [14].

3.2 Collusion assumptions

Previous work in outsourcing secure multiparty compu-
tation makes careful assumptions about who in the com-
putation is allowed to collude. Kamara et al. [24] discuss
at length the theoretical justification for these assump-
tions. Essentially, to achieve an n-party outsourcing pro-
tocol with better complexity than a two-party SMC pro-
tocol, it must be assumed that the Cloud (i.e., the server
aiding computation but not providing input to the func-
tion) cannot collude with any other party. Other out-
sourcing protocols have sought ways to relax this restric-
tion without significantly increasing the complexity of
the function being evaluated [8, 7]. However, all of these
protocols still assume that the application server and the
Cloud cannot collude. We follow this assumption in our
black box construction. As stated by Kamara et al., the
existence of an outsourcing protocol where this partic-
ular collusion is allowed would imply an efficient two-
party SMC scheme where one party performs work that
is sub-linear with respect to the size of the function be-
ing evaluated. While there are techniques for such a two-
party SMC protocol [13, 16], it is unclear that they can
be applied to create such an outsourced protocol.

3.3 Outsourced Security Definition

We follow the security definition first established by Ka-
mara et al. [24] but specified for the two-party scenario
as in the work of Carter et al. [8, 7]. We slightly alter the
definition to allow for the possibility of early termination
by one of the parties, possibly preventing the other party
from receiving output. We provide a summary of the def-
inition here, and refer the reader to previous work for a

4

complete discussion of the definition.

The real world setting is made up of three parties. Two
of these parties provide input to the computation, while
the third party takes on computational load for one of
the two input parties. All three parties provide auxiliary
random inputs to the protocol. Some subset of the three
parties A = (A1,A»,A3) can behave maliciously, but we
assume that the application server and the Cloud cannot
collude. For the i honest party, OUT; is defined as its
output, and for the " corrupted party, QUT; is its view

of the protocol. Then we define the i*” partial output as:

REALY (k,x;r) = {OUT; : j € HYUOUT;

Here, k is the security parameter, x is all inputs to the
computed function, r is the auxiliary randomness, and H
is the set of all honest parties.

The ideal world setting is made up of the same parties
with the same inputs as the real world with the addition
of a trusted third party that receives all parties’ inputs,
computes the desired function, and returns the output to
all parties except the outsourced party that is not pro-
viding inputs to the function. Any party may abort the
computation early or refuse to send input, in which case
the trusted party sends no output. As in the standard two-
party definition [14], it is possible for one party, upon re-
ceiving output from the trusted third party, to terminate
the protocol, preventing the other party from receiving
its output. For the i/ honest party, OUT; is defined as
its output received from the trusted party, and for the i
corrupted party, OUT; is an arbitrary output value. Then
we define the i partial output in the presence of inde-
pendent malicious simulators S = (S1,52,53) as:

IDEALY (k,x;r) = {OUT; : j € HYUOUT;

Here, k,x,r, and H are defined as above. In this real/ideal
world setting, outsourced security is defined as follows:

Definition 1. An outsourcing protocol securely com-
putes the function f if there exists a set of probabilis-
tic polynomial-time (PPT) simulators {Simy,Simy,Sims }
such that for all PPT adversaries (A1,A2,A3), inputs x,
and for all i € {1,2,3}:

{REALY (k,x;7) }xen ~ {IDEALY (k,x;7) }ren

Where S = (S1,52,83), Si = Sim;(A;), and r is uniformly
random.

4 Protocol

In this section, we formally define our black box out-
sourcing protocol. For a graphical representation, see
Figure 1.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

108

Figure 1: The complete black box outsourcing protocol. Note that the mobile device performs very little work com-
pared to the application server and the Cloud, which execute a two-party SMC (2PC) protocol.

4.1

* SERVER: the application or web server participat-
ing in a secure computation with the mobile device.
This party provides input to the function being eval-
uated.

MoOBILE: the mobile device accessing SERVER to
jointly compute some result. This party aso pro-
vides input to the function being evaluated.
CLouD aCloud computation provider tasked with
assisting MOBILE in the expensive operations of
the secure computation. This party executes a two-
party SMC protocol in a black-box manner with
SERVER, but does not provide an input to the func-
tion being evaluated.

Participants

42 Overview

The outsourcing protocol can beinformally broken down
as follows: first, the mobile device prepares its input by
encrypting it and producing a MAC tag for verifying the
input is not tampered with before it is entered into the
computation. Since the application server and Cloud are
assumed not to collude, one party receives the encrypted
input, and the other party receives the decryption key.
Both of these values are input into the secure two-party
computation, and are verified within the secure two-party
protocol using the associated MAC tags (see Figure 2).
If the check fails, the protocol outputs a failure message.
Otherwise, the second phase of the protocol, the actual
evaluation of the SMC program, takes place. The third

5

and final phase encrypts and outputs the mobile device's
result to both parties, who in turn deliver these results
back to the mobile device. Intuitively, since our security
mode! assumes that the application server and the Cloud
are never simultaneously malicious, at least one of these
two will return the correct result to the mobile device.
From this, the mobile will detect any tampering from the
malicious party by a discrepancy in these returned val-
ues, eliminating the need for an output MAC. If no tam-
pering is detected, the mobile device then decrypts the
output of computation.

4.3 Protocol

Common Input: All parties agree on a computational
security parameter k, a message authentication code
(MAC) scheme (Gen(), Mac(), Ver()), and a malicious
secure two-party computation protocol 2PC(). All
parties agree on a two-output function f(x,y) ! fp, fs
that is to be evaluated.

Private Input: MOBILE inputs x while SERVER inputs
y. We denote the bit length of a value as |x| and
concatenation as x||y.

Output: SERVER receives fsand MOBILE receives fp,.
1. Input preparation: MOBILE generates aone-time

pad k¢m where |kep| = | fy|. Mobile then generates
two MAC keys vs = Gen(k) and v, = Gen(k). Fi-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

109

Input wires

Verify MAC

Decrypt one-time pad

AND

]

’_L‘

Output wires

AND

Encrypt one-time pad

Original circuit

Figure 2: The process of augmenting a circuit for outsourcing. The original circuit is boxed in red. Essentialy, we
require that the mobile device's input be verified using a MAC and decrypted using a one-time pad before it is input
into the function. After the result is computed, it must be re-encrypted using a one-time pad and delivered to both
parties to guarantee that the mobile device will detect if either party tampers with the result.

nally, MOBILE generates a one-time pad k, where
|kl = 1X + |Ktml.

. Input delivery: MOBILE encrypts its input as
a= (X||kfm) U km. It then generates two tags ts =
Mac(al|ve, vs) and t; = Mac(kpyl|Vs, vc). MOBILE
delivers a, v, and ts to SERVER and k,, Vs, and £; to
CLoup.

. Augmenting the target function (Algorithm 1):
All parties agree on the following augmented func-
tion g(y, a, v, ts; km, Vs, tc) to be run as a two-party
SMC computation:

(a) If Ver(al|ve, ts, vs) 8 1 or Ver(Kpl|vs, tc, ve) 6 1
output ?.

b) Set X||kfm= alkm

¢) Run thedesired function fs, ;= f(x,y)

d) Set output values os= fsand o= ki

(e) Output o4||0m, to SERVER and o, to CLOUD

(
(
(

. Two-party computation: SERVER and CLOUD
execute a secure two-party computation proto-
col 2PC(g(); ¥, a, Vg, ts; km, Vs, tc) evaluating the aug-
mented function.

. Output verification: CLOUD délivers its output
from the two-party computation, o, to MOBILE.
SERVER dso delivers the second half of its output
02 to MOBILE. MOBILE verifies that o, = 02,

. Output recovery: SERVER receives output fs= 0
and MOBILE receives output = om [kfm

6

Input : CLOUD inputs Kk, Vs, tc and SERVER inputs
¥,8, Ve, ts

Output: CLOUD receives 0, and SERVER receives
Os||om

if Ver(al|vg, ts, vs) 8 1then
| return ?
eseif Ver(km||vs, tc, vc) € 1then
| return ?
else
X kfm= allkm
fm, fS: f(le)
0s= fs(x Y)
om= Tm(xy) [km
end

Algorithm 1: The augmented function

5 Security

Our black box outsourcing protocol is secure under the
following theorem satisfying the security definition from
Section 3:

Theorem 1. The black box outsourced two-party proto-
col securely computes a function f(x,y) in the follow-
ing two corruption scenarios: (1) Any one party is mali-
cious and non-cooper ative with respect to the rest of the
parties; (2) The Cloud and the mobile device are mali-
cious and colluding, while the application server is semi-
honest.

Note that these scenarios correspond exactly with the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

110

corruption scenarios in [7], and that the previous pro-
tocols described in [24] and [8] are only secure in cor-
ruption scenario (1). We outline sketches of the security
proof here, with a complete proof in Appendix A.

5.1 Malicious Cloud or Application Server

The main idea behind the security in these two settings
is that for whichever party is corrupted, we can rely on
the other party to behave semi-honestly. Based on the se-
curity of the underlying two-party protocol, this ensures
both that the augmented functionality is correctly evalu-
ated and that the mobile device will receive unmodified
output from one of the parties. Thus, the MAC on the
input and the comparison of the output values prevents
either party from modifying the Mobile device’s private
values. Furthermore, unlike the dual execution model
by Huang et al. [19] where the output comparison leaks
one bit of input, our output comparison is composed of
two copies of the mobile output produced from a sin-
gle, malicious-secure execution of the augmented circuit.
Because of this, any discrepancy in the comparison only
reveals that either the Cloud or Application Server tam-
pered with the output prior to delivering it to the mobile
device.

In the ideal world, the simulator works roughly as fol-
lows: begin the black box protocol with random inputs.
Then, invoke the simulator for the underlying two-party
scheme Sypc to recover the input of the malicious party
and delivers that input to the trusted third party. Finally,
Sypc simulates the output f(x,y). After running all con-
sistency verifications, the simulator either sends an early
termination signal to the trusted third party or completes
the protocol normally.

5.2 Malicious Mobile Device

Because the mobile device simply provides MAC tagged
input and receives its output after executing the two-party
protocol, there is very little it can do to corrupt the com-
putation besides providing invalid inputs that would sim-
ply cause the computation to terminate early. The sim-
ulator in this scenario accepts the mobile device’s pre-
pared inputs. Given both the Cloud and the Application
Server’s halves of the mobile device’s input, the simu-
lator can recover the necessary input by decrypting the
one-time pad. If either of the MAC tags does not ver-
ify or if the mobile device terminates early, the simulator
also terminates. Otherwise, it invokes the trusted third
party to receive f(x,y) and returns the result to the mo-
bile device.

7

5.3 Malicious Mobile Device and Cloud

In this scenario, the security of our black box protocol
simply reduces to the security of the underlying two-
party scheme. The simulator in the ideal world accepts
the input from the Mobile Device, then invokes the sim-
ulator of the underlying two-party SMC scheme Syp¢ to
recover the values input by the Cloud. Using these val-
ues combined with the values provided by the Mobile
Device, the simulator can recover the Mobile input. If
any of the verification checks within the augmented func-
tionality fail, the simulator terminates. Otherwise, it de-
livers the recovered input to the trusted third party, and
finishes Sopc delivering the output of computation cor-
rectly formatted using the one-time pads recovered from
the Cloud’s input by S>pc.

6 Performance Evaluation

To demonstrate the practical efficiency of our black box
outsourcing protocol, we implemented the protocol and
examined the actual overhead incurred by the overhead
operations. We initially considered comparing our black
box protocol to existing implementations of outsourcing
protocols [24, 8, 7]. However, these existing protocols
are built on fixed underlying SMC techniques. As new
protocols for two-party SMC are developed, the plug-
and-play nature of our protocol allows for these new
techniques to be applied, which would provide a differ-
ent comparison for each underlying protocol. Instead,
we chose to compare the overhead execution costs of our
black box protocol to performing the same computation
in the underlying two-party protocol. Because the mobile
device computation requires seconds or less to execute,
we focus our attention on the cost at the two executing
servers. This performance analysis demonstrates two key
benefits of our protocol. First, it gives a rough overhead
cost for an entire class of two-party SMC protocols (in
our case, garbled circuit protocols). Second, it allows
us to demonstrate that our outsourcing technique allows
a mobile device with restricted computational capability
to participate in a privacy-preserving computation in ap-
proximately the same amount of time as the same com-
putation performed between two servers. Essentially, we
show that our protocol provides a mobile version of any
two-party SMC protocol with nominal overhead cost to
the servers. This is a novel evaluation methodology not
used to evaluate previous black box SMC constructions,
and provides a more intuitive estimate for performance
when applying a new underlying SMC construction.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

111

Program Name SS13 Total BB Total Increase | SS13 Non-XOR BB Non-XOR Increase
DijkstralO 259,232 456,326 1.8x 118,357 179,641 1.5x
Dijkstra20 1,653,542 1,949,820 1.2x 757,197 849,445 1.1x
Dijkstra50 22,109,732 22,605,018 1.0x 10,170,407 10,324,317 1.0x

MatrixMult3x3 424,748 1,020,196 2.4x 161,237 345,417 2.1x

MatrixMultSx5 1,968,452 3,360,956 1.7x 746,977 1,176,981 1.6x

MatrixMult8x8 8,069,506 11,354,394 1.4x 3,060,802 4,075,082 1.3x

MatrixMult16x16 | 64,570,969 77,423,481 1.2x 24,494,338 28,458,635 1.2x
RSA128 116,083,727 116,463,648 1.0x 41,082,205 41,208,553 1.0x

Table 1: A comparison of the original function size to the augmented outsourcing circuit. As the size of the original
circuit grows, the increase in gates incurred by our outsourcing technique becomes vanishingly small.

6.1 System Design

Our implementation of the black box outsourcing proto-
col uses the two-party garbled circuit protocol developed
by shelat and Shen [41] as the underlying two-party SMC
protocol. We selected this protocol because it is among
the most recently developed garbled circuit protocols and
it has the most stable public release. We emphasize that
it is possible to implement our outsourcing on any two-
party SMC protocol, such as the recent protocols devel-
oped to reduce the cost of cut-&-choose [20, 29]. We
implement our MAC within the augmented circuit us-
ing AES in cipher-block chaining mode (CBC-MAC), as
the AES circuit is well-studied in the context of garbled
circuit execution. This MAC implementation adds an in-
vocation of AES per 128-bit block of input. Using the
compiler developed by Kreuter et al. [28], the overhead

non-XOR gate count in the augmented circuit based on

input size is (M}%%) for input x. We provide exact gate

counts with overhead measurements for each tested ap-
plication in Table 1. Our code will be made available
upon publication.

6.1.1 Testbed

Our experiments were run on a single server equipped
with 64 cores and 1 TB of RAM. For each execution,
the application server and cloud were run as 32 pro-
cesses communicating using the Message Passing Inter-
face (MPI) framework. The mobile device used was a
Samsung Galaxy Nexus with a 1.2 GHz dual-core ARM
Cortex-A9 processor and 1 GB of RAM, running An-
droid version 4.0. The mobile device communicated with
the test server over an 802.11n wireless connection in an
isolated network environment. We ran each experiment
10 times and averaged the results, providing 95% confi-

8

Symmetric
9

Asymmetric
0

Bandwidth (bits)
2(|x‘ +2k) + 4(|0m|)

Table 2: The total operations and bandwidth required at
the mobile device. Recall that |x| is the length of the
mobile input in bits, k is the security parameter, and |0,
is the length of the mobile output in bits. When measured
with the total protocol execution time, these operations
are lost in the confidence intervals.

dence intervals in all figures.

6.1.2 Test applications

We selected a representative set of test applications from
previous literature [7, 28, 41, 27] to examine the per-
formance of our protocol over varying circuit and input
sizes. We use all applications as implemented by Kreuter
et al. [28] except for Dijkstra’s algorithm, which was im-
plemented by Carter et al. [8].
1. Dijkstra: this application accepts a weighted graph
from one party and two node indices from the other
party (i.e., start and end nodes), and calculates the
shortest path through the graph from the start to the
end node. We consider n-node graphs with 16 bit
edge weights, 8 bit node identifiers, and a maximum
degree of 4 for each node. We chose this problem as
arepresentative application for the mobile platform.
. Matrix Multiplication: this application accepts a
matrix from both parties and outputs the matrix
product. We consider this application for input size
n, where each matrix is an n X n matrix of 32-bit in-
tegers. This test application demonstrates protocol
behavior for increasing input sizes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

112

513
Black Box Ewsessy

1000

100

Time (s)

N

.
Dijkstra50

1
Dijkstra20
Program

1
Dijkstra10

Figure 3: Dijkstra execution time in seconds. Note that
for the largest input size, the execution overhead of out-
sourcing is almost non-existent.

10000

T
S813 =zza
Black Box Ewssty

1000

100

Time (s)

L
MatrixMult16x16

Program

Figure 4: Matrix multiplication execution time in sec-
onds. Note that the execution overhead still diminishes
even as the mobile input size increases.

3. RSA: this application accepts a modulus N and an
exponent e from one party, and a message x from
the other party, and computes the modular exponen-
tiation x* mod N. We consider input values where
each value is 128 bits in length. While this is cer-
tainly too short for secure practical use, the size of
the circuit provides a good benchmark for evaluat-
ing extremely large circuits.

6.2 Execution Time

With the mobile operations reduced to a minimal set,
shown in Table 2, our experiments showed a diminish-
ing cost of server overhead as the size of the test applica-
tion increased. Considering Dijkstra’s algorithm in Fig-
ure 3 shows that for a graph of 10 nodes, the outsourcing
operations incur a 2.1x slowdown from running the pro-

9

tocol between two servers. However, as the number of
graph nodes increases to 50, the confidence intervals for
outsourced and server-only execution overlap, indicating
a virtually non-existent overhead cost. When we com-
pare these results to the gate counts shown in Table 1,
we see that as the gate count for the underlying protocol
increases, the additive cost of running the input MAC
and output duplication amortize over the total execution
time. This is to be expected from our predicted overhead
of 15686 non-XOR gates for each CBC-MAC block in
the input. However, since the mobile input for Dijkstra’s
algorithm is of a fixed size, we observe that increasing
the application server input size does not add to the out-
sourcing overhead, showing the black box protocol to be
more efficient for large circuit sizes with small mobile
input.

When we consider a growing mobile input size, we
observe the overhead cost of the MAC operation per-
formed on the mobile input. In the matrix multiplica-
tion test program, we observed a 2.6x slowdown for the
smallest input size of a 3 x 3 matrix (Figure 4). As in
the previous experiment, this overhead diminished to a
1.3x slowdown for the largest input size, but diminished
at a slower rate when compared to the circuit size. This
is a result of additional AES invocations to handle the
increasing mobile input size. However, the reduction in
overhead shows that even as input sizes increase, the cir-
cuit size is still the main factor in amortizing overhead.

In our final experiment, we considered a massive cir-
cuit representing one of the most complex garbled cir-
cuit programs evaluated to date. When comparing the
outsourced execution to a standard two-party execution,
the overhead incurred by the outsourcing operations is
almost non-existent, as shown in Table 3. This experi-
ment confirms the trends of diminishing overhead cost
observed in the previous two experiments. From this and
previous work, we know that evaluating large circuits
from mobile devices is not possible without outsourcing
the bulk of computation. Given that many real-world ap-
plications will require on the order of billions of gates to
evaluate, this experiment shows that our black box out-
sourcing technique allows mobile devices to participate
in secure two-party computation at roughly the same ef-
ficiency as two server-class machines executing the same
computation.

6.3 Bandwidth

Because transmitting data from a mobile device is costly
in terms of time and power usage, we attempted to min-
imize the amount of bandwidth required from the mo-
bile device. Thus, the bandwidth used by the mobile de-
vice for any given application can be represented as a
simple formula, shown in Table 2. Because this band-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

113

= X
) Image Black Box N
W/ Processing SMC Y
1 Result
———— S

Figure 5: An example of the facia recognition application.

Program Name SS13 BB Increase
Dijkstra10 16+ 1% 3z 1% 2.1x
Dijkstra20 7 1% 100+ 1% 1.3x
Dijkstra50 A0+ 2% 980+ 2% 1.0x

MatrixMult3x3 286+ 08% | 732% 0.5% 2.6x

MatrixMult5x5 110+ 2% 200+ 2% 1.9x

MatrixMult8x8 400+ 2% 627 + 0.9% 1.6x

MatrixMult16x16 | 2900+ 1% | 3800+ 2% 1.3x
RSA128 4700+ 2% | 4900+ 3% 1.0x

Table 3;: Comparing SS13 and Black Box runtime. All
times in seconds. Note that as the circuit size increases,
the increase in execution time caused by outsourcing be-
comes insignificant.

Program Name SS13 BB Increase
Dijkstra10 244x10° | 3.87x10° 1.6x
Dijkstra20 152x10" | 1.73x 10" 1.1x
Dijkstra50 2.02x 10" | 2.05x 10" 1.0x

MatrixMult3x3 | 3.43x10° | 7.66x 10° 2.2x

MatrixMult5x5 157x 100 | 2.56 x 1010 1.6x

MatrixMult8x8 | 6.43x 10 | 8.73x 10 1.4x

MatrixMult16x16 | 5.11x 10" | 6.01x 10" 1.2x
RSA 128 869x 10" | 8.72x 10" 1.0x

Table 4: Comparing SS13 and Black Box bandwidth us-
age between the parties performing the generation and
evaluation of the garbled circuit. All bandwidth in bytes.
Note that the size of the origina circuit dominates the
bandwidth required between the two servers. Asthis cir-
cuit grows in size, the overhead bandwidth required for
outsourcing is amortized.

10

width is nearly minimal and easily calculated for any test
program, we focused our experimentation on examining
the bandwidth overhead incurred between the application
server and the Cloud.

As in the case of execution time, Table 4 shows
an inverse relation between circuit size and overhead
cost. Before running the experiment, we predicted that
the bandwidth overhead would approximately match the
overhead in circuit size shown in Table 1. The experi-
ments confirmed that the actual bandwidth overhead was
equa to or dlightly larger than the overhead in non-
XOR gates in the circuit. The reason for this correla-
tion istwofold. First, the free-X OR technique used in the
shelat-Shen protocol allows XOR gates to be represented
without sending any data over the network. Thus, adding
additiona XOR gates does not incur bandwidth cost.
Second, in cases where the actual overhead is dlightly
larger than the circuit size overhead, we determined that
the added cost was a result of additional oblivious trans-
fers. These operations require the transmission of large
algebraic group elements, so the test circuits which in-
curred increased overhead from the growth of the mo-
bile input showed a dlightly larger bandwidth overhead
aswdll. Ultimately, as in the case of execution time, our
experiments demonstrate that the black box outsourcing
scheme incurs minima bandwidth usage at the mobile
device with diminishing bandwidth overhead between
the application server and the Cloud.

7 Application: Facial Recognition

The growing number of mobile applications available
present a weath of potentia for applying privacy-
preserving computation techniques to the mobile plat-
form. Carter et a. [8] demonstrated one potential ap-
plication with their privacy-preserving navigation app,
and Mood et d. [35] presented a friend-finding appli-
cation. We present a third mobile-specific application:
facial recognition. In this setting, a secret operative or
law enforcement agent carrying a mobile device needs
to analyze a photo of a suspected crimina using an in-
ternational crime database (see Figure 5). The database,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

114

Program Name Time
FaceRec10 87.1 £0.9%
FaceRec100 170 £ 2%
FaceRec1000 1000 = 2%

Table 5: Runtime results showing the time it takes to
determine what the input face is when a database of
10, 100, or 1000 faces is used. Time indicates the to-
tal runtime of the garbled circuit part of the computa-
tion. All time in seconds. These results demonstrate how
outsourcing allows an application designed for desktop-
class machines to be efficiently executed from the mobile
platform.

managed by an international organization, would com-
pare the photo to their database in a privacy-preserving
manner, returning a match if the suspect appears in the
database. In this scenario, the agent must keep the query
data private to prevent insiders from learning who is be-
ing tracked, and the international organization must keep
the database private from agents associated with any par-
ticular nation.

To implement this application, we use the facial recog-
nition techniques developed for the Scifi protocol of Os-
adchy et al. [38]. They develop a technique for two
servers to perform efficient facial recognition using dis-
crete parameters, which can more easily be manipulated
in secure computation protocols. They combine machine
learning techniques in a preprocessing phase with a se-
cure online phase that compares the hamming distance
of photos represented as bit strings. To demonstrate our
application, we implement the online comparison phase
of this protocol in our black box outsourcing protocol
(the Fpeshora function in their work). The mobile device
provides a 928 bit representation of a photo, while the
application server provides a database of representations
containing 10, 100, and 1000 faces.

Our results show that given a database of 10 faces, the
outsourced protocol can run the online phase in approx-
imately 87 seconds (see Table 5). As the size of the fa-
cial database increases, the execution time for comparing
across the entire database grows. This growing cost is a
result of the large cost of representing the facial database
as garbled input. Provided with a two-party SMC pro-
tocol that more efficiently computes over large data sets,
our black box protocol could be used to move this appli-
cation from feasible to practical. This demonstrates that
an application designed and implemented to run between
two servers can be feasibly executed from a mobile de-
vice. As new, more heavyweight applications are devel-
oped, our technique for outsourcing allows any of those

11

applications to be executed from a mobile device with
comparable efficiency to the server platform.

8 Overhead Analysis

In this section, we analyze the overhead incurred from
the outsourcing operations and compare this overhead to
the construction proposed by Kamara et al. [24]. While
the primary focus of the Salus framework is to develop an
outsourcing protocol for multiparty computation with a
lower complexity than constructing on a two-party SMC
protocol, they include a sketch for outsourcing a two-
party SMC protocol in a black box manner (but do not
implement this protocol). Essentially, their technique is
for the mobile device to generate random bit strings that
garble the input and output bit values, similar to the tech-
nique of garbling inputs and outputs in a Yao garbled cir-
cuit. These bit labels, along with the encoded input, are
then secret shared between the application server and the
Cloud, who execute the computation using a two-party
SMC protocol. Although they provide no formal proof,
the intuition behind this scheme is that secret sharing
provides privacy of the input and output, and the length
of the bit labels computationally prevents a malicious
player from modifying the mobile device’s input. When
comparing this technique to our black box outsourcing
protocol, we can analyze the overhead incurred in two
parts: the input verification and output verification.

8.1 Input comparison

The black box protocol of Kamara et al. requires that the
input of the mobile device be expanded by a security pa-
rameter k, such that each bit of input is represented by a
bit string of length k. This input is then secret shared be-
tween both the application server and the Cloud. Within
the SMC computation itself, their technique requires the
addition of XOR gates to reconstruct the secret shares,
and comparisons to ensure that the input labels have not
been modified by either party. Since these operations are
relatively inexpensive, especially in garbled circuit style
protocols, we can say that the major constraint in their
protocol is the expansion of the input size. Our proto-
col, by contrast, expands the input size by two, plus an
additive constant, requiring only the addition of a MAC
verification key and a MAC tag. For example, the largest
tested input in our experiments was 8 KB for the matrix
multiplication of 16 x 16 matrices. Given a security pa-
rameter of 80, the Kamara black box technique would ex-
pand this input to over 1.2 MB, while our technique only
expands the input to approximately 16 KB. However, our
addition of MAC operations within the executed circuit
requires greater overhead in computation time, depen-
dent upon the MAC scheme used. Since the goal of our

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

115

work is to optimize performance for a mobile device,
a primary concern is minimizing bandwidth consumed
at the mobile device. Specifically, sending and receiv-
ing data wireless from a mobile device consumes signif-
icantly more power than processor computation, which
means that minimizing bandwidth is a priority for main-
taining the utility of the device. To meet this resource
constraint, we pay a slightly larger overhead in the two-
party computation to reduce the bandwidth sent by two
orders of magnitude.

8.2 Output comparison

The output verification technique applied by Kamara et
al. requires that the output of the two-party SMC proto-
col be expanded by a security parameter and transmitted
to the mobile device in this expanded form. However,
they go on to describe how this verification technique
can be applied to allow for a fair release of the output
to all parties participating in the computation. Our black
box technique exchanges this guarantee of fair release for
a radically simpler output verification technique, which
only requires the output to be expanded by a factor of
two and can be verified with a simple comparison at the
mobile device. Again, using the example of 16 x 16 ma-
trix multiplication, our black box technique reduces the
output size from approximately 600 KB to 16 KB. This
output verification technique is especially beneficial to
our mobile setting, where bandwidth consumption is a
major consideration for protocol efficiency. In addition,
it functions well in situations where the mobile device is
the only party that receives output from the secure com-
putation, in which case fair release is no longer a neces-
sary concern.

9 Conclusion

The growing popularity of the mobile platform is cre-
ating a strong need for privacy-preserving computation
in mobile applications. However, as most SMC tech-
niques currently require significant processing and band-
width resources, secure outsourcing protocols have been
developed to assist mobile devices in performing the
most expensive cryptographic operations associated with
these protocols. In this work, we develop a technique
for outsourcing any two-party SMC protocol in a black
box manner. Our protocol securely offloads the cost of
the SMC protocol to the Cloud, providing maximal ef-
ficiency to the mobile device while maintaining strong
security guarantees. Our performance evaluation shows
that as the complexity of the program being evaluated in-
creases, the cost of outsourcing diminishes. As a result,
we enable execution of any SMC protocol from a mobile

12

device at approximately the same efficiency as running
the protocol between two servers.

References

[1] ASHAROV, G., LINDELL, Y., SCHNEIDER, T., AND ZOHNER,
M. More efficient oblivious transfer and extensions for faster
secure computation. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (2013).

[2] ATALLAH, M. J., AND FRIKKEN, K. B. Securely outsourcing
linear algebra computations. In Proceedings of the ACM Sym-
posium on Information, Computer and Communications Security

(ASIACCS) (2010).

[3] BEAVER, D. Server-assisted cryptography. In Proceedings of the

workshop on New security paradigms (NSPW) (1998).

[4] BELLARE, M., HOANG, V. T., AND ROGAWAY, P. Foundations
of garbled circuits. In Proceedings of the ACM Conference on

Computer and Communications Security (2012).

[5] BLANTON, M., STEELE, A., AND ALISAGARI, M. Data-
oblivious graph algorithms for secure computation and outsourc-
ing. In Proceedings of the ACM SIGSAC Symposium on Informa-

tion, Computer and Communications Security (2013).

[6] CARTER, H., AMRUTKAR, C., DACOSTA, 1., AND TRAYNOR,
P. For your phone only: custom protocols for efficient secure
function evaluation on mobile devices. Journal of Security and

Communication Networks (SCN) 7,7 (2014), 1165-1176.

CARTER, H., LEVER, C., AND TRAYNOR, P. Whitewash: Out-
sourcing Garbled Circuit Generation for Mobile Devices. In Pro-
ceedings of the Annual Computer Security Applications Confer-
ence (ACSAC) (2014).

CARTER, H., MOOD, B., TRAYNOR, P., AND BUTLER, K. Se-
cure Outsourced Garbled Circuit Evaluation for Mobile Devices.
In Proceedings of the USENIX Security Symposium (2013).

[71

[8]

DAMGARD, 1., KELLER, M., LARRAIA, E., PASTRO, V.,
SCHOLL, P., AND SMART, N. P. Practical covertly secure mpc
for dishonest majority or: Breaking the spdz limits. In Computer
Security—-ESORICS (2013).

DAMG;\RD, 1., PASTRO, V., SMART, N., AND ZAKARIAS, S.
Multiparty computation from somewhat homomorphic encryp-
tion. In Advances in Cryptology—CRYPTO (2012).

DEMMLER, D., SCHNEIDER, T., AND ZOHNER, M. Ad-hoc se-
cure two-party computation on mobile devices using hardware to-
kens. In Proceedings of the USENIX Security Symposium (2014).

FREDERIKSEN, T. K., JAKOBSEN, T. P., NIELSEN, J. B,
NORDHOLT, P. S., AND ORLANDI, C. Minilego: Efficient se-
cure two-party computation from general assumptions. In Ad-
vances in Cryptology—-EUROCRYPT (2013).

GENTRY, C. A fully homomorphic encryption scheme. PhD the-
sis, Stanford University, 2009.

[91

[10]

(11]

[12]

[13]

[14] GOLDREICH, O. Foundations of Cryptography: Volume 2 Basic

Applications. Cambridge Univ. Press, 2004.

[15] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to
play any mental game. In Proceedings of the Annual ACM Sym-

posium on Theory of Computing (1987).

[16] GORDON, S. D., KATZ, J., KOLESNIKOV, V., LABS, A.-L. B.,
KRELL, F., AND RAYKOVA, M. Secure Two-Party Computation
in Sublinear (Amortized) Time. In Proceedings of the ACM con-

ference on Computer and communications security (CCS) (2012).

[17] HUANG, Y., CHAPMAN, P., AND EVANS, D. Privacy-preserving
applications on smartphones. In Proceedings of the USENIX

Workshop on Hot Topics in Security (2011).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

116

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

HUANG, Y., EvaNns, D., KATz, J., AND MALKA, L. Faster
Secure Two-Party Computation Using Garbled Circuits. In Pro-
ceedings of the USENIX Security Symposium (2011).

HUANG, Y., KATZ, J., AND EVANS, D. Quid-pro-quo-tocols:
Strengthening semi-honest protocols with dual execution. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (2012).

HUANG, Y., KA1z, J., AND EVANS, D. Efficient secure two-
party computation using symmetric cut-and-choose. In Advances
in Cryptology—CRYPTO (2013).

HUANG, Y., KATZ, J., AND KOLESNIKOV, V. Amortizing gar-
bled circuits. In Advances in Cryptology—CRYPTO (2014).

JAKOBSEN, T. P., NIELSEN, J. B., AND ORLANDI, C. A frame-
work for outsourcing of secure computation. In Proceedings
of the ACM Workshop on Cloud Computing Security (CCSW)
(2014).

KAMARA, S., MOHASSEL, P., AND RAYKOVA, M. Outsourc-
ing multi-party computation. Cryptology ePrint Archive, Report
2011/272,2011. http://eprint.iacr.org/.

KAMARA, S., MOHASSEL, P., AND RIvA, B. Salus: A system
for server-aided secure function evaluation. In Proceedings of
the ACM conference on Computer and communications security
(CCS) (2012).

KELION, L. toughens icloud security after
celebrity breach. http://www.bbc.com/news/
technology-29237469, 2014.

Apple

KERSCHBAUM, F. Collusion-resistant outsourcing of private set
intersection. In Proceedings of the ACM Symposium on Applied
Computing (2012).

KREUTER, B., SHELAT, A., MOOD, B., AND BUTLER, K. PCF:
A portable circuit format for scalable two-party secure computa-
tion. In Proceedings of the USENIX Security Symposium (2013).

KREUTER, B., SHELAT, A., AND SHEN, C. Billion-Gate Secure
Computation with Malicious Adversaries. In Proceedings of the
USENIX Security Symposium (2012).

LINDELL, Y. Fast cut-and-choose based protocols for malicious
and covert adversaries. In Advances in Cryptology—-CRYPTO
(2013).

LINDELL, Y., AND PINKAS, B. An efficient protocol for se-
cure two-party computation in the presence of malicious adver-
saries. In Proceedings of the annual international conference on
Advances in Cryptology (2007).

LINDELL, Y., AND PINKAS, B. Secure two-party computation
via cut-and-choose oblivious transfer. In Proceedings of the con-
ference on Theory of cryptography (2011).

LINDELL, Y., AND Ri1VA, B. Cut-and-Choose Yao-Based Se-
cure Computation in the Online/Offline and Batch Settings. In
Advances in Cryptology? CRYPTO (2014).

MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y.
Fairplay—a secure two-party computation system. In Proceedings
of the USENIX Security Symposium (2004).

MOHASSEL, P., AND RIVA, B. Garbled circuits checking gar-
bled circuits: More efficient and secure two-party computation.
In Advances in Cryptology—CRYPTO (2013).

Moob, B., GUPTA, D., BUTLER, K., AND FEIGENBAUM, J.
Reuse it or lose it: More efficient secure computation through
reuse of encrypted values. In Proceedings of the ACM conference
on Computer and communications security (CCS) (2014).

Moop, B., LETAW, L., AND BUTLER, K. Memory-efficient
garbled circuit generation for mobile devices. In Proceedings of
the IFCA International Conference on Financial Cryptography
and Data Security (FC) (2012).

13

[37] NIELSEN, J. B., NORDHOLT, P. S., ORLANDI, C., AND
BURRA, S. S. A new approach to practical active-secure two-
party computation. In Advances in Cryptology —CRYPTO (2012).

[38] OSADCHY, M., PINKAS, B., JARROUS, A., AND MOSKOVICH,
B. Scifi-a system for secure face identification. In Proceedings

of the IEEE Symposium on Security & Privacy (2010).

[39] PINKAS, B., SCHNEIDER, T., SMART, N. P., AND WILLIAMS,
S. Secure two-party computation is practical. In Advances in

Cryptology—ASIACRYPT (2009).

SHELAT, A., AND SHEN, C.-H. Two-output secure computation
with malicious adversaries. In Proceedings of the Annual inter-
national conference on Theory and applications of cryptographic
techniques (2011).

SHELAT, A., AND SHEN, C.-H. Fast two-party secure computa-
tion with minimal assumptions. In Proceedings of the ACM con-
ference on Computer and communications security (CCS) (2013).

[40]

[41]

[42] YAao, A. C. Protocols for secure computations. In Proceedings

of the Annual Symposium on Foundations of Computer Science

(1982).

A Proof of Security

Here we provide the formal simulation proof of security
for Theorem 1.

A.1 Malicious MOBILE M*

In the scenario where M* can adopt an arbitrary
malicious strategy, we construct a simulator Sy, that,
operating in the ideal world, can simulate M*s view of a
real-world protocol execution and can recover M*s input
for delivery to the trusted third party. We construct this
simulator and prove it secure with the following hybrid
of experiments.

Hyb1™)(k x;r): This experiment is identical to
REAL™) (k,x;r) except that the experiment uses the
combination of M*s encrypted input a and &, to recover
the real input x*. It verifies the MAC tags t; and 7. and
aborts if either check fails.

Lemma 1. REAL™) (k,x;r) ~ Hyb1™ (k x;r)

Proof. Since the experiment is controlling both CLOUD
and SERVER, it can simply decrypt the input x* using
the key k,,. In addition, since the experiment holds both
the verification keys, the protocol will terminate in both
experiments if the MAC tags are incorrectly constructed.

O

Hyb2™) (k,x;r): This experiment is identical to
Hyb1™) (k, x;r) except that the experiment passes x* to
the trusted third party, and returns the result f(x*,y) &
k}m to M*, where k;im is recovered in the previous hy-
brid.

Lemma 2. Hyb1™) (k x;r) ~ Hyb2™) (k,x;r)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

117

Proof. Because both experiments use the input x* for
computing the result, the output of the function in both
worlds is indistinguishable. Furthermore, the recovered
output key allows the experiment to present the result to
M* exactly as it would be in a real world execution. [

Lemma 3. Hyb2™) (k,x;r) runs in polynomial time.

Proof. This lemma follows trivially since a real world
execution of the protocol runs in polynomial time and
each intermediate hybrid adds only constant time opera-
tions. t

We conclude the proof by letting Sy execute
Hyb2™) (k,x;r). Sy runs M* and controls CLOUD and
SERVER. Sy terminates the ideal world execution if any
consistency checks fail or if M* terminates at any point,
and outputs whatever M* outputs at the end of the sim-
ulation. From Lemma 1-3, Sy, proves Theorem 1 when
MOBILE is malicious.

A.2 Malicious SERVER S*

In the scenario where S* can adopt an arbitrary malicious
strategy, we construct a simulator Sg that, operating in
the ideal world, can simulate S*s view of a real-world
protocol execution and can recover S*s input for delivery
to the trusted third party. We construct this simulator and
prove it secure with the following hybrid of experiments.

Hyb1®) (k,x;r): This experiment is identical to
REAL') (k,x;r) except that the experiment prepares the
MOBILE input according to the two-party protocol simu-
lator Sppc instead of using the real MOBILE input. It then
prepares the new input according to the protocol and de-
livers the encrypted input and MAC tags to S*.

Lemma 4. REALS (k,x;r) ~ Hyb1®) (k,x;r)

Proof. Since the input is blinded by a one-time pad in
both experiments, they are statistically indistinguishable.
O

Hyb2®) (k,x;r): This experiment is identical to
Hyb1®) (k,x;r) except that the experiment invokes the
simulator of the two-party SMC protocol S>pc instead
of running the actual protocol. S»pc is used to recover
S*s actual input y*. After recovering the full input, If S*
tampers with MOBILE’S input, Sppc simulates | and the
experiment terminates. Otherwise, the experiment deliv-
ers y* to the trusted third party and simulates the output
f(x,y*) concatenated with a random string o,,.

Lemma 5. Hyb1®) (k,x;r) ~ Hyb2® (k,x;r)

14

Proof. Based on the security definition of the underly-
ing two-party SMC protocol, we know that a simulator
exists that can simulate the protocol in a computation-
ally indistinguishable way, as well as recover the input
used by S*. Based on the correctness guarantee of the
two-party SMC protocol in conjunction with the unfor-
gettability guarantee of the MAC protocol, it is compu-
tationally infeasible for S* to modify MOBILE’S portion
of the input. Finally, in both experiments the MOBILE
output of the computation is blinded by a one-time pad,
making the random output statistically indistinguishable
from the real output. O

Hyb3®) (k,x;r): This experiment is identical to
Hyb2®) (k,x;r) except that the experiment prevents the
trusted third party from delivering input to the other party
if $* modifies the MOBILE output o,,, before returning it.

Lemma 6. Hyb2® (k,x;r) ~ Hyb3 (k,x;r)

Proof. Based on the correctness guarantee of the two-
party SMC scheme and the fact that CLOUD is semi-
honest in this scenario, then S* will be caught in either
experiment, and early termination will be the result. [J

Lemma 7. Hyb3) (k,x;r) runs in polynomial time.

Proof. This lemma follows trivially since a real world
execution of the protocol runs in polynomial time,
the simulator Sopc runs in polynomial time, and all
other intermediate hybrid adds only constant time opera-
tions. O

We conclude the proof by letting Ss execute
Hyb3®) (k,x;r). Sg runs S* and controls CLOUD and
MOBILE. Ss terminates the ideal world execution if any
consistency checks fail or if S* terminates at any point,
and outputs whatever S* outputs at the end of the sim-
ulation. From Lemma 4-7, S5 proves Theorem 1 when
SERVER is malicious.

A.3 Malicious CLOUD C*

In the scenario where C* can adopt an arbitrary malicious
strategy, we construct a simulator Sc that, operating in
the ideal world, can simulate C*s view of a real-world
protocol execution and can recover C*s auxiliary input
for delivery to the trusted third party. We construct this
simulator and prove it secure with the following hybrid
of experiments.

Hyb1©)(k,x;r): This experiment is identical to
REAL©) (k,x;r) except that the experiment invokes the
two-party SMC simulator S>pc, providing random inputs
for SERVER and recovering C*s real input. Finally, sim-
ulate a random result o, at the end of the two-party com-
putation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

118

Lemma 8. REAL©) (k,x;r) A Hyb1(©) (k,x;r)

Proof. Based on the security definition of the underly-
ing two-party SMC protocol, we know that the simulator
S>pc can indistinguishably simulate the two-party execu-
tion and recover MOBILE’S MAC tagged one-time pad
as input by C*. Because in both experiments the output
of the circuit is blinded by a one-time pad, the outputs in
both cases are statistically indistinguishable. O

Hyb2(©)(k,x;r): This experiment is identical to
Hyb1(©) (k,x;r) except that if the experiment finds from
the recovered input that C* modified the random key k,,
the experiment terminates.

Lemma 9. Hyb1(O (k,x;r) ~ Hyb2(©) (k,x;r)

Proof. Based on the correctness guarantee of the two-
party SMC scheme and the unforgettability of the MAC
scheme, any change to &, will cause the circuit to out-
put L, and will cause MOBILE to terminate except for a
negligible probability. Thus, termination in both experi-
ments in computationally indistinguishable. O

Hyb3©)(k,x;r): This experiment is identical to
Hyb2(©) (k,x;r) except that if the experiment aborts if C*
modifies the output string o,.

Lemma 10. Hyb2(© (k,x;r) ~ Hyb3(©) (k,x;7)

Proof. Because SERVER is semi-honest and will not
tamper with MOBILE’S output, in both hybrids C* will
be caught for tampering with the output and result in an
abort of the protocol. O

Lemma 11. Hyb3(©) (k,x;r) runs in polynomial time.

15

Proof. This lemma follows trivially since a real world
execution of the protocol runs in polynomial time,
the simulator Sppc runs in polynomial time, and all
other intermediate hybrid adds only constant time opera-
tions. O

We conclude the proof by letting Sc execute
Hyb3©) (k,x;r). Sc runs C* and controls SERVER and
MOBILE. S¢ terminates the ideal world execution if any
consistency checks fail or if C* terminates at any point,
and outputs whatever C* outputs at the end of the simu-
lation. From Lemma 8-11, S¢ proves Theorem 1 when
CLOUD is malicious.

A.4 Malicious MOBILE and CLOUD MC*

In the final scenario, the colluding parties MC* can adopt
an arbitrary malicious strategy against SERVER. The
simulator Sy;c that proves security in this scenario is

essentially the two-party SMC simulator Sppc with one
small change. Rather than completely recovering MC*s

input from the simulator, the experiment must combine
the malicious MOBILE input a*||v}||¢} with the input re-
covered by Spc to learn the real input x* that is to be
delivered to the trusted third party. Once this real input
is retrieved, it simulates the result f(x*,y) exactly as Sxpc
does. Since the added operations are constant time and
S>pc runs in polynomial time, we have that Sy;c proves
Theorem 1 when both MOBILE and CLOUD are mali-
cious and colluding. Note that, as in the underlying two-
party SMC scheme, this scenario does not guarantee that
the output will be released fairly to SERVER. However,
it does guarantee privacy and correctness of the output.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

119

Frigate: A Validated, Extensible, and Efficient Compiler and Interpreter for
Secure Computation

Abstract

Recent developments in secure computation have led
to significant improvements in efficiency and functional-
ity. These efforts created compilers that form the back-
bone of practical secure computation research. Unfortu-
nately, many of these artifacts are incorrect and unstable,
leading to demonstrably erroneous results. We address
these problems and present Frigate, a principled compiler
and fast circuit interpreter for secure computation. To en-
sure correctness we apply best practices for compiler de-
sign and development, including the use of standard data
structures, helpful negative results, and structured val-
idation testing. Our systematic validation tests include
checks on the internal compiler state, combinations of
operators, and the examination of edge cases based on
widely used techniques and errors we have observed in
other work. This produces a compiler that builds correct
circuits, is efficient and extensible. Frigate creates cir-
cuits with gate counts comparable to previous work but
does so with compile time speedups as high as 894x com-
pared with the best results from previous work. By creat-
ing a validated tool, our compiler will allow future secure
computation implementations to be developed quickly
and correctly.

1 Introduction

Secure Multiparty Computation (SMC) has long been
regarded as a theoretical curiosity. First proposed by
Yao [44], SMC allows two or more parties to compute
the result of a function without exposing their inputs.
The identification of such primitives was groundbreak-
ing, creating opportunities by which untrusting partici-
pants could calculate results of mutual interest without
requiring all individuals to identify a mutually trusted
third party. Unfortunately, it would take more than 20
years before the creation of the first SMC compiler, Fair-
play [30], demonstrated that these heavyweight tech-
niques were remotely practical.

1

The creation of the Fairplay compiler ignited the re-
search community. In the following decade, SMC com-
pilers improved performance by multiple orders of mag-
nitude, significantly reduced bandwidth overhead, and
allowed for the generation and execution of circuits com-
posed of tens of billions of gates [32, 25, 16, 24]. While
these efforts have incorporated a number of novel ele-
ments to achieve the above advances, they all fail in two
critical areas. Specifically, as we will demonstrate, these
compilers are often unstable and, when they do manage
to work, regularly produce outputs that generate incor-
rect results. Accordingly, the integrity of the results com-
puted by each of these systems is questionable, making
their usefulness in practical SMC low.

In this paper, we present Frigate, an SMC compiler de-
veloped using design and testing methods from the com-
piler community. We name our compiler after the naval
vessel, known for its speed and adaptability for vary-
ing missions. Our compiler is designed to be validated
through an extensive battery of testing all facets of its
operation, modular and extensible to support a variety
of research applications, and faster than the state of the
art circuit compilers in the community. In addition, the
frigate’s use as an escort ship parallels the potential for
our compiler to facilitate continued secure computation
research. Our contributions are as follows:

e Demonstrate systemic problems in the most pop-
ular SMC compilers: We apply differential testing
on the five popular and available SMC compilers,
and demonstrate a range of stability and output cor-
rectness problems in them all.

Design and Implement Frigate: Our primary goal
in creating Frigate is correctness, which we attempt
to achieve through the use of principled and sim-
ple design, careful type checking and comprehen-
sive validation testing. We use lessons learned from
our study to develop principles for others to follow.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

120

e Dramatically improve compiler and interpreter
performance: The result of our efforts is not sim-
ply correctness; rather, because of our simple de-
sign, we demonstrate markedly reduced compila-
tion (by as much as 894x) and interpretation (by
over 850x) when compared to currently available
systems. As such, our results demonstrate that prin-
cipled design create correct SMC systems while still
allowing high performance.

The remainder of the paper is organized as follows:
Section 2 provides readers with a background in SMC;
Section 3 introduces techniques used to validate correct-
ness; Section 4 describes the results of our correctness
analysis of existing compilers; Section 5 defines our prin-
ciples for compiler design; Section 6 presents the Frigate
compiler and circuit interpreter; Section 7 presents the
results of our performance tests comparing Frigate to the
most widely used SMC compilers; Section 8 discusses
related work; Section 9 provides our final thoughts.

2 Background

Since SMC was originally conceived, a variety of dif-
ferent techniques have been developed. Recent work has
demonstrated that each technique can outperform the
others in different setups (e.g., number of participants,
available network connection, type of function being
evaluated) [17, 6, 38]. In this work, we focus specifi-
cally on the garbled circuit construction developed by
Yao [44]. This protocol has been shown to perform op-
timally for two-party computation of functions that can
be efficiently represented as Boolean circuits. While our
experimental analysis examines the performance of the
compiler in the context of garbled circuits, it is critical to
note that this compiler can be used with any SMC tech-
nique that represents functions as Boolean circuits.

2.1 Garbled circuits

The garbled circuit construction provides an interac-
tive protocol for obliviously evaluating a function rep-
resented as a Boolean circuit. It involves at least two par-
ties: the first party, the generator, is responsible for gar-
bling the circuit to be evaluated such that the input, out-
put, and intermediate wire values are obscured. The sec-
ond party, the evaluator, is responsible for obliviously
evaluating the garbled circuit with garbled input values
provided by both parties.

For each wire i in the garbled circuit, the generator se-
lects random encryption keys k?,kil to represent the bit
values “0” and

“1”

for each wire in the circuit. Given
these garbled wire labels, each gate in the circuit is rep-
resented as a truth table (while each gate may have an ar-

2

bitrary number of input wires, we assume each gate has
two inputs without loss of generality). For a gate execut-
ing the functionality » with input wires i and j and output
wire k, the generator encrypts each entry in the truth table
as Enc((k;;i,k{)i),k’gi*bj) where b; and b; are the logical
bit values of wires i and j. After permuting the entries in
each truth table, the generator sends the garbled circuit,
along with the input wire labels corresponding to his in-
put, to the evaluator. Given this garbled representation,
the evaluator can iteratively decrypt the output wire label
for each gate. Once the evaluator possesses wire labels
for each output wire, the generator can reveal the actual
bit value mapped to the output wire labels received.

To initiate evaluation, the evaluator must hold garbled
representations of both parties’ input values. However,
since the evaluator does not know the mapping between
real bit values and garbled wire labels, an oblivious trans-
fer protocol is required to allow the evaluator to garble
her own input without revealing it to the generator. Es-
sentially, for each bit in the evaluator’s input, both parties
execute a protocol that guarantees the evaluator will only
learn one wire label for each of her input bits, while the
generator will not learn which wire label the evaluator
selected.

This protocol guarantees privacy of both parties’ in-
puts and correctness of the output in the semi-honest
adversary model, which assumes that both parties will
follow the protocol as specified, and will only try to
learn additional information through passive observation.
When adversaries can perform arbitrary malicious ac-
tions, a number of additional checks must be added to
ensure that neither party can break the security of the pro-
tocol. These checks are designed specifically to prevent
tampering with the evaluated function, providing incor-
rect or inconsistent inputs, or corrupting the values out-
put by the garbled circuit protocol.

2.2 Circuit Compilers

Execution systems for garbled-circuit secure computa-
tion require functions that are represented as Boolean
circuits. Due to this requirement, there have been sev-
eral compilers created to generate the circuit representa-
tions of common functions used to test this type of com-
putation. These compilers take higher-level languages as
input and transform them into a circuit representation.
Writing the circuit files directly without using a compiler
is tedious, inefficient, and will most likely result in incor-
rect circuits as they can have billions of gates.

3 Compiler Correctness

One of our main motivations for developing a principled
compiler was the varying and unstable state of the ex-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

121

isting research compiler space. Garbled circuit research
has made significant advances in the past several years,
which is largely due to a set of circuit compilers that have
been commonly used to generate test applications for a
significant number of protocols. Given our years of expe-
rience, we know the reliability of these results is suspect
in many cases due to common errors we have found in
these compilers. To facilitate continued advances in this
research space, a foundational compiler with reliable per-
formance is a critical tool. Without it, researchers will be
forced to either use existing compilers, which we show
are unreliable, or develop their own compilers, which is
time-consuming and slows research progress. To demon-
strate the need for a new and correct compiler that is
openly available for the community, we examined cor-
rectness issues with the most common compilers used in
garbled circuit research.

We define the correctness of a complier implementa-
tion using two criteria: (1) any valid program in the lan-
guage can be successfully compiled, and (2) the compiler
creates the correct output program based on the input
file. There are two methods used to demonstrate compiler
correctness: formal methods for validation and verifica-
tion, and validation by testing.

3.1 Formal Verification

The concept of a verifying compiler was identified as
a grand challenge by Tony Hoare in 2003 [15] due to
the significant complexity in design and implementation.
Since that time, the primary example of a formally ver-
ified compiler has been CompCert [26]. The develop-
ment and rigorous proof of each formalized component
of the compiler was an immense undertaking. However,
despite the amount of time and formal verification that
went into CompCert, it was demonstrated that the formal
verification used in CompCert was only able to ensure
correctness in select components of the compiler. When
tested with Csmith [43], there were still errors found
that demonstrated the limitations of formal verification.
In addition, formal verification of compiler transforma-
tions and optimizations is still very much an open re-
search area [29, 33]. Techniques such as translation val-
idation [37, 34, 41] focus on the formal validation of a
compiler’s correctness through the use of static analysis
techniques to ensure that two programs have the same
semantics, and are designed to attempt to deal with the
reality of legacy compilers. They have their limitations
as well, particularly within the context of secure multi-
party computation compilers that have not adopted any
particular standard for intermediate representations. As
a result, the semantic model must be adapted for every
compiler implementation, and any changes in the com-
piler require changes to the model.

Based on these limitations and the impracticality of
applying formal verification, we instead apply validation
techniques that are the standard method for ensuring the
correctness of compilers.

3.2 Validation By Testing

Validation by testing demonstrates that a compiler is cor-
rect through extensive unit testing. This is by far the most
common technique used in practice to ensure compiler
correctness. While testing for correctness can miss some
errors in compiling specific cases, it provides a practical
level of assurance that is sufficient for the vast majority
of applications. Validation tests are designed by examin-
ing how to test the largest possible number of programs
a compiler can generate.

There are many existing validation tests [13, 11, 42]
and test suites [4, 1]. The validation tests used by
ARM [1] and SuperTest [4] provide a description of the
procedures they use to validate the vast majority of pos-
sible program cases. However, these suites are language-
specific, often developed to find errors in popular tools
such as gcc and LLVM. To date, there have not been ex-
isting validation tools designed to examine secure com-
putation compilers. As a result, we developed our own
set of validation tests based on the techniques used by
these tools. Our tests, like the test suites of ARM and
SuperTest, explore the possible statements and effects of
those statements.

In our case, hand written tests are preferred over auto-
matically generated tests due to the fact we can examine
the compiler source directly. In addition, a different fuzz
generator would have to be created for each input lan-
guage.

Our tests follow the concept of testing the state space
of the compiler starting with broad examination of op-
erators and expressions, then refining the tests to con-
sider common special cases. Our tests proceed through
five phases.

1. Attempt possible syntactic possibilities and print
out the results. This shows that the compiler reads in
programs correctly and verifies the internal program
state is correct.

Beginning from the simplest operation to validate
correctness (i.e., outputting a constant) test each op-
erator in the language and each control structure to
ensure it outputs the correct result.

(a) Test the different possible primitive types and
declarations.

(b) Test each operator as to whether it creates the
correct output circuit.

(c) Test each control structure by itself.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

122

(d) Test function calls, parameters, and return
statements. Verify that parameters can be used
inside of their functions and that return state-
ments work correctly. Also perform tests for
where different types are used as input param-
eters and return values.

3. Validate all the different paths for how data can
be input into operations. Demonstrate that different
control structures work correctly together. Or, as put
by SuperTest [4], “Systematically exploring combi-
nations of operators, types, storage classes and con-
stant values.”

(a) Test if the operator deals correctly with the
possible types of data that can be input as an
operand.

(b) Test different types of control structures
nested within each other.

(c) Test each operator under if conditionals with
emphasis on operators that change variable
values such as assignment (=), increment
(++), and decrement (-).

4. Test edge cases in programs.

(a) Verify that empty functions that they do not
crash on definition or call.

(b) Test array access and how arrays (and like
operators) deal with edge cases, i.e., out of
bounds, minimum, and maximum values.

(c) Ensure known weaknesses in past compilers
are tested to determine whether these vulnera-
bilities appear in other compilers.

5. Perform testing to verify each previously found er-
ror was not re-added to the final implementation.

At the conclusion of these tests we have covered the
state space in a compiler. We have tested (1) the correct-
ness of each mini-circuit an operator uses, (2) the ways
data can come into each operator, (3) the base and nested
rule for each construct (if statements, for loops, arrays
declarations), (4) various edge cases.

4 Survey of Existing Compilers

Using the test procedures described in the previous sec-
tion, we set out to quantify the common problems in
existing secure computation compilers. With each com-
piler, we found failures that would corrupt common test
applications for secure computation protocols.

4.1 Comparison Compiler Information

Fairplay: Fairplay [30] was the first compiler to be used
for practical research in secure computation. Fairplay’s
input format is SFDL, a custom hardware description,
and the output is SHDL (simply a gate list in ASCII). We
selected this compiler since it initiated extensive practi-
cal research on improvements.

PAL: We selected the PAL [32] compiler as it was the
first compiler designed for low-memory devices using
an efficient intermediate representation. It also takes in
Fairplay’s SFDL and outputs SHDL. It is dramatically
more memory efficient than Fairplay and is able to com-
pile much larger programs, but lacks optimizations used
in recent garbled circuit protocols.

KSS: We examined the compiler from Kreuter et al. [25],
hereon referred to as KSS. This compiler takes a hard-
ware specific language as input and outputs a gate list in
binary format. We chose KSS since it formed the basis
of multiple recently-published works.

CBMC: The recently published CBMC-GC com-
piler [16] (hereon CBMC) used a bounded model
checker to compile a circuit program. This compiler
takes a C file as input and outputs a condensed gate list
(in ASCII). Because CBMC is the only compiler that can
compile programs written in ANSI C, it is commonly
used in other garbled circuit research. For this reason,
we included it in our comparison.

PCF: The PCF compiler [24], was created in order to
have a condensed output format while being efficient. It
takes in LCC bytecode as an input language and trans-
forms it into a PCF file (ASCII). This file describes a cir-
cuit in a condensed format; a circuit interpreter is used to
get each gate in turn. We selected PCF since it has been
used to generated some of the largest circuits.!

4.2 Analyzing Compiler Correctness

We separate our analysis of previous compilers into two
areas: (a) errors in the compiler, and (b) inefficiencies
in the system. We only note an error when the original
program was valid; if the compiler crashes due to an in-
correct program we do not consider it a correctness issue.
However, we did find that most of the compilers lacked
helpful error messages when an invalid program was pro-
vided as input.

4.2.1 Fairplay

Errors: Fairplay cannot output unoptimized constants
and sometimes breaks when it encounters single depth
if statements [32]. In addition, it frequently fails to parse

'We use PCF at the time of publication instead of an unpublished
newer version (PCF2) as PCF appears to be substantially more stable.

4
126
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

123

FairPlay
PAL
KSS

CBMC
PCF

Compilers

D Pass

. Fail

Figure 1: Summary of the correctness results. Fairplay,
PAL, and KSS do not have a complex interpreter.

for loops with if statements nested within. This is evi-
dence of a failure to properly validate the compiler, as a
set combination of operations consistently causes errors.
Inefficiencies and Limitations: Fairplay’s compilation
process and circuit representation is the most inefficient
we tested. The output circuit files are in plaintext, making
them significantly larger than necessary. While this facil-
itates manual inspection of the circuit file, it made the
storage requirements for these circuits far too costly for
practical use. These inefficiencies and errors imply that
Fairplay is only capable of compiling very simple pro-
grams that are too small to be relevant in the real world.
For example, the AES circuit is a standard benchmark
for modern secure computation systems. Fairplay termi-
nates with an out-of-memory error when trying to com-
pile AES even when given over 50GB RAM.

4.2.2 PAL

Errors: PAL encounters problems when structs are used.
This appears to be an issue with the compiler’s front-
end, and is indicative of insufficient validation for that
function within the language.

Inefficiencies and Limitations: Like Fairplay, PAL cir-
cuits are compiled into plaintext, which results in much
larger circuit sizes than using a binary format. PAL also
has some problem-size limitations, and fails to compile
very large programs. While the templating concept pro-
posed in this work is still useful in building secure com-
putation compilers, this compiler suffers from many of
the same inefficiencies as Fairplay, and is not useful for
compiling circuits of practical size.

4.2.3 KSS

Errors: The KSS compiler has a number of correctness
issues. Nested if statements consistently cause errors in
the output circuits. Further, for loops used within if state-
ments also cause the compiler to fail with regularity. In

at least one case, we found that the generated circuit can
be incorrect because of errors in the optimization phase
of compilation (we came up with a work around to this
error by XORing in “0”.). Finally, we discovered that a
variable used inside of a function and then outside (i.e.,
a global variable defined later in the code) can lead to
incorrect behavior as to what the output file will actually
do.

Upon examining the architecture of this compiler, we
discovered that the steps in compilation do not follow
standard good practice in compiler constructions. With-
out a simple-to-parse AST representation of the program,
careful validation of the compiler would be difficult.
Inefficiencies and Limitations: Rather than reduce the
output size using templating, KSS outputs the entire
circuit. It also uses a very large amount of hardware-
specific code, which makes porting it to other environ-
ments an extremely difficult task. While this hardware-
specific code provides some efficiency gain on specific
platforms, it makes the task of extending the code very
complex.

424 CBMC

Errors: The published version of the CBMC compiler
crashes if the program has unused inputs. This can oc-
cur when an input is not directly used in an expression
but instead only used within a conditional branch that is
never evaluated. CBMC crashes if even a single bit of
input is not used. CBMC also crashes if an input vari-
able is written within a program rather than at the start.
Output variables can also cause compiler errors if used
more than once, or if read inside the program. The entire
framework crashes if we try to compile circuits, which
have no gates (just the input and output pins) demonstrate
CBMC cannot take programs that should be trivial to per-
form correctly. CBMC sometimes compiles successfully
when arrays are used as input and sometimes fails.
Inefficiencies and Limitations: CBMC outputs the en-
tire circuit in a plaintext format, which while condensed
compared to Fairplay and PAL, is still much larger than
using a binary circuit file. The output file format also
doesn’t map output variables to pins, making developing
and debugging an interpreter prone to error.

4.2.5 PCF

Errors: PCF allows global variables but does not allow
global values to be initialized with a value i.e., assign-
ment must happen later on in the program. Also, when an
array location is addressed out of bounds, each attempt
we PCF will fill in the result with “0”s for the variable
instead of producing an error message for each test we
made. This is extremely dangerous behavior, as it can

5
127
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

124

lead to hidden and hard-to-detect errors. By default, PCF
does not update the number of input and output wires
based on the input size of the program being compiled,
meaning the output is incorrect.

The translate script provided with PCF, which is used

to convert LCC bytecode to PCEF, can fail on valid files
(e.g., the edt.16 (edit distance) code provided in the PCF
example circuits). In addition, PCF has input buffer over-
flow problems where inputs above 2!* bits overflow the
input-buffers for the two parties. This means that the cir-
cuit will always fail upon evaluation. These input size
bounds are currently hard-coded into the PCF compiler,
not defined by the program being compiled, and must be
edited manually in cases where larger inputs are needed.
These nonstandard approaches to managing program pa-
rameters and data lead to a compiler that is confusing to
use and difficult to debug.
Inefficiencies and Limitations: While PCF produces
very small output circuits, the interpreter required to
parse these circuits is extremely inefficient. Our tests
demonstrated that the interpreter can require as many as
ten operations to read in a single gate. This overhead is
magnified by the fact that each gate is read by the inter-
preter for every circuit that is garbled. For malicious se-
cure execution systems where many copies of the same
circuit must be garbled, it is far more efficient to parse the
gate once, then garbled the same functionality as many
times as are required for protocol security. PCF also pro-
duces spurious gates, which add to the circuit complexity
and should be removed. As with many other compilers
studied, PCF uses plaintext output format, using more
storage space than necessary.

S Compiler Development Principles

Given the deplorable state of secure computation com-
pilers in the research community, we set the primary
goal of our work to be the development of structured
design practices for secure computation compilers, and
to demonstrate the effectiveness of these practices with
a new compiler implementation. By examining practices
used by the compiler community and combining those
best practices with the observed failings of previous se-
cure computation compilers, we have assembled a set of
four principles to guide the development of our compiler,
Frigate. Through this implementation, we demonstrate
that these principles should be considered standard prac-
tice when developing new compilers for secure compu-
tation applications.

1. Use standard compiler practices: Use standard
methodology from compilers (lexing, parsing, se-
mantic analysis, and code generation). Use data
structures that are described throughout compiler

6

literature (e.g. an abstract syntax tree) [S]. Apply-
ing these standard, well-studied constructs allows
for straightforward modular treatment of the com-
piler components when extending the functionality.
Furthermore, it allows for application of standard
compiler debugging practices.

. Validate the compiler output: All production com-
pilers rely on proper program validation to ensure
that the compiler functions correctly. A variety of
validation test sets have been developed in both the
research community and in industry that can be ap-
plied to newly-developed compilers [4, 1, 36].

. Handle errors well with helpful error messages:
Many sources describing good compiler practices
emphasize the need to produce error messages, also
known as negative results (e.g,. [5, 4]). While al-
lowing the compiler to crash silently on an incor-
rect program does not affect its overall correctness,
it severely hampers usefulness.

. Simplify the design: A standard software engineer-
ing principle is to avoid erroneous code by using
simple designs. This allows for more intuitive de-
bugging when errors do occur, as well as facilitating
the addition of future functionality.

6 The Frigate Compiler

To demonstrate the practical effectiveness of our com-
piler design principles, we designed the Frigate com-
piler and secure computation language. We also created
a fast interpreter to read Frigate’s output files efficiently.
Our work demonstrates three additional contributions to
the state of secure computation compiler research: (1) a
new and simplified C-style language with specifically de-
signed constructs and operators for producing efficient
Boolean circuit representations; (2) a compiler that pro-
duces circuits with orders of magnitude less execution
time than previous compilers; and (3) a novel circuit out-
put format that provides an efficient balance between
compact representation and speed of interpretation.

6.1 Input Language

To better facilitate the development of programs that can
be efficiently compiled into Boolean circuits, we devel-
oped a custom C-style language to represent secure com-
putation programs. The language allows for efficiently
defining arbitrary bit-length variables that translate read-
ily into wire representation, and restricts operations in a
manner that allows for full program functionality with-
out excessive complexity. This minimal set of operations
adheres to our fourth design principle of maintaining

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

125

Operators Description
+ -0 signed arithmetic operators
! % unsigned arithmetic operators
| » & O bitwise operators
= assignment operator
=== equality test operators
> < <= >= conditional operators
<< >> shift operators
<<> rotate left operator
. struct operator
1 array operator
i} {3} wire operators

Table 1: A table showing the operators in Frigate's input
language

simplicity to ensure for easier validation. Our language
has control structures for functions, for loops, and if/else
statements. We include the ability to define types of ar-
bitrary length and combination asin SFDL, the language
used by Fairplay, combined with an operator that selects
some bits from avariable used in the KSS compiler input
language. For modularity, we have #include statements
to allow the use of externa files and #define to replace
a term with an expression. The list of operators in our
language isin Table 1, with an example of our input lan-
guage in Appendix B.

Every program begins with a declaration of the num-
ber of parties participating in the computation. Since not
every participant is required to provide input or receive
output, the input and output types for any subset of the
participants may then be specified.

To further maintain simplicity, only two primitive
types are defined in our programing language. int_t types
are numbers defined to a specific bit length while struct_t
types may consist of int_t and struct_t types. Developers
may specify their own types using these two types and
the typedef command. These two types can be combined
to create any complex data type. To formally define the
typing of each operator in our language, we give a selec-
tion of typing rules in Figure 2. The remainder of these
rules are available in Appendix A.

One feature we were compelled to omit from our lan-
guage was global variables. We removed this feature af-
ter we realized the significant overhead they represent
within a Boolean circuit program. Allowing globa vari-
ables requires keeping track of whether each function is
caled under an if statement and adding a MUX gate ev-
ery time a global variable wire is assigned a value. Our
language is capable of expressing equally functiona pro-
grams by passing in “globa” variables and returning any
new values for this variables.

Add Less Assn
r=t:Numg, et :Numg, et T
I')—t1+t2:NumL, M=ty <t : Num;y Fr-ty=t: T

If-El se Func-Cal
'ttt :T o:Numy Fr=t,:T, f:F

M= if (o){ti} else{t}: T M+ f(to...th-1) 1 R

Figure 2: Example typing rules for basic operators and
control flow statements

Input Analysis and Transformation

Q)
C)

Type Check and
Program Errors

Figure 3: Overal design of the Frigate compiler. There
are six separate blocks of the compiler. We have sepa-
rated blocks into three different stages instead of the tra-
ditional two stages.

Output

GTTESL

Includes (Circuit Output)

Defines (Gate Optimization)

6.2 Compiler Design

With our input language defined, we next examine the
design of the Frigate compiler itself. Written in approxi-
mately 20,000 lines of C++, the compiler is designed to
be simple enough to validate each output code path and
modular for expansion to fit specialized secure compu-
tation applications. We plan to make our code available
upon publication.

6.2.1 Compilation stages

Frigate represents programs in the standard compiler
data structure, the abstract syntax tree (AST). In ac-
cordance with our first design principle, this alows
for straightforward static anaysis and transformation of
each program. Each type of operation has its own node
where construction, type checking, and output of its sub-
circuit (among other functions) takes place.

Compilation of a program follows three phases as
shown in Figure 3. The input section of Frigate takes
in a program and creates an AST representation of the
program. We used Flex [2] and Bison [3] to generate
the scanner and parser used in this phase. In the second
phase, any #include statements are replaced with the in-
cluded file's generated AST. All #define statements re-
place any terms in the AST with a deep copy of the de-
fined expression tree. To conclude this phase, the type
checker takes the AST and checks that it is a vaid pro-
gram as defined by Frigate’s input language. The final
phase of compilation takes in the AST and outputs the
circuit while performing gate-level optimizations. If a
developer wishes to extend the functionality of Frigate,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

126

this modular phase design allows for additional stages to
be inserted in between the existing stages.

6.2.2 Type Checking and Error Output

To satisfy our third design principle, we created our type
checker to output detailed error messages to indicate the
location and type of error generated by an incorrect pro-
gram (e.g. ./tests/add.wir, Error line:11 Type “mytype”
is used but not defined). To ensure developers do not
include unstable functionality in their programs, Frigate
enforces strict type checking that prevents different types
from interacting unless those types are different int_t
types of the same length. A warning is issued in this case.

6.3 Circuit Representation

Previous work in compiler development has demon-
strated that it is possible to have either a large yet sim-
ple circuit representation that is efficient to parse, or a
highly compact circuit representation that incurs a sig-
nificant cost when it is interpreted by the evaluation pro-
gram. To strike a balance between these two extremes,
we developed a novel circuit representation that is signif-
icantly smaller than the simplified circuit representations
while still being efficiently parseable. Our output format
represents circuits using four elements: a set of input and
output calls, gate instructions, function calls, and copy
instructions. Our representation of function calls allows
us to shrink the output size but still prevents the need for
a costly circuit interpreter (more details in Section 6.3.2).

To further improve the efficiency of evaluating Frigate
circuits, we designed the compiler to favor XOR gates, as
they can be evaluated with fewer operations and do not
consume bandwidth when certain garbled circuit proto-
col optimizations are used [23]. We use the four-XOR,
one AND-full adder used by CBMC and PCF.

6.3.1 Output Components

Here we present the detailed components of our circuit
representation.

Wires: Each variable is composed of many wires that
are allocated as needed with a set address. Each wire ex-
ists in either a used wire bin or a free wire bin. Once a
used wire is freed it is placed in the free bin. Order, as
defined by the address of a wire, is not preserved in the
free wire bin. Our compiler will free the wires it can after
each operation.

Wires can exist in one of six states. ZERO and ONE
represent a wire’s state as 0 or 1. The UNKNOWN state
represents wires that depend on input values such that
their value cannot be computed at compile time. UN-
KNOWN_INVERT represents an unknown wire but at

some point was inverted. UNKNOWN_OTHER and UN-
KNOWN_INVERT_OTHER are wires whose values are
pointers to another wire value or the inversion of another
wire value. By keeping track of inverted states, we can
optimize away inverts in some cases.

Gate Output: Given two input wires and a truth table,
the outputGate function will output a gate and update the
state of the output wire. An additional function is called
to determine whether the gate is needed or whether it can
be short-circuited, i.e., the correct result of the gate can
be computed in the compiler. If the gate cannot be short-
circuited then the truth table will be adjusted for whether
either of the input wires’ states are inverted. Finally, the
gate will be added to the output.

Function Parameters and Return States: Because we
output the gate representation of each function indepen-
dently a single time, and not reflective of a single func-
tion call, we cannot take advantage of knowing the state
of a wire as it is passed into or out of a function. There-
fore, function parameters’ states and return states are
marked as UNKNOWN. 1t is possible to pass or return
wires with “0” and “1” states, but it is not as efficient
as the optimizer cannot use the information that they are
“0” and “1” since they must be marked as UNKNOWN.
This inefficiency is necessary since we only output each
function a single time preventing us from taking advan-
tage of specific parameter states. We could solve this by
outputting multiple function files with different wire pa-
rameters, but this would expand the size of our circuit
representation.

6.3.2 Circuit Interpreter

Using our circuit output format, the process of interpret-
ing a circuit is reduced to a highly efficient task. When
the interpreter is initially called, it reads an .mfrig file,
which contains information about the number of parties,
input and output sizes, which wires correspond to the in-
put and output, and the number of functions. After these
parameters are initialized, the interpreter is ready for the
first getNextGate command. Each time getNextGate is
called, the compiler reads the next instruction, opens the
correct .ffrig function file, and issues the appropriate gate
to the execution environment.

Each function occupies a specific set of wire values
such that no function’s wires will overlap. This enables
us to have a “stack” of function calls without the need
for the push and pop operations that would be required if
our functions used overlapped wire addresses. This does
not affect the output circuit size.

The interpreter holds a call stack of the active func-
tions in its internal state. Each function, rather than being
held completely in memory, is stored as a pointer to the
active instruction. When a function is called the stack of

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

127

functions is updated, the current active function is set to
the called function, and the called function is set back to
the first instruction.

6.4 Procedures

While our technique of dividing programs into distinct
functions and then composing the circuit with calls to
those functions allows for a significant reduction in the
representation size of many circuits, not all programs can
be easily partitioned into distinct functions. If a clean
partitioning does exist, often times the function overhead
for copying parameters and return values may exceed the
number of commands inside the function. This obstacle
is commonly encountered with loops, where each loop
iteration is copied to a separate function file, creating re-
dundant data that expands the size of the circuit repre-
sentation. To reduce the output file size in this case, we
develop a novel construct which we call procedures. A
procedure is a repeated area of a loop where the output
sub-circuit is placed inside of a function. Instead of out-
putting the sub-circuit each time the loop iterates (i.e.,
unrolling the loop), all that is required for a procedure
is adding a function call. Each iteration of a loop using
procedures adds a negligible amount of overhead to the
output file size (a single function call). Procedure calls
do not require any overhead for arguments as it uses the
same set of wires already defined in the calling function.

To demonstrate the output file size reduction possible
using procedures, we consider an example program that
adds five 32-bit variables to an accumulator 1000 times
(the full program is in Appendix B). If no procedure is
used, this program requires an output file of about 13MB
since each iteration of the main loop must be unrolled.
However, if a procedure is used, then output is one 30
KB file (main) and one 13KB function file (the proce-
dure), a reduction of the total disk usage by over 300x.
Compilation time is also reduced, as the entire procedure
circuit will no longer need to be output for every iteration
of a loop.

Unfortunately, procedures can only be used if each it-
eration through the loop uses the same wire states and
addresses (i.e., we only output the sub-circuit assum-
ing a particular set of wire states and addresses). Vari-
ables used in a procedure thus have to be located at the
same wire addresses and have the same states in every
iteration. This excludes loops with variables located in
and modified inside the loop, as the state of the vari-
able changes with every iteration. The simplest way to
ensure correctness is to force wires to one of three states
at the conclusion of an assignment statement, either UN-
KNOWN, ONE, or ZERO, then sort free wires in each
iteration of a loop so they will always be allocated in the
same order. Our implementation follows this technique,

9

using the Radix sorting algorithm to keep wires in order.

7 Experiments

7.1 Frigate Correctness

To demonstrate the correctness of our compiler, we
tested Frigate using the tests that we generated to exam-
ine the existing compilers in the community. After hun-
dreds iterations of development and testing and months
of work, Frigate successfully passed all correctness tests,
and produces correct and functioning circuits in every
case where previous compilers failed. For further detail
on the state space examined in Frigate, see Appendix E.

7.2 Compiler Efficiency Tests

By constructing a compiler using our four development
principles, we wanted to evaluate whether adhering to
the principles we laid out would have an adverse effect
on performance. We tested the time that is required to
compile circuits in Frigate against the three most recent
compilers we examined. Neither Fairplay or PAL give
competitive compilation results, so we omit them from
our benchmarks. All of our benchmarking tests were per-
formed on a MacBook Pro with an Intel i7 4-core 2.3Ghz
with 16GB RAM, 256KB L2/core, and 6MB L3.

7.2.1 Test Programs

To evaluate performance accross a wide variety of com-
pilers, we used common test programs used by the other
researchers in this space [25, 24, 40]. We used the fol-
lowing test programs: multiplication with matrices of X
by X with 32-bit values, AES, Hamming distance of two
X bit numbers, multiplication of two X-bit numbers, and
RSA (modular exponentiation) of X bits, where the base,
exponent, and modulus are all X bits in length. For each
test program, we varied the input size X.

7.2.2 Tests

We summarize the results in Figure 4 by comparing the
largest input values for each program that successfully
compiled across all compilers. In every case, Frigate
completes compilation the fastest. In the best case, the
application Mult 256 that computes the multiplication of
two 256-bit numbers, Frigate completes three orders of
magnitude faster than the next fastest compiler, PCF.

In addition to comparing speed efficiency, we also
considered the non-XOR gate counts of each program
compiled. Because the free-XOR optimization for gar-
bled circuits [23] allows XOR gates to be evaluated

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

128

100000 ¢ : .

10000 F -
1000
100 b

10 b

Time (s)

01k

001

0.001 L s

T
KSS ——
PCF
CBMC m=== T
Frigate

o]
x l]
W |]

AES

Mult256

Matrix16x16 RSA256 Hamming16384

Compiler Speed

Figure 4: Comparing the different compilers we tested for compilation time. We did not succeed in compiling RSA256

with CBMC. Note the y-axis is logscale.

with non-cryptographic operations and without consum-
ing network bandwidth, we consider non-XOR gates the
bottleneck in computation. Frigate greatly reduces the
number of non-XOR gates in two of the applications
tested, Hamming Distance and Mult, demonstrating up
to 6x reduction in the number of non-XOR gates. In
the case of AES and RSA, the improvement was only
slightly better than existing compilers, reducing the gate
count by up to 1.11x. In only one case did we observe
a reduction in gate count efficiency, Matrix Multiplica-
tion. This is due to factors such as additional overhead
incurred due to Frigate’s ability to handle multiplication
inputs as either signed or unsigned in the same circuit,
unlike other compilers. Table 4, in the Appendix C.1,
gives the full results for all programs we tested.

7.3 Interpreter and Execution Speed

Interpreter Time: Our next set of experiments compares
the performance of the Frigate and PCF interpreters. Ta-
ble 2 shows our experimental results. The Frigate out-
put format allows for significant reduction in interpreting
time. In the worst-case, we improve over PCF by 45x,
with a reduction of 682x in the best case. To demonstrate
the practical ramifications of interpreter time, we give a
brief analysis to show how Frigate is able to improve the
overall performance of a garbled circuit protocol.

Simulated Protocol Time: The cost to generate a
garbled-circuit in a protocol can be expressed as:

InterpreterTime+non_X ORgates«timeToGarbleAGate

ProgramName | PCF [Frigate [Imp. |
Hamming 1000 0.40 £ 3% 0.0040 +4% | 100x
Hamming 16384 4.8 £2% 0.015 £ 1% | 320x
Mult 256 211 +£0.5% 0.005 £20% | 422x
Mult 4096 280 £ 2% 0.50 £ 8% | 560x
Matrix Mult 5 0.650 £+ 0.5% 0.0048 + 4% 135x
Matrix Mult 16 17.5 + 0.8% 0.071 £ 1% | 246x

| AES [060 1% | 0.0008 & 30% | 862x |
RSA 256 690 £+ 0.9% 4.27 £0.9% 161x
RSA 512 4880 + 0.8% 34.0+0.6% | 143x

Table 2: Results from testing the PCF and Frigate inter-
preters and their speed. In this set of tests we only simu-
late the execution of the circuit. The imp. column shows
how many times faster Frigate’s interpreter is compared
with the PCF interpreter. All times in seconds.

In the above equation, InterpreterTime is the time to
read each gate from the circuit file, non-XORgates
is the number of non-XOR gates in the circuit, and
timeToGarble is the cost for garbling and sending a sin-
gle non-XOR gate. InterpreterTime also includes a sin-
gle payment for the cost of the free operations. To gather
the values used in our analysis, we experimented with
an efficient semi-honest garbled circuit implementation
based on Kreuter et al. [25] that could generate and send
approximately 1.2 million non-XOR gates in a second
in the best case (833 ns per gate). This time could be fur-
ther reduced by applying recent optimizations such as the
fixed key block cipher technique developed by justGar-
ble [7].

10

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

129

Consider the example program Mult 256. In Frigate,
the total interpreter time is about 0.005 seconds with
65543 non-XOR gates. With PCF, the total interpreter
time is about 2.11 seconds with 400,210 non-XOR gates.
Using these values, we can define the total time to gar-
ble the circuit in Frigate as 0.005 + 65,543 %.000000833
for a total of 0.0596 s. For PCF, the total time is ap-
proximately 2.11 4-400,210 % .000000833 = 2.44 s. This
means Frigate’s expected runtime is better by approxi-
mately 40x. Considering this simple program, the bot-
tleneck for garbling using both Frigate and PCF is the
interpreter time and not the time required to garble gates.
When we extend this analysis to protocols secure against
malicious adversaries, another challenge arises. This se-
curity model requires a cut-and-choose operation where
the circuit is garbled multiple times. In PCF, the inter-
preter is designed to read the circuit file once for each
circuit in the cut-and-choose (including free operations).
A more efficient design that we adopt is to read the circuit
file once and garble each gate multiple times from mem-
ory. Using 80 circuits for 2% security (using Lindell’s
fast cut-and-choose [45]) means we have a total runtime
of 0.005 + 0.01 % 0.43 % 79 4 65543 * .000000833 * 80 or
4.7s for Frigate, since the garbling time and not the in-
terpreter time, is multiplied by the number of circuits
produced. We include an added term, .43, of the total
interpreter time for each circuit in Frigate as we found
executing operations took about 43% of the total time.
With PCF, the expected time is 2.5 * 80 4 400,210 *
.000000833 % 80 = 226.7 s. This gives us an expected im-
provement of about 48x over PCF. Given this observa-
tion, having an efficient interpreter can significantly af-
fect the speed of a garbled circuit protocol.

Appendix C.2 lists the expected efficiency for all of
our test programs using the formulas introduced above.

7.4 Discussion

Extensibility: After the initial creation and implementa-
tion of Frigate we made an additional change in order to
show extensibility. We enabled constants to be defined to
a specific bit-length, which was not in our original spec-
ification allowing negative constants to be correctly as-
signed. For developers to extend Frigate with their own
functionality, they simply create or modify an AST node
and the parsing rules, modify typing for new or existing
operators, and then define what sub-circuit the operator
outputs.

Tools: To demonstrate how Frigate can be used to create
useful developer tools, we created an extension to output
the gate counts of program components inline in a print-
out. We implemented this tool specifically as it is impor-
tant to understand where the most costly gate operations
are in a Boolean circuit program. Our tool also maps in

11

#define wiresize 1024 #parties 2
typedef int 1024 int

#input 1 int #output 1 int
#input 2 int #output 2 int

function int mul(int x, int y)
<1048581,2094078 > {

return x *x y;
}
function void main ()
<270534921,541326327>{

int t = inputl;

for(int i = 0; i < 256; i++)

<268436736,537132800>{

t = mul(t, inputl);

}
<1048581,2094078>{

t t % inputl;
}

outputl

inputl % input2 + t;
}

compiler: time(s): 0.877391
interpreter: gates: nonxor:
free ops: 541330424 time(s):

270534923
3.63717

Figure 5: Example of Frigate‘s gate counts in the pro-
gram at each compound statement.

the cost of function calls (and procedures) even though
they are not called during compilation. Figure 5 shows an
example program and its gate counts. The numbers in the
angle brackets are (non—XOR gates, free operations).

8 Related Work

When the garbled circuit protocol was developed by An-
drew Yao [44], it was one of the first protocols to demon-
strate that secure multiparty computation was possible.
However, the protocol remained a theoretical novelty un-
til the Fairplay implementation [30] demonstrated that
the protocol could be feasibly run for small sized circuits.
In more recent work, the garbled circuit protocol has
been vastly expanded from its original capability, with
protocols allowing for multiple parties [8], security in the
presence of covert [14], malicious [21, 27, 28, 39, 40],
and other adversaries [19], as well as outsourced exe-
cution from computationally limited devices [20, 10, 9].
However, one of the major remaining limitations is the
size of the garbled circuit representation, which prevents
very large functions from being executed practically due
to the amount of bandwidth required to transmit the cir-
cuit, as well as the computation time to evaluate it.

To help reduce the size of the garbled circuit, several
protocol optimizations have been developed. The free-
XOR technique [23, 12] allows for garbled XOR gates to
be evaluated with a single XOR operation, and require
zero bandwidth to transmit. In addition, optimizations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

130

such as garbled row-reduction [35] allow for the size
of the transmitted AND gates to be reduced by a con-
stant factor. Other optimizations, such as FleXOR [22],
have been shown to reduce bandwidth and computation
time for certain functions. The pipelining technique de-
veloped by Huang et al. [18] generates and transmits the
circuit in layers, allowing large circuits to be handled
in a small amount of memory. Most recently, the Par-
tialGC system [31] allows for garbled wire values to be
re-used between protocol executions, reducing the num-
ber of consistency checks required to ensure security.
However, while these protocol optimizations allow for
constant factor improvements in speed and bandwidth,
they do not optimize the size of the boolean representa-
tion itself, and are limited in their ability to make very
complex functions execute in a practical amount of time.
The first system to compile a high-level function into
a boolean circuit representation for secure computation
was the Fairplay compiler [30]. While this compiler pro-
vided a first step towards a practical and usable means for
representing arbitrary programs as circuits, the Secure
Function Definition Language (SFDL) was very limited
in its complexity and ability to represent programs. Fur-
thermore, the compiler produced large, unoptimized cir-
cuits, and suffered from a number of correctness issues.
To reduce the size of the unoptimized circuit represen-
tation, the PAL compiler [32] introduced the concept of
templates, which allowed simple functionalities within a
circuit to be represented by a template rather than a re-
peated set of gates. The first compiler to incorporate a
number of circuit optimizations to reduce the actual gate
count was by Kreuter, shelat, and Shen [25]. The Portable
Circuit Format compiler (PCF) [24] combined the con-
cept of templating with several circuit optimizations that
were both novel or derived from the KsS compiler. How-
ever, the interpreting environment of PCF causes an in-
crease in execution time, and stability issues have signif-
icantly reduced the practical usability of the compiler.

9 Conclusion

Garbled circuit protocols have made significant advances
based upon the development of a set of circuit compilers
that allow researchers to quickly develop new test appli-
cations. However, the error-prone nature of these com-
pilers has made building new research on them question-
able. In this work, we examine the state of secure compu-
tation compilers using rigorous validation testing. From
this examination, we present a set of guiding principles
for secure computation compiler design, and develop the
Frigate compiler based on these principles. By building
a principled compiler and thoroughly validating correct-
ness, our compiler reduces compile time by as much as
three orders of magnitude when compared to previous

12

compilers. Furthermore, our novel circuit representation
format allows for circuit interpretation time to be reduced
by as much as 600x. These results demonstrate that a
principled approach to design and validation of secure
computation compilers produces tools that are both cor-
rect and efficient, and offer the rest of the community a
solid foundation on which to develop further research.

References

[1] Arm Compiler Verification Process.
http://www.arm.com/products/tools/software-tools/mdk-
arm/compilation-tools/compiler-verification.php.

flex: The Fast
http://flex.sourceforge.net.

[2] Lexical Analyzer.

(3]
(4]

Gnu bison. http://www.gnu.org/software/bison/.
SuperTest Compiler Test and Validation
http://www.ace.nl/compiler/supertest.html.

A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 2006.
I. D. ard, V. Pastro, N. P. Smart, and S. Zakarias. Multi-

party computation from somewhat homomorphic encryp-
tion. In Advances in Cryptology - Crypto, 2012.

Suite.

(3]

(6]

[7]1 Bellare, Mihir and Hoang, Viet Tung and Keelveedhi, Sri-
ram and Rogaway, Phillip. Efficient Garbling from a
Fixed-Key Blockcipher. In Proceedings of the 2013 IEEE

Symposium on Security and Privacy (Oakland ’13),2013.

A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a
system for secure multi-party computation. In Proceed-
ings of the ACM conference on Computer and Communi-
cations Security, 2008.

H. Carter, C. Lever, and P. Traynor. Whitewash: Out-
sourcing garbled circuit generation for mobile devices. In
Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC), 2014.

H. Carter, B. Mood, P. Traynor, and K. Butler. Secure out-
sourced garbled circuit evaluation for mobile devices. In
Proceedings of the USENIX Security Symposium, 2013.

Cheng Wang and Rengan Xu and Chandrasekaran, S. and
Chapman, B. and Hernandez, O. A Validation Testsuite
for OpenACC 1.0. In Parallel Distributed Processing
Symposium Workshops (IPDPSW), 2014 IEEE Interna-
tional, 2014.

S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou. On
the security of the “Free-XOR” technique. In Proceedings
of the International Conference on Theory of Cryptogra-
phy, 2012.

Garoche, Pierre-Loic and Howar, Falk and Kahsai,
Temesghen and Thirioux, Xavier. Testing-Based Com-
piler Validation for Synchronous Languages. In NASA
Formal Methods. 2014.

V. Goyal, P. Mohassel, and A. Smith. Efficient two party
and multi party computation against covert adversaries. In
Proceedings the annual international conference on Ad-
vances in cryptology, 2008.

(81

(9]

[10]

[11]

[12]

[13]

[14]

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

131

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

T. Hoare. The verifying compiler: A grand challenge for
computing research. J. ACM, 50(1):63-69, Jan. 2003.

A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Se-
cure Two-party Computations in ANSI C. In Proceedings
of the 2012 ACM Conference on Computer and Commu-
nications Security, 2012.

Y. Huang, D. Evans, and J. Katz. Private set intersec-
tion: Are garbled circuits better than custom protocols?
In NDSS ’12: Proceedings of the 19th ISOC Symposium
on Network and Distributed Systems Security, San Diego,
CA, USA, Feb. 2012.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In Proceed-
ings of the USENIX Security Symposium, 2011.

Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols:
Strengthening semi-honest protocols with dual execution.
In Proceedings of the IEEE Symposium on Security and
Privacy, 2012.

S. Kamara, P. Mohassel, and B. Riva. Salus: A system for
server-aided secure function evaluation. In Proceedings
of the ACM conference on Computer and communications
security (CCS), 2012.

M. S. Kiraz. Secure and Fair Two-Party Computation.
PhD thesis, Technische Universiteit Eindhoven, 2008.

V. Kolesnikov, P. Mohassel, and M. Rosulek. FleXOR:
Flexible Garbling for XOR Gates That Beats Free-XOR.
In Advances in Cryptology — CRYPTO, 2014.

V. Kolesnikov and T. Schneider. Improved Garbled Cir-
cuit: Free XOR Gates and Applications. In Proceedings
of the international colloquium on Automata, Languages
and Programming, Part 11, 2008.

B. Kreuter, B. Mood, a. shelat, and K. Butler. PCF: A
Portable Circuit Format for Scalable Two-Party Secure
Computation. In Proceedings of the USENIX Security
Symposium, 2013.

B. Kreuter, a. shelat, and C.-H. Shen. Billion-gate secure
computation with malicious adversaries. In Proceedings
of the USENIX Security Symposium, 2012.

X. Leroy. Formal Verification of a Realistic Compiler.
Commun. ACM, 52(7), July 2009.

Y. Lindell and B. Pinkas. An efficient protocol for se-
cure two-party computation in the presence of malicious
adversaries. In Proceedings of the annual international
conference on Advances in Cryptology, 2007.

Y. Lindell and B. Pinkas. Secure two-party computation
via cut-and-choose oblivious transfer. In Proceedings of
the conference on Theory of cryptography, 2011.

Lopes, NunoP. and Monteiro, José. Weakest Precondi-
tion Synthesis for Compiler Optimizations. In Verifica-
tion, Model Checking, and Abstract Interpretation, 2014.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a
secure two-party computation system. In Proceedings of
the USENIX Security Symposium, 2004.

13

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

B. Mood, D. Gupta, K. Butler, and J. Feigenbaum. Reuse
it or lose it: More efficient secure computation through
reuse of encrypted values. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS’14), 2014.

B. Mood, L. Letaw, and K. Butler. Memory-efficient gar-
bled circuit generation for mobile devices. In Proceed-
ings of the IFCA International Conference on Financial
Cryptography and Data Security (FC), 2012.

Namjoshi, KedarS. and Tagliabue, Giacomo and Zuck,
LenoreD. A Witnessing Compiler: A Proof of Concept.
In Runtime Verification. 2013.

G. C. Necula. Translation validation for an optimizing
compiler. SIGPLAN Not., 35(5):83-94, May 2000.

B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams.
Secure Two-Party Computation is Practical. In ASI-
ACRYPT, 2009.

Plum Hall, Inc. The Plum Hall Validation Suite for C.
http://www.plumhall.com/stec.html.

A. Pnueli, M. Siegel, and E. Singerman. Translation val-
idation. In Proceedings of the 4th International Confer-
ence on Tools and Algorithms for Construction and Anal-
ysis of Systems, TACAS *98, London, UK, 1998.

T. Schneider and M. Zohner. GMW vs. Yao? Efficient
Secure Two-Party Computation with Low Depth Circuits.
In Financial Cryptography and Data Security, 2013.

a. shelat and C.-H. Shen. Two-output secure computa-
tion with malicious adversaries. In Proceedings of EU-
ROCRYPT, 2011.

a. shelat and C.-H. Shen. Fast two-party secure computa-
tion with minimal assumptions. In Conference on Com-
puter and Communications Security (CCS), 2013.

J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating
value-graph translation validation for LLVM. In Proceed-
ings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI *11,
2011.

Wang, Cheng and Chandrasekaran, Sunita and Chap-
man, Barbara. An OpenMP 3.1 Validation Testsuite. In
OpenMP in a Heterogeneous World, 2012.

Yang, Xuejun and Chen, Yang and Eide, Eric and Regehr,
John. Finding and Understanding Bugs in C Compilers.
In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’11),2011.

A. C. Yao. Protocols for secure computations. In Pro-
ceedings of the IEEE Symposium on Foundations of Com-
puter Science (FOCS), 1982.

Yehuda Lindell. Fast Cut-and-Choose Based Protocols
for Malicious and Covert Adversaries. In Advances in
Cryptology (CRYPTO ’13), 2013.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

132

A Operator Typing

In Figure 6 we give the full typing rules for our language.
Each operator or statement has its own typing rule.

Each of the typing rules has a set of types on the top
i.e., t: T means ¢ is of type T in the program context
I'. The bottom is a statement in Frigate’s input, along
with the types of each item. Num is a number of any
bit-length. Num,, is a number of bit-length i. R,T,F,S,P
can be replaced with any type but use different names to
differentiate where they are used.

B Example Programs

Input Example

The program below gives an example of much of
the syntax in Frigate’s input language, using different
statements, declaring types, and setting input and output
types. This main function simply sets the both output val-
ues to be the addition of the two input values.

#define wiresize 32

#parties 2

typedef int_t wiresize int

typedef struct_-t mystruct {
int x;

}

typedef struct_-t newstruct {
int x;
newstruct var[5];

}

#input 1 int
#output 1 int
#input 2 int
#output 2 int

function void main ()

{
outputl = inputl + input2;
output2 = inputl + input2;

Procedure Example
This is the example program discussed in Section 6.4

function void main ()

{
int x inputl ;
int y = input2;

for(int i=0;1<1000;i++)

Security
Program Semi-Honest | Malicious
Hamming 1000 73x 124x
Hamming 16384 147x 198x
Mult 256 40x 43x
Mult 4096 24x 24x
Matrix Mult 5 6x 6x
Matrix Mult 16 5x 5x
AES 74x 78x
RSA 256 4x 4x
RSA 512 4x 4x

Table 3: This table shows the expected speedup Frigate
has over PCF for all programs in both the semi-honest
and malicious setting using the formulas in the experi-
ments section.

{
}

outputl = x;

X =X+y+y+y+y +Yy,

C Extended Performance Results

C.1 Expanded Compilation Time Result
Table

Table 4 shows the complete compile times for each pro-
gram and the compiler combination.

C.2 Expected Performance

In Table 3, we give the expected performance results for
each program using the formulas from the experiments
section.

D Frigate Design Details

This section lists some of our design decisions and ex-
plains why the decided to do things differently from other
compilers.

D.1 No Recursion

We do not allow recursion in our execution model. Multi-
ple copies of a specific function could be created to sim-
ulate recursion but this is not done as part of a native
operation. Since the depth of recursion must be known
at compile time, this does not remove functionality from
the language but may reduce expressiveness.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AbpD LESS ASSN Ir-ELSE } Func-CALL
't : Numg, 't : Numyp, T'Ht,:T I'Ft,:T o:Num ti: T, f:F
D't +ty: Numyg, DEty <ty: Numy bty =t:T Tk if (o){t1} else {ta} : T I'F f(totn—1): R
SuB Murt Div Mobp EqQuaAL
't : Nump, 't : Nump, 't : Nump, 't : Nump, TH:T

L't —to: Numg, Ity *xty: Numyp,

GREAT GREAT-

Nor-E
2 I't;: Nump,

I'Ht,:T

I'Ft1/ts: Numg,

Eq

I't;: Numyp,

'k tl%tg H NumLI Tk t] ==1o: Numl

LEss-EQ

ORr R
Tkt : Nump, 't Numg,

I'Ft!=ty: Numq I'Fty >ty Numy

'ty >=ts: Numy

Tkt <=ts: Numy It tifta : Nump,

AND XOoR Not LSHIFT . RSHIFT)
't : Nump, 't : Numgp, 't Numgp, I'Ht:Nump, j:Num I'tt:Numyp, j:Num
Tk t1&ty : Numy, I'Fti Aty : Nump, I'F~ty: Numg, I'Ft<<j:Numg, I'Et>>j5:Nump,

LRor BIT-SEL . BITS-SEL ARRAY-SEL)
I'tt: Nump, j:Num Tkt : Nump, j:Num 't : Nump, j:Num k:Num Tt :Arr[T] j: Num
I'Ht<<>j: Nump, Tt {j}: Numy Tkt{j:k}: Numg,_, THuf]:T
STRUCT-SEL For Func-DEc -
TFs:Struct t:T 'tv:T o:Numqy j:T s:8 Tkr:R pi: P f:F s:8S; VAR-DEC
kst T 't for (vio;j)s: T TF f(po.--pn-1){50;-;Sn_1;return r; } : £ TFTt:T
RETURN DEFINE o TYPE-DEF P S
T I'Ht:T c:String I'Ft:T n:Num c:String ARTIES

't return r: R 't definect: T

OuTpPUT

INPU U
I'Ht:T

T
T'Ht:T i:Num

T typedeftn c:T

i: Num

'+ parties n: Num

INCLUDE |
I'tc: String

TFiInputit:T

I'koutput it:T

't include ¢: T

Figure 6: The full set of typing rules for all Frigate operators.

D.2 void Functions

Our compiler allows functions that return nothing. At
first this may seem counter intuitive to our model since
nothing performed in these functions would ever be used.
However, extensions like adding the ability to pass vari-
ables to functions by “reference” may require the use of
void functions. We therefore included them into our com-
piler.

D.3 Unsigned Division

Unlike our other operations where the user determines
how to interpret the results after the circuit is evaluated,
we only have unsigned division and unsigned remainder
division, since the user must indicate if it was a signed
or unsigned operation. Declaring the sign of types is a
possible extension for future work.

Process to use unsigned division operator for
signed division The process for performing signed di-
vision with an unsigned division operator is as follows:
check the signs of both operands, if either is less than
0 then negate the operand so it is positive and save that

15

the operand was negative. Execute the unsigned division
with the positive values. If one of the original values was
negative then negate the result, otherwise leave the value
as positive.

D.4 No Sign Extension By Default

We do not sign extend our operations. However, we (ex
post facto) added a technique to allow constants to have
a set bit-length to prevent the need for sign extension, i.e.
-1, instead of being a 2-bit number (constants are sized
to their bit-length + 1 by default) could be defined as 8
bits. To this end we added the # operator to specify the
bit-length of constants (i.e. “charl6 x = -9#16,” defines
-(9) to be 16 bits in length instead of 5 bits in length. If
we did not specify the bit length and assign -9 is to X, -9
would be lost).

D.5 More Than Two Parties

Our compiler allows more than two parties in the compu-
tation unlike the other compilers we examined. Adding

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

134

Time(s) | All Gates Non-XOR Time(s) | All Gates Non-XOR

Program Frigate PCF
Hamming 1000 || 0.0092 + 3% 7,402 1,803 51+ 1% 21,970 4,882
Hamming 16384 0.014 + 8% 89,245 21,642 6.95 = 0.8% 391,683 96,117
Mult 256 0.019 + 5% 195,334 65,543 542+ 0.7% 1,659,808 400,210
Mult 4096 39+2% 50,311,174 16,777,223 63.7+0.9% 364,605,460 89,444,609
Matrix Mult 5 0.092 + 4% 383,877 132,502 60.2 = 0.4% 433 475 127,225
Matrix Mult 16 19 + 4% 12,578,818 4,341,762 68.8 = 0.4% 14,308,864 4,186,368
AES 0.0082 £ 3% 33,794 10,258 048 £ 5% 38,260 12,578
RSA 256 0.355 £ 0.1% | 1,008,796,419 219,154,946 272 + 0.6% 673,105,990 | 235,925,023
RSA 512 138+£0.5% | 8,061,715971 | 1,749,029,890 275+ 0.8% | 5,397,821,470 | 1,916,813,808

Program CBMC KSS
Hamming 1000 0.71 £+ 2% 54,233 18,906 22+ 1% 20,493 4,641
Hamming 16384 1.16 + 0.8% 910,495 290,728 421+ 0.8% 370,110 88,952
Mult 32 048 + 1% 6,223 1,741 0.34 + 6% 15,935 5,983
Mult 256 9,800% £ 5% 5,880,833 2,264,860 17 £2% 1,044,991 391,935
Matrix Mult 5 1.8 +2% 795,988 223,720 32+ 2% 1,968,452 746,177
Matrix Mult 16 1,500% + 7% 26,182,494 7,251,991 1900 + 5% 64,570,969 24,502,530
AES 0.60 + 4% 35,607 11,469 071 + 1% 49912 15,300
RSA 256%* - - - || 14,000 & 4%* 928,671,864 | 315,557,288

Table 4: This table shows the compile time in seconds, the total gates, the non-XOR gates and the total operations
(specific to PCF and Frigate where there are additional operations besides gates). Note that for CBMC and KSS, we
ran Mult 32 and Mult 256 instead of Mult 256 and Mult 4096.

All tests were ran 10 times unless otherwise noted: * tests ran 3 times, ** we stopped trying to compile this program

after 6 hours.

additional parties to the computations can be useful to
declare different types of output.

E Frigate Validation Details

This section details our validation tests for a correct se-
cure computation compiler. To properly validate a com-
piler we have to check all possible ways that each state-
ment can output a sub-circuit and check the ways data
can flow from the beginning to the end of the program
(including when the data is encapsulated in variables,
when it is used in control structures, etc.). While daunt-
ing, the task is made simplilar once the realization is
made that each operator and control structure can only be
output in a finite number of ways, i.e., an if/else statement
has 2 possibilities: it is either the first if/else statement or
is nested under at least one other if/else statement.

We perform the tests outlined in Section 3. At the con-
clusion of these tests we have covered the state space in
Frigate. We have tested (1) the correctness of each mini-
circuit an operator uses, (2) all the ways in which data
can populate each operator, (3) the base and nested rule
for each construct (if statements, for loops, and arrays
declarations), (4) common edge cases, and (5) unique
constructs to Frigate’s input format.

For some tests in Frigate, like verifying whether a file
is included correctly, were performed by printing out the

16

AST and not by compiling and then executing the pro-
grams.

For each type of test, we test a variety of positive (cor-
rect) and negative (incorrect) results with emphasis on
edge cases. As an example, here are the test cases for the
addition operator:

1. Do a variety of different input value combinations
give correct results?

2. Can it handle negative numbers?

3. Does adding two ‘unsigned’ positive numbers that
overflow into the sign bit give the correct result or
does having signed addition produce errors?

4. Does adding two different types of the same length
give a warning?

5. Does adding two different types of different lengths
give an error?

Operators: The first tests on the operators examine
whether the sub-circuits, or templates, for each opera-
tor (adder, subtractor, etc.) are correct. It is easy to see
whether these tests are correct by outputting the result or
by an examination of the output for simple sub-circuits.
Once we know the template circuits are correct, we
must then show all possible types of data that can be en-
tered into the template work as well. These types are: (1)
constants, (2) variables, or (3) results from an expression.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

135

if(x) {
;f(y) {} else {}

else {

if(z) { } else { }
}

Figure 7: Twice nested if statements. There are 8 possible
combinations as X, y, and z can either be O or 1.

Once these tests pass, we know the operator correctly
takes in all the different types of data.

Control Structures: Once each operator is shown to be
correct, we know any other errors found will not be from
the primitive operators but from the control structures.
There are four control structures in Frigate we must test:
functions, if/else statements, for loops, and procedures.

For each control structure, we check every way in
which it can be output. Conditional if/else statements can
be checked for correctness by performing an exhaustive
search up to depth 2 (i.e., test all 8 possible cases of
the conditional output as shown in Figure 7). By select-
ing depth 2, the unique ways to output the if/else state-
ment occur within the first conditional, while the depth-2
if/else statment must be combined with its parent con-
ditional. If the nested if/else conditionals combine cor-
rectly at depth 2 then by induction, it will work for sub-
sequently nested conditionals as well. Each iffelse state-
ment should be tested for when the guard values are de-
pendent on user input as well as when they are not de-
pendent on user input.

It is relatively simple to validate the correctness of for
loops when they are only nested under another for loop
by checking whether they output the circuit the correct
number of times. When they are used under if/else state-
ments, problems can arise depending on how the loop
variable is scoped and whether the loop variable’s result
will be labeled UNKNOWN, meaning the result is based
on user input due to the if statement, or whether it will
be labeled as a 0 or 1 value. We test to depth 2 in case
there is an external state used by the compiler that may
prevent nested for loops from working correctly.

Functions also have a finite number of possible states
to test. Our procedure for carrying out this testing was
as follows. (1) Test the function call operator, where a
function call is treated as any other operator that takes
in any number of operands (parameters) and returns a
single operand. We test different possible combinations
of parameters up to length 2, as that is where data no
longer acts in a unique way. (2) Function definitions need
to be tested to ensure different types of return variables
(array, struct, int) work correctly. (3) Test two of the same
function call in an operand with different results (e.g.,
addX(3,4) + addX(5,6)). It is possible the results of

17

the first call may be overwritten by the second call. (4)
Test that parameters can be used inside of the functions.

Although we do not have global variables in our input
language, we suggest the following two tests for compil-
ers that use global variables. (1) Test whether functions
correctly modify global variables. (2) Test when func-
tions are called under an if/else statement and whether
the function modifies the global variable as expected, i.e.,
if the guard is false then the global variable is not modi-
fied.

The correctness of procedures reduces to a simple
question: is each variable composed of the exact same
wires every iteration? We know that variables will use
the same free wires if the wire pool is sorted before each
iteration. Procedures can be difficult to use and if proce-
dures are not used correctly by a developer, then a pro-
gram will output undesired results. However this is not a
correctness problem.

We test various specific cases: Empty functions, ar-
ray declarations and access up to 2 dimensions (depth 2
as each dimension is compartmentalized, if it works for
depth 1 and depth 2, then it works for the base case and
when ‘nested’), verify that #includes and #defines work
correctly, check that the parties variable correctly deter-
mines what input and output variables can be used, as-
signments of arrays and structs, as well as the additional
edge cases mentioned above.

Frigate‘s Interpreter: In order to use the circuits gener-
ated by Frigate, we also validate the correctness of the
interpreter. If the interpreter was created first in order
to test the functionality of the compiler then it will cor-
rectly function after all the functionality of the compiler
was checked (i.e., there are no more edge cases to check
where it would fail). If the interpreter was not created
first then each test should be run through the interpreter.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

136

Glossary of Terminology

AES: Advanced Encryption Standard

Blackbox: A means of viewing a cryptographic protocol such that it can be viewed as
secure as a whole without necessarily proving the composition of its components
(which are known to be secure).

CBMC: A Garbled Circuit Compiler

CMTB Outsourcing: Built on the KSS framework, the CMTB evaluation framework

outsources the evaluation of garbled circuits to allow mobile devices to participate
more efficiently in garbled circuit computation.

EMOC: Efficient Mobile Oblivious Computation: EMOC is a set of protocols using
partially homomorphic cryptosystems to compare encrypted elements.

Evaluator: The party responsible for running a garbled circuit.
Fairplay: A Garbled Circuit Compiler

Garbled circuit: A scrambled representation of a low-level circuit designed to
prevent its evaluator from understanding the inputs or outputs.

Generator: The party responsible for garbling a circuit and inputs.

GPS: Global Positioning System

IR: Intermediate Representation

KSS: A Garbled Circuit Compiler, The KSS compiler and evaluation framework
combines a number of garbled circuit optimizations into a malicious secure protocol
for two-party garbled circuit evaluation.

MAC: Message Authentication Code

OBDD: Ordered Binary Decision Diagrams

OT: Oblivious Transfer: A cryptographic protocol wherein a user is able to learn 1
out of n secret values held by a server, and the server is unable to determine which
value the user learned.

PAL: Pseudo Assembly Language: A Garbled Circuit Compiler, The PAL compiler

uses circuit templates to save memory when compiling garbled circuits on a
resource-constrained platform, such as a mobile device.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
137

PCEF: Portable Circuit Format, A Garbled Circuit Compiler

RSA: Rivest-Shamir-Adleman Cryptosystem: A Public-Key Cryptosystem based on
two large prime numbers and an auxiliary value.

SFE: Secure Function Evaluation: A protocol by which a function can be evaluated
such that its inputs remain private, and only its output is exposed.

Whitewash Outsourcing: Whitewash builds on the Shelat-Shen protocol (CCS 2013)
for garbled circuit SMC, allowing mobile devices to securely and efficiently
outsource the costly operations associated with circuit garbling.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
138

