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In this paper, we propose a new representation of numeric functions
using a piecewise arithmetic expression. To represent a numeric func-
tion compactly, we partition the domain of the function into uniform
segments, and transform the sub-function in each segment into an arith-
metic spectrum. From this arithmetic spectrum, we derive an arithmetic
expression, and obtain a piecewise arithmetic expression for the func-
tion. By using the piecewise arithmetic expression, we can increase
the number of zero arithmetic coefficients significantly, and represent
a numeric function more compactly than using a conventional single
arithmetic expression. We also present an application of the piecewise
arithmetic expression to design of numeric function generators (NFGs).
Since the piecewise arithmetic expression has many zero coefficients
and repeated coefficients, by storing only distinct nonzero coefficients
in a table, we can significantly reduce the table size needed to store
arithmetic coefficients. Experimental results show that the table size can
be reduced to only a small percent of the table size needed to store all
the arithmetic coefficients.

Keywords: Piecewise arithmetic expressions, nonzero arithmetic coefficients,
numeric function generators (NFGs), programmable architectures.

This paper is an extended version of the paper [12].
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2 SHINOBU NAGAYAMA et al.

1 INTRODUCTION

Numeric functions, such as trigonometric, logarithmic, square root, and com-
binations of these functions, have a wide range of applications including com-
puter graphics, digital signal processing, communication systems, robotics,
etc. [5]. These applications usually use numeric functions as a basic opera-
tion, as well as addition and multiplication. Particularly, in graphics applica-
tions for embedded systems, the computation of numeric functions accounts
for about half of the total processing time [13]. Thus, for numerically inten-
sive or real-time applications, hardware accelerators, called numeric function
generators (NFGs), are often required. The computation of numeric func-
tions has been studied for more than 150 years [22], and various NFGs have
been proposed [2,4,14,17,18]. Many existing NFGs are based on polynomial
approximations.

For design and verification of arithmetic circuits such as adders and
multipliers, the arithmetic transform is often used due to its compact-
ness [1, 3, 15, 21, 23]. However, for the design of NFGs, it is rarely used.
Only two studies of NFGs using the arithmetic transform are known [16,20].
However, in both papers, the NFG design is for a specific numeric function.
That is, different architectures are required for different numeric functions.

Although such a dedicated NFG for a specific numeric function is fast,
many NFGs have to be designed for a wide range of numeric functions. Since
this consumes chip area and accounts for much of the design and production
costs, a programmable NFG, that can compute various numeric functions at
high-speed with a single architecture, is required, along with a systematic
design method. To satisfy this requirement, this paper proposes new archi-
tectures and a design method for programmable NFGs using the arithmetic
transform. In [16, 20], the arithmetic transform is applied to the whole of a
numeric function. However, this is unsuitable for the design of programmable
NFGs because it requires too many additions. To design an efficient NFG,
we partition the domain of a given numeric function into segments of equal
widths, and apply the arithmetic transform to the sub-function for each seg-
ment. From the arithmetic spectrum obtained by the transform, we derive an
arithmetic expression, and realize the arithmetic expression with memory and
an accumulator. By changing the memory data, we can realize a wide range
of numeric functions with a single architecture.

This paper is organized as follows: Section 2 introduces a numeric repre-
sentation of a real numeric function, and the arithmetic transform. Section 3
introduces conventional arithmetic expressions for numeric functions. Sec-
tion 4 presents piecewise arithmetic expressions, and architectures for NFGs
based on them. Experimental results are shown in Section 5. And, Section 6
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PIECEWISE ARITHMETIC EXPRESSIONS 3

presents techniques to reduce memory size and to improve the performance
of NFGs.

2 PRELIMINARIES

2.1 Number Representation
This subsection defines functions used in this paper and a number representa-
tion, and describes how to convert real functions into other types of functions.

Definition 1. Let B = {0, 1}, Z be the set of the integers, and R be the set of
the real numbers. An n-input m-output logic function is a mapping: Bn →
Bm, a (binary-input) integer-valued function is a mapping: Bn → Z, a real
function is a mapping: R → R, and a (binary-input) real-valued function
is a mapping: Bn → R.

Definition 2. A numeric function is a real function built from a combination
of constants, a variable, four arithmetic operations (+, -, *, /), power func-
tions, exponential functions, logarithmic functions, trigonometric functions,
and inverse trigonometric functions.

To represent real values, this paper uses the following:

Definition 3. A value X represented by the binary fixed-point representa-
tion is denoted by

X = (xh−1 xh−2 . . . x1 x0. x−1 x−2 . . . x−m)2,

where xi ∈ {0, 1} for h − 1 ≥ i ≥ −m, h is the number of bits for the integer
part, and m is the number of bits for the fractional part of X. We call

X =
h−1∑

i=−m

2i xi

an n-bit fixed-point representation in which n bits are used to represent the
value, where n = h + m. In this paper, an n-bit function f (X ) means that
the input variable X has n bits.

We can convert a real function in fixed-point representation to an n-input
m-output logic function. The logic function, in turn, can be converted into
an integer-valued function by considering binary vectors as integers. That is,

332i-MVLSC˙V2 3



4 SHINOBU NAGAYAMA et al.

(a) Table for sin(X). (b) Truth table for fb(X). (c) Table for fi (X). (d) Table for fr (X).

X sin(X) X = (0.x2x1x0)2 fb(X) x2x1x0 fi (X) x2x1x0 fr (X)

0.000 0.000 0.000 0.000 000 0 000 0.000
0.125 0.125 0.001 0.001 001 1 001 0.125
0.250 0.247 0.010 0.010 010 2 010 0.247
0.375 0.366 0.011 0.011 011 3 011 0.366
0.500 0.479 0.100 0.100 100 4 100 0.479
0.625 0.585 0.101 0.101 101 5 101 0.585
0.750 0.682 0.110 0.101 110 5 110 0.682
0.875 0.768 0.111 0.110 111 6 111 0.768

TABLE 1
Function table for 3-bit sin(X ).

we can convert a real function into an integer-valued function: Bn → Pm ,
where Pm = {0, 1, . . . , 2m − 1}, by using a fixed-point representation. And,
similarly, by using a fixed-point representation, we can obtain a real-valued
function: Bn → R.

For simplicity, the fixed-point representation of X is denoted by X =
(xn−1xn−2 . . . x0)2.

Example 1. Table 1 (a) shows values of sin(X ) for eight values of X. Using
a 3-bit fixed-point representation, this function is converted into the logic
function fb(X ) in Table 1 (b). By representing the output vectors as integers,
we have the integer-valued function fi (X ) in Table 1 (c). And, Table 1 (d)
shows a real-valued function.

2.2 Rounding Error and Numeric Function Generator

Definition 4. Error is the absolute difference between the exact value and an
approximated value. Rounding error is an error that is caused when a real
value is represented by the fixed-point representation with a finite number of
fractional bits. It is no greater than 2−(m+1) when m fractional bits are used
to represent a real value.

Definition 5. A numeric function generator or NFG is a logic circuit that
computes approximated values for a numeric function in the fixed-point rep-
resentation.

NFGs are usually designed so as to achieve 2−(m+1) or 2−m worst case
error, where m is the number of fractional bits in the output of NFGs.

332i-MVLSC˙V2 4



PIECEWISE ARITHMETIC EXPRESSIONS 5

2.3 Arithmetic Transform
This subsection introduces the arithmetic transform, the arithmetic spectrum,
and the arithmetic expression [19].

First, define a matrix operation.

Definition 6. Let A be an (n × n) square matrix, where

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎤
⎥⎥⎥⎦ .

Let B be an (n × n) square matrix. Then, the Kronecker product of A and
B is the (n2 × n2) matrix:

A ⊗ B =

⎡
⎢⎢⎢⎣

a11 B a12 B . . . a1n B
a21 B a22 B . . . a2n B

...
...

. . .
...

an1 B an2 B . . . ann B

⎤
⎥⎥⎥⎦ .

Definition 7. Given a matrix M, the transposed matrix Mt is obtained by
interchanging rows and columns of M. For a binary-input function f (X )
(i.e. integer-valued or real-valued function), the function-vector F is the
column vector of the function values F = [ f (00 . . . 0), f (00 . . . 01), . . . ,
f (11 . . . 1)]t .

We define the arithmetic transform and the arithmetic spectrum as follows:

Definition 8. The arithmetic transform matrix is

A(n) =
n⊗

i=1

A(1), where A(1) =
[

1 0
−1 1

]
,

such that addition and multiplication are done in integer arithmetic. For a
binary-input function f given by the function-vector F, the arithmetic spec-
trum A f = [a0, a1, . . . , a2n−1]t is

A f = A(n)F.

Each ai in the spectrum is called an arithmetic coefficient.

332i-MVLSC˙V2 5



6 SHINOBU NAGAYAMA et al.

Example 2. Consider the 1-bit adder function f (x1, x2) = x1 + x2. The
function-vector is F= [0, 1, 1, 2]t . The arithmetic spectrum is

A f = A(2)F =

⎡
⎢⎢⎢⎣

1 0 0 0

−1 1 0 0

−1 0 1 0

1 −1 −1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

0
1
1
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦ .

Similarly, we define the inverse arithmetic transform as follows:

Definition 9. Let A−1(n) be the inverse arithmetic transform matrix
defined by

A−1(n) =
n⊗

i=1

A−1(1), A−1(1) =
[

1 0
1 1

]
.

Definition 10. In a symbolic representation,

A−1(1) = [
1 xi

]
.

Therefore, the inverse arithmetic transform is defined as

f = XaA f , Xa =
n⊗

i=1

[
1 xi

]
.

Example 3. By the inverse arithmetic transform from the arithmetic spec-
trum obtained in Example 2, the function f is represented as follows:

f = XaA f = [
1 x2 x1 x1x2

]
⎡
⎢⎢⎢⎣

0

1

1

0

⎤
⎥⎥⎥⎦

= x1 + x2.

From Definitions 9 and 10, we can see that a binary-input function f (X )
can be represented by the arithmetic spectrum and the inverse arithmetic
transform. That is,

332i-MVLSC˙V2 6



PIECEWISE ARITHMETIC EXPRESSIONS 7

Lemma 1. Using A−1(1) and A(1), a binary-input function f is represented
as follows:

f = A−1(1)A(1)F = [
1 xi

] [
1 0

−1 1

] [
f0

f1

]

= [
1 xi

] [
f0

f1 − f0

]

= f0 + xi ( f1 − f0), (1)

where f0 = f (xi = 0), f1 = f (xi = 1). (1) is the arithmetic transform
expansion (also called A-expansion or moment decomposition [1]). By
applying the arithmetic expansion to f recursively, we obtain the arithmetic
expression for f :

a0 + a1x0 + a2x1 + a3x1x0 + . . . + a2n−1xn−1xn−2 . . . x0,

where coefficients ai of the arithmetic expression for f are the arithmetic
coefficients.

Example 4. The arithmetic spectrum of the function fi in Table 1(c) is
[0, 1, 2, 0, 4, 0,−1, 0]t , and thus, the arithmetic expression for fi is

x0 + 2x1 + 4x2 − x2x1.

The arithmetic spectrum of the function fr in Table 1(d) is [0.000, 0.125,

0.247,−0.006, 0.479, −0.019,−0.044, 0.026]t , and the arithmetic expres-
sion for fr is

0.125x0 + 0.247x1 − 0.006x1x0 + 0.479x2 − 0.019x2x0 − 0.044x2x1

+ 0.026x2x1x0.

3 ARITHMETIC EXPRESSIONS FOR NUMERIC FUNCTIONS

There are two ways to obtain arithmetic expressions from given numeric
functions. One way is to obtain them by applying the arithmetic trans-
form directly to real-valued functions of given functions. The arithmetic

332i-MVLSC˙V2 7



8 SHINOBU NAGAYAMA et al.

expressions produced by this way have real-valued arithmetic coefficients.
Thus, in this paper, we call them real-valued arithmetic expressions.

Another way is by applying the arithmetic transform to integer-valued
functions. Since this produces the arithmetic expressions with integer coeffi-
cients, we call them integer-valued arithmetic expressions.

3.1 Numeric Function Generators Based on Arithmetic Expressions
Integer-valued arithmetic expressions can be directly realized without any
rounding error using only AND gates and adders [16, 20]. Since rounding
error is caused only when a given numeric function is converted into an
integer-valued function, the error of an NFG based on the integer-valued
arithmetic expression is at most 2−(m+1), where m is the number of fractional
bits in the output of the NFG.

Similarly, real-valued arithmetic expressions can be realized using only
AND gates and adders. But, to realize real-valued arithmetic expressions,
all real-valued arithmetic coefficients have to be rounded to a finite number
of fractional bits. Let l be this number, and let n be the number of input
bits. Since the number of arithmetic coefficients is 2n , the worst case error
to realize a real-valued arithmetic expression is 2n × 2−(l+1) = 2−(l−n+1). In
addition, a resulting value of the expression is also rounded to m fractional
bits in the output of an NFG based on the real-valued arithmetic expression.
Since this rounding can cause at most 2−(m+1) error, the worst case error of the
NFG is 2−(m+1) + 2−(l−n+1). Thus, the NFG cannot achieve a 2−(m+1) worst
case error. To achieve a 2−m worst case error, l = m + n bits are required
for each arithmetic coefficient. That is, real-valued arithmetic expressions
require more bits to represent each arithmetic coefficient but achieve a larger
worst case error than integer-valued arithmetic expressions.

However, in either arithmetic expression, the size of the NFGs is strongly
dependent on the number of zero arithmetic coefficients. When many arith-
metic coefficients are zero, an arithmetic expression can be realized with a
compact circuit because the product terms with zero coefficients in the arith-
metic expression can be eliminated. Thus, in the next subsection, we consider
the number of zero arithmetic coefficients.

3.2 Number of Zero Arithmetic Coefficients
The number of zero arithmetic coefficients in an arithmetic expression
depends on the nonlinearity of the original numeric function. Since dif-
ferentiable numeric functions can be expanded into polynomial functions
using Maclaurin expansion, Taylor expansion, Chebyshev expansion, and so
on, we consider polynomial functions to investigate a correlation between
the number of zero arithmetic coefficients and the nonlinearity of numeric
functions.

332i-MVLSC˙V2 8



PIECEWISE ARITHMETIC EXPRESSIONS 9

For polynomial functions, the following lemma holds:

Lemma 2. [8] For an n-bit kth-degree polynomial function f (X ) = ck Xk +
ck−1 Xk−1 + . . . + c0, the number of nonzero arithmetic coefficients is at most

k∑
i=0

(
n

i

)
.

From this lemma, we can see that an upper bound on the number of
nonzero arithmetic coefficients increases with k when the number of bits n
is fixed, as shown in Figure 1(a). Also, as shown in Figure 1(b), in which
the solid line denotes the number of nonzero arithmetic coefficients and the
dashed line denotes the total number of arithmetic coefficients (i.e., 2n), the
number of zero coefficients increases with n when k is fixed. That is, when
k is sufficiently smaller than n, the number of zero coefficients becomes
larger.

Thus, a lower polynomial degree tends to produce more zero arithmetic
coefficients. In other words, numeric functions that are close to linear, as
shown in Figure 2(a), have more zero arithmetic coefficients. On the other
hand, highly nonlinear numeric functions as shown in Figure 2(b) have fewer
zero arithmetic coefficients.

Table 2 shows the number of arithmetic coefficients for various 16-bit
numeric functions. In this table, the column “Integer-valued” shows the num-
ber of arithmetic coefficients in an integer-valued arithmetic expression, and
the column “Real-valued” shows the number of arithmetic coefficients in
a real-valued arithmetic expression. For integer-valued arithmetic expres-
sions, values of numeric functions are rounded to 16 fractional bits, and they
can achieve 2−17 worst case error. On the other hand, for real-valued arith-
metic expressions, arithmetic coefficients are rounded to 32 fractional bits to
achieve 2−16 worst case error.

Table 2 shows that real-valued arithmetic expressions have more zero
coefficients than integer-valued arithmetic expressions. This is because real-
valued arithmetic expressions are obtained by the arithmetic transform using
values of original numeric functions, and thus, the nonlinearity of numeric
functions directly affects arithmetic coefficients. That is, for real-valued
expressions, the number of zero arithmetic coefficients increases significantly
when the original numeric functions are close to linear functions.

However, real-valued arithmetic expressions require longer bit length for
each arithmetic coefficient. This increases the number of distinct nonzero
arithmetic coefficients, since the probability that the same coefficients occur
becomes lower.

332i-MVLSC˙V2 9
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FIGURE 1
Number of nonzero coefficients for polynomial functions.

4 PIECEWISE ARITHMETIC EXPRESSIONS FOR NUMERIC
FUNCTIONS

This section introduces piecewise arithmetic expressions, and presents pro-
grammable architectures for NFGs based on them.

4.1 Piecewise Arithmetic Expressions
As described in the previous section, arithmetic expressions can be realized
with only AND gates and adders, and thus, they are realized with compact

332i-MVLSC˙V2 10
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FIGURE 2
Graphs of two numeric functions.

circuits when many arithmetic coefficients are zero. Since many stan-
dard numeric functions, such as trigonometric and square root functions,
have many zero arithmetic coefficients, we can design compact NFGs for
them [16, 20].

However, as shown in Table 2, highly nonlinear numeric functions, such
as

√− ln(X ) and −X ln(X ), have few zero coefficients. Even for numeric
functions close to linear functions, fixed-point representations with many
bits (i.e., high precision) necessarily yield arithmetic expressions with many
product terms. In both cases, the resulting NFGs are large and slow. In addi-
tion, a straightforward programmable implementation of the NFGs proposed
in [16, 20], as shown in Figure 3, needs too many adders (2n − 1 adders).

332i-MVLSC˙V2 11



12 SHINOBU NAGAYAMA et al.

Functions Integer-valued Real-valued

f (X) Zero Distinct Zero Distinct
√− ln(X ) 0 8,235 0 20,365
−X ln(X ) 2,436 746 1 13,538

2X 6,663 148 29,938 616
eX 8,985 172 28,118 823

ln(X + 1) 8,800 164 31,287 1,190
log2(X + 1) 6,991 157 31,195 1,278
1/(X + 1) 9,312 186 31,270 1,557√

X + 1 9,810 138 32,752 824
sin(X ) 20,012 140 34,718 636
tan(X ) 14,921 161 9,657 1,317

sin−1(X ) 16,112 180 15,293 2,171
tan−1(X ) 16,703 151 30,796 1,098

TABLE 2
Number of arithmetic coefficients for 16-bit numeric functions.

Zero: the number of zero coefficents.
Distinct: the number of distinct nonzero coefficients.
Domain of functions is 0 ≤ X < 1.

To reduce the number of product terms (adders), we transform sub-
functions into a set of the arithmetic spectra, instead of transforming the
whole domain of a function into the single arithmetic spectrum, and rep-
resent the function using a set of the arithmetic expressions. Then, we design
a programmable NFG using the set of the arithmetic expressions.

To produce a set of the arithmetic expressions, we partition the domain
of a given numeric function into uniform segments, and apply the arithmetic

a0 a 1 a 2 a 3 a4 a5 a6 a 7

registers

ANDx 0

ANDx 1

AND
x 0
x 1

ANDx 2

AND0
x 2

x

AND1
x 2

x
AND

1
x 2

x

x 3

+ + + +

+ +

+

f(X)
adder tree

product
terms

FIGURE 3
A 3-bit programmable NFG based on an arithmetic expression.
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PIECEWISE ARITHMETIC EXPRESSIONS 13

transform to the sub-function in each segment. Hence, we call the set of arith-
metic expressions a piecewise arithmetic expression. Note that, in the piece-
wise arithmetic expression, we partition the domain into segments using the
most significant bits (MSBs) of X . Thus, the MSBs are used to select a seg-
ment, and the remaining lower bits of X are used to compute an arithmetic
expression for the segment. Other ways exist to select a segment, but this way
is especially efficient.

Let k be the number of bits to compute an arithmetic expression for each
segment. Then, arithmetic coefficients in a real-valued arithmetic expression
for each segment are rounded to l = m + k fractional bits because the number
of arithmetic coefficients is 2k . Since k is smaller than the number of input
bits n, the piecewise real-valued arithmetic expression can achieve 2−m worst
case error with fewer bits for coefficients, compared to the single real-valued
arithmetic expression.

4.2 Number of Arithmetic Coefficients in Piecewise Arithmetic
Expressions

Table 3 shows the number of arithmetic coefficients in piecewise arithmetic
expressions for various 16-bit numeric functions. In this table, the column
“Integer-valued” shows the number of arithmetic coefficients in a piecewise
integer-valued arithmetic expression, and the column “Real-valued” shows

Functions Integer-valued Real-valued

f (X) Zero Distinct Zero Distinct
√− ln(X ) 25,318 866 39,835 3,073
−X ln(X ) 28,308 527 29,866 2,408
2X 30,012 445 19,593 2,256
eX 28,946 587 17,251 2,391
ln(X + 1) 28,622 402 36,212 2,164
log2(X + 1) 30,467 451 33,803 2,256
1/(X + 1) 27,834 401 33,331 2,023√

X + 1 28,220 323 34,535 1,791
sin(X ) 34,209 391 27,866 2,060
tan(X ) 32,139 548 4,153 2,297
sin−1(X ) 33,477 532 10,356 2,362
tan−1(X ) 33,073 401 28,638 2,127

TABLE 3
Number of arithmetic coefficients in piecewise arithmetic expressions for 16-bit numeric func-
tions.

Zero: the number of zero coefficents.
Distinct: the number of distinct nonzero coefficients.
Domain of functions is 0 ≤ X < 1.
The number of MSBs for uniform segmentation is 8.

332i-MVLSC˙V2 13



14 SHINOBU NAGAYAMA et al.

the number of arithmetic coefficients in a piecewise real-valued arithmetic
expression. For piecewise integer-valued arithmetic expressions, values of
numeric functions are rounded to 16 fractional bits. On the other hand,
for piecewise real-valued arithmetic expressions, arithmetic coefficients are
rounded to 24 fractional bits because 8 bits are used to compute an expression
for each segment.

From this table, we can see that using piecewise arithmetic expressions
increases the number of zero arithmetic coefficients significantly, even for
highly nonlinear functions. This is because in a segmented local domain,
numeric functions become close to linear functions. However, for exponen-
tial and trigonometric functions, the number of zero coefficients in piecewise
real-valued arithmetic expressions is smaller than that in single real-valued
arithmetic expressions.

For these functions, polynomial degrees obtained by a sufficiently accu-
rate polynomial expansion of the segmented numeric functions are not much
different than the polynomial degree obtained from the original whole func-
tion. Since a real-valued arithmetic expression represents even slight curves
of a numeric function in a local domain faithfully, the piecewise real-valued
arithmetic expressions for these functions equivalently represent polynomial
functions with the same degrees as the original functions but with fewer bits.
As shown in Figure 1(b), if the polynomial degree is not changed, the number
of zero coefficients tends to decrease with decreasing number of input bits.
Therefore, for piecewise real-valued arithmetic expressions, the number of
zero coefficients decreases since only the least significant bits (LSBs) of X
are used for the expression in each segment.

In this way, increasing the number of segments can increase the number
of zero coefficients, but too many segments result in fewer zero coefficients.
That is, there is an optimum number of segments (i.e., an optimum number
of MSBs) to produce the largest number of zero coefficients, depending on
the numeric function. Figure 4(a) shows the optimum numbers for piecewise
integer-valued arithmetic expressions of sin(X ) and

√− ln(X ), and for real-
valued expressions of

√− ln(X ) and tan(X ). For piecewise integer-valued
arithmetic expressions of sin(X ) and

√− ln(X ), 10 MSBs are optimum. For
real-valued expressions of

√− ln(X ) and tan(X ), 7 MSBs and 2 MSBs are
optimum, respectively.

Figure 4(b) shows the number of distinct nonzero coefficients in the four
piecewise arithmetic expressions. For piecewise integer-valued arithmetic
expressions of sin(X ) and

√− ln(X ), 2 MSBs and 8 MSBs are optimum to
produce the smallest number of distinct nonzero coefficients. For real-valued
expressions of

√− ln(X ) and tan(X ), 7 MSBs and 3 MSBs are optimum,
respectively.
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FIGURE 4
Relation between the number of coefficients in piecewise arithmetic expressions and the number
of MSBs.

4.3 Architectures for Programmable NFGs Based on Piecewise
Arithmetic Expressions

By realizing a set of the arithmetic spectra for a piecewise arithmetic expres-
sion with a memory (called arithmetic coefficients table), we obtain the NFG
in Figure 5. The MSBs of X select a segment (an arithmetic spectrum), and
then an arithmetic expression is computed using the LSBs of X . This NFG
requires 2k − 1 adders, where k is the number of the LSBs. Thus, it is more
compact and faster than an NFG based on the single arithmetic expression in
Figure 3, in which 2n − 1 adders are required.

332i-MVLSC˙V2 15
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arithmetic coefficients table
(set of the arithmetic spectra)

f(X)

adder tree

product terms

X
MSBs

LSBs

arithmetic spectrum

FIGURE 5
Programmable NFG based on the piecewise arithmetic expression.

Unfortunately, the number of adders is still large, and this design is inef-
ficient. Since the arithmetic spectra usually have many zero coefficients as
shown in Table 3, the arithmetic coefficients table is sparse, and many unnec-
essary additions are performed. To perform only necessary additions, and
to reduce the number of adders, we propose the architecture shown in Fig-
ure 6. Note that, for readability of the figures, the reset and enable signals for
registers and the done signal (to denote completion of the computation) are
omitted.

In this architecture, only the nonzero arithmetic coefficients are stored
in a table for each segment. By reading out each coefficient sequentially, it

nonzero arithmetic
coefficients table

(sequenced
arithmetic spectra)

f(X)

generalized product term

X
MSBs

LSBs

arithmetic coefficient

don’t care
bits table

ai

bit pattern

+

address counter

register

MUXMUX

(a) Overall architecture

11 ... 1

don’t care
bit pattern LSBs of Xai

bitwise OR

==AND

(b) Generalized product term

FIGURE 6
Programmable NFG based on a sequential computation.
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+

address counter
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pointers table

X
MSBs

LSBs

MUX

MUX

FIGURE 7
Improved architecture for programmable NFG.

computes the arithmetic expression using an accumulator. Each product term
is computed with the circuit in Figure 6(b) using a don’t care bit pattern. In
the don’t care bit pattern, bits corresponding to input variables that do not
appear in a product term are set to 1. For example, for a 5-bit function, the bit
pattern for the product term x3x0 is 10110. In this architecture, the evaluation
time of an arithmetic expression is proportional to the number of nonzero
arithmetic coefficients. Thus, a numeric function that has many zero arith-
metic coefficients can be computed at high speed.

To further reduce the number of arithmetic coefficients to be stored in a
table, we omit repeated coefficients in a table. Figure 7 shows an improved
architecture. By using pointers to the distinct arithmetic coefficients instead
of directly storing the coefficients, we can significantly reduce the bit width
of the table if the number of distinct coefficients is small.

The proposed architectures can realize both integer-valued and real-valued
arithmetic expressions. However, real-valued arithmetic expressions require
longer bit length for each coefficient and larger number of distinct nonzero
coefficients, and thus, they are unsuitable for hardware implementation.
Therefore, in the following, we focus only on integer-valued arithmetic
expressions. And, the proposed architectures use a fixed number of MSBs to
select a segment. As shown in the previous subsection, there is an optimum
number of MSBs to minimize the number of distinct nonzero arithmetic coef-
ficients, depending on numeric functions. However, we have to consider not
only the number of arithmetic coefficients but also the size of the multiplex-
ers with the number of additions for the proposed architectures. Therefore, in
this paper, we use about one-half of the input bits for uniform segmentation
to balance the size of the multiplexers with the number of additions.
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Functions No. of stored coefficients Size of coefficients table Total size of tables No. of additions

f (X) NFG1 NFG2 NFG3 NFG1 NFG2 NFG3 NFG1 NFG2 NFG3 NFG1 NFG2,3
(all) (nonzero) (distinct) (bits) (bits) (bits) (bits) (bits) (bits) (average)

√− ln(X ) 65,536 40,218 866 1,179,648 723,924 15,588 1,179,648 1,085,886 779,730 255 157.1
−X ln(X ) 65,536 37,228 527 983,040 558,420 7,905 983,040 893,472 715,237 255 145.4

2X 65,536 35,524 445 1,114,112 603,908 7,565 1,114,112 923,624 646,997 255 138.8
eX 65,536 36,590 587 1,179,648 658,620 10,566 1,179,648 987,930 705,776 255 142.9

ln(X + 1) 65,536 36,914 402 1,048,576 590,624 6,432 1,048,576 922,850 670,884 255 144.2
log2(X + 1) 65,536 35,069 451 1,048,576 561,104 7,216 1,048,576 876,725 638,458 255 137.0
1/(X + 1) 65,536 37,702 401 1,114,112 640,934 6,817 1,114,112 980,252 685,453 255 147.3√

X + 1 65,536 37,316 323 1,114,112 634,372 5,491 1,114,112 970,216 677,179 255 145.8
sin(X ) 65,536 31,327 391 1,048,576 501,232 6,256 1,048,576 783,175 570,142 255 122.4
tan(X ) 65,536 33,397 548 1,114,112 567,749 9,316 1,114,112 868,322 643,859 255 130.5

sin−1(X ) 65,536 32,059 532 1,114,112 545,003 9,044 1,114,112 833,534 618,165 255 125.2
tan−1(X ) 65,536 32,463 401 1,048,576 519,408 6,416 1,048,576 811,575 590,750 255 126.8

TABLE 4
Table sizes and the number of additions for 16-bit NFGs.

NFG1: the NFG shown in Figure 5. NFG2: the NFG shown in Figure 6. NFG3: the NFG shown in Figure 7.
No. of additions: the number of additions needed to compute each arithmetic expression.
The number of MSBs for uniform segmentation is 8. The domain of all functions is 0 ≤ X < 1.

5 EXPERIMENTAL RESULTS

To show the efficiency of the proposed NFGs, we compare the table sizes
and the numbers of additions for the three proposed NFGs. Table 4 shows
the experimental results. In this table, the column “No. of additions” denotes
the number of additions needed to compute an arithmetic expression for each
segment. Since, in the NFGs in Figures 6 and 7, the numbers of product
terms in arithmetic expressions for different segments are different, the aver-
age number of additions for each expression is shown.

Since the programmable NFG based on the single arithmetic expression
in Figure 3 requires 216 = 65, 536 registers and 216 − 1 = 65, 535 adders,
the proposed NFGs, based on the piecewise arithmetic expressions, require
several orders of magnitude fewer adders, and much less storage size. As
shown in Table 4, for many numeric functions, the number of nonzero arith-
metic coefficients and the number of distinct arithmetic coefficients are small.
Thus, by storing only these, we significantly reduce size of the arithmetic
coefficients tables, resulting in a reduction of total size of tables.

6 IMPROVEMENT TECHNIQUES FOR NFGS

6.1 Piecewise Polynomial Approximation
By using a polynomial approximation, we can reduce the number of nonzero
arithmetic coefficients, and thus, the table size and the number of additions
can be further reduced. This is based on Lemma 2.
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We approximate a given numeric function using a piecewise polynomial
within a desired error, and then transform the polynomial into an arithmetic
expression in each segment. The piecewise arithmetic expression obtained in
this way is realized with a compact NFG.

Example 5. Consider a piecewise quadratic polynomial approximation of
a 16-bit numeric function using 256 uniform segments. Then, a polynomial
in each segment has 8 bits. Thus, the total number of nonzero arithmetic
coefficients is at most

256 ×
2∑

i=0

(
8

i

)
= 256 × 37 = 9, 472,

and the number of additions is only 36.

In this way, by using piecewise polynomial approximation, more compact
and faster programmable NFGs based on the piecewise arithmetic expression
can be produced.

6.2 Parallel Computation
The proposed NFGs based on a sequential computation in Figures 6 and 7
produce an arithmetic coefficient one by one, and compute each product term
of an arithmetic expression sequentially using only one adder. Thus, they
require O(N ) computation time, where N is the number of product terms.
As shown in Table 4, they require about 120 to 160 additions on average,
to compute a numeric function value, even though many product terms are
reduced by zero coefficients.

On the other hand, the NFG in Figure 5 produces all arithmetic coefficients
simultaneously, and adds all product terms of an arithmetic expression at
once using an adder tree. Thus, it requires O(log N ) computation time. In
Table 4, it computes a function value in delay time for an 8-level adder tree
with 255 adders. Therefore, the NFG in Figure 5 is faster but requires many
more adders than the proposed NFGs. Note that the adders have different
sizes. However, in an FPGA or ASIC, this is not a problem because different
size adders can be easily accommodated.

These two designs are extreme cases. By changing the number of product
terms to be computed in parallel, we can explore the design space taking into
account a trade-off between the number of adders and the computation time,
and can produce an optimum NFG depending on applications.
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7 CONCLUSION AND COMMENTS

This paper proposes a new representation of numeric functions using a piece-
wise arithmetic expression and new architectures for programmable NFGs
based on the piecewise arithmetic expression. By using a piecewise arith-
metic expression, we can increase the number of zero arithmetic coefficients
significantly, and design a more compact NFG. Experimental results show
that the size of the arithmetic coefficients table in an NFG can be reduced to
only a few percent of the table size needed to store all the arithmetic coeffi-
cients. By using the proposed NFGs, we can realize a wide range of numeric
functions with a single architecture, and we can switch the functions by only
changing the contents of tables.

The proposed design method for the NFGs can explore the design space
taking into account a trade-off between the number of adders and the com-
putation time by changing the number of product terms to be computed in
parallel. To easily find an optimum NFG for each application, we will define
a figure of merit (FoM) for NFGs in our future work.
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