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Exact Solution of the Markov Propagator for the Voter Model on the Complete Graph

William Pickering and Chjan Lim
Rensselaer Polytechnic Institute

(Dated: July 1, 2014)

The voter model is a simple and well studied model in network science in which nodes in a graph
have one of two states. We assume throughout the discussion that every node is connected to all
other nodes. By restricting the network topology in such a way, we are able to find a very detailed
solution of the model. A single step propagator, as well as the solution to its spectral problem,
will both be derived exactly by means of generating function techniques. The eigenvalue problem
will then be cast in the thermodynamic limit as the number of nodes, N , becomes infinite, and
it is found that the eigenvectors will approach polynomials. Also, using the exact solution to the
spectral problem, we can find the time m probability distribution. We then use this to find two
quantities. This first is the expected time until the system reaches total agreement and the second
is the expected frequency that each macrostate is achieved before consensus is attained. Other
quantities of interest will follow in closed form given the solutions provided here.

I. INTRODUCTION

Quantitative insight into social opinion dynamics can
be found from a modeling perspective. One of the most
well studied of which is the voter model [1, 2]. This
model has been solved analytically for several quantities
[3–7]. It also has applications in many areas of physi-
cal science, such as particle interactions and kinetics of
catalytic reactions [6]. Social opinion dynamics is a typ-
ical view of this particle interaction model, where there
are two opposing opinions in a political discussion. The
fundamental social assumption about the model is that
individuals are strongly influenced by the beliefs of their
neighbors. Another interpretation of the voter model is
that species compete for territories, where a change in
state corresponds to and invasion [2, 8]. Extensions and
generalizations of this model also have been studied in
detail [9–14].
A specific and direct application of the voter model is

to population genetics. In the context of a binary coded
genetic algorithm, the voter model on a complete graph
can be interpreted as the crossover operator of bit strings
over a single bit. This is the exchange of bits once two
parent strings have been selected [15]. The voter model
is an instance of the genetic algorithm that examines the
case where selection is uniform (constant fitness), only
one child string is generated per crossover, and there are
no mutations. A biased voter model, which introduces
a fitness value for each state, also has been studied [9].
The genetic algorithm, with or without mutations, is a
subject of interest from an analytical perspective [15–17].
The work presented here will provide some additional
analytical insight into unbiased genetic drift.
Many mathematical models for opinion dynamics can

be viewed as discrete time Markov chains. It is known
that the eigenvalues and eigenvectors of the transition
matrix of the Markov chain have a vital role in the dy-
namics of the model. In general, the second largest eigen-
value is related to an approximate rate of convergence to
equilibrium [18]. For the voter model, this is when all
nodes have the same state. All dynamics of the model

halt entirely once this network state is attained. On a
connected graph, the expected time to attain this unan-
imous state can be bounded in terms of the spectral gap
of the transition matrix [19]. If one had access to the
complete spectral decomposition of the transition matrix,
then any future probability distribution can be computed
in closed form. In this paper, we offer a method for find-
ing the closed form solution of the spectral problem that
yields such a decomposition for an instance of the voter
model.

The voter model can be cast as an urn problem simi-
lar to the Ehrenfest model [20]. In this model, there are
two urns with N balls divided amongst them. In a single
time step, one ball is chosen at random and is transferred
to the other urn. This process is repeated ad infinitum.
The voter model on the complete graph has a similar in-
terpretation. Here, two balls are selected, one after the
other. After selection, both of the balls are placed in the
urn from which the second ball came. When cast as an
urn problem, the network topology is identical to a com-
plete graph. A closed form diagonalization of the Markov
transition matrix for the Ehrenfest model was found by
Mark Kac in 1947 using similar techniques we will utilize
here [21]. We will propose a generalization of those tech-
niques which allows us to solve the spectral problem for
the voter model. This particular solution of the model
will give exact analytical expressions for several quan-
tities of interest. The two specific applications of the
solution to the spectral problem that we will provide are
the expected time to consensus, and the expected time
each macrostate is visited before reaching consensus.

An outline of the paper is as follows. Section II will de-
scribe more of the details of the model and the associated
random walk. In section III, we shall derive a straightfor-
ward procedure to exactly solve the eigenvalue problem
of the Markov transition matrix for the macrostates of
the system. With such a solution, one can compute the
probability distribution at any future time in closed form.
In section IV, we use this solution to find two quantities:
the expected time before reaching consensus and the ex-
pected time spent at each macrostate. These expressions
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are functions of the initial probability distribution, which
is kept arbitrary. Although an asymptotic treatment of
consensus times is known [9, 22], we will improve upon
those results significantly by providing an exact value for
the expected time to consensus for any initial probability
distribution.

II. THE 2-STATE VOTER MODEL

Although the model that we consider is imposed upon
a complete graph of N nodes, more general graphs are
studied as well [3, 9, 23, 24]. Each node is assigned one
of two states, A or B. In a single time step, a node
is chosen randomly and will assume the state of one of
its neighbors, also chosen randomly [2]. Note that in
this procedure, it is possible that the network state may
remain unchanged for several time steps.
Let nA(m) and nB(m) represent the total number of

agents taking opinion A and B respectively at time m.
Since the total number of nodes must be conserved and
all nodes must take one of these two opinions, it is nec-
essary that nA(m) +nB(m) = N . Since N is a constant,
this will allow us to simplify the model to a random walk
in a single variable, say nA.
Now let us formalize the problem as a random walk in

nA. We can write it as

nA(m+ 1) = nA(m) + ∆nA(m). (1)

For a given time step m, nA is considered to be a known
constant, and the random behavior is exhibited in ∆nA.
Since only a single node is updated per time step, ∆nA

only takes values from {−1, 0, 1}. Let pj = j(N−j)
N(N−1) .

Then, from the definition of the model, the probabilities
of taking these values are:

Pr(∆nA(m) = 1|nA(m) = j) = pj (2)

Pr(∆nA(m) = −1|nA(m) = j) = pj (3)

Pr(∆nA(m) = 0|nA(m) = j) = 1− 2pj (4)

Thus, the random walk is determined given an initial
condition nA(0) = n.

A. Markov Propagator By Generating Functions

In this section, we will outline a general procedure that
provides a recurrence relation for the probability distri-
bution of general random walks. The strategy is to con-
struct a sequence of generating functions for the proba-
bility distribution of the random walk. This process can
also be applied to other models, incomplete graphs, or
to multiple dimensions. An advantage of this approach
is that it is highly generalizable in these ways and only

requires minor modification to do so. The procedure can
be applied to find the probability distribution of either
the microstates or the macrostates of the model. Here,
the macrostate approach will be utilized since the model
is imposed on a complete graph.
To begin, represent the probability distribution in

generating function form. Let a
(m)
j = Pr(nA(m) =

j). We introduce a sequence of generating functions

R(m)(x) =
∑

j a
(m)
j xj and seek to find a relationship be-

tween R(m+1)(x) and R(m)(x). From the random walk
form of the model, the probability generating function for
∆nA is Dj(x) = pjx + (1 − 2pj) + pjx

−1. We will make
use of the following properties of generating functions in
the derivations to follow:
Product rule: If X and Y are integer random variables

with probability generating functions F (x) and G(x) re-
spectively, then the generating function of X + Y is
F (x)G(x).
Sum rule: If the probability space is partitioned into

N events, each with generating function Fj(x), then the

generating function for the entire space is
∑N

j=1 Fj(x)

[25–27].
For time step m, suppose that nA(m) = j. Note that

a
(m)
j xj is the corresponding generating function for this

event. Now, utilize the product rule in equation (1) to
deduce that the probability generating function for time

m + 1 is a
(m)
j xjDj(x) in the event that nA(m) = j. By

the sum rule, we have that

R(m+1)(x) =
N
∑

j=0

a
(m)
j xjDj(x). (5)

This is the generating function form of the Markov prop-
agator of the random walk. This can be easily generalized
to other models simply by specifying the appropriate ex-
pression for Dj(x) in equation (5). For the given network
topology, the sum is simple enough to collect terms and
obtain an explicit equation:

a
(m+1)
j = pj−1a

(m)
j−1 + (1− 2pj)a

(m)
j + pj+1a

(m)
j+1. (6)

While the procedure to find a relationship between
R(m+1) and R(m) can be highly generalizable, we pose
a new power series that will be utilized directly to
solve the formulation in equation (6). Let Q(m)(x, y) =
∑

j a
(m)
j xjyN−j. Some properties of generating functions

of this type are listed below:

1. Multiply Q(m) by x/y to shift a
(m)
j → a

(m)
j−1.

2. Multiply Q(m) by y/x to shift a
(m)
j → a

(m)
j+1.

3. The generating function for pja
(m)
j is xy

N(N−1)Q
(m)
xy .

Using these properties, we rewrite equation (6) as

(x− y)2Q(m)
xy = N(N − 1)∆+mQ(m). (7)
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Here, ∆+m is the forward difference operator in the dis-
crete variable m. The goal of the subsequent section is to
solve this equation explicitly for m to find the probability
distribution for arbitrary time steps. To do so, we turn
to the spectral problem.

III. THE SPECTRAL PROBLEM

It is clear from equation (6) that the future prob-
ability distribution can be expressed as a tridiagonal
transition matrix multiplied by the probability vector

a
(m) = [a

(m)
j ]Nj=1. Solving the spectral problem provides

a basis for the initial distribution, which allows future
time steps to be computed in closed form. We find the
solution to this problem here.

A. Matrix Eigenvalue Problem

For eigenvalue λ with eigenvector v = [cj ]
N
j=0, we have

that the spectral problem for the propagator can be writ-
ten as

pj−1cj−1 + (1− 2pj)cj + pj+1cj+1 = λcj . (8)

The solution to the problem begins by defining a multi-
variate generating function for cj as

G(x, y) =
∑

j

cjx
jyN−j. (9)

We seek a differential equation for the eigenvalue prob-
lem. This procedure is similar to Kac’s solution of the
Ehrenfest model [21]. Here, however, we will obtain a
PDE instead of an ODE. Using the formulation in sec-
tion II gives the following partial differential equation for
G:

(x− y)2Gxy = N(N − 1)(λ− 1)G. (10)

Note that this equation has no boundary or initial condi-
tions. To find the appropriate solutions to this equation,
we assume that it must take the form specified in equa-
tion (9), not all coefficients cj = 0, and that cj = 0 for
j < 0 and j > N .
To solve this, use the change of variables u = x−y and

H(u, y) = G(x, y) to transform the partial differential
equation into

u2(Huy −Huu) = N(N − 1)(λ− 1)H. (11)

Since this is a linear change of variables, we still expect
solutions to be of the form H(u, y) =

∑

j bju
jyN−j. Sub-

stituting this into the new partial differential equation for
H and collecting like terms will give the difference equa-
tion for bj:

(j − 1)(N − j +1)bj−1 = (j(j − 1)+N(N − 1)(λ− 1))bj.
(12)

Recall that we had required cj = 0 for j < 0 and j > N .
This is also true for bj since we applied a linear transfor-
mation. Therefore, this difference equation would sug-
gest that every bj = 0 unless it has singular behavior
for some value of j ∈ {0...N}, say when j = k. At this
singular point, set the coefficient of bk to 0. This allows
the value of bk to be non-zero, and thus not all bj = 0.
Therefore, the set of eigenvalues is determined to be

λk = 1−
k(k − 1)

N(N − 1)
, k = 0...N. (13)

Now we can find the eigenvectors. Since the equation
for bj has singular behavior at bk, the value at this point
is arbitrary. This is expected, since any multiple of an
eigenvector remains an eigenvector. Without any loss,
let bk = 1. Now we can ascertain the explicit solution for
bj when k < j:

bj =

j
∏

i=k+1

(i− 1)(N − i+ 1)

N(N − 1)(λk − 1) + i(i− 1)
. (14)

When j < k, we have bj = 0. Thus all values of bj are
determined for a given eigenvalue λk. Note that in (14),
the requirement that bj = 0 is satisfied when j > N .
Now, we use bj to find the components of the eigen-

vector, cj . To do this, express H(u, y) in the original x, y
variables:

G(x, y) = H(u, y) (15)

=
∑

i

bi(x− y)iyN−i (16)

=

N
∑

i=0

i
∑

j=0

(−1)i−jbi

(

i

j

)

xjyN−j (17)

=
N
∑

j=0

N
∑

i=j

(−1)i−jbi

(

i

j

)

xjyN−j. (18)

Therefore cj =
∑N

i=j(−1)i−jbi
(

i
j

)

, and thus the spectral

problem is solved in closed form.

B. Differential Eigenvalue Problem

In this section, we will examine the eigenvectors in
more detail. In particular, we wish to consider the ther-
modynamic limit of the model as N → ∞ and study the
behavior of the eigenvectors. To do this, note that the
spectral problem can be posed as:

∆2
j (pjcj) = (λk − 1)cj (19)

Where ∆2
j is the second centered difference operator. Let

xj = j/N , ∆x = 1/N and u(xj) = cj . Then,

∆2
j(pju(xj))

∆x2
= N2(λk − 1)u(xj). (20)
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FIG. 1. 7th Eigenvector of the discrete problem plotted with
the exact solution for the limit as N → ∞. The hypergeo-
metric function in the figure is a fifth degree polynomial.

Thus, take N → ∞ to obtain the differential equation
for the eigenfunctions of the continuous propagator:

d2

dx2
[x(1 − x)u(x)] = −k(k − 1)u(x). (21)

Expanding all derivatives yields

x(1 − x)
d2u

dx2
+ (2− 4x)

du

dx
+ (k(k − 1)− 2)u = 0, (22)

which is valid on 0 < x < 1. This is a form of the hy-
pergeometric differential equation, and as such, the basis
for the solutions are

uk(x) = 2F1(k + 1, 2− k, 2, x) (23)

for k = 0, 1, 2... This is a special case of the hypergeo-
metric function in which the series expression terminates
for each k [28]. This implies that the kth eigenvector of
the voter model approaches a polynomial of degree k− 2
as N → ∞. When k = 0 and k = 1, the solution is
u(x) = 0. This differential equation does not describe
the behavior of the eigenvectors at the boundary, which
explains why the first two eigenfunctions are trivial. In
figure 1, the seventh eigenvector for the discrete model
when N = 100 has very close agreement with the contin-
uous solution posed in (23).

IV. APPLICATIONS OF THE SPECTRAL
SOLUTION

The solution of the spectral problem yields exact ex-
pressions for the probability distribution at any future
time step. With such a strong result, quantities that de-
pend on macrostate probabilities naturally follow from it.
In this section, we will apply the solution of the spectral
problem to find two quantities. The first is the expected
time for the system to reach consensus and the second is
the expected time spent at each macrostate before con-
sensus. Both quantities are considered functions of the
initial distribution of macrostates.

A. Consensus Time

A topic of particular importance with social models
such as this is the expected time until all agents in
the network have the same state. Once such a state is
achieved, the dynamics halt entirely. In this section, we
will provide an exact expression for the consensus time.
This calculation depends on the initial distribution of
the model, however an estimate that is independent of
initial data can also be determined. We know that if
qm is the probability of reaching consensus at step m,
then the consensus time is

∑

∞

m=1 qmm. We can de-
termine qm from the boundary conditions of the tran-
sition equation. The probability of reaching consensus
at time step m + 1 is the probability that the model is
in consensus at time m+ 1 minus the probability it was
already in consensus at time m. Symbolically, this is

qm+1 = a
(m+1)
0 + a

(m+1)
N − a

(m)
0 − a

(m)
N . Now from the

boundary conditions, we have that

a
(m+1)
0,N − a

(m)
0,N =

1

N
a
(m)
1,N−1. (24)

Thus qm = (a
(m−1)
1 + a

(m−1)
N−1 )/N . If a

(m) takes com-

ponents a
(m)
j , and letting vk be the kth eigenvector,

then we can express any such distribution as a
(m) =

∑N
k=0 dkλ

m
k vk. Here, dk is the initial probability dis-

tribution expressed in the eigenbasis. We only need com-
ponents 2 and N − 1 from to find the consensus time, so
we let sk = dk[vk]2 + [vk]N−1 and write

a
(m)
1 + a

(m)
N−1 =

N
∑

k=2

skλ
m−1
k . (25)

We exclude the k = 0 and k = 1 terms since a
(m)
1 and

a
(m)
N−1 are independent of those eigenvectors. Letting V

be the matrix of eigenvectors, we will write the expected
time to consensus as
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E[T |a(0) = Vd] =

∞
∑

m=1

1

N

N
∑

k=2

skλ
m−1
k m (26)

=

N
∑

k=2

1

N
sk

1

(1− λk)2
(27)

= N(N − 1)2
N
∑

k=2

sk
(k(k − 1))2

. (28)

This is an exact formula given the initial distribution.
Now let us estimate this quantity to ascertain asymptotic
information of consensus times. To do this, we need to
find a restriction on sk. Consider the limit of the system
as m → ∞. Since the system will always reach consensus

in finite time, we have that a
(∞)
0 + a

(∞)
N = 1. Let us now

estimate the right hand side of (25) by using the largest
available eigenvalue, λ2, to obtain that for some s,

a
(m)
1 + a

(m)
N−1 ≤ sλm−1

2 . (29)

If we sum both boundaries in (24) over all m, the left
hand side is telescopic. If we assume that the initial
probability of consensus is not O(1), then adding the two
boundaries together gives that

(

N − 1

2

)

s = O(1) (30)

s = O(1/N) (31)

With this, we obtain the asymptotic behavior of the
expected time to consensus as

E[T |a(0) = Vd] ≤ O

(

1

N2

) ∞
∑

m=1

λm−1
2 m (32)

= O

(

1

N2

)

1

(1 − λ2)2
(33)

= O(N2) (34)

Thus, as a uniform estimate for general initial prob-
ability distributions of the model, the asymptotic be-
havior of the expected time to consensus is quadratic,
which is consistent with previous results [9, 22, 23].
Using continuous time methods, the expected time to
reach consensus given a opinion density ρ is E[T ] =

N2
[

(1− ρ) ln 1
1−ρ + ρ ln 1

ρ

]

[9]. The exact solution and

the bound we found here are improvements upon this re-
sult since they are valid for small values ofN and general-
ize the theory to general initial probability distributions.

B. Macrostate Times

We define macrostate times as the expected frequency
of each state of the random walk prior to consensus. Un-
like the consensus time, macrostate times will be orga-
nized as a vector whose components correspond to each

state. The consensus states are not included because
they have an infinite macrostate time. For non-consensus
states, we expect macrostate times to be finite since
the consensus time is also finite. Macrostate times are
stronger quantities than the consensus time since the sum
of all macrostate times is identical to the consensus time.

1. Discrete Time Solution

Since the solution of the spectral problem is known,
computing macrostate times becomes straightforward.
Let Mj(m) be the total number of visitations of
macrostate j by time m and let ∆Mj(m) = Mj(m) −
Mj(m−1). Note that Mj(m) depends on the outcome of

the random walk for nA. Since a
(m)
j is the defined as the

probability that nA(m) = j, we have that ∆Mj(m) takes

value 1 with probability a
(m)
j . Otherwise, it takes value

0. Thus, for j = 1...N − 1, we can write the macrostate
time as

E[Mj ] =

∞
∑

m=0

E[∆Mj(m)] =

∞
∑

m=0

a
(m)
j . (35)

We can use the solution to the spectral problem to
compute this infinite series exactly. Let M be a vector
whose components are E[Mj ]. Also, letting dk be the
initial distribution of the macrostates expressed in the
eigenbasis, we have that the time m probability distri-

bution is a
(m) =

∑N
k=0 dkλ

m
k vk. The k = 0 and k = 1

terms in the sum are the contributions of the consensus
states to the probability distribution. Since consensus is
a frozen state, the probability distribution for the rele-
vant macrostates are independent of the first two terms
in this sum. The macrostate times can be found once
these terms are discarded:

E[M] =
∞
∑

m=0

N
∑

k=2

dkvkλ
m
k (36)

= N(N − 1)

N
∑

k=2

dk
k(k − 1)

vk (37)

The first and last components of this vector are irrel-
evant since it is understood that M0 = MN = ∞. The
remaining components of M are the exact values for the
macrostate times.
We perform Monte Carlo simulation to reinforce this

result. Three cases of the initial distribution are consid-
ered: a

(0)
j = δj,N/2, a

(0)
j = δj,N/4, and a

(0)
j = 1

N+1 ∀j =
0...N . Figure 2 shows that there is good agreement be-
tween the exact solutions and the results from the simu-
lations. A particularly interesting case is when the initial
distribution is uniform. This distribution happens to be
the eigenvector corresponding to the second largest eigen-
value of the transition matrix. So, in equation (37), we
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FIG. 2. Three cases of the initial distribution are examined.
The exact expression for the macrostate time in equation (37)
is compared with averaged results from a Monte Carlo simu-
lation over 3000 runs of the voter model when N = 100.

know that d2 = 1
N+1 and dk = 0 otherwise. Therefore,

the time spent at each macrostate is also uniform with

value N(N−1)
2(N+1) ∼ N

2 .

2. Continuous Time Solution

Here, we will find the expected time spent per
macrostate as N → ∞ using continuous time methods.
While the discrete solution is valid for every N , the con-
tinuous time solution will provide some additional insight
into its behavior for large N . Let ρj = j/N , tm = m/N ,

and u(ρj , tm) = Na
(m)
j . Using this, the Fokker-Plank

equation for the model is

∂u

∂t
=

1

N

∂2

∂ρ2
[ρ(1 − ρ)u(ρ, t)]. (38)

Furthermore, let M(ρ) be the expected time spent at
density ρ prior to consensus. As N → ∞, we have that

M(ρ) =

∞
∑

m=0

a
(m)
j →

∫

∞

0

u(ρ, t)dt. (39)

Now, integrate equation (38) from t = 0 to t = ∞ to
obtain

u(ρ,∞)− u(ρ, 0) =
1

N

∂2

∂ρ2
[ρ(1− ρ)M(ρ)]. (40)

Since the system reaches consensus in finite time, we have
that u(ρ,∞) = 0. Let f(ρ) = u(ρ, 0) and T (ρ) = ρ(1 −
ρ)M(ρ)/N . Then, the problem becomes

−f(ρ) =
∂2T

∂ρ2
(41)

with boundary conditions T (0) = T (1) = 0. The solution
of this problem is found by determining the Green’s func-
tion of the differential operator [29]. For this problem,
the Green’s function is given by

g̃(ρ, ξ) =

{

ρ(1 − ξ) ρ < ξ
ξ(1 − ρ) ρ > ξ

. (42)

With this solution, we have that

T (ρ) =

∫ 1

0

f(ξ)g̃(ρ, ξ)dξ. (43)

Therefore, the expression for macrostate time for large
N is

M(ρ) ∼ N

∫ 1

0

f(ξ)g(ρ, ξ)dξ. (44)
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where

g(ρ, ξ) =

{

1−ξ
1−ρ ρ < ξ
ξ
ρ ρ > ξ

. (45)

The Green’s function, g(ρ, ξ), is the solution to
macrostate times when the initial density is specified as a
given value ξ. Furthermore, when the initial probability
distribution is uniform, the solution is also uniform with
value M(ρ) = N/2 as we have observed with the discrete
formulation.

V. THE COMPLETE BIPARTITE GRAPH

The methods we have developed for the complete graph
can be extended to more complex networks. In particu-
lar, we will consider the complete bipartite graph. In this
case, nodes in the network are divided into two groups.
Every node in a group is connected to every node in the
other group. The complete bipartite graph can also be
defined as the complement of two complete graphs. Let
N1 be the number of nodes in the first group and N2 be
the total number of nodes in the second group. Also, let

n
(1)
A (m) and n

(2)
A (m) be the number of nodes with opinion

A in groups 1 and 2 respectively.

Letting a
(m)
ij = Pr(n

(1)
A (m) = i, n

(2)
A (m) =

j), and defining a power series Q(m)(x, y, u, v) =
∑

i,j a
(m)
ij xi, yN1−iujvN2−j , we can use the procedure laid

out in section II to find the single step propagator for the
model:

[

u(x− y)

NN2
−

y(u− v)

NN1

]

Q(m)
yu

+

[

−v(x− y)

NN2
+

x(u− v)

NN1

]

Q(m)
xv = ∆+mQ(m). (46)

Unlike for the complete graph, the exact solution to
the spectral problem for this equation will not be found
with these methods. However, we can apply some as-
sumptions to the system that can reduce this to obtain
an approximation of the size of the spectrum. In partic-
ular, we wish to find the approximate size of the spectral
gap, since this governs the expected time to consensus.
More detailed solutions such as the expected time spent
per macrostate will not be found.
If we take the single step propagator to continuous

time, it is known that the system approaches equilibrium

when n
(1)
A /N1 ∼ n

(2)
A /N2 [9]. Furthermore, the time to

reach this equilibrium state is negligible compared to the
time to reach consensus. Along this line, diffusion gov-
erns the motion of the macrostate of the system instead
of drift. The study of the behavior of the probability dis-
tribution is most valuable when drift can be neglected.
As such, we will make this assumption in equation (46)
to obtain

yuQ(m)
yu ≈ xvQ(m)

xv . (47)

With this simplification, there are three cases need to be
accounted for:

1. yu ≈ xv −→ Q
(m)
yu ≈ Q

(m)
xv

2. yu ≪ xv −→ Q
(m)
xv ≪ Q

(m)
yu

3. xv ≪ yu −→ Q
(m)
yu ≪ Q

(m)
xv

Consider the first case. Since Q
(m)
yu ≈ Q

(m)
xv , we can

combine the two terms together to obtain

(u− v)(x − y)

N1N2
Q(m)

yu ≈ ∆+mQ(m). (48)

Letting G(x, y, u, v) =
∑

ij cijx
iyN1−iujvN2−j , the spec-

tral problem is given by

(u − v)(x− y)Gyu ≈ N1N2(λ− 1)G. (49)

Let s = u− v, r = x− y, and H(r, y, s, v) = G(x, y, u, v).
As with the complete graph, this is a linear trans-
formation, so we expect solutions of the same form:
H(r, y, s, v) =

∑

ij bijr
iyN1−isjvN2−j . The differential

equation becomes

rs(Hsy −Hrs) ≈ N1N2(λ− 1)H. (50)

The corresponding difference equation for the coeffi-
cients, bij , is

j(N1 − i+ 1)bi−1,j − ijbij ≈ N1N2(λ− 1)bij . (51)

With similar arguments for the complete graph, we re-
quire a singularity in this difference equation so that the
solution is not trivial. Therefore, we obtain an approxi-
mate spectrum for the diffusive scale of the two dimen-
sional random walk:

λij ≈ 1−
ij

N1N2
. (52)

Note that in procedure, the same spectrum would
be recovered if one were to use Gxv instead of Gyu in
equation (49). This does not produce the spectrum for
the complete bipartite graph, but rather an approximate
form when the walk is dominated by diffusion.
Now let us consider cases 2 and 3 together. Without

loss of generality, results from case 3 can be recovered
by case 2 through interchanging u ↔ x, y ↔ v, and
N1 ↔ N2. Physically, this corresponds to interchanging
the labels on the two groups of nodes. Taking case 2 as
the archetype, drop small terms to simplify the propaga-
tor to
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ux

NN2
Q(m)

yu +
yv

NN1
Q(m)

yu −
2yu

N1N2
Q(m)

yu ≈ ∆+mQ(m). (53)

There is no need to change variables to solve the corre-
sponding spectral problem since the corresponding finite
difference equation explicitly determines cij . Therefore,
the approximate spectrum for this case is found to be

λij ≈ 1−
2ij

N1N2
. (54)

The two forms of the approximate spectrum found in
equations (52) and (54) are very similar. The discrepancy
between the two is due to the errors invoked by making
the necessary approximations. To find the approximate
eigenvalues, we required that the sizes of both sides of
the spectral problem should be comparable. Since we
used scaling arguments to find the approximate spec-
trum, there will be no asymptotic discrepancy in the
spectral gap through this procedure. These results in-

dicate that the spectral gap is 1− λ2 = O
(

1
N1N2

)

.

We can repeat the calculation in section IV to find
a bound on consensus times for the complete bipartite
graph. Following this procedure, we find that the ex-
pected consensus time is

E[T ] = O(N1N2). (55)

This is consistent with continuous time analysis, which
shows that the expected time to consensus is E[T ] =

4N1N2

[

(1 − ω) ln 1
1−ω + ω ln 1

ω

]

, where ω is the degree

weighted mean of microstates [9]. As before, this bound
is valid for all initial probability distributions. However,

without detailed information about the eigenvectors, we
cannot extract more detailed information about the prop-
agator than the bound on consensus.

VI. CONCLUSIONS

We have successfully derived exact solutions to the
voter model on the complete graph. In particular, the
solution to the spectral problem can be found exactly,
which allows us to find the time m probability distribu-
tion of the model. Also, knowing the eigenvalues for the
discrete matrix problem, we found the solution to the
corresponding differential eigenvalue problem. The solu-
tions of which are found to be hypergeometric functions
that have terminating series expressions. Exact formu-
lae for the expected time to consensus and the expected
frequency of each macrostate prior to consensus are also
given, though there are other quantities of interest that
can be found using the theory given above.

The means by which these exact solutions are found
also provide mathematical insight. Since the procedures
are easily generalizable, there is great potential for ap-
plying these techniques to other problems. This includes
extensions of the voter model, imposing it upon different
graphs, and other models entirely. There are other urn
models of interest in the context of statistical physics and
network science that may be studied using these tech-
niques. The procedure for determining the single step
propagator can be generalized to finding probabilities of
microstates instead of macrostates, which may be insight-
ful for a network with specific topological features. With
such a formulation, a general network can be studied in
detail. Rigorous treatment of these claims are potential
areas of future work.
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