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1. INTRODUCTION

Tuberous sclerosis complex (TSC) is an inherited disorder characterized by the appearance 
of benign tumors in the brain, heart, lung, kidney, eyes, and/or skin.  The disease affects as many 
as 40,000 individuals in the United States and is caused by mutations in one of two genes, TSC1 
(encoding a protein called hamartin), and TSC2 (encoding a protein called tuberin).  While 
research of the past two decades has provided a wealth of information regarding the genetic origins 
of TSC, the complexity of the molecular pathways involved, together with their intricate temporal 
and spatial interactions, has made it difficult to elucidate the full molecular pathology of the 
disease.  Fortunately, recent technical and conceptual advances with respect to the importance of 
“genetic buffering” on phenotypic variation have provided novel avenues of exploration regarding 
this goal. 

Using the genetically tractable fission yeast as a model, our USAMRAA funded research 
has sought to exploit recent advances in genetic interaction network biology to analyze previously 
uncharacterized genes that modulate the phenotypic effects of hamartin and tuberin loss of 
function mutations.  Of particular interest are genes displaying negative genetic interactions with 
either tsc1 or tsc2.  Since tumor formation in TSC patients arises from loss of heterozygosity, this 
characteristic identifies the human orthologs of these genes as potential therapeutic targets i.e. 
drugs inhibiting a negative interactor would presumably suppress only the growth of tumor cells 
(which bear two mutant copies of the affected TSC gene: the inherited mutant germline copy, and 
the copy affected by the “second-hit”) while leaving phenotypically normal cells (carrying only 
the mutant germline copy) unaffected. 

Our research of the past year has clearly identified two genes, fft3 (encoding a 
SMARCAD1 family ATP-dependent DNA helicase) and ypa1 (encoding a PTPA family protein 
phosphatase) as excellent candidates for continued analysis.  While deletion of either gene has 
little phenotypic effect in normal cells, their loss in either tsc1 or tsc2 mutant backgrounds 
profoundly inhibits growth.  Thus, inhibition of either fft3 or ypa1 may represent an “Achilles’ 
heel” of cells defective in hamartin or tuberin function.  Importantly, both of these genes have 
clear orthologs in humans. 

In addition to our bench-top analyses, we have also developed a formal mathematical 
methodology for the quantitation of genetic buffering strength (this was necessitated by the need 
for a system that could be used to unambiguously compare genetic interaction data).  This 
methodology provides a simple, general, and rigorous mathematical paradigm with which to 
exactly quantitate the buffering strength of any genetic determinant.  The methodology was 
recently published in the peer-reviewed “The Mathematica Journal” and is freely available to the 
public at “www.mathematica-journal.com/2015/03/the-quantitation-of-non-classical-buffering/”. 

2. KEYWORDS

Tuberous Sclerosis, Genetic Buffering, Fission Yeast, Recombinase-Mediated Cassette Exchange, 
PTPA family protein phosphatase, ATP-dependent DNA Helicase 
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3.  ACCOMPLISHMENTS 
 
 Our research accomplishments of the last year are described below in the context of the 
Specific Aims outlined in the approved Statement of Work (SOW). 
 
SPECIFIC AIM 1: Establish an S. pombe model of TSC by replacing the endogenous S. pombe 
hamartin and tuberin genes with human TSC1 and TSC2, respectively. 
 

Task 1: Create tsc1::ura4+ and tsc2::ura4+ "base" strains. 

 
Predicted Completion Date:  August 31st, 2014 

 
Progress: Gene deletion cassettes for both the tsc1 and tsc2 genes were created by PCR 
amplifying the ura4+ selectable marker (together with the loxP and loxM3 recombination 
sites) from the pAW1 vector using primers oTsc11 (5’-tta tca atg ctg cca aga ctt gct atc agt 
ata atg tcg cat agt tgt ata tca acg ttg act ttg cca act ttg tac gac gga tcc ccg ggt taa tta a-3’), 
and oTsc12 (5’-aat tat ttt ata tgg aat gag caa gta tgt ttt atc ata att gac cag ttc att tca agg acc 
ttc aaa aat ata cct acg aat tcg agc tcg ttt aaa c-3’), or oTsc13 (5’-tta aga gtt cag att tgc ttt atg 
tgg tta ttc tgc tga agg tcc taa ttt att gac gtt gaa aaa taa agg cca cat agc gga tcc ccg ggt taa tta 
a-3’), and oTsc14 (5’-ata aaa aaa att aat taa tga tgg caa ggc aca atc gta atc aat ctt tta att tag 
gac ttt tta tat gcc ctt atg gcg aat tcg agc tcg ttt aaa c-3’), respectively. Strain ED666 
(ura4-D18 leu1-32 ade6-210 h+) was then transformed with either the tsc1 specific or tsc2 
specific cassette.  Ura+ transformants were isolated and the respective gene deletions 
confirmed by colony PCR using primers oTsc15 (5’-atg tgg cag act acg cta tcc t-3’) and 
oTsc17 (5’-atg ctt ccc cta att cat agc a-3’) for the tsc1 deletion, and oTsc16 (5’-agc aac cta 
cga gag gaa gat g-3’) and oTsc18 (5’-gcg cat aac cct ttc tac att c-3’) for the tsc2 deletion.   
 
Status: Complete. 
 
 
Task 2: Obtain full length cDNA clones of human TSC1 (Accession BC167824) and 
TSC2 (Accession BC150300) from ThermoScientific.  PCR amplification. 
 
Predicted Completion Date:  August 31st, 2014 
 
Progress:  Recent advances in DNA synthesis technology altered our strategy with respect 
to the original SOW document (see Section 5: Problems/Changes). Instead of purchasing 
cDNA clones and using standard amplification/cloning techniques, it proved more 
economical (in terms of both time and money) to synthesize the desired sequences. Full 
length clones were thus obtained through Genscript’s DNA synthesis service.  All 
constructs were confirmed by DNA sequencing.  
 
Status: Complete. 
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Task 3:  Molecular cloning of TSC1 and TSC2 into "exchange" plasmids. 
 
Predicted Completion Date: September 30th, 2014  

 
Progress: As part of the service provided by Genscript, it was possible to have the synthetic 
sequences cloned directly into the pAW8X “exchange” plasmids upon synthesis.     
 
Status: Complete. 
 
 
Task 4: Transform exchange plasmids into S. pombe strain ED666. Select for 

 clones that have exchanged the ura4+ cassette with TSC1/TSC2. Verify genotypes by 
 colony PCR. 

 
Predicted Completion Date: October 31st, 2014 

 
Progress: The tsc1::ura4/tsc2:ura4 base strains were transformed with the 
pAW8X-TSC1/pAW8X-TSC2 vectors containing the human TSC1 and TSC2 genes.  As 
controls, the base strains were also transformed with the pAW8X-tsc1 and pAW8X-tsc2 
vectors containing the fission yeast tsc1 and tsc2 genes.  Cells in which the ura4+ gene 
was exchanged with TSC1/TSC2/tsc1/tsc2 were selected by growth on media containing 
5-fluoroorotic acid (a drug counter selectable to Ura+ cells). This created strains in which 
human TSC1 or TSC2, or fission yeast tsc1 or tsc2, were expressed from the endogenous 
fission yeast tsc1/tsc2 promoters at the native tsc1/tsc2 loci. These strains have been 
denoted as tsc1::TSC1Hs, tsc2::TSC2Hs, tsc1::tsc1Sp, and tsc2::tsc2Sp.  Strains bearing both 
substitutions were then created by crossing tsc1::TSC1Hs and tsc2::TSC2Hs strains of 
opposite mating type and screening progeny by colony PCR to identify tsc1::TSC1Hs 
tsc2::TSC2Hs cells.  A complete catalog of strains created during the course of this work 
appears in Section 6.5.1, Research Material. 
 
Status: Complete. 
 

 
Task 5:  Complementation Assays. 
 
Predicted Completion Date: December 31st, 2014 

 
Progress:  The ability of human TSC1/TSC2 to complement the loss of the fission yeast 
tsc1/tsc2 genes was determined by assaying the growth of wild-type, tsc1Δ, tsc2Δ, 
tsc1::TSC1Hs, tsc2::TSC2Hs, tsc1::TSC1Hs tsc2::TSC2Hs, tsc1::tsc1Sp, and tsc2::tsc2Sp 
strains on minimal media containing 60 μg/ml of canavanine.  As expected tsc1Δ and 
tsc2Δ base strains, unlike wild-type controls, were resistant to the drug and were able to 
form colonies.  Also as expected, tsc1::tsc1Sp and tsc2::tsc2Sp strains behaved as wild type 
and were unable to form colonies (indicating that the recombinase mediated cassette 
exchange methodology correctly integrated the synthetic constructs).  Unfortunately, 
tsc1::TSC1Hs, tsc2::TSC2Hs, as well as tsc1::TSC1Hs tsc2::TSC2Hs strains were able to form 
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colonies (indicating that the expression of the human orthologs was incapable of 
complementing the loss of the fission yeast tsc1 and tsc2 genes). 
 
Status: Complete. 
 

 
SPECIFIC AIM 2: Create "TSC mutant allele" array. 
 

Task 1: Construction of TSC mutant alleles via direct synthesis or site-directed  
 mutagenesis techniques. 

 
Predicted Completion Date: February 28th, 2015 

 
Progress:  As discussed above, due to the lack of complementation, the remainder of the 
project will be conducted using the fission yeast tsc1 and tsc2 genes.  To this end, 
site-directed mutagenesis was employed to incorporate a total of five mutations into the 
tsc2 gene.  Each of these mutations (G296E, R927W, N1199S, P1223L, R1296P) affects 
residues analogous to mutations identified clinically.  New England Biolab’s Q5 
Site-Directed Mutagenesis Kit was used to generate pUC57-tsc2_G296E, 
pUC57-tsc2_R927W, pUC57_N1199S, pUC57_P1223L, and pUC57_R1296P plasmids.  
DNA sequence analysis confirmed the incorporation of the desired changes.  The same 
strategy will be used to create a similar panel of tsc1 mutant alleles.  
 
Status: In Progress (50% Complete). 
 
 
Task 2: Molecular cloning of mutant alleles into exchange plasmids. 
 
Predicted Completion Date: March 31st, 2015 

 
Progress: As of June 30th, 2015, two of the clones (pUC57-tsc2_G296E, and 
pUC57_N1199S) have been cloned into the pAW8X exchange plasmids using the XhoI 
and SacI restriction sites and standard molecular techniques.  Cloning of the remaining 
constructs is in progress. 
 
Status: In Progress (20% Complete). 
  
 
Task 3:  Transform exchange plasmids into S. pombe strain ED666.  Select for 

 clones that have exchanged the ura4+ cassette with TSC1/TSC2. Verify genotypes by 
 colony PCR. 

 
Predicted Completion Date: April 31st, 2015 

 
Progress:  Upon completion of Task 2 (above), recombinase mediated cassette exchange 
will be used to integrate the respective mutant tsc1 and tsc2 alleles into the appropriate base 
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strains. 
 
Status: Pending Completion of Task 2. 
 
 
Task 4:  Confirm lack of complementation. 
 
Predicted Completion Date: June 30th, 2015 

 
Progress: Upon completion of Tasks 2 and 3 (above), complementation assays based on 
canavanine resistance will be performed as described in Specific Aim 1, Task 5. 
 
Status: Pending Completion of Tasks 2 and 3. 
 

 
SPECIFIC AIM 3: Intercross strains of the TSC mutant allele panel with strains of the 
"putative interactor" panel. 
 

Task 1:  Intercross "TSC mutant allele" array with "interactor" panel. 
 
Predicted Completion Date: October 31st, 2015 

 
Progress: Control experiments in which the fission yeast interactor panel was crossed to 
either the tsc1Δ or tsc2Δ gene deletion mutants have been completed.  These control 
experiments are crucial in that they will provide a proper baseline of comparison for future 
assays conducted with the TSC mutant allele panels.  Due to the confounding effect of 
auxotrophic markers present in the interactor panel (derived from the Bioneer gene 
deletion set), it was necessary to construct an alternative panel of strains devoid of 
secondary genetic alterations (see Section 5: Problems/Changes).  Intercrossing of the 
tsc1 and tsc2 mutant allele panels will be performed upon completion of Specific Aim 2.    
 
Status:  In Progress (30% Complete). 
 
 
Task 2:  Isolation of double mutant progeny.  Growth Assays. 
 
Predicted Completion Date: October 31st, 2015 

 
Progress:  Control assays (in triplicate) comparing the growth of wild type, tsc1Δ, tsc2Δ, 
the interactor panel mutants, as well as the respective double mutants have been completed.  
Briefly, a micromanipulator was used to array single cells representing each genotype (in 
quadruplicate) upon YES agar plates.  Plates were incubated at 30°C for five days. Digital 
images were taken at 24 hour intervals. These experiments identified fft3 (a SMARCAD1 
family ATP-dependent DNA helicase) and ypa1 (a PTPA family protein phosphatase) as 
strong negative interactors of both the tsc1Δ and tsc2Δ gene deletions (see Section 4.1, 
Impact).  Representative images of plates at day 4 for one biological replicate are shown 
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below (10-27 denotes the ypa1Δ mutant, and 30-77 denotes the fft3Δ mutant).  Growth 
assays using the tsc1 and tsc2 mutant allele panels will be performed upon completion of 
Specific Aim 2. 
 

 
 

 
 
Status: In Progress (30% Complete). 
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Task 3:  Image analysis of colony size. 
 

Predicted Completion Date: December 31st, 2015 
 

Progress: ImageJ (imagej.nih.gov/ij/) analysis tools were used to determine the colony size 
of wild type, tsc1Δ, tsc2Δ, each interactor panel mutant, and the respective double mutants 
(in quadruplicate) for each of three independent biological replicates. Representative data 
describing the interaction between tsc1 and either ypa1 or fft3 is shown below. 

 

 
 

 
 

 
Status: In Progress (30% Complete). 

 
 
SPECIFIC AIM 4: Physiological analysis of TSC modifiers 
 

Task 1:  Test effect of pharmacological inhibitors of "negative" interactors (if  
 available) in strains expressing wild-type and mutant TSC alleles. 

 
Predicted Completion Date: February 28th, 2016 

 
Progress: These assays will be performed upon completion of Specific Aims 2 and 3. 
 
Status: Pending Completion of Specific Aims 2 and 3. 
 



8 

 

Task 2:  Molecular/physiological/genetic analysis of interactors.  Specific analyses 
 will be determined based on the molecular identity of the genes identified from the 
 interactor panel. 

 
Predicted Completion Date: June 30th, 2016 

 
Progress: These assays will be performed upon completion of Specific Aims 2 and 3. 
 
Status:  Pending Completion of Specific Aims 2 and 3. 
 

 
4. IMPACT 
 

4.1 Impact on the Development of the Principal Disciplines of the Project 
Our ongoing study has clearly identified fft3 (a SMARCAD1 family 

ATP-dependent DNA helicase) and ypa1 (a PTPA family protein phosphatase) as strong 
negative interactors of both the tsc1Δ and tsc2Δ gene deletions.  While deletion of either 
gene has little phenotypic effect in normal cells, their loss in either tsc1 or tsc2 mutants 
profoundly inhibits growth.  Thus, the chemical inhibition of the encoded Fft3 or Ypa1 
proteins (both of which have clear orthologs in humans) may represent a novel means with 
which to specifically inhibit the growth of cells defective in hamartin or tuberin function.  
In other words, the inhibition of either Fft3 or Ypa1 may represent an “Achilles’ heel” of 
cells diminished in tsc1 or tsc2 activity.  It is important to note that neither of these genes 
have been identified using traditional genetic analysis.  Thus, their continued study 
represents a novel avenue of exploration with regards to the molecular pathology of TSC. 
 
4.2 Impact on other Disciplines 

During the course of analyzing our genetic interaction data, it became apparent that 
there was no established method with which to formally and unambiguously quantitate the 
strength of “genetic buffering”.  To address this issue we developed a formal, axiomatic 
methodology – using the Wolfram Programming Language – to achieve this goal.  The 
method is described in our recent publication “The Quantitation of Non-Classical 
Buffering: Applying the Formal and General Approach to Problems in the Biological 
Sciences (included in this report as Appendix A and freely available at 
“www.mathematica-journal.com/2015/03/the-quantitation-of-non-classical-buffering/”.  
While we will use this methodology to quantitate and compare the genetic interactions 
observed between the interactor panel and TSC mutant allele array, the methodology can 
also be applied to any scenario (and in any discipline) where a quantity partitions between 
two compartments or states.   
 
4.3 Impact on Technology Transfer 
Nothing to Report 
 
4.4 Impact on Society Beyond Science and Technology 
Nothing to Report. 
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5.  CHANGES/PROBLEMS 
 

5.1 Changes in Approach 
 

5.1.1. Cloning of human TSC1 and TSC2 
Instead of purchasing cDNA clones of TSC1 and TSC2 and subsequently 

employing standard amplification and cloning techniques to create the exchange 
plasmids, we chose to use a commercial entity to synthesize the desired sequences.  
Recent advances in DNA synthesis technology have made such direct DNA synthesis 
approaches the most economical choice.  Full length clones were thus obtained through 
Genscript’s DNA synthesis service. 
 
5.1.2. TSC mutant allele panel  

Unfortunately, human TSC1 or TSC2 were unable to complement the loss of 
their fission yeast counterparts when expressed at the native tsc1 or tsc2 loci.  While 
disappointing, this was an eventuality we previously considered.  As discussed in the 
original project narrative (page 4, paragraph 1), the project will continue using the 
fission yeast hamartin/tuberin genes instead of their human orthologs.  This is to say 
alleles of the fission yeast tsc1 and tsc2 genes – bearing mutations affecting residues 
analogous to those identified clinically – will be employed. 
 

 
5.2 Actual or Anticipated Problems 

 
5.2.1 Confounding Effect of Auxotrophic Markers 

 Due to the confounding effect of auxotrophic markers present in the interactor 
panel (derived from the Bioneer gene deletion set), it was necessary to construct an 
alternative panel devoid of secondary genetic alterations.  This delayed the initiation of 
Specific Aims 2 and 3.  While tedious and time consuming an alternative  interactor 
panel, devoid of any background auxotrophic markers, has now been constructed and 
will be employed during the remainder of the study. 

 
 

5.2.2 Personnel 
The initial proposal identified graduate student, Bidhan Chakraborty, as 

associated with the project.  Unfortunately, Mr. Chakraborty, upon successfully 
defending his MSc thesis, returned to Bangladesh to be married and ultimately decided 
to pursue other interests.  While Mr. Chakraborty has now been replaced by Mr. Ryan 
Chevalier, his initial departure caused minor delays with respect to the completion of 
Specific Aim 2.  These manpower issues have now been resolved and we expect no 
further difficulties. 
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6. PRODUCTS 
 
 6.1 Publications, Conference Papers, and Presentations 
 

6.1.1 Journal Publications 
 Karagiannis J. The Quantitation of Non-Classical Buffering: Applying the  

  Formal and General Approach to Problems in the Biological Sciences. The  
  Mathematica Journal 17, 2015. (Published) 

 
6.1.2 Books or Other Non-Periodical, One-time Publications 

Nothing to Report 
 
6.1.3 Other Publications, Conference Papers, and Presentations 
Nothing to Report  

  
  

6.2 Websites or Other Internet Sites 
 Nothing to Report 
 
  

6.3 Technologies or Techniques 
 Nothing to Report 
 
  

6.4 Inventions, Patent Applications, and/or Licenses 
 Nothing to Report 
 
 6.5 Other Products 

 
6.5.1 Research Material (Fission Yeast Strains) 

 
Genotypes of the relevant fission yeast strains generated during the course of this  

 study are listed below: 
 
 tsc1Δ “base” strain (gene deletion with flanking loxP and loxM3 sites) 
 tsc2Δ “base” strain (gene deletion with flanking loxP and loxM3 sites) 
 tsc1::tsc1Sp  
 tsc2::tsc2Sp  
 tsc1::TSC1Hs 
 tsc2::TSC2Hs 
 tsc1::TSC1Hstsc2::TSC2Hs 
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7. PARTICIPANTS 
 

Name:     Jim Karagiannis 
Nearest Person Month Worked:  12 
Contribution to Project:   Principal Investigator 
 
Name:     Ryan Chevalier 
Nearest Person Month Worked 4 
Contribution to Project  Mr. Chevalier was involved in the routine growth  

      and maintenance of fission yeast cultures,   
      molecular cloning, and was also responsible for all  
      image analysis of genetic interaction data.  
 
 
 
8. SPECIAL REPORTING REQUIREMENTS 
Not Applicable 
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The Quantitation of Non-
classical Buffering
Applying the Formal and General Approach 
to Problems in the Biological Sciences
Jim Karagiannis

A formal, axiomatic conceptualization of buffering action—
generally applicable to any physical, chemical, or biological 
process—was first presented by B. M. Schmitt in 2005 [1, 2]. 
This article provides a series of tools designed to aid in the 
application of these concepts to both classical and non-classical 
buffering phenomena. To illustrate the utility of the approach in 
the biological sciences, an abstract measure of the magnitude of 
“genetic” buffering associated with an allele of the gene 
encoding the heat shock protein Hsp90 is determined.

■ Introduction
Buffering is observed when a parameter changes less than expected in response to a given
disturbance. For example, if a strong acid is added to an aqueous solution, and not all of
the  added  H+  ions  remain  free  (unbound),  then  the  solution  is  said  to  act  as  a  buffer.
While such phenomena have been observed in the physical, chemical, and biological sci-
ences for centuries, a formal and general approach for their quantitation across distinct dis-
ciplines was not presented until recently [1, 2]. 
In [1, 2], B. M. Schmitt presents a comprehensive mathematical framework for evaluating
buffering action—a framework that is applicable to any scenario in which a quantity parti-
tions  between  two  compartments  or  states.  While  suitable  for  the  analysis  of  “classical”
buffering  phenomena  (e.g.  acid-base  chemistry),  the  formalism  also  provides  a  simple
means with which to quantitate and characterize phenomena that,  at first glance, seem to
be outside the buffering paradigm—at least when the term is used in its traditional sense
with  respect  to  the  homeostasis  of  physiological  parameters  (see  [2]  for  several  in-depth
examples  of  the  formal  and  general  approach  applied  to  phenomena  spanning  diverse
disciplines).
This article provides a series of mathematical tools designed to facilitate the application of
Schmitt’s  paradigm  to  both  “classical”  and  “non-classical”  buffering  phenomena.  By
inputting  the  transfer  function  τ(x)  and  the  buffering  function  β(x),  the  provided  code:
(1) defines the four buffering parameters t, b, T, and B; (2) provides a series of graphical
outputs describing the system; and (3) calculates the buffering angle α, thereby classifying
the  system  as  being  moderating/amplifying/inverting/non-inverting.  Thus,  the  burden  of
computation  associated  with  the  approach  is  seamlessly  transferred  from  the  user  to  the
Mathematica kernel.

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.
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This article provides a series of mathematical tools designed to facilitate the application of
Schmitt’s  paradigm  to  both  “classical”  and  “non-classical”  buffering  phenomena.  By
inputting  the  transfer  function  τ(x)  and  the  buffering  function  β(x),  the  provided  code:
(1) defines the four buffering parameters t, b, T, and B; (2) provides a series of graphical
outputs describing the system; and (3) calculates the buffering angle α, thereby classifying
the  system  as  being  moderating/amplifying/inverting/non-inverting.  Thus,  the  burden  of
computation  associated  with  the  approach  is  seamlessly  transferred  from  the  user  to  the
Mathematica kernel.
Lastly, in order to illustrate the utility of the approach outside traditional disciplines, I use
these same tools to calculate the magnitude of “genetic”  buffering associated with an al-
lele of the gene encoding the heat shock protein Hsp90. In this way, the capacity of an al-
lele  to  buffer  phenotypic  variation  is  formally  and quantitatively  determined for  the  first
time.

■ An Intuitive, Linear Example Based on the Partitioning of 
Fluids in Communicating Vessels
To illustrate Schmitt’s “formal and general  approach,”  consider a  system comprised of  a
pair  of  communicating vessels  (i.e.  cylindrical  flasks connected by a  small  tube).  As de-
scribed in [1], the total volume of liquid in the vessels, x, is the sum of the two partial vol-
umes contained in each vessel. In the specific example described below, the rightmost of
the two cylindrical vessels (the “buffering”  vessel) has a radius exactly two times that of
the first. Thus, any fluid added to the leftmost vessel (the “transfer” vessel) will partition
in a ratio of 1:4 between the transfer and buffering vessels. The partial volume present in
the  transfer  vessel  is  thus  one-fifth  the  total  volume  of  fluid  added  to  the  system.  Like-
wise,  the  partial  volume present  in  the  buffering  vessel  is  four-fifths  the  total  volume of
fluid added to the system.

Graphics3D[{
Cylinder[{{0, 0, 0}, {0, 0, 5}}, 0.5],
Cylinder[{{3, 0, 0}, {3, 0, 5}}, 1],
Cylinder[{{0.1, 0.1, 0.1}, {3, 0.1, 0.1}}, 0.075]},

Axes → True, ImageSize → {300, 300}]
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□ Formalizing the System

It is possible to formalize the system below by defining three functions: the transfer func-
tion τ1(x), the buffering function β1(x), and the sigma function σ1(x). 
The transfer function defines the amount of fluid present in the transfer vessel.

τ1[x_] := x /∕ 5

Likewise,  the  buffering  function  defines  the  amount  of  fluid  present  in  the  buffering
vessel.

β1[x_] := 4 x /∕ 5

The sigma function defines the sum of the individual functions comprising the system.

σ1[x_] := τ1[x] + β1[x]

Once the functions are defined, it is possible to visualize the system by plotting the lines.

Plot[{σ1[x], β1[x], τ1[x]}, {x, 0, 100},
AxesLabel → {"Total Volume", "Partial Volume"},
PlotLegends → "Expressions"]
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It is also possible to visualize the system (in a more intuitive manner) by creating an area
plot in which the two partial volumes are indicated by the heights of the transfer and buff-
ering areas at any given value of x.

Plot[{τ1[x], σ1[x]}, {x, 0, 100},
AxesLabel → {"Total\nVolume", "Partial\nVolume"},
Filling → Bottom,
Epilog → {

Text[TraditionalForm@HoldForm[β1[x]], {90, 50}],
Text[TraditionalForm@HoldForm[τ1[x]], {90, 10}],
Arrowheads[{-−.03, .03}],
Arrow[{{80, 0}, {80, τ1[80]}}],
Arrow[{{80, τ1[80]}, {80, σ1[80]}}]

}
]

□ Defining the Buffering Parameters

The definition of the respective functions also provides a convenient means with which to
quantitate buffering action. This is accomplished in any one of four ways, using the three
available  differentials.  The buffering coefficient  b1  measures  the  change in  the  buffering
compartment relative to the total change.

b1 = D[β1[x]] /∕ D[σ1[x]]

4

5
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The buffering ratio  B1  measures  the  change in  the  buffering compartment  relative  to  the
change in the transfer compartment.

B1 = D[β1[x]] /∕ D[τ1[x]]

4

Conversely, the transfer coefficient t1 measures the change in the transfer compartment rel-
ative to the total change.

t1 = D[τ1[x]] /∕ D[σ1[x]]

1

5

The transfer ratio T1 measures the change in the transfer compartment relative to the buff-
ering compartment.

T1 = D[τ1[x]] /∕ D[β1[x]]

1

4

In  this  simple  linear  example—where  the  cross-sectional  area  of  the  buffering  vessel  is
constant (i.e. does not vary with fluid level)—the dimensionless values of total volumes b,
B, t, and T are invariant, equal to 0.8, 4, 0.20, and .0.25, respectively.

□ Defining the Buffering Angle

While of great utility, the parameters B and T are undefined in the case of perfect buffer-
ing  or  perfect  transfer,  respectively.  To  address  this  issue,  it  is  possible  to  define  an
alternative  measure,  the  buffering  angle  α,  which  is  capable  of  representing  any  type  of
buffering without the introduction of discontinuities. 
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As described in [1], the buffering angle α  can be defined by first creating a three-dimen-
sional space curve of the system.

ParametricPlot3D[{D[x], D[τ1[x]], D[β1[x]]}, {x, 0, 100},
AxesLabel → {x, y, z}]
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A projection of this curve onto the x-y plane corresponds to the transfer function.

ParametricPlot[{D[x], D[τ1[x]]}, {x, 0, 100},
AxesLabel → {x, y}]
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A projection onto the x-z plane corresponds to the buffering function.

ParametricPlot[{D[x], D[β1[x]]}, {x, 0, 100},
AxesLabel → {x, z}]
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A projection onto the y-z plane, however, generates a third curve that can be used to deter-
mine  the  proportions  between  the  individual  changes  in  the  transfer  and  buffering  func-
tions. This is accomplished by simply measuring the angle α1  between the y axis and the
line formed by joining the origin to any given point on the curve.
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A projection onto the y-z plane, however, generates a third curve that can be used to deter-
mine  the  proportions  between  the  individual  changes  in  the  transfer  and  buffering  func-
tions. This is accomplished by simply measuring the angle α1  between the y axis and the
line formed by joining the origin to any given point on the curve.

Module[{x, a, r},
x = 20;
a = ArcTan[D[τ1[x]], D[β1[x]]];
r = Norm[{D[τ1[x]], D[β1[x]]}];
ParametricPlot[{D[τ1[x]], D[β1[x]]}, {x, 0, 100},

AxesLabel → {y, z}, ImageSize → 80 {1, 3},
Epilog → {

Circle[{0, 0}, r, {0, a}],
Text["α1", r {Cos[1 /∕ 2 a], Sin[1 /∕ 2 a]},

Background → White]
}

]
]
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This calculates the buffering angle in degrees ([1], Supplement 5).

α1 = If[t1 ≤ 1, 1, -−1] NArcCost1  t1 ^2 + b1 ^2   Degree

75.9638

Similar to the buffering parameters, α1 is invariant in cases of linear buffering.

Plot[α1, {x, 0, 100}, AxesLabel → {x, "α1"},
PlotRange → {0, 90}]
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It is evident from the above analysis that this methodology creates a system in which per-
fect buffering corresponds to an angle of 90° and perfect transfer to an angle of 0°. In fact,
any  type  of  buffering  behavior  (moderating/amplifying/inverting/non-inverting)  can  be
represented continuously by a finite angle between -−45 ° and 135° ([1], Supplement 7).
Importantly, it is also possible—using the same logic in the reverse direction—to use this
single  value  to  unambiguously  define  all  of  the  buffering  parameters  describing  the  sys-
tem.  This  can  be  demonstrated  by  defining  a  variable  littleb1  (corresponding  to  the
buffering coefficient b) that is calculated using only the buffering angle.

littleb1 =
Sin[α1 °]

Cos[α1 °] + Sin[α1 °]

0.8

This checks that b and littleb are the same.

b1 ⩵ littleb1

True
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Similarly, the values of the remaining three buffering parameters can be calculated using
only the buffering angle and shown to be equal to the corresponding parameters calculated
using the relevant differentials.

bigB1 = Sin[α1 °] /∕ Cos[α1 °]

4.

B1 ⩵ bigB1

True

littlet1 = Cos[α1 °] /∕ (Cos[α1 °] + Sin[α1 °])

0.2

t1 ⩵ littlet1

True

bigT1 = Cos[α1 °] /∕ Sin[α1 °]

0.25

T1 ⩵ bigT1

True

Thus, the buffering angle provides a simple, powerful, single-value measure that is capa-
ble  of  capturing  and  communicating  the  underlying  nature  of  the  buffering  relationships
comprising the system.

The Quantitation of Non-classical Buffering 9

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



■ A More Complex, Nonlinear Example
While  the  simple  linear  scenario  described  above  made  it  possible  to  lay  the  foundation
for Schmitt’s “formal and general approach,”  the computational effort associated with its
application was minimal. Thus, the utility of applying these methods within Mathematica
was not fully exploited. For this reason, I next consider a more complex, nonlinear exam-
ple (i.e. where the cross-sectional area of the buffering vessel is not constant). This serves
the  purpose  of  highlighting  the  advantages  of  exploiting  Mathematica’s  computational
engine.

□ Defining a Nonlinear Buffering System

Consider a nonlinear system defined by the functions listed below. 

τ2[x_] := 0.00395 x^11.09746 Exp[-−2.30471 x]

σ2[x_] := x

β2[x_] := σ2[x] -− τ2[x]

As  previously  described,  the  buffering  parameters  can  be  determined  using  the  relevant
differentials. However, in contrast to the previous example, the computational burden asso-
ciated with their calculation is no longer trivial (at least in the absence of Mathematica).

b2 = D[β2[x]] /∕ D[σ2[x]]

x -− 0.00395 ⅇ-−2.30471 x x11.0975

x

B2 = D[β2[x]] /∕ D[τ2[x]]

253.165 ⅇ2.30471 x (x -− 0.00395 ⅇ-−2.30471 x x11.0975)

x11.0975

t2 = D[τ2[x]] /∕ D[σ2[x]]

0.00395 ⅇ-−2.30471 x x10.0975

T2 = D[τ2[x]] /∕ D[β2[x]]

0.00395 ⅇ-−2.30471 x x11.0975

x -− 0.00395 ⅇ-−2.30471 x x11.0975
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Once the functions are defined and the system visualized through the creation of the corre-
sponding line and area plots, one can clearly see that the magnitude of buffering action in
this nonlinear scenario varies with fluid level (imagine a buffering vessel in the shape of
an hourglass as opposed to a cylinder).

Plot[{τ2[x], β2[x], σ2[x]}, {x, 0, 12},
AxesLabel → {"Total\nVolume", "Partial\nVolume"},
PlotLegends → "Expressions"]
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Volume

τ2(x)

β2(x)

σ2(x)

Plot[{τ2[x], σ2[x]}, {x, 0, 12}, Filling → Bottom,
AxesLabel → {"Total\nVolume", "Partial\nVolume"},
Epilog → {

Text[HoldForm[β2[x]], {10, 5}],
Text[HoldForm[τ2[x]], {5, 1}]

}
]
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Furthermore, unlike the linear case, it is also clear that the buffering parameters vary as a
function of x.

Plot[b2, {x, 0, 12}, PlotRange → {0, 2}, AxesLabel → {x, "b2"}]
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Plot[B2, {x, 0, 12}, PlotRange → {0, 20}, AxesLabel → {x, "B2"}]
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Plot[t2, {x, 0, 12}, PlotRange → {0, 0.5},
AxesLabel → {x, "t2"}]
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t2

12 Jim Karagiannis

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



Plot[T2, {x, 0, 12}, PlotRange → {0, 1}, AxesLabel → {x, "T2"}]
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□ Defining the Buffering Angle of a Nonlinear System

As previously described, it is also possible to calculate the buffering angle α2 by first creat-
ing a three-dimensional space curve of the system and then projecting this curve onto the
y-z plane. 

ParametricPlot3D[{D[x], D[τ2[x]], D[β2[x]]}, {x, 0, 12},
AxesLabel → {x, y, z}]
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Module[{x, p, a, r},
x = 4;
p = {D[τ2[x]], D[β2[x]]};
a = ArcTan[D[τ2[x]], D[β2[x]]];
r = Norm[{D[τ2[x]], D[β2[x]]}];
ParametricPlot[{D[τ2[x]], D[β2[x]]}, {x, 0, 12},

AxesLabel → {y, z}, ImageSize → 100 {1.25, 5.5},
Epilog → {

{Orange, Circle[{0, 0}, .5 r, {0, a}]},
Text[Row[{"α2", "(", Style["x", Italic], ")"}],

.5 r {Cos[1 /∕ 2 a], Sin[1 /∕ 2 a]}, Background → White],
Thickness[.02], Orange, Line[{{0, 0}, p}],
PointSize[.07], Point[p]

}
]

]
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In  this  instance  the  buffering  angle  α2  varies  as  a  function  of  x,  with  near-perfect  buff-
ering being observed at  both high and low fluid levels,  and minimal  buffering being ob-
served when x attains a value of approximately 4.38.
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In  this  instance  the  buffering  angle  α2  varies  as  a  function  of  x,  with  near-perfect  buff-
ering being observed at  both high and low fluid levels,  and minimal  buffering being ob-
served when x attains a value of approximately 4.38.

α2 = If[t2 ≤ 1, 1, -−1] NArcCost2  t2 ^2 + b2 ^2   Degree

1

°
ArcCos0.00395 × 2.71828-−2.30471 x x10.0975 

 0.0000156025 × 2.71828-−4.60942 x x20.1949 +

x -− 0.00395 × 2.71828-−2.30471 x x11.0975
2

x2


If0.00395 ⅇ-−2.30471 x x10.0975 ≤ 1, 1, -−1

Plot[α2, {x, 0, 12}, AxesLabel → {x, "α2"}, PlotRange → {0, 90}]
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As described previously,  the buffering parameters  can be determined using the buffering
angle  and  are  equivalent  to  the  values  calculated  using  the  originally  defined  functions
(compare the plots below to the plots for b1, B1, t1, and T1 above).

littleb2 = Sin[α2 °] /∕ (Cos[α2 °] + Sin[α2 °]);
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Plot[littleb2, {x, 0, 12}, PlotRange → {0, 2},
AxesLabel → {x, "littleb2"}]
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bigB2 = (Sin[α2 °] /∕ Cos[α2 °]);

Plot[bigB2, {x, 0, 12}, PlotRange → {0, 20},
AxesLabel → {x, "bigB2"}]
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littlet2 = Cos[α2 °] /∕ (Cos[α2 °] + Sin[α2 °]);
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Plot[littlet2, {x, 0, 12}, PlotRange → {0, 0.5},
AxesLabel → {x, "littlet2"}]
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bigT2 = (Cos[α2 °] /∕ Sin[α2 °]);

Plot[bigT2, {x, 0, 12}, PlotRange → {0, 1},
AxesLabel → {x, "bigT2"}]
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Thus, just as in the case of a linear system, plotting α2  over the range of the disturbance
(i.e. the addition of fluid) provides a simple, single-value measure with which to grasp the
inherent buffering properties of the system under consideration.
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□ Differentials versus Derivatives

At this point it is important to note that, up to now, only the overall changes in the buffer-
ing  and  transfer  compartments  have  been  considered  (by  comparing  differentials).  How-
ever, in the case of nonlinear systems, it is also informative to consider the rate at which
these  values  change  relative  to  one  another  (by  comparing  derivatives).  For  example,  in
the same way that it would be important for an investor to be aware of the current price of
gold, and how it has changed in previous years, months, or weeks, it would also be impor-
tant for that same investor to be cognizant of the rate at which the price is changing at any
given  instant  in  time  (i.e.  increasing,  decreasing,  or  stable).  This  is  to  say,  the  choice  to
sell  at  a  given  price  at  a  given  moment  would  be  greatly  influenced  by  knowing  if  the
price was stable or on either an upward or a downward trend. In other words, it is not only
of interest to know how a quantity has changed, but how that quantity is changing.
To determine the instantaneous rates of change in a buffered system, simply calculate and
plot the first derivatives of the functions describing the system.

D[β2 '[x]]

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975

D[τ2 '[x]]

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975

D[σ2 '[x]]

1

Plot[{τ2 '[x], β2 '[x], σ2 '[x]}, {x, 0, 12},
AxesLabel → {"Total\nVolume", "Rate of\nChange" },
PlotLegends → "Expressions"]

2 4 6 8 10 12
Total

Volume

-−0.5

0.5

1.0

1.5

Rate of
Change

τ2′(x)

β2
′(x)

σ2′(x)

18 Jim Karagiannis

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



Once  the  functions  are  defined,  the  instantaneous  buffering  parameters  (denoted  by
adding an “i” to the respective variable names) can also be calculated.

b2i = D[β2 '[x]] /∕ D[σ2 '[x]]

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975

B2i = D[β2 '[x]] /∕ D[τ2 '[x]]

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975 

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975

t2i = D[τ2 '[x]] /∕ D[σ2 '[x]]

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975

T2i = D[τ2 '[x]] /∕ D[β2 '[x]]

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975 

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975

As is evident from viewing the respective plots of these functions, this analysis allows one
to clearly identify the points of maximum and minimum buffering/transfer rate, as well as
the points at which the buffering/transfer rates are zero.

Plot[b2i, {x, 0, 12}, PlotRange → {-−1, 2},
AxesLabel → {"Total\nVolume", HoldForm[β2 '[x] /∕ σ2 '[x]] }]

2 4 6 8 10 12
Total

Volume

-−1.0

-−0.5

0.5

1.0

1.5

2.0

β2
′(x)

σ2′(x)
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Plot[t2i, {x, 0, 12}, PlotRange → {-−1.5, 1.5},
AxesLabel → {"Total\nVolume", HoldForm[τ2 '[x] /∕ σ2 '[x]]}]
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Plot[T2i, {x, 0, 12}, PlotRange → {-−20, 20},
AxesLabel → {"Total\nVolume", HoldForm[τ2 '[x] /∕ β2 '[x]]}]
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In this way, the most critical junctures in the development of the system (over the range of
the disturbance) can be quickly and easily identified.

20 Jim Karagiannis

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



■ From the Abstract to the Practical
The analysis presented in the previous sections concludes my efforts to establish the theo-
retical  foundation  of  the  formal  and  general  approach,  as  well  as  its  application  within
Mathematica. Next, in order to illustrate how these abstractions can be directly applied to
the  real  world,  I  consider  an  example  of  non-classical  buffering—namely,  that  of  the
“genetic  buffering”  of  phenotypic  variation.  In  this  way,  the  ability  to  exactly  and  for-
mally quantitate  phenomena that  at  first  glance might  be thought  of  as  being outside the
buffering paradigm is practically demonstrated. 

□ Genetic Buffering

The axiomatic foundation and abstract nature of the “formal and general approach” allows
it to be readily applied to any scenario in which an arbitrary quantity partitions itself be-
tween two compartments or states. While suitable for the analysis of “classical” buffering
phenomena  (the  homeostasis  of  physiological  parameters),  the  approach  is  also  germane
to a variety of “non-classical” buffering phenomena. One such phenomenon, which up to
now  has  been  considered  in  only  a  qualitative  manner,  is  that  of  “genetic”  buffering.
While many instances of genetic buffering have been described and characterized, a well-
known and classic example of the phenomenon—revolving around the gene encoding the
heat  shock  protein  Hsp90—will  be  used  to  illustrate  the  real-world  application  of
Schmitt’s paradigm.

◼ The Heat Shock Protein Hsp90

The  Hsp90  protein  is  an  ATP-dependent  molecular  “chaperone”  that  is  extensively  ex-
pressed in organisms ranging from bacteria to humans. It functions to promote the proper
folding of a specific subset of molecular targets referred to as its “client” proteins. Interest-
ingly,  many of Hsp90’s client  proteins are involved in the process of  signal  transduction
and  modulate  developmental  processes  [3].  For  example,  in  the  fruit  fly,  Drosophila
melanogaster,  mutations in the gene encoding Hsp90 result  in  morphological  abnormali-
ties affecting the development of the eye, legs, wings, thorax, and bristles [4].
Interestingly, the proportion of Hsp90 mutant flies exhibiting eye defects (in a line prone
to such abnormalities) increases dramatically as the temperature rises. In contrast, the pro-
portion  of  control  flies  (expressing  the  normal  or  “wild-type”  version  of  the  Hsp90  pro-
tein) also increases in response to increased temperature, but not nearly to the same degree
as in the mutant flies [4]. The gene encoding the wild-type version of the Hsp90 protein is
thus said to “buffer” the appearance of the defective eye trait.
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◼ Formally Quantitating Hsp90-Mediated Buffering of Phenotypic Variation

It  is  possible  to  analyze  these  experimental  results  in  more  detail  by  importing  the  raw
data  (see  Figure  8  in  [4])  from the  original  publication  in  the  form of  two arrays.  These
two arrays, corresponding to the wild-type and mutant fly lines, relate temperature to the
penetrance of the mutant phenotype (i.e. the percentage of flies in the line displaying the
eye defect).

wildtypeHsp90 = {{18, 0}, {21, 0}, {25, 0}, {26, 1},
{27, 3}, {30, 19}, {32, 16}}

{{18, 0}, {21, 0}, {25, 0},
{26, 1}, {27, 3}, {30, 19}, {32, 16}}

mutantHsp90 = {{18, 2}, {21, 10}, {25, 10}, {26, 25},
{27, 45}, {30, 70}, {32, 82}}

{{18, 2}, {21, 10}, {25, 10},
{26, 25}, {27, 45}, {30, 70}, {32, 82}}

Plotting the data illustrates that the mutant line is indeed more sensitive to increasing tem-
perature than the wild-type line.

Show[ListPlot[mutantHsp90, PlotStyle → Red,
PlotMarkers → Automatic,
AxesLabel → {"Temperature (°C)", "Affected (%)"},
PlotRange → {-−1, 100}],

ListPlot[wildtypeHsp90, PlotStyle → Darker@Green,
PlotMarkers → Automatic]]

●
● ●

●

●

●

●

● ● ● ● ●

● ●

20 22 24 26 28 30 32
Temperature (°C)

20

40

60

80

100
Affected (%)

22 Jim Karagiannis

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



To proceed with  the  application of  the  formal  and general  approach,  we now create  two
curves that fit the data using the FindFit function.

FindFit[wildtypeHsp90, j Exp[-−k X], {j, k}, X,
Method → NMinimize]

{j → 0.0031044, k → -−0.272652}

FindFit[mutantHsp90, j Exp[-−k X], {j, k}, X,
Method → NMinimize]

{j → 0.193965, k → -−0.191242}

With the above constants, the curves describing the behavior of the wild-type and mutant
lines can be generated.

wildtypecurve[x_] :=
j Exp[-−k x] /∕. FindFit[wildtypeHsp90, j Exp[-−k X],

{j, k}, X, Method → NMinimize]

mutantcurve[x_] :=
j Exp[-−k x] /∕. FindFit[mutantHsp90, j Exp[-−k X], {j, k},

X, Method → NMinimize]

wildtypecurve[x]

0.0031044 ⅇ0.272652 x

mutantcurve[x]

0.193965 ⅇ0.191242 x
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The appropriateness  of  the fit  can then be inspected by plotting the curves together  with
the raw data.

Show[
ListPlot[mutantHsp90, PlotStyle → Red,

PlotMarkers → Automatic,
AxesLabel → {"Temperature (°C)", "Affected (%)"}],

ListPlot[wildtypeHsp90, PlotStyle → Darker@Green,
PlotMarkers → Automatic],

Plot[Evaluate[{mutantcurve[x], wildtypecurve[x]}],
{x, 18, 32}, PlotStyle → {Red, Darker@Green}]

]
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With these results in hand, it is now possible to define both the buffering and transfer func-
tions and then to visualize the system using an area plot.

τ3[x_] := Evaluate[wildtypecurve[x]]

β3[x_] := Evaluate[mutantcurve[x]]

σ3[x_] := τ3[x] + β3[x]

24 Jim Karagiannis

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



Plot[{τ3[x], σ3[x]}, {x, 18, 32}, Filling → Bottom,
AxesLabel → {"Temperature (°C)", "Affected (%)"},
Epilog → {

Text[HoldForm[β3[x]], {31, 40}],
Text[HoldForm[τ3[x]], {31, 7}]

}
]

As is  evident  from inspecting  this  plot,  an  increase  in  temperature  translates  into  only  a
small increase in the proportion of flies with eye defects in the wild-type line. However, in
the mutant line, a much more pronounced increase is observed. We can thus infer that the
expression of  the wild-type Hsp90 protein buffers  the effect  of  temperature on the pene-
trance of the eye defect. In other words, since the “transfer” of the eye defect phenotype is
greater in the mutant line, the wild-type Hsp90 protein must possess the abstract capacity
of diverting or “soaking up”  this disturbance (into an equally abstract buffering compart-
ment) so that the “transfer” of the eye defect is diminished. Importantly, using the formal
and general approach, we can now provide an exact quantitative measure of the buffering
capacity of  the wild-type allele  by calculating and plotting the four  buffering parameters
together with the buffering angle (below).

b3 = D[β3[x]] /∕ D[σ3[x]]

0.193965 ⅇ0.191242 x

0.193965 ⅇ0.191242 x + 0.0031044 ⅇ0.272652 x
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Plot[b3, {x, 18, 32}, PlotRange → {.8, 1},
AxesLabel → {"Temperature (°C)", "b3"}]
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B3 = D[β3[x]] /∕ D[τ3[x]]

62.4808 ⅇ-−0.0814101 x

Plot[B3, {x, 18, 32}, PlotRange → {4, 16},
AxesLabel → {"Temperature (°C)", "B3"}]
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t3 = D[τ3[x]] /∕ D[σ3[x]]

0.0031044 ⅇ0.272652 x

0.193965 ⅇ0.191242 x + 0.0031044 ⅇ0.272652 x
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Plot[t3, {x, 18, 32}, AxesLabel → {"Temperature (°C)", "t3"}]
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T3 = D[τ3[x]] /∕ D[β3[x]]

0.0160049 ⅇ0.0814101 x

Plot[T3, {x, 18, 32}, AxesLabel → {"Temperature (°C)", "T3"}]
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α3 = If[t3 ≤ 1, 1, -−1] NArcCost3  t3 ^2 + b3 ^2   Degree;
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Plot[α3, {x, 18, 32}, AxesLabel → {"Temperature (°C)", "α3"}]
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As shown above, the buffering coefficient b3 can be calculated to range from ~0.935 at 18
°C to ~0.822 at 32 °C. While these calculations are now trivial, the critical biological ques-
tion  of  how to  interpret  these  calculations  is  more  challenging.  As  discussed  by  Schmitt
([1], Supplements 6 and 7), one way to proceed is to consider the conceptual overlap be-
tween  the  formal  and  general  approach  and  probability  theory.  In  essence,  the  buffering
coefficient  b3  is  analogous to  a  probability.  In  the  same way that  a  probability  measures
the proportion of a part to a whole (i.e. the number of successful events to the total num-
ber of events), so does the buffering coefficient (by measuring the fractional change in the
buffering compartment relative to the whole compartment). The critical realization is that
both  quantities  are  measured  on  a  relative  scale  that  is  normalized  to  1.  Interpreting  the
graph in this way, one can say that the “probability” of buffering decreases from ~0.935 to
~0.822 from 18 °C to 32 °C. 
Using similar logic, one can say that, in essence, the buffering ratio B3 is analogous to the
“odds” of buffering. In the same way that odds measure the proportion between two parts
of a whole (by comparing events to non-events), so does B3  (by comparing the fractional
change  in  the  buffering  compartment  to  the  fractional  change  in  the  transfer  compart-
ment).  Again  the  critical  realization  is  that  both  quantities  are  measured  on  a  scale  with
equal intervals and an absolute zero. Interpreting the data in this way, one can say that the
“odds” of buffering decrease from ~14.4 to ~4.6 from 18 °C to 32 °C. Similarly, one can
consider t3 and T3 to be analogous to the “probability” of transfer and the “odds” of trans-
fer, respectively.
Lastly,  the  buffering  angle  provides  information  regarding  not  only  the  magnitude  of
buffering but  also the class  of  buffering behavior.  As discussed by Schmitt  ([1],  Supple-
ment 7),  angles between 90°  and 0°  correspond to non-inverting moderation, with angles
of 90° corresponding to perfect buffering and 0° to zero buffering. Thus, the simple inspec-
tion of the plot of α3 reveals that the buffering capacity of wild-type Hsp90 is very strong
(near  perfect  at  ~86°)  but  decreases  slightly  with  increasing  temperature  (to  a  value  of
~78°).  In  any  event—and  however  the  data  is  interpreted—the  analysis  presented  above
clearly demonstrates the ease with which the buffering capacity of  a genetic determinant
can be formally and exactly quantified.
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■ Conclusion
A formal conceptualization of genetic buffering was first put forward by famed geneticist
and Nobel  laureate  Leland Hartwell  [5,  6].  In  these  publications,  Hartwell  highlights  the
importance  of  buffering  relationships  in  determining  phenotype  in  outbred  organisms.
Subsequent  research  both  in  yeast  and  in  the  roundworm,  Caenorhabditis  elegans,  has
strongly supported his assumptions [7, 8]. Thus, in addition to increasing our basic under-
standing of genetic networks, these results also raised the theoretical question of whether
or not it might be possible to provide an exact quantitative measure of a genetic determi-
nant’s buffering activity.
As described for the first time above, Schmitt’s “formal and general approach” provides a
powerful  means  with  which to  accomplish  this  goal.  Through the  calculation of  the  four
buffering  parameters  b,  B,  t,  and  T  and  the  buffering  angle  α,  it  is  indeed  possible  to
provide an exact quantitative measure of the buffering activity or “power” of any genetic
determinant in response to an environmental disturbance. Furthermore, the activity can be
measured using either a relative scale normalized to one (b and t) or an absolute scale with
equal  intervals  (B  and T),  or  distilled  to  a  single  value  measure  α,  capable  of  describing
the system in its entirety.
In conclusion, it must be noted that the application of the formal and general approach be-
comes practical only when used in conjunction with a sophisticated computational engine
that is capable of readily analyzing the relevant data. As demonstrated in this article, Math-
ematica  provides  such  an  engine.  The  application  of  the  formal  and  general  approach
using  the  Wolfram Language  thus  provides  a  powerful  tool  with  which  to  quantitatively
analyze both classical and non-classical buffering phenomena, irrespective of discipline.
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