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ABSTRACT

MODELING THE RESPONSE OF DUAL CROSS-LINKED NANOPARTICLE NETWORKS TO 
MECHANICHAL DEFORMATION

Report Title

Via computational modeling, we investigate the mechanism of strain recovery in dual cross-linked polymer grafted nanoparticle networks. 
The individual nanoparticles are composed of a rigid spherical core and a corona of grafted polymers that encompass reactive end groups. 
With the overlap of the coronas on adjacent particles, the reactive end groups form permanent or labile bonds, and thus form a “dual cross-
linked” network. We consider the strain recovery of the material after it is allowed to relax from the application of a tensile force. Notably, 
the existing labile bonds can break and new bonds can form in the course of deformation.  Hence, a damaged material could be 
“rejuvenated” both in terms of the recovery of strain and the number of bonds, if the relaxation occurs over a sufficiently long time. We 
show that this rejuvenation depends on the fraction of permanent bonds, strength of labile bonds, and maximal strain. Specifically, we show 
that while an increase in the labile bond energy leads to formation of a tough material, it also leads to delayed strain recovery. Further, we 
show that an increase in the fraction of permanent bonds not only enables faster recovery but also yields improved recovery even after 
multiple stretch-relaxation cycles.
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THE 19TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 

1 Introduction  
 Advances in the grafting of polymer chains 
onto nanoparticles now permit significant control 
over the type and number of chains that can be 
anchored on the particles. Through the appropriate 
functionalization of these grafted chains, the coated 
nanoparticles can be interconnected into extensive 
networks. Recent studies have revealed that these 
nanoparticle networks can exhibit remarkable 
mechanical properties [1]. There are, however, few 
theoretical or computational models [2,3], that can 
provide useful guidelines for tailoring the properties 
of the functionalized chains to yield the desired 
mechanical properties in networks of polymer 
grafted nanoparticles (or “PGNs”).  
 The problem becomes particularly 
challenging due to a number of issues that must be 
addressed in designing advantageous PGN networks. 
For instance, while conventional soft nanogels 
provide a useful degree of elasticity, the polymers 
grafted onto the rigid nanoparticles must now impart 
the desired flexibility. Furthermore, the grafted 
polymers must be functionalized with the 
appropriate reactive groups in order to achieve an 
effective dual cross-linking. These constraints 
introduce a number of design variables, such as the 
length of the grafted chains and the interaction 
energies between reactive groups; these play an 
important role in dictating the overall mechanical 
behavior of the composite.  
 The appropriate computational models 
would greatly facilitate the design of such hybrids 
materials. Such computational studies are 
challenging because all the relevant length and time 
scales should be captured in one specific model. 
Namely, the model must span a range of 
architectural features and temporal events. Herein, 
we develop an approach that encompasses the 

essential features to establish guidelines for tailoring 
the strength and toughness of PGN networks [4]. 
2 Model & Simulation Methodology  
 We develop a hybrid computational model 
for the behavior of a network of cross-linked 
polymer-grafted nanoparticles (PGNs). The 
individual nanoparticles are composed of a rigid 
core and a corona of grafted polymers that 
encompass reactive end groups (Fig 1). With the 
overlap of the coronas on adjacent particles, the 
reactive end groups can form permanent or labile 
bonds, which lead to the formation of a “dual cross-
linked” network (Fig 1). To capture these multi-
scale interactions, our approach integrates the 
essential structural features of the polymer grafted 
nanoparticles, the interactions between the 
overlapping coronas, and the kinetics of bond 
formation and rupture between the reactive groups 
on the chain ends.  
 The interaction between two PGNs is 
modeled through a sum of interaction potentials and 
is given by Uint Urep Ucoh Ulink . The first 

term, Urep , characterizes the repulsive interactions 

between the grafted nanoparticles that decays 
exponentially at large separations and exhibits a 
logarithmic growth when the particles are brought 
close to each other [5]. The second term in the 
potential, Ucoh , describes the attractive cohesive 
interaction between the coated particles. This term is 
constant for small inter-particle separations, but 
balances the repulsion at the edges of the corona to 
allow for the overlap between neighboring coronas 
[5]. The final term, Ulink , describes the attractive 
interaction [6] between the particles linked by the 
bonded polymer arms and depends on the number of 
bonds, Nb , formed between the given pair of 
particles.  
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 The number of bonds formed, Nb , depends 
on the maximum number of bonding pairs, Nmax , 
available in the corona overlap volume, and on the 
rates of formation and rupture of individual bonds. 
The rate of formation depends on the probability of 
contact of two chain ends that, in turn, depends on 
the free-end distribution in the corona. At the 
individual bond level, we use the Bell model [7] to 
describe the rupture and re-formation of bonds due 
to thermal fluctuations. 

 
 Via this model, we determine the tensile 
properties of the dual cross-linked samples in a two-
step simulation. In the first step, we numerically 
evolve the equation for the number of bonds, Nb . In 
the next step, we use this value of Nb  to calculate 
the spring force and integrate numerically the 
equation of motion: dx /dt  Ftot  where,   , is the 

mobility and Ftot  is the total force on the grafted 
particle.  

3 Results & Conclusion 

 We find that the mechanical behavior of the 
network can be tailored by altering the bond 
energies of the labile bonds, the fraction of 
permanent bonds in the network and the thickness of 
the polymer corona. In particular, for a network with 
weaker labile bonds, an increase in fraction of 
permanent bonds and the contour length of the chain 
can yield a tough network that behaves like a 
polymeric material, which exhibits cold 
drawing/necking. On the other hand, similar changes 
to the network with stronger labile bonds lead to an 
increase in toughness, with the network 
characteristics being similar to that of a purely 
ductile material. Variations in the ratio between the 
strain rate and the bond rupture rate are also found to 
affect the response of the networks. Our model 
provides a powerful approach for predicting how 
critical features of the system affect the performance 
of cross-linked polymer-grafted nanoparticle 
networks. 
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