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THERE is an explosion of interest in processing and analyzing large datasets collected in very different 
settings, including social and economic networks, information networks, internet and the world wide web, 
immunization and epidemiology networks, molecular and gene regulatory networks, citation and 
coauthorship studies, friendship networks, as well as physical infrastructure networks like sensor 
networks, power grids, transportation networks, and other networked critical infrastructures. We briefly 
contrast our approach in this project with existing work. 

A. Brief review of the literature 
Many authors focus on the underlying relational structure of the data by: 1) inferring the structure from 
community relations and friendships, or from perceived alliances between agents as abstracted through 
game theoretic models [1], [2]; 2) quantifying the connectedness of the world; and 3) determining the 
relevance of particular agents, or studying the strength of their interactions. Other authors are interested 
in the network function by quantifying the impact of the network structure on the diffusion of disease, 
spread of news and information, voting trends, imitation and social influence, crowd behavior, failure 
propagation, global behaviors developing from seemingly random local interactions [2], [3], [4]. Much of 
these works either develop or assume network models that capture the interdependencies among the 
data and then analyze the structural properties of these networks. Models often considered may be 
deterministic like complete or regular graphs, or random like the Erdős-Rényi and Poisson graphs, the 
configuration and expected degree models, small world or scale free networks [2], [4], to mention a few. 
These models are used to quantify network characteristics, such as connectedness, existence and size of 
the giant component, distribution of component sizes, degree and clique distributions, and node or edge 
specific parameters including clustering coefficients, path length, diameter, betweenness and closeness 
centralities. 

Another body of literature is concerned with inference and learning from such large datasets. Much work 
falls under the generic label of graphical models [5], [6], [7], [8], [9], [10]. In graphical models, data is 
viewed as a family of random variables indexed by the nodes of a graph, where the graph captures 



probabilistic dependencies among data elements. The random variables are described by a family of joint 
probability distributions. For example, directed (acyclic) graphs [11], [12] represent Bayesian networks 
where each random variable is independent of others given the variables defined on its parent 
nodes. Undirected graphical models, also referred to as Markov random fields [13], [14], describe data 
where the variables defined on two sets of nodes separated by a boundary set of nodes are statistically 
independent given the variables on the boundary set. A key tool in graphical models is the Hammersley-
Clifford theorem [13], [15], [16], and the Markov-Gibbs equivalence that, under appropriate positivity 
conditions, factors the joint distribution of the graphical model as a product of potentials defined on the 
cliques of the graph. Graphical models exploit this factorization and the structure of the indexing graph to 
develop efficient algorithms for inference by controlling their computational cost. Inference in graphical 
models is generally defined as finding from the joint distributions lower order marginal distributions, 
likelihoods, modes, and other moments of individual variables or their subsets. Common inference 
algorithms include belief propagation and its generalizations, as well as other message passing 
algorithms. A recent block-graph algorithm for fast approximate inference, in which the nodes are non-
overlapping clusters of nodes from the original graph, is in [17]. Graphical models are employed in many 
areas; for sample applications, see [18] and references therein. 

Extensive work is dedicated to discovering efficient data representations for large high-dimensional data 
[19], [20], [21], [22]. Many of these works use spectral graph theory and the graph Laplacian [23] to derive 
low-dimensional representations by projecting the data on a low-dimensional subspace generated by a 
small subset of the Laplacian eigenbasis. The graph Laplacian approximates the Laplace-Beltrami operator 
on a compact manifold [21], [24], in the sense that if the dataset is large and samples uniformly randomly 
a low-dimensional manifold then the (empirical) graph Laplacian acting on a smooth function on this 
manifold is a good discrete approximation that converges pointwise and uniformly to the elliptic Laplace-
Beltrami operator applied to this function as the number of points goes to infinity [25], [26], [27]. One can 
go beyond the choice of the graph Laplacian by choosing discrete approximations to other continuous 
operators and obtaining possibly more desirable spectral bases for the characterization of the geometry 
of the manifold underlying the data. For example, if the data represents a non-uniform sampling of a 
continuous manifold, a conjugate to an elliptic Schrödinger-type operator can be used [28], [29], [30]. 

More in line with the research we developed in this project, several works have proposed multiple 
transforms for data indexed by graphs. Examples include regression algorithms [31], wavelet 
decompositions [30], [32], [33], [34], [35], filter banks on graphs [36], [37], de-noising [38], and 
compression [39]. Some of these transforms focus on distributed processing of data from sensor fields 
while addressing sampling irregularities due to random sensor placement. Others consider localized 
processing of signals on graphs in multiresolution fashion by representing data using wavelet-like bases 
with varying “smoothness” or defining transforms based on node neighborhoods. In the latter case, the 
graph Laplacian and its eigenbasis are sometimes used to define a spectrum and a Fourier transform of a 



signal on a graph. This definition of a Fourier transform was also proposed for use in uncertainty analysis 
on graphs [40], [41]. This graph Fourier transform is derived from the graph Laplacian and restricted to 
undirected graphs with real, non-negative edge weights, not extending to data indexed by directed graphs 
or graphs with negative or complex weights. 

The algebraic signal processing (ASP) theory [42], [43], [44], [45] is a formal, algebraic approach to analyze 
data indexed by special types of line graphs and lattices. The theory uses an algebraic representation of 
signals and filters as polynomials to derive fundamental signal processing concepts. This framework has 
been used for discovery of fast computational algorithms for discrete signal transforms [42], [46], [47]. It 
was extended to multidimensional signals and nearest neighbor graphs [48], [49] and applied in signal 
compression [50], [51]. The framework proposed that we developed in this project generalizes and 
extends the ASP to signals on arbitrary graphs. 

B. Overview of our contributions 
Our goal was to develop a linear discrete signal processing (DSP) framework and corresponding tools for 
datasets arising from social, biological, and physical networks. DSP has been very successful in processing 
time signals (such as speech, communications, radar, or econometric time series), space-dependent 
signals (images and other multidimensional signals like seismic and hyperspectral data), and time-space 
signals (video).We refer to data indexed by nodes of a graph as a graph signal or simply signal and to our 
approach as DSP on graphs DSPG. We developed the basics of linear DSPG, including the notion of a shift 

on a graph, graph filter structure, graph filtering and graph convolution, graph signal and graph filter 
spaces and their algebraic structure, the graph Fourier transform, graph frequency, graph spectrum, graph 
spectral decomposition, and graph impulse and graph frequency responses. With respect to other works, 
ours is a deterministic framework to signal processing on graphs rather than a statistical approach like 
graphical models. Our work is an extension and generalization of the traditional DSP, and generalizes the 
Algebraic Signal Processing theory [42], [43], [44], [45] and its extensions and applications [49], [50], 
[51]. We emphasize here the contrast between the DSPG and the approach to the graph Fourier transform 

that takes the graph Laplacian as a point of departure [32], [35], [36], [38], [39], [41]. In the latter case, 
the Fourier transform on graphs is given by the eigenbasis of the graph Laplacian. However, this definition 
is not applicable to directed graphs, which often arise in real-world problems, and graphs with negative 
weights. In general, the graph Laplacian is a second-order operator for signals on a graph, whereas an 
adjacency matrix is a first-order operator. Deriving a graph Fourier transform from the graph Laplacian is 
analogous in traditional DSP to restricting signals to be even (like correlation sequences) and Fourier 
transforms to represent power spectral densities of signals. Instead, we demonstrated that the graph 
Fourier transform is properly defined through the Jordan normal form and generalized eigenbasis of the 
adjacency matrix. Finally, we illustrate the DSPG with applications like classification, compression, and 

linear prediction for datasets that include blogs, customers of a mobile operator, or collected by a network 
of irregularly placed weather stations, under many other applications.  



Summary of results 
DSPG extended the algebraic signal processing (ASP) theory introduced in [42],[43],[44], [45],[46] where 

the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, 
all linear shift-invariant filters for a given class of signals. Our key insight in DSPG to build the theory of 

signal processing on graphs is to identify the shift operator. We adopted the weighted adjacency matrix 
of the graph as the shift operator and then developed appropriate concepts of z-transform, impulse and 
frequency response, filtering, convolution, and Fourier transform. In particular, the graph Fourier 
transform in this framework expands a graph signal into a basis of eigenvectors of the adjacency matrix, 
and the corresponding spectrum is given by the eigenvalues of the adjacency matrix.  

The association of the graph shift with the adjacency matrix in DSPG is natural and has multiple intuitive 

interpretations. The graph shift is an elementary filter, and its output is a graph signal with the value at 
vertex n of the graph given approximately by a weighted linear combination of the input signal values at 
graph neighbors of n. With appropriate edge weights, the graph shift can be interpreted as a (minimum 
mean square) first-order linear predictor. Another interpretation in DSPG of the graph shift comes from 

Markov chain theory [52], where the adjacency matrix represents the one-step transition probability 
matrix of the chain governing its dynamics. Finally, the graph shift can also be seen as a stencil 
approximation of the first-order derivative on the graph. 

Because the eigenvalues of the graph shift are in general complex valued, there is an issue that arises in 
DSPG with defining low and high frequencies, and low-pass, band-pass, and high-pass graph signals or 
graph filters. In DSPG, we defined low and high frequencies and low-, high-, and band-pass graph signals 

and filters on generic graphs in a novel way. In traditional discrete signal processing (DSP), these concepts 
have an intuitive interpretation, since the frequency contents of time series and digital images are 
described by complex or real sinusoids that oscillate at different rates [33]. The oscillation rates provide a 
physical notion of “low” and “high” frequencies: low-frequency components oscillate less and high-
frequency ones oscillate more. However, these concepts do not have a similar interpretation on graphs, 
and it was not obvious how to order graph frequencies to describe the low- and high-frequency contents 
of a graph signal.  
 
In DSPG, we developed an ordering of the graph frequencies that is based on how “oscillatory” the graph 

spectral components are with respect to the indexing graph, i.e., how much they change from a node to 
neighboring nodes. To quantify this amount, we introduced the graph total variation function that 
measures how much signal samples (values of a graph signal at a node) vary in comparison to neighboring 
samples. This approach is analogous to the approach taken in classical DSP theory, where the oscillations 
in time and image signals are also quantified by appropriately defined total variations [33]. Once we have 
an ordering of the frequencies based on the graph total variation function, we define the notions of low 
and high frequencies, as well as low-, high-, and band-pass graph signals and graph filters.  



 
We applied DSPG in a number of important applications, demonstrating not only its wide applicability as 

well as the gains of performance it affords when analyzing signals indexed by nodes of a graph. 
Applications we considered included: signal recovery on graphs, classification, compression, semi-
supervised learning, detection of anomalies, and sensor network analysis. For example, signal recovery 
on graphs recovers one or multiple smooth graph signals from noisy, corrupted, or incomplete 
measurements. We formulated graph signal recovery as an optimization problem, for which we provided 
a general solution through the alternating direction methods of multipliers. We showed how signal 
inpainting, matrix completion, robust principal component analysis, and anomaly detection all relate to 
graph signal recovery and provided corresponding specific solutions and theoretical analysis. We validated 
the proposed methods on real-world recovery problems, including online blog classification, bridge 
condition identification, temperature estimation, recommender system for jokes, and expert opinion 
combination of online blog classification. On another set of studies, we showed that naturally occurring 
graph signals, such as measurements of physical quantities collected by sensor networks or labels of 
objects in a dataset, tend to be low-frequency graph signals, while anomalies in sensor measurements or 
missing data labels can amplify high-frequency parts of the signals. We demonstrated how these 
anomalies can be detected using appropriately designed high-pass graph filters, and how unknown parts 
of graph signals can be recovered with appropriately designed regularization techniques. In particular, our 
experiments showed that classifiers designed using the graph shift matrix lead to higher classification 
accuracy than classifiers based on the graph Laplacian matrices, combinatorial or normalized. 
 
The specific framework, theoretical results, analysis methods, and application studies carried out were 
detailed in papers [1] through [12], see Section C. 
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