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SUMMARY

Thin films of environmentally safe, halogen free, anionic sodium phosphate and cationic polysiloxanes
were deposited on a Nyco (1:1 nylon/cotton blend) fabric via layer-by-layer (LbL) assembly to reduce
the inherent flammability of Nyco fabric. In the coating process, we used three different polysiloxane mate-
rials containing different amine groups including, 35–45% (trimethylammoniummethylphenythyl)-methyl
siloxane-55-65% dimethyl siloxane copolymer chloride salt (QMS-435), aminoethylaminopropyl
silsesquioxane-methylsilsesquioxane copolymer oligomer (WSA-7021) and aminopropyl silesquioxane oligo-
mers (WSA-991), as a positive polyelectrolyte. Thermo-gravimetric analysis showed that coated fabric has
char yield around 40% at 600 °C whereas control fabric was completely consumed. The vertical flame test
(VFT) on the LbL-coated Nyco fabric was passed with after flame time, 2 s, and the char length of 3.81 cm.
Volatile and nontoxic degradation products of flame retardant-coated fabric were analyzed by pyrolysis gas
chromatography mass spectroscopy (Py-GCMS). Surface morphology of coated fabrics and burned fabric res-
idues were studied by scanning electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.
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KEY WORDS: water soluble polysiloxanes; phosphates; nylon/cotton blends; layer-by-layer coating; flame
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1. INTRODUCTION

Fires originating from burning of textile materials often lead to large property losses, severe burn
injuries, and even loss of human life. Reducing the flammability of textiles is a challenging task in
both military and civilian applications to prevent fire. Textile fibers, mostly made of cotton,
polyesters, and polyamides are highly flammable and thus it is necessary to increase their flame
retardant (FR) property. Previously, numerous attempts have been made to impart FR property to
cellulosic cotton fibers. Currently, most commonly used FR materials for fabric contain halogens,
nitrogen and organo-phosphorus compounds [1]. Many of these halogenated FR materials are now
recognized as toxics that are known to have adverse effects on the human body and the
environment. These adverse environmental effects in animals and humans include endocrine and
thyroid disruption, immunotoxicity, reproductive toxicity, cancer and undesirable effects on child
development and neurologic function [2]. Some FR materials, such as polybrominated diphenyl
ethers (PBDEs), have been banned by EPA or voluntarily phased out by manufacturers because of
*Correspondence to: Ravi Mosurkal, US Army Natick Soldier Research, Development & Engineering Center, Natick
and Jayant Kumar, Department of Physics and Applied Physics, University of Massachusetts, Lowell.
†E-mail: ravi.mosurkal.civ@mail.mil; Jayant_Kumar@uml.edu
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their environmental persistence and toxicity, only to be replaced by other organohalogens of unknown
toxicity [3]. Despite restrictions on further production in some countries, consumer products previously
treated with banned retardants are still used and continue to release toxic chemicals into the
environment. Therefore, there is a need to develop new non-halogenated FR fabric. Silicon, nitrogen
and phosphorus containing FR are considered as environmentally safe because they do not generate
substances that are harmful to humans and the environment under conditions of fire [4].

Phosphorus containing flame retardants are unique since they can either act in vapor phase or
condensed phase. The mode of action of their FR mechanism may be either in the vapor phase or in
the condensed phase depending on the chemical structure and the interaction with the burning
polymer [5–8]. Prior studies have shown that, decomposition mode of the cellulose is modified
when they are treated with phosphorus containing FR compounds. Treated fibers produce a surface
char layer which is relatively less toxic to the environment and humans [9]. Earlier studies have also
shown that nitrogen containing FR produce non combustible and non toxic gases while degrading at
high temperatures. These gases act as diluents for the oxygen concentration near the burning
materials resulting in minimization or retardation of the flame and often used in conjunction with
phosphorus containing FR materials. The gases originating from nitrogen containing FR materials
form a swollen protective layer around burning surfaces [10, 11]. Comparatively, silicon containing
FR materials are more environment-friendly since they do not produce harmful substances on catching
fire. They form a layer of silicon dioxide or silica which does not react further with oxygen. This
silica layer protects the burning material from decomposing further at high temperature [12, 13].

Spontaneous sequential adsorption of oppositely charged ionic materials widely known as
electrostatic layer-by-layer (LbL) process is a simple and versatile method to impart desired
properties to surfaces by forming thin films of polymers, colloids or molecules [14, 15]. A simple
washing/rinsing (in water) step is performed after adsorption of each layer to remove weakly or
nonspecifically bound charged moieties adhering to the substrate. This step also prevents the
contamination of the solution in the next dipping cycle. The LbL coating can also be achieved by
spray-assisted LbL coating process [16, 17]. This process allows large surfaces to be coated more
rapidly than LbL dip coating process. As shown in Figure 1(b), for the same concentration of
Figure 1. Schematic diagram of (a) LbL dip coating and (b) spray-assisted LbL coating processes.

Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
DOI: 10.1002/fam



LAYER-BY-LAYER ASSEMBLY OF HALOGEN-FREE POLYMERIC MATERIALS
polyelectrolytes, omitting the rinsing or washing step results in thicker coatings than dip coating
process [17]. However, reproducibility of LbL assembly and resulted film properties depend on
many factors, including concentration of coating solutions, adsorption times, pH or temperature, and
applied LbL method. Monitoring of the LbL assembly can be observed by several methods, such as
UV–Vis spectroscopy, elipsometry or X-ray reflectometry, attenuated total reflection Fourier
transform infrared spectroscopy (ATR-FTIR) and quartz crystal microbalance (QCM).

Previously, LbL process as shown in Figure 1(a) was employed to coat fabrics for FR applications.
The materials used are poly(allylamine), poly(acryl amide), poly(acrylic acid), inorganic materials such
as montmorillonite, ammonium polyphosphate and poly(sodium phosphate) and renewable materials
such as chitosan, phytic acid and graphene oxide [18–26]. However, polysiloxane containing FR
materials have received limited attention as polyelectrolyte for aqueous LbL deposition process on
fabrics. In addition, most of the research has been devoted to develop FR coating using LbL
process. A Nyco fabric which is a blend of cotton and nylon has received limited attention towards
developing FR coating using LbL process. Herein, we report, deposition of multilayers of
phosphorus and silicon containing FR polyelectrolytes on Nyco fabric using LbL process. The goal
of this study is to observe changes in the FR properties of Nyco fabric when coated with silicon,
phosphorus and nitrogen containing FR materials using LbL process. The LbL dip coating process
was employed to coat small samples (3″×1″) for thermal characterization studies. We have used
spray method for the large size (12″×3″) samples to obtain faster coatings as compared to dip
coatings due to the fact that we skip water rinsing step in the spray method. We observed thicker
coatings when we used spray method over dip method. Other than this, we did not observe any
significant differences between these two coating methods.
2. EXPERIMENTAL

2.1. Chemicals and substrates

QMS-435, a 60% milky dispersion of cationic polymer (35–45% (trimethylammonium methyl
phenythyl)-methyl siloxane–55–65% dimethyl siloxane copolymer chloride salt), of molecular weight
1800–2000 in methoxypropanol was obtained from Gelest and used without further modification.
WSA-7021, a 22–25% solution in water of aminoethylaminopropyl silsesquioxane–methylsilsesquioxane
copolymer oligomer having molecular weight ranging from 370 to 650, was purchased from Gelest and
used without further modification. WSA-9911, a 22–25% solution in water of aminopropyl silesquioxane
oligomers having molecular weight ranging from 270 to 550, was obtained from Gelest and used as
received. Poly (sodium phosphate) (PSP) (crystalline, +200mesh, 96%) was obtained from Aldrich and
used as received. Distilled water obtained from Poland Spring was used for preparation of all solutions.
1M HCl and 1M NaOH (Sigma-Aldrich) were used to adjust pH of the depositing solutions. Non dyed,
bleached cotton fabrics were obtained from US Army Natick Soldier Research, Development and
Engineering Center (NSRDEC) and used as substrates for monitoring LbL deposition process. The
camouflaged Nyco fabric (1:1 nylon/cotton blend, 235g/m2) was obtained from the US Army Natick
center and used for further experimental LbL deposition.

2.2. LbL assembly dip coating process and characterization

PSP (2wt %), QMS- 435 (6.8wt %), WSA-9911 (4wt %) and WSA-7021 (4wt %) solutions were
prepared in distilled water as deposition solutions. The pH of these solutions was maintained at 7
for LbL process. Fabric specimens were dipped in pH2 solution to develop initial positive charge
which improves the adhesion of polyelectrolytes. LbL deposition process was performed by
sequential dipping these charged specimens into anionic PSP and cationic siloxane solutions. Each
successive cycle of dipping in oppositely charged polyelectrolytes added one bilayer. The first dip
into each polyelectrolyte mixture was for 5min, and consequent dips were for 1min each. The
fabric specimens were rinsed by dipping in distilled water solutions after each dip in polyelectrolyte
solutions to remove loosely bound polyions and then dried using hot air gun. This procedure was
iterated until desired numbers of bilayers were coated on specimens.
Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
DOI: 10.1002/fam
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2.3. Spray-assisted LbL coating process and characterization

The Nyco fabric was also coated by spray-assisted LbL coating using spray bottles as shown in
Figure 1(b). The common household devices such as spray bottles have been used intentionally
instead of sophisticated spray coating instruments so as to demonstrate the reliability of the process.
Similar concentrations of solutions PSP (2wt %), QMS-435 (6.8%), WSA-9911 (4%) and WSA-
7021 (4%) were used for spray-assisted LbL coating on Nyco fabric. In a typical spray-assisted LbL
coating process, anionic solution of PSP was sprayed using spray bottles on fabric held horizontally
in an aluminum frame followed by spraying QMS-435 or WSA-9911 or WSA-7021 solution. The
rinsing or washing with water spraying was omitted which allowed to develop higher thickness of
polyelectrolytes layers as compared to dip coating. There was no vacuum used for spray coating
process. This process was repeated until desired numbers of bilayers were obtained on one side of
fabric. Similar process was used to coat the other side of fabric. Coated specimens were dried in
vacuum at 80o C for about two hours.

The LbL dip coating process was characterized by attenuated total reflection Fourier transform infra
red (FT-IR) spectroscopy. Coated fabrics were weighed by balance from Denver instrument company
model A-250. Post vertical flame test (VFT) residues from coated fabrics were studied using field
emission scanning electron microscope (FE-SEM JEOL JSM-1401F) at accelerating voltage of 5 kV.
Fabric specimens and post VFT char residues were sputtered with gold to prevent charging.

2.4. Thermo-gravimetric analysis

The thermal stability of control and coated fabric was measured using a thermo-gravimetric analyzer
(TGA Q 50, v 6.7). Approximately 10mg of the samples was loaded in platinum pans and heated
up to 850 °C at a rate of 20 °C/min. All TGA experiments were performed under air atmosphere
maintained under a constant flow of air at 30ml/min. All tests were conducted in triplicate and
average values are reported.

2.5. Vertical flame test

Vertical flame tests (VFT) were performed on control and coated Nyco fabrics (30.48 cm×7.62 cm)
according to ASTM D 6413 [27]. This test method is a qualitative pass/fail indicator of fabric
flammability. It measures the relative flammability of a fabric specimen which is vertically held in a
three-sided frame. The bottom edge of the fabric is ignited with a methane flame for 12 s. The char
length (damaged part of the fabric); afterflame (the amount of time the flame persists on the fabric
surface after the initially ignited flame is turned off), afterglow (the amount of time the fabric
continues to glow after the flame stops) and relevant observations are recorded.

2.6. Pyrolysis-gas chromatography mass spectroscopy (Py-GCMS)

The pyrolysis portion of the Py-GCMS measurements was carried out with a CDS 5200 pyrolyzer which
is coupled to an Agilent GCMS instrument (GC Model 7890A, MS Model 5975C). A measurable
amount of sample of 1.00mg of coated fabric was placed inside a quartz capillary tube which was
then inserted in the platinum coil in the pyroprobe. The platinum filament was heated rapidly to a
temperature high enough to pyrolyze the polymeric materials into volatile monomers or smaller
fragments. The volatile products of pyrolysis were transferred to the gas chromatograph to be
separated and eventually identified by the mass spectrometer. The pyrolysis was done under helium
carrier gas at a flow rate of 54ml/min. In this experiment, the pyroprobe temperature was raised only
to 200 °C to thermally desorb the FR coating from the coated fabric. The interface and thermally
insulated transfer line temperature were set at 300 °C to keep the chemicals volatilized during transport
from the pyrolyzer to the GC column. The GC column was a DB-5ms low bleed, 5%-phenyl-methyl
polysiloxane column (30m×0.25mm×0.25 um), which is typical for GCMS. The GC temperature
was initially held at 40 °C for 2min, and was programmed to 300 °C at 10 °C/min ramp, and then held
at 300 °C for 10min. The mass spectra were measured using electron impact ionization energy of
70eV. The mass detector was scanned from 35 to 400m/z at scan rate of 4 scans per second. The data
was searched using the NIST 2008 MS library and the CDS’s pyrolysis library.
Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
DOI: 10.1002/fam
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3. RESULTS AND DISCUSSION

3.1. LbL process characterization

LbL coating of materials such as QMS-435, WSA-9911 and WSA-7021 shown in Figure 2 (a), 2(b)
and 2(c) as cationic polyelectrolytes and poly(sodium phosphate) (PSP) as an anionic polyelectrolyte
were performed on non dyed cotton fabric using dip coating process. Different samples of Nyco
fabric (3″×1″) were coated using LbL dip coating process and desired numbers of bilayers (5, 10,
15 and 20) were achieved with each polysiloxane based polycations and polyanions pair. These
coated samples were characterized by FTIR spectroscopy.

Figure 3 shows that the intensity of stretching vibrational peaks at 800cm�1 increased as the number of
bilayers increased. The stretching frequencies at 800cm�1 are assigned to Si–CH3 functional group in
polysiloxane materials [28]. Obviously, this stretching frequency was not seen in the control cotton fabric
and observed only in coated cotton fabric specimens. The stretching frequencies at 845cm�1 also
increased as the number of coated bilayers increased which is assigned to dimethyl groups in copolymers.

3.2. Mass adsorption analysis

The coated fabrics were also characterized for mass adsorbed on them because of LbL dip coating
process. The mass added was measured by difference in weight method for PSP/QMS-435,
PSP/WSA-9911 and PSP/WSA-7021 coated Nyco fabric before and after LbL dip coating. Figure 4
shows that the mass adsorbed per square centimeter area on Nyco fabric as a function of the number
of bilayers of deposited. The mass adsorbed per unit area increased linearly with respect to increased
number of bilayers for PSP/QMS-435, PSP/WSA-9911 and PSP/WSA-7021 coated fabrics as shown
in Figure 4(a), 4(b) and 4(c) respectively. The linear nature of the graphs show that mass adsorbed
on Nyco fabric increases rapidly from the initial adsorbed bilayer till the final adsorbed bilayers in
all the three cases depicted in Figure 4. Mass adsorbed in case of PSP/QMS-435-coated fabric is
much greater than that of PSP/WSA-9911 and PSP/WSA-7021 owing to large molecular weight of
QMS-435 compared to WSA-9911 and WSA-7021.

3.3. Thermal properties

The thermal stability of coated Nyco fabrics was studied using thermo-gravimetric analyzer in an air
and nitrogen atmosphere. As seen in Figure 5, coated fabrics showed lower degradation temperature
Figure 2. Chemical structures of polysiloxane materials (a) QMS-435, (b) WSA-9911, (c) WSA-7021 and
containing material (d) poly(sodium phosphate), i.e. PSP.

Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
DOI: 10.1002/fam



Figure 3. The FT-IR spectra of QMS-435-coated cotton fabric.

Figure 4. Mass adsorbed on Nyco fabric as a function of number of deposited bilayers for (a) PSP/QMS-435,
(b) PSP/WSA-9911 and (c) PSP/WSA-7021.

M. NARKHEDE ET AL.
than control Nyco fabrics. Degradation of PSP/QMS-435-coated Nyco fabric occurred around 230 °C,
about 90 °C lower than the control fabric as shown in Figure 5(a). Fabric specimens coated with
PSP/WSA-9911 and PSP/WSA-7021, degradation occurred around 310°C, approximately 20 °C lower
than the degradation of control as shown in Figure 5(b) and 5(c). These lower degradation
temperatures of coated fabrics suggest that coated materials degrade prior to the onset of
Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
DOI: 10.1002/fam



Figure 5. Thermo-gravimetric analysis of Nyco fabrics coated with (a) PSP/QMS-435, (b) PSP/WSA- 9911
and (c) PSP/WSA-7021 under air.

LAYER-BY-LAYER ASSEMBLY OF HALOGEN-FREE POLYMERIC MATERIALS
degradation of fabric forming char layers and non-combustible gases in the process and help to retard
or extinguish the flame. The degradation of coated fabrics ceased much earlier than the fabric as
shown in Figure 5(a), 5(b) and 5(c). All coated fabrics showed earlier onset of degradation
(Tonset) and exhibited much higher char residues than control fabric beyond 600 °C. The average
char yield of these coated fabrics is tabulated as shown in Table I. In general, all these coated
Nyco fabric samples gave higher char residues in nitrogen atmosphere compared to air
atmosphere. However, this increase in char yield is due to the non burning nature of base fabric
Nyco in nitrogen. This means that there is no difference between the char yields of these samples
in air and nitrogen atmospheres.
3.4. Py-GCMS studies

The thermal decomposition of cellulose (cotton) produces many flammable fragments such as aldehydes,
ketones, acid, furans and furfural [29–31]. Prior studies regarding thermal degradation of aliphatic nylons
have demonstrated formation of monomers or cyclic or linear oligomers. Secondary reactions lead to
evolution of volatile gases and to cross linking. Thermal decomposition of Nylon 6/6 yielded carbon
dioxide and cyclopentanone as the major gaseous products [32]. The Py-GCMS was employed on
coated Nyco fabric samples to thermally degrade them and provide thorough information about the
degradation products.

For PSP/QMS-435-coated fabric, the total ion chromatogram (TIC) showed CO2, hexamethyl
cyclotrisiloxane, toluene, acetic acid, D-allose, Nylon 6/6, hexanedintrile and other miscellaneous
substances as shown in Figure 6 [33]. Similar experiments were performed on fabric samples coated
with PSP/WSA-9911 and PSP/WSA-7021, resulting TIC shows CO2, hexanedintrile, D-allose,
Nylon 6/6 and various other substances as shown in Figure 7 [34].
Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
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Figure 6. Py-GCMS chromatogram of Nyco fabric coated with PSP/QMS-435.

Table I. Thermo-gravimetric analysis and fabric weights of PSP/QMS-435, PSP/WSA-9911 and PSP/WSA-
7021-coated Nyco fabric.

PSP/QMS-435

Sample
Char yield (%)

at 700 °C under air
Char yield (%)

at 700 °C under N2

Weight added on
fabric (%)

Control 0.80 11.46 0
5 bilayers 16.80 23.42 50.55
10 bilayers 27.20 27.26 102.89
15 bilayers 37.40 28.79 165.89
20 bilayers 34.20 34.35 195.67

PSP/WSA-9911

Sample Char yield (%)
at 700 °C under air

Char yield (%)
at 700 °C under N2

Weight added on
fabric (%)

Control 0.80 11.46 0
5 bilayers 9.80 19.51 12.74
10 bilayers 19.84 23.54 24.67
15 bilayers 24.20 29.34 40.39
20 bilayers 35.00 38.13 56.13

PSP/WSA-7021

Sample Char yield (%)
at 700 °C under air

Char yield (%)
at 700 °C under N2

Weight added on
fabric (%)

Control 0.80 11.46 0
5 bilayers 10.06 21.80 14.46
10 bilayers 21.20 25.77 29.34
15 bilayers 28.20 30.35 55.29
20 bilayers 36.00 31.89 89.23

M. NARKHEDE ET AL.
3.5. Flame retardant properties of fabric samples

To accelerate the LbL coating on bigger samples (30.48 cm×7.62 cm), 20 bilayers of PSP/WSA-
9911 and PSP/WSA-7021 were deposited by a spray-assisted LbL coating process. The control
and the spray-assisted LbL-coated fabrics samples were subjected to vertical flame test (VFT,
ASTM D 6413). The control Nyco fabric was completely consumed by direct exposure to flame.
The fabrics coated with 20 bilayers of PSP/QMS-435 were also burnt completely but exhibited
slower burn rate across the fabric surface or higher resistance to flame because of the presence of
Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
DOI: 10.1002/fam



Figure 7. Py-GCMS chromatogram of Nyco fabric coated with PSP/WSA-9911.

LAYER-BY-LAYER ASSEMBLY OF HALOGEN-FREE POLYMERIC MATERIALS
phosphate and siloxane groups. When fabric specimens coated with 20 bilayers of PSP/WSA-9911
and PSP/WSA-7021 were subjected to VFT, the flame was extinguished for both samples, and
these results are summarized in Table II. The coated fabric showed char length of 1.5 in as shown
in Figure 8(a) and 8(b) for PSP/WSA-9911 and PSP/WSA-7021-coated fabrics, respectively. The
reasons for flame extinguishing nature of these materials, PSP/WSA-9911 and PSP/WSA-7021,
are the presence of phosphate, and siloxane coupled with presence of primary amine groups.
These primary amine groups facilitated the release of ammonia gas which further reacted with
oxygen to form non combustibles gases such as water vapor and nitrogen. These escaping of non
combustible gases acted as a blowing agent [35] and resulted in foamy char as depicted from SEM
images shown in Figure 9.
3.6. Surface morphology studies

Surface morphology of control fabric, coated fabric and burned fabric were studied by scanning
electron microscope (SEM) as shown in Figure 9. Thicknesses of coated fibrils increased for all
three types of coated fabric as shown in Figure 9(a), 9(b) and 9(c) compared to control fabric which
showed natural striations as depicted in Figure 9(d). The coating of materials did not change the
weave nature of Nyco fabric before VFT. Higher magnification images of coated fabric with
PSP/WSA-9911 and PSP/WSA-7021, as shown in Figure 9(f) and the Figure 9(g) respectively,
clearly showed that coatings were highly conformal. Relatively high amounts of materials were
coated in case of 20 bilayers of PSP/QMS-435-coated fabric. The control fabric demonstrated a
smooth surface, whereas all coated samples showed individual fibrils bridged by materials and the
Table II. ASTM D 6413 Vertical Flame Test (VFT) results on all the LBL-coated samples
and untreated Nyco.

Sample Afterflame (s) Char length (cm)
Test result
(pass or fail)

Control Nyco – Completely
consumed

Fail

PSP/QMS-435 (20 bilayers) – 30.48 Fail
PSP/WSA-9911 (20 bilayers) 2 3.81 Pass
PSP/WSA-7021 (20 bilayers) 2 3.81 Pass

Copyright © 2014 John Wiley & Sons, Ltd. Fire Mater. (2014)
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Figure 8. Post vertical flame test images of (a) PSP/WSA-9911 and (b) PSP/WSA-7021 with char length of
1.5” (3.81 cm).

Figure 9. Lowmagnification SEM images of fabric samples coated with 20 bilayers of PSP/QMS-435 (a, e), PSP/
WSA-9911 (b, f), PSP/WSA-7021(c, g) and control fabric (d, h) before burning. Post VFT, lowmagnification im-
ages of fabric coated with 20 bilayers of PSP/QMS-435 (i, l), PSP/WSA-9911 (j, m) and PSP/WSA-7021(k, n).
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gap between fibrils also narrowed down. This bridging also resulted into increased stiffness of the
coated fabrics.

As can be seen in Figure 9(a), the fabric swatch coated with 20 bilayers of PSP/QMS-435, has the
highest amount of material deposited on the surface compared to fabric swatches coated with
copolymer oligomers PSP/WSA-9911 (Figure 9(a)) and PSP/WSA-7021 (Figure 9(b)). This could
be attributed to high molecular weight and consequently more number of charged groups in QMS-
435. The residues after VFT tests were also observed closely in the scanning electron microscope.
Fabrics coated with PSP/QMS-435 were burnt completely by the flame but showed foamy
intumescent char as shown in Figure 9(i). Weave structure of PSP/QMS-435 fabric was not retained
after VFT and covered by expansion of coated materials. The fabric coated with 20 bilayers of
PSP/WSA-9911 showed very uneven, coarse and patchy surface as shown in Figure 9(j) and 9(m).
Similar characteristics of the burnt surface were observed for fabrics coated with PSP/WSA-7021 as
shown in Figure 9(k) and 9(n). These roughness and uneven surface textures of post burn images
were due to enlargement and spreading out of coated materials in all three cases. Intumescent
actions of coated materials in the case of PSP/WSA-9911 and PSP/WSA-7021 helped to prevent the
damage of fibers and conserved the weave structure. As shown in Figure 8(a) and Figure 8(b), the
foam structure formed in these samples was slightly gray and white in color. The appearance of
white color is attributed to the presence of silica component whereas the gray color of char is
formed due to the carbon content along with phosphorus and nitrogen.
4. CONCLUSION

We successfully achieved, LbL deposition of polysiloxane containing materials on a Nyco fabric for
the first time. LbL deposition of PSP and three different cationic polysiloxane materials QMS-435,
WSA-9911 and WSA-7021 were used in this study. Mass adsorption on fabric increased linearly
with respect to number of bilayers. Nyco fabric coated with 20 bilayers of PSP/WSA-9911 and
PSP/WSA-7021 extinguished the flame and showed char length of 1.5” (3.81 cm). Fabric coated
with 20 bilayers PSP/QMS-435 did not extinguish the flame but demonstrated slow burning rate
across the fabric surface as compared to the control sample. The non-extinguishing nature in this
coated fabric is attributed to the difficulty in the formation of ammonia gas due to the lack of
primary amino groups in QMS-435. Thermo-gravimetric analysis showed that coated materials
decomposed earlier than Nyco fabric which helped to prevent Nyco fabric from burning. Post
vertical flame microscopy images of char demonstrated signs of swelling and uneven surface
texture. Afterglow was not observed for 20 bilayer-coated samples of PSP/WSA-9911 and
PSP/WSA-7021. The LbL deposition of polysiloxane based polyelectrolytes in combination with
phosphorus containing polyelectrolytes offers an environmentally benign method to develop FR
textiles for military and civilian applications.
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