and Engineering Laboratory

Cold Regions Research

US Army Corps of Engineers_® Engineer Research and Development Center

Geotechnical Study and Foundation Structural Design, Next Generation Ionosonde (NEXION) Installation, Thule Air Base, Greenland

Kevin Bjella

October 2015

The U.S. Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense,

civilian agencies, and our nation's public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.

Geotechnical Study and Foundation Structural Design, Next Generation Ionosonde (NEXION) Installation, Thule Air Base, Greenland

Kevin Bjella

U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering Laboratory (CRREL) Alaska Projects Office Building 4070, 9th Street Fort Wainwright, AK 99703

Final Report

Approved for public release; distribution is unlimited.

Prepared for Richard Biagioni, Program Manager Space and Missile Systems Center (SMC) Remote Sensing Space Environmental Branch (RSSE) 1050 E. Stewart Ave. Building 2025, Suite 282 Peterson Air Force Base, CO 80914-2902.

Under MIPR# F3LGWD5009G003

Abstract

This report presents the results of our geotechnical and structural design for the transmitter antenna of the Next Generation Ionosonde (NEXION) at Thule Air Base, Greenland, for the Space and Missile Systems Center, Remote Sensing Space Environmental Branch, and Air Force Weather. NEXION is a commercial-off-the-shelf ionospheric sounder used to measure the electron density of ionospheric plasma. The design required special considerations for installation, construction, and shipment due to the icerich permafrost soil conditions at Thule Air Base's remote and logistically difficult location. In particular, anchored tension ground connections could not withstand viscoelastic creep of ground ice under extreme windloading events. In addition, predicted future climate change required additional considerations to protect the thermal regime of the thaw-unstable sediments.

Recommendations include excavation into permafrost soils, non-frostsusceptible structural replacement fill, and extruded polystyrene boardtype insulation to facilitate maintaining and improving the subsurface thermal regime and to provide favorable foundation performance for the NEXION tower system. Furthermore, given the remote site location and limited availability of on-site concreting capabilities, foundations require pre-casting and shipping via ocean transport vessel to Greenland. As such, we designed an alternative foundation detail, including anchor rods, to mitigate the potential for irreparable damage that may occur during shipping and transporting.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Abs	stract	ii
Illu	strations	iv
Pre	face	v
Acr	onyms and Abbreviations	vi
Uni	t Conversion Factors	vii
1	Introduction	1
2	Test-Pit Exploration	3
3	Site Conditions	4
	3.1 Climate	4
	3.2 Geology and glaciology	4
	3.3 Permafrost, ground ice features, and active laver	5
	3.3.1 Matrix and segregated ice	6
	3.3.2 Wedge ice	6
	3.3.3 Relict ice	6
	3.3.4 Active layer	7
	3.4 Subsurface soil conditions	7
4	Geotechnical Discussion and Recommendations	10
	4.1 Site preparation	10
	4.2 Foundation recommendations	12
	4.3 Uplift resistance, lateral earth pressures, and frictional resistance	14
	4.4 Materials	14
	4.4.1 Structural fill	14
	4.4.2 Geotextile separator	15
	4.4.3 Insulation	15
	4.5 Surface drainage	16
5	Structural Foundation Design	17
6	Conclusions	18
Ref	ferences	19
Арј	pendix A: Structural General Foundation Plan and Design Analyses	20
Арј	pendix B: Crescent Lake Site Test-Pit Excavation Photographs	39

Illustrations

Figures

1	A map of the Crescent Lake site vicinity	1
2	A Crescent Lake test-pit excavation. The photo suggests glaciofluvial and glacial till gravel, cobble, and boulder-sized materials. It also depicts approximate active-layer thickness and ground-ice features below the active layer	8
3	A detailed photograph of relict ground-ice feature illustrated in Fig. 2. Thawing of ground-ice features below foundation elements will result in significant distress and differential movement	8
Tables	i	

1	Structural fill gradation limits	14	
---	----------------------------------	----	--

Preface

This study was conducted for the Space and Missile Systems Center Remote Sensing Space Environmental Branch (SMC/RSSE) under MIPR# F3LGWD5009G003. The technical monitor was Richard Biagioni, SMC/RSSE.

The work was performed by Kevin Bjella (Force Projection and Sustainment Branch, Dr. Loren Wehmeyer, Acting Chief), U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (ERDC-CRREL). At the time of publication, Dr. Loren Wehmeyer was Chief of the Research and Engineering Division. The Deputy Director of ERDC-CRREL was Dr. Lance Hansen, and the Director was Dr. Robert Davis.

For more information, contact the author by phone at 907-361-5171 or by email at kevin.bjella@usace.army.mil.

COL Bryan S. Green was the Commander of ERDC, and Dr. Jeffery P. Holland was the Director.

Acronyms and Abbreviations

AASHTO	American Association of State Highway and Transportation Official
AB	Air Base
AFDD	Air Freezing Degree Days
AOS	Apparent Opening Size
ATDD	Air Thawing Degree Days
CRREL	Cold Regions Research and Engineering Laboratory
ERDC	U.S. Army Engineer Research and Development Center
MAAT	Mean Annual Air Temperature
NEXION	Next Generation Ionosonde
NFS	Non-Frost-Susceptible
RSSE	Remote Sensing Space Environmental
Rx	Receive
SMC	Space and Missile Systems Center
TCI	Technology for Communications International, Inc.
Tx	Transmit

Unit Conversion Factors

Multiply	Ву	To Obtain
British thermal units (International Table)	1,055.056	joules
British thermal unit per hour per foot per degrees Fahrenheit	1.77296	Watts per meter per Kelvin
cubic feet	0.02831685	cubic meters
degrees (angle)	0.01745329	radians
degrees Fahrenheit	(F-32)/1.8	degrees Celsius
feet	0.3048	meters
inches	0.0254	meters
miles (U.S. statute)	1,609.347	meters
pounds (force) per square foot	47.88026	pascals
pounds (mass) per cubic foot	16.01846	kilograms per cubic meter
square feet	0.09290304	square meters

1 Introduction

This report presents the results of our geotechnical studies for the proposed Next Generation Ionosonde (NEXION) at Thule Air Base (AB), Greenland, for the Space and Missile Systems Center (SMC) Remote Sensing Space Environmental (RSSE) Branch. The NEXION is a commercialoff-the-shelf ionospheric sounder used to measure the electron density of ionospheric plasma. The NEXION consists of a transmit (Tx) antenna and supporting 98.5 ft (30 m) guyed tower, a receive (Rx) antenna array, and associated foundations. The purpose of our studies was to develop sitepreparation and foundation recommendations for the Tx antenna and supporting guyed tower considering the ice-rich, perennially frozen, glacial till of the Thule AB region. Based on communication with the project team, the system will be installed at the Crescent Lake site identified in the Site Survey Report prepared by ARINC Aerospace dated 3 December 2014. Figure 1 shows a vicinity map for the Crescent Lake site.

Figure 1. A map of the Crescent Lake site vicinity.

The tower is a pre-engineered 98.5 ft (30 m) guyed tower (typically Rohn 55G or Nello 55N) manufactured and supplied by Technology for Communications International, Inc. (TCI), from Fremont, CA. TCI typically provides standard drawings, specifications, and installation manuals for tower systems (TCI 2011). However, given permafrost conditions and the logistically remote Thule area, the project team deemed the standard site preparation and foundation design for these systems unsuitable. Therefore, this project required project-specific site preparation and foundation design recommendations. Additionally, the design had to be logistically robust for vessel shipment and construction placement in the field.

Our geotechnical recommendations include excavation into permafrost soils, non-frost-susceptible structural replacement fill, and extruded polystyrene board-type insulation to facilitate maintaining and improving the subsurface thermal regime and to provide favorable foundation performance for the NEXION tower system. Furthermore, given the remote site location and limited availability of on-site concreting capabilities, foundations require pre-casting and shipping via ocean transport vessel to Greenland. As such, we designed an alternative foundation detail, including anchor rods, to mitigate the potential for irreparable damage that may occur during shipping and transporting.

2 Test-Pit Exploration

Booz Allen Hamilton ES, the consultant selected by SMC/RSSE to perform the required integration and installation of the NEXION system, coordinated and contracted with Greenland Contractors to have two test pits excavated to evaluate subsurface conditions at the Crescent Lake site. Excavation depths were not reported to us but appeared to be on the order of 6 to 10 ft (2 to 3 m). The excavations were within approximate footprints of planned foundation elements and were not backfilled.

On 22 September 2014, Greenland Contractors excavated test pits, exposed soil conditions and ground-ice features, and took photographs for evaluation. SMC/RSSE provided the project team with photographs of the test pits for us to review; Cold Regions Research and Engineering Laboratory (CRREL) representatives were not on-site to log conditions or to document excavations. The test pits were reportedly not backfilled; and to our knowledge, no laboratory testing was conducted on soils excavated from the test pits.

3 Site Conditions

Thule AB is situated in the northwest-trending valley of Pituffik Kugsua (North River). This 7.5-mile-long (12 km) valley is glacier free, and drains the Greenland Ice Cap on the east towards the North Star Bugt on the west. North Mountain bounds the lower reach of this valley on the north, with hilly terrain northward to Wolstenholme Fjord. South Mountain bounds the lower reach of the valley on the south, with a relatively flat plateau southward to Parker Snow Bugt. The region is void of vertical vegetation and is restricted to low herbs, grasses, dwarf shrubs, mosses, and lichens. The valley rises in elevation toward the inland ice cap where vegetation gives way to a rocky, boulder-strewn landscape.

The Crescent Lake site is approximately 6 miles (9.5 km) from North Star Bugt and due east of the AB. The frontal edge of the Greenland Ice Cap is approximately 3.2 miles (5.1 km) east-southeast of the site. The site is generally higher in elevation than the lower valley, and the surface consists of a rocky, boulder-strewn landscape with little vegetation.

3.1 Climate

The climate of Pituffik Kugsua valley is high-arctic marine modified by the proximity to the inland ice cap. High temperatures can exceed 50° F (10° C), with low temperatures approaching -40° F (-40° C). The mean annual air temperature (MAAT) is 12.2° F (-11° C) with occasional hurricaneforce winds. The average air thawing degree-days (ATDD) from 1953 to 2015 is 769 °F-days (427° C-days), and the air freezing degree days (AFDD) for the same period is 7915°F-days (4397° C-days). The average length of the thawing season is 125 days from mid-May to mid-September.

3.2 Geology and glaciology

The glacially sculpted geology of the region is dominated by an alternating sequence of sedimentary rocks, termed the Thule Supergroup. More specifically, the Upper Thule Supergroup is composed of sediments of the Narssarssuk Group and the Dundas group (Dawes 2006). These siliciclastic red beds and pale carbonaceous sediments are visible in the glacially eroded slopes of the North and South Mountain, Dundas Fjeld, and Saunders Ø. These lithified sediments are essentially underformed; how-

ever, half-grabben structures are numerous, displaying vertical displacement of tens to hundreds of meters. A regional swarm of basic dykes and sills are noted in this group, with a prominent exposure of Diorite having been cut for the Thule AB runway. This strata generally dips to the southsouthwest at shallow angles, with the strike trending west-northwest, consistent with the trend of the North River Valley.

The regional glacial history described by Funder (1990) suggests that during the late Pleistocene Epoch, multiple glacial advances covered the Pituffik Kugsua valley. The greatest extent of glaciation and the earliest recorded in the existing sediment resulted for the Agpat Glaciation and extended westward beyond Saunders Ø. The extent of the following interglacial is undetermined, but the ice is hypothesized to have retreated to Wolstenholme Fjord (Dawes 2006; Funder 1990). The following Narssarssuk Glaciation filled Pituffik Kugsua valley and extended southwestward, terminating on the plateau south of the valley, with the following interglacial hypothesized to have retreated to Wolstenholme Fjord. The next and last glacial advance, in the early Holocene Epoch, failed to progress from Wolstenholme Fjord; and no further advances in the valley are noted. Because of multiple glacial events, a large amount of till and outwash sediments overlie the sedimentary bedrock in the Pituffik Kugsua valley. The glacial sediment thickness varies from 20 ft (6 m) to 60 ft (18 m), with progressively thicker deposits towards the existing ice cap margin and thinner deposits towards the beaches of North Star Bugt. Glacial tills of larger cobble and bolder are evident in the valley. The Crescent Lake site is situated on relatively thicker glacial sediments closer to the ice cap margin.

3.3 Permafrost, ground ice features, and active layer

A periglacial environment currently exists in the Pituffik Kugsua valley and has existed in the high Arctic through the Pleistocene and Holocene Epochs. During glacial retreat, the sediments and rock are exposed to low temperatures, allowing the establishment of permanently frozen ground (permafrost) and associated ground-ice features, including matrix and segregated ice, wedge ice, and relict ice. Permafrost is generally continuous in lateral extent and could be more than 950 ft (300 m) thick. Currently, permafrost temperatures at the depth of zero annual amplitude are approximately 14°F (-10°C). Permafrost near the project site was formed epigenetically—the rock and sediments were deposited in full thickness and subsequently permanently frozen.

3.3.1 Matrix and segregated ice

The freezing process during creation of the permafrost can create excess ice in the soil if the proper conditions exist. From a conservative standpoint, it is generally assumed that soils are saturated when they become permanently frozen. Therefore, the 10% volume expansion that occurs to fresh water upon freezing will cause individual soil particles to move apart within the matrix ice. Fine-grain soils contain more water (ice) at saturation than do coarser-grain soils. Also, if fine grain soils exist along with an additional supply of water, the matrix ice can evolve into segregated ice because of the wicking action of the fine grain soils, creating nearhorizontal layers or lenses of ice fractions of inches to inches in thickness, and inches to feet in length. During sediment deposition in the Pituffik Kugsua valley, the amount of water available was variable. Therefore it is common to find very high ice content soils directly above, below, or adjacent to soils with lower ice content.

3.3.2 Wedge ice

Cold temperatures in the winter contract the surface soils and allow cracks to develop that are several feet deep, tens of feet long, and fractions of inches wide. Surface water in the spring and summer migrates into the cracks and freezes, creating a thin vein of ice. This location of ice intrusion is a zone of weakness, and the process will repeat at the same location for hundreds and thousands of years with the resultant ice vein becoming an ice wedge. These wedges can be several feet deep, 3 to 6 ft (1 to 2 m) wide, and several feet to tens of feet long. Most often, the wedges will interconnect into polygon shapes that are several feet in diameter, and these shapes can be seen at the surface because of the mechanical distortion that occurs along with the ice intrusion. The Pituffik Kugsua Valley has a high occurrence of wedge ice, and the probability is very high for its existence at the project site.

3.3.3 Relict ice

During glacial retreat, the margin of the ice sheet is a very dynamic with glacial till being exposed and deposited, large volumes of water flowing off the ice sheet and carrying outwash, and ice fracturing and depositing on top and in loose piles of sediment. This fractured ice can be deposited and buried with sufficient expediency to prevent the ice from melting prior to permafrost creation. Therefore, chunks of ice, termed relict ice (Corte

1962), can exist in the permafrost and in a very random manner. The North River channel, however, moves such large volumes of water and sediment that the probability of relict ice surviving in the benches that are now exposed near the river is relatively low.

3.3.4 Active layer

The active layer is the near-surface soils that undergo an annual process of thawing in the summer and complete refreezing during the winter. In Arctic regions, the active layer commonly freezes to the permafrost table where the bottom of the active layer is the top of permafrost. The depth of annual thaw is dependent on vegetative cover, soil type, soil moisture, and solar aspect. For Pituffik Kugsua Valley, the active layer ranges from a 1 ft (30 cm) depth in vegetative areas under thick organic cover to 5 to 6.5 ft (1.5 to 2 m) in non-vegetated areas. It is common to find a thick sequence of segregated ice at the base of the active layer due to permafrost acting as an aquitard, pooling water that subsequently freezes.

3.4 Subsurface soil conditions

Subsurface soils in the valley are predominately glaciofluvial in origin, including glacial till, deposited or overridden during glacial occupation and retreat. Our review of project photographs suggests that similar conditions exist. Soil particle size distribution ranges from silt to cobble and boulder sizes but are predominantly gravel size. The depth dimension, lateral dimension, particle size distribution, and ice content can be very localized due to this depositional process. A particular depositional interval may not be traceable to within meters. Based on our review of test-pit excavation photographs and our experience in the area, we consider soils within the active layer to be potentially frost susceptible, which could result in undesirable frost-heaving-related differential movement on freezing.

It does not appear that either excavation encountered groundwater. In their Site Survey Report, ARINC Aerospace (2014) reported active-layer depths of about 9.8 ft (3 m) at the time of test-pit exploration. Our experience in the area and review of test-pit photographs suggest the active layer could be approximately 5 to 6.5 ft (1.5 to 2 m). Our review of test-pit photographs also confirms that permafrost conditions exist below the active layer, including matrix, segregated, wedge, and relict ground-ice features. The photographs also illustrate glaciofluvial and glacial till materials, including cobble- and boulder-sized particles. Figure 2 and Figure 3 illustrate glaciofluvial and glacial till gravel, cobble, and boulder materials, relative active-layer thickness, and ground-ice features we observed in test-pit excavation photographs; Figure 3 is a close-up view of ground-ice features illustrated in Figure 2.

Figure 2. A Crescent Lake test-pit excavation. The photo suggests glaciofluvial and glacial till gravel, cobble, and boulder-sized materials. It also depicts approximate active-layer thickness and ground-ice features below the active layer.

Figure 3. A detailed photograph of relict ground-ice feature illustrated in Fig. 2. Thawing of ground-ice features below foundation elements will result in significant distress and differential movement.

Given the proximity to the ice cap margin and our understanding of glaciofluvial sediment thicknesses in the area, we do not anticipate bedrock within the upper 50 ft (15 m) of the subsurface profile. However, permafrost conditions along with cobble- and boulder-sized materials will be encountered during foundation site preparation, which could make excavation difficult, especially in frozen ground.

In our opinion, after reviewing the test-pit photographs, the subsurface conditions, including permafrost and ground-ice features described above, are consistent with our understanding of conditions in the Thule AB area.

4 Geotechnical Discussion and Recommendations

Test-pit excavations at the Crescent Lake site and our experience in the area indicate that ice-rich, thaw-unstable soils are present within the proposed NEXION footprint. We also consider active-layer soils to be potentially frost susceptible and relatively loose due to seasonal freezing and thawing action. If ice-rich permafrost soils are allowed to thaw, the potential for the loss of bearing capacity or damaging differential settlement is relatively high. If foundation-bearing soils are frost susceptible and allowed to seasonally freeze and thaw, the potential for differential frost-heaving-related movements is also relatively high.

In our opinion, the Tx antenna and supporting guyed tower can be founded on conventional spread footing systems. To mitigate frostheaving-related movements, we recommend excavating all active-layer soils extending into permafrost soils and replacing them with a thick section of compacted structural fill. The structural fill we recommend may exhibit greater thermal conductivity than in-situ materials excavated, potentially increasing active-layer thickness and inducing thawing of ice-rich permafrost below the excavation. To mitigate permafrost thaw, we recommend strategically placing insulation around the foundation elements, extending out beyond the foundation perimeters to control excessive heat loss from permafrost soils during thawing seasons, to assist permafrost regeneration after construction, and to maintain or improve the ground thermal regime around foundation elements. The following sections provide specific recommendations.

4.1 Site preparation

The base of excavations should extend out beyond foundation footprints a minimum 2 ft (0.6 m) and be free of massive ice (wedge ice and relict ice) and organic material. Our experience in the area indicates locally deeper ground-ice features may require deeper excavations to remove these materials. Also, horizontal excavation limits shall be wide enough to accommodate polystyrene board-type insulation placed nominally 2 ft (0.6 m) below the finished site grade and extending out a minimum of 8 ft (2.4 m) beyond the edge of foundation element perimeters.

The vertical extents of the excavation should extend through active-layer soils and nominally 1 ft (0.3 m) into permafrost. Additionally, the vertical extents of the excavation beneath footings should be deep enough to accommodate a minimum 2 ft (0.6 m) thick section of structural fill. We anticipate that the maximum extent of the active-layer thawing near the end of the freezing season. Depending on the timing of construction, active-layer soils could be seasonally frozen during site preparation. Therefore, we recommend a minimum excavation depth of at least 7 ft (2.1 m) below the original site grade prior to construction if excavation is completed prior to mid-August. The depth to the top of the permafrost could be taken as the thickness of thawed active-layer soils for excavations completed after mid-August but before seasonal frost penetration reaches the top of permafrost during the freezing season.

As stated above, we understand test pits were excavated but not backfilled. If test pits were excavated within foundation footprints, the base of the test pit should be considered as the original ground surface prior to construction.

A qualified geotechnical engineer should observe the base of the excavation prior to placing and compacting structural fill material. Additional excavation may be necessary to remove massive ice (wedge ice and relict ice) deposits exposed in the base. Removing these ice features will mitigate potentially damaging long-term creep settlements related to sustained foundation loading and, in case of unexpected thawing, mitigate excessive settlement beneath guy anchor foundations. A qualified geotechnical engineer shall determine the limits of additional excavation, if needed. Onsite observation during construction is preferred but may be logistically challenging and costly. Alternatively, geotechnical observation and approvals could be conducted by reviewing detailed construction photographs taken during and after excavation and prior to backfilling. The qualified geotechnical engineer shall dictate the type and number of photographs for each excavation.

After geotechnical observation and approval, we recommend placing a geotextile separator fabric in the base of the excavation. The purpose of the fabric is to separate in-situ silty permafrost soils from relatively clean structural fill. Although our design intends to maintain frozen conditions beneath the base, if soils below the base begin to thaw after beginning structural fill placement, the fabric will mitigate fine-grained soil migration (pumping) into the structural fill due to repeated loading from compaction equipment during construction. After fabric placement, structural fill should be placed up to the bottom of the polystyrene board-type insulation according to our recommendations in this report. After placement of the insulation, the excavation should be backfilled with structural fill up to the planned finished site grade.

Excavation and backfill should proceed in a timely manner. If the base of excavation thaws prior to backfilling, thawed soils below the base shall be removed down to frozen soils and replaced with additional structural fill. Although likely unrealistic, timing construction near the end of the thawing season could be advantageous and potentially limit extents of thawing and additional excavation to remove thawed soils.

All excavations should be sufficiently sloped or shored to provide a stable bank. We recommend the stability of the excavated slopes be made the responsibility of the contractor as they will be most familiar with the conditions encountered in the excavations and have direct control of working conditions at the site. For planning purposes, we recommend assuming unsupported excavation slopes will be no steeper than 1 vertical to 1 horizontal. It is also important to note that temporary excavation slopes may initially stand steep but slough and cave as they thaw and dry, particularly when equipment is operated nearby. Similarly, steep cuts made in seasonally or perennially frozen ground can become unstable on thawing.

4.2 Foundation recommendations

We recommend conventional spread-footing foundations bearing on a uniform layer of compacted, granular, non-frost-susceptible (NFS) structural fill a minimum 2 ft (0.6 m) thick. The minimum recommended width for spread footings is 2 ft (0.6 m) to mitigate a punching-type bearingcapacity failure. We recommend a minimum depth of burial of 3 ft (0.9 m) below the finished site grade.

Long-term strength generally governs the design of conventional spreadfooting foundations on ice-rich soils. The long-term strength of ice-rich soils is a function of time and temperature. Johnston (1981) gives a conservative empirical estimation of long-term. This estimate is based on a compilation of data from ice-rich soils and from investigators, both North American and Russian. Using this estimate and Terzaghi's shallowfoundation bearing-capacity theory, we developed our allowable soilbearing-capacity recommendations.

Spread footings can be designed for a maximum allowable bearing pressure of 3000 lb/ft² (140 kPa) at footing level. Allowable bearing-capacity values assume a minimum safety factor of 3 and a maximum permafrost temperature at the structural fill and in-situ soil interface of $31^{\circ}F$ (-0.5°C).

Site preparation and foundation recommendations for the FY12 Dormitory Project at Thule AB are similar to our recommendations for this NEXION project (Bjella 2012). Although the dormitory is a heated structure, it is elevated above grade, exposing the ground surface to outdoor temperatures, similar to ground-surface conditions for this NEXION project. Site preparation for the FY12 Dormitory also included replacing the active layer with controlled structural fill and installing extruded polystyrene board-type insulation nominally 2 ft (0.6 m) below grade, similar to recommendations for this NEXION project. Thermal modeling performed for the FY12 Dormitory project calculated a maximum temperature at the permafrost and structural fill interface of 28.4° F (-2.2° C), corresponding to an allowable bearing capacity of 3450 lb/ft^2 (165 kPa) and a safety factor of 3 (Bjella 2012).

The modeling performed for the FY12 Dormitory project suggests that our design maximum temperature at the structural fill and in-situ soil interface is relatively conservative (i.e., relatively warm).

These recommendations do not specifically determine the amount of settlement that will occur. However, given our site preparation recommendations including structural replacement fill and insulation, we believe longterm creep settlement will be relatively small and within normal tolerances for foundations such as this.

The Structural General Foundation Plan Drawing G-102 in Appendix A presents our foundation and site preparation recommendations and structural details. In our opinion, the details presented on this drawing sheet meet the intent of our geotechnical design.

4.3 Uplift resistance, lateral earth pressures, and frictional resistance

The dead weight of the structure, including the footing and the weight of soil above the footing within a zone described by a vertical surface extending upward from the horizontal limits of the footing, could be used to provide uplift resistance. For compacted structural fill, we recommend using an in-place unit weight of 130 lb/ft² (6.2 kPa). This value does not include a safety factor.

Passive-earth pressures against buried portions of structures and friction along the base of buried portions of the structure can be used to resist lateral forces and movement. To estimate passive-earth pressures, we assumed a sand and gravel structural fill placed with an internal friction angle near 34° with an in-place, compacted unit weight of 130 lb/ft² (6.2 kPa). We recommend using an equivalent fluid weight of 460 lb/ft³ (7370 kg/m³) to estimate passive-earth pressures for structural fill. These values do not include a safety factor.

Frictional resistance against sliding along the base of foundations may be computed using a coefficient of friction of 0.4 between pre-cast concrete and structural fill. These values do not include a safety factor.

Active-earth pressures could develop on foundation pilasters, depending on construction sequencing, fill placement, and methods of compaction. To mitigate these pressures, fill should be brought up evenly around perimeters of foundation pilasters.

4.4 Materials

4.4.1 Structural fill

Structural fill should consist of unfrozen, gravelly sand or sandy gravel meeting the Table 1 gradation limits after compaction.

Size	Percentage Passing
4 in.	100
No. 4 sieve	30-60
No. 200 sieve	Less than 5 (based on the ¾-inch minus fraction)
0.02 mm	Less than 3 (based on the ³ / ₄ -inch minus fraction)

Table 1. Structural fill gradation limits.

In general, structural fill should be placed in layers not exceeding 12 in. (30.5 cm) in loose height; and the material in each layer should be compacted to achieve a density of at least 95% of the maximum dry density based on the Modified Proctor moisture—density relationship (ASTM 2012a). ASTM (2015) should be used to determine in-place densities at a rate equal to one test per lift per foundation element. Water content of the fill should be altered by wetting or drying as necessary to achieve the desired compaction.

The fill should consist of unfrozen materials and be placed at abovefreezing air temperatures. If previously placed fill freezes, for instance overnight, the frozen material should be excavated and wasted or allowed to thaw and re-compacted prior to placement of additional fill.

4.4.2 Geotextile separator

We recommend the geotextile separator conform to the requirements of American Association of State Highway and Transportation Officials (AASHTO) M 288 for a Class 2 geotextile with an elongation of greater than or equal to 50% (Fannin 2004). The Class 2 geotextile should conform to the requirements of Table 3, Separation Geotextile Property Requirements, in AASHTO M 288, except the minimum permittivity of the fabric should be 0.05 per second. The geotextile separator should also have an apparent opening size equal to or between the No. 70 and No. 100 U.S. Standard Sieve as determined by ASTM (2012b). Class 2 geotextiles may be joined either by sewing or overlapping.

4.4.3 Insulation

The insulation used in construction should have a minimum thermal conductivity of 0.02 Btu/hr-ft-°F (0.034 W/m-K) and exhibit no greater conductivity with time. The insulation should be suitable for direct burial with a minimum compressive strength of 40 lb/ft² (1.9 kPa) and suitable longterm creep characteristics for loads imposed by fill and construction. The insulation should extend a minimum of 8 ft (2.4 m) beyond the limits of the foundation elements on all sides. The insulation should be bedded on a carefully prepared, relatively planar surface. Insulation should be placed with staggered joints to avoid continuous joints through the insulation layer.

4.5 Surface drainage

The area around the facilities should be sloped to direct surface water and runoff away from the structures. Fills should be placed to prevent ponding of water near the proposed structures or infiltration of large quantities of water into soils near foundation systems.

5 Structural Foundation Design

Coupled with our geotechnical study, we teamed with the U.S. Army Corps of Engineers Alaska District to provide foundation structural design drawings incorporating our geotechnical recommendations. We understand this drawing will be used for estimating and constructing foundation components. The structural loading conditions used for our design are based on loadings provided on TCI's standard drawings (TCI 2011), including wind loading, as directed by the project team. Appendix A presents the drawing package we developed, Structural General Foundation Plan Drawing G-102. In our opinion, the details presented on this drawing sheet meet the intent of our geotechnical design.

Given the remote site location and limited availability of on-site concreting capabilities, foundations require pre-casting the anchor and anchor rod assemblies and shipping via ocean transport vessel to Greenland. The project team and the Alaska District designed an alternative anchor rod connection detail primarily for the potential for irreparable damage occurring during shipping and transporting. The design significantly reduces the unprotected anchor rod lengths from approximately 10 ft (3 m) to under 1 ft (0.3 m), resulting in a significant reduction in damage potential during transport and shipment.

6 Conclusions

We designed foundations to mitigate effects of viscoelastic creep of ground ice under extreme wind-loading events. We included additional considerations to protect the thermal regime of the thaw-unstable sediments by using site preparation techniques and ground insulation to provide favorable foundation performance for the NEXION tower system. Furthermore, given the remote site location and limited availability of on-site concreting capabilities, foundations require pre-casting and shipping via ocean transport vessel to Greenland. As such, we designed an alternative foundation detail, including anchor rods, to mitigate the potential for irreparable damage that may occur during shipping and transporting. Combined, these designs and techniques could meet the performance requirements of the project by mitigating the challenges posed when building on ice-rich permafrost soils and when developing infrastructure in a logistically remote locale.

References

- ARINC Aerospace. 2014. Site Survey Report, Thule Air Base NEXION, Greenland, July 9-25, 2014. Contract #FA8530-08-D-0001. Annapolis, MD: ARINC Aerospace.
- ASTM. 2012a. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)). ASTM D1557-12. West Conshohocken, PA: ASTM International.
- ASTM. 2012b. Standard Test Methods for Determining Apparent Opening Size of a Geotextile. ASTM D4751-12. West Conshohocken, PA: ASTM International.
- ASTM. 2015. Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth). ASTM D6938-15. West Conshohocken, PA: ASTM International.
- Bjella, K. 2012. *Thule Air Base, FY12 Dormitory Permafrost and Geotechnical Investigation*. ERDC/CRREL LR-12-01. Hanover, NH: U.S. Army Engineer Research and Development Center.
- Corte, A. 1962. *Relationship Between Four Ground Patterns, Structure of the Active Layer, and Type and Distribution of Ice in the Permafrost.* CRREL Research Report 88. Hanover, NH: U.S. Army Cold Regions Research and Engineering Laboratory.
- Dawes, P. 2006. *Explanatory notes to the geological map of Greenland, 1:500,000, Thule, Sheet 5.* Copenhagen, Denmark: Geological Survey of Denmark and Greenland, Danish Ministry of the Environment.
- Fannin, J. 2004. AASHTO M288: Durability considerations in Standard specification documents. In Proceedings of the 57thCanadian Geotechnical Conference, 5th Joint CGS/IAH–CNC Conference, Session 4D, 21–26.
- Funder, S. 1990. Late Quaternary stratigraphy and glaciology in the Thule area, Northwest Greenland. *Meddelelser Om Grønland, Geoscience* 22.
- Johnston, G. H. 1981. *Permafrost: Engineering Design and Construction*. National Research Council of Canada. New York, NY: Wiley & Sons.
- Technology for Communications International, Inc. (TCI). 2011. Antenna Installation, Model 656L, 1-30 MHZ. Drawing Number 1346-ANT-00T, Rev C. Fremont, CA: Technology for Communications International, Inc.

Appendix A: Structural General Foundation Plan and Design Analyses

US Army Corps of Engineers Alaska District

NEXT GENERATION IONOSONDE (NEXION) INSTALLATION THULE AIR BASE, GREENLAND

FINAL, 10 JUNE 2015 CRE001

ERDC/CRREL TR-15-13

DESIGN ANALYSIS

Next Generation Ionosonde (NEXION) FOUNDATION Thule Air Base Greenland

HAND CALCS

27

RISA FOOT OUTPUT

RISAFoot Version 4.00 [H:\...\FOOT 28 degree.rft]

Page 1

Compan	y: r						Ap	ril 3, 20'		
Job Number :			N	exion Tower			Checked By:			
Geometr	ry, Matei	rials and Criteria								
Length	:5 ft	eX :0 in	Gross	Allow. Bearing	:5000 psf	(gross) Stee	el fy	:60 ksi		
Width	:8 ft	eZ :0 in	Concre	te Weight	:145 pcf	Mini	mum Steel	:.002		
Thickness	:12 in	pX :24 in	Concre	te f'c	:3 ksi	Max	imum Steel	:.0075		
Height	:36 in	pZ :24 in	Design	Code	: ACI 318-1	1				
Footing To	p Bar Cov	ver : 3.5 in	Overtu	rning / Sliding SF	:1.5	Phi	for Flexure	:0.9		
Footing Bo	ttom Bar	Cover :3.5 in	Coeffic	ient of Friction	:0.3	Phi	for Shear	:0.75		
Pedestal L	ongitudina	al Bar Cover : 1.5 in	Passive	e Resistance of S	Soil :0 k	Phi	for Bearing	:0.65		
Loads	1212									
	P (k)	Vx (k)	Vz (I	<) Mx	(k-ft)	Mz (k-ft)	Overbur	den (ps		
DL	-6.223	6.911					4	00		
	🛉 +P	+Vx	++	Vz 🌈	+Mx	≦ _+Mz	+0	Over		
	1.0				-		100			
		A D	D	C D	C	A D				
Soil Bea	ring									
Descrip	ption	Categories and Fac	tors	Gross Allow.(psf) Max Be	earing (psf)	Max/Allowat	le Ratio		
ASCE	2.4.1-1	1DL		5000	93	35.06 (A)	.187			
ASCE	2.4.1-2	1DL+1LL+.75LLS		5000	93	35.06 (A)	.187			
ASCE	2.4.1-3a	1DL+1RLL+1SL+1S	LN+1RL	5000	93	35.06 (A)	.187			
ASCE	2.4.1-4	1DL+.75LL+.75LLS+	.75	5000	93	35.06 (A)	.187			
ASCE	2.4.1-5a	1DL+1WL		5000	93	35.06 (A)	.187			
ASCE	2.4.1-5b	1DL+.7EL		5000	93	35.06 (A)	.187			
ASCE	2.4.1-6a	1DL+.75WL+.75LL+	.75L	5000	93	35.06 (A)	.187			
ASCE	2.4.1-6b	1DL+.525EL+.75LL+	.75	5000	93	35.06 (A)	.187			
ASCE	2.4.1-7	.6DL+1WL		5000	56	1.036 (B)	.112			
ASCE	2.4.1-8	.6DL+.7EL		5000	56	1.036 (B)	112			

Company :								April 3	, 2015
Job Number :			Nex	ion Tower				Checked By:	
A B		В	A	в]	۹ ۱	В		В	
DC	D	С	D	C	D	C	1	D C	
101	1DI +11 I +	75115	1DI +1	RI I +15I +	151 N-41191-	+ 751 1 + 75	II S+ 75	1DI +1WI	
QA: 935.06 ps	of OA: 935.0)6 psf	OA:	35.06 psf	QA:	935.06 ps	f	OA: 935.06	nsf
QB: 935.06 ps	of QB: 935.0	06 psf	QB:	35.06 psf	QB:	935.06 ps	f	QB: 935.06	psf
QC: 0 psf	QC: 0 pst		OC: () nsf	QC:	0 psf	0	QC: 0 psf	
QD: 0 psf	QD: 0 pst		QD: () psf	QD:	0 psf		QD: 0 psf	
NAZ: -1 in	NAZ: -1 in		NAZ:	1 in	NAZ	:-1 in		NAZ: -1 in	
NAX:80.681 in	NAX:80.68	31 in	NAX:	30.681 in	NAX	:80.681 in		NAX:80.681	in
A B		В		в]	^	В		В	
D C	D	с	D	С	D	C		D C	
1DL+.7EL	1DL+.75W	L+.75LL+	7511.DL+.	525EL+.75	L+.75.6DL	+1WL		6DL+.7EL	
QA: 935.06 ps	of QA: 935.0	06 psf	QA:	35.06 psf	QA:	561.036 p	sf	QA: 561.03	6 psf
QB: 935.06 ps	f QB: 935.0	06 psf	QB:	35.06 psf	QB:	561.036 p	sf	QB: 561.03	6 psf
QC: 0 psf	QC: 0 pst		QC: () psf	QC:	0 psf		QC: 0 psf	
QD: 0 psf	QD: 0 pst		QD:) psf	QD:	0 psf		QD: 0 psf	
NAZ: -1 in	NAZ: -1 in		NAZ:	1 in	NAZ	:-1 in		NAZ: -1 in	
NAX:80.681 in	NAX:80.68	31 in	NAX:80.681 in NAX:80.681 in				NAX:80.681 in		
Footing Flexu	re Design (Botto	om Bars)							
As-min x-dir (Top	Flexure): 1.575 in/	2		As-min x-di	ir (T & S): 1	.296 in^2			
As-min z-dir (Top As-min x-dir (Bot As-min z-dir (Bot	Flexure): 2.52 in 2 Flexure): 1.575 in 2 Flexure): 2.52 in 2	2		As-min z-di	ir (T & S): 2	2.074 in^2			
				z-Dir As	z-Dir As			x-Dir As	x-Dir As
		Mu-xx	Mu-xx	Required	Provided	Mu-zz	Mu-zz	Required	Provided
Description Cate	egories and Factors	UC Max	(k-ft)	(in^2)	(in^2)	UC Max	(k-ft)	(in^2)	(in^2)
ACI-2005 9-1	1.4DL	0	0	0	1.841	.18753	7.91	.224	1.227
ACI-2008 9-2 1.2	DL+1.6LL+1.6LL	0	0	0	1.841	.16074	6.78	.192	1.227
ACI-2008 9-3a1.5I	DL+1LL+1LLS+1	0	0	0	1.841	.20092	8.47	.24	1.227
ACI-2008 9-3b 1.2DL+.8WL+1.6RL 0		0	0	1.841	.16074	6.78	.192	1.227	
ACI-2008 9-4 1.20	DL+1.6WL+1LL+1	0	0	0	1.841	.16074	6.78	.192	1.227
ACI-2008 9-5 1.20	DL+1EL+1LL+1LL.	0	0	0	1.841	.16074	6.78	.192	1.227
ACI-2008 9-6	.9DL+1.6WL	0	0	0	1.841	.12055	5.08	.144	1.227
ACI-2008 9-7	.9DL+1EL	0	0	0	1.841	.12055	5.08	.144	1.227
Footing Flexu	re Design (Top I	Bars)							

DescriptionCategories and FactorsMu-xx (k-ft)z Dir As (in²)Mu-zz (k-ft)x Dir ASW+OB1SW+1OB-(ACI-2008 9-..,ACI-2008 9-..)1.722011.7290Moment Capacity of Plain Concrete Section Along xx and zz=20.083k-ft,12.552k-ftPer Chapter 22 of ACI 318. x Dir As (in²) 0

Company :		April 3, 2015
Designer :		
Job Number :	Nexion Tower	Checked By:

Footing Shear Check

Two Way (Punchi	ng) Vc: 219.979 k One Way (x Dir.	Cut) Vc 82	.816 k	One Way (z Dir. Cut) V	/c: 51.76	3 k
		Pun	ching	x Di	r. Cut	z Di	r. Cut
Description	Categories and Factors	Vu(k)	Vu/ Vc	Vu(k)	Vu/ Vc	Vu(k)	Vu/ Vo
ACI-2005 9-1	1.4DL	NA	NA	1.437	.023	8.387	.216
ACI-2008 9-2	1.2DL+1.6LL+1.6LLS+.5R	NA	NA	1.232	.02	7.189	.185
ACI-2008 9-3a	1.5DL+1LL+1LLS+1.6RLL+1	NA	NA	1.54	.025	8.986	.231
ACI-2008 9-3b	1.2DL+.8WL+1.6RLL+1.6S	NA	NA	1.232	.02	7.189	.185
ACI-2008 9-4	1.2DL+1.6WL+1LL+1LLS+	NA	NA	1.232	.02	7.189	.185
ACI-2008 9-5	1.2DL+1EL+1LL+1LLS+.2S	NA	NA	1.232	.02	7.189	.185
ACI-2008 9-6	.9DL+1.6WL	NA	NA	.924	.015	5.392	.139
ACI-2008 9-7	.9DL+1EL	NA	NA	.924	.015	5.392	.139

Pedestal Design

Shear Check Results (Envelop	pe):				
	Vc	Vs	Vu	Vu/phi*Vn	phi
Shear Along x Direction:	0	51.1	10.366	.27	.75
Shear Along z Direction:	0	51.1	0	0	.75
Pedestal Ties : #4 @ 10 in					

Bending Check Results (Envelope): PCA Load Contour Method (for biaxial)

Unity Check	:.18	Phi	:.9	Parme Beta	: .65
Pu	: 0 k	Mux	: 0 k-ft	Muz	: 31.099 k-ft
Pn	: -220.893 k	Mnx	: NC	Mnz	: 191.936 k-ft
Governing LC	: 13	Mnox	: NC	Mnoz	: NC
Pedestal Bars	: 12 #5	% Steel	: .6392		

Concrete Bearing Check (Vertical Loads Only)

Bearing Bc: 2937.6 k

Description	Categories and Factors	Bearing Bu (k)	Bearing Bu/@Bc
ACI-2005 9-1	1.4DL	Ō	0
ACI-2008 9-2	1.2DL+1.6LL+1.6LLS+.5R	0	0
ACI-2008 9-3a	1.5DL+1LL+1LLS+1.6RLL+1	0	0
ACI-2008 9-3b	1.2DL+.8WL+1.6RLL+1.6S	0	0
ACI-2008 9-4	1.2DL+1.6WL+1LL+1LLS+	0	0
ACI-2008 9-5	1.2DL+1EL+1LL+1LLS+.2S	0	0
ACI-2008 9-6	.9DL+1.6WL	0	0
ACI-2008 9-7	.9DL+1EL	0	0

Company	:		April 3, 2015
Designer	\$		
Job Number	:	Nexion Tower	Checked By:

Overturning Check (Service)

Description	Categories and Factors	Mo-xx (k-ft)	Ms-xx (k-ft)	Mo-zz (k-ft)	Ms-zz (k-ft)	OSF-xx	OSF-zz
ASCE 2.4.1-1	1DL	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-2	1DL+1LL+.75LLS	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-3a	1DL+1RLL+1SL+1SLN	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-4	1DL+.75LL+.75LL	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-5a	1DL+1WL	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-5b	1DL+.7EL	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-6a	1DL+.75WL+.75LL	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-6b	1DL+.525EL+.75L	15.557	54.85	52.536	87.76	3.526	1.67
ASCE 2.4.1-7	.6DL+1WL	9.334	32.91	31.522	52.656	3.526	1.67
ASCE 2.4.1-8	.6DL+.7EL	9.334	32.91	31.522	52.656	3.526	1.67

Mo-xx: Governing Overturning Moment about AD or BC Ms-xx: Governing Stablizing Moment about AD or BC OSF-xx: Ratio of Ms-xx to Mo-xx

Sliding Check (Service)

Description	Categories and Factors	Va-xx (k)	Vr-xx (k)	Va-zz (k)	Vr-zz (k)	SR-xx	SR-zz
ASCE 2.4.1-1	1DL	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-2	1DL+1LL+.75LLS	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-3a	1DL+1RLL+1SL+1SLN	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-4	1DL+.75LL+.75LL	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-5a	1DL+1WL	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-5b	1DL+.7EL	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-6a	1DL+.75WL+.75LL	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-6b	1DL+.525EL+.75L	6.911	4.715	0	4.715	.682	NA
ASCE 2.4.1-7	.6DL+1WL	4.147	2.829	0	2.829	.682	NA
ASCE 2.4.1-8	.6DL+.7EL	4.147	2.829	0	2.829	.682	NA

Va-xx: Applied Lateral Force to Cause Sliding Along xx Axis Vr-xx: Resisting Lateral Force Against Sliding Along xx Axis SR-xx: Ratio of Vr-xx to Va-xx

RISAFoot Version 4.00 [H:\...\FOOT 42 degree.rft]

Page 1

Designer Job Num	r : EA hber : CR	DAMS R001	Ne	xion Tower				Checked	Ву:
Geometr	ry, Mater	rials and Criteria							
Length Width Thickness Height	:5 ft :8 ft :18 in :36 in	eX : 0 in eZ : 0 in pX : 24 in pZ : 24 in	Gross A Concret Concret Design	llow. Bearing e Weight e fc Code	800 145 3 ks ACI	0 psf (gross) pcf ii 318-11	Steel Minin Maxii	l fy num Steel mum Steel	:60 ksi :.002 :.0075
Footing To Footing Bo Pedestal L	op Bar Cov ottom Bar (ongitudina	rer : 3.5 in Cover : 3.5 in al Bar Cover : 1.5 in	Overturn Coefficie Passive	ning / Sliding S ent of Friction Resistance of	F Soil	:1.5 :0.3 :0 k	Phi fo Phi fo Phi fo	or Flexure or Shear or Bearing	:0.9 :0.75 :0.65
Loads	1594241 I	12/241-22/24	ann 199	5155	6267-1255	10/19/1	n 20 <i>5</i> 2	3355 V	5a - 66 - 64
וח	P (k)	Vx (k)	Vz (k) M:	x (k-ft)	Mz ((k-ft)	Overbui	rden (psf
	↓ +P	+Vx A D	* +\ D		a +Mx C	A	+Mz D	+0	Over
Soil Bea	ring								
Descrip	otion	Categories and F	actors	Gross Allow	(psf) N	/ax Bearing (osf) N	/lax/Allowat	ole Ratio
ASCE	2.4.1-1	1DL		8000		1065.57 (/	A)	.133	
ASCE	2.4.1-2	1DL+1LL+.75LLS	have been	8000		1065.57 (/	A)	.133	
ASCE	2.4.1-3a	1DL+1RLL+1SL+1	SLN+1RL	8000		1065.57 (/	A)	.133	
ASCE	2.4.1-4	1DL+.75LL+.75LL	S+.75	8000		1065.57 (/	A)	.133	
ASCE	2.4.1-5a	1DL+1WL		8000		1065.57 (/	A)	.133	
ASCE	2.4.1-5b	1DL+.7EL		8000		1065.57 (/	A)	.133	
ASCE	2.4.1-6a	1DL+.75WL+.75LL	+.75L	8000		1065.57 (/	A)	.133	
ASCE	2.4.1-6b	1DL+.525EL+.75L	L+.75	8000		1065.57 (/	A)	.133	
ASCE	2.4.1-7	.6DL+1WL		8000		639.345 (/	A)	.08	
						the second se			

ACI-2008 9-2 1.	2DL+1.6LL+1.6LL	0	0	0	2.148	.106	7.98	.128	1.227
ACI-2008 9-3a1.5	5DL+1LL+1LLS+1	0	0	0	2.148	.1325	9.98	.16	1.227
ACI-2008 9-3b 1.	2DL+.8WL+1.6RL	0	0	0	2.148	.106	7.98	.128	1.227
ACI-2008 9-41.2	DL+1.6WL+1LL+1.,	0	0	0	2.148	.106	7.98	.128	1.227
ACI-2008 9-5 1.2	DL+1EL+1LL+1LL.	0	0	0	2.148	.106	7.98	.128	1.227
ACI-2008 9-6	.9DL+1.6WL	0	0	0	2.148	.0795	5.99	.096	1.227
ACI-2008 9-7	.9DL+1EL	0	0	0	2.148	.0795	5.99	.096	1.227

Footing Flexure Design (Top Bars)

Description	Categories and Factors	Mu-xx (k-ft)	z Dir As (in ²)	Mu-zz (k-ft)	x Dir As (in ²)
SW+OB	1SW+10B-(ACI-2008 9,ACI-200	8 9) 1.788	0	12.995	0
Moment Capacity	of Plain Concrete Section Along xx a	nd zz= 51.413k-f	t.32.133k-ft Per	Chapter 22 of A	ACI 318.

Company : USACE		April 3, 2015
Designer : E ADAMS		
Job Number : CRR001	Nexion Tower	Checked By:

Footing Shear Check

Two Way (Punchi	ng) Vc: 460.539 k One Way (x Dir.	Cut) Vc 14	5.913 k	One Way (z Dir. Cut) V	/c: 91.19	6 k
		Pur	ching	x Di	r. Cut	z Di	r. Cut
Description	Categories and Factors	Vu(k)	Vu/ Vc	Vu(k)	Vu/ Vc	Vu(k)	Vu/ Vo
ACI-2005 9-1	1.4DL	NA	NA	.585	.005	7.6	.111
ACI-2008 9-2	1.2DL+1.6LL+1.6LLS+.5R	NA	NA	.502	.005	6.514	.095
ACI-2008 9-3a	1.5DL+1LL+1LLS+1.6RLL+1	NA	NA	.627	.006	8.143	.119
ACI-2008 9-3b	1.2DL+.8WL+1.6RLL+1.6S	NA	NA	.502	.005	6.514	.095
ACI-2008 9-4	1.2DL+1.6WL+1LL+1LLS+	NA	NA	.502	.005	6.514	.095
ACI-2008 9-5	1.2DL+1EL+1LL+1LLS+.2S	NA	NA	.502	.005	6.514	.095
ACI-2008 9-6	.9DL+1.6WL	NA	NA	.376	.003	4.886	.071
ACI-2008 9-7	.9DL+1EL	NA	NA	.376	.003	4.886	.071

Pedestal Design

Shear Check Results (Envelo	pe):				
	Vc	Vs	Vu	Vu/phi*Vn	phi
Shear Along x Direction:	0	50.658	10.366	.273	.75
Shear Along z Direction:	0	50.658	0	0	.75
Pedestal Ties : #4 @ 10 in					

Bending Check Results (Envelope): PCA Load Contour Method (for biaxial)

Unity Check	: .211	Phi	:.9	Parme Beta	: .65
Pu	: 0 k	Mux	: 0 k-ft	Muz	: 31.099 k-ft
Pn	: -188.496 k	Mnx	: NC	Mnz	: 164.116 k-ft
Governing LC	: 13	Mnox	: NC	Mnoz	: NC
Pedestal Bars	: 4 #8	% Steel	: .5454		

Concrete Bearing Check (Vertical Loads Only)

Bearing Bc: 2937.6 k

Description	Categories and Factors	Bearing Bu (k)	Bearing Bu/ Bc
ACI-2005 9-1	1.4DL	Ō	0
ACI-2008 9-2	1.2DL+1.6LL+1.6LLS+.5R	0	0
ACI-2008 9-3a	1.5DL+1LL+1LLS+1.6RLL+1	0	0
ACI-2008 9-3b	1.2DL+.8WL+1.6RLL+1.6S	0	0
ACI-2008 9-4	1.2DL+1.6WL+1LL+1LLS+	0	0
ACI-2008 9-5	1.2DL+1EL+1LL+1LLS+.2S	0	0
ACI-2008 9-6	.9DL+1.6WL	0	0
ACI-2008 9-7	.9DL+1EL	0	0

Company : USACE		April 3, 2015
Designer : E ADAMS		
Job Number : CRR001	Nexion Tower	Checked By:

Overturning Check (Service)

Description	Categories and Factors	Mo-xx (k-ft)	Ms-xx (k-ft)	Mo-zz (k-ft)	Ms-zz (k-ft)	OSF-xx	OSF-zz
ASCE 2.4.1-1	1DL	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-2	1DL+1LL+.75LLS	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-3a	1DL+1RLL+1SL+1SLN	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-4	1DL+.75LL+.75LL	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-5a	1DL+1WL	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-5b	1DL+.7EL	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-6a	1DL+.75WL+.75LL	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-6b	1DL+.525EL+.75L	15.557	62.1	55.991	99.36	3.992	1.775
ASCE 2.4.1-7	.6DL+1WL	9.334	37.26	33.595	59.616	3.992	1.775
ASCE 2.4.1-8	.6DL+.7EL	9.334	37.26	33.595	59.616	3.992	1.775

Mo-xx: Governing Overturning Moment about AD or BC Ms-xx: Governing Stablizing Moment about AD or BC OSF-xx: Ratio of Ms-xx to Mo-xx

Sliding Check (Service)

Description	Categories and Factors	Va-xx (k)	Vr-xx (k)	Va-zz (k)	Vr-zz (k)	SR-xx	SR-zz
ASCE 2.4.1-1	1DL	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-2	1DL+1LL+.75LLS	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-3a	1DL+1RLL+1SL+1SLN	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-4	1DL+.75LL+.75LL	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-5a	1DL+1WL	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-5b	1DL+.7EL	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-6a	1DL+.75WL+.75LL	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-6b	1DL+.525EL+.75L	6.911	5.585	0	5.585	.808	NA
ASCE 2.4.1-7	.6DL+1WL	4.147	3.351	0	3.351	.808	NA
ASCE 2.4.1-8	.6DL+.7EL	4.147	3.351	0	3.351	.808	NA

Va-xx: Applied Lateral Force to Cause Sliding Along xx Axis Vr-xx: Resisting Lateral Force Against Sliding Along xx Axis SR-xx: Ratio of Vr-xx to Va-xx

Appendix B: Crescent Lake Site Test-Pit Excavation Photographs

Figure B1.

Figure B2.

Figure B3.

Figure B7.

Figure B13.

Figure B19.

Figure B21.

Figure B25.

Figure B26.

Figure B28.

Figure B31.

Figure B32.

Figure B33.

Figure B34.

Figure B37.

			PAGE		Form Approved	
Public reporting burden for this	collection of information is es	imated to average 1 hour per response	e, including the time for rev	viewing instructions, se	arching existing data sources, gathering and maintaining	
the data needed, and completin reducing this burden to Departm VA 22202-4302. Respondents display a currently valid OMB co	g and reviewing this collection nent of Defense, Washington should be aware that notwit ntrol number. PLEASE DO	n of information. Send comments reg Headquarters Services, Directorate for Instanding any other provision of law, I NOT RETURN YOUR FORM TO THE	parding this burden estimate or Information Operations a no person shall be subject ABOVE ADDRESS.	e or any other aspect of nd Reports (0704-0188 to any penalty for failin	of this collection of information, including suggestions for 3), 1215 Jefferson Davis Highway, Suite 1204, Arlington, g to comply with a collection of information if it does not	
1. REPORT DATE (DD- October 2015	MM-YYYY) 2	. REPORT TYPE Technical Report/Final		3. D	DATES COVERED (From - To)	
4. TITLE AND SUBTITL	.Е			5a.	CONTRACT NUMBER	
Geotechnical Study and Foundation Structural Design, Next Generation Ionosonde (NEXION) Installation, Thule Air Base, Greenland			5b.	GRANT NUMBER		
				5c.	PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d.	PROJECT NUMBER	
Kevin Bjella				5e .	TASK NUMBER MIPR# F3LGWD5009G003	
				5f. \	WORK UNIT NUMBER	
7. PERFORMING ORG	ANIZATION NAME(S	AND ADDRESS(ES)		8. P N	ERFORMING ORGANIZATION REPORT	
U.S. Army Engineer Cold Regions Resear Alaska Projects Offic Building 4070 9th St	Research and Deve ch and Engineering reet	lopment Center (ERDC) Laboratory (CRREL)		I	ERDC/CRREL TR-15-13	
Fort Wainwright, AK	99703					
9. SPONSORING / MOI Space and Missile Sy	NITORING AGENCY	NAME(S) AND ADDRESS(E	S)	10.	SPONSOR/MONITOR'S ACRONYM(S)	
Remote Sensing Space	ce Environmental B	ranch (RSSE)		11	SMC/KSSE	
1050 F Stewart Ave					NUMBER(S)	
Building 2025 Suite	282				NOWBER(3)	
Building 2025, Suite Peterson Air Force B	282 ase, CO 80914-290	2			NOWBER(3)	
Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV	282 ase, CO 80914-290 /AILABILITY STATE release: distribution	2 MENT is unlimited				
Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public	282 ase, CO 80914-290 /AILABILITY STATE release; distributior	2 MENT is unlimited.			NOMBER(3)	
Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public : 13. SUPPLEMENTARY	282 ase, CO 80914-290 /AILABILITY STATE release; distribution	2 MENT is unlimited.				
Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public	282 ase, CO 80914-290 /AILABILITY STATE release; distribution	2 MENT is unlimited.				
1050 E. Stewart Ave. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public 13. SUPPLEMENTARY 14. ABSTRACT This report presents the	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES	2 MENT is unlimited.	an for the transmit	ter antenna of th	a Navt Caperation Jonosonda	
1050 E. Stewart Ave. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland,	2 MENT is unlimited. echnical and structural desi for the Space and Missile S	gn for the transmitt	ter antenna of th mote Sensing Sp	e Next Generation Ionosonde bace Environmental Branch, and Air	
10:00 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXION	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- Loopsiderations for	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s	gn for the transmitt Systems Center, Re ounder used to mea	ter antenna of th mote Sensing Sp isure the electron	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafract soil conditions at Thula Air	
 Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXId design required specia Base's remote and log 	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor	gn for the transmit systems Center, Resounder used to meand shipment due to ed to meand shipment due to ed tension ground control of the tot to the tot tot tot tot tot tot tot tot tot to	ter antenna of th mote Sensing Sp usure the electror the ice-rich per connections coul	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air Id not withstand viscoelastic creep of	
 10.00 E. Stewart Arte. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AN Approved for public : 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXIG design required special Base's remote and log ground ice under extre thermal regime of the 	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor- ents. In addition, predicted ents.	gn for the transmit systems Center, Re ounder used to mea nd shipment due to ed tension ground c future climate char	ter antenna of th mote Sensing Sp usure the electro the ice-rich per connections coul nge required add	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air Id not withstand viscoelastic creep of litional considerations to protect the	
 10.00 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public a 13. SUPPLEMENTARY 14. ABSTRACT This report presents the (NEXION) at Thule A Force Weather. NEXIO design required specia Base's remote and log ground ice under extremative thermal regime of the Recommendations inc 	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor ents. In addition, predicted ents. permafrost soils, non-frost	gn for the transmitt Systems Center, Rea ounder used to mea nd shipment due to ed tension ground c future climate char -susceptible structu	ter antenna of th mote Sensing Sp isure the electron the ice-rich per connections coul nge required add	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air Id not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board-	
 10.50 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXIO design required specia Base's remote and log ground ice under extret thermal regime of the Recommendations inc type insulation to facil NEXION tower system 	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into itate maintaining an n Eurthermore give	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor ents. In addition, predicted ents. permafrost soils, non-frost l improving the subsurface n the remote site location a	gn for the transmitt Systems Center, Re- ounder used to mea nd shipment due to ed tension ground c future climate chan -susceptible structu thermal regime an and limited availabi	ter antenna of th mote Sensing Sp usure the electron the ice-rich per connections coul age required add ural replacement d to provide fav lity of on-site of	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air ld not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board- orable foundation performance for the poreting canabilities, foundations	
 10.00 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public : 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXIG design required special Base's remote and log ground ice under extree thermal regime of the Recommendations ince type insulation to facil NEXION tower system require pre-casting and 	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into itate maintaining an n. Furthermore, give l shipping via ocean	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor ents. In addition, predicted ents. permafrost soils, non-frost l improving the subsurface n the remote site location a transport vessel to Greenla	gn for the transmitt Systems Center, Re ounder used to mea nd shipment due to ed tension ground c future climate chan -susceptible structu thermal regime an nd limited availabi nd. As such, we de	ter antenna of th mote Sensing Sp asure the electro the ice-rich per connections coul nge required add tral replacement d to provide fav lity of on-site co signed an altern	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air Id not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board- orable foundation performance for the oncreting capabilities, foundations ative foundation detail, including	
10:00 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AN Approved for public : 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXID design required special Base's remote and log ground ice under extree thermal regime of the Recommendations ince type insulation to facil NEXION tower syster require pre-casting and anchor rods, to mitigate	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into itate maintaining an n. Furthermore, give l shipping via ocean re the potential for ir	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor- ents. In addition, predicted ents. permafrost soils, non-frost l improving the subsurface n the remote site location a transport vessel to Greenla reparable damage that may	gn for the transmitt systems Center, Re ounder used to mea nd shipment due to ed tension ground c future climate chan -susceptible structu thermal regime an ind limited availabi ind. As such, we de occur during shipp	ter antenna of th mote Sensing Sp asure the electro the ice-rich per connections coul nge required add tral replacement d to provide fav lity of on-site co signed an altern bing and transpo	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air Id not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board- orable foundation performance for the oncreting capabilities, foundations ative foundation detail, including rting.	
 10.50 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public 13. SUPPLEMENTARY 14. ABSTRACT This report presents the (NEXION) at Thule A Force Weather. NEXIO design required special Base's remote and log ground ice under extremative thermal regime of the Recommendations ince type insulation to facil NEXION tower system require pre-casting and anchor rods, to mitigate 15. SUBJECT TERMS 	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into itate maintaining an n. Furthermore, give d shipping via ocean the potential for ir	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor ents. In addition, predicted ents. permafrost soils, non-frost l improving the subsurface n the remote site location a transport vessel to Greenla reparable damage that may NEXION Tower	gn for the transmitt Systems Center, Re- ounder used to mea nd shipment due to ed tension ground c future climate chan -susceptible structu thermal regime an and limited availabi and. As such, we de occur during shipp	ter antenna of th mote Sensing Sp usure the electron the ice-rich per connections coul nge required add ural replacement d to provide fav lity of on-site co- ssigned an altern bing and transpo Thule	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air ld not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board- orable foundation performance for the oncreting capabilities, foundations ative foundation detail, including rting. Air Base	
10:00 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AV Approved for public : 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXID design required special Base's remote and log ground ice under extree thermal regime of the Recommendations ince type insulation to facil NEXION tower syster require pre-casting and anchor rods, to mitigat 15. SUBJECT TERMS Arctic Graanlord	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into itate maintaining an n. Furthermore, give d shipping via ocean is the potential for ir	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor ents. In addition, predicted ents. permafrost soils, non-frost l improving the subsurface n the remote site location a transport vessel to Greenla reparable damage that may NEXION Tower Permafrost Shallow Foundation	gn for the transmitt Systems Center, Re- ounder used to mea nd shipment due to ed tension ground c future climate chan s-susceptible structu thermal regime an and limited availabi nd. As such, we de occur during shipp	ter antenna of th mote Sensing Sp asure the electror the ice-rich per connections coul nge required add ural replacement d to provide fav lity of on-site co signed an altern ping and transpo Thule	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air ld not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board- orable foundation performance for the oncreting capabilities, foundations ative foundation detail, including rting. Air Base	
10:00 E. Stewart Avec. Building 2025, Suite Peterson Air Force B 12. DISTRIBUTION / AN Approved for public : 13. SUPPLEMENTARY 14. ABSTRACT This report presents th (NEXION) at Thule A Force Weather. NEXID design required special Base's remote and log ground ice under extret thermal regime of the Recommendations inc type insulation to facil NEXION tower syster require pre-casting and anchor rods, to mitigat 15. SUBJECT TERMS Arctic Greenland 16. SECURITY CLASSI	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into itate maintaining an n. Furthermore, give l shipping via ocean e the potential for ir FICATION OF:	2 MENT is unlimited. echnical and structural desi for the Space and Missile S off-the-shelf ionospheric s nstallation, construction, a ation. In particular, anchor- ents. In addition, predicted ents. permafrost soils, non-frost l improving the subsurface n the remote site location a transport vessel to Greenla reparable damage that may <u>NEXION Tower</u> Permafrost Shallow Foundation	gn for the transmitt systems Center, Re ounder used to mea nd shipment due to ed tension ground c future climate chan -susceptible structu thermal regime an ind limited availabi ind. As such, we de occur during shipp	ter antenna of th mote Sensing Sp isure the electro- the ice-rich per connections coul- inge required add ural replacement d to provide fav lity of on-site co signed an altern bing and transpo Thule	e Next Generation Ionosonde pace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air id not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board- orable foundation performance for the porceting capabilities, foundations ative foundation detail, including rting. Air Base	
 13. SUPPLEMENTARY 14. ABSTRACT 13. SUPPLEMENTARY 14. ABSTRACT 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSI 2. BEPOPT 	282 ase, CO 80914-290 /AILABILITY STATE release; distribution NOTES e results of our geot ir Base, Greenland, ON is a commercial- l considerations for istically difficult loc me wind-loading ev thaw-unstable sedim lude excavation into itate maintaining an n. Furthermore, give d shipping via ocean the potential for ir FICATION OF:	2 MENT is unlimited. echnical and structural desiferent for the Space and Missile Soff-the-shelf ionospheric soff-the-shelf ionospheric soff-the-shelf ionospheric sonstallation, construction, a ation. In particular, anchorents. In addition, predicted ents. permafrost soils, non-frost l improving the subsurface n the remote site location a transport vessel to Greenla reparable damage that may NEXION Tower Permafrost Shallow Foundation	gn for the transmitt Systems Center, Re- ounder used to mea nd shipment due to ed tension ground c future climate char -susceptible structu thermal regime an und limited availabi ind. As such, we de occur during shipp	ter antenna of th mote Sensing Sp usure the electron the ice-rich per connections coul inge required add ural replacement d to provide fav lity of on-site co- ssigned an altern bing and transpo Thule 18. NUMBER OF PAGES	e Next Generation Ionosonde bace Environmental Branch, and Air n density of ionospheric plasma. The mafrost soil conditions at Thule Air Id not withstand viscoelastic creep of litional considerations to protect the fill, and extruded polystyrene board- orable foundation performance for the oncreting capabilities, foundations ative foundation detail, including rting. Air Base	