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Final Technical Report 

Deterministic and advanced statistical modeling of wind-driven sea 

Vladimir Zakharov, Andrei Pushkarev 

Waves and Solitons LLC, 1719 W. Marlette Ave., Phoenix, AZ 85015 
phone: +1 (602) 748-4286    e-mail: dr.push@gmail.com 

Award Number: N00014-10-1-0991 

LONG TERM GOALS: 

Development of accurate and fast advanced statistical and dynamical nonlinear models of ocean 
surface waves, based on first physical principles, which will improve and accelerate both long term 
ocean surface wave turbulence forecasts and prediction of strongly coherent events, such as freak 
waves and wave-breakings. 

OBJECTIVES: 

Creation of better statistical models for improvement of existing operational wave prediction 
programs; study of non-stationary waves growth in presence of wind; interpretation of experimental 
data through study of self-similar solutions of Hasselmann equation; studying the integrability of ID 
dynamical equations for surface waves; study of the possibility of generalization of compact ID water 
waves equation for 2D situation; study of the implications of modulational instability on solitons, 
rogue waves and air-surface interaction. 

APPROACH 

Numerical methods for solution of integro-differential equations; analytical self-similar solutions for 
integro-differential equations; Hamiltonian formalism; comparison of analytical and numerical 
solutions with experimental data; analytical and numerical solution of approximate models for deep 
water surface waves 

WORK COMPLETED: 

• We propose to use new wind forcing source term, which is analytical solution of Hasselmann 
equation, consistent with experimental data and numerical simulation 

• We prove that there is no reason to include dissipation in the spectral maximum area. Instead, 
we justify localization of dissipation in high wave-numbers area 

• We re-examine energy balance in the wind-driven sea and find that the major term in the 
energy balance is nonlinear interaction term Snl. This fact explains Kolmogorov-Zakharov 
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weak-turbulent spectra /^ ~ co'A and /ffl ~ co'un and self-similar behavior both in 

experimental observations and numerical simulation as well 
We propose new framework for simulation of Hasselmann equation based on exact nonlinear 
interaction term in Webb-Resio-Tracy (WRT) form, new wind input term and wave-breaking 
damping localized in high wave-numbers 
We found that majority of field and wave tank experimental data can be explained in terms of 
self-similar solution of the Hasselmann kinetic equation. The self-similarity explains 
persistence of the "magic links" connecting indices of energy and mean frequency 
dependencies in fetch- and duration-limited setups 
We analyzed proposed alternative framework for HE simulation through massive numerical 
experiments of Hasselmann equation and found that they reproduce more than a dozen of field 
experiments 
Based on the idea of nonlinearity domination and self-similarity, we developed the set of tests 
allowing separating physically based wind input terms from non-physical ones 
We show that central role of self-similar regimes explains very simple "universality of the 
wind-driven sea", connecting average steepness, frequency of the spectral peak and fetch. This 
universality is observed in majority of field and wave tank experiments. This is strong 
confirmation of our basic concepts 
We propose and compare with the original exact ID Euler dynamical equation their cost- 
effective simplifications 
We analyze relation of modulational instability and coherent events such as solitons and freak 
waves 
We study the peculiarities of breaking waves and air flow interaction, allowing to understand 
air structures formation and their influence on surface waves 

1. Nonlinearity domination in Hasselmann equation and alternative framework of its numerical 
simulation 

The motivation of the research presented in current report was to continue the project of finding firm 
scientific foundation for study of wind driven seas. 

The most important step in this direction was made in 1962 by K. Hasselmann [R2,R3] who proposed 
kinetic equation for wind waves description 

d£    dcok Sf     0       0       0 

^7+^r^=s»i+s*+sdiss (i) 
ot      ok  or 

similar to equations used in condensed media physics starting since 1920-ies, where s = s{cok,9,r,t) 

is the wave energy spectrum as a function of wave dispersion (ak = a)(k), angle 0, two-dimensional 

real space coordinate Error!=(x, y) and time t. Snl, SM and Sdjss are nonlinear, wind input and wave- 

breaking dissipation terms correspondingly. Hereafter only the deep water cok = ^gk case is 

considered, where g is the gravity acceleration and A=|Error!| is the absolute value of the wave number 

K = {Kx,Ky) . 
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Eq. (1) is widely accepted in the oceanographic community [R4,R5] and has several names. It is called 
the Boltzmann equation [R5] (while this is not exactly correct), the energy balance equation [R4] and 
the radiation balance equation. We will call it the Hasselmann equation (hereafter HE) as a tribute to 
Hasselmann's pioneering work. At least the part of the community uses the same terminology [R6]. 

The right side of the Eq. (1) consists of three terms. The .S^term is completely known. It was 
consistently derived from Euler equations and describes resonant interaction of quadruplets of waves 
satisfying 

& + &, = &2 + &3 (2) 

o)k+o)ki=o)k2+o)^ (3) 

Traditionally for theoretical physics, Snl is represented in the form 

Snl (co, 6) = F(co, 6) - E^, e)s{,CD, 6) (4) 

Here F is essentially positive "income term", presenting density of the energy flux into specific wave 
"at the expense" of other waves. The negative term -T{co,6)£{co,6) is the "offtake term" responsible 
for energy transfer to other waves due to nonlinear interactions. The explicit expressions for F and Y 
are not presented due to their complexity. One can find them in multiple publications, for example 
[R7,R8]. In thermodynamics, the equilibrium between "income term" and "offtake term" provides 
formation of thermodynamically equilibrium spectra - Maxwell and Plank distributions. 

The function F also has another physical sense. In presence of nonlinear wave ensemble, the 
dispersion law is undergoing the renormalization 

a)k ^ CL)k + A^ (5) 

The renormalization has real and imaginary parts. The imaginary part is 

ImA(fi;) = -n>,60 (6) 

Thus, the SnI term is reliably known. Opposite to it, the "source function" Sin - energy income from 

the wind and its dissipation function Sdjss due to wave-breaking are known just approximately. There 

is no consensus regarding their form in oceanographic community. We discuss these questions in 
Sections 2 and 3 of current report. Meanwhile, the numerical experiments show that wind waves level 
is sensitive to the individual choice of the source function. The ambiguity of their proper definitions 
presents first major difficulty for wind wave theory and effective operational models development as 
well. 

The second difficulty is connected with SnI collision term numerical simulation. It is complex non- 

linear operator having, meanwhile, deep internal symmetry. Several Snl simulation algorithms are 
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available at the moment: Webb-Resio-Tracy {WRT) [R9,R10], Lavrenov [Rll], Masuda [R12]. All of 
them provide reliable results, but are too slow to provide simultaneous HE solution of the Eq. (1) in the 
dozen thousands points faster than real time, as it is required by operational wave forecasting. Because 
of that, existing operational models use much faster substitutes of Snl in the form of DIA and its 

analogs, which leads to appearance of new undefined parameters which needs to be "tuned". In a sense, 
using of such tuning parameters presents, in particular, an attempt to "undo" the damage incurred to the 
model through substitution of Snl by DIA. 

As a result, all existing operational models need to be "tuned-up" for any individual set-up. Even if this 
situation is satisfactory from the engineering viewpoint, any further attempts of these models 
improvement do not provide any real progress in understanding of the processes of the ocean surface 
physics, and seem rather futile. It is necessary therefore to radically change the methodology and place 
it on solid scientific background. 

First of all, correct definition of the source functions is necessary. It's possible to do that without new 
theoretical constructions and new difficult experiments. It is sufficient just to use existing experimental 
data in proper way. For 68 years, starting from well-known work of Sverdrup and Munk [R13], 
physical oceanography has accumulated plethora of experimental facts regarding wave growth speed at 
certain wind. Part of those facts was obtained in water tanks, but the most interesting are the ocean 
measurements. 

Nowadays, the results of more than two dozens of measurements related to the "fetch limited" field set- 
ups, when off the shore wind and waves are quasi-stationary, are systemized and published. All those 
situations are described by stationary HE 

"^      T~ = Snl + Sin + Sdi.is (7) ok ox 

This equation was solved in the presented research for different source functions Sin and S^. Five 

experiments were carried out for different wind input functions, and their results were compared to 
known ocean field experimental data. This comparison actively used the fact that the results of those 
experiments are well described by weak turbulence theory (WTT). This theory is well explained in 
details in monograph [R14], and applications of this theory to the ocean experiments are presented in 
publications [R15, R8,R16, R17, R18, 19] [R8,R15-R19]. ' 

The possibility of WTT application is based on the fact that^ in Eq. (1) is the dominant term. This 

fact can be explained in the following way. All S^ cases considered in current research are quasi- 
linear ones, which means that 

8^=^,9)^,9) (8) 

5^=-7^^,9)8^,9) (9) 

Taking into account Snl splitting Eq. (4), Eq. (7) take the form 

-^^: = FicD,0)-iricD,d)- ricD, 6) + rdiss {CD, e))s{cD, 9) (io) 
dk  or 
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One should note that y typically has fairly small value 10~5 cop for waves with the frequencies close to 

the peak frequency  (op. The value of ydjssdoQS not exceeds  y, or waves are not excited at all. 

Meanwhile, the value of Y is rather big, as show analytic and numeric calculations. It easily overlaps 
y by more than the order of magnitude [R7,R20]. Therefore, one can substitute in the first 
approximation Eq. (10) by conservative equation 

ok ox 

which is, indeed, the subject of the ^TT study. 

It is customary to use "Kitaigorodsky dimensionalization", where the fetch variable x, total energy E 
and peak frequency 0}p are substituted by dimensionless variables 

xs Es2       .    COM 

u u g 

All ocean and wave tank measurements show that s(x) and co(z) are power functions of 
dimensionless fetch 

s = szp (13) 
d) = (o0x~'1 (14) 

The values of/? and q are varying in different experiments, but not in significant limits: 0J4<p<l, 
0.2<1<0.3 . They are connected with the good accuracy by "magic relation" 

10^-2/7 = 1 (15) 

These facts are explained by WTT [R15]. Conservative kinetic Eq. (11) has 4-parameter family of self- 
similar solutions [R16,R17], for which the "magic relation" is fulfilled exactly. 

It was shown in [Rl] that non-conservative HE with dissipation localized in short waves and forcing 
chosen in the power function form 

y(a,0) = mo}
s (16) 

also allows self-similar solution. It preserves the "magic relation" Eq. (15) as well. 

All the numerical experiments presented in current report included short-wave dissipation, but in the 
"implicit" way: the spectrum at frequencies/>l.l//z has been changed to Phyllips spectrumf ~ co~5. 
The validity of this approach is discussed in the Section 3. 

Four out of five of those experiments assumed absence of long-wave dissipation in longer waves. Such 
experimental set-up contradicts existing tradition, but is justified by obtained results. Four existing 
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wind forcing terms has been checked : ZRP, Chalikov, Xiao-Shemdin an Snyder ones. The only S/n 

term in the power form was ZRP forcing term, and only this corresponding experiment showed good 
agreement with the field experiments, for which p-l and ^=0.3. The other Sin terms lead to the 

Eq.(13), (14) for which indices/* and q are the functions of dimensionless fetch. It is important to note 
that the magic relation Eq. (15) still holds for them too, which means that the corresponding spectra 
exhibit "local" self-similarity. 

The most far-outlying from the reality results exhibits the numerical experiment performed with 
Snyder forcing, which happens to be sharply exceeding the reality. Presumably, this fact was realized 
even before [R21], and was the reason for long-wave dissipation inclusion into the model. This idea 
materialized in the form of WAM3 model, which had Snyder wind forcing term and long-wave 
dissipation as well. Apparently, WAMi model numerical testing with exact expression for Sn, was 

never performed before the tests presented in current report. 

The numerical test results presented below show that WAMi model predicts too low levels of waves. It 
is satisfactory in only one aspect - it passes the ofA test explained in Section 4. 

The obtained results can be estimated as successful start. The further perspectives are discussed in the 
Conclusion. 

1.1 Current state of wind input source terms 

Nowadays, the number of existing models of Sm is large, but neither of them has firm theoretical 

justification. Different theoretical approaches argue with each other. Detailed description of this 
discussion can be found in the monographs [R4], [R5] and the papers [R22], [R23], [R24], [R25] and 
[R26]. 

The development of wind waves models has begun as far as 1920-ies of the last century in the well- 
known works of Jeffreys [R27], [R28]. His model is semi-empiric and includes unknown "sheltering 
coefficient". All other existing theoretical models are also semi-empiric, with one exclusion - famous 
Miles model [R26]. This model is rigorous, but is related to idealized situation - initial stage of waves 
excitation by laminar wind with specific wind profile U{z). 

Miles theory application is hampered by two circumstances. First is the fact that atmospheric boundary 
layer is turbulent one, and creation of rigorous analytical theory of such turbulence is nowadays 
unsolvable problem. 

There is the opinion, however, that wind speed turbulent pulsations are small with respect to horizontal 
velocity U{z) [R29,R30,R31,R32], and in the first approximation they should be neglected [R30,R32]. 
This does not mean that turbulence is not taken into account at all. It is suggested that the role of the 
turbulence consists in formation of the averaged horizontal velocity profile. 

The widely spread opinion is that horizontal velocity profile is distributed by logarithmic law 

[/(z) = 2.5w, In— (17) 
2n 
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Here u* is friction velocity and ZQ - the roughness parameter 

^Q.- (18) 
g 

where CcA « 3 • 10"2 is experimental dimensionless Chamock constant. 

One should note that appearance of anomalously small constants, not having "formal justification", is 
extremely rare phenomenon in physics. Eq. (17), (18) mean that roughness parameter is very small: for 
typical ocean conditions - wind speed 10 m/sec on the height z=\0 m we have z0 « 5 • 10~4 w . Such 

roughness is only twice the size of viscid layer, defined from multiple experiments on turbulent wind 
flow over smooth metal plates. 

Usage of Eqs. (17), (18) assumes therefore that ocean behaves as smooth metal surface. This is not 
correct. Horizontal momentum is transferred to the smooth plate on its surface itself, while in the ocean 
this process happens differently. 

Momentum offtake from atmospheric boundary layer is smoothly distributed over the whole width of 
the boundary layer and begins from the highest "concurrence layer", i.e. from the height where phase 
speed of the fastest wave matches the horizontal velocity. Momentum offtake leads to horizontal 
velocity distribution U(z) dependence on time, waves development level and energy spectrum. 

Meanwhile, Miles instability increment is extremely sensitive to the horizontal velocity profile (there is 
no waves excitation for linear profile U(z) in Miles theory, for example). The velocity profile is 
especially important for slight elevations of the order of several centimeters over the water surface, 
which is almost unknown and difficult for experimental measurements. However, there are some 
advances in this direction [R33,R29]. 

The necessity of taking into account the waves feedback into the horizontal velocity profile has been 
understood long time ago in the works of Fabricant [R30] and Nikolaeva, Zymring [R31]. It was later 
continued in the works of Jannsen [R32] and explained in details in the monograph [R5] in the form of 
"quasi-laminar" theory. This theory is not accomplished yet. 

To consider the theory as self-consistent even in the approximation of turbulence absence, it is 
necessary to solve equations describing horizontal velocity profile U(z) together with Hasselmann 
equation, describing energy spectrum evolution. This is not done yet either. 

Aside that fact, many theoreticians do not share the opinion about turbulent pulsations insignificance, 
and consider them as the leading factor. Corresponding TBH theory by Townsend, Belcher and Hunt 
[R22] is alternative to quasi-laminar theory. Both theories are discussed in [Error! Reference source 
not found.]. 

There is another approach, not connected with experimental analysis - numerical simulation of 
boundary atmospheric layer in the frame of empiric theories of turbulence. It was developed in the 
works [R23,R24,R25,R35]. Since those theories are insufficiently substantiated, the same relates to 
correspondingly derived wind input terms. 
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For all the variety of theoretical approaches of S-   definitions, all of them are "quasi-linear" [R20], 

where standard relation 

(19) 

is being used. Here  co =— where u is the wind speed, defined differently in individual models. 
u 

Function /? is dimensionless and is growing with the growth of —. However, even for the models 

exhibiting the most strong wind input, the value of/? does not exceed several units and usually 0 < /? < 
1. In some models (see, for example [R25]) /? becomes negative for the waves propagating faster than 
the wind, or under large angle with respect to the wind. 

Looking at multiple attempts of Sin experimental definition, one should note that all of them should be 

carefully critically analyzed. That criticism is not about the integrity of measurements itself, but about 
the used methodology and data interpretation correctness and the possibility of transfer of the 
conclusions made in artificially created environment to real ocean conditions. 

Significant amount of the experiments, belonging to so-called "fractional growth method" category, 
has been performed through energy spectrum measurement in time and calculation of the 
corresponding y through 

^     1     de^ (20) 
£(co,6)     dt 

Eq. (20) is, in fact, the linear part, or just two terms of the HE Eq. (1). 

da)k ds 
This method is intrinsically wrong, since it assumes that either advection      --   „ , or nonlinear Snl ok  or 
terms of Eq.(l) are absent altogether, or relation 

■«/ (21) '*- =s„ 
dk dr 

is fulfilled. 

First assumption is simply not correct, since neglected terms are defining in ocean conditions. The 
second assumption is almost fulfilled indeed, since the sea obeys WTT. But the terms in Eq.(21) are 
large, while the terms in Eq.(21) are relatively small. Thus there is no reason to neglect the terms Eq. 
(21). 
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In the relation to the "fractional growth method" we are just citing the single relevant publication by 
Plant [R36] where, it seems, author well understood the scarcity of this approach. 

As a matter of fact, the real interest presents the experiments, which used measurements of the 
correlation between the speed of the surface growth and the pressure on the surface: 

Q{co) = Re < ri{co)P* {co) > (22) 

Unfortunately, the number of such experiments is limited, and not all of them have significant value 
for ocean phenomena description. Also, one should take out of consideration the experiments 
performed in laboratory conditions. 

Consider, for example, the set of experiments described in [R37]. These experiments were performed 
in the wave tank of 40 m length and 1 m depth. The wind was blowing at the speed up to 16 ml sec, but 
they studied only short waves no longer than 3 m, moving no faster than 1.3 ml sec. Therefore, they 
studied the very short-wave tail of the function /?in the conditions far from the ocean ones. The value 
of these measurements is not significant. 

The same arguments relate to multiple and precisely performed measurements in the Lake George, 
Australia [R38]. The depth of this lake, in average, is about 1 m. That is why the waves not faster than 
3.3 ml sec can propagate on its surface. The typical wind speed, corresponding to these measurements 
was 8-12 ml sec. 

Therefore, while the results of these measurements are quite interesting, obtained expression for -S"^ is 

arguable not only because of non-improvement to "quasi-linear" theory, but also being in complete 
contradiction with it. 

The quasilinear theory predicts smoothing of the velocity profile U{z) with waves development. The 
wind input growth rate, however, was increasing with the wave level in the experiments [R39]. 

After critical analysis of experiments on JS^ measurements, only three of them deserve an attention. 

Those are the experiments by Snyder et al. [R40], Hsiao, Shemdin [R41] and Hasselmann, Bosenberg 
[R42]. These experiments were performed in the open ocean and measured direct correlations of 
surface speed change and the pressure. Their accuracy was not quite high and scatter of data was 
significant, presumably, due to their contemporary technologies. Therefore, their interpretation is quite 
ambiguous. Anyhow, these experiments produced two well-known formulas for (3. Next, we present 
(3 expressions for the cases analyzed in current report. 

For Snyder et al. [R40] and Hasselman-Bosenberg [R42] cases 

Hn /■    /-    1 (23) 
[0, for^<\ 

For Hsiao-Shemdin [R41] case 
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v2 

13 = 
0.12(^-iy   for C>\ 

0, for i;<\ 
(24) 

For ZRP [Error! Reference source not found.] case 

/? = (25) 
[O.n^-l)2    for  t;>\ 

[0, for    i;<\ 

The difference between various Sjn corresponding to Eq. (23)-(25) is significant. As it was shown 

before for wind forcing on measured spectra [R16], Snyder-Hasselmann-Bosenberg form gives 5-6 
times bigger value of .S^than Hsiao-Shemdin one. Furthermore, the Hsiao-Shemdin form agrees with 

Jeffreys theoretical model, while Snyder-Hasselmann-Bosenberg one is not supported by any known 
theoretical models. 

Fig.l presents one-dimensional plots of four functions fi{£) studied in numerical experiments 
presented below. We intentionally did not include lengthy Chalikov formula for corresponding 
/?(iQfor the sake of space saving purposes. Curious reader can find it in [R35]. 

' ' ' ' i ' '  I i >'i ' ''',.' ',, V 

/   / - 
i /   - 

0.8 - :/ 
' 

/                      /: 
' 

0.6 
— ~ 

/                       / 
0.4 - s'                                / y                / s- /                 / 

i                                  /                          :                                    -r 

i           /         /      ^,'' ' 
/ /                •'    ''' " 

0.2 - /         ' ^'' " 
i 

/     ' ' ' '■■ 

" 
i 

i /'''    ••■' 

" 
// - 

0.0 -i-j—I-I_I , , , J'/, , .,,--,■',■', ,1              i .   

Figure 1 Four cases of function /?(i^) used in numerical experiments along the wind6? = 0. Solid line: Snyder- 

Hasselmann-Bosenberg case Eq.(23); dashed line: Hsiao-Shemdin case Eq.(24), dashed-dotted line: Chalikov case 
|R351 and dotted line: ZRP case Eq. (25). 

Summing up, we can conclude that at the moment there is no solid parameterization of Sin accepted by 

worldwide oceanographic community. Keeping that fact in a mind, we decided to go our own way - 
not to build new theoretical models and not to reconsider both old and completely new measurements 
of 5,„. 

For 68 years, counting from works of Sverdrup and Munk [R13], physical oceanography assimilated 
tremendous amount of wind-wave experimental data - wave energy and spectral peak frequency as the 
functions of limited fetch. Such experiments are analyzed in works [R16,R17,R18,R19]. From the 
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other side, numerical methods for solution of HE Eq. (1) with exact Snl term have been improved 

significantly for duration-limited and fetch-limited domaina as well. 

m Therefore, we proposed purely new pragmatic approach to definition of Sin. We have chosen Sj 

function in a way that numerical solution of Hasselmann equation explains maximum amount of 
known field experiments. The result was the Sin function described in details in [Error! Reference 
source not found.] and named thereafter ZRP function. 

It is important to emphasize that work [Rl] assumed localization of energy dissipation in short waves. 
This assumption contradicts widely accepted concept, but we explain the difference in the following 
chapter. 

1.2 Two scenarios of wave-breaking dissipation term: spectral peak or high-frequency 
domination? 

In current section we explain why there is no need to use dissipation in the spectral peak area. 

The spectral peak frequency damping is widely accepted practice, and is included as an option in the 
operational models WAM, SWAN and WW3. Historically, it was done apparently not for physical 
reasons, but by need for matching HE simulation results to the field experimental data. 

This necessity was caused by wind input function Sin in Snyder form [R21,R43]. Too fast wave energy 

growth was observed in no-dissipation calculations, which didn't match the results of field 
measurements. Despite the results were obtained with the help of DIA substitute of Snl, it is 

qualitatively correct, since it is also confirmed by presented below numerical calculations, which used 
exact nonlinear interaction term Snl. 

It is shown below that Snyder wind input without long-wave dissipation gives 5-6 times bigger energy 
growth than other tested wind input functions {ZRP, Chalikov and Hsiao-Shemdin). This doesn't mean, 
indeed, that long-wave dissipation exists. The necessity of its introduction is explained by Snyder 
model imperfection, based on not quite accurate experiments. 

There are no physical reasons for energy-containing long waves breakings. Their steepness in the 
conditions of typically developed wave turbulence is not big: /U=<'VT]

2
 >1/2~0.1, or even smaller. 

Because this value is very far from limiting steepness of Stokes wave /us » 0.3, these waves are 

essentially weakly-nonlinear. Besides those waves, shorter waves inevitably develop, having the 
steepness approaching to the critical one, and those waves break. There is, nevertheless, no reason to 
expect that these waves have the same phase velocity as the energy-containing ones. 

Unfortunately, the theory of "wave-breakers" is not developed yet. In our view, which we don't 
consider based enough, one of the possible variants of such theory could be the following. 

The primordial Euler equations for potential flow of deep fluid with free surface has the self-similar 
solution 
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T]{x,t) = gt2F u^ (26) 

This solution was studied numerically in the framework of simplified MMT (Maida-McLaughlin- 
Tabak) model of Euler equations [R.44]. 

In Fourier space this solution describes the propagation to high wave-numbers and returning back to 
dominant wave spectral peak of fat spectral energy tail, corresponding in real space to sharp wedge 
formation at time t=0 and space point x=0. This solution describes formation of the "breaker". 

In the absence of dissipation, this event is invertible in time. Presence of high-frequency dissipation 
"chops off" the end of the tail, just like "cigar cutter", and violates the tail invertability. Low and high 
harmonics, however, are strongly coupled in this event due to strong nonlinear non-local interaction, 
and deformed high wave-numbers tail almost immediately returns to the area of spectral peak. As soon 
as fat spectral tail return to the spectral peak area, total energy in the spectrum diminishes, causing 
settling of the spectral peak at lower level of energy. This process of "shooting" of the spectral tail 
toward high wave-numbers, and its returning back due to wave breaking is the real reason of "sagging 
down" of the energy profile in the spectral peak area, but was erroneously associated with the presence 
of the damping in the spectral peak area. This explanation shows that individual wave-breakings 
studies [R39,R45] are not the proof of spectral peak damping presence. 

Also there is another, direct proof of the fact that the damping is localized in the area of short waves. It 
is the measurements of quasi-one-dimensional "breakers" speed propagation - strips of foam, which 
accompany any developed wave turbulence. Those experiments, recently performed by P. Hwang and 
his team [R46,R47,R48,R49], show that wave breakers propagate 4-5 times slower than the crests of 
leading waves. 

Slowness of the breakers means that their characteristic sizes are several times smaller than energy- 
containing waves. Thus, "wave-breaking" is the phenomenon occurring in the short scales region. Of 
course, the short waves are modulated by the long ones, which amplifies the "wave-breaking" process. 
Presentation of that process as direct energy offtake from long waves is not confirmed, however, 
neither by experimental observations, nor analytical analysis. 

Nevertheless, operational wind waves predicting models routinely use empirical expressions for wind- 
wave dissipation due to wave-breaking. The corresponding dissipation term in original notations is 
given by [50] 

k 

a 
N{k,e) (27) 

a = EcTV2 (29) 

where Nik, &) is the wave action spectrum, a is the frequency, k is the wavenumber, 6 is the angle, E 

is the total energy, Qs. =-2.36-10"5, aPM =3.02-10"3 is the value of a for PMspectrum. 
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This formula assumes that dissipation is concentrated in the long-waves region and numerical 
experiments, presented in Section 9, show that it is realized that way, see Fig.32. This mean that Eqs. 
(27)-(29) are not confirmed by performed ZRP numerical simulation. 

Currently, the set of experiments on direct numerical solution of the primordial dynamical Euler 
equations is carried out, based both on exact [R51] and approximate [R52] equations using small wave 
slope parameter expansions as well. Part of the results are already published [R51]. They shows that 
the dissipation due to wave-breaking of the small-slope waves is, at least, by the order of magnitude 
smaller than used in the operational models WAAd3 and SWAN. More detailed results will be published 
soon in [R52]. 

Thus, it is reasonable to suppose that wave-breaking dissipation is localized in short scales. The 
population of waves having frequencies 3-4 times bigger than spectral maximum frequency is called 
"Phillips sea" [R53,R54]. The "Phillips sea" contains no more than 2% of the total wave energy, but 
the whole energy dissipation fueled by energy flux from long waves is happening right in that place. It 

is proved experimentally that "Phillips sea is described by universal Phillips spectrum s « —^-, where 
CO 

a « 0.01 is dimensionless constant, while for Pierson - Moscowitz spectrum a = 0.081 [R55]. 

"Phillips sea" is quite interesting physical object. It contains breakers of different statistically 
uniformly distributed sizes [55] down to capillary ones X»IJ cm. Exact form of "Phillips sea" energy 
dissipation function is unknown. Recently, quite plausible model of such function has been presented 
in [R56], which is hoped to become the subject of oceanographic community discussion. 

1.3 Numerical experiments set-up 

The subject of numerical solution was stationary HEEq.(7) for different wind input functions. 

The total of 5 different wind inputs have been tested with one difference: the first 4 tests were done for 
simplified equation 

aa'dS=S„+S, (30) 
dk dx 

assuming absence of low-frequency dissipation and presence of the "implicit" high-frequency 
dissipation. The fifth test - WAAd3 model - included besides short-wave "implicit" dissipation also long 
wave dissipation according to Eq.(27)-(29) in the frame of "full" version of stationary HE Eq.(7). 

All simulations were performed with help of ^7?r method [R9] previously used in [R8,R56-R64] on 
the grid of 71 point in frequency and 36 point in angle domains. 

1.4 The details of "implicit" damping implementation 

One should specifically stop on the details of the "implicit" high-frequency damping used in all five 
numerical simulations. The procedure of inclusion of the "implicit" damping consists in continuation 
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of the spectral tail by Phillips XnwA{(ocril)■ of5, where A{cocrU) is dynamically changing in time 

constant. 

The coefficient A{Q)cril) in front of of5 is not exactly known, but is unnecessary to be defined in the 

explicit form - it is dynamically determined from the continuity condition of the spectrum at frequency 
(o0 on every time step. In other words, starting point of the Phillips spectrum coincides with the last 

point of the dynamically changing spectrum at the frequency point &>,,„ = 27tfcrjl, where fcril«1.1 i/z as 

per Resio and Long experimental observations [R57,R58]. 

This is the way the high frequency "implicit" damping is incorporated into alternative computational 
framework of HE. 

One should note that recently developed analytical model [R55] describes automatically the transition 
from KZ spectrum co~4 to Phillips tail co~5 [R56]. Such modification of the "implicit" damping is in the 
future plans, but the question of finer details of high-frequency "implicit" damping structure is of 
secondary importance at current stage of the alternative framework development. 

1.5 WTT facts used in numerical simulation 

As a rule, confirmed by field and numerical observations, the wave energy spectrum has sufficiently 
sharp peak at co& coF. However, almost immediately after the spectral peak at &>« coF the advection 

term becomes insignificant and the original stationary HE Eq.(7) is transformed into 
dk dx 

Snl+5^+8^=0 (31) 

Comparison with Eq. (10) shows that Eq.(31) can be rewritten in the form 

Fico, 9) = (!>, 0) - y{(o, 9) + ydl5S {co, 9)) ■ sico, 9) (32) 

As it was shown in [R7,R20], nonlinear dissipation Y{a),9) in the "universal area" co>\.5cop  is 

several times greater than wind forcing. Therefore, Eq. (31) can be rewritten in the first approximation 
as 

Snl = 0 (33) 

This equation has the family of stationary solutions. The most simple and well-known is isotropic 
solution 

^,0) = ^VP,/3=% (34) 
CO CO 
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Here P is the energy flux into the high wavenumbers region. Our experiments show that it changes in 
the limits (2 -^ 3) • 10 '6 w / sec . Cp is Kolmogorov constant, which value is now exactly known : 

C/,=4;r-0.194 = 2.43 (35) 

From here one can estimate characteristic the value of J3KZ 

PKZ = Cpg
AI3Pm « 0.6 m/sec (36) 

According to WTT, the value of J3KZ should be the constant in the region 1.5^ <co< cocril. Here 

cocril = 2;r • 1.1 = 6.91 is the critical frequency at which the "implicit" damping is turning on. The 

energy flux at this area is diminishing proportionally to co~3, and J3KZ is not the constant anymore - 

one has to substitute J3KZ by J3KZ ■ —£rlL. 
CO 

Real energy spectrum in the universal area is not quite isotropic. Eq. (33) besides isotropic has exact 
anisotropic solutions as well [R???]. As far as concerns considered cases, the solutions do not differ 
too much from the isotropic ones. Detailed discussion of those circumstances is outside the scopes of 
current report. 

Let's discuss self-similar solutions of the conservative HE Eq.(21). This equation has the family of 
self-similar solutions 

s = ^p+qF{co^c•) (38) 

where q and/? are the constants, connected by the "magic relation" 

10^-2^ = 1 (39) 

In this case the energy and frequency of the spectral maximum are the power functions 

s = So-C (40) 

a) = co(>-C (41) 

Eq.(21) has the single self-similar solution only in the case when /? from Eq.(19) (don't mix with 

PKZ     from Eq. (34))!) is power function of frequency: 

P = cosfiG) (42) 

Now the constant q is defined unambiguously as ^ =  [Rl]- 
2 + 5' 

As it was already mentioned, practically all ocean field experiments demonstrate power dependencies 
Eq. (40), (41). However, there is scattering in definition of the exponent/? in the range 0.74 < p < 1.1 . 



DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 

It's quite possible that this scattering is due to absence of universal expression for^S^, useful for any 

atmospheric boundary layer state. 

The experiments of Kahma [R19] performed for "stable" and "unstable" atmosphere gave the different 
values of p. However, the "magic relation" Eq. (39) still holds true for those different cases [17]. This 
fact holds the promise that ^TT always works. 

More than the half of the experiments have the values p-l,   q -0.3 . Such self-similarity occurs if 
s - 4/3. This fact together with field experimental data [Error! Reference source not found., 
Error! Reference source not found.] leads to the appearance ofZRP wind input term [Rl]. 

1.6 Checking of the new modeling framework against theoretical predictions and field 
measurements 

To check alternative framework for HE simulation, we performed numerical tests for waves excitation 
in limited fetch conditions. As it was already mentioned, alternative framework is based on exact 
nonlinear term Sifl and ZRP new wind input term: 

Sm=rs (43) 

r = 0.05-^0) 
PwaU 

a> 
4/3 

v^oy 
M (44) 

mJ^0  f0r  -/2<*<-/2 (45) 
0 otherwise 

^^J,   ^ai^ = 1 3.10-3 (46) 

U\0       /-'water 

Fig.2 shows total energy growing along the fetch by power law in accordance with Eq.(40) with/>= 1.0, 
see Fig.3. 
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ZRP forcing , wind speed U=10 m/sec 
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Figure 2 Dimensionless energy dependence on the dimensionless fetch in numerical experiment (solid line). 

Dashed line - fit by 2.9 • 10"7 ~ u2 
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ZRP forcing , wind speed LMO m/sec 
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Figure 3   Exponent/; of the energy growth as a function of dimensionless fetch. 

Dependence of mean frequency on the fetch, shown on Fig.4, also demonstrates perfect 
correspondence of numerical results and corresponding self-similar dependence Eq.(41) with ^=0.3, 
plotted on Fig.5. Because of good coincidence of mean and peak frequencies on Fig.4, the former is 
used in the following self-similarity analysis. 
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ZRP forcing , wind speed U=10 m/sec 
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Fig.4 Dimensionless   mean   frequency   as   a   function   of  dimensionless   fetch   (solid   line)   calculated   as 

lomdcodd 
< CO >=—! , where n(co,0) is the wave action spectrum; dotted line - peak frequency CO  , dashed line - 

I ndcodO 

^ 3.4-^ 

-0.3 



0.0 

-0.1 

^ -0.2 

A 

E o 
X -0.3 

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited 

ZRP forcing , wind speed U=10 m/sec 
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Fig.5   Exponent q of mean frequency as the function of dimensionless fetch. 

Fig.6 presents directional spectrum as a function of frequency in logarithmic coordinates. 

Directional energy spectrum for limited fetch 

Fetch = 20081.08 m 
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Fig.6 Logaithm of spectral energy density as a function of frequency logarithm 

-4 -5 
(solid line). Dashed line - fit ~ ft)    ; dash-dotted line - fit ~ ft)   . 

One can see that energy curve on the left figure consists of segments of: 

1. Spectral maximum area 

2. Kolmogorov-Zakharov spectrum ftT4 

3. Phillips high frequency tail ft)-5 

Fig.7 presents "magic relation" (10q-2p) as a function of fetch. It is in perfect accordance with self- 
similar prediction Eq. (39). 

ZRP forcing , wind speed U=10 m/sec 
-i 1—i—i—i—i—|—i—■- "I 1 r i 1 1 1 1 n 
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6-   0 o 

-2L J_ , 1 . , ^      1      1 j_ _L 
5.0103 1.O104 1.5'104 

xg/UA2 
2.0'104 2.5-10' 

Figure 7: "Magic relation" (10q-2p) as a function of dimensionless fetch. 

We conclude that alternative framework for HE simulation with ZRP wind input term reproduces the 
following analytical features of HE: 

1. Self-similar solutions with correct exponents 

2. Kolmogorov-Zakharov spectra ft)-4 
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Table 1 presents results of calculation [R6] of the exponents;? and q for 14 different experimental 
observations with the last row corresponding to limited fetch growth numerical experiment within 
alternative ZRP framework. One can see good correspondence between theoretical, experimental and 
numerical values of j? and q. 

Experiment P q 
Babanin, Soloviev 
1998 

0.89 0.28 

Walsh etal. (1989) US 
coast 

1.0 0.29 

Kahma, Calkoen 
(1992) unstable 

0.94 0.28 

Kahma, Pettersson 
(1994) 

0.93 0.28 

JONSWAP by Davidan 
(1980) 

1.0 0.28 

JONSWAP by Phillips 
(1977) 

1.0 0.25 

Kahma, Calkoen 
(1992) composite 

0.9 0.27 

Kahma (1981,1986) 
rapid growth 

1.0 0.33 

Kahma (1986) average 
growth 

1.0 0.33 

Donelane^a/. (1992) 
St Claire 

1.0 0.33 

Ross (1978), Atlantic, 
stable 

1.1 0.27 

Liu, Ross (1980), Lake 
Michigan, unstable 

1.1 0.27 

JONSWAP by 
Hasselmann et al. 
(1973) 

1.0 0.33 

Mitsuyasu et al. (1971) 1.0 0.33 
ZRP numerics 1.0 0.3 

Table 1 The results of calculation |R6| of the exponents/; and q for 14 different experimental observations with the 
last row corresponding to limited fetch growth numerical experiment within alternative Z/?/* framework. 

1.7 Tests for separation of trustworthy wind input terms from non-physical ones 

As it was already discussed, there are plenty of historically developed parameterizations of wind input 
terms. Analysis of nonlinear properties of HE in the form of specific self-similar solutions and 
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Kolmogorov-Zakharov law for direct energy cascade allows proposing the set of tests, which would 
allow separation of physically justified wind-input terms Sin from non-physical ones: 

1. Checking powers of observed energy and mean frequency dependencies along the fetch versus 
predicted by self-similar solutions. 

2. Checking the "magic relations" Eq.(39) between exponents p and q for observed energy and 
frequency dependencies along the fetch. 

3. Checking exponents of directional spectral energy dependencies versus Kolmogorov-Zakharov 
exponent -4 

We applied such tests to the results of HE simulations which used the following popular wind input 
terms within alternative framework: 

1. Chalikov Sin term [R35,R25] 

2. Snyder Sfn term [R40] 

3. Hsiao-Shemdin Sin term [41] 

4. WAW Sin term [50] 

Test of Chalikov wind input term 

Fig. 8 shows that total energy growth along the fetch significantly exceeds observed in ZRP simulation, 
and value of the corresponding exponent significantly deviates from theoretical value p=1.0, see Fig.9. 
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Fig.8   Same as Fig.2, but for Chalikov Sjn 
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Fig.9  Same as Fig.3, but for Chalikov Sir 

Dependence of mean frequency on the fetch, shown on Fig. 10, also deviates from ZRP numerical 
results and corresponding self-similar exponent q=0.3, see Fig.l 1. 
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Fig. 10   Same as Fig.3, but for Chalikov S^ 
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Fig. 11   Same as Fig.4, but for Chalikov S!n 

10000 

Fig. 12 presents directional spectrum as a function of frequency in logarithmic coordinates. One can 
see that similar to ZRP case we observe: 

1. Spectral maximum area 

2. Kolmogorov-Zakharov spectrum aT4 

3. Phillips high frequency tail of5 
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io2r 
Fetch = 20096.52 m 

Fig. 12  Same as Fig.5, but for Chaiikov Sb 

Fig. 13 presents combination {\Qq-2p) as a function of the fetch. It is surprising that it is in perfect 
accordance with the "magic relation" Eq. (39). It mean that despite incorrect values p and q along the 
fetch, their combination {\0q-2p) still holds in complete accordance with theoretical prediction, i.e. 
self-similarity is fulfilled locally. 
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Figure 13: "Magic relation" {\toq-2p) as a function of the fetch for Chalikov wind input term. 

1.8 Test of Snyder wind input term 

Fig. 14 shows that total energy growth along the fetch significantly exceeds ZRP case, but has the value 
of the exponent close to ;?= 7.0 versus the fetch, see Fig. 15. 
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Fig.14  Same as Fig.2, but for Snyder S^ 
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Fig.15   Same as Fig.3, but for Snyder S^ 
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Dependence of mean frequency against the fetch shown on Fig. 16 is lower than ZRP numerical results, 
but has fairly close value to self-similar solution index <7=0.3, see Fig. 17. 
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Fig.16  Same as Fig.4, but for Snyder Sjn 
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Fig. 17   Same as Fig.5, but for Snyder Sjr 

Fig. 18 presents directional spectrum as a fanction of frequency in logarithmic coordinates. One can 
see: 

1. Spectral maximum area 

2. Kolmogorov-Zakharov spectrum ftT4 

3. Phillips high frequency tail co'5 
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■o- 
Fetch = 20027.48 m 

Fig.18 Same as Fig.6, but for Snyder Sjn 

Fig. 19 presents the combination (\0q-2p) as the function of the fetch. Again, it is in perfect accordance 
with the theoretical relation Eq. (39). As in Chalikov case it means that despite not perfect values oip 
and q and too fast energy growth along the fetch, their combination (I0q-2p) still holds in complete 
accordance with theoretical prediction, i.e. self-similarity is also fulfilled locally in Snyder case. 
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Figure 19   Relation {I0q-2p) as a function of the fetch for Snyder wind input term. 
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1.9 Test of Hsiao-Shemdin wind input term 

Fig.20 shows that total energy growth along the fetch strongly underestimates ZRP simulation, and has 
the asymptotic value of exponent ^=0.5, see Fig.21 
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Fig.20  Same as Fig.2, but for Hsiao-Shemdin S^ 
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Fig.21   Same as Fig.3, but for Hsiao-Shemdin Sjn 
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Dependence of the mean frequency against the fetch shown on Fig.22 demonstrates discrepancy with 
ZRP results and asymptotic value of index q &0.2\, see Fig. 23 
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Fig.23 Same as Fig.5, but for Hsiao-Shemdin Sjn 

Fig.24 presents directional spectrum as a function of frequency in logarithmic coordinates. One can 

1. Spectral maximum area 
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Fig.24 Same as Fig.6, but for Hsiao-Shemdin 5^ 

Fig.25 presents combination (10^-2p) as the function of the fetch. It is in total agreement with the 
theoretical predictions Eq.(39), which means that self-similarity is fulfilled locally in Hsiao-Shemdin 
case. 
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Fig. 25: Relation (I0q-2p) as the function of the fetch for Hsiao-Shemdin wind input term. 

1.10 Test of WAM3 input terms 

WAM cycles 1 through 3 source terms contain not only wind input term, but also long-wave 
dissipation [R21,R40,R50]. 

The input source termS1^ is defined as [R50] 

S,,(M) = QAmax 0, 
28M. 

COS^-^Q)-! CO£(k,0) 

u. =M107(0.8 + 0.065M10)10" 

where Cm = 0.25, pa and pw are the densities of air and water, u+ is the wind friction velocity, c is 

the wave phase velocity. Sdj:.s is defined by Eq. (27)-(29). 

Fig.26 shows that total energy growth along the fetch strongly underestimates ZRP simulation, and has 
the value of exponent/? asymptotically going to 0 versus the fetch, see Fig.27. 
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Dependence of the mean frequency against the fetch shown on Fig.28 demonstrates strong discrepancy 
with ZRP results and the value of the corresponding index q going asymptotically to 0, see Fig.29. 
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Fig.29 Same as Fig.5, but for WAM2, S^ 

Fig.30 presents directional spectrum as a function of frequency in logarithmic coordinates. One can 

1. Spectral maximum area 

2. Kolmogorov-Zakharov spectrum GT
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Fig. 21 presents combination (\0q-2p) as the function of the fetch. It is in total disagreement with the 
theoretical predictions. There is no any indication of "magic relation" Eq. (39) fulfillment. 
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Fig. 31: Combination (\0q-2p) as a function of the fetch for WAM3 S^ 
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Comparing the results, obtained for Snyder and WAM3 wind input terms, we see strong discrepancies. 
Energy dependence on the fetch for WAM3 model (which is essentially Snyder model with long-wave 
dissipation) strongly qualitatively differs from Snyder model. When long-waves dissipation is present, 
the energy is not only much smaller, but also its dependence on the fetch stops to be power-one very 
soon, and radically differs from all other above considered variants of wind forcing lacking long-wave 
dissipation. 

Fig.32 presents plots of angle averaged energy dissipation function and spectral energy. One can see 
that spectral dissipation in WAM3 model has sharp minimum corresponding to the location of the 
spectral energy maximum, which confirms the assumption that spectral maximum dissipation plays 
definitive role in WAM3 model. 
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Fig.32 Angular averaged energy dissipation function      ydlss£{o),d)dd (dotted line) and angle 
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averaged scaled energy spectrum 0.0001   £(o),d)d9 (solid line) as the functions of frequency /. 

1.11 Summary 

We are offering alternative framework for numerical simulation of HE. Being supplied with ZRP wind 
input term, such approach reproduces the results of more than a dozen of experimental observations. 
We also performed numerical simulations of HE for four another historically well-known wind input 
terms within the same alternative framework. They demonstrated the results deviating from ZRP 
simulation. 



DISTRIBUTION STA TEMENT A. Approved for public release; distribution is unlimited 

To classify the results of the above simulations we applied the set of nonlinear tests to different kinds 
of wind input terms, and here is the conclusion: 

1. ZRP forcing term perfectly corresponds to theoretically predicted results like Kolmogorov- 
Zakharov spectrum ~ fiT4 , self-similar solutions for energy and frequency with exponents/>=1 
and 9=0.3 correspondingly, "magic relation" \()p-2q=\ and reproduces more than a dozen of 
field experiments. Therefore, it can serve as the benchmark. 

2. All wind input terms pass the test for presence of Kolmogorov-Zakharov law £~CO . This 
means that effects of nonlinearity are so strong, that presumably no variation of the wind input 
term parameterization can suppress it. 

3. Chalikov and Hsiao-Shemdin cases fail p- and q- tests, but pass "Magic relation" (quasi-self- 
similarity) test. 

4. Snyder case "approximately" passes p-, q- and "magic relation" tests. However, numerical value 
of mean energy exceeds ZRV and experimental results by the factor of 5-6 times. 

5. WAM3 case fails to pass all except KZ spectrum test. 
6. None of the wind-input parameterization, except ZRP one, can correctly reproduce 

experimentally observed limited fetch growth. 

In summary, the nonlinearity influence is so robust in the dynamics of HE that one can't "spoil" 
Kolmogorov-Zakharov law ~ co'4 for any tested wind input term Sin. Self-similarity tests like p- and q- 

tests are the most sophisticated between suggested ones. And the "magic relation" test is probably 
somewhere in-between versus detection of the "quality" of particular wind input term. 

The analysis of multiple experimental field, laboratory measurements and numerical experiments 
performed in [Error! Reference source not found.] shows universality of "magic relations" 
fulfillments. That confirms the thesis on nonlinear interactions domination in the wind ocean energy 
balance. 

The summary of the tests is presented in Table 2. 

Experiment p-test q-iesi .KZ-spectrum Magic relation Energy growth 
ZRP YES YES YES YES YES 

Chalikov NO NO YES YES NO 
Snyder R; R- YES YES NO 

Hsiao-Shemdin NO NO YES YES NO 
WAm NO NO YES NO NO 

Table 2 The summary of the tests 

Presented research results are published in [PI], [P2], [P3] and [P4]. 
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2. Basic features of kinetic Hasselmann equation for wind-driven seas and their 
applications 

This section is devoted to studies of basic features of the kinetic Hasselmann equation that determine 
the leading role of the nonlinear transfer. It provides an opportunity for developing an asymptotic 
approach and, then, deriving a series of quite concise relationships for parameters of growing seas and 
swell. We start with a demonstration of the leading role of nonlinear transfer and propose asymptotic 
estimates of relaxation scales of the spectra of wind-driven waves [R7,R20]. It gives a ground for use 
an asymptotic approach for wind-driven seas in a spirit of our previous works [R16,R17]. Then we use 
simple relationships for analysis of Voluntary Observing Ships data [R70]. One more experimental 
application of the asymptotic theory is presented as a physical model for retrieving wave periods from 
satellite altimetry data [R71]. The concept of the generalized Phillips' spectra is presented as a 
synthesis of the asymptotic theory and a heuristic theory of wave dissipation that leads to the classic 
Phillips spectrum £ ~ ftT5 [R56]. The series of the work on the asymptotic methods for the kinetic 
equation for wind waves is finalized by very important and surprising result: we present a universal 
invariant that links steepness and wave field lifetime expressed in terms of dimensionless wave periods 
or wavelengths [R19]. The latter work opens fair prospects both as a tool of verification of wave 
forecasting models and for developing new experimental approaches. 

2.1 Energy balance in wind-driven seas within the Hasselmann equation 

The problem of balance of different terms in the right-hand side of the Hasselmann equation (1) is a 
key question for both wind-wave interaction theory and modeling. Today's mainstream emphasis is on 
developing new functions 5^ and Sdiss, but not correct and accurate calculation Snl. Confusion comes 

from [R21], where all three source terms have been compared for the case of fully-developed (mature) 
sea, and conclusion has been made that terms 5*^ and 5*^ can be two-three times greater than Snl. 

We show, in fact, that situation is opposite: Snl has a leading role in balance of wind-driven seas. The 

analysis is based on decomposition of ^ into nonlinear damping TkNk and forcing Fk 

Snl=Fk-rkNk (47) 

where rk - positive nonlinear damping decrement, Nk - spectral density of wave action. Our numerical 

and analytical results show that rkNk and Fk surpass conventional parameterizations of input and 

dissipation of wind-driven waves by, at least, one order of magnitude, see Fig.33. 

An additional argumentation is presented in Fig.2, where nonlinear damping decrement TkNk is 

compared to empirical parameterizations of wind-wave growth given by different authors and used in 
the today wave forecasting models as an option [R72-R40]. 
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Fig.33 Decomposition of the nonlinear term Sni (solid line) for the case by Komen et al. 
(1984) [R711 into nonlinear forcing (dashed) and damping (dotted) terms (see Eq.47) 
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Fig.34 Nonlinear damping coefficient Yk given by theoretical estimate and by the numerical simulation (dashed and 

solid bold curves, correspondingly). Conventional dependencies of wind growth increments are shown by thin 
curves with authors' names in the legend 

Our result on dominating effect of nonlinear interaction on wave spectra evolution should not be 
interpreted as a call to ignore the effects of wind input and wave dissipation. The leadership of Snl 

does not mean that we disregard wind input and dissipation, we just put them in proper place. The 
strong nonlinear forcing and damping that compose the conservative term  Snl   determine strong 

relaxation and a universality of spectral shaping due to inherent wave dynamics, while Sin and Sdiss are 
responsible for growth of total energy. 

Obtained result will help to make better theoretical estimates of solutions of Hasselmann equation and 
help to develop simplified approximations to source terms. An important direction of the result 
application is the use of asymptotic relationships for analysis of experimental data. 

2.2 Global visual observations as a tool for discriminating swell and wind seas 
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Simple asymptotic relationships of the asymptotic theory for the case of dominating nonlinear transfer 
can be used for analysis of experimental data. In this part of the project we use the most abandoned 
source of data the Voluntary Observing Ships (VOS) data. Generally, these data are considered as a 
source of infonnation on climatic features of the world ocean rather than experimental background of 
studies of physical mechanisms of wind-wave dynamics. We are trying to change this tradition by 
applying results of asymptotic weakly turbulent model of wind-driven seas [R20,R3] to extensive data 
base of the Global Atlas of Ocean Waves [R73-R74]. 

The global visual wave observations are re-analyzed within the theoretical concept of self-similar 
wind-driven seas. The theoretical criteria of discriminating wind-driven and swell seas are formulated 
and shown to be adequate to the problem. The results are detailed for the South Pacifica, which wave 
climatology based on VOS data is well studied and the swell component is well pronounced. The core 
of the analysis are one-parametric dependencies "wave height - wave period"   Hs - CTZ. The 

reference cases [R75-R76] have found, correspondingly, Z = 5/3, Z = 3/2 and Z = 4/3 . This set of 
exponents Z has been interpreted recently in [R17,R18] in terms of spectral fluxes and total wave 
input. An alternative reference case - sea swell gives an opposite signature of the exponent Z = -1 /2. 
This simple criterion was used and appeared to be robust for the problem of swell-wind sea 
discrimination. 

The corresponding exponent Z appears to be slightly higher than Z = -1 / 2, that implies a pumping of 
sea swell by wind-driven sea background [R70]. This important issue is considered both in the context 
of methodology of obtaining VOS data and within the physics of the mixed sea. This result contradicts 
to commonly accepted vision of sea swell as a neutral or slightly decaying fraction of ocean wave 
field. 

Prospects of further study are quite promising. In particular, satellite data are seen to be used for 
tracking ocean swell and for studies of physical mechanisms of its evolution. 

Fig. 3 5 gives a graphical summary of four reference cases of self-similar evolution of wind-driven 
waves. These cases are shown as different R, tangents of one-parametric dependencies 

H~TR 

height-to-period in logarithmic axes. Reference cases of growing wind sea are shown as the young sea 
growth at permanent wave momentum production (exponent R = 5/3 by Hasselmann et al. 1976 
[R75]), growing Toba's sea (R = 3/2) and old premature sea by Zakharov and Zaslavsky 1983 [R76] 
with R = 4/3. 
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In// 

Asymptotic model is not formally valid 

Inr 
Fig. 35 Reference cases of wave growth as one-parametric dependencies Hs(Ts). Cases of Toba |1972| R = 3/2 law 
and swell with R = -1/2 are shown by bold lines. Domain where the asymptotic scheme is formally invalid (Badulin et 
al., 2007 |R741) is shaded. 
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Fig.36 Dependencies H(T) and their power law fits for the whole World Ocean, 1970-2007 for (top) wind waves and 
(bottom) swell. Lines marked as A, B, C, D show reference power laws of Fig.5. The exponents of the experimental 
fits R = 0.96 for wind sea and R = 0.54 for swell are found to be quite far from the reference cases. Totally, 
36,356,695 reports have been used for wind waves and 31,041,169 for swell observations. 

The height-to-period dependencies H(T) derived from the VOS data are shown in Fig.36 for visually 
delineated wind waves (upper panel) and swell (bottom panel). The difference of these two cases is 
clearly seen in terms of exponents R. Thorough analysis of the experimental data uncovers more 
physically significant difference of two sea waves extremes. Selecting waves in wave ages and, what is 
more important, in wave periods we found definite indications on pumping of swell. Results of such 
selection are illustrated by Fig.37 where histograms of exponents R estimated for 20° by 20° coordinate 
boxes are given. While for the wind waves the histogram is localized near a value more than 1, for 
swell the corresponding distribution is quite large that implies a variety of physical mechanisms 
responsible for the swell dynamics. 
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Fig. 37 Histograms of exponents R of power law fits of H(T) dependencies calculated monthly for 20x 20 boxes of 
the World Ocean (1481 dependencies of total 1782 = 8 xl8xl2 coordinate boxes) for special ranges of wave periods: 
(bottom) wind sea with T = 5-10 s and (top) swell with periods T = 10-20 s. 

With the exponent R as indicator of sea wave dynamics we make a conceptual step: we study a link of 
wave heights H and periods T rather than features of the independent data sets. The separate analysis 
basing on VOS (Gulev et al., 2004 [R73]) or satellite data (e.g., Zieger, 2010 [21]) gives valuable 
information on ranges of wave parameters and their geographical variability, but propose quite 
primitive vision of wave dynamics. Recent attempts to combine satellite altimeter observations of 
wave heights and mathematical modeling of wave dynamics (Laugel et al., 2012 [R77] ) propose 
reconstructions of full spatio-temporal structure of wind wave field. This study is based on extensive 
simulations and requires thorough theoretical analysis. The interpretation of its results in the context of 
burning problems of sea wave physics shows a good prospect for further study. 

2.3 Physical model of sea wave period from altimeter data 

Satellite measurements are the next very prospective source of sea wave data. Data of satellite 
altimetry are the most abundant source of data. Accuracy of measurements of wave height by satellite 
altimeter is higher than the majority of in situ methods. At the same time these devices cannot measure 
wave periods. The latter important characteristics of wave field are generally estimated indirectly, as a 
rule, from empirical dependencies of the measured wave height and radar cross-section. 
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We use the asymptotic theory of wind wave growth proposed in [R17] that predicts the Kolmogorov - 
like relationship between instant total wave energy E and total net wave forcing S (wave input minus 
dissipation). The latter can be associated with the observed rate of wave energy dE/dt. Inversion of the 
so-called weakly turbulent law of wind-wave growth (see Eq. (1.9) in [R17]) gives a simple formula 
for period of spectral peak Tp as a function of significant wave height Hs and its gradient. The 
relationship can be used for processing altimeter data assuming the wave field to be stationary and 
spatially inhomogeneous. It is consistent with satellite measurements setup and is written as follows 

Tp=2,/5aSs-3/'0(Hs/g),/2x(cfJs/&)-1/10 (48) 

Self-similarity parameter in Eq.(48) is set constant ass=0.67.67 as found in recent simulations of wind 
wave growth [R18]. Wave height derivative along the wave propagation (group velocity) dHs/ds enters 
Eq.(48) in very low power 1/10 that reduces dramatically the effect of the unknown wave direction 
relative to the satellite track where the derivative can be estimated. 

In contrast to all the models of wave periods mentioned above, Eq.(48) does not contain any empirical 
coefficients and, thus, does not require calibration. Additionally, it does not operate with backscatter 
coefficient ao„ which characterizes sea surface roughness in gravity-capillary range and cannot be 
related to dominant waves straightforwardly. 

The proposed method relies upon weakly turbulent mechanisms when instant sea state is determined 
by external flux to/from waves. The instant state and its apparent perturbation rate recorded by spatial 
derivative dHs/ds allow one to estimate wave period in certain range of scales. These scales should be 
sufficiently long as compared to the relaxation scales of weakly nonlinear surface waves and relatively 
short as compared to typical scales of variability of the wave field. Typical distance between two 
consecutive counts of satellite altimeter 5-7 kilometers (1 second) likely satisfies these simple criteria 
for sea waves and allows Eq.(48j to capture the weakly turbulent mechanism of wind-wave growth. 

The new algorithm has been tested for the data collection of the ESA initiative Globwave 
{http://www.globwave.org). Different empirical models have been compared both for along-track 
records and in terms of statistical distributions of wave characteristics for particular ocean regions. 
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Fig. 38 Dependencies of non-dimensional wave height on non-dimensional wave period (wave age) 
calculated by different methods (see legend) for 800 km track of JASON-2 in the Caspian Sea, 

June 2, 2012. 

Fig.38 presents an example of along-track evolution of non-dimensional wave height and period (wave 
age) calculated within different approaches [R78-R79]. The new model shows good agreement with 
previously proposed empirical dependencies. Relatively high dispersion of the new method (red 
points) can be partially explained by intentionally coarse data processing when neither smoothing nor 
interpolation of data has been used. At the same time, strong collapsing of results of calculations with 
[R78-R79] in Fig.38 looks suspicious enough: in situ experiments do show rather high dispersion 
relatively to "reference" growth curves like one of [R69]. As our study shows, the "impoverishing" 
wave dynamics within the empirical parameterizations of wave period is well pronounced both for 
along-track cases like one presented above and in terms of statistical distributions for subsets of the 
Globwave data collection. 

This study presents the very first results of the new model for wave periods from satellite altimeter 
data. The model is free of any empirical and tuning parameters, therefore, is independent on features of 
particular altimeter devices (if properly calibrated in wave height Hs) and regional peculiarities (say, 
extreme salinity in some inland basins). 

Agreement with previously proposed approaches points to the validity of the asymptotic weakly 
turbulent law the new method is based on. While having very few in situ evidences of validity of the 
weakly turbulence theory for the wind-driven sea for the last 50 years, one has billions satellite 
altimeter records that are consistent with conclusions of this theory. 

2.4 Universality of wind-wave growth 

For developing the physical model for satellite altimetry measurements we used the form of the so- 
called weakly turbulent law [R17]. A remarkable fact is that similar law can be rewritten in a 
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remarkably concise form of invariant that links instant wave steepness and time or fetch of wave 
development expressed in wave periods or lengths 

A an (49) 

Here // £1/2< is wave steepness defined in terms of total wave energy E and spectral peak 

frequency co , v is a number of waves. For the duration-limited setup one has 

v = o)pt (50) 

For the fetch-limited case we keep 

v 2k px (51) 

where coefficient 2 reflects the ratio of phase and group velocity of deep water waves. The universal 
constant a0 in Eq. (49) has to take different values for duration- and fetch-limited setups. We 

introduce two different constants aow - 0.7 and a0^f) = 0.62 based on our previous numerical and 

experimental studies [R17,R80]. 

The law Eq. (49) does not contain wind-sea interaction parameters explicitly and relies upon 
asymptotic theory where wave nonlinearity is assumed to be a leading physical mechanism. The 
validity of this law is illustrated by results of numerical simulations of growing wind seas. 

Fig.39 shows the results of simulations of duration-limited growth within the Hasselmann equation 
with the exact calculation of nonlinear term. The strong tendency of the invariant Eq. (49) to attract the 

theoretical limit   oid)      '   is seen fairly well. 
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: (a) non-dimensional duration T = °/r 
'10 

Fig.39 Dependence of parameter aQ = (//V/3: (a) non-dimensional duration r = °/Cj   and (b) inverse wave age 

<j =    P   
]y    in simulations of duration-limited wind wave growth |R20,R17,R80]. Simulation setups (wind input 
/   o 

parameterization and wind speed) are given in legends. The horizontal dotted line shows theoretical 

value Ci;0((/) = 0.7. 

The case of fetch-limited setup has been considered in terms of dimensionless dependencies of wave 
height on wave period. Within the proposed approach that does not rely upon wind parameters and 
dimensionless variables can be introduced as follows for duration- 

H = H/^   f^ (52) 
gt 

and fetch-limited setups 

Simulations of the fetch-limited growth have been carried out by A. Pushkarev (Pushkarev, Zakharov, 
2012) and used considered evolution of wave spectra both in time and space. Fig.40 shows an 
intermediate nature of asymptotic of the solutions. In the left panel the scaling Eq.(53) has been used. 
The fetch-limited asymptotical dependence 

H = 5.59f5//2 

works quite well in a range. For large time the corresponding curves are tending to a saturation: wave 
field start to develop in a duration-limited regime. 

The right panel of Fig.40 shows the same results in terms of time scaling Eq. (52) that gives the law 

// = 3.06f^ 

Again, we see proximity of the simulation results to the theoretical curve in an intermediate range of 
dimensionless wave periods. 
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Fig.40 Wave growth curves in simulations of fetch-limited setup (Pushkarev, Zakharov, 2012) within: 
(a) fetch scaling; (b) duration scaling. Curves are given for fixed fetches 1,2,4, 8,16,32 km 

(see legends). Theoretical dependencies are shown by dotted lines. 

Thus, the proposed theoretical law Eq.(49) is verified in an extensive numerical study and provides the 
tool for diagnosis of wind wave growth. 

2.5 Summary 

We see that our asymptotic approach based on assumption of the dominating nonlinearity in the 
Hasselmann equation gives important results both for the wave theory and numerous applications 
including experimental approaches for satellite studies from space. 

The results have been published in [P5]-[P12]. 

3. Dynamical equations for surface waves and their applications 

New compact equations describing water waves moving in one horizontal direction were derived. This 
equation (compact Dyachenko - Zakharov equation) was generalized for "almost" ID waves, in other 
words waves slightly modulated in the transverse direction. 

Using this equation we have performed the set of the following numerical experiments: 

1. Simulation of nonlinear stage of modulational instability of wave train. 
2. Simulation of breathers collisions (localized solutions of the equation). 
3. Simulation of freak-waves appearing in 1-D and 2-D situations 
4. Simulation of freak-waves in the frame of new compact equations, which showed the same results 
as fully nonlinear equations for water waves. 
5. Simulation of relaxation of JONS WAP spectrum for water waves 
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Also, it was proven analytically non-integrability of the equation and exact breather type solution was 
found (like soliton for NLSE). 

3.1 New canonical equation for one-dimensional surface waves 

We applied canonical transformation to the water wave Hamiltonian 

where 
¥ 0> 0 = ^0> y, 0|^, = (t>{x,ri{x, t), t). 

The transformation removes not only cubic nonlinear terms, but simplifies drastically fourth order 
terms in the Hamiltonian: 

\_ 

4 
6 - is new normal canonical variable. This transformation explicitly uses the fact of vanishing exact 
four waves interaction for water gravity waves for 2D potential fluid. After the transformation well- 
known but cumbersome Zakharov equation is drastically simplified and can be written in X-space in 
compact way. This new equation is very suitable for both analytic study and numerical simulation: 

5 

H = \b*a)kbdx + -\\b'\ -{bb'* -b*b')-k\b\ 
2 

dx. 

.db     . .     / 
dt       k     8 dx dx       dx 

b-k(\b'\2)--{b'k(\b\2)) 
ox 

Also, this equation is convenient for experimentalists. The simplest solution of the equation is the 

monochromatic wave b{x) = B0e   ^ ^ with the frequency^ = a)k + — kl\ B0 |2. Growth-rate of 

modulation instability is also calculated: 
co. 

rl=-^0-6S)t- f2(K 
^ 

In the framework of this "improved" Zakharov equation we have performed numerical simulation of 
freak-wave formation from the initially uniform water waves, see Fig.41 
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D.006 I 1 

D.004 

Time= 523,5 

- 

0.002 1 Hin (in W~~l\ IftlT!    ' 
0 ■ n      " 

0.002 (V V v H H l v 111) V 

200 300 400 500 

Fig.41  | b{x) | and Re{b{x)) . 
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We developed simple new equation for ID nonlinear surface waves, which is convenient for both 
theoretical study and numerical simulation of wave propagation in narrow experimental tanks. 

3.2 Analytical and numerical proof of non-integrability of 2D free-surface hydrodynamics 

We studied the problem of integrabily of 2D hydrodynamics of fluid with free surface in a gravity 
field. This conjecture was formulated in 1994. Here we studied the integrability for potential motion in 
the framework of Hamiltonian truncated equation up to the fourth order: 

// = -|^2+^^--|{(^)2-(^J2Mx + -|{^772^ + ^(^(77^))}^x + ...     (54) 

here r](x,t) is the shape of a surface, y/{x,t) is a potential function of the flow given at the surface and 
g is gravitational acceleration. To simplify the Hamiltonian we applied canonical transformation 
which excludes all non-resonant terms and instead of (54) we deal with the equivalent Hamiltonian 

H=\b*a)kbdx + —\ 
db 

8x v dx 

^db 
-b — 

dx 

\ 
K\b\ dx. 

here k is the operator multiplying Fourier harmonics by modulus of wave numbers. Corresponding 
equation of motion is: 

.db     , ,     i f.+ 

ct       k     4 
b---{b'2)-—{b''—b2) 

1 - --r 
2 

b-k{\b'\2)--{b'k{\b\2)) 
ox *-(6'2)--. 

dx dx      dx 
This equation has localized breather-type solution 

b{x,t) = B{x-Vt)e{kGX'e0G'\ 

where kG is the wavenumber of the carrier wave, V is the group velocity and (o0 is the frequency 

close to (ok . In the Fourier space breather can be written as follow: 

Mt) 
-i{m+Vk) A' 

(Ob where Q is close to     %, . This solution is stable and does not radiate. In the integrable systems 

collisions of such beaters must be elastic. We performed numerical simulation of collisions of two 
breathers and have found that it is not pure elastic, see Fig.42. 
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Fig.42 Surface profile of two breathers. 

Also we studied analytically coefficient of 6-waves interaction as a superposition of 4-waves 
interaction. For integrable system it must be equal to zero on the resonance manifold. However, it was 
found that it does not vanish. So, both numerical and analytical study allows us to conclude that 2-D 
free surface hydrodynamics is not integrable system. 

3.3 Proof of non-integrability of 1-D Zakharov equation and generalization of compact equation 
for almost 1-D waves 

We studied amplitudes of six-wave interactions for compact 1-D Zakharov equation, Hamiltonian of 
which is: 

2- 
db 

H = ^btd)kbdx + -^\b'\ ■(bb't-btb')-k\b\2 dx. 

where b' = —, cok= ^jgk and k - modulus k operator. 
dx 

It was found that six-wave amplitude (consisted of two four-wave amplitudes) is not canceled for this 
equation on the resonant manifold. Thus, it was proven that 1-D Zakharov equation is not integrable. 

Also we have presented the results of numerical experiments on long time evolution and collisions of 
breathers (which correspond to envelope solitons in the NLSE approximation) at the surface of deep 
ideal fluid. The collisions happen to be non-elastic. In the numerical experiment "non-elasticity" can be 
observed only after many acts of interactions (collisions). This supports "deep water non-integrability" 
numerically. One can see small radiation after 100 collisions of two breathers (solitons) on Fig. 43: 
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Fig.43   Appearance of small radiation (red line) as a result 
of 100 collisions of two breathers (black line) 

H = \b'a)kxkbdxdy + -\\b'x dxdy. 

We have derived generalization of compact equation for almost 1 -D water waves, slightly modulated 
in transverse direction with the Hamiltonian as following: 

j_ r, ,, ,9 f / 
■x-y 2 ' 

Preliminary numerical experiments on freak-wave formation at the surface of 3D fluids were 
performed in the framework of this model. Typical picture of the surface with a freak wave is shown 
below on Fig.44 : 

t= 283.0 

^bb':-b'b'x)-Kx\b\2 

Fig.44 Typical picture of the surface with a freak waves as a result of numerical 
simulation of generalization of compact equation for almost 1-D water waves 
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3.4 Comparison of compact equation for surface waves with fully nonlinear equations 

We compare applicability of the recently derived compact equation for surface waves with the fully 
nonlinear equations. Strongly nonlinear phenomena, namely modulational instability and breathers 
with the steepness p. « 0.4 are compared in numerical simulations using both models. 

For the fully nonlinear model we have chosen free surface equation written in the conformal variables, 
/?-F-equations [R81] : 

R^iiUR^-RU^V^KUV^-RB^ + giR-X) (55) 

Now U and B are the following: 

U = PiVR +VR)B = PiVV) 

So, these exact Eq. (55) gives us reference solutions to compare with. 

For the approximate model we used compact equations derived in [P37], [P38] : 

.db     . ,     /  ~ + 

dt     k    4 dx dx       dx 

2 
^Vl2)-|-(^(H2)) 

ox 

(56) 

Transformation from b{x,t) to physical variables T]{x,t) and y/{x,t) can be recovered from canonical 
transformation. Here we write this transformation up to the second order: 

,1 i T       i ■ 
7](x) = r(k

4b(x) + k4b(x) ) + ~^r[k4b(x)-k4b (x)]\y/(x) 

i 

4 _i _i •        i 1 i 1 
- i8(k'4b(x) - k~4b(x)t) + -[k4b\x)k4b'(x) - k4b(x)k4b(x)] 

\2 2 
ill i 1 

+ -H[k*bix)kAb\x) + kAb\x)kAbix)]. 

Here H -is Hilbert transformation with eigenvalue isign{k). 

3.5 Modulational instability of wave train 

We performed numerical simulation of the modulational instability of the homogeneous wavetrain in 
the framework of compact Eq.(56). Initial steepness of the wave train was equal to // = 0.095. This 
value was chosen for comparison with the earlier simulation in the framework of fully nonlinear 
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simulation [R82], [R83]. One can see in Fig.45 and Fig.46 that both waves coincide in details. 
Different time of their appearance is due to slightly different values of perturbations. 
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Fig.45 Freak-wave formation after t=802 (fully nonlinear equation) 
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Fig.46 Freak-wave formation after t=874 (compact equation) 

3.6 Breathers 

We have also performed simulations of narrow breathers both in the framework of fully nonlinear 
conformal Eq.(55) and compact Eq.(56). Figs.47, 48 present pictures of the steepness of the surface of 
the fluid: 
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Fig.48   Profile of steepness (fully nonlinear equations). 

We have demonstrated that compact equation, although approximate, quantitatively describes strongly 
nonlinear phenomena at the surface of potential fluid. We also have studied especially nonlinear stage 
of modulational instability up to the freak-wave formation and propagation of very steep breather. 

3.7 Confirmed hypothesis of long-wave dissipation insignificance 

Dissipation of water waves with JONSWAP initial spectral energy distribution was studied in the 
framework of compact Dyachenko-Zakharov equation 
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.8b     . , 
i— = cokb + - 

dt      ' 8 dx dx      dx 
b-kw^-^-ib'hbf)) 

ox 

Different wind speeds from 9 to 20 m/sec were considered, with very long fetch of 157 km length. 
These experiments confirmed the hypothesis of long-wave dissipation insignificance due to wave- 
breaking [P1,P2]. 

Typical behavior of energy density as a function of time is shown for wind speed 12 m/sec on Fig.49 

Fig.49 Energy {m  ) as a function of time (sec) 
for wind speed 12 m/sec . 

One can see that dissipation takes place very rare and randomly. Drop of energy corresponds to wave 
breaking. This breaking leaves main core of energy spectrum unchanged. Average dissipation function 
is shown in Fig.50 for wind speed 12 m/sec. Also dissipation function used in WAM3 and WAM4 
operational models is shown. Obviously, dissipation rate calculated in our experiments is much less 
than that of WAM3 and WAM4: 
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Fig.50 Dissipation of energy as a function of wavenumber k for dynamical model 
(blue line), WAM3 model (red line) and WAM4 model (black line) 

3.8 Summary 

The research results are published in [P13]-[P20]. 

4. Modulational instability and its implications for solitons, rogue waves and air- 
surface interactions 

We studied the phenomenon of modulational instability. According to recent studies, the modulational 

instability seems to be a mechanism that is responsible for a number of phenomena that takes place in 

the ocean. In particular, experimental and numerical works have shown that the wave breaking 

mechanism and the formation of rogue waves may be caused by the modulational instability process. 

In [P21] we have performed direct numerical simulation of the Navier-Stokes equations for simulating 

a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface 

waves and its contribution to the interaction between the ocean and atmosphere. 

If the steepness of the initial wave exceeds a threshold value, we observed wave-breaking events and 

the formation of large-scale dipole structures in the air. Because of the multiple steepening and 

breaking of the waves under unstable wave packets, a train of dipoles is released in the atmosphere; 

those dipoles propagate at a height comparable with the wavelength. The amount of energy dissipated 

by the breaker in water and air is considered, and contrary to expectations, we have observed that the 
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energy dissipation in air is greater than that in water. The possible implications for the wave modeling 

of aerosols and gases exchange between air and water are also discussed in the paper. 

In [P22] the rogue wave solutions (rational multi-breathers) of the nonlinear Schrodinger equation 

(NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic 

equations. A higher accuracy of wave propagation in space is reached using the modified NLS 

equation, i.e. Dysthe equation. This numerical modeling allowed us to directly compare simulations 

with recent results of laboratory measurements. In order to achieve even higher physical accuracy, we 

employed fully nonlinear simulations of potential Euler equations. These simulations provided us with 

basic characteristics of long time evolution of rational solutions of the NLS equation in the case of 

near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics 

of steep waves reasonably well. 

In paper [P23] the problem of existence of stable nonlinear groups of gravity waves in deep water is 

considered by means of laboratory and numerical simulations with the focus on strongly nonlinear 

waves. Wave groups with steepness up to 0.30 are reproduced in laboratory experiments. We show that 

the groups remain stable and exhibit neither noticeable radiation nor structural transformation for more 

than 60 wavelengths or about 15-30 group lengths. These solitary wave patterns differ from the 

conventional envelope solitons, as only a few individual waves are contained in the group. Very good 

agreement is obtained between the laboratory results and numerical simulations of the potential Euler 

equations. The envelope soliton solution of the nonlinear Schrodinger equation is shown to be a 

reasonable first approximation for specifying the wave-maker driving signal. The short intense 

envelope solitons possess vertical asymmetry similar to regular Stokes waves with the same frequency 

and crest amplitude. Nonlinearity is found to have remarkably stronger effect on the speed of envelope 

solitons in comparison to the nonlinear correction to the Stokes wave velocity. 

In paper [P24] we show experimentally that a stable wave propagating into a region characterized by 

an opposite current may become modulationally unstable. Experiments have been performed in two 

independent wave tank facilities; both of them are equipped with a wave-maker and a pump for 

generating a current propagating in the opposite direction with respect to the waves. The experimental 

results support a recent conjecture based on a current-modified nonlinear Schrodinger equation which 

establishes that rogue waves can be triggered by a non-homogeneous current characterized by a 

negative horizontal velocity gradient. 

The paper [P25] is a review paper on rogue waves in different physical aspects ranging from 



DISTRIBUTION STA TEMENTA. Approved for public release; distribution is unlimited 

oceanography to nonlinear optics. 

In the paper [P26] we present the first observation of dark solitons on the surface of water. It takes the 

form of an amp6itude drop of the carrier wave which does not change shape in propagation. The shape 

and width of the soliton depend on the water depth, carrier frequency, and the amplitude of the 

background wave. The experimental data taken in a water tank show an excellent agreement with the 

theory. These results may improve our understanding of the nonlinear dynamics of water waves at 

finite depths. 

In paper [P27] we highlight an analogy between water waves and electromagnetic waves, i.e. the 

formation of a supercontinuum: starting from a very narrow band spectrum, after a few wave lengths, a 

very broad continuum spectrum (supercontinum) is observed with a consequent emission of solitons. 
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