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1. Introduction 
ARCON Corporation is pleased to submit this Final Performance Report for Grant No. FA9550-
12-1-0105 to the Air Force Office of Scientific Research (AFOSR). This report covers  the 
performance period 1 April 2012 – 31 March 2015 and describes the research efforts of the 
members of the “Boston 6”, a group of well-known, highly regarded researchers in the fields of 
electromagnetics, radar and antenna technology. The following areas of research were conducted 
during this reporting period : (1) compressive sensing as applied to the processing of signals 
from sparse receive arrays [Schindler†]; (2) performance of the sparse fast Fourier transform for 
processing of coprime thinned phased arrays [Schindler]; (3) a general anisotropic representation 
for spatially and temporally dispersive media that separates electric and magnetic polarization 
effects [Yaghjian]; (4) plane-wave expansions with directional spectra [Hansen]; (5) Gaussian-
beam scattering-matrix theory [Hansen]; (6) array realization of complex-source beams 
[Hansen]; (7) metamaterial theory, including the fundamental homogenization theory of 
metamaterials and scattering from multilayered spheres [Shore]; (8) quantization lobe 
suppression for arrays of subarrays [Mailloux]; (9) Asymmetric Phased Array Elements 
[Steyskal]; and (10) Current Modes for Efficient Numerical Phased Array Design [Steyskal]. 
Sections 2, 4 and 5 are each followed by appendices containing technical papers some of which 
have been accepted for publication in technical journals.  These papers, written under the 
sponsorship of this grant,  have not been published as of the writing of this report. 
 
During this reporting period, the Boston 6 have collectively produced over 33 publications, 
including papers in peer-reviewed publications, 13 invited papers/presentations and one book 
chapter. 
 
 
[†author] 
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2. Performance of Airborne Random and Periodically Thinned Phased Array Antennas 
for Detecting and Estimating the Properties of Sparse Radiating Sources

John K. Schindler 

2.1 Introduction 
Research focused on the performance of airborne random and periodically thinned phased array 
antennas for detecting and estimating the properties of sparse radiating sources.  Applications 
that motivated this research are: 

• Accurately locating ground based sources for use with airborne, passive, bistatic radar, and

• Detecting and locating radiating sources for ESM applications to provide situational awareness
and enable dynamic spectrum sharing for enhanced radar and communication systems. 

Each of these applications requires measuring the properties of sparse radiating sources. Within 
the field of view of the phased array antenna, sparse sources consist of only a few, isolated 
sources that appear as uniform plane waves at the array from a few, discrete angles of arrival.   

This intrinsic sparse source environment motivates the research application of recent advances in 
sparse time signal processing to sparse space signal processing or beamforming.  The sparse time 
processing techniques are compressive sensing (CS) and sparse fast Fourier transform (sFFT) 
processing.  The applications require high angular resolution beamforming to accurately locate 
sources in angle. High resolution beamforming naturally implies large airborne array apertures 
which are difficult to achieve on airborne platforms and which involve hardware with large 
beamforming data processing rates.   The sparse signal processing approaches promise to 
assuage these difficulties by using only subsets of the full array element data, allowing for 
randomly placed subarrays which ease array placement on aircraft and thinned arrays which 
reduce beamforming data processing rates.  

2.2 Compressive Sensing for Processing Signals from Sparse or Highly, Randomly Thinned 
Receive Arrays 
In the first research topic  we studied the usefulness of compressive sensing  for processing 
signals from sparse or highly, randomly thinned receive arrays [1,2].  Compressive sensing 
consists of a theory and related algorithms for solving under determined linear equations with 
the assumption that solutions have only a few non-zero or dominant values and the remaining 
values are zero or small. Randomly thinned arrays are a natural application of CS when (a) there 
are only a few array observations with each expressed as a linear combination of the received 
plane wave signal amplitudes and (b) there are a large number of possible angles of arrival of 
signals but only a few signals are actually present. Our approach employed  linear beamforming 
of the sparse array signals to create data for compressive sensing that are a linear combination of 
the plane wave signal amplitudes. A beamforming matrix serves to create coefficients in this 
linear combination that are nearly orthonormal, a requirement for successful application of CS. 
We evaluated CS for the problem of a five element sparse array located on a 90o sector of a 
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circular arc with large radius of curvature. Elements of the sparse array are themselves digitally 
beamformed phased arrays with main beams steered to a common direction.  

We found that compressive sensing works well for large signal to noise, reliably indicating the 
direction of arrival of a plane wave within the beamwidth of the phased array element and 
potentially reliable resolution of two equal intensity plane waves within one tenth of the 
beamwidth of the sparse array. False plane wave indications occur with significant probability 
when the signal to noise is small. However, an n or more of m detection algorithm with m 
statistically independent noise samples reduces significantly the probability of false indication. 

Application of this approach to the high resolution location of ground based sources for passive 
bistatic radar requires consideration of potential multipath spreading of the ground based source. 
Multipath spread sources can result from ground bistatic scattering from the ground based 
source. In further research, we considered CS processing for the case when signals have a 
spatial, angle of arrival distribution due to the multipath scattering of the primary source signal. 
This multipath case violates the CS assumption that only a few signal sources are present in the 
solution space and we investigated the detectability of a source signal when such multipath 
spread signals are present.  

We found that it is unlikely that compressive sensing can distinguish primary signal radiation 
from its multipath components when the signal power is small in comparison with multipath 
power in the signal direction. A 4 out of 4 detection algorithm tends to suppress signal and 
multipath declarations when independent samples of the multipath are observed and the signal 
power is small. However, when the signal power is large compared to the multipath power in the 
signal direction, reliable declaration of the signal direction becomes possible, especially when 1 
or more signal detections in 4 independent multipath trials are allowed. The simulation model 
used here is capable of determining the average properties of the angular error in signal direction 
when the multipath contributions are present. These angular errors contribute to target location 
errors in passive bistatic radar. 

2.3 Performance of the Sparse Fast Fourier Transform for Processing of Coprime Thinned 
Phased Arrays 

In a second research topic, we studied the performance of the sparse fast Fourier transform 
(sFFT) for processing of coprime thinned phased arrays [3].  The second application area noted 
above involves detecting and locating radiating sources for ESM applications and requires large, 
wideband phased arrays.  At higher carrier frequencies, digital beamforming and frequency 
signal sorting processing rates with these arrays exceed current hardware capabilities. The 
application of multi-dimensional sFFT processing could potentially resolve these limitations by 
exploiting the ESM signal environment that is intrinsically sparse in space and frequency.  

In our research, we analyzed the performance of coprime thinned linear arrays. A linear array is 
formed where the number of elements with half wavelength spacing in the array is given by the 
product of three relatively prime integers. Three thinned arrays are formed by thinning with each 
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of the prime integers. Multiple beams are formed with each of the thinned arrays by employing 
the discrete Fourier Transform (DFT) of the thinned array element complex voltages. Plane 
wave excitations of the arrays register in one or more of the DFT output samples. The thinned 
arrays result in ambiguities in the angles of arrival of a plane wave due to grating lobes in the 
array patterns. The plane wave angle of arrival can be determined uniquely by solution to 
Diophantine equations characteristic of thinned array pairs. Comparison of DFT outputs in two 
coprime arrays results in a unique angle of arrival for a single plane wave excitation, assuming 
that the plane wave arrives from physically realizable angles of arrival. For each pair of coprime 
thinned arrays, a hash table can be formed relating DFT output sample pairs to a unique angle of 
arrival.  

We illustrated this process of plane wave signal detection and angle of arrival designation with a 
sample problem. Complications that occur when multiple plane waves excite the arrays were 
considered. One complication results from the requirement to correctly associate multiple DFT 
output samples between the thinned arrays. In addition, multiple plane waves can register in a 
single DFT output sample.  These complications can be resolved by employing solution 
realizability conditions of the Diophantine equations. In some cases, resolution of the 
complications requires further observations of selected DFT output samples from a third thinned 
array. We illustrate these processes using the sample problem. 

Two measures of performance of the coprime thinned arrays are provided. First, we considered 
improvements in the DFT beamforming processing rates assuming use of the conventional Fast 
Fourier Transform (FFT) with thinned array pairs. The thinned array processing rates required 
for plane wave detection and angle of arrival designation are compared to FFT beamforming 
with the complete, non-thinned array.  Processing rates with the thinned arrays were 15% - 26% 
of the rates required for the fully filled array, depending on the thinned array pairs used. These 
efficiencies were computed assuming zero padding of the thinned array samples to employ the 
FFT algorithm in the beamforming. This comparison of beamforming processing rates is 
important for consideration of sFFT processing for practical ESM array applications.  

Second, we considered the impact of receiver noise on the performance of the plane wave signal 
detection and angle designation. We assumed receiver noise added to each of the thinned array 
signal voltages and employed conventional detection processing at each of the DFT output 
samples. We provided the probability of plane wave detection and designation, and the 
probability of missed plane wave detection and designation as a function of element signal to 
noise ratio. We considered thinned array pairings and probability of false alarm as parameters in 
these results. We also give the probability of false plane wave detection and designation due to 
receiver noise as a function of the probability of false alarm at each DFT output sample. 

2.4 References 

[1] Schindler, J. K., “Compressive Sensing for Sparse Arrays,” Proceedings of the 2013 IEEE 
International Symposium on Phased Array Systems and Technology, October 2013, pp 240 - 
245. 

4 



[2] Schindler, J.K., “Compressive Sensing for Detection of Multipath Spread Sources with 
Sparse Arrays.”, Appendix 2.5.1. 

[3] Schindler, J.K., “Detection, Angle of Arrival, and Digital Beamforming Performance of 
Coprime Thinned Linear Arrays”, Appendix 2.5.2. 
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Appendix 2.5.1

Compressive  Sensing    for  Detection      of  Multipath       Spread      Sources       
with   Sparse    Arrays

John K. Schindler

Introduction

We investigate compressive sensing (CS) as an approach to processing signals from a sparse, receive array
with the objective of assessing CS capabilities for enhanced accuracy estimates of the angle of arrival of
multipath spread, received plane wave signals. Compressive sensing is an approach for solving a set of
under determined linear equations with the assumption that solutions have only a few non-zero or
dominant values when the remaining values are zero or small. Specialized algorithms for the solution to the
under determined equations are structured to emphasize the few dominant values of the solution [1]. The
processing of signals from sparse, receive arrays is a natural application of CS when (a) there are only a
few elements in the array providing only a few observations expressed as a linear combination of the
received plane wave signal amplitudes and (b) there are a large number of possible angles of arrival of
signals but only a few signals are actually present. The application to sparse arrays is important since the
larger aperture of the sparse array provides superior angular resolution and better estimates of the angle of
arrival of received plane wave signals. The generally poor sidelobe structure of the highly thinned arrays
may be compensated by the application of compressive sensing. Here we extend a previous study [2] which
examined signal detection and resolution of CS applied to a sparse array as a function of received signal to
noise. In this paper, we consider the case when signals have a spatial, angle of arrival distribution due to
multipath scattering of the source signal. This multipath case violates the CS assumption of only a few
signal sources present in the solution space and we investigate the detectability of a source signal when
such multipath spread signals are present. Multipath spread sources can result from a ground based
primary communication source and bistatic scattering from terrain or building re�ectors near the source.
Within the radar community, target scattering is sometimes characterized by a single dominant scattering
center along with a collection of small scattering surfaces on the target at di�ering viewing angles from the
dominant scattering center.

Formulation

For purposes of this analysis, we consider a collection of Na planar, receive apertures located randomly and
tangent to a large curved surface as shown in Figure 1. While the receive apertures are randomly located,
it is assumed that their positions are surveyed and are accurately known after positioning. Each of the
receive apertures is a digitally beamformed array with the ability to scan the main beam of the array
pattern over a large angular sector within the �eld of view of the array. Each of the digitally beamformed
arrays is assumed to be scanned to a common direction. The system is linear so that the received signal at
each aperture is a linear combination of the signal amplitudes from each of the external plane wave
excitations. As indicated in Figure 1, there are Ns possible angles of arrival of plane waves. We can write
the signals at the outputs of the receive apertures as

ea = Γ s,

where the Ns x 1 vector, s, represents the plane wave complex amplitudes from each angle of arrival,
sn, n = 1, 2, . . . , Ns, the Na x 1 vector, ea, represents the complex valued receive signals at the aperture
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Figure 1: Na planar phased arrays located randomly on a circular arc excited by a spectrum of Ns plane
waves distributed uniformly in an angular sector.

outputs, and the Na x Ns sensor matrix, Γ, with elements γi,m, represents the response at receive aperture
i due to plane wave m. Here

γi,m = pi(θm − θi)ejkri(θm),

where pi is the complex valued pattern of the ithaperture for a plane wave arriving at angle θm when the
aperture is located at an angle θi and ri is the distance from a common origin to the ith aperture phase
center along a path from the mth plane wave excitation. In this expression, k = 2π/λ where λ is the
wavelength of the monochromatic plane wave excitation.

An objective of this work is to design a beamforming matrix, B, to estimate the complex amplitudes of the
incident plane waves, ŝ, as a linear combination of the Na receive signals. That is, we require the Ns x Na
matrix B so that

ŝ = B Γ s = D s =

Ns∑
n=1

dnsn, (1)

where the Ns x 1 vectors, dn, are the columns of the matrix D = B Γ. Compressive sensing requires that
these vectors be as nearly orthogonal as possible, given, in our case, the constraints implicit in the sensor
matrix, Γ. This orthogonality requirement demands that DHD ∼= I, or as nearly diagonal as possible. Here
DH denotes the Hermitian or conjugate transpose of D. Abolghasemi et. al. [3] describe an iterative,
numerical approach for developing the matrix D.

The beamforming matrix can be found from the solution to

D̃ = B Γ , (2)

with D̃ denoting the matrix with near orthogonal column vectors d̃n. Our previous work [2] studied an
approach for developing the beamforming matrix and the resultant near orthogonality of these column
vectors.

Analysis

For the sparse array con�guration shown in Figure 1, we assume that Na = 5 sparse array elements are
located at random but known positions on one quarter of a circular arc of radius ρ = 500λ, where λ is the
wavelength of the received signal. Each element array is itself a fully �lled phased array which is 32λ in
size and located in the common plane of the arriving signals. We use the terminology �element array� to
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denote that each �element� of the sparse array is itself a phased array. The element arrays occupy
approximately 20% of the available surface length. Each element array is digitally beamformed with a
maximum gain pattern. The main beam of each element array is pointed in the common angular direction
assumed for the received plane wave if that direction is within the �eld of view of the element array.

For purposes of this analysis, the source exciting the sparse array consists of an angular spectrum of
monochromatic, multipath plane waves and a stronger, primary monochromatic plane wave within the
angular region occupied by the multipath spectrum. Physically, this source can result from a ground based
primary communication source and bistatic scattering from ground based or building re�ectors near the
source. Within the radar community, target scattering is sometimes characterized by a single dominant
scattering center along with a collection of small scattering surfaces on the target at di�ering viewing
angles from the dominant scattering center.

We use a quantitative characterization of the distribution of power with angle of arrival of signals from a
ground based communication source with ground multipath scattering adapted from Khan [6]. Bistatic
scattering from locations con�ned to an elliptical region near the primary source contribute to an angular
spectrum of multipath signals as illustrated in Figure 2. The total received power at an angle relative to
the primary source is found by non-coherently integrating the power bistatic scattered along a diverging
ray tube centered at the relative angle. The relative bistatic scattering power from a unit area is considered
to be constant throughout the elliptical scattering region. In general, the multipath scattered power is
distributed in both angle of arrival and time delay of arrival. However, since we are considering only
mono-chromatic (or narrowband) signals, the distribution in time delay is unimportant and the power
integration is taken over the total radial region contained in the multipath ellipse.

Local Scattering Region

Primary Source

Sparse Array

Angular Spectral Width of Multipath

Non-coherent Superposition 
of Bistatic Scattering Power 
Provides Multipath Power

Figure 2: Bistatic scattering model to provide the angular power spectral density of multipath interference
from a ground based primary source after Khan [6].

Compressive Sensing   Algorithm

In order to assess the usefulness of CS for sparse array signal detection and estimation, we have
implemented a CS algorithm proposed by Çetin [4] and used by Varshney [5] for synthetic aperture
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processing. In general, compressive sensing requires that we minimize with respect to s

min
s

J(s) =
∥∥∥r− D̃s

∥∥∥2
2
+ α

Ns∑
n=1

|sn|p , (3)

when p < 1 and ‖x‖22 ≡
∑Ns

n=1 |xn|
2
. The regularization term, α

∑Ns

n=1 |sn|
p
, serves to reward large

elements and penalize small elements of the solution in the minimization process. In our case,
r = B Γe (so + m) + Bn where so denotes the true signal vector to be detected and m is the Ns x 1 vector
of complex, Gaussian random variants with variance given by the power determined from the multipath
model described above, and thus giving the angular spread multipath signal. Complex voltage samples in
each angle of arrival sample are statistically independent. Also, Γe represents the actual sensor matrix in
contrast to the sensor matrix model used to determine the beamforming matrix, and n represents the Na x
1 vector of complex, additive receiver noise at each element array output. Each entry of n is an
independent, complex Gaussian random variant.

A contribution of Çetin is to introduce a small constant, ε> 0 into the regularization term in (3) to give

min
s

Jε(s) =
∥∥∥r− D̃s

∥∥∥2
2
+ α

Ns∑
n=1

(|sn|2 + ε)
p
2 . (4)

Unlike the objective function in Equation (3), this objective function is di�erentiable and thus supports
iterative, numerical minimization with quasi-Newton approaches using complex data. The iterative
solution is [4, pp 73 - 76]

sn+1 = sn − γH(sn)−1∇sJε(sn), (5)

where γ denotes the iterative step size between estimates of the signal vector, sn+1, at stage n+ 1 and the
signal vector sn at stage n . Here

H(s) = 2D̃HD̃ + pαΛ(s),

and
Λ(s) = diag

{
(|sn|2 + ε)

p
2−1
}
,

giving for the gradient
∇sJε(s) = H(s)s− 2D̃Hr. (6)

Substituting this expression for the gradient into Equation (5) gives the iterative solution

H(sn)sn+1 = (1− γ)H(sn)sn + 2γD̃Hr, (7)

which can be solved at each iteration for sn+1. Iterations continue until incremental changes in the solution
vector are small.

Performance

The Çetin-Varshney iterative approach has been applied to the sparse array and signal with multipath
model described above to determine CS performance as a function of the ratio of signal to multipath power
(SMR). We investigated the probability of correct plane wave indication and the probability of false signal
direction indications as a function of SMR using simulation. We provided 100 simulation trials, each with
independently selected positions of the �ve planar arrays with the assumption that the �rst and last
element arrays are located 90o apart. The signal vector is of dimension Ns = 80 with the angular
separation between potential signal sources assumed to be 0.1 of the broadside, maximum gain beamwidth
of the element array.

9



In our previous work we found that an n of m detection approach was useful to minimize false signal
detections due to receiver noise. Here a signal was declared present in a given direction if the CS algorithm
yielded an output which exceeded a threshold n or more times in m trials with independent observations of
receiver noise on each trial. For our simulations in this work, m = 4 independent trials occurred in each of
the 100 simulation trials. For each of the 100 array con�gurations, m = 4 independent samples of the
multipath signal were generated as described above. Justi�cation for the independent multipath samples
follows from either (1) assumed motion of the sparse array with respect to the signal source or (2) assumed
internal motion of elements of the multipath environment about the signal source. Receiver noise power is
assumed to be negligible in comparison with the signal and multipath power at the array receiver output.

Figure 3 shows the results of this simulation. The red curves represent the probability that a desired single
plane wave at an angle of 45o is declared and the blue curve represent the probability that a false signal
declaration occurs due to the multipath signal. The abscissa gives the signal to multipath power ratio
(SMR) where the multipath power is due to the contribution of the multipath in the same direction as the
desired signal. The left column gives results for the case when detections occur in 1 or more of the 4
multipath samples and the right column gives results when detections occur on all 4 samples. We provide
results for three values of the angular width of the multipath (MW ) in comparison with the 3 dB
beamwidth of the element array. The angular width of the multipath is given by the null to null width as
illustrated in Figure 2. The element array beamwidth is associated with the broadside beamwidth given by
BW3dB = 0.886λ/D with D = 32λ. In Figure 3, the �rst row gives results for MW/BW3dB = 1, the second
row for MW/BW3dB = 2, and the third row for MW/BW3dB = 5. The bands denote 0.95 con�dence
intervals for the smoothed simulation samples. The SMR values can be corrected to give the signal power
relative to the multipath power in the 3 dB beamwidth and the total multipath power using the correction
values in Table 1. The simulation results indicate that for small signal to multipath power
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Figure 3: Smoothed simulation results for the probability of source signal declaration (red) and multipath
declaration (blue) as a function of signal to multipath power (SMR). The left column gives results for 1 or
more detections in 4 trials and the right column gives results for 4 detections on 4 trials. Three values of
the multipath angular width (MW ) in comparison to the broadside, 3 dB beamwidth of the element array
(MW/BW3dB) are given. Bars denote 0.95 con�dence intervals for the simulation results.

(SMR < 0 dB), there is little di�erence between the probability of declaring a primary source signal and
its multipath component. That is, for the case of 1 or more detections in 4 trials, there is an approximate
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MW/BW3dB Power inBW3dB Total Power

1 8.8 dB 8.8 dB
2 11.4 dB 11.9 dB
5 14.2 dB 15.9 dB

Table 1: SMR correction for multipath power in 3 dB beamwidth and total multipath power

probability of one half of declaring either the source signal or its multipath component and there is little
evidence to indicate which is actually present. For the more restrictive case of 4 of 4 detections, the
probability of declaring both the signal and multipath components is much smaller, again assuming
statistically independent observations of the multipath component. The qualitative similarity of the
dependence on signal to multipath power between the signal and multipath declarations (blue and red
curves) for SMR < 0 dB seems to be further evidence that declarations can be either signal or multipath,
with nearly equal probability.

To more easily compare performance for large signal to multipath power (SMR > 0 dB), we examine the
probability of signal declaration versus the probability of multipath declaration shown in Figure 4. It is
clear that for any probability of multipath declaration, the probability of signal declaration is greater for
the 1 or more of 4 detection algorithm. Thus, while the 4 of 4 algorithm is superior for suppressing false
declarations for small SMR, it degrades correct signal declaration for large SMR.
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Figure 4: Probability of signal declaration vs probability of multipath declaration for SMR > 0 dB for
MW/BW3dB = 1, 2 and 5. The blue curve is for the 1 or more of 4 declaration algorithm and the red curve
is for the 4 or 4 algorithm.

Conclusions

We investigated compressive sensing for processing signals from sparse or highly thinned receive arrays.
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Sparse arrays are a natural application of CS when (a) there are only a few array observations expressed as
a linear combination of the received plane wave signal amplitudes and (b) there are a large number of
possible angles of arrival of signals but only a few signals are actually present. In this paper, we considered
the case when signals have a spatial, angle of arrival distribution due to multipath scattering of a primary
source signal. This multipath case violates the CS assumption of only a few signal sources present in the
solution space and we investigate the detectability of a source signal when such multipath spread signals
are present. Multipath spread sources can result from ground bistatic scattering from a ground based
communication source. Radar target scattering is sometimes characterized by a single dominant scattering
center along with a collection of small scattering surfaces on the target at di�ering viewing angles from the
dominant scattering center.

We evaluated CS with simulation for the problem of a �ve element sparse array located on a 90o sector of a
circular arc with large radius of curvature when compared to the wavelength of the incident radiation.
Each element of the sparse array is itself a digitally beamformed phased array with its beam steered to a
common direction. Signals from the beamformed arrays are linearly combined by the beamforming matrix
to provide data for the compressive sensing algorithm. The algorithm used here was proposed and
evaluated by Çetin [4] and Varshney [5].

As might be expected, we found that it is unlikely that compressive sensing can distinguish primary signal
radiation from its multipath components when the signal power is small in comparison with multipath
power in the signal direction. A 4 out of 4 detection algorithm tends to suppress signal and multipath
declarations when independent samples of the multipath are observed and the signal power is small.
However, when the signal power is large compared to the multipath power in the signal direction, reliable
declaration of the signal direction becomes possible, especially when 1 or more signal detections in 4
independent multipath trials are allowed. The simulation model used here is capable of determining the
average properties of the angular error in signal direction when the multipath contributions are present.
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Detection, Angle  of Arrival,    and  Digital   Beamforming        Performance     
of Coprime    Thinned   Linear     Arrays

John K. 
Schindler

Introduction

Ultra-wideband phased array antennas capable of wide angle scan are a key element of future Defense
strategies for providing the war�ghter with situational awareness, capable weapons and C4ISR systems
using the electromagnetic spectrum. These arrays can provide receive capabilities for enhanced electronic
support measures (ESM) for situational awareness while providing a common aperture for highly capable
active communications and radar systems. In addition, these arrays are a key element of future Defense
strategies for dynamic spectrum sharing to provide communications and radar with enhanced performance
and low probability of intercept.

However, phased arrays with ultra-wideband performance and wide angle scan present a signi�cant
technological challenge. The current art of phased array radiating elements capable of operation over a 45:1
frequency band does not exist. Extremely wideband, recon�gurable array electronics and analog
beamforming approaches are only now being studied and developed. The art of high speed and accurate
conversion of analog signals to digital format improves continually, o�ering the potential for digital
beamformed arrays. However, potential digital beamforming processing rates for ultra-wideband, wide
angle arrays at higher rf frequencies exceed current capabilities.

In this work we study an approach to reduce digital beamforming processing rates by the use of thinned
array architectures. In ESM applications, discrete signal sources are likely to be sparsely spaced in
observation angle and frequency. This is unlike active radar applications where the scattering from ground
clutter may be widely spread in observation angle and other sources of interference such as jammers may
appear at unknown angles. The assumption of sparse signal sources in the ESM environment raises the
question of whether the use of highly thinned arrays is an appropriate choice for reducing digital
beamforming rates in this application. Further, signals that are sparsely distributed in frequency may
facilitate the use of reduced sampling rates or time thinned processing. This will further enhance the
potential of digital processing in ESM applications.

We consider the use of thinned, linear phased arrays in a sparse signal environment using recent results for
the sparse Fast Fourier Transform (sFFT) to evaluate possible reductions in digital beamforming
computational rates. The sparse FFT is the result of increasingly intense research and practical
implementation over the last decade focused on improving the processing e�ciencies of the Fast Fourier
Transform (FFT) with the assumption of a sparse signal environment in the Fourier domain [1,2]. In the
discrete Fourier transform domain of a sparse signal, only a small number of the discrete frequency samples
are occupied while the remaining samples are zero or relatively small due to noise. The sparse FFT uses
only a data subset or thinned data stream making it ideal for application to the spatially thinned array
problem.
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This work builds on recent, practical applications of the sFFT [3]. These applications include reduced
receiver power by faster synchronization of GPS receivers with a satellite's signal [4], implementation of the
sFFT in a �eld programmable gate array [5], and application of sFFT to spectrum sensing and sharing
radio receivers [6,7]. The majority of investigations relate to the application of Fourier analysis of sparse
time signals. However, the application of the sFFT to the analysis of sparse spatial signal environments as
observed with spatially thinned phased array antenna elements appears to be fertile area for practical
application [8].

In this work we analyze the performance of coprime thinned arrays. A linear array is formed where the
number of elements with half wavelength spacing in the array is given by the product of three relatively
prime integers. Three thinned arrays are formed by thinning with each of the prime integers. Multiple
beams are formed with each of the thinned arrays by employing the discrete Fourier Transform (DFT) of
the thinned array element complex voltages. Plane wave excitations of the arrays register in one or more of
the DFT output samples. The thinned arrays result in ambiguities in the angles of arrival of a plane wave
due to grating lobes in the array patterns. The multiple, possible angles of arrival can be determined by
solution to Diophantine equations characteristic of each thinned array. Comparison of the multiple, possible
angles of arrival in two coprime arrays results in a unique angle of arrival for a single plane wave excitation,
assuming that the plane wave arrives from physically realizable angles of arrival. For each pair of coprime
thinned arrays, a hash table can be formed relating DFT output sample pairs to a unique angle of arrival.

We illustrate this process of plane wave signal detection and angle of arrival designation with a sample
problem. Complications that occur when multiple plane waves excite the arrays are considered. The
complications result from the requirement to correctly associate multiple DFT output samples between the
thinned arrays. In addition, multiple plane waves can register in a single DFT output sample, a situation
called a collision. In some cases, the complications may resolved by observing selected DFT output samples
from a third thinned array. We illustrate these processes using the sample problem.

Two measures of performance of the coprime thinned arrays are provided. First, we consider improvements
in the DFT beamforming processing rates assuming use of the conventional Fast Fourier Transform (FFT)
with thinned array pairs. The thinned array processing rates required for plane wave detection and angle of
arrival designation are compared to FFT beamforming with the complete, non-thinned array. This
comparison of beamforming processing rates is important for consideration of sFFT processing for practical
ESM array applications. Second, we consider the impact of receiver noise on the performance of the plane
wave signal detection and angle designation. We assume receiver noise added to each of the thinned array
signal voltages and employ conventional detection processing at each of the DFT output samples. We
provide the probability of plane wave detection and designation, and the probability of missed plane wave
detection and designation as a function of element signal to noise ratio. We consider thinned array pairings
and probability of false alarm as a parameter in these results. We also give the probability of false plane
wave detection and designation due to receiver noise as a function of the probability of false alarm at each
DFT output sample.

Conclusions and recommendations for further study are provided.

Formulation

We consider a linear array of receive elements with inter-element spacing d = λ/2. The number of elements
in the array, Nel, is restricted to be the product of three, coprime integers, qi, i = 1, 2, 3. These coprime

14



integers have no common factors except 1. Then the number of linear array elements is given by

Nel = q1q2q3.

Three periodically thinned subarrays will be considered here. The number of elements in the ith array is
given by Nel/qi and the thinned array is formed by processing every qthi element for i = 1, 2, 3. Throughout
this work, we will develop as an example an array with q1 = 5, q2 = 7 and q3 = 11 giving
Nel = 5× 7× 11 = 385. Figure 1 illustrates this linear array example and the thinned arrays associated
with the array. Of course, the thinned array with inter-element spacing greater than λ/2 produces a
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Figure 1: Linear array with three thinned arrays based on coprime thinning.

radiation pattern with grating lobes resulting in ambiguities in the direction of arrival of incident plane
waves. Figure 2 shows the maximum gain response of the complete array to plane wave excitations at
−45o, −5o, and 30o. In comparison, Figure 3 shows the thinned array with q = q3 = 11 corresponding to
analog processing of every 11th array element. The ambiguities in direction of arrival due to array grating
lobes is evident. Each plane wave direction, given by �ducial markers on the abscissa, results in a
multiplicity of other possible plane wave directions. The usefulness of multiple, coprime thinned arrays is
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Figure 2: The maximum gain response of the complete array to plane wave excitations at −45o, −5o,and
30o.

illustrated in Figure 4. Here the response to a plane wave excitation at −45o is shown for the three coprime
thinned arrays with q = q1 = 5 (red), q = q2 = 7 (blue) and q = q3 = 11 (black). Note that the beam peaks
of the ambiguous array patterns coincide only at the correct plane wave direction, −45o, as indicated by the
marker on the abscissa. Thus simultaneous signal detection on all three thinned arrays must correspond to
a plane wave at −45o, resolving the intrinsic ambiguity in each individual thinned array patterns.

Ambiguity resolution with multiple plane wave excitations may not be so clear, however. Figure 5
illustrates the response of thinned arrays with q = q2 = 7 (blue) and q = q3 = 11 (black) with three plane
wave excitations from −15o, 30o, and 45o. Note that the beam peaks occur simultaneously at these angles
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Figure 3: The maximum gain response of thinned array with q = q3 = 11 corresponding to analog processing
of every 11th array element; plane wave excitation directions shown by markers on abscissa.
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Figure 4: The maximum gain response to a plane wave excitation at −45o is shown for the three coprime
thinned arrays with q = q1 = 5 (red), q = q2 = 7 (blue) and q = q3 = 11 (black).
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Figure 5: The maximum gain response of thinned arrays with q = q2 = 7 (blue) and q = q3 = 11 (black)
with three plane wave excitations from −15o, 30o, and 45o.
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of excitation, as indicated by the blue �ducial markers on the abscissa. However, near simultaneous beam
peaks occur at other angles, as indicated by the red markers. Clearly falsely indicated angles of arrival may
occur at other excitation angles depending on the beamwidth of the thinned arrays and the relative signal
strength of the plane wave excitations.

In the following, we will examine the performance of coprime thinned arrays with digital beamforming
using the discrete Fourier transform (DFT) or its computationally e�cient and functionally equivalent fast
Fourier transform (FFT). First we develop the approach for determining plane wave angles of arrival in
terms of signal detections in one or more of the DFT samples representing the plane wave response to
multiple thinned array patterns pointed in spatially orthogonal directions. Di�culties develop when
multiple plane waves excite the thinned arrays, resulting in the potential that two or more waves introduce
detections in the same DFT sample. An approach to resolving this di�culty is proposed and discussed.
Finally, two performance measures of this algorithm for angle of arrival determination are evaluated. First
the computational e�ciency resulting from beamforming with multiple coprime thinned arrays is presented
when compared to the beamforming processing rates associated with the fully �lled array. Second, the
statistical performance of signal detection and correct angle of arrival determination is studied when
receiver noise is present in each of the array element signals processed by the DFT beamforming.

Angle of Arrival  with  DFT  Processing   of Thinned  Arrays

Figure 6 illustrates the uniform linear array and a set of uniformly thinned arrays as de�ned in Figure 1 along
with a uniform plane wave exciting the arrays from an angle θ measured with respect to array broadside.
Then the signal voltage at each element of the fully �lled array is given by

En = cos(θ)ejkndsin(θ), n = 1, 2, . . . , Nel,

where the wave number k = 2π/λ, λ = the wavelength of the monochromatic plane wave excitation and
d = λ/2 is the inter-element spacing. The factor cos(θ) accounts for the assumed element pattern of each
array element. Similarly, the signal at each element of a thinned array with thinning factor q is given by

En(q) = cos(θ)ejkqndsin(θ), n = 1, 2, . . . , Nel/q.

Clearly, En = En(1) corresponding to the fully �lled array.

We assume that digital beamforming of the array element voltages consists of the discrete Fourier
transform of the voltages. The DFT is chosen because of its computationally e�cient implementation in
terms of the fast Fourier transform. Each value of the transform represents the beam response to the one
or more plane wave excitations of the array. The DFT response of a thinned array with thinning factor q to
a single plane wave is given by

Rp(q) =

Nel/q∑
n=1

e
−j 2πnp

Nel/q cos(θ)ejkqndsin(θ), p = 1, 2, ..., Nel/q.

The response will be maximum when p satis�es

− 2πp

Nel/q
+ kqdsin(θ) = 2πm, m = 0, ±1, ±2, ... . (1)

The multiple possible angles of arrival attributed to the exciting plane wave is then given by

θm = asin(
λ

d
(
m

q
+
pmax
Nel

)), (2)
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Figure 6: A uniform linear array and a set of uniformly thinned arrays as de�ned in Figure 1 along with a
uniform plane wave exciting the arrays from an angle θ.

where pmax denotes the DFT sample which is maximum due to the plane wave excitation. The ambiguity
in angle of arrival is given by the multiple values of m in this expression.

Resolving the angle of arrival ambiguity reduces to determining the proper value of m in Equation (2).
First, we note that there are bounds on values of m. Since

−1 ≤ sin(θ) ≤ 1,

we �nd that the maximum value of m is given by

λ

d
(
mmax

q
+
pmax
Nel

) = 1,

or

mmax = q(
d

λ
− pmax

Nel
). (3)

In similar manner, the minimum value of m is given by

mmin = q(−d
λ
− pmax

Nel
). (4)

As observed in the previous section in our discussion of Figure 4, in order to determine the value of m that
determines the correct angle of arrival, we need to employ a second array with another thinning parameter,
q. From Equation (1) we �nd

d

λ
sin(θ) =

ma

qa
+
pmaxa
Nel

,

where the subscript a denotes parameters and measurements with respect to thinned array a. In like
manner, for a second thinned array

d

λ
sin(θ) =

mb

qb
+
pmaxb
Nel

,

so that the integer values of ma and mb must be solutions to the linear Diophantine equation

ma

qa
+
pmaxa
Nel

=
mb

qb
+
pmaxb
Nel

,
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or

maqb −mbqa =
pmaxb − pmaxa

qc
, (5)

where we have assumed that Nel = qaqbqc.

Equation (5) has integer solutions of the form

ma = maomodulo(qa) = mao + naqa, na = 0, ±1, ±2, . . . , (6)

mb = mbomodulo(qb) = mbo + nbqb nb = 0, ±1, ±2, . . . , (7)

with mao and mbo being integers. In addition, these solutions exist only when the right hand side of
Equation (5) is an integer; that is

pmaxb − pmaxa
qc

= integer value. (8)

Solutions from Equations (6) and (7) consistent with the limits given in Equations (3) and (4) under the
condition that Equation (8) is valid de�ne the angle of arrival of the plane wave that excites both thinned
arrays.

To illustrate this solution technique, we consider the thinned array responses due to one plane wave
excitation. Here a plane wave at θ = 45o excites two thinned arrays with q1 = 5 (red response) and q2 = 7
(blue response). Figure 7 shows the magnitude of the DFT response to the two thinned arrays so that
pmax1 = 59 and pmax2 = 26. With q3 = 11, we �nd that

pmax2 − pmax1

q3
=

26− 59

11
= −3,

allowing for solutions to the Diophantine equation (Equations (5) and (8))

7m1 − 5m2 = −3.

It follows that

m1 =
−3 + 5m2

7
=
−3 + 5m2o + 7n2

7
=
−3 + 5m2o

7
+ n2.

Then in order for m1to be integer, we require that

−3 + 5m2o = 7r, r = 0, ±1, ±2, . . ..

It follows that m2o = 2modulo(7) = ... − 12, −5, 2, 9, ... . However, from Equations (3) and (4) we have

m2max = 7(
1

2
− 26

385
) = 3.027

and

m2min = 7(−1

2
− 26

385
) = −3.973.

With these bounds, we �nd that m2 = m2o = 2 and then using Equation (2) we �nd that the angle of
arrival of the plane wave to be θ = 44.95o. This angle corresponds to the pointing direction of the beam
peak for pmax2

= 26 where the beam response to the plane wave at 45o is the strongest. Estimates of the
plane wave angle of arrival will be accurate to one-half of the 3dB beamwidth of the array of dimension
Nel

d
λcos(θ).
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This solution technique can be used to provide a hash table mapping all pairs of thinned array DFT values
to a beam pointing direction. Figure 8 illustrates a portion of such a hash table which includes the results
of the example given above. Figure 9 shows the same hash table reordered by beam pointing direction
illustrating the fact that each of the Nel = 385 beam positions is related to a unique combination of p1 and
p2 values. In this regard, note that the maximum gain beamwidth at a 45o scan is based on the projected
aperture in this direction and given by

λ

dNelcos(45o)
= 0.421o.

This beamwidth is consistent with contiguous beam pointing directions at 45o from Figure 9 given by
44.95o − 44.531o = 0.419o and 45.372o − 44.95o = 0.422o.
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Figure 7: The magnitude of the DFT response to the two thinned arrays with q1 = 5 (red) and q2 = 7 (blue)
and a plane wave excitation at θ = 45o.

Integer12

58 3 -5 10 1.747 -3.253 0 17.536

58 14 -4 8 1.747 -3.253 -2 -29.914

58 25 -3 6 1.747 -3.253 1 44.531

58 36 -2 9 1.747 -3.253 -1 -5.664

58 47 -1 7 1.747 -3.253 -3 -63.988

59 4 -5 10 1.734 -3.266 0 17.848

59 15 -4 8 1.734 -3.266 -2 -29.571

59 26 -3 6 1.734 -3.266 1 44.95

59 37 -2 9 1.734 -3.266 -1 -5.365

59 48 -1 7 1.734 -3.266 -3 -63.317

60 5 -5 10 1.721 -3.279 0 18.161

60 16 -4 8 1.721 -3.279 -2 -29.23

60 27 -3 6 1.721 -3.279 1 45.372

60 38 -2 9 1.721 -3.279 -1 -5.066

60 49 -1 7 1.721 -3.279 -3 -62.662

61 6 -5 10 1.708 -3.292 0 ...

=

�
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Figure 8: Hash table for the data shown in Figure 7.
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Integer12theta

51 18 -3 6 1.838 -3.162 1 41.677

52 19 -3 6 1.825 -3.175 1 42.077

53 20 -3 6 1.812 -3.188 1 42.479

54 21 -3 6 1.799 -3.201 1 42.884

55 22 -3 6 1.786 -3.214 1 43.292

56 23 -3 6 1.773 -3.227 1 43.702

57 24 -3 6 1.76 -3.24 1 44.115

58 25 -3 6 1.747 -3.253 1 44.531

59 26 -3 6 1.734 -3.266 1 44.95

60 27 -3 6 1.721 -3.279 1 45.372

61 28 -3 6 1.708 -3.292 1 45.798

62 29 -3 6 1.695 -3.305 1 46.226

63 30 -3 6 1.682 -3.318 1 46.658

64 31 -3 6 1.669 -3.331 1 47.094

65 32 -3 6 1.656 -3.344 1 47.533

66 33 -3 6 1.643 -3.357 1 ...

=

Figure 9: Hash table for the data shown in Figure 7 reordered by angle of arrival.

The hash tables indicate that for a single plane wave incident, a unique relationship exists between each
pair of DFT samples from the thinned arrays and a beam pointing direction. However, as we shall see in
the following, when multiple plane waves are incident the possibility of direction ambiguity can occur in
speci�c cases and detections in the third thinned array are necessary to resolve these residual ambiguities.

Complications Associated   with  Multiple,   Plane  Wave  Excitations

The process of determining angles of arrival of multiple plane waves is more complicated than that
illustrated in the previous section. There are two complications addressed in this section. First, we must
properly associate multiple DFT detections between two thinned arrays to correctly determine the angle of
arrival of plane wave excitations. Second, we must address the situation when multiple plane waves excite
the same DFT sample in one of the thinned arrays, a case we call DFT collisions. Further complications
associated with the case when received array samples are corrupted with additive receiver noise will be
addressed in the next section of this report.

Multiple Plane Wave Excitations

When more than one plane wave excites the thinned array, the DFT beamformer samples exhibit multiple
detections. We are then faced with the problem of correctly associating DFT detections to create valid
pairs to determine plane wave angles of arrival. This situation is illustrated in Figure 10 where plane waves
at 45o and −15o excite arrays with thinning parameters q = q1 = 5 (red) and q = q2 = 7 (blue). We must
determine which pairs of red and blue detections correctly determine the plane wave directions of arrival.
This problem is resolved by remembering from Equation 8 that p2−p1

q3
must be integer to solve the

Diophantine equations that determine angle of arrival. Table 1 shows a matrix of these values for the DFT
samples in Figure 10. We refer this matrix as the δp matrix. It is clear that we must associate p2 = 26 with
p1 = 59 giving an angle of arrival of 44.95o as we saw in the last section and associate p2 = 5 with p1 = 27
to give an angle of arrival of −15.055o.

21



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

20

40

60

80

�

��
�
�

Figure 10: The magnitude of the DFT response to the two thinned arrays with thinning parameters q =
q1 = 5 (red) and q = q2 = 7 (blue) and plane waves at 45o and −15o.
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Table 1: The δp matrix for the values of the DFT samples in Figure 10.

Thus, the association problem can be solved using this δp matrix technique or equivalently, referring to the
hash table to determine allowable pairs for the given values of p. However, this technique is not su�cient in
all cases as we discuss in the next section.

Multiple Plane Wave Excitations with Collisions and Ambiguities

A more substantive complication occurs when two or more plane waves register in the same DFT sample, a
case we describe as a collision. This can create ambiguity in the number of plane waves exciting the array.
To illustrate the problem, we again consider thinned arrays with parameters q = q1 = 5 (red) and
q = q2 = 7 (blue) illuminated with three plane wave at angles 45o, −15o and −29.5o. The DFT beamformer
response is shown in Figure 11. Here the q = 5 (red) array response seems to indicate the presence of two
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Figure 11: The magnitude of the DFT beamformer response for thinned arrays with parameters q = q1 = 5
(red) and q = q2 = 7 (blue) illuminated with three plane wave at angles 45o, −15o and −29.5o.

plane waves while the q = 7 (blue) array response indicates three plane waves. The δp matrix of p2−p1q3
values in Table 2 provides information on this uncertainty by associating two blue samples, p2 = 15 and
p2 = 26, to the single red sample, p1 = 59. The angles associated with the integer values of the δp matrix
are indicated also and correspond to the actual angles of arrival of the three plane wave excitations.
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Table 2: The δp matrix for associating two blue samples, p2 = 15 and p2 = 26, to the single red sample,
p1 = 59 giving plane wave angles of arrival.

The DFT response data illustrated here result from noise free array voltage samples. Including receiver
noise at each array samples raises the possibility of false detections in the DFT responses. Thus, we note
that a noise detection in a DFT sample in one array corresponding to a plane wave detection sample in the
other array creates a false plane wave indication. Con�rmation of plane wave detections and angles of
arrival with the third thinned array will be discussed later in this section.

The hash table expresses values of p1 and p2 that are compatible with solutions to the Diophantine
equations for the thinned arrays. These values of p1 and p2 are given by

p1 = x+ k1q3 0 ≤ p1 ≤ q2q3
p2 = x+ k2q3 0 ≤ p2 ≤ q1q3,

(9)

with integer k1 and k2 and 0 ≤ x ≤ q3. Either these equations or the hash tables can be used to determine
possible p values and their associated angles of arrival that cause collisions.

Two additional examples of DFT sample collisions are shown in Figures 12 and 13. In Figure 12, plane
waves from 69.239o and 32.348o excite the array. These angles are chosen to excite the DFT samples at
their peak values and cause a collision in the q = 5 (red) DFT sample at p1 = 26. Table 3 illustrates the
fact that two plane waves exist for the noise free data and also gives the associated angles of arrival for
these plane waves found from the hash table. From Equations (9), p1 = 26 gives x = 4 with k1 = 2. Then
p2 = 4, 15, 26, 37, and 48. Angles of arrival corresponding to these �ve values will force collisions in the
DFT response with p1 = 26; Table 3 illustrates two of these values.
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Table 3: The δp matrix illustrating the fact that two plane waves exist for data collision; also illustrates the
associated angles of arrival for these plane wave found from the hash table.
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Figure 12: The magnitude of the DFT beamformer for thinned arrays with parameters q = q1 = 5 (red) and
q = q2 = 7 (blue) with two plane waves with angles of arrival 69.239o and 32.348o.

In Figure 13, plane waves 69.239o and −26.571o excite the array causing a collision in the q = 7 (blue)
DFT sample at p2 = 15. Again the δp matrix resolves the ambiguity in the number of place wave
excitations and gives the correct angles of arrival from the hash table (Table 4).
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Table 4: The δp matrix resolves the ambiguity in the number of place wave excitations and gives the correct
angles of arrival from the hash table.
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Figure 13: The magnitude of the DFT beamformer for thinned arrays illustrating a collision in the q = 7
(blue) DFT sample at p2 = 15.

Figure 14 illustrates a further complication associated with multiple plane wave excitation of the thinned
arrays. Here four plane waves excite the arrays at 60.173o, 69.239o , 32.348o, and −29.571o. Again these
angles have been chosen not only to be associated with peak values of the DFT but also to introduce
collisions in both the q = 5 (red) samples and q = 7 (blue) DFT samples. Indeed, counting the number of
red and blue samples in Figure 14 would seem to indicate that only three plane waves excite the array
instead of the actual four plane waves. The δp matrix shown in Table 5 helps to resolve this problem as
indicated by the angles of arrival associated with each integer value of δp/q. However, note that an
additional false plane wave indication occurs in this situation, as noted by the red box in Table 5. Again
we note the necessity of a process to con�rm plane wave angles of arrival using a third thinned array.
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Table 5:
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Figure 14: The magnitude of the DFT beamformer for thinned arrays illustrating a collision in the q = 7
(blue) DFT sample at p2 = 15.

Figure 15 illustrates this con�rmation process by showing the DFT samples for the third thinned array
with q = q3 = 11 with plane wave excitation angles of 60.173o, 69.239o, 32.348o, and −29.571o. Note that
the response corresponds to the four correct angles of arrival in Table 5. However, the incorrect angle of
arrive found in Table 5, −63.317o, from collisions in the �rst two thinned arrays does not produce a DFT
response at p3 = 3. Thus, examination of the response from the third thinned array can provide a
con�rmation for the angles of arrival determined from the �rst two thinned arrays. This con�rmation
process will eliminate false plane wave detections due to ambiguities due to DFT collisions and noise
detections in the DFT samples.
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Figure 15: The magnitude of the DFT beamformer for the third thinned array with q = q3 = 11 with plane
wave excitation angles of 60.173o, 69.239o, 32.348o, and −29.571o.

We note however, that it is not necessary to compute the complete DFT for the third thinned array. In
fact, only the DFT samples associated with angles of arrival determined from the q1 and q2 need to be
computed. This is an important point since our investigation is motivated by the need to reduce the digital
beamforming processing rates in a sparse signal environment. Fewer computations are required for the
beamforming response to a few signals than are required for the complete DFT implemented as the FFT.
We consider this further in the next section.
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Performance

We investigate the use of multiple, thinned arrays as an approach for reducing the processing rate
associated with digital beamforming in a sparse signal environment. To that end, we evaluate in the
following section reductions in the processing rate associated with the thinned arrays studied in the
previous sections when compared to processing rates for the fully �lled array of equivalent size. However,
processing rates are not the only performance criterion of importance. Practical application of approaches
as described here must consider the presence of receiver noise in each of the array element voltages.
Receiver noise can create false signal detections which, when paired with correct signal responses or noise
detections can create false plane wave indications. These false indications require further con�rmation with
additional processing of a third thinned array element voltages, as described in the last section.
Probabilities of correct signal detections and false signal indications as a function of element signal to noise
are discussed in the following.

Digital Beamforming E�ciencies with Thinned Arrays

We assume that signals from each of the thinned arrays are processed with the computational e�cient Fast
Fourier Transform (FFT) to create multiple, simultaneous beams from each of the arrays. The FFT is
prescribed since one of our performance considerations is with beamforming processing rates associated
with large arrays. One of the more e�cient FFT implementations is the split-radix implementation [9]
where the number of �ops (�oating point operations with real additions and multiplications) of standard
complex data is given by

F (L) = 4L log2(L)− 6L+ 8,

where L is the number of samples employed in the FFT and is a power of 2. The number of elements in the
thinned subarrays described here are not a power of 2. To resolve this discrepancy, we assume that the
number of samples in each thinned subarray is a power of 2 by adding as su�cient number of zero element
voltages, an approach often called zero padding. For example, the thinned array with q = q1 = 5 has
q2q3 = 77 elements and the processing assumes 27 = 128 > 77 element voltages, including the zero padded
element voltages.

We characterize the digital beamforming e�ciency of the thinned array processing as the ratio of the
number of FFT processing �ops required to beamform two thinned array to the number of FFT processing
�ops to beamform the fully �lled array. That is, the e�ciency of using thinned arrays with qi and qj is
given by

Ei,j =

F (Nelqj

∣∣∣∣
2

) + F (Nelqi

∣∣∣∣
2

)

F (Nel

∣∣∣∣
2

)

.

Here x

∣∣∣∣
2

≡ 2ceil(log2(x)) where ceil(y) denotes the smallest integer which is larger than y. Note that these

e�ciencies do not include computations necessary to (a) determine angles of arrival from precomputed
hash tables and (b) con�rmation of plane wave angles of arrival and elimination of false indications by
digitally forming speci�c beam directions in the third array. These additional computations depend on the
number of incident plane waves and false detections in thinned array FFT samples, both of which are
random and assumed to impose a relatively small number of additional beamforming computations.
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With these assumptions and caveats, the digital beamforming e�ciencies of the thinned arrays discussed
here are

E1,2 = 0.259
E1,3 = 0.259
E2,3 = 0.151.

The common values of the e�ciencies E1,2 and E1,3 is due to the common number of FFT samples
processed due to the zero padding assumption. We note that from the viewpoint of digital beamforming
computational e�ciency, it is preferable to use the arrays with the highest thinning factors, q = q2 = 7 and
q = q3 = 11, as the baseline for determining plane wave indications and angles of arrival. However, this
results in the greatest penalty in e�ciency when con�rmation of plane wave indication and angle of arrival
determination is required using a third array. This is due to the fact that with the highest thinning factors,
more grating lobes exist and therefore more opportunities exist for ambiguities that require third array
processing for resolution.

Performance Probabilities with Receiver Noise

The presence of receiver noise at each element of the thinned array introduces the possibility of false
detections at the thinned array beamformed output which in turn allows for the possibility of incorrect
plane wave detections and arrival angle designations. The digital beamforming of signals from the thinned
array elements assumes implicitly that an rf receiver and frequency downconverter exists at each element to
prepare inphase and quadrature signals for digital conversion. The noise �gure of the rf receiver sets the
signal to noise of the signal processed by the digital beamformer. We assume here that this receiver noise is
the predominant source of noise in the beamforming processing and signal detection.

We assume conventional signal detection at each DFT beam output. The magnitude of the output is
compared to a threshold established so that the probability of the magnitude exceeding the threshold due
to a noise signal alone is a �xed probability of false alarm, pfa. The probability of the output exceeding the
threshold when signal and noise are present, pd, is established as a function of the signal to noise ratio at
the DFT beam output, SNR. The conventional analysis of this problem considers the magnitude of the
noise signal alone, r, to have the Rayleigh probability density, pRayleigh(r), due to the assumed Gaussian
quadrature components of the noise. That is

pRayleigh(r) =
r

σ2
e−

r2

2σ2 r ≥ 0.

Then the detection threshold, Vt, is established from the given probability of false alarm as

pfa =

∫ ∞
Vt

r

σ2
e−

r2

2σ2 dr =

∫ ∞
V 2
t

2σ2

e−udu = e−
V 2
t

2σ2 ,

or
V 2
t

2σ2 = −ln(pfa).

When the signal and noise are present, the magnitude of this signal, r, is Ricean distributed with
probability density

pRice(r) =
r

σ2
e−

r2+A2

2σ2 Io(
rA

σ2
) r ≥ 0.
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Here Io(x) denotes the modi�ed Bessel function of the �rst kind of order zero. Then the probability of
signal detection is given by

pd(SNR) =
∫∞
Vt

u
σ2 e
−u

2+A2

2σ2 Io(
uA
σ2 )du

=
∫∞
V 2
t

2σ2

e−(v+SNR)Io(2
√
vSNR)dv

=
∫∞
−ln(pfa) e

−(v+SNR)Io(2
√
vSNR)dv.

In this expression, SNR ≡ A2
/2σ2. In our work, this signal to noise is at the DFT beam output with

thinning factor qi and is given in terms of the element signal to noise, SNRelement, by

SNR
i
=
Nel
qi
SNRelement.

This follows from the fact that the plane wave signal adds coherently among the array elements at the
DFT beam peak while the receiver noise adds non-coherently (power addition) due to the assumed
statistical independence among the noise signals at the array elements. We use the actual number of array
elements Nel instead of the number of elements in the zero padded array since the additional padded array
values do not contribute to the signal and noise power at the DFT sample beam outputs.

We consider two measures of performance of the thinned array approach as function of element signal to
noise radio. These are (1) the probability of correct plane wave detection and angle of arrival designation
when only a single plane wave excites the arrays, (2) the probability of a missed plane wave detection when
one is actually present, and (3) the probability of false plane wave detection and angle of arrival designation
due to noise only. There are other possible performance measures that might be considered. Among these
are (4) the probability of false signal detection and angle of arrival designation due to noise when a plane
wave is present and (5) the probability of incorrect signal angle of arrival designation due to noise in the
presence of a plane wave excitation. These other performance measures will not be considered here.

To determine the probability of correct plane wave detection and angle of arrival designation we recall that
the plane wave DFT sample in a baseline thinned array must relate to a unique sample in the secondary,
thinned array as given by the hash table for the arrays. If �a� denotes the baseline array and �b� denotes
the secondary array, then the probability of correct detection and designation is given by

ppw(SNRelement) = pd(SNRa)(1− pfa)
Nel
qa
−1pd(SNRb)(1− pfa)qb−1.

= pd(
Nel
qa
SNRelement)(1− pfa)

Nel
qa
−1pd(

Nel
qb
SNRelement)(1− pfa)qb−1.

(10)

In this expression, the �rst two factors, pd(SNRa)(1− pfa)
Nel
qa
−1, represent the probability of detecting the

plane wave on one of the Nel/qa DFT samples of the baseline thinned array �a� while insuring that there are
no noise false detections on the remaining Nel/qa − 1 samples. From the hash table, there are qb DFT
samples from the secondary thinned array �b� that are acceptable. Thus, the third and fourth factors in
Equation (10), pd(

Nel
qb
SNRelement)(1− pfa)qb−1, represent the probability of detecting the plane wave on

one of these DFT samples and no detections on the remaining qb − 1 samples.

Figure 16 shows the probability of plane wave detection and angle of arrival designation as a function of
element signal to noise with probability of false alarm detection at the DFT output sample of 10−4 and
10−6. We show here combinations of baseline and secondary thinned arrays of
(a, b) = (1, 2), (1, 3), and (2, 3). Combinations with reversed roles of the thinned arrays,
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Figure 16: The probability of plane wave detection and angle of arrival designation as a function of element
signal to noise with probability of false alarm detection at the DFT output sample of 10−4 and 10−6.

(a, b) = (2, 1), (3, 1), and (3, 2), give approximately the same results. For a given element signal to noise,
thinned array combinations with the lease thinning, (a, b) = (1, 2), gives the best results. This is due to the
increased array gain and signal to noise for plane wave detection even with a greater number of DFT
samples where false alarms may occur.

To determine the probability of a missed plane wave detection, we again recall that the plane wave DFT
sample in a baseline thinned array must relate to a unique sample in the secondary, thinned array as given
by the hash table for the arrays. If �a� denotes the baseline array and �b� denotes the secondary array then
the probability of a missed detection, pmpw, with no false detections due to noise is given by

pmpw(SNRelement) = pd(SNRa)(1− pfa)
Nel
qa
−1(1− pd(SNRb))(1− pfa)qb−1.

+(1− pd(SNRa))(1− pfa)
Nel
qa
−1pd(SNRb)(1− pfa)qb−1.

+(1− pd(SNRa))(1− pfa)
Nel
qa
−1(1− pd(SNRb))(1− pfa)qb−1.

= pd(
Nel
qa
SNRelement)(1− pfa)

Nel
qa
−1(1− pd(Nelqb SNRelement))(1− pfa)

qb−1

+(1− pd(Nelqa SNRelement))(1− pfa)
Nel
qa
−1pd(

Nel
qb
SNRelement)(1− pfa)qb−1

+(1− pd(Nelqa SNRelement))(1− pfa)
Nel
qa
−1(1− pd(Nelqb SNRelement))(1− pfa)

qb−1.

= (1− pd(Nelqa SNRelementpd(
Nel
qb
SNRelement)(1− pfa)

Nel
qa

+qb−2

In this expression, the �rst term represents the probability of a plane wave detection on the baseline array
and no detection on the secondary array. Similarly, the second term gives the probability of a no detection
on the base line array and a detection on the secondary array. Finally, the third term gives the probability
on no detection on either array. In each outcome, no false indications due to noise are allowed.

Figure 17 shows the probability of a missed plane wave as a function of element signal to noise with
probability of false alarm detection at the DFT output sample of 10−4 and 10−6. Again we show here
combinations of baseline and secondary thinned arrays of (a, b) = (1, 2), (1, 3), and (2, 3). For a given
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element signal to noise, the thinned array combination with the lease thinning, (a, b) = (1, 2), gives the best
results. Again, this is due to the increased array gain and signal to noise for plane wave detection even
with a greater number of DFT samples where false alarms may occur.
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Figure 17: The probability of a missed plane wave as a function of element signal to noise with probability
of false alarm detection at the DFT output sample of 10−4 and 10−6.

Finally, we consider the probability of false plane wave indication and angle of arrival designation due only
to the presence of receiver noise. At each DFT beam output, the probability of the signal exceeding the
threshold is given by pfa. As we have seen previously, the threshold is set by the prescribed probability of
false alarm.

The binomial distribution describes the number of false alarm indications on the baseline thinned array.
That is,

b(p,
Nel
qa

, pfa) =
(Nelqa )!

p!(Nelqa − p)!
ppfa(1− pfa)

Nel
qa
−p,

denotes the probability of p statistically independent false alarms in the number of beam outputs, Nelqa , in

the ath thinned array when the probability of false alarm in each beam position is pfa. For each of the false
alarms in the baseline array, we require that one or more false alarms occur on the qb secondary thinned
array beam positions given by the hash table. The probability of this event is

1− (1− pfa)qb ,

where (1− pfa)qb gives the probability of no false alarms among the qb beam positions speci�ed by the hash
table for the secondary array. The equation above gives the probability of one or more false alarms among
the qb beam positions designated by the hash table for a primary array false alarm. Finally, the probability
of one or more false plane wave indications and angle of arrival designations due to receiver noise is given by

pfpw =

∑Nel
qa
p=1 b(p,

Nel
qa
, pfa)[1− (1− pfa)qb ]p∑Nel

qa
p=0 b(p,

Nel
qa
, pfa)[1− (1− pfa)qb ]p

. (11)
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Figure 18: The probability of a false plane wave detection and designation due to receiver noise as a function
of the probability of false alarm at each thinned array beam output.

This result assumes that in each case, the p secondary array beam positions of size qb are di�erent and
statistically independent. The denominator assures that the modi�ed binomial distribution is a valid
probability distribution (sums to one). Figure 18 shows the probability of a false plane wave detection and
designation due to receiver noise as a function of the probability of false alarm at each thinned array beam
output. We show here combinations of baseline and secondary thinned arrays of
(a, b) = (1, 2), (1, 3), and (2, 3) in overlapping curves. Asymptotically we �nd from Equation (11) that

pfpw =
qb
qa
Nelp

2
fa +O(p3fa)

as pfa → 0. This approximation matches well the results of Figure 18.

Note that for small pfa, the probability of a false plane wave detection and designation is much smaller than
the probability of false alarm at each DFT beam position. This is a fortunate result of the two stage detection
process using plane wave detections on both the baseline and secondary thinned array DFT responses.

Conclusions and Recommendations for Further Study

We analyzed the performance of coprime, thinned linear arrays. A linear array is formed where the number
of elements with half wavelength spacing in the array is given by the product of three relatively prime
integers. Three thinned arrays are formed by thinning with each of the prime integers. The DFT was used
with each of the thinned arrays to form multiple beams with ambiguous grating lobes. The ambiguity in
the multiple possible angles of arrival of a plane wave can be resolved by solution to Diophantine equations
characteristic of thinned array pairs. We demonstrated that comparison of the multiple, possible angles of
arrival in two coprime arrays results in a unique angle of arrival for a single plane wave excitation,
assuming that the plane wave arrives from physically realizable angles of arrival. For each pair of coprime
thinned arrays, we formed a hash table relating DFT output sample pairs to a unique angle of arrival.
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We illustrated the process of plane wave signal detection and angle of arrival designation with a sample
problem. A complication occurred when multiple plane waves excite the arrays resulting in the need to
correctly associate multiple DFT output samples between the thinned arrays. This complication was
resolved by applying the realizability condition on solutions to the Diophantine equations for the plane
wave angles of arrival. An additional complication occurs when multiple plane waves register in a single
DFT output sample. In some of these cases, the complications must be resolved by observing only a few,
selected DFT output samples from a third thinned array. This is an important point since our investigation
is motivated by the need to reduce the digital beamforming processing rates in a sparse signal environment.
In fact, only the DFT samples associated with angles of arrival in the sparse signal environment need to be
computed. Fewer computations are required for the beamforming response to a few signals than are
required for the complete DFT implemented as the FFT on the third thinned array.

Two measures of performance of the coprime thinned arrays are provided. First, we considered
improvements in the DFT beamforming processing rates assuming use of the conventional Fast Fourier
Transform (FFT) with thinned array pairs. The thinned array processing rates required for plane wave
detection and angle of arrival designation were compared to FFT beamforming with the complete,
non-thinned array. Processing rates with the thinned arrays were 15% - 26% of the rates required for the
fully �lled array, depending on the thinned array pairs used. These e�ciencies were computed assuming
zero padding of the thinned array samples to employ the FFT algorithm in the beamforming. This
comparison of beamforming processing rates is important for consideration of sFFT processing for practical
ESM array applications.

Second, we considered the impact of receiver noise on the performance of the plane wave signal detection
and angle designation. We assumed receiver noise added to each of the thinned array signal voltages and
employed conventional detection processing at each of the DFT output samples. We provided expressions
for the probability of plane wave detection and designation and the probability of missed plane wave
detection and designation as a function of element signal to noise ratio with numerical values for the
sample thinned array problem. Thinned array pairings and probability of false alarm served as parameters
in these results. We also gave estimates of the probability of false plane wave detection and designation due
to receiver noise as a function of the probability of false alarm at each DFT output sample. The dual
detection process implicit in the use of two thinned arrays results in a substantial reduction in false plane
wave detections due to receiver noise, beyond the false alarm level set at the DFT sample level.

We conducted this study to assess the feasibility of using thinned arrays in wideband, wide angle scanned
phased arrays for ESM applications where a sparse signal environment exists in space and frequency. The
thinned arrays and sFFT processing could reduce digital beamforming processing rates that surpass current
hardware technology capabilities. While this preliminary study is encouraging, further analyses remain.
Practical implementation requires extension of sFFT processing to two dimensions (azimuth and elevation
scanned arrays) and three dimensions (azimuth and elevation scanned arrays with frequency scanning in
each beam position). Recent research has extended sFFT algorithms to two dimensions [10,11,12] and
indicates applying successively one dimensional sFFTs to rows and columns is not the appropriate
approach. The performance of these advances in beamforming computational rate and detection/false
detection probabilities as a function of sparse signal complexity is required. Further, the application of
these advanced algorithms to thinned arrays formed with analog sub-arrays and bandpass receivers should
be investigated in terms of pattern performance, sparse signal complexity, computational complexity, and
detection performance. Restrictions on array sizes formed from the products of coprime integers needs to
be investigated in terms of limits on practical application. The compatibility of coprime thinning and the
requirement for data zero padding to e�ectively use FFT algorithms needs to be investigated.
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3. A General Anisotropic Representation for Spatially and Temporally Dispersive Media 
that Separates Electric and Magnetic Polarization Effects.

Arthur D. Yaghjian 

3.1 Introduction 
The rigorous homogenization of natural materials and metamaterials must take into account 
spatial dispersion as well as temporal dispersion, that is, it must formulate constitutive 
parameters that depend on the spatial as well as frequency variation of the fields.  This has been 
done in the past by Landau and Lifshitz [1] and Agranovich and Ginzburg [2] using a method 
that combines the electric and magnetic polarization into a single permittivity tensor.  Therefore, 
the research that was proposed and which has been accomplished was to formulate a general 
anisotropic representation for spatially and temporally dispersive media that separates electric 
and magnetic polarization effects.   

3.2 Exact Causal Solution for Macroscopic Permittivity and Permeability Tensors 
An exact causal solution was determined for macroscopic permittivity and permeability tensors 
that are conveniently computed from the microscopic Maxwell equations.  The theory 
generalizes the method of Landau and Lifshitz and constitutes the first rigorous characterization 
of spatial dispersion that explicitly applies to magnetic (or diamagnetic) as well as electric 
materials.  The theory was immediately used to determine a causal permeability for diamagnetic 
metamaterials, specifically, a three-dimensional array of perfectly electrically conducting spheres 
–– a classic problem that had previously defied solution [3].  By enhancing the understanding of 
spatial dispersion, the theory facilitates the continued understanding and development of 
materials.  As an integral part of the theory, which was published as both an invited book chapter 
[4] and a feature journal article [5], detailed reality conditions, reciprocity relations, passivity 
conditions, and causality relations were derived for the macroscopic anisotropic permittivities 
and permeabilities.  Criteria that can be evaluated numerically was found for deciding if the 
electrical separation distance is small enough for an array of inclusions to behave as a continuum 
satisfying Maxwell’s macroscopic equations [6], and for a free-space/array interface to satisfy 
continuum boundary conditions [7].  The general three-dimensional formulation was also 
modified to determine the constitutive parameters of one-dimensional magnetodielectric periodic 
structures [8]. 

The electric and magnetic theory of spatial dispersion was also applied to resolve four 
fundamental issues in classical electromagnetics [9]:  i) The conventional (spatially 
nondispersive) macroscopic definition of magnetiz-ation and, thus, the permeability becomes 
physically meaningless as the wavelength approaches the size of the unit cell.   ii) The definition 
of multipole moments of higher-order than electric dipoles becomes origin depen-dent as the size 
of the unit cell becomes comparable to a wavelength and, thus, magnetization as well as all other 
higher-order moments cannot be uniquely defined at high frequencies.  iii) It is mathematically 
impossible for conventionally defined permeability that is diamagnetic at low frequencies to be a 
causal function of frequency satisfying the Kramers-Kronig relations.  iiii) In a multipole 
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expansion, electric quadrupole moments appear to contribute to the same order as magnetic 
dipole moments, yet at low frequencies they are seldom significant in dipolar material. 

3.3 Generalized Claussius-Mossotti Procedure for Obtaining the Low-frequency 
Constituitive Parameters of Electric Quadrupolar Material  
Another spin-off of the theory has been its facilitating a generalized Claussius-Mossotti 
procedure to obtain in closed form the low-frequency constitutive parameters of electric 
quadrupolar material [10].  This generalized Clausius-Mossotti derivation is the first application 
of the Clausius-Mossotti method to media containing multipoles of higher order than dipoles and 
it opens the way to the Clausius-Mossotti homogenization of higher-order multipolar media. 

3.4  Determination of the Quality-factor (Q) Lower Bounds that Apply to Electrically 
Small, Lossy or Lossless, Combined Electric and Magnetic Dipole Antennas Confined to 
an Arbitrarily Shaped Volume 
After accomplishing more than the proposed tasks on developing “a general macroscopic 
anisotropic representation for spatially dispersive media,” Yaghjian conducted an intensive 
research effort into determining the quality-factor (Q) lower bounds that apply to electrically 
small, lossy or lossless, combined electric and magnetic dipole antennas confined to an 
arbitrarily shaped volume.  Lower-bound formulas for Q were derived for dipole antennas with 
specified electric and magnetic dipole moments excited by both electric and magnetic (or 
magnetization) surface currents as well as by electric surface currents alone.  With either 
excitation, separate formulas were found for the dipole antennas containing only lossless or 
“nondispersive-conductivity” material and for the dipole antennas containing “highly dispersive 
lossy” material.  The formulas prove useful to the engineering and physics communities because 
they involve only the quasi-static electric and magnetic polarizabilities of the associated perfectly 
conducting volume of the antenna, the ratio of the powers radiated by the specified electric and 
magnetic dipole moments, and the efficiency of the antenna.  The work was invited to a special 
issue of Progress in Electromagnetics Research devoted to the memory of Professor Robert E. 
Collin [11]. 

A rather extraordinary prediction arose from the formulation of Q-energy related to the quality 
factor of highly lossy dispersive material.  By using highly dispersive lossy material in the tuning 
element of an electrically small antenna, the antenna can be tuned without increasing the stored 
energy or the quality factor.   This led to a new formula for the minimum Q of an electrically 
small electric or magnetic dipole antenna, namely Q = 0.5η / (ka)3 for a spherical antenna (ka is 
the electrical radius of the sphere and η is the radiation efficiency of the antenna) –– one half the 
Chu lower bound or twice the bandwidth previously considered possible.  Examples using 
hypothetical Lorentz material confirmed this unexpected prediction [12].  

3.5 References 
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4. Plane-wave Expansions with Directional Spectra; Gaussian-beam Scattering-matrix 
Theory; and Array Realizations of Complex-source Beams

Thorkild B. Hansen 

4.1 Plane-wave Expansions with Directional Spectra 
Plane-wave expansions have been useful for solving a large variety of problems involving acoustic 
and electromagnetic fields. In particular, transducer and antenna theory is often formulated in terms 
of plane waves because transmission and reception phenomena can be treated straightforwardly 
with plane waves. Moreover, numerical methods for solving scattering problems, such as the fast 
multipole method (FMM) also rely on plane-wave expansions. The fact that plane-wave expansions 
are diagonalized is the key to their usefulness in numerical calculations. Diagonalization simply 
means that each outgoing plane wave created by a source gives rise to only one incoming plane 
wave in the receiver region, which contains the observation points. 

New exact plane-wave expansions were derived for general acoustic and electromagnetic fields 
radiated by arbitrary sources of finite extent in both 2D and 3D. The spectra of these expansions 
equal the product of a Gaussian translation operator and the far-field patterns of the sources 
evaluated on the real unit circle in 2D and on the real unit-sphere in 3D. At high frequencies, the 
Gaussian translation operator decays exponentially outside the stationary-point cone determined by 
the boundaries of the source region as viewed from the receiver region. Hence, the directionality of 
the Gaussian translation operator makes it possible to disregard a large fraction of the plane-wave 
translations. 

The derivation involves analytic continuation of Gegenbauer’s addition theorem to obtain an exact 
plane-wave expansion of a real point-source field from which the Gaussian translation operator 
emerges. Sampling theorems determine the plane-wave sampling rate required by the Gaussian 
translation operator, and since the formulation is based on an exact identity, arbitrarily high 
accuracy can be achieved. The required sampling rate depends not only on the diameter of the 
source and receiver regions but also on the actual locations of the sources and receivers within those 
regions.  

For antenna applications, a corresponding plane-wave antenna transmission formula was obtained 
in which the patterns of the transmitting and receiving antennas are multiplied by the Gaussian 
translation operator. Hence, at sufficiently high frequencies, the spectrum is guaranteed to be 
directional, regardless of the patterns of the transmitting and receiving antennas.  In such situations, 
the antenna interaction can be computed to a prescribed accuracy from the antenna pattern values 
inside cones. 

The problem of antenna near-field scanning in 3D was used as an application example.  A 
multilevel computation scheme was formulated with the Gaussian translation operator to determine 
the far-field pattern of the antenna under test (AUT) from the measured probe output. It was 
demonstrated that the reduction in computational effort (as compared to the conventional FMM 
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approach) achievable with the Gaussian translation operator in typical near-field scanning 
geometries is in the range from 75% to 90% depending on the probe-AUT separation. In addition, it 
was shown that due to its directionality, the Gaussian translation operator can significantly improve 
the condition number of the normal equation that determines the AUT far-field pattern from the 
probe output. This improvement will help speed up the convergence rate of iterative solvers. 
Further, the Gaussian translation operator can be used when the probe pattern is known only in one 
hemisphere, as is common in practice (the standard FMM translation operator requires that the 
probe pattern be known over the entire unit sphere).  

Other researchers had previously attempted to obtain directional plane-wave expansions in 2D and 
3D. The previous 2D work either involved heuristic (non-exact) plane-wave expansions or plane-
wave expansions that require that the source pattern be evaluated at complex angles. Previous 3D 
work, which also requires that the source pattern be evaluated at complex angles, produced only a 
semi-directional spectrum that works well only for quasi-planar geometries. None of this previous 
work produced exact sampling theorems that ensure a prescribed accuracy.    

The new exact plane-wave expansions derived in this project are completely general and apply to 
arbitrary acoustic and electromagnetic fields. They represent new exact wave expansions that are 
not simply optimizations of previous work or numerical tricks that work only in special situations. 
Indeed, there are only a handful of exact plane-wave expansions in existence, and the Gaussian 
translation operator represents one of them.  Hence, in addition to the applications explored here, 
these new expansions may well give rise to unforeseen future uses. 

The publications related to this subject are listed in section 4.4 and can be classified as follows 

• Scalar fields in 2D: [1], [3], [8]
• Scalar fields in 3D: [2]
• Electromagnetic fields in 3D: [4]
• Antenna transmission formula: [4]
• Near-field scanning: [5]  (under review, attached in Section 4.5: Appendix)

4.2 Gaussian-beam Scattering Matrix Theory 
A scattering problem consists of determining the scattered field from some object that is 
illuminated by a primary field. Scattering-matrix theories solve this problem by relating the 
expansion coefficients of the scattered field to the expansion coefficients of the primary field. For 
example, in Kerns’ plane-wave scattering-matrix theory, the plane-wave spectrum of the scattered 
field is expressed in terms of the plane-wave spectrum of the primary field and a scattering matrix 
unique to the scatterer. Similarly, with Waterman’s spherical-wave scattering-matrix theory (often 
referred to as the T-matrix method), the spherical-wave expansion coefficients of the scattered and 
primary fields are related through a matrix equation.  
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Neither the plane-wave scattering matrix nor the T-matrix employ directional basis fields and as a 
consequence to ensure high accuracy one must in general perform “full” calculations even if the 
primary source and the receiver regions are of limited extent. 

A new exact scattering-matrix theory that is as general as the two theories mentioned above was 
derived in this project. It employs directional basis fields (Gaussian beams) that make it possible 
to reduce the computational effort for certain configurations. More importantly, it demonstrated, 
for the first time, that any scattering body can be replaced by a set of receiving and transmitting 
beams whose weights are related through the Gaussian scattering matrix. Hence, this work 
provides an entirely new way of characterizing scattering bodies. This representation also appears 
to be useful for numerical computations and radar simulations. 

The publications related to this subject are listed in section 4.4. Publication [6], under review, is 
attached in Section 4.5: Appendix) 

• Scalar fields in 3D: [6]
• Electromagnetic fields in 3D: [9]

4.3 Array Realizations of Complex-source Beams 
Complex-source beams are exact solutions to the wave equation that were first introduced in the 
frequency domain by Deschamps in 1971. These beams are used in both acoustic and 
electromagnetic wave theories and are often referred to as Gaussian beams in the frequency 
domain and as pulsed-beam wavelets or complex-source pulsed beams in the time domain. 

Due to their usefulness in various forward and inverse wave-propagation problems, several papers 
by other researchers have been devoted to obtaining volume and surface sources that radiate 
complex-source beams. In this project, the inverse source problem for the complex-source beam 
was investigated as an array optimization problem. The excitation coefficients were determined 
from a least-squares solution for array elements that each has a typical pattern of a small radiator 
with sidelobes. By extending a 2D theorem on the spatial bandwidth of complex-source beams, it 
was shown that for any nonzero error tolerance, the physical dimension of the array is smaller than 
the diameter of the branch-cut disk of the complex point source, provided that this branch-cut disk 
is at least a couple of wavelengths across.  

The following publication related to the array realizations of complex-source beams is listed in 
section 5.4.  This publication, under review, is attached in Section 4.5: Appendix. 

• Scalar fields in 3D: [7]
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2 HANSEN: GAUSSIAN TRANSLATION OPERATOR IN A MULTI-LEVEL SCHEME

A multilevel computation scheme for time-harmonic fields in three dimen-3

sions will be formulated with a new Gaussian translation operator that de-4

cays exponentially outside a circular cone centered on the line connecting5

the source and observation groups. This Gaussian translation operator is di-6

rectional and diagonal with its sharpness determined by a beam parameter.7

When the beam parameter is set to zero, the Gaussian translation operator8

reduces to the standard FMM translation operator. The directionality of the9

Gaussian translation operator makes it possible to reduce the number of plane10

waves required to achieve a given accuracy. The sampling rate can be deter-11

mined straightforwardly to achieve any desired accuracy. The use of the com-12

putation scheme will be illustrated through a near-field scanning problem13

where the far-field pattern of a source is determined from near-field measure-14

ments with a known probe. Here, the Gaussian translation operator improves15

the condition number of the matrix equation that determines the far-field16

pattern. The Gaussian translation operator can also be used when the probe17

pattern is known only in one hemisphere, as is common in practice.18
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1. Introduction

Fast computation methods like the fast multipole method (FMM) [Rokhlin, 1990],19

[Coifman et al., 1993], [Song et al., 1997], [Chew et al., 2006], [Ergül et al., 2014] use20

plane-wave expansions [Kerns, 1981], [Hansen et al., 1999] to compute the field in a21

receiver group due to sources in a source group. The spectrum of one such plane-wave22

expansion equals the product of the source far-field pattern and a so-called translation23

operator. The translation operator converts outgoing plane waves from the source24

group to incoming plane waves at the receiver group. Since the basis functions are25

plane waves, each outgoing plane wave gives rise to only one incoming plane wave,26

and the translation operator is said to be diagonal.27

The standard translation operators used widely in the time-harmonic FMM28

[Rokhlin, 1990], [Coifman et al., 1993] emerges from an exact field representation29

and therefore can achieve any desired accuracy. Moreover, sampling rules prescribe30

exactly how to achieve any desired accuracy. In two dimensions the far-field pattern31

of the source needs only be sampled at equidistant angles over the interval from 0 to32

2π. In three dimensions the far-field pattern of the source needs only be sampled on33

the unit sphere.34

However, these standard translation operators are not sufficiently directional to35

make it possible to disregard a large fraction of the plane waves, even for large36

well-separated groups. Most often one must include plane waves propagating in all37

directions, not just plane waves propagating in an angular region centered on the38

direction from the source group to the receiver group.39
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4 HANSEN: GAUSSIAN TRANSLATION OPERATOR IN A MULTI-LEVEL SCHEME

To reduce the required number of plane waves, a number of different direc-40

tional translation operators were derived for two dimensions [Wagner et al., 1994],41

[Burkholder et al., 1996], [Michielssen et al., 1996], [Hu et al., 1999]. The ray-42

propagation FMM papers [Wagner et al., 1994] and [Burkholder et al., 1996], which43

inspired the present work, derive approximate translation operators using a window-44

ing technique and high-frequency asymptotics, respectively. In the steepest-descent45

FMM papers [Michielssen et al., 1996] and [Hu et al., 1999] the translation opera-46

tor is obtained from a contour-integral representation of the Hankel function. The47

algorithm in [Hu et al., 1999] outperforms (see [Hu et al., 1999, p.760]) the previous48

algorithms [Wagner et al., 1994], [Burkholder et al., 1996], [Michielssen et al., 1996].49

The starting point of the derivation in [Hu et al., 1999] is an exact contour-integral50

representation of the Hankel function given by [Hu et al., 1999, eq.(4)]. The contour51

is deformed to a modified steepest-descent path, so that the far-field pattern of the52

source must be evaluated at complex angles of observation. Therefore, one must use53

interpolation/extrapolation techniques to evaluate the far-field pattern of the source54

at the required complex observation directions. Also, different pattern discretizations55

are needed at different portions of the complex integration contour. Hence, the trans-56

lation operator from [Hu et al., 1999] is considerably more complicated to implement57

than the standard 2D translation operator from [Rokhlin, 1990].58

In three dimensions, the 3D steepest-descent FMM [Chew et al., 2006, ch.17] was59

developed to reduce the number of plane waves required for quasi-planar source-60

receiver geometries. With this approach, only plane waves in a narrow range of61
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angles near the horizon are needed, thus improving performance over the standard62

FMM. In other words, in the 3D steepest-descent FMM the translation operator is63

directional in one dimension along the quasi-planar source-receiver geometry. As the64

name implies, it employs a steepest-descent contour-integral representation of the65

Green’s function. Therefore, evanescent plane waves come into play and the far-field66

pattern of the source must be evaluated at complex angles of observation. As a result,67

the steepest-descent FMM employs an integration scheme that is more complicated68

than the one used in the present paper and in the standard FMM.69

The present paper employs a new directional translation operator (called the Gaus-70

sian translation operator) in a multilevel scheme in three dimensions. The Gaussian71

translation operator was derived in [Hansen, 2013c] by combining Gaussian beams72

and plane-wave expansions. It was extended to electromagnetic fields in [Hansen,73

2014b]. Since the Gaussian translation operator emerges from an exact represen-74

tation, any desired accuracy, all the way to machine precision, can be achieved.75

Moreover, the Gaussian translation operator requires only that the far-field pattern76

of the source be sampled over the unit sphere. The paper [Hansen, 2013a] derives the77

corresponding two-dimensional Gaussian translation operator, which is numerically78

examined in [Hansen, 2014a]. In contrast, to the quasi-planar configuration used in79

the 3D steepest-descent FMM [Chew et al., 2006, ch. 17], the plane-wave expansion80

of the present paper is designed to reduce the number of required plane waves for81

source-receiver geometries where the receivers lie inside a circular cone when observed82
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6 HANSEN: GAUSSIAN TRANSLATION OPERATOR IN A MULTI-LEVEL SCHEME

from each point in the source region. Hence, the Gaussian translation operator decays83

exponentially outside a circular cone.84

We shall set up the multilevel scheme for the problem where the near field of an85

electromagnetic source is recorded by a probe on a surrounding surface, similar to the86

problem considered in [Schmidt et al., 2009]. The goal is to determine the far-field87

pattern of the source (antenna under test) from the recorded probe output.88

The paper is organized as follows. In Section 2 we formulate the near-field scan-89

ning problem in terms of a matrix equation. Section 3 describes a multilevel group90

structure for the probe positions on the scanning surface. Section 4 employs the91

Gaussian translation operator to compute the plane-wave expansions in groups at92

the coarsest level. In Section 5 we compute the plane-wave expansions at lower levels93

using anterpolation. The actual probe output is computed in Section 6 using the94

plane-wave receiving characteristic of the probe. Multiplication by the Hermitian95

conjugate matrix (needed to obtain the least-squares solution) is discussed in Section96

7.97

The special case of the Hertzian dipole probe scanning a sphere is considered in98

Section 8. In Section 9 we present numerical examples to illustrate the benefits99

achievable with the Gaussian translation operator in near-field scanning problems.100

Finally, Section 10 contains conclusions.101

The standard rectangular coordinates are denoted by (x, y, z) with unit vectors102

x̂, ŷ, and ẑ, so that a general point can be expressed as r = xx̂ + yŷ + zẑ. The103

spherical coordinate (r, θ, φ) are related to the rectangular coordinates through x =104
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r sin θ cos φ, y = r sin θ sinφ, and z = r cos θ with the radial unit vector given by105

r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ. The two other spherical unit vectors are106

θ̂ = x̂ cos θ cos φ + ŷ cos θ sinφ − ẑ sin θ and φ̂ = −x̂ sinφ + ŷ cos φ. Throughout,107

e−i ωt time dependence with ω > 0 is assumed and suppressed. The wave number is108

k = 2π/λ = ω/c, with c being the wave speed and λ the wavelength.109

2. Matrix formulation of general near-field scanning problem

Figure 1 shows the scanning geometry for the antenna under test (AUT) with its110

reference point at that origin. The output of a probe is recorded on a surface S that111

contains the AUT. All points on S are assumed a couple of wavelengths from the112

AUT so that multiple interactions can be neglected.113

The far-field pattern F(r̂) of the electric field E(r) of the AUT is given by [Hansen

et al., 1999, eq.(3.13)]

F(r̂) = lim
r→∞E(rr̂) r e−ikr (1)

so that the electric far field is

E(r) ∼ F(r̂) eikr

r
, r → ∞. (2)

We emphasize that the far-field pattern F(r̂) corresponds to a certain fixed orienta-114

tion of the AUT when its reference point is at the origin.115

The probe output due to the field of the AUT is recorded on S when the probe116

reference point is at rp with p = 1, 2, ..., P . The probe orientation is determined by117

the subscript q, which can be either 1 or 2. The corresponding probe output is Vpq.118

For example, if S is a sphere and the probe is a tangential electric dipole, we would119
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8 HANSEN: GAUSSIAN TRANSLATION OPERATOR IN A MULTI-LEVEL SCHEME

let q = 1 and q = 2 indicate that the dipole is parallel to the θ and φ unit vectors,120

respectively. If the probe has two output ports, there is only one physical probe121

orientation at each rp, and the subscript q is simply the port number.122

The unknown values of the AUT pattern are arranged in a vector F. In other

words, F contains the unknown pattern values for both polarizations over the unit

sphere of directions. Let the recorded probe output collected over the scan surface S

be arranged in the vector V. Since multiple interactions can be neglected, we have a

matrix formula for the probe output in terms of the AUT far-field pattern:

M̄F = V (3)

where M̄ is the system matrix. The least-squares solution to (3) satisfies the normal

equation

M̄H M̄F = M̄H V (4)

where M̄H is the Hermetian conjugate of M̄.123

To solve (4) for F with an iterative scheme requires the computation of numer-124

ous matrix-vector products involving both M̄ and M̄H. In this paper we speed up125

the computation of these matrix-vector products using the multilevel fast multipole126

method with the Gaussian translation operator.127

3. Multilevel group structure

The probe reference points rp on the surface S will now be arranged in a multilevel128

group structure with H levels. The group diameter and the number of groups at level129

h is denoted by Dh and Gh, respectively. The center points for the groups at level130
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h are rg,h with g = 1, 2, 3, ..., Gh. We refer to the level with the largest and smallest131

group diameters as the coarsest and finest levels, respectively.132

As shown in Figure 2, the coarsest-level groups have the same dimension as the133

AUT. The dimension of the AUT is the diameter 2RAUT of the minimum sphere134

centered at the origin that contains the AUT. The coarsest-level groups on S are135

thus also chosen to have diameter DH = 2RAUT .136

It is critically important that the following rule be obeyed when groups are created.137

For all points rp in a group, the sphere that bounds the group must contain the138

physical probe when its reference point is located at rp. For example, if a point rp139

is inside but extremely close the to boundary of one such sphere, this point cannot140

be part of the group since the physical probe would not be contained in the sphere141

when its reference point is at rp.142

The groups at level h = H − 1 are obtained by dividing each of the groups at143

level h = H into eight. Hence, the diameter of the groups at level h = H − 1 is144

DH−1 = 1
2
DH . This process of halving the group diameters is continued until we145

reach the finest level h = 1, where the diameter is D1. Naturally, we must choose D1146

greater than the diameter of the probe.147

4. Plane-wave expansions for the coarsest-level groups

The electric field in group g at the coarsest level h = H can be computed from the

AUT far-field pattern using the plane-wave expansion [Hansen, 2014b, eq.(52)]

E(r) =
ik

4π

∫
dΩk F(k̂) TN(k̂, rg,H, Δ) eikk̂·(r−rg,H) (5)
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10 HANSEN: GAUSSIAN TRANSLATION OPERATOR IN A MULTI-LEVEL SCHEME

where the region of integration is the unit sphere

∫
dΩk F (k̂) ≡

2π∫
0

dφ

π∫
0

dθ sin θ F (x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ) (6)

and [Hansen, 2014b, eq.(49)]

TN (k̂, rg,H, Δ) = ekΔ(k̂·r̂g,H−1)
N∑

n=0

in(2n + 1) h̃(1)
n (k{|rg,H| + iΔ})Pn(k̂ · r̂g,H) (7)

is the Gaussian translation operator with beam parameter Δ. Moreover, Pn(Z) is

the Legendre polynomial of order n, and

h̃(1)
n (Z) = h(1)

n (Z) eIm(Z) (8)

is the normalized spherical Hankel function of the first kind and order n, with h(1)
n (Z)148

being the standard spherical Hankel function of the first kind and order n. When149

Δ = 0, the Gaussian translation operator (7) equals the standard 3D translation150

operator [Coifman et al., 1993].151

We next show how to determine the truncation number N so that the maximum

relative error of the plane-wave expansion (5) is less than a selected value E. Details

can be found in [Hansen, 2014b, sec.VI]. First introduce Ns and Es through

N = Ns + 2, E =
Es

4
. (9)

Then define152

Un(rg,H, Δ,Re) = ik(−1)n(2n + 1)h(1)
n (k{|rg,H| + iΔ})

·jn

(
k
√

(Re −iΔr̂g,H)2

)
Pn

⎛
⎝ r̂g,H · (Re −iΔr̂g,H)√

(Re −iΔr̂g,H)2

⎞
⎠ (10)
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where Re is a vector with length DH that results in the slowest decay rate of

Un(rg,H, Δ,Re). Note that

(Re −iΔr̂g,H)2 = (Re −iΔr̂g,H) · (Re −iΔr̂g,H) (11)

is a complex number. Finally, for a desired relative accuracy Es, we determine the

smallest Ns so that
∣∣∣∣∣∣

∞∑
n=Ns+1

Un(rg,H, Δ,Re)

∣∣∣∣∣∣ <
Es

|Re + rg,H | . (12)

When Δ = 0 the following closed-form expression holds [Chew et al., 2006, p. 88]

Ns = k|DH | + ζ|kDH |1/3, ζ =
(−3 lnEs)

2/3

2
(13)

where ln is the natural logarithm and |rg,H| > Ns/k must be satisfied. Notice that153

when Δ = 0, Ns depends only on |Re| = DH . When Δ > 0, Ns depends also on the154

direction of Re.155

We write (5) as

E(r) =
1

4π

∫
dΩk Sg,H(k̂) eikk̂·(r−rg,H) (14)

where

Sg,H(k̂) = ik F(k̂) TN(k̂, rg,H, Δ) (15)

is the plane-wave spectrum, which will be used in the next section to compute the156

plane-wave spectra at lower-level groups.157

5. Plane-wave expansions in lower-level groups

We shall now use the plane-wave spectrum (15) along with anterpolation to com-

pute the plane-wave spectrum that determines the field in a group g′ at level
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12 HANSEN: GAUSSIAN TRANSLATION OPERATOR IN A MULTI-LEVEL SCHEME

h = H − 1, which is assumed to be a child of the group g at level h = H where

(14) holds. The formula (14) implies that the field in group g′ at level h = H − 1 is

E(r) =
1

4π

∫
dΩk Sg′,H−1(k̂) eikk̂·(r−rg′,H−1) (16)

with

Sg′,H−1(k̂) = Sg,H(k̂) eikk̂·(rg′,H−1−rg,H). (17)

Since the diameter of the groups at level h = H − 1 is half of the diameter of the158

groups at level h = H, we anterpolate the spectrum using a Lagrangian approach159

with fourth-order polynomials [Ergül et al., 2014, sec. 3.3]. This procedure can be160

repeated for lower-level groups until Sg,1(k̂) is known for all groups.161

6. Probe output in the finest-level groups

The electric field in group g at the finest level h = 1 is thus given by the plane-wave

expansion

E(r) =
1

4π

∫
dΩk Sg,1(k̂) eikk̂·(r−rg,1). (18)

To compute the probe output, we introduce the plane-wave receiving characteristic162

of the probe at location p and orientation q as Rpq(k̂), so that the probe output is163

V = E0·Rpq(k̂) when the incident electric field is the plane wave E(r) = E0 eikk̂·(r−rp).164

Combining the plane-wave expansion (18) with the definition of the plane-wave re-

ceiving characteristic gives us the the following transmission formula that determines

the probe output Vpq in terms of the spectrum Sg,1(k̂) as

Vpq =
1

4π

∫
dΩk Sg,1(k̂) · Rpq(k̂) eikk̂·(rp−rg,1) (19)
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when probe location p is in group g at level h = 1. The integral (19) is computed165

numerically in spherical coordinates using the trapezoidal rule in φ and a Gauss-166

Legendre rule in cos θ.167

The full computation of the matrix-vector product M̄F can be summarized as168

follows.169

• The proper sampling rate for the AUT far-field pattern is determined by the170

truncation number NAUT = kRAUT + ζ(kRAUT )1/3. Hence, we start with the AUT171

far-field pattern sampled at roughly 2(NAUT + 1)2 points given by the vector F.172

• The AUT far-field pattern is then interpolated to obtain its values at 2(N + 1)2
173

points, where N is given by (9). Also, the rectangular components of the AUT far-174

field pattern are computed at each of these 2(N +1)2 points from the corresponding θ175

and φ components. To ensure the desired accuracy of the entire computation scheme,176

it is critically important that the up-sampled AUT far-field pattern is computed177

accurately.178

• With these up-sampled rectangular components of the AUT far-field pattern, we179

use (15) to compute the rectangular components of the incoming plane-wave spectrum180

in each of the groups at the coarsest level h = H.181

• For h = H − 1, H − 2, ..., 1 the incoming plane-wave spectra are computed using182

phase-shifting and a fourth-order Lagrange anterpolation [Ergül et al., 2014, sec. 3.3].183

Hence, Sg,1(k̂) are known at each of the finest-level groups.184

• Finally, the probe outputs Vpq are computed using (19) at each of the desired185

points on the scan surface.186
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7. Multiplication by the Hermitian conjugate

To solve the normal equation (4) iteratively, we also need to perform vector-matrix187

multiplications with the Hermitian conjugate matrix M̄H . This multiplication pro-188

cess starts with the probe outputs and works up the tree using shifting and interpo-189

lation. We employ a Lagrangian approach with fourth-order polynomials [Ergül et190

al., 2014, sec. 3.3]. Once we reach the level h = H, we use the complex conjugate of191

the directional translation operator (7) to complete the process.192

8. Hertzian dipole probe scanning a sphere

In this section we consider the special case where the surface S is a sphere of

radius Rs and the probe is an electric Hertzian dipole. The probe locations rp can

be expressed in terms of the spherical coordinates (θp, φp) as

rp = x̂ a sin θp cos φp + ŷ a sin θp sinφp + ẑ a cos θp. (20)

We let q = 1 correspond to the dipole being parallel to

θ̂p = x̂ cos θp cos φp + ŷ cos θp sinφp − ẑ sin θp (21)

and q = 2 correspond to the dipole being parallel to

φ̂p = −x̂ sin φp + ŷ cos φp. (22)

Since the output of a Hertzian dipole is proportional to the electric field in the

direction of the dipole, we find from (18) that

Vpq =
�

4π
ûpq ·

∫
dΩk Sg,1(k̂) eikk̂·(rp−rg,1) (23)
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where ûp1 = θ̂p, ûp2 = φ̂p, and � is a length proportional to the dipole moment. The193

expression (23) could also have been derived by inserting the formula [Hansen et al.,194

1999, eq.(6.64)] for the receiving characteristic of the Hertzian dipole into (19).195

With the sphere as scanning surface, it is natural to spread the probe positions rp196

evenly as follows. First select a set of θ values spaced Δθφ apart starting at θ = 0197

and ending at θ = π. For each of these values of θ, a set of φ values is selected in198

the range 0 ≤ φ < 2π so that they are spaced roughly Δθφ apart. At the poles, only199

one φ value (φ = 0) is needed. This procedure results in fewer probe positions than200

would be obtained with a rectangular θ − φ grid.201

9. Numerical example

Next we present numerical examples using the Hertzian dipole probe and spherical202

scanning surface described in Section 8. The desired relative accuracy is set to E =203

10−3 corresponding to 60dB, which is the dynamic range of a typical high quality204

anechoic chamber.205

We first assume that the minimum sphere containing the AUT has radius RAUT =206

5λ and investigate the savings obtained with the Gaussian translation operator for207

typical values of the scan-sphere radius: 5RAUT ≤ Rs ≤ 10RAUT . In this configu-208

ration we have 8100 unknown AUT far-field pattern values and 11654 probe output209

measurements. We only include plane waves that lie inside the cone where the magni-210

tude of the translation operator is greater than 10−4 times its maximum magnitude.211

All other plane waves are neglected.212
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Figure 3 shows the parameter Δ of the Gaussian translation operator as a function213

of Rs obtained by the following procedure [Hansen, 2013c]: First one chooses a214

value for N that is typically 10% larger than the value used for Δ = 0. Then one215

determines the largest Δ for the selected value of N that results in an error less than216

E. Figure 4 shows the corresponding reduction of computational effort achieved with217

the Gaussian translation operator in the translation and interpolation processes. (Let218

Ng
pw and N s

pw denote the number of plane waves used by the Gaussian and standard219

translation operators during translation, respectively. Then the dotted line in Figure220

4 is simply 1 − Ng
pw/N s

pw .) As expected, the greater the scan radius the greater the221

savings achieved with the Gaussian translation operator.222

Figure 5 shows the magnitude of the standard and Gaussian translation operators223

for the smallest of the scan spheres under consideration: Rs = 25λ. This figure224

shows the exponential decay of the Gaussian translation operator outside the plateau225

region; see [Hansen, 2014b] for a discussion. For this scan sphere four group levels226

came into play, and N = 78 and N = 86 for the standard (Δ = 0) and Gaussian227

(Δ = 2.4λ) translation operator, respectively (see Figure 3). Due to its directionality,228

the Gaussian translation operator reduces the number of plane waves required in the229

translation by almost 75% (see Figure 4), even though it requires a higher sampling230

rate.231

As a final numerical experiment we considered the smaller problem with RAUT = 3λ232

and Rs = 15λ. Here the number of far-field pattern values is 3600 and the number of233

probe outputs is 5306, so the matrix M̄ can be computed explicitly in a reasonable234
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time period. Based on this computation, we fund that the condition number of the235

normal matrix M̄H M̄ was 6.4·1011 for the standard translation operator and 3.2·1010
236

for the Gaussian translation operator with Δ = 1.8λ. Hence, the directionality of237

the Gaussian translation operator helps improve the condition number of the normal238

equation (4) for spherical scanning. [Schmidt et al., 2009] discusses the poor condi-239

tioning of the normal matrix for scanning problems. Also, we found that if global240

interpolation/anterpolation schemes are used instead of the local ones, the condition241

number is on the order of 1017. Therefore, global interpolation/anterpolation schemes242

do not work well in the near-field scanning problem.243

Using a Hertzian dipole placed at the boundary of the minimum AUT sphere244

r = RAUT , we verified that the parameters used in this section indeed all lead to a245

relative accuracy better than E = 10−3 for the computed probe output.246

10. Conclusions

The new directional Gaussian translation operator was used in a multilevel compu-247

tation scheme for computing the far-field pattern of an AUT from near-field measure-248

ments. The theory was developed for arbitrary probes and arbitrary scan surfaces.249

We demonstrated that the reduction in computational effort achievable by the250

Gaussian translation operator in typical spherical near-field scanning geometries is251

in the range from 75% to 90% depending on the probe-AUT separation. In addition,252

it was shown that due to its directionality, the Gaussian translation operator could253

improve the condition number of the normal equation that determines the AUT far-254
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18 HANSEN: GAUSSIAN TRANSLATION OPERATOR IN A MULTI-LEVEL SCHEME

field pattern from the probe output. This improvement will also help speed up the255

convergence rate of iterative solvers.256

Acknowledgments. The Air Force Office of Scientific Research supported this257

work. Eric Michielssen is acknowledged for helpful discussions on the Gaussian trans-258

lation operator.259

References

Burkholder, R.J. and D.H. Kwon, (1996), High-frequency asymptotic acceleration of260

the fast multipole method, Radio Science, 31 (5), 1199–1206.261

Chew, W.C., J.M. Jin, E. Michielssen, and J. Song, eds, (2006), Fast and Efficient262

Algorithms in Computational Electromagnetics, Artech House, Reprinted January263

2006 by CCEML, UIUC.264

Coifman, R., V. Rokhlin, and S. Wandzura, (1993), The fast multipole method for265

the wave equation: A pedestrian prescription, IEEE Antennas and Propagation266

Magazine, 35, 7-12.267
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Figure 1. The scanning geometry for the antenna under test (AUT) with reference point

at the origin. The output of a probe is recorded on a surface S that contains the AUT. All

points of S are assumed a couple of wavelength from the AUT so that multiple interactions

can be neglected.
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Minimum sphere 
containing AUT

Coarsest-level group on S equal
in size to the minimum sphere

Scan surface S
surrounding AUT

Figure 2. The coarsest-level groups have the same diameter as the AUT. The diameter of

the AUT is twice the radius RAUT of the minimum sphere centered at the origin that contains

the AUT. The coarsest-level groups on S are thus chosen to have diameter DH = 2RAUT .
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Figure 3. The parameter Δ of the Gaussian translation operator as a function of scan-

sphere radius Rs with RAUT = 5λ.
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Figure 4. Reduction of computational effort achieved with the Gaussian translation

operator during the translation and interpolation processes as functions of scan-sphere radius

Rs with RAUT = 5λ.
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Figure 5. The magnitude of the standard (Δ = 0) and Gaussian (Δ = 2.4λ) translation

operators for Rs = 25λ and RAUT = 5λ. The truncation numbers for the standard and

Gaussian translation operators are N = 78 and N = 86, respectively.
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Abstract

An exact Gaussian scattering-matrix theory for scalar time-harmonic fields is derived. The scattered

field is expressed in terms of Gaussian beams whose weighs are determined by the Gaussian scat-

tering matrix and the output of Gaussian receivers. The Gaussian beams used here are sometimes

referred to as complex source-point beams. The scattering-matrix theory has the same structure as

Kerns’ plane-wave scattering matrix theory, but with directional basis fields. The Gaussian scat-

tering matrix is determined from Waterman’s T-matrix. A numerical example involving a Dirichlet

sphere validates the theory.

I Introduction

A scattering problem consists of determining the scattered field from some object that is illuminated

by a primary field. One popular solution method is scattering-matrix theory, which provides a way

of determining the expansion coefficients of the scattered field from the expansion coefficients of

the primary field. For example, in Kerns’ [1] plane-wave scattering-matrix theory, the plane-

wave spectrum of the scattered field is expressed in terms of the plane-wave spectrum of the
∗thorkild.hansen@att.net.

65

4.5.2



primary field and a scattering matrix unique to the scatterer. Similarly, with Waterman’s [2],

[3], [4] spherical-wave scattering-matrix theory (often referred to as the T-matrix method), the

spherical-wave expansion coefficients of the scattered and primary fields are related through a

matrix equation.

Scattering-matrix theory has seen an increased popularity in the areas of electromagnetic, acous-

tic, and elastic scattering [5], [6]. In particular, in recent years the T-matrix method has been used

in connection with plasmonic nanoparticles [7] [8], effective-medium theory [9], imaging [10], inverse

scattering [11], coated scatterers [12], and boundary integral problems [13]. Neither the plane-wave

scattering matrix nor the T-matrix employ directional basis fields and as a consequence one must

in general perform “full” calculations even if the primary source and the observation regions are of

limited extent.

The present paper describes an exact scattering-matrix theory that is as general as the two

theories mentioned above. Moreover, it employs directional basis fields (Gaussian beams) that make

it possible to reduce the computational effort for certain configurations. Deschamps [14] discovered

the Gaussian beams that we use as basis fields. These beams are obtained by substituting a complex

source point into the free-space Green’s function in the frequency domain. The wave object thus

obtained is also called a complex source-point beam and is an exact solution to the Helmholtz

equation, which exhibits Gaussian behavior in the paraxial region [14], [15], [16], [17], [18], [19],

[20].

Gaussian beams are suitable as basis fields in exact expansions of arbitrary acoustic and elec-

tromagnetic fields with finite source regions in both the time and frequency domains [21], [22],

[23], [24], [25], [26], [27], [28], [29]. More recently, Gaussian beams have been used to develop a

directional translation operator for the Fast Multipole Method as well as a new exact plane-wave

theory with a directional spectrum [30], [31], [32], [33].

The present paper is organized as follows. The scattering problem under consideration is de-

scribed in Section II, and the Gaussian beams are introduced in Section III. Sections IV and V

explain how Gaussian beams can be used to expand scattered and primary fields. Section VI derives

the Gaussian scattering-matrix formula for arbitrary scatterers, which is subsequently applied in

Section VII to the Dirichlet sphere. Section VIII validates the theory through a numerical example,
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Primary
source

Observation
region

Scatterer

y

x

z

Figure 1: The scattering configuration. The field Ψp(r) of the primary source encounters the scat-

terer. The scattered field Ψs(r) is observed in the observation region. The global (x, y, z) coordinate

system has origin near the scatterer.

and Section IX discusses future research topics.

II The scattering problem

Figure 1 shows the scattering problem under consideration, which involves scalar fields that satisfy

the homogeneous Helmholtz equation in the source-free regions of 3D space. The primary source

generates the field Ψp(r) that interacts with the scatterer to produce the scattered field Ψs(r). The

scattered field is observed in the observation region. A minimum sphere of radius Rs centered at

the origin encloses the scatterer. Both the primary source region and the observation region are

assumed to be outside this sphere.

The standard rectangular coordinates are denoted by (x, y, z) with unit vectors x̂, ŷ, and ẑ, so

that a general point in space can be expressed as r = xx̂ + yŷ + zẑ. The spherical coordinates

(r, θ, φ) are related to the rectangular coordinates through x = r sin θ cosφ, y = r sin θ sin φ, and

z = r cos θ with the radial spherical unit vector given by r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ.

Throughout, e−i ωt time dependence with ω > 0 is assumed and suppressed. The wave number is
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a

Figure 2: The sources of the Gaussian beam in (1) reside on a disk with radius a, centered at the

origin with normal r̂′.

k = 2π/λ = ω/c, with c being the wave speed and λ the wave length.

III The Gaussian beam

The Gaussian beam of the present paper (also referred to as a complex source-point beam) was

first obtained by Deschamps [14] by inserting a complex source point r′ = iar̂′ with a > 0 into the

free-space Green’s function to get

ΨGB(r) =
eik

√
(r−iar̂′)2

4π
√

(r− iar̂′)2
(1)

where the distance
√

(r − iar̂′)2 is complex with the square root defined to have a non-negative real

part and its branch cut placed along the negative real axis [16], [27]. For fixed r̂′ and varying r the

branch cut manifests itself in real 3D space by a branch-cut disk of radius a, centered at the origin

with normal r̂′; see Figure 2. Hence, the field ΨGB satisfies the homogeneous Helmholtz equation

everywhere except on the branch-cut disk where the sources reside.

The far-field formula

ΨGB(r) ∼ eikr

4πr
ekar̂·r̂′ (2)

shows that for k > 0 and a > 0 the Gaussian beam radiates most strongly in the direction r̂′ and

most weakly in the direction −r̂′. The name “Gaussian beam” refers to the fact that ΨGB exhibits
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Gaussian behavior near the direction r̂′: let cosΘ = r̂ · r̂′ in (2) to get

ΨGB(r) ∼ eikr

4πr
eka(1−Θ2/2) (3)

when Θ is small.

We say that the Gaussian beam (1) is generated by a Gaussian transmitter whose sources

reside on the disk in Figure 2. We shall also introduce the corresponding Gaussian receiver whose

output equals the incident field evaluated at iar̂′. Consider an incident plane wave Ψ(r) = e−ikr̂i·r

propagating in the direction −r̂i. The output due to this incident field determines the plane-wave

receiving characteristic of the Gaussian receiver: Ψ(iar̂′) = ekar̂i·r̂′ . Hence, the Gaussian receiver

has indeed the pattern of a Gaussian beam.

We shall use both Gaussian transmitters and receivers in the following sections to obtain the

Gaussian scattering-matrix theory. Next we present an exact Gaussian-beam expansion for the

scattered field.

IV The scattered field

Outside the minimum sphere for the scatterer in Figure 1, the scattered field can be expanded in

terms of outgoing spherical waves as

Ψs(r) =
L∑

�=0

�∑
m=−�

A�m h
(1)
� (kr)Y�m(θ, φ), r > Rs (4)

where the truncation is

L = kRs + γ(kRs)1/3, γ =
(−3 lnE)2/3

2
(5)

with E being the desired relative accuracy. For example, γ � 6 if E = 10−6. Moreover, h
(1)
� is the

spherical Hankel function of the first kind and order �, and Y�m is the spherical harmonic which

satisfies the orthogonality relation

∫
dΩ′ Y�′m′(θ′, φ′)Y ∗

�m(θ′, φ′) = δ��′ δmm′ (6)
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where δpq is the Kronecker delta,

∫
dΩ′ =

2π∫
0

dφ′
π∫

0

dθ′ sin θ′ (7)

denotes the integral over the unit sphere, and ∗ denotes complex conjugation.

The spherical expansion coefficients can be expressed in terms of the field on a real sphere with

radius R > Rs

A�m =
1

h
(1)
� (kR)

∫
dΩ Ψs(Rr̂) Y ∗

�m(θ, φ) (8)

and in terms of the far-field pattern

Fs(θ, φ) = lim
r→∞ r e−ikrΨs(rr̂) (9)

as

A�m = k in+1
∫

dΩFs(θ, φ) Y ∗
�m(θ, φ). (10)

The scattered field also can be expressed in terms of Gaussian beams propagating in all direc-

tions away from the source region [23], [25]

Ψs(r) =
∫

dΩ′Ws(r̂′)
eik

√
(r−iasr̂′)2

4π
√

(r− iasr̂′)2
, r > Rs, r > as > 0 (11)

where

Ws(r̂′) =
L∑

�=0

�∑
m=−�

A�m Y�m(θ′, φ′)
ik j�(ikas)

(12)

is a weighting function. The original sources of Ψs are thus replaced by sources that reside on a

collection of disks centered at the origin with normals pointing in all directions. The weighting

function Ws determines the “strength” of each of these transmitting disks.
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V The primary field

Inside the minimum sphere, the field of the primary source can be expanded in terms of standing

spherical waves as

Ψp(r) =
L∑

�=0

�∑
m=−�

B�m j�(kr)Y�m(θ, φ), r < Rs (13)

where j� is the spherical Bessel function of order �, and B�m are the spherical expansion coefficients

of the primary source. The expansion coefficients B�m can be expressed in terms of the primary

field evaluated at imaginary points iapr̂ as [25]

B�m =
1

j�(ikap)

∫
dΩ Ψp(iapr̂) Y ∗

�m(θ, φ), 0 < ap < Rs. (14)

Since j�(ikap) is non-zero for any kap > 0, the formula (14) does not degenerate at internal reso-

nances like the standard formula for standing-wave expansion coefficients.

As discussed in Section III, Ψp(iapr̂) is the output of a receiving disk. We can combine (13)

and (14) to get the field at an interior observation point r directly in terms of the output Ψp(iapr̂′)

of the receiving disks:

Ψp(r) =
∫

dΩ′U(r, r̂′)Ψp(iapr̂′), r < Rs (15)

where

U(r, r̂′) =
L∑

�=0

�∑
m=−�

j�(kr)
j�(ikap)

Y ∗
�m(θ′, φ′)Y�m(θ, φ) (16)

is a weighting function.

A The point-source field

In a numerical example in Section VIII we shall use a point source as the primary source. If

the point source is located at the point r0 with spherical coordinates (r0, θ0, φ0), the expansion

coefficients are

B�m = ik h
(1)
� (kr0) Y ∗

�m(θ0, φ0) (17)
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and the primary field is

Ψp(r) ≡ eik|r−r0|

4π|r− r0| = ik
L∑

�=0

�∑
m=−�

h
(1)
� (kr0) Y ∗

�m(θ0, φ0) j�(kr)Y�m(θ, φ), r < Rs < r0. (18)

VI The Gaussian scattering matrix

Waterman’s T-matrix, denoted in the present paper by Tmm′��′ , determines the coefficients A�m of

the scattered field in terms of the coefficients B�m of the primary field as [2], [3]

A�m =
L∑

�′=0

�′∑
m′=−�′

Tmm′��′ B�′m′ . (19)

Thus, Tmm′��′ is a spherical-wave scattering matrix that employs standing and outgoing waves.

Inserting (14) and (19) into (12) gives a formula for the weighting function for the scattered field

Ws(r̂′) =
L∑

�=0

�∑
m=−�

Y�m(θ′, φ′)
ik j�(ikas)

L∑
�′=0

�′∑
m′=−�′

Tmm′��′

j�′(ikap)

∫
dΩ′′ Ψp(iapr̂′′) Y ∗

�′m′(θ′′, φ′′) (20)

which can be inserted into (11) to get

Ψs(r) =
∫

dΩ′ eik
√

(r−iasr̂′)2

4π
√

(r − iasr̂′)2

∫
dΩ′′Ψp(iapr̂′′) Q(r̂′, r̂′′) (21)

where

Q(r̂′, r̂′′) =
1
ik

L∑
�=0

�∑
m=−�

Y�m(θ′, φ′)
j�(ikas)

L∑
�′=0

�′∑
m′=−�′

Y ∗
�′m′(θ′′, φ′′)
j�′(ikap)

Tmm′��′ (22)

is the desired Gaussian scattering matrix.

The formula (21) expresses the scattered field directly in terms of the output of Gaussian

receivers pointing in all directions (that is, in terms of the incident field evaluated at imaginary

points of the form iapr̂′′, where r̂′′ covers the unit sphere). The directivity of these receivers

ensure that one can neglect directions r̂′′ that do not point towards the primary source region.

Similarly, the directivity of the transmitting Gaussian beams in the r̂′ integral ensure that one

can neglect directions r̂′ that do not point towards the observation region. These properties will

be demonstrated in a numerical example in Section VIII. Also, note that the Gaussian scattering
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matrix contains two free parameters (the disk radii ap and as) that can be used to optimize the

efficiency of the scattering calculation.

Let us briefly discuss how Ψp(iapr̂′′) can be obtained through simulations or measurements. If

the software used to perform simulations defines the square root to have non-negative real part and

its branch cut along the negative real axis (Matlab’s square root is defined this way), one simply

sets the observation point equal to the imaginary point iapr̂′′. No further work is needed. If the

software defines the square root differently, one must write a new square-root function defined as

described above.

If the primary field is measured on a sphere centered on the primary source, outgoing spherical

expansion coefficients are known. One can then compute Ψp(iapr̂′′) directly from the formula (11)

applied to the primary source. Also, if the primary source is far from the scatterer, the incident

field in the region of the scatterer is a single plane wave for which Ψp(iapr̂′′) is given at the end of

Section III.

Consider next a simple physical disk scatterer on which certain boundary conditions hold. This

scatterer cannot be modeled by a Gaussian receiver and transmitter that reside in the same plane

as the physical disk. Such a model would violate the law of reflection since the scattered field

would always attain its maximum value in the direction normal to the physical disk, regardless of

the direction of the primary source. Indeed, the scattering matrix (22) couples a receiving disk

with normal r̂′′ to a transmitting disk with normal r̂′, where r̂′′ is not necessarily equal to r̂′.

The Gaussian scattering-matrix theory can be generalized to antennas with input and output

ports, as has been done for the scattering-matrix theories that employ plane waves [1], cylindrical

waves [34], and spherical waves [35]. This generalization could be achieved by combining the

Gaussian antenna-antenna transmission formulas in [25] and [29] with the Gaussian scattering

matrix.

Let us briefly compare the Gaussian scattering-matrix formulation to the plane-wave scattering-

matrix formulation (one-sided) in which the scattered field is written as [1, pp.57-61]

Ψs(r) =
∫

dK′ eik′·r
∫

dK′′ Tp(K′′) S(K′, K′′) (23)
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where S(K′, K′′) is the plane-wave scattering matrix, and Tp(K′′) is the plane-wave spectrum of

the primary field. Moreover, K′ is the transverse part of the plane-wave propagation vector k′ for

the scattered field. Similarly, K′′ is the transverse part of the plane-wave propagation vector k′′ for

the primary field. The plane-wave spectrum of the primary field Tp(K′′) can be thought of as the

output of a plane-wave receiver that picks out a single plane-wave component of the primary field.

It is challenging to use the plane-wave expansion (23) in numerical computations that require a

preselected accuracy. First, the integrand of the K′ has an integrable singularity at |K′| = k that in

many situations necessitates a change of variables [36, ch.3]. Second, in general the integrands do

not decay until the evanescent regions |K′| > k and |K′′| > k are reached. In some situations one

must integrate all the way into the evanescent regions to avoid strong end-point contributions [33].

Nevertheless, there are some favorable situations where the integrals in (23) can be truncated to

include only small regions in the propagating domains without introducing significant errors [37].

The beam expansion (21) has the same form as the plane-wave expansion (23), with the Gaussian

transmitter field exp(ik
√

(r− iasr̂′)2 )/(4π
√

(r− iasr̂′)2 ) replacing the plane wave eik′·r, and the

Gaussian receiver output Ψp(iapr̂′′) replacing the plane-wave spectrum Tp(K′′). However, neither

eik′·r nor Tp(K′′) are directional, and the integrals in (23) are numerically challenging as discussed

above. The T-matrix is also not directional because all spherical expansion coefficients are needed

to compute the field in any direction. However, the T-matrix method is numerically much more

well behaved than then plane-wave approach (23).

VII The Dirichlet sphere

Consider a sphere centered at the origin with radius Rs on which the Dirichlet boundary condition

holds: Ψp(Rsr̂) + Ψs(Rsr̂) = 0. We find readily that the T-matrix elements are zero unless � = �′

and m = m′ with

Tm� = − j�(kRs)

h
(1)
� (kRs)

(24)

so that the Gaussian scattering matrix is

Q(r̂′, r̂′′) = − 1
4πik

L∑
�=0

(2� + 1) j�(kRs) P�(r̂′ · r̂′′)
h

(1)
� (kRs) j�(ikas) j�(ikap)

(25)
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Figure 3: Dirichlet sphere with radius Rs = 5λ illuminated by a real point source on the z axis at

z = 15λ. The observation point is on the y axis at y = −15λ. Both transmitting and receiving

disks have radius as = ap = 14λ.

where we have used [38, eq.(14.30.9)]

2� + 1
4π

P�(r̂′ · r̂′′) =
�∑

m=−�

Y�m(θ′, φ′) Y ∗
�m(θ′′, φ′′) (26)

with P� being the Legendre polynomial of order �. As expected, the Gaussian scattering matrix for

this sphere depends only on r̂′ and r̂′′ through the dot product r̂′ · r̂′′. Hence, like the T-matrix,

the Gaussian scattering matrix simplifies significantly when the scatterer is a sphere.

For use in the numerical verification of the theory, we note that the scattered field due to a

point source at r0 is given by the Mie series

Ψs(r) = − ik
L∑

�=0

�∑
m=−�

j�(kRs) h
(1)
� (kr0)

h
(1)
� (kRs)

Y ∗
�m(θ0, φ0) h

(1)
� (kr) Y�m(θ, φ), r > Rs. (27)

It is easy to verify that the primary point-source field in (18) and the Mie scattered field in (27)

indeed produce a zero total field on the sphere r = Rs.
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Figure 4: Normalized magnitude in dB of the function I3(r, r̂′′) for the scattering configuration in

Figure 3. The receiving disks with normals pointing towards the point source at θ′′ = 0 contribute

most strongly to the integral over r̂′′.

VIII Numerical example

To validate the Gaussian scattering-matrix theory, consider the Dirichlet sphere illuminated by a

real point source on the z axis as shown in Figure 3. The sphere radius is Rs = 5λ and the point

source is at z = 15λ. The observation point is on the negative y axis at y = −15λ. The radii of

the transmitting and receiving disks are as = ap = 14λ.
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Figure 5: Normalized magnitude in dB of the function I1(r, r̂′) for the scattering configuration in

Figure 3. The transmitting disks with normals pointing towards the observation point at (θ, φ) =

(90◦, 180◦) contribute most strongly to the integral over r̂′.
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To investigate the possibility of omitting portions of the r̂′ and r̂′′ integrations, we write the

Gaussian-beam representation (21) as

Ψs(r) =
∫

dΩ′I1(r, r̂′) (28)

where

I1(r, r̂′) =
eik

√
(r−iasr̂′)2

4π
√

(r − iasr̂′)2

∫
dΩ′′I2(r, r̂′, r̂′′) (29)

with

I2(r, r̂′, r̂′′) = Ψp(iapr̂′′) Q(r̂′, r̂′′). (30)

To investigate the integrand in the r′′ integral, Figure 4 shows the normalized magnitude of

I3(r, r̂′′) = max
r̂′

(|I2(r, r̂′, r̂′′)|). (31)

We see that the receiving disks with normals pointing towards the point source at θ′′ = 0 contribute

most strongly to the integral over r̂′′. Indeed, at θ′′ = 45◦ the value of I3(r, r̂′′) is more than 100 dB

below its peak at θ′′ = 0.

The plot in Figure 5 of the normalized magnitude of I1(r, r̂′) shows that the transmitting disks

with normals pointing towards the observation point at (θ, φ) = (90◦, 180◦) contribute most strongly

to the integral over r̂′. The magnitude of I1(r, r̂′) is more than 100dB below its peak when the r̂′

is roughly 30◦ away from the peak direction (θ′, φ′) = (90◦, 180◦).

Using L = 60 and discretizing the r̂′ and r̂′′ integrals with Δθ = Δφ = 2.9752◦, the relative

difference |ΨMie − ΨGauss|/|ΨMie| between the Mie series (27) and the Gaussian scattering-matrix

solution (21) is 1.1 · 10−7. We have thus numerically validated the new Gaussian scattering-matrix

theory and demonstrated the directionality of the integrands of both the r̂′ and r̂′′ integrals in (21).

IX Conclusions and future work

We presented and validted an exact Gaussian-beam scattering matrix theory that is as general as

Kerns’ plane-wave scattering matrix theory and Waterman’s T-matrix theory. A number of possible
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research topics emerge from the material presented above.

The Gaussian transmitters and receivers contained in the scattering-matrix theory ensure that

the integrands of the expression for the scattered field are significantly non-zero only in certain

regions whose location and size depend on the scattering geometry. The sharpness of the integrands

depends on the two free parameters as and ap that determine the radii of the transmitting and

receiving disk. Since the scattering matrix also depends on as and ap, a careful analysis is required

to determine the optimal values of as and ap for a given scattering configuration.

The scattering-matrix expression (21) for the scattered field could be combined with a Gaussian-

beam expansion of the primary field. By interchanging the integration over r̂′′ in (21) with the

integration over the beams of the primary source, one would obtain an alternative field expression

that would involve the output of a Gaussian receiver due to the field of a Gaussian transmitter.

Such expressions can be extremely directional as has been observed in the transmission formulas

of [25] and [29].

Similarly, if the scattered field is received by an antenna, one can employ a Gaussian receiver

representation that determines the antenna output. Now the integration over Gaussian receivers

can be interchanged with the integration over r̂′ in (21). One would thereby achieve an alternative

expression for the antenna output that would involve the output of a Gaussian receiver due to the

field of a Gaussian transmitter.

A simple three-component model for a radar system could be obtained by letting the transmitter

be a single Gaussian transmitter, the target be modeled by a Gaussian scattering matrix, and the

receiver be a single Gaussian receiver. Such a model would take into account the directivity of all

three components of the system. A time-domain version of this radar system was suggested in [39].

However, [39] did not use a scattering matrix.

The Gaussian scattering-matrix theory is exact for arbitrary scatterers. However, it may be of

interest to derive approximate scattering matrices for large scatterers based on physical optics or

other high-frequency approximations. It may be possible to express the Gaussian scattering matrix

directly as an integral over the surface of the scatterer.

Asymptotic expressions for the scattrered field in certain parameter regimes could be obtained

from (21) using existing asymptotic integration techniques. Such expressions could likely be fine-
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tuned by selecting the free parameters as and ap appropriately.

The scalar scattering matrix of the present paper can be generalized to electromagnetic fields in

a straightforward manner. Also, one can generalize the scatterer to an antenna that has an input

and an output port. Thus one obtains a Gaussian antenna scattering-matrix theory analogous to

the standard theories in [1], [34], and [35].

The 3rd Generation Partnership Project (3GPP) is a standards body created to ensure that the

various components of wireless systems (cellular networks, mobile phones, etc.) operate according

to the same standard. Some of the channel models developed in 3GPP specify antennas with

Gaussian pattern near the main lobe [40]. These antenna models could easily be incorporated into

the Gaussian scattering-matrix theory to obtain a convenient tool for simulating wireless systems.

The formula (22) expresses the Gaussian scattering matrix Q(r̂′, r̂′′) in terms of Waterman’s

T-matrix Tmm′��′ . It would be interesting, for a given scatterer, to derive an expression for Q(r̂′, r̂′′)

from first principles.

The formula (22) relates the Gaussian scattering matrix to Waterman’s T-matrix. A similar

formula (perhaps simpler) could likely be derived that relates the Gaussian scattering matrix to

the plane-wave scattering matrix S(K′, K′′) in (23).

The Gaussian scattering-matrix theory was developed in this paper for time-harmonic fields.

Conversion to the time domain using analytic-signal fields would provide a method for analyzing

pulsed scattering problems.
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List of Figures

Figure 1: The scattering configuration. The field Ψp(r) of the primary source encounters the scat-

terer. The scattered field Ψs(r) is observed in the observation region. The global (x, y, z) coordinate

system has origin near the scatterer.

Figure 2: The sources of the Gaussian beam in (1) reside on a disk with radius a, centered at the

origin with normal r̂′.

Figure 3: Dirichlet sphere with radius Rs = 5λ illuminated by a real point source on the z axis at

z = 15λ. The observation point is on the y axis at y = −15λ. Both transmitting and receiving

83



disks have radius as = ap = 14λ.

Figure 4: Normalized magnitude in dB of the function I3(r, r̂′′) for the scattering configuration in

Figure 3. The receiving disks with normals pointing towards the point source at θ′′ = 0 contribute

most strongly to the integral over r̂′′.

Figure 5: Normalized magnitude in dB of the function I1(r, r̂′) for the scattering configuration in

Figure 3. The transmitting disks with normals pointing towards the observation point at (θ, φ) =

(90◦, 180◦) contribute most strongly to the integral over r̂′.
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Abstract

An array is constructed to radiate the far-field pattern of a single complex point source. For any nonzero

error tolerance, the physical dimension of the array is smaller (sometimes much smaller) than the diameter of

the branch-cut disk of the complex point source. The inverse source problem is formulated for non-resonant

arrays with reactive zones that do not extend significantly beyond the physical dimensions of the array. Both

time-harmonic and pulsed beams are considered. In numerical examples, each array element consists of real

point sources in an end-fire configuration.

Keywords: Complex point source, Far-field pattern, Array realization, Non-resonant array

1. Introduction

Complex-source beams are exact solutions to the wave equation that were first introduced in the frequency

domain by Deschamps [1] and subsequently in the time domain by Heyman and Felsen [2], [3]. These beams

are used in both acoustic and electromagnetic wave theories and are often referred to as Gaussian beams in

the frequency domain and as pulsed-beam wavelets or complex-source pulsed beams in the time domain.

Complex-source beams are useful for providing solutions to scattering and propagation problems in

complex configurations [4], [5], [6], [7] [8], [9], [10], [11], [12], [13], [14], [15]. They are also suitable as basis

functions in exact expansions of arbitrary acoustic and electromagnetic fields with finite source regions in

both the time and frequency domains [16], [3], [17], [18], [19], [20], [21], [22], [23]. Recently, complex sources

were employed to obtain new exact plane-wave expansions that led to directional translation operators for

the fast multipole method [24], [25], [26], [27].

The paper [28] lists a number of uses for complex-source beams: (i) high-resolution probing of the

propagation environment, (ii) selectively excite local scattering and diffraction phenomena, (iii) benchmark

solutions for scattering of collimated wave packets by canonical configurations, (iv) propagation in inhomo-

geneous, dispersive, and random media, (v) wave-based data processing and local inverse scattering. Hence,

complex-source beams have many properties that make it worthwhile to develop physically realizable source

representations. Indeed, several papers have been devoted to obtaining volume and surface sources that

Preprint submitted to Wave Motion February 17, 2015
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radiate complex-source beams [28], [29], [30], [31], [32].

The present paper investigates the inverse source problem for the complex-source beam as an array

optimization problem. We determine excitation coefficients of array elements that each have a typical

pattern of a small radiator with sidelobes. For convenience we assume that the array elements are located

on a sphere, but the method used in the present paper works for any surface. By extending a recently-

developed 2D theorem on the spatial bandwidth of complex-source beams [24], we show that for any nonzero

error tolerance, the physical dimension of the array is smaller than the diameter of the branch-cut disk of

the complex point source.

The paper is organized as follows. In Section 2 we present Green’s function and spherical-wave expressions

for arbitrary fields generated by source of finite extent. Also, Section 2 shows the proper truncation of the

spherical-wave expansion for non-resonant sources. In Section 3 we introduce the complex-source beam

and determine the proper truncation of the spherical-wave expansion of its far-field pattern. Section 3

also determines the smallest possible source region required to exactly reproduce the far-field pattern of a

complex-source beam. Section 4 presents the array realizations of the complex-source beam and includes

numerical examples. Sections 2, 3, and 4 all deal with frequency-domain fields. Section 5 shows array

realizations of complex-source pulsed beams and Section 6 contains conclusions.

The standard rectangular coordinates are denoted by (x, y, z) with unit vectors x̂, ŷ, and ẑ, so that a

general point in space can be expressed as r = xx̂ + yŷ + zẑ. The spherical coordinates (r, θ, φ) are related

to the rectangular coordinates through x = r sin θ cosφ, y = r sin θ sin φ, and z = r cos θ with the radial

spherical unit vector given by r̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ. We also make extensive use of the unit

vector r̂′, which is simply r̂ evaluated at (θ′, φ′). Throughout Sections 2, 3, and 4, we assume and supress

e−i ωt time dependence with ω > 0. The wave number is k = 2π/λ = ω/c, with c being the wave speed and

λ the wave length.

2. Properties of non-resonant sources

Sources

Rs

Figure 1: The source function Q(r′) resides inside a sphere centered at the origin with radius Rs. This figure depicts a

configuration where the actual source region is not centered on the origin.
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This section is devoted to describing the far field that can be radiated by non-resonant sources of a

given physical extent. A wave field Ψ(r) that satisfies Helmholtz equation with constant wave speed can be

expressed in terms of its source function Q(r′) and the scalar free-space Green’s function

G(r, r′) =
eik

√
(r−r′)2

4π
√

(r − r′)2
(1)

as

Ψ(r) =
∫

dV ′ G(r, r′)Q(r′) (2)

where the integral extends over the source region, which is assumed of finite extent and located inside the

sphere r = Rs, as shown in Figure 1. In other words, Q(r′) = 0 for r′ > Rs. The distance between the

integration point r′ and the observation point r is written as
√

(r − r′)2 since this form of the distance

function makes generalization to complex source points straightforward.

When r � r′,
√

(r − r′)2 ∼ r − r̂ · r′ so that

G(r, r′) ∼ e−ikr̂·r′ eikr

4πr
, r → ∞ (3)

which shows that the far field can be expressed as

Ψ(r) ∼ F(r̂)
eikr

r
, r → ∞ (4)

where

F(r̂) =
1
4π

∫
dV ′ Q(r′) e−ikr̂·r′ (5)

is the far-field pattern, which can also be expressed in terms of the field as

F(r̂) = lim
r→∞ r e−ikrΨ(rr̂). (6)

The wave field Ψ(r) has the spherical-harmonics expansion

Ψ(r) =
NQ∑
n=0

n∑
m=−n

Anm h(1)
n (kr)Ynm(θ, φ), r > Rs + λ (7)

where NQ is a truncation limit that will be discussed below. The region of validity of (7) is expressed as

r > Rs + λ to ensure that the observation point is outside the reactive zone of the source. Also, Ynm is the

spherical harmonic, jn is the spherical Bessel function, and h
(1)
n is the spherical Hankel function of the first

kind. The spherical harmonic satisfies the orthogonality relation
∫

dΩ′ Yn′m′(θ′, φ′)Y ∗
nm(θ′, φ′) = δnn′ δmm′ (8)

where δpq is the Kronecker delta and

∫
dΩ′ =

2π∫
0

dφ′
π∫

0

dθ′ sin θ′ (9)
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is the integral over the unit sphere. Moreover, ∗ denotes complex conjugation. Employing the large-argument

approximation of the spherical Hankel function

h(1)
n (Z) ∼ i−n−1 eiZ

Z
, Z → ∞ (10)

with (6) shows that the far-field pattern has the spherical-harmonics expansion

F(θ, φ) =
1
k

NQ∑
n=0

n∑
m=−n

Anm i−n−1 Ynm(θ, φ). (11)

Employing the orthogonality relation (8), we see that the spherical expansion coefficients can be expressed

in terms of the field on a sphere with radius R as

Anm =
1

h
(1)
n (kR)

∫
dΩ Ψ(Rr̂)Y ∗

nm(θ, φ), R > Rs + λ (12)

and in terms of the far-field pattern as

Anm = k in+1

∫
dΩF(θ, φ)Y ∗

nm(θ, φ). (13)

We shall now discuss the standard truncation formula that determines the truncation limit NQ that

ensures a given relative error E for the expansion of the far-field pattern of a non-resonant source. This

truncation formula is derived for a single real point source at r′ = Rsẑ for which (11) is

e−ikRs cos θ

4π
=

1
4π

∞∑
n=0

(2n + 1) i−njn(kRs)Pn(cos θ) (14)

where Pn(Z) is the Legendre polynomial of order n. For a prescribed relative error E , the standard truncation

number NQ is the smallest positive integer for which

max
θ

∣∣∣∣∣∣e
−ikRs cos θ −

NQ∑
n=0

(2n + 1) i−njn(kRs)Pn(cos θ)

∣∣∣∣∣∣ < E (15)

is satisfied. For kRs > 1 the truncation number is [33], [34], [35], [36], [37, pp. 86-88]

NQ = int
(
kRs + γ(kRs)1/3

)
, γ =

(−3 ln E)2/3

2
(16)

where “int” denotes the integer part and “ln” is the natural logarithm. This equation shows that a typical

non-resonant source with Rs = NQ/k can radiate a pattern whose spherical expansion coefficients are

significantly nonzero at least up to n = NQ. The truncation formula (16) does not hold for resonant sources,

which can radiate far fields that require a much larger number of terms in the spherical expansion [38].

3. Complex-source beam

The complex-source beam ΨCSB(r) of the present paper is obtained by inserting a complex source point

r′ = iar̂′ with a > 0 into the free-space Green’s function to get (after introducing the 4π e−ka normalization
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Branch-cut disk

a

Figure 2: The sources of the complex-source beam in (17) reside on the branch-cut disk with radius a, centered at the origin

with normal r̂′.

factor)

ΨCSB(r) = 4π e−ka G(r, iar̂′) = e−ka eik
√

(r−iar̂′)2√
(r − iar̂′)2

(17)

where the distance
√

(r − iar̂′)2 is complex with the square root defined to have a non-negative real part and

its branch cut placed along the negative real axis [6], [21]. Hence, the field ΨCSB satisfies the homogeneous

Helmholtz equation everywhere except on the branch cut of the square root where the sources reside. The

manifestation of this branch cut in 3D space are those points r where (r− iar̂′)2 is a negative number. One

readily finds that

(r − iar̂′)2 = r2 − a2 − 2ia r̂′ · r (18)

is negative on a disk of radius a, centered at the origin with normal r̂′; see Figure 2. This branch-cut disk

in 3D space contains the sources of ΨCSB(r). Expressions for these sources can be found by applying the

Helmholtz operator (∇2 + k2) to ΨCSB(r); see [29], [30], [31].

The e−ka normalization in (17) ensures that the far-field pattern of the beam ΨCSB(r) has a maximum

value of one:

FCSB(r̂) = eka(r̂·r̂′−1) (19)

which shows that for k > 0 and a > 0 the beam radiates most strongly in the direction r̂′ and most weakly

in the direction −r̂′. Note that ΨCSB exhibits Gaussian behavior near the direction r̂′: let cos Θ = r̂ · r̂′ in

(19) to get

FCSB(r̂) 	 e−kaΘ2/2 (20)

when Θ is small.

3.1. Smallest possible source region

The inverse source problem, which consists of determining sources that radiate a given far-field pattern,

does not have a unique solution [39]. However, for a given far-field pattern one can determine the smallest
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possible region in which sources must reside [40], [41, sec. 3.2.8]. Let us determine the smallest possible

source region that can radiate the pattern (19). We first consider r̂′ = ẑ and determine the minimum

dimension required in the direction normal to the disk. Following the procedure in [40], [41, sec. 3.2.8], we

compute ∣∣∣FCSB(π/2 − iα, φ) e−kz| cos(π/2−iα)|
∣∣∣ =

∣∣∣e−ka e−k(z−ia) sinh α
∣∣∣ = e−ka e−kz sinh α (21)

which approaches zero for z > 0 and infinity for z < 0 as α → ∞. We obtain a similar result when r̂′ = −ẑ, so

it follows that sources residing in the plane of the branch-cut disk can produce the pattern (19). To determine

the extent of the minimum source region in the direction orthogonal to the disk normal, we consider r̂′ = x̂

to get ∣∣∣FCSB(π/2 − iα, φ) e−kz|cos(π/2−iα)|
∣∣∣ = e−ka e−k(z−a cosφ) sinh α (22)

which approaches zero for all φ and z > a and approaches infinity for z < a and φ = 0 as α → ∞. These

results combined with the theorem in [40], [41, sec. 3.2.8] show that the branch-cut disk in Figure 2 is the

smallest source region that can exactly produce the pattern (19). Of course, there are larger source regions

that can also produce that exact same pattern. As we shall see, smaller source regions can be devised to

produce the pattern (19) to within any prescribed error limit. Naturally, if one lets the prescribed error limit

approach zero, the physical extent of these smaller source regions approach the size of the branch-cut disk.

3.2. Spherical-harmonics expansion of the far-field pattern

Let us next examine the spherical-harmonics expansion of the complex-source beam. Analytical contin-

uation of the Green’s function expansion [42, p.742] gives

e−ka eik
√

(r−iar̂′)2√
(r − iar̂′)2

= 4π ik e−ka
∞∑

n=0

n∑
m=−n

jn(ika)h(1)
n (kr)Ynm(θ, φ)Y ∗

nm(θ′, φ′) (23)

and

eka(r̂·r̂′−1) = 4π e−ka
∞∑

n=0

n∑
m=−n

i−njn(ika)Ynm(θ, φ)Y ∗
nm(θ′, φ′). (24)

When the disk normal is in the z direction so that r̂′ = ẑ, the formula (24) reduces to

eka(cos θ−1) = e−ka
∞∑

n=0

(2n + 1) i−njn(ika)Pn(cos θ). (25)

For a prescribed relative error E , the truncation number Na is the smallest positive integer for which

max
θ

∣∣∣∣∣eka(cosθ−1) − e−ka
Na∑
n=0

(2n + 1) i−njn(ika)Pn(cos θ)

∣∣∣∣∣ < E (26)

is satisfied. The truncation formula for the corresponding complex-source formula in 2D was derived in [24].

Since spherical and cylindrical Bessel function are related through

jn(Z) =
√

π

2Z
Jn+1/2(Z) (27)
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Figure 3: The exact truncation number computed from (26) and the truncation number obtained from the formula (28) for

E = 10−3 and E = 10−6. γ̃ is 3.7169 and 5.2565 when E is 10−3 and 10−6, respectively.

we can use the analysis from [24] to show that the truncation formula for the 3D formula (23) is

Na = int
(
γ̃
√

ka
)

+ 1, γ̃ =
√−2 lnE . (28)

Figure 3 shows the exact truncation number computed from (26) and the truncation number obtained from

the formula (28) for E = 10−3 and E = 10−6. This figure validates (28). For large ka, Na in (28) is much

smaller that NQ in (16) with Rs = a. Indeed, the truncation formula (16) for general non-resonant sources

grows linearly with frequency, whereas the truncation formula (28) for the complex-source beam grows as

the square root of frequency. Therefore, Na/k < a when a is greater than just a few wavelengths, and

the pattern of the complex-source beam can be created (even when a tight error bound is imposed) by a

non-resonant source located inside a sphere with Rs < a.

3.3. Comparison to the constant-source disk radiator

For comparison we briefly consider the constant source that resides on a circular disk of radius a with ẑ

as normal. The source function Q(r′) is equal to a nonzero constant on the disk x2 + y2 = a2, z = 0, and

zero everywhere else. Its far-field pattern is

F(θ) =
2 J1(ka sin θ)

ka sin θ
(29)

where J1(Z) is the cylindrical Bessel function of order one. The minimum source region for this pattern is

also the physical disk [41, p. 145]. However, the truncation required to expand the pattern (29) is given

by (16) with Rs = a. Hence, despite the fact that the constant source is non-singular, its far-field pattern

expansion requires a much larger number of terms than the far-field pattern of the complex-source beam,

which has a singularity along the rim of the source disk. Further, for a given prescribed accuracy, the array

required to radiate the pattern (29) of the constant source must be bigger than the array required to radiate
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the pattern (19) of the complex source. This is quite remarkable but in accordance with the fact that the

directivity of the complex-source beam is low relative to the size of the branch-cut disk; see [22]. To illustrate,

we note that for ka = 50, the 3 dB beam-widths of the complex-source beam (25) and the constant-source

pattern (29) are 13.5◦ and 3.7◦, respectively. Also, the truncation formula (16) shows that the far-field

pattern (29) cannot be created (even when a large error limit is allowed) by a non-resonant source located

inside a sphere with Rs < a.

Branch-cut
disk

Array element
on the array 
sphere

z

Figure 4: The branch-cut disk with radius a in the x − y plane and the array sphere of radius Rs on which the array elements

reside. The array elements are spaced roughly ΔS apart on the sphere. Here Rs < a as in all the numerical examples. The

array radiates a field that approximates that of the branch-cut disk.

4. Array realization of a complex-source beam

The results from the previous sections will now be used to design a non-resonant array that radiates the

far-field pattern of the complex-source beam to within a prescribed error limit. As discussed in Section 2, a

typical non-resonant source with minimum radius Rs can radiate a pattern with an upper truncation limit

of roughly NQ = kRs. Hence, (28) shows that to radiate a complex-source beam with beam parameter a

with a precision of E requires that the array minimum radius be roughly

Rs = γ̃

√
a

k
(30)

which gives

a =
kR2

s

γ̃2
(31)

and
Rs

a
=

γ̃√
ka

(32)

so that the required size of the array becomes smaller relative to the beam parameter as the frequency

increases. The value of Rs given by (30) is conservative, and in actual implementations one can expect to
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achieve a higher accuracy than E for the array far-field pattern when the array elements are well behaved;

see Section 4.1.

We employ an array whose elements are distributed over a sphere with radius Rs as shown in Figure 4.

The array elements are located on “rings” on the sphere: θ = θq , with q = 1, ..., Nr where Nr is the number

of rings. The ring at equator (θ = 90◦) contains the largest number of array elements and the rings at north

and south poles (θ = 0 and θ = 180◦) contain just one element each.
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Figure 5: Each array element on the sphere consists of five point sources arranged in an equal-weighted end-fire configuration.

The distance between point sources is denoted by ΔA as shown. The figure shows the array-element pattern for ΔA = 0.2λ,

ΔA = 0.4λ, and ΔA = 0.5λ.

Each array element consists of five point sources arranged in an equal-weighted end-fire configuration.

The element pattern for three different point-source separations ΔA are shown in Figure 5. We shall use

ΔA = 0.4λ since this results in strong radiation in the direction Θ = 0 and weaker radiation in the opposite

direction Θ = 180◦. When ΔA = 0.5λ the array is not usable since the radiation in the directions Θ = 0

and Θ = 180◦ are equally strong. Hence, each dot on the sphere in Figure 4 represents an outward radiating

end-fire element with three sidelobes.

The array excitation coefficients are determined by matching the array far-field pattern to the far-field

pattern (25) of the complex-source beam through a least-squares approach. Since the far-field pattern of the

complex-source beam is independent of φ, the array excitation coefficients are the same for all elements on
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a ring. The array excitation coefficients are denoted by Aq, so the array pattern has the form

FA(θ, φ) =
Nr∑
q=1

Aq

Ne(q)∑
p=1

Fe(θ, φ; r′pq) (33)

with

r′pq = Rs sin θq cosφpq + Rs sin θq sin φpq + Rs cos θq (34)

where φpq, p = 1, ..., Ne(q) determines the φ location of each array element on the ring with θ = θq . The

number of elements on the ring θ = θq is Ne(q). Moreover, Fe(θ, φ; r′pq) is the pattern of a single array

element with reference point at r′pq on the sphere, which is a translated and rotated version of the element

pattern shown in Figure 5.

The array excitation coefficients Aq are determined through a least-squares method to minimize

C =
J∑

j=1

∣∣∣FA(θj , φj) − eka(cos θj−1)
∣∣∣2 (35)

where (θj , φj), j = 1, ..., J is a set of evenly distributed points on the far-field sphere.
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Figure 6: Magnitude and phase of excitation coefficients for array elements on 132 rings given by θ = θq. The array elements

are located on a sphere with Rs = 21λ. The excitation coefficients are computed to make the array radiate the pattern of a

complex source with a = 100λ. The total number of array elements is 21850.

4.1. Numerical example

We next present a numerical example where a = 100λ and the error limit is set to E = 10−6. The formula

(30) for the radius of the array sphere gives Rs = 21λ, and we space the array elements on the sphere roughly

ΔS = λ/2 apart. For this configuration, Nr = 132 and the total number of array elements is 21850.
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Figure 7: Exact far-field pattern of the complex source and the pattern of the array with excitation coefficients given in Figure

6. The array pattern error is at the −220dB level.
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Figure 8: Exact far-field pattern of the complex source and the pattern of the array with excitation coefficients given in Figure

6. The dynamic range for the excitation coefficients is limited to 100dB resulting in an array pattern error at the −80dB level.

Figure 6 shows amplitude and phase of the 132 excitation coefficients Aq obtained from the least-squares

approach. Figure 7 shows the corresponding array pattern and its deviation from the exact pattern. We

see that the array pattern error is at the −220 dB level. A high-quality anechoic chamber has a dynamic

range of 60 dB, and radar signals have a dynamic range that is typically several tens of decibels (100dB in

extreme cases) [43, p. 4]. Hence, a measurement instrument in an anechoic chamber or a radar receiver

would not be able to distinguish between two patterns in Figure 7 whose difference is at the −220 dB level.

In other words, due to noise and other disturbances, experiments performed with the array pattern will
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produce exactly the same results as experiments performed with the exact complex-source beam pattern.

Nevertheless, a weighted least-squares method could further reduce the error away from the main-beam

direction, if desired.

In Figure 8 the array pattern and its error is computed with the dynamic range of the array excitation

coefficients limited to 100 dB. In other words, all array excitation coefficients Aq with a magnitude less than

−100 dB are set to zero. This set of “truncated” excitation coefficients produce a far-field pattern with a

−80 dB error level. Again, for practical purposes this array pattern can be considered exact.

This numerical example has demonstrated that we can practically reproduce the exact far-field pattern

of a complex source with a = 100λ using an array whose diameter is only one fifth of the diameter of the

branch-cut disk. In the next section we consider the array realization of a complex-source pulsed beam.

5. Array realization of complex-source pulsed beam

With f = ω/(2π) being the frequency, a real function of time h(t) can be computed from its Fourier

transform

H(f) =

∞∫
−∞

h(t) e2π iftdt (36)

as

h(t) = 2 Re

⎛
⎝

∞∫
0

H(f) e−2π ift df

⎞
⎠ (37)

where “Re” indicates that the real part is taken. We shall create an array that radiates a complex-source

pulsed beam whose driving function has the Gaussian spectrum

H(f) = e−(f−fc)2/(2σ2), f ≥ 0 (38)

where fc is the center frequency and σ the standard deviation. The complex-source pulsed beam driven by

this signal has a frequency-domain far-field pattern given by

FCSB(θ, f) = e−(f−fc)2/(2σ2) e2πfa (cos θ−1), f ≥ 0 (39)

where we have assumed that wave-speed is one so that k = 2π/λ = 2πf . We chose the center frequency to

be fc = 1, the standard deviation to be σ = 0.1, and the disk radius to be a = 3. Figure 9 shows the time

and frequency domain far-field patterns associated with these parameter values.

The array sphere radius is Rs = 2 and the array element spacing is ΔS = 0.35. Figure 9 shows that the

maximum effective frequency is roughly f = 1.4, so the minimum effective wavelength is λmin = 1/1.4 =

0.7143. Hence, with ΔS = 0.35 we have ensured that the array element spacing on the sphere is less than half

a wavelength at all frequencies of the driving signal. This configuration has 376 array elements distributed

on Nr = 18 rings.
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Figure 9: The top plot is the exact frequency spectrum (39) of the beam pattern for different values of θ for a complex source

with source point rs = iaẑ. The parameters are a = 3, fc = 1, and σ = 0.1. The bottom plot is the corresponding time-domain

beam pattern.

As before, each array element consists of 5 point sources in the end-fire configuration shown in Figure

5. By choosing the spacing between point sources to be ΔA = 0.28 we have ΔA = 0.4λmin, which ensures

that the array element always radiates most strongly in the direction Θ = 0 over the entire frequency band

of the pulse in Figure 9. Figure 10 shows the array excitation coefficients obtained by solving the least-

squares problem as functions of frequency for four of the eighteen rings. These excitation coefficients behave

smoothly with respect to frequency in the frequency band of interest: 0.6 < f < 1.4.
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Figure 10: Array excitation coefficients as functions of frequency for array elements on four rings. The parameters are Rs = 2,

ΔS = 0.35, ΔA = 0.28, a = 3, fc = 1, and σ = 0.1.
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Outside the frequency band of interest (for example around f = 1.75) the excitation coefficients exhibit

non-smooth behavior. This is due to the fact that ΔA = 0.28 	 1/(2f) at f = 1.75, and thus each array

element radiates an equal amount of power into both of its end-fire directions Θ = 0 and Θ = 180◦; see

Figure 5. Indeed, we verified numerically that had we chosen ΔA = 0.4, the non-smooth behavior would

have occurred around f = 1.25, which is in the frequency range of interest. A non-smooth behavior of

the frequency-domain excitation coefficients results in the corresponding time-domain excitation coefficients

having long time durations. Therefore, it is important to choose proper array elements that work over the

entire frequency band of interest.
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Figure 11: Array excitation coefficients as functions of time for array elements on four rings. The parameters are Rs = 2,

ΔS = 0.35, ΔA = 0.28, a = 3, fc = 1, and σ = 0.1.

Figure 11 shows the corresponding time-domain excitation coefficients obtained by multiplying the

frequency-domain excitation coefficients in Figure 10 by the driving function in (38) and taking the in-

verse Fourier transform (37). We see that the durations of the excitation coefficients are roughly the same as

the duration of the pulsed beam. Due to the geometry of the sphere, the excitation coefficients are shifted

in time.

Figure 12 shows the array far-field pattern and its deviation from the desired complex-source pulsed

beam far-field pattern. The maximum error of the array pattern is 4 · 10−4, which is 62 dB below the

maximum value of the exact pattern in Figure 9. Hence, we have achieved a very accurate representation of

a complex-source pulsed beam with a = 3 using an array that is located on a sphere of radius Rs = 2.

6. Conclusions

Simple non-resonant array solutions were presented for reproducing (to within a specified error limit) the

far-field pattern of complex-source beams in both frequency and time domains. Remarkably, the physical
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Figure 12: The time-domain array pattern and its deviation from the desired complex-source pattern. The parameters are

Rs = 2, ΔS = 0.35, ΔA = 0.28, a = 3, fc = 1, and σ = 0.1.

dimensions of these arrays are smaller than the physical dimensions of the branch-cut disks. The numerical

examples demonstrated the validity of the theory using array elements with a typical sidelobe structure.

Hence, the results of the paper can be reproduced with ordinary electro-acoustic transducers as array ele-

ments. Also, the least-squares approach used to determine the array excitation coefficients does not require

that the array surface be a sphere. It would work for any surface of sufficient physical extent. Arrays for

radiating an electromagnetic complex-source beam can be obtained in a similar manner.

We emphasize that the arrays in Sections 4 and 5 would not radiate the pattern of a typical source

contained in the sphere with radius a, regardless of the excitation coefficients. Indeed, these arrays would be

too small to radiate the pattern of the constant source discussed Section 3.3. These small arrays work only

for the complex-source beam, which has a broad beam-width relative to the size of the branch-cut disk.
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Electromagnetic Scattering-Matrix Theories Based on Plane
Waves and Complex-Source Beams

T. B. Hansen1

1Seknion Inc., Boxford, Massachusetts, USA

Abstract— Two scattering-matrix theories for time-harmonic fields in three dimensions are pre-
sented: (i) a plane-wave theory with a directional spectrum that is obtained through a complex-
source point substitution procedure, and (ii) a complex-source beam theory based on a beam
expansion of spherical multipole fields. Scattering matrices for plane-wave expansions, which
determine the plane-wave spectrum of the scattered field of an object due to an incoming plane
wave, are readily available. The analogous scattering matrices based on complex-source beams
will be derived from Waterman’s T matrices. These scattering matrices determine the beam
weights for the scattered field in terms of the output of elementary beam receivers, which sample
the incident field at complex points in space. The two scattering-matrix formulations will also
be compared with Kerns plane-wave theory.

1. INTRODUCTION

Plane waves and complex-source beams constitute complete sets of basis functions for electromag-
netic fields in homogeneous source-free regions. From the completeness of these basis functions, we
derive exact scattering-matrix theories, which can lead to efficient computation schemes for electro-
magnetic field transformations in both near and far-field regions. The plane-wave basis functions
have sources of infinite extent whereas the complex-source beams have sources of finite extent.
Hence, the two types of expansions are distinctly different in many ways.

Figure 1 shows the electromagnetic scattering problem under consideration. The primary source
generates the electric field Ep(r) that interacts with the scatterer to produce the scattered electric
field Es(r). Multiple interactions between the primary source and the scatterer are neglected.
The minimum sphere of radius Rs centered at the origin encloses the scatterer, and the primary
source region and the observation region are assumed to be outside this sphere. The global (x, y, z)
coordinate system has origin near the scatterer. Further, rp is a point in the source region that
generates the primary field, and ro is a point in the observation region.

The standard rectangular coordinates are denoted by (x, y, z) with unit vectors x̂, ŷ, and ẑ, so
that a general point in space can be expressed as r = xx̂ + yŷ + zẑ. The spherical coordinates
(r, θ, φ) are related to the rectangular coordinates through x = r sin θ cosφ, y = r sin θ sin φ, and
z = r cos θ. The three spherical unit vectors are r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ, θ̂ =
cos θ cosφx̂ + cos θ sinφŷ − sin θẑ, and φ̂ = − sinφx̂ + cosφŷ. Throughout, e−i ωt time dependence
with ω > 0 is assumed and suppressed. The wave number is k = 2π/λ = ω/c, with c being the
wave speed and λ the wave length.

2. EXPANSION BASED ON COMPLEX-SOURCE BEAMS

The complex-source beam of the present paper (also referred to as a Gaussian beam) was first
obtained by Deschamps [1] by inserting a complex source point r′ = iar̂′ with a > 0 into the scalar
free-space Green’s function to get

G(r, iar̂′) =
eik

√
(r−iar̂′)2

4π
√

(r − iar̂′)2
(1)

where the distance
√

(r− iar̂′)2 is complex with the square root defined to have a non-negative
real part and its branch cut placed along the negative real axis [2]. For fixed r̂′ and varying r
the branch cut manifests itself in real 3D space by a branch-cut disk of radius a, centered at the
origin with normal r̂′. Hence, the field G(r, iar̂′) satisfies the homogeneous Helmholtz equation
everywhere except on this branch-cut disk where the sources reside.
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Figure 1: The scattering configuration. The field Ep(r) of the primary source encounters the scatterer. The
scattered field Es(r) is observed in the observation region. rp is a point in the source region and ro is a point
in the observation region.

The far-field formula (valid for large r)

G(r, iar̂′) ∼ eikr

4πr
ekar̂·r̂′

(2)

shows that for k > 0 and a > 0 the beam radiates most strongly in the direction r̂′ and most
weakly in the direction −r̂′. The name “Gaussian beam” is sometimes used because G(r, iar̂′)
exhibits Gaussian behavior near the direction r̂′: let cosΘ = r̂ · r̂′ in (2) to get G(r, iar̂′) ∼
[eikr/(4πr)] eka(1−Θ2/2) when Θ is small.
2.1. The scattered field
According to [3, eq.(38)], the scattered field can be expressed in terms of complex-source beams
with beam parameter as as (

∫
dΩ′ denotes the integral over the unit sphere with respect to r̂′)

Es(r) =
∫

dΩ′ G(r, iasr̂′)
[
FM(r, iasr̂′)WA(θ′,φ′)+FN(r, iasr̂′)WB(θ′,φ′)

]
(3)

with

FM (r, r′) =
(

1
R2

− ik

R
r′ × r, R =

√
(r− r′)2, (4)

FN (r, r′) =
2
k

(
1

R2
− ik

R
r′ +

(
3
R2

− 3ik

R
− k2 rR · r′ − r′R · r

kR2
, R = r − r′ (5)

and

WA(θ, φ) =
L

�=1

�

m=−�

A�m Y�m(θ, φ)√
�(� + 1) ik j�(ikas)

, WB(θ, φ) =
L

�=1

�

m=−�

B�m Y�m(θ, φ)√
�(� + 1) ik j�(ikas)

(6)

where Y�m(θ, φ) is the spherical harmonic function and j�(Z) is the spherical Bessel function. Also,
A�m and B�m are the spherical expansion coefficients of the scattered field to be determined below.
Moreover, for non-resonant scatterers the truncation number is

L = int kRs + γ(kRs)1/3
)

, γ =
(−3 lnE)2/3

2
(7)

with E being the desired relative accuracy, and “ln” and “int” denoting the natural logarithm and
integer part, respectively.
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2.2. The primary field
The spherical expansion coefficients for the standing spherical-wave representation of the primary
field can be expressed in terms of the output of elementary complex-point receivers as [3, eqs.(52)-
(53)]

C�m =
1

j�(ikap)

∫
dΩ Ep(iapr̂) · M∗

�m(θ, φ), D�m =
1

v
(1)
� (ikap)

∫
dΩ Ep(iapr̂) ·N∗

�m(θ, φ) (8)

where ap > 0 is a beam parameter, ∗ denotes complex conjugation, v
(1)
� (Z) = 1

Z
∂

∂Z [Zj�(Z)], and

M�m(θ, φ) = θ̂
im Y�m(θ, φ)√
�(� + 1) sin θ

− φ̂
∂
∂θY�m(θ, φ)√

�(� + 1)
, N�m(θ, φ) = r̂ ×M�m(θ, φ) (9)

are the transverse vector-wave functions. The quantity Ep(iapr̂) is the output of a complex-point
receiver as explained in [3]; see also Section 2.3 below.
2.3. The scattering matrix
The spherical-wave scattering matrix Λ̄ (also referred to as Waterman’s T-matrix) for a particular
scatterer determines the spherical expansion coefficients A�m and B�m for the scattered field in
terms of the spherical expansion coefficients C�m and D�m for the primary field as [4], [5] (note
that [5] defines the scattering matrix in terms of “incoming” and “outgoing” spherical waves rather
than the “standing” and “outgoing” spherical waves used here; see [5, p.46])

A�m =
L

�′=0

�′

m′=−�′

Λ(AC)
��′mm′C�′m′ +Λ(AD)

��′mm′D�′m′

]
, B�m =

L

�′=0

�′

m′=−�′

Λ(BC)
��′mm′C�′m′ +Λ(BD)

��′mm′D�′m′

]
.

(10)
Hence, the scattered field can be expressed in terms of the output of elementary complex-point
receivers as

Es(r) =
∫

dΩ′ G(r, iasr̂′)
[
FM(r, iasr̂′)

∫
dΩ′′ QA(r̂′, r̂′′) · Ep(iapr̂′′)

+FN (r, iasr̂′)
∫

dΩ′′ QB(r̂′, r̂′′) · Ep(iapr̂′′)
]

(11)

where the complex-source scattering matrices are given by

QA(r̂′, r̂′′)=
L

�=1

�

m=−�

(ik)−1Y�m(θ′, φ′)√
�(� + 1) j�(ikas)

L

�′=0

�′

m′=−�′

[
Λ(AC)

��′mm′
M∗

�′m′(θ′′, φ′′)
j�′(ikap)

+Λ(AD)
��′mm′

N∗
�′m′(θ′′, φ′′)

v
(1)
�′ (ikap)

]

(12)
and QB(r̂′, r̂′′) is given by (12) with Λ(AC)

��′mm′ replaced by Λ(BC)
��′mm′ and Λ(AD)

��′mm′ replaced by Λ(BD)
��′mm′ .

One can derive integral equations from which the complex-source scattering matrices can be com-
puted numerically for a given scatterer without using Waterman’s T-matrix.

The formula (11) expresses the scattered field directly in terms of the output Ep(iapr̂′′) of an
elementary complex-point receiver pointing in all directions (in other words, in terms of the incident
electric field evaluated at imaginary points of the form iapr̂′′, where r̂′′ covers the unit sphere). The
directivity of these receivers ensure that one can neglect directions r̂′′ that do not point towards
the primary source region. Similarly, the directivity of the transmitting beams in the r̂′ integral
ensure that one can neglect directions r̂′ that do not point towards the observation region. Also,
note that the scattering matrix contains two free parameters (the disk radii ap and as) that can be
used to optimize the efficiency of the scattering calculation. Numerical examples that demonstrate
the directional nature of the scalar analog of this scattering-matrix formulation can be found in [6].

Let us briefly discuss how Ep(iapr̂′′) can be obtained through simulations or measurements. If
the software used to perform simulations defines the square root to have non-negative real part
and its branch cut along the negative real axis (Matlab’s square root is defined this way), one
simply sets the observation point equal to the imaginary point iapr̂′′. No further work is needed. If
the software defines the square root differently, one must write a new square-root function defined
as described above. If the primary field is measured on a sphere centered on the primary source,
outgoing spherical expansion coefficients are known. One can then compute Ep(iapr̂′′) directly from
the spherical vector-wave function expansion.
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3. EXPANSION BASED ON PLANE WAVES

We next derive a scattering-matrix formulation that is based on the directional plane-wave expan-
sion from [7].
3.1. The scattered field
We begin be introducing the far-field pattern of of the scattered field through the equation

F s(r̂) = lim
r→∞ r e−ikrEs(rr̂) (13)

and find from [7, eq.(52)] that

Es(r) =
ik

4π

∫
dΩk F s(k̂) eik·(r−ro) TNo

(k̂, ro, Δs) (14)

where
∫
dΩk is the integral over the k unit sphere and

TNo
(k̂, ro, Δs) = ekΔ(k̂·r̂o−1)

No∑
n=0

in(2n + 1)h̃(1)
n (k{ro + iΔs})Pn(k̂ · r̂o) (15)

is the Gaussian translation operator that results in directional plane-wave spectra; see [7] for details.
Further,

h̃(1)
n (Z) = h(1)

n (Z) eIm(Z) (16)
is a normalized spherical Hankel function and Pn(Z) is the Legendre polynomial. The truncation
number No, which depends on the beam parameter Δs as well as on the size of the scatterer and
observation region, can be found from the procedure in [7, sec.VI] to achieve any desired accuracy.
Note that the Gaussian translation operator (15) equals the standard translation operator when
the beam parameter Δs equals zero.
3.2. The primary field
With the far-field pattern of the primary source (with respect to the origin rp) defined as

Fp(r̂) = lim
r→∞ r e−ikrEp(rr̂− rp) (17)

we find that
Ep(r) =

ik

4π

∫
dΩk Fp(k̂) eik·r TNp

(k̂,−rp, Δp) (18)

where the truncation number Np, which depends on the beam parameter Δp as well as on the size of
the scatterer and primary source region, can be found from the procedure in [7, sec.VI]. According to
(18), the plane-wave spectrum for the incoming primary field is [(ik)/(4π)]Fp(k̂) TNp

(k̂,−rp, Δp).
3.3. The scattering matrix

The far-field plane-wave scattering matrix F̄(k̂′, k̂′′) determines the scattered far-field pattern in
the direction k̂′ when the incident field is a single plane wave E0 eik′′·r (with the constant vector
E0 satisfying E0 · k′′ = 0) as

Fs(k̂′) = F̄(k̂′, k̂′′) ·E0 (19)
which in turn gives the final expression for the scattered field

Es(r) = − k2

16π2

∫
dΩ′

k eik′·(r−ro) TNo
(k̂′, ro, Δs)

∫
dΩ′′

k TNp
(k̂′′,−rp, Δp) F̄(k̂′, k̂′′) · Fp(r̂′′). (20)

In general, a scatterer that is illuminated by a single plane wave will produce plane waves propa-
gating in all directions. Hence, the scattering matrix formula (20) contains an integral over both
incoming plane-wave directions of propagation k̂′′ and scattered plane-wave directions of propaga-
tion k̂′. The directionality of the Gaussian translation operators ensures that large portions of the
k̂′ and k̂′′ integration regions can be neglected.

The important special scattering geometry involving a half space was investigated in [8] using
the standard translation operator (Δs = Δp = 0). The plane-wave scattering matrix for the half
space is degenerate in the sense that a single incident plane wave will produce only one scattered
plane wave. Therefore, for the half-space scatterer, the formula (20) simplifies so that it involves
only the integral over incoming (or outgoing) plane-wave directions of propagation.
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4. CONCLUSIONS

The two scattering-matrix formulations in (11) and (20) will now be compared to Kerns’ plane-wave
scattering-matrix formulation (one-sided) in which the scattered field is written as [9, pp.57–61]

Es(r) =
∫

dK′ eik′·r
∫

dK′′ S̄(K′, K′′) · Tp(K′′) (21)

where S̄(K′, K′′) is Kerns’ plane-wave scattering matrix, and Tp(K′′) is the plane-wave spectrum
of the primary field. Moreover, K′ is the transverse part of the plane-wave propagation vector k′
for the scattered field. Similarly, K′′ is the transverse part of the plane-wave propagation vector k′′
for the primary field. The plane-wave spectrum of the primary field Tp(K′′) can be thought of as
the output of a plane-wave receiver that picks out a single plane-wave component of the primary
field.

It is challenging to use the plane-wave expansion (21) in numerical computations that require
a preselected accuracy. First, the integrand of the K′ integral has an integrable singularity at
|K′| = k that in many situations necessitates a change of variables [10, ch.3]. Second, in general
the integrands do not decay until the evanescent regions |K′| > k and |K′′| > k are reached. In
some situations one must integrate all the way into the evanescent regions to avoid strong end-point
contributions [7]. Nevertheless, there are some favorable situations where the integrals in (21) can be
truncated to include only small regions in the propagating domains without introducing significant
errors.

The expansions (11) and (20) have the same structure as (21). However, there are important
differences. For example, the regions of integrations in both (11) and (20) are unit spheres whereas
it is an infinite planar K surface in (21). Also, the integrands in (11) and (20) are well-behaved
functions on the unit spheres that are directional at high frequencies, so that only parts of the unit
spheres need to be included to achieve high accuracy. Hence, from a numerical point of view, the
expansions (11) and (20) appear to have distinct advantages.
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5. Metamaterial Theory
Robert A. Shore 

5.1 Fundamental Homogenization Theory of Metamaterials 
The subject of homogenization of metamaterials is of great importance in the theory of 
metamaterials composed of periodic arrays of particles, dealing with the central questions of 
when an array of discrete particles can be regarded as a homogeneous medium with effective 
permittivity and permeability, and how these effective parameters can be obtained. Clearly, 
being able to treat an array of discrete particles as a homogeneous medium is an enormous 
advantage over having to treat the array of particles itself. Andrea Alù in the 2011 Physical 
Review B (vol. 84, No. 7, 075153) has published a basic paper on homogenization of 
metamaterials, “First-principles homogenization theory for periodic metamaterials.”  In this 
paper Alù uses dimensional rather than non-dimensional quantities in his development making 
it difficult to go from the theory he presents to numerical calculations. In the technical memo 
bianiso2b.pdf [Section 5.4: Appendix], the derivation in Alù’s paper is reformulated and 
expanded using nondimensional quantities, thus considerably improving its accessibility and 
applicability. 

The effective parameters for scatterer arrays are obtained from the solutions for the eigenmodes 
supported by infinite 3-D arrays, but scattering calculations always involve semi-infinite or 
finite collections of the scatterers. Since metamaterial applications of this work always involve 
finite objects, it is essential to determine how well the effective parameters obtained from an 
analysis of an infinite periodic array describe scattering from finite collections of scatterers such 
as a spherical body carved from the infinite periodic array. Canonical problems investigated 
here are comparisons of exact bistatic scattering from a disk, cube, and spherical arrays of 
periodically placed magnetodielectric spheres, with the field scattered from a the corresponding 
homogeneous objects with effective permeability and permeability obtained from the eigenmode 
dispersion equation for the infinite array. The fields scattered from the arrays of periodically 
placed scatterers are obtained using multiple scattering techniques, while the scattered field 
obtained from the homogeneous objects is obtained using a fast surface-integral equation solver. 

The paper[1] based on our work investigates the applicability to finite-size metamaterial arrays 
of a homogenized model based on dipolar approximations and infinite periodic arrays. The 
homogenization method is based on a dipolar model of the inclusions, which is shown to hold 
even in the case of densely packed arrays once weak forms of spatial dispersion and the full 
dynamic array coupling are properly taken into account.  The near- and far-field scattering 
response of large-scale arrays of densely packed magnetodielectric spheres arranged in 
cylindrical and cubic shapes are numerically calculated using a fast surface integral equation 
solver at frequencies for which the bulk metamaterial supports positive or negative index of 
refraction. Comparing scattering patterns and near-field distributions inside and outside the 
structures, it is shown that the homogenized model can give a reasonably good description of the 
propagation and scattering properties of finite-size metamaterial objects, even for negative-
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index, near-resonance operation. Accuracy of the results have been shown to improve for larger 
arrays, for which edge effects are less important, and for straight edges, for which staircasing 
effects are not observed at the array boundary. The results show that a rigorous homogenization 
model can correctly capture the main physics of the scattering from finite metamaterial objects 
and lead to large computational saving in the modeling, design and application of metamaterials 
in realistic devices. Although the metamaterial arrays used to verify the homogeneous theory in 
this work are composed of magnetodielectric spheres that are used to realize negative index 
metamaterials in the microwave region, the theory can be directly applied to optical and 
terahertz frequencies, as long as subwavelength inclusions are considered.  

5.2 Scattering from Multilayered Spheres 
The calculation of scattering from a sphere composed of layers of arbitrary (complex, positive, 
negative) refractive index and permeability is important for metamaterials research, in part 
because arrays of spherical particles are extremely important in fabricating metamaterials, and 
also because it enables comparison of scattering from a spherical array of particles with 
scattering from a sphere itself as in Part II above.  The focus of the paper [2] resulting from this 
effort is the Mie series for the scattered field of a layered sphere illuminated by a linearly 
polarized plane wave. No restrictions are placed on the complex refractive indices and 
permeabilities of the layers of the sphere. In contrast to the generality of this paper, much of the 
literature is devoted to either the homogeneous sphere or the sphere with a single coating. In 
fact, as this paper demonstrates, it is surprisingly simpler and much more elegant to first 
consider the general problem of scattering from a sphere with any number of layers, and to 
obtain the solution to scattering from a homogeneous sphere or a sphere with a single coating as 
special cases. Additionally, unlike this paper, almost all treatments of scattering from a sphere 
with one or more coatings make the simplifying assumption that the permeabilities of the core, 
coatings, and medium are equal. Since the current interest in fabricating metamaterials often 
involves consideration of magnetodielectric inclusions, it is very useful to have expressions in 
which the permeabilities of the core and coatings appear explicitly as they do in reference [2]. 

5.2.1 Calculation of Mie Scattering Coefficients 
A computable form of the Mie coefficients is derived that uses ratios of spherical Bessel 
functions only; no logarithmic derivatives are used. Most of the treatments of scattering from a 
sphere, with or without coatings, make use of logarithmic derivatives of spherical or Riccati-
Bessel functions as a way of avoiding the overflow problems involved in calculating spherical 
Bessel functions with complex arguments. The calculation of logarithmic derivatives is 
complicated in its own right. In contrast, the analysis of this paper makes no use whatsoever of 
logarithmic derivatives. All the spherical Bessel functions in this paper appear only in ratios that 
are well behaved and that are calculated using stable recurrence relations that can be computed 
easily, rapidly, and extremely accurately. The recursions are initialized by using Steed's 
algorithm to calculate Lentz' continued fraction expression for the ratio of two Bessel functions, 
a significant advance compared with other methods that have been used to initialize Bessel 
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function ratio recursions. The continued fraction representation of the ratio of Bessel functions 
of adjacent order due to Lentz evaluated by Steed's algorithm  is completely straightforward and 
easily programmed.  
The avoidance of logarithmic derivatives is a significant accomplishment in view of the fact that 
in his fine review article in the Handbook of Optics Volume I (McGraw-Hill, NY, 2010), 
“Scattering by Particles,” Craig Bohren writes “It is not obvious how to write the scattering 
coefficients for a coated sphere so that only ratios of possibly large quantities are computed 
explicitly." A related valuable contribution of the paper is the detailed analysis given of the 
stability properties of the recurrence relations used to calculate these spherical Bessel function 
ratios. A considerable number of treatments of coated spheres are subject to size limitations, not 
just of the radii of the sphere layers but of the product of the electrical length of the sphere radii 
with the complex indices of refraction of the layers. In contrast, the recursion calculations of 
spherical Bessel function ratios that form the basis of the calculation of Mie coefficients in this 
paper have no size limitation. 
The Mie coefficients of the scattered field are obtained by a recursion process that begins at the 
core of the sphere and proceeds to the outer boundary of the sphere. The use of spherical Bessel 
function ratios together with the streamlined notation introduced for the electrical lengths of the 
radii on the two sides of the interfaces between the layers, make the recursion process for 
obtaining the scattered field Mie coefficients simpler than other methods for obtaining the Mie 
coefficients. At first it is assumed that the refractive index and permeability of the medium 
surrounding the sphere are real (non-absorbing medium), and then it is shown that it is simple to 
extend the solution to when the refractive index and permeability of the surrounding medium are 
complex (absorbing medium). Although the paper centers on the scattered field Mie 
coefficients, it is shown how the Mie coefficients for the fields internal to the sphere can be 
obtained once the scattered field coefficients are known. 

5.2.2 Calculation of the Scattered Far Field Parameters 
Once the Mie coefficients are known, the scattered far field components are obtained using 
angle functions calculated by recurrence relations given in the paper.  Parameters of the 
scattered field such as the polarization, the efficiencies, and the asymmetry parameter, can then 
be easily calculated. Detailed discussions are given in the paper of a number of important topics 
related to the scattered field including the extinction, scattered, and absorption efficiencies; the 
asymmetry parameter; radiation pressure; Rayleigh scattering; the optical theorem; the 
extinction paradox; the localization principle; scattering from a sphere illuminated by an 
unpolarized plane wave;  the loci of the Mie coefficients in the complex plane; resonances of the 
Mie coefficients; the Debye series; and the complex-angular-momentum method. The paper also 
presents a new method for obtaining the field scattered from a layered sphere illuminated by an 
extended incoherent source like the sun. 
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5.2.3 Debye Series Expansion of the Mie Coefficients
One of the important limitations of the Mie series representation of the scattered field is 
that even though it is exact it is not possible in general to obtain any real understanding of 
what is going on. The Mie series is a kind of “black box.” The Debye series, intimately 
related to the Mie series, can be of much help in understanding the physical basis of the 
important aspects of electromagnetic scattering since, unlike the Mie series, its coefficients are 
directly interpretable in terms of external and internal reflections, and surface waves.. A very 
important contribution of the paper is the derivation given for the coefficients for the Debye 
series expansion of the Mie coefficients for a homogeneous sphere with arbitrary complex 
permeability and refractive index, embedded in a medium with arbitrary complex permeability 
and refractive index, along with computational forms for the Debye coefficients using 
only Bessel function ratios and no logarithmic derivatives. Both the derivation and the 
computational forms are simpler and more general than those in the literature. Prior 
expressions for the Debye coefficients of a homogeneous sphere assume equality of 
the permeability of the sphere and medium, and computational forms given in the 
literature are more complicated, use logarithmic derivatives, and assume that the refractive 
index of the medium is real. The Debye series expansions of the Mie coefficients, derived in 
the literature assuming equality of real permeability of sphere and medium, are shown to 
remain valid when these restrictions are removed. The Debye expansions for scattering from 
a homogeneous sphere can be used as the basis for a simple, easily programmable, 
recursion procedure for generating the Debye expansions of the Mie coefficients for scattering 
from a multilayered sphere.  
5.2.4   Scattering from Multilayered Spheres: Concluding Discussion 
Related to the Debye expansions in attempting to understand the physical basis of scattering is 
the complex angular momentum theory (CAM) developed largely by the mathematical physicist 
H. M. Nussenzveig in a book and numerous papers. The CAM is highly mathematical in relying 
on in-depth analyses in the complex plane, but even though it gives valuable insights into 
natural phenomena like the rainbow and glory it cannot be extended easily to coated and 
multilayered spheres. The paper [2] gives an introduction to the CAM.  
This paper also contains a detailed discussion, with numerous numerical examples and plots, of 
morphology-dependent resonances (MDR’s) of the Mie coefficients. The resonances play a very 
important role in determining the rapid oscillations that are often characteristic of the scattered 
field calculated by the Mie series.   
A detailed outline is given in [2] of a computer program that has been written to implement and 
validate the analysis of the paper. Numerous results obtained with this computer program have 
been rigorously checked. The basic computer program is extremely flexible and can be easily 
tailored to fit the interests of the user, as has been done in the course of performing the 
calculations described in the paper, such as calculating the scattered field as a function of the 
scattering angle, the efficiencies as a function of the size and refractive indices of the layers, and 
the locations of the resonances of the Mie coefficients. 
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In addition to its principal purpose of  presenting important original material concerning the 
calculation of the Mie series and the Debye expansions, the paper, reference [2], also serves as 
an encyclopedic reference, bringing together  in a tutorial fashion material that is spread out 
over a considerable number of sources in the literature including vector spherical harmonics and 
multipole expansions; the localization principle; Lentz' continued fraction representation of the 
ratio of Bessel functions; Steed's algorithm; stability analysis of recursion calculations; 
extinction, scattering, absorption, and backscatter efficiencies; the optical theorem; the 
extinction paradox; the asymmetry parameter; radiation pressure; Rayleigh scattering; 
approximations for the scattered field and efficiencies for large spheres; loci of the Mie 
scattering coefficients in the complex plane; Mie resonances; the Debye series; and the CAM 
method;  and calls attention of readers to some valuable references with which they may not be 
familiar. 
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1 DERIVATION OF EFFECTIVE BIANISOTROPIC

PARAMETERS FOR THREE-DIMENSIONAL PE-

RIODIC ARRAYS AND ARBITRARY β − ω.

The derivation follows that of Alù in [1]. The outline of the derivation is as follows. In
the first part of the derivation we obtain the equations (10) expressing the relationship
between the external fields, Eext and Hext, the average fields, Eav and Hav, and the average
polarization and magnetization, Pav and Mav. Following this we express Eext and Hext in
terms of Pav, and Mav leading to (17). Substitution of (17) in (10) then gives (18) expressing
Eav and Hav in terms of Pav and Mav. Equations (18) can then be inverted to give Pav and
Mav in terms of Eav and Hav. These expressions for Pav and Mav along with Eav and Hav

are then substituted in the bianisotropic constitutive relation equations, (19), which are
solved for the effective bianisotropic parameters by equating coefficients of Eav, Hav, and
their crossproducts with β̂.

We assume the presence of impressed electric and magnetic current sources, Jext(r) and
Kext(r), respectively, with the plane-wave dependence exp(iβ·r− iωt). The local microscopic
fields then satisfy the Maxwell equations

∇× E(r) = iωB(r) = iµ0[H(r) + M(r)] −Kext (1a)

∇× H(r) = −iωD(r) = −iω[ε0E(r) + P(r)] + Jext . (1b)

We can also define corresponding impressed fields with the same plane-wave dependence
satisfying the Maxwell equations

∇× Eext = iωµ0Hext − Kext (2a)

∇×Hext = −iωε0Eext + Jext (2b)

or
iβ ×Eext = iωµ0Hext − Kext (3a)

iβ × Hext = −iωε0Eext + Jext (3b)

We now define quantities averaged over a cubic unit cell with side d as follows:

Eav =
1

d3

∫

V

E(r)e−iβ · rdr (4)

and similarly for the average of all microscopic quantities. It is assumed that the induced
current, magnetization, and polarization vectors are all localized at the center point of the
unit cell. If they are not so localized the average must be defined more generally as done by
Alù in [1]. The effect of defining the integral with the multiplicative factor exp(−iβ · r) is to
cancel out the approximate exp(iβ ·r) resulting from the impressed sources with that spatial
dependence in (1). The averaged quantities defined as in (4) are then to be understood as
phasors with the implicit plane-wave dependence exp(iβ · r− ωt). From (1) we then obtain

iβ × Eav = iωµ0(Hav + Mav) − Kext (5a)
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iβ × Hav = −iω(ε0Eav + Pav) + Jext . (5b)

or equivalently with Dav = ε0Eav + Pav and Bav = µ0(Hav + Mav)

iβ × Eav = iωBav − Kext (6a)

iβ × Hav = −iωDav + Jext . (6b)

Substituting (2) in (5)

iβ × Eav = iωµ0(Hav + Mav) + iβ × Eext − iωµ0Hext (7a)

iβ × Hav = −iω(ε0Eav + Pav) + iβ × Hext + iωε0Eext (7b)

or
iβ × (Eav −Eext) = iωµ0(Hav − Hext) + iωµ0Mav (8a)

iβ × (Hav − Hext) = −iωε0(Eav −Eext) − iωPav (8b)

Now form the cross product of iβ with both sides of (8a) and substitute (8b) to obtain

[k2

0 + β × β ×](Eav − Eext) = −
k2

0

ε0

Pav + k0η0 β × Mav (9a)

and form the cross product of iβ with both sides of (8b) and substitute (8a) to obtain

[k2

0
+ β × β ×](Hav − Hext) = −k2

0
Mav −

k0

η0

β ×
Pav

ε0

(9b)

where η0 =
√

µ0/ε0 is the free-space impedance.
At this point in the derivation we make the simplifying assumption that β is orthogonal

to Eav and Eext, and to Hav and Hext. (Note that it follows from this assumption and (8)
that Eav, Eext, and Pav are orthogonal to Hav, Hext,and Mav, so that the fields are TEM.)
Simplifying the triple cross product and rearranging gives

Eav = Eext +
(k0d)2

(βd)2 − (k0d)2

Pav

ε0

−
(βd)(k0d)

(βd)2 − (k0d)2
η0 β̂ × Mav (10a)

and

Hav = Hext +
(k0d)2

(βd)2 − (k0d)2
Mav +

(βd)(k0d)

(βd)2 − (k0d)2

1

η0

β̂ ×
Pav

ε0

(10b)

We now express the external fields in terms of the average polarization and magnetization,
Pav and Mav. Since both Pav and Mav are phasors with the implicit plane-wave dependence
exp(iβ · r − iωt), they are both given by their values for the unit cell centered at the origin.
Let p0 and m0 be the electric and magnetic dipole moments, respectively, of the electric and
magnetic dipoles at the origin so that

Pav =
1

d3
p0 (11a)

and

Mav =
1

d3
m0 . (11b)
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Referring to [1, (79)] and using (11)

Pav

ε0

= −
6πibsc

1

(k0d)3
E0 (12a)

and similarly

Mav = −
6πia

1

(k0d)3
H0 (12b)

where bsc

1
and asc

1
are the Mie electric and magnetic dipole scatering coefficients,respectively,

and E0 and H0 are the electric and magnetic fields at the origin in the direction of the
electric and magnetic dipoles, respectively. Furthermore,

E0 = Eloc,0 + Eext (13a)

and
H0 = Hloc,0 + Hext (13b)

where Eloc,0 and Hloc,0 are the local electric and magnetic fields at the origin, respectively,
due to the contributions of all the dipoles of the array, electric and magnetic, both of which
contribute to both Eloc,0 and Hloc,0. Referring to [1, sec. 3.1],

Eloc,0 =
k3

0

4π

Σ1

(k0d)3

p0

ε0

+ η0

k3
0

4π

Σ2

(k0d)3
β̂ × m0 (14a)

and

Hloc,0 =
k3

0

4π

Σ1

(k0d)3
m0 −

1

η0

k3

0

4π

Σ2

(k0d)3
β̂ ×

p0

ε0

(14b)

where the interaction constant summations Σ1 and Σ2 are given by (46) and (47) derived in
[2]1 so that with (11)

Eloc,0 =
Σ1

4π

Pav

ε0

+ η0

Σ2

4π
β̂ ×Mav (15a)

and

Hloc,0 =
Σ1

4π
Mav −

1

η0

Σ2

4π
β̂ ×

Pav

ε0

. (15b)

Combining (15) with (12) and (13)

Pav

ε0

= −
6πibsc

1

(k0d)3

[

Σ1

4π

Pav

ε0

+ η0

Σ2

4π
β̂ × Mav + Eext

]

(16a)

and

Mav = −
6πiasc

1

(k0d)3

[

Σ1

4π
Mav −

1

η0

Σ2

4π
β̂ ×

Pav

ε0

+ Hext

]

. (16b)

1Although Σ1 and Σ2 are obtained in [2] in the course of deriving the eigenmode dispersion equation, they
are valid for any values of βd and k0d, whether or not βd and k0d are related by the eigenmode dispersion
equation.
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Solving (16) for Eext and Hext

Eext =

[

−
(k0d)3

6πibsc
1

−
Σ1

4π

]

Pav

ε0

− η0

Σ2

4π
β̂ ×Mav (17a)

and

Hext =

[

−
(k0d)3

6πiasc
1

−
Σ1

4π

]

Mav +
1

η0

Σ2

4π
β̂ ×

Pav

ε0

. (17b)

Substituting (17) in (10) we obtain

Eav =

[

−
(k0d)3

6πibsc
1

−
Σ1

4π
+

(k0d)2

(βd)2 − (k0d)2

]

Pav

ε0

−

[

Σ2

4π
+

(βd)(k0d)

(βd)2 − (k0d)2

]

η0 β̂ ×Mav (18a)

and

Hav =

[

−
(k0d)3

6πiasc
1

−
Σ1

4π
+

(k0d)2

(βd)2 − (k0d)2

]

Mav+

[

Σ2

4π
+

(βd)(k0d)

(βd)2 − (k0d)2

]

1

η0

β̂×
Pav

ε0

. (18b)

Next, form the cross products of β̂ with the left and right sides of (18a) and (18b), simplify
the triple cross products, and solve for Pav in terms of Eav and β̂ × Hav, and for Mav in
terms of Hav and β̂×Eav, and then substitute these expressions for Pav and Mav along with
Eav and Hav in the following constitutive equations defining the form of the bianisotropic
effective parameters:

Dav = ε0Eav + Pav = εeffEav − χeffβ̂ × Hav (19a)

Bav = µ0(Hav + Mav) = µeffHav + χeffβ̂ × Eav . (19b)

The resulting (19a) is then of the form AEav + B β̂ × Hav = 0 so that both A and B equal
zero since the equation holds for all Eav and β̂ × Hav. Similarly, the resulting (19b) is then
of the form C Hav + D β̂ × Eav = 0 so that both C and D equal zero since the equation
holds for all Hav and β̂ × Eav. These four relations yield, after some algebra, the following
expressions for the three bianisotropic effective relative parameters, valid for arbitrary β and
ω:

εr,eff ≡ εeff/ε0 = 1 +
a

ab − c2
(20a)

µr,eff ≡ µeff/µ0 = 1 +
b

ab− c2
(20b)

and
c0χeff =

c

ab− c2
(20c)

where

a = −
(k0d)3

6πiasc
1

−
Σ1

4π
+

(k0d)2

(βd)2 − (k0d)2
(21a)

b = −
(k0d)3

6πibsc
1

−
Σ1

4π
+

(k0d)2

(βd)2 − (k0d)2
(21b)
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and

c = −
Σ2

4π
−

(βd)(k0d

(βd)2 − (k0d)2
. (21c)

It is important to note that all the basic equations of this derivation, in particular (18)
and (19) leading to the expressions (20) and (21) for the bianisotropic effective parameters,
are valid even when the external sources and fields are zero. Thus (20) and (21) give the bian-
isotropic effective parameters not only for arbitrary β − ω but for the source-free eigenmode
case as well. There is, however, one essential difference between the arbitrary β − ω bian-
isotropic parameters and the source-free eigenmode bianisotropic parameters. For arbitrary
β−ω, β and k0 that appear explicitly in (21) as well as in the interaction summations Σ1 and
Σ2 given by (46) and (47), are completely independent of one another, and the bianisotropic
effective parameter expressions are valid for any β and any k0. In the source-free eigenmode
case, however, β and k0 are not independent but must be related by the dispersion equation
(25). In the next section we will see that when explicit use is made of the dispersion equation
the expressions for the bianisotropic effective parameters become much simpler.

2 BIANISOTROPIC PARAMETERS FOR THREE-

DIMENSIONAL PERIODIC ARRAYS WITH βd

THE SOLUTION OF THE SOURCE-FREE DIS-

PERSION EQUATION

In this section we show that the expressions (20) and (21) for the arbitrary β−ω bianisotropic
effective relative parameters obtained in Section 1 take a much simpler form in the eigenmode
case when βd and k0d are related by the source-free dispersion equation. We first write the
expressions (21) in the form

a =
1

4π

(k0d)3 − SmΣ1

Sm

+
1

R2 − 1
(22a)

b =
1

4π

(k0d)3 − SeΣ1

Sm

+
1

R2 − 1
(22b)

and

c = −
Σ2

4π
−

R

R2 − 1
(22c)

where

Sm = −
3

2
i asc

1 (23a)

Se = −
3

2
i bsc

1 (23b)

and

R =
βd

k0d
. (24)
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From [1, (53)], the dispersion equation for the eigenmode case is

−q =
(k0d)3 − SeΣ1

SeΣ2

=
SmΣ2

(k0d)3 − SmΣ1

. (25)

so that
(k0d)3 − SeΣ1 = −qSeΣ2 (26a)

and

(k0d)3 − SmΣ1 = −
SmΣ2

q
. (26b)

Substituting (26) in (22) gives

a = −
Σ2

4πq
+

1

R2 − 1
(27a)

b = −
qΣ2

4π
+

1

R2 − 1
(27b)

and

c = −
Σ2

4π
−

R

R2 − 1
. (27c)

so that

ab − c2 = −
1

(R2 − 1)q

[

q +
Σ2

4π

(

q2 + 1 + 2qR
)

]

. (28)

Substitution of (27) and (28) in (20) then gives the expressions for the bianisotropic relative
effective parameters in the eigenmode case:

εr,eff ≡ εeff/ε0 =

Σ2

4π
(R + q)2

Σ2

4π
[(R + q)2 − (R2 − 1)] + q

(29a)

µr,eff ≡ µeff/µ0 =

Σ2

4π
(1 + Rq)2

Σ2

4π
[(R + q)2 − (R2 − 1)] + q

(29b)

c0χeff =

q

[

Σ2

4π
(R2 − 1) + R)

]

Σ2

4π
[(R + q)2 − (R2 − 1)] + q

(29c)

and

1 −
c0χeff
R

=

1

R

Σ2

4π
(R + q)(1 + Rq)

Σ2

4π
[(R+ q)2 − (R2 − 1)] + q

(29d)

where (29d) will be used in the sequel. Alternatively, (29a) and (29b) can be written in the
form

εeff

ε0

− 1 =

Σ2

4π
(R2 − 1) − q

Σ2

4π
[(R + q)2 − (R2 − 1)] + q

(30a)
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and

µeff

µ0

− 1 =

Σ2

4π
q2(R2 − 1) − q

Σ2

4π
[(R + q)2 − (R2 − 1)] + q

(30b)

3 ANISOTROPIC RELATIVE PARAMETERS FOR

PERIODIC ARRAY IN THE EIGENMODE CASE

In this section we show that in the eigenmode case, the three bianisotropic effective param-
eters given by (29) in Section 2 are equivalent to the two anisotropic effective parameters
given by [2, (68)]. To show this, substitute the second bianisotropic constitutive equation,
(19b), in the source-free Maxwell equation (see (6a) with Kext = 0)

∇× Eav = −
∂Bav

∂t
= iωBav (31)

to obtain

∇× Eav = iβ × Eav = iωµ0µr,effHav +
iωχeff

iβ
iβ × Eav (32)

from which we obtain

∇×Eav = iβ × Eav = iωµ0

µr,eff

1 −
c0χeff

R

Hav . (33)

Then, with (29)
∇× Eav = iβ × Eav = iωµ0µr,a Eav (34)

where the effective anisotropic relative permeability, denoted by µr,a, is given by

µr,a =
µr,eff

1 −
c0χeff

R

=
R(1 + R q)

R + q
(35)

in agreement with [1, (68)].
Similarly, substitute the first bianisotropic constutitve equation, (19a), in the source-free

Maxwell equation (see (6b) with Jext = 0)

∇× Hav =
∂Dav

∂t
= −iωDav (36)

to obtain

∇× Hav = iβ × Hav = −iωε0εr,effEav −
iωχeff

iβ
iβ × Hav (37)

from which we obtain

∇× Hav = iβ × Hav = −iωε0

εr,eff

1 −
c0χeff

R

Hav . (38)
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Then, with (29)
∇× Hav = iβ × Hav = −iωε0εr,a Hav (39)

where the effective anisotropic relative permittivity, denoted by εr,a, is given by

εr,a =
εr,eff

1 −
c0χeff

R

=
R(R + q)

1 + R q
(40)

in agreement with [1, (68)].

4 A RELATION BETWEEN THE BIANISOTROPIC

AND ANISOTROPIC RELATIVE PARAMETERS

FOR PERIODIC ARRAY IN THE EIGENMODE

CASE

In this section we derive a relation between the anisotropic and bianisotropic effective pa-
rameters in the eigenmode case. First, equate the anisotropic and bianisotropic expressions
for Mav (see [1, (59)] and (19)):

Mav = (µr,a − 1)Hav = (µr,b − 1)Hav +
c0χb

c0µ0

β̂ ×Eav (41)

where we have let µr,b = µr,eff and χb = χeff . Similarly, equate the anisotropic and bian-
isotropic expressions for Pav:

Pav = (εr,a − 1)ε0Eav = (εr,b − 1)ε0Eav −
c0χb

c0

β̂ × Hav (42)

where we have let εr,b = εr,eff. From (41)

(µr,a − µr,b)β̂ × Hav = −
c0χb

c0µ0

Eav (43)

so that from (42) and (43)

(εr,a − εr,b)ε0Eav = −
c0χb

c0

[

−
c0χb

c0µ0

1

µr,a − µr,b

]

Eav . (44)

But then

(εr,a − εr,b)(µr,a − µr,b) =
(c0χb)

2

c2
0ε0µ0

= (c0χb)
2 . (45)

Equation (4
¯
2) shows that in the eigenmode case the bianisotropic parameter χ is a mea-

sure of the difference between the anisotropic and bianisotropic effective permittivity and
permeability.
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5 EXPRESSIONS FOR INTERACTION CONSTANT

SUMMATIONS

From [2, (47),(48)]

Σ1 = −2πk0d
sin k0d

cosβd − cos k0d

− 4π
∞

∑

n=1

cos(nβd)
∞

∑

m=−∞
(m,l) 6=

∞
∑

l=−∞
(0,0)

[

(2πm)2 − (k0d)2
] e−n

√

(2π)2(m2 + l2) − (k0d)2

√

(2π)2(m2 + l2) − (k0d)2

− 2π(k0d)2

∞
∑

l=1

Y0(l k0d) − 8
∞

∑

l=1

∞
∑

m=1

[

(2πm)2 − (k0d)2
]

K0

(

l
√

(2πm)2 − (k0d)2

)

+ 4 k0d Cl2(k0d) + 4 Cl3(k0d) − i
2

3
(k0d)3 (46)

and

Σ2 = 2π k0d
sin βd

cos βd− cos k0d

− 4π k0d

∞
∑

n=1

sin(nβd)

∞
∑

m=−∞
(m,l) 6=

∞
∑

l=−∞
(0,0)

e−n
√

(2π)2(m2 + l2) − (k0d)2

. (47)

In (46) Y0 is the Bessel function of the second kind and K0 is the modified Bessel function.
The Clausen functions Cl2(k0d) and Cl3(k0d) are defined and given by [3]

Cl2(a) ≡

∞
∑

n=1

sinna

n2
=

1

2i

(

Li2(e
ia) − Li2(e

−ia)
)

, 0 < a ≤ π (48a)

Cl2(a) = −Cl2(2π − a), π ≤ a < 2π (48b)

Cl3(a) ≡
∞

∑

n=1

cos na

n3
=

1

2

(

Li3(e
ia) + Li3(e

−ia)
)

, 0 < a < π (48c)

Cl3(a) = Cl3(2π − a), π ≤ a < 2π (48d)

with the dilogarithm and trilogarithm functions, Li2 and Li3, given by

LiN(z) =
∞

∑

k=1

zk

kN
, |z| < 1 (49)

which can be analytically continued into the complex z plane by means of the iterative
equations

LiN (z) =

z
∫

0

LiN−1(t)

t
dt (50a)
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and
Li1(z) = − ln(1 − z) . (50b)

Efficient algorithms exist for calculating LiN (z) for any z, real or complex (see, for example,
[4]). The series ΣY0(lk0d) in Σ1 is evaluated by [5, eq. 8.522(3)]

∞
∑

l=1

Y0(lk0d) = −
1

π

(

γ + ln
k0d

4π

)

− 2

∞
∑

l=1

[

1
√

(2πl)2 − (k0d)2
−

1

2πl

]

, 0 < k0d < 2π (51)

with γ the Euler constant
γ = 0.5772156649 · · · . (52)

Truncating the series on the RHS of (51) at l = 10 gives sufficient accuracy for our purposes.
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6. Quantization Lobe Suppression for Arrays of Subarrays

Robert J. Mailloux 

6.1 Introduction 
Wideband, multifunction phased array antennas are a key element of future defense strategies for 
providing the warfighter with situational awareness, capable weapons, C4ISR systems and 
enhanced ESM capabilities.  Such advanced array antennas are expensive and a challenge to the 
state of today's technology. Cost reduction techniques are based on reducing the number of array 
elements and/or controls by tailoring the array specifically to the application whenever this can 
be done. This cost reduction invariably causes increased sidelobes in the radiation pattern. The 
work during this grant contract presented three approaches to reduce the pattern distortion caused 
by these techniques. 

Certain large arrays with special requirements can be too costly to build by conventional means. 
These include ‘Limited field of view‘(LFOV) arrays that need only scan over a small sector (±10 
degrees or so), and wide band arrays that require time delay scanning. For arrays that scan only a 
limited field of view it is possible to group a number of elements into subarrays and use a single 
phase shifter for each subarray. Similarly, wide band arrays can operate with fewer time delay 
units by grouping elements into subarrays controlled by phase shifters, and use time delay units 
at the input to each subarray. Unfortunately either action causes increased sidelobes, called 
quantization lobes, and in the LFOV case, may reduce system bandwidth. 

Since quantization lobes are caused by the array periodicity, there are only two ways to reduce 
them. One can destroy the periodicity, or suppress the lobes using some sort of angular filter. 

6.2 Polyomino Subarraying for Two Dimensional Arrays 
Studies conducted during this contract period included three main topics related to improving the 
radiation characteristics of arrays with a reduced number of elements or element controls.  A 
solution to the quantization lobe problem for a two dimensional aperture array has been to use 
irregular shaped polyomino subarrays instead of the usual rectangular subarrays (1,2). Most of 
our studies of wide band arrays dealt with eight element subarrays that use 1/8 the number of 
time delay units, but we have also studied 4 and 16 element subarrays. This method has 
advantages over the several newly proposed uses of classic tilings such as Penrose, Danzer , 
Pinwheel or other complex lattices as array subarrays (3,4) in that with polyomino subarrays one 
can use a single type of subarray in an array, and these can be arranged to completely tile the 
surface, leaving neither gaps nor overlapped areas. This means that the polyomino based array 
can have full gain and no sidelobe growth at center frequency. A further disadvantage of the 
classic tiles is that they have higher order periodicities that limit their use for low sidelobe arrays 
(4).  That issue has not been addressed in publications. 

 The first part of our program extended the previous work on irregular subarrays made of 
polyomino tiles, and analyzed the mutual interaction of array elements subject to tile groupings. 
The analysis used an impedance matrix and scattering matrix model to evaluate the substantial 
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error in the induced currents at the array elements and its resulting radiation pattern sidelobes. 
The array network model was then used to evaluate new sets of driving voltages that 
compensated for the distortion and led to the predicted low sidelobe patterns. This work was 
published in the Antennas and Wireless Propagation Letters (7). Other extensions of the 
polyomino studies were done in collaboration with Professor Rocca and colleagues from the 
University of Tento (8), who used our work and our software as the basis for an optimization 
program using genetic algorithms. This method did produce further reductions in sidelobe 
patterns and showed the potential of our approach to eliminate quantization lobes while 
obtaining nearly full array gain. 

Our irregular polyomino studies have been well received, and led to the co-organization and co-
chairing of a special session on arrays with irregular lattices and overlapped subarrays at the 
IEEE 2010 International Symposium on Phased Arrays, an invitation to co-edit a special edition 
of the AP-S Transactions on “ Innovative Phased Array Antennas Based on Non-Regular 
Lattices and Overlapped Subarrays”(9) in April 2014 (with Giovanni Toso of European Space 
Agency),  and further collaboration with researchers at Univ. of Trento(10) and the University of 
Pittsburgh.     

6.3 Column Displacement in Arrays with One Plane of Limited Scan 
The second major effort arose in response to the AFRL Sensor Division multifunction array 
project, wherein the group, headed by Dr. Tomasic had proposed an array with limited elevation 
scan and wide azimuth scan. To build a cost-effective array the group chose to have elevation 
columns arranged in subarrays with no phase shifters across each subarray but using time delays 
at each subarray input. The result was to produce very large elevation sidelobes for all but a few 
degrees of elevation scan. To avoid this problem we proposed to study random displacements of 
the columns in order to break up the periodicity that led to quantization lobes. The technique was 
successful and we were able to demonstrate from 12 to 16 dB reduction in sidelobes, depending 
upon array size and configuration. We also explored all other array parameters, and presented 
tabulated data showing trends as a function or scan limits and array dimensions in both planes. 
We then conducted a study of the wide-band properties of arrays with displaced columns and 
proved for the first time that the technique imposed no additional bandwidth constraints. The 
bandwidth properties of this procedure are included in a paper that will be presented at the 2015 
IEEE International Symposium on Antennas and Propagation (11). 

6.4 Array Element Pattern Control with Layered Dielectric Filters for LFOV Arrays 
Arrays that scan over a limited sector of space        θmax   ≤10 or so, can achieve significant cost 

savings by spacing the elements further apart than a half wavelength, the normal spacing for 
wide scan arrays. This results in unwanted diffraction peaks, called grating lobes that can radiate 
within the scan plane. In addition to the other ways to suppress these lobes, one can build 
rejection filters from multiple layers of dielectric as a radome in front of the array.  
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This effort arose partly to study the use of negative epsilon, negative mu metamaterials as 
radome cover layers or filters in an array. The goal of the study was to minimize the number of 
array elements by using large array spacing that would produce quantization lobes, and then 
reduce or eliminate these unwanted lobes by building an angular filter of layered dielectrics. We 
had previously worked in this area but never to study the interaction of dielectric layers with an 
actual array. The analysis considered an infinite array of infinitely long wires carrying impressed 
currents with period and phase increments to form a scanned beam in one plane and broadside in 
the other. We derived a Green’s function for this configuration (Fig.1) including a back plane 
for unidirectional radiation, and used up to 4 dielectric layers to produce an angular filter that 
would alter the element pattern of the resulting radiation. We developed element patterns that 
modeled the behavior of individual elements in this environment and from them generated the 
performance of a finite array of elements.  

Figure 1. Array configuration of infinite array of wires with zero thickness and uniform current 
in y-direction, with back plane and multilayer angular filter to suppress quantization lobes 

To investigate the behavior we chose an infinite array of vertical wires as sources at locations xn 
and progressive phase across the array with current 0( ) (0) xjknd u

y n yI x I e−= . The current is 

constant in the  ‘y’ direction and the wires radiate waves that are reflected by the back plate and 
travel in the z direction through  an arrangement of multiple dielectric layers.  The wires are 
assumed infinitesimally thin. The parameter u0 is the sine of the scan angle. 

We derived a Green’s function based on a component of vector potential. The primary field is a 
component of vector potential for an infinite array or wires carrying a progressive phase of 
current. Summed over all currents using the Poisson summation formula has the form:  

0( , ; ', ') ( ) ( )
4y y
jA x z x z I x G pµ
p

−
= ; where  ( )( )
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and where 2 2( )p p p
x

pk u and K k
d
λβ β′= + = −          

This primary solution is a set of waves, most cut off, and is a solution to the infinite set of 
radiating wires with no other boundaries. The complete solution accounts for radiation into the 
system of dielectric layers and a backplate as in Figure 1. The dielectric and metamaterials are 
taken to have real ε and μ.  

The electric and magnetic fields are given in terms of the potential functions 
E j A and B xAω= − = ∇ . 

The multilayered dielectric radome is positioned a distance ‘t0‘ in front of the wire sources, and a 
perfectly conducting  backplane is placed the distance ‘d’ behind the wires as shown in figure 1. 
The multilayer radome satisfies boundary conditions at each layer surface for lossless dielectric 
and magnetic material layers, including double negative metamaterials. We found that as long as 
the mu and epsilon are real double positive or double negative, the filter performance of the 
material and metamaterial filters is the same. The radome parameters are chosen to provide a 
three layer angular filter with a Chebyshev pass band and are written in terms of a chain matrix 
based on the scattering properties of the individual slabs. These calculations result in a composite 
reflection coefficient Γ(p) and transmission coefficient T(p) through the multilayer system. 

In the region between the backplane and material layers the potential satisfies the homogeneous 
Helmholtz equation, and the secondary solution has the form: 

( )
1 2( , ; ', ') ( ( ) ( ))p p pj x x jK z jK z

y
px

jA x z x z e e C p e C p
d

βp ′− − −−′ = +∑     for all p modes. 

The total field Green’s function A+A' is forced to satisfy the boundary condition that the 
tangential field be zero at the backplane z = - d and that the reflection coefficient at z=t0 be that 
of the multilayered structure, which allows the multilayer section to be handled separately. This 
gives C1 and C2 for all p modes as a function of array scan angle. 
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and  Γp  is the reflection coefficient of the p’th mode  seen at the rear face of the multilayered 
filter. 

The “realized” array element pattern is obtained from the infinite array solution by sampling the 
peak of the infinite array beam at all scan angles. This envelope is the pattern of any single 
element in the infinite array with all other elements terminated in matched loads. The multilayer 
filter significantly narrows this pattern and suppresses the quantization lobe radiation that is 
outside of the filter passband.   

Now having the “realized” element pattern we can sum a finite number of these patterns to give 
the radiation pattern of the finite array. The array is now modeled as a finite number of elements 
within the environment of an infinite array that has all other elements terminated in matched 
loads. The model includes mutual coupling between all including the terminated elements. 

Figure 2 shows an example of a 16 element uniformly illuminated array with element spacing 1.3 
wavelengths, scanned to -10 degrees. In this example the wavelength is 0.3 cm. The filtering 
action of the three layer medium suppresses the two unwanted lobes at u = -9428 and 0.5956 by 
about 23 dB for at 0.5946 and over 50 dB at -.9428. The analysis includes all wire, backplane 
and multilayer interactions.  

This scheme provides good pattern control for the limited field of view case, wherein the desired 
radiation scan region is fixed in space. The 1.3 wavelength spacing allows for a factor between 2 
and 3 reduction in elements and phase controls, or accordingly larger for two dimensional arrays. 

Figure 2. Comparison of array factor without and with multilayer filter 
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7. Asymmetric Phased Array Elements; Current Modes for Efficient Numerical Phased

Array Design

7.1 Asymmetric Phased Array Elements 

This topic was based on the novel idea that asymmetric array elements would lead to improved 

scan performance, since they do not support the bandwidth-limiting resonances of symmetric 

elements [1].  

Phased arrays are normally designed with symmetric array elements, since the desired scan range 

is symmetric with respect to array broadside. However, we showed analytically that symmetric 

scan performance, i.e. the active reflection coefficient and gain, is maintained even with 

asymmetric elements, assuming a rectangular array lattice and no grating lobes. This was a new, 

simpler derivation than given in [2]. 

To compare symmetric and asymmetric phased array elements we considered planar 

‘fragmented’ patch elements [3] in an infinite periodic array.  The patch is resolved into a 

number of pixels, which can be either conducting or non-conducting, and a genetic algorithm 

optimizes the distribution of pixels with respect to array bandwidth and scan range.  Dielectric 

sub- and superstrates and a realistic feed were included in the array model.  Since the numerical 

optimizations do not always converge to the same result, we ran series of 10 cases each of 

patches with full E- and H-plane symmetry, with H-plane symmetry only, and with neither E- 

nor H-plane symmetry. For the same bandwidth and scan range, the asymmetric elements gave 

roughly a 3 dB lower reflection coefficients than the symmetric elements. 

The numerical results confirm our initial view: asymmetric patches do indeed offer wider 

bandwidths than symmetric patches. The main benefits are obtained from E-plane asymmetry.  

Patches with additional H-plane asymmetry show no further bandwidth improvement. The 

physical reason is presumably that the mutual coupling is so much stronger in the E-plane, and 

therefore the induced odd (anti-symmetric) mode plays a more important role for E-plane 

scanning than for H-plane scanning. 

The alternative of symmetric patch elements with asymmetric feeds was also explored but was 

not successful. 

It is reasonable to expect that spoiling the symmetry is a general technique, which would lead to 

improved bandwidth for other types of array elements as well. 

7.2 Current Modes for Efficient Numerical Phased Array Design 

7.2.1 Introduction 
The description of the current on a phased array element of complex shape typically requires on 

the order of 100-1000 subdomain basis functions and thus the analysis of a finite array of (say) 

100 elements leads to the order of 10,000 -100,000 unknowns.  This may cause inconveniently 

long computer times, particularly for use in an iterative design loop, and makes a reduction of the 

number of unknowns desirable. 

Most phased array elements are small in terms of wavelength and often behave like a resonator. 

On physical grounds, therefore, it may be expected that the scan-dependent element currents can 

be closely approximated by only a few current modes (or global basis functions). This 

observation motivated our search for `custom modes' for arbitrarily shaped array elements, and 

lead to a computational technique based on the Karhunen-Loeve theorem [4], which yields the 

Hans Steyskal
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optimum basis in the sense that it minimizes the total mean squared error.  We showed these 

modes to efficiently approximate several given, exact current distributions on elements at various 

locations in finite arrays and at various scan angles [5]. 

However, our ultimate intent was to employ these modes for the analysis of the currents on an 

entire finite array, where they would potentially reduce the number of unknowns by one to two 

orders of magnitude. This will be demonstrated in the future paper [6]. 

7.2.2 Derivation of the Current Modes 

The current modes are obtained from the current distribution on an element in an infinite 

array in the frequency domain. We presently consider planar patch elements with the surface 

current j(x,y,u,v), where x,y denote the spatial variables  and  u,v the scan variables. Applying 

the Karhunen-Loeve expansion to j would yield the desired set of current modes. We modify 

the approach for the boundary-element (or MoM) case where the continuous spatial current 

distribution, j, is approximated by a set of finite vectors i. This leads to a matrix C, composed 

by these vectors, from which the corresponding current modes (global basis functions) are 

obtained by SVD decomposition.  

7.2.3 Example 

As an illustrative simple example, we consider here a square patch array over a ground plane 

illuminated by a plane wave. The patches were subdivided into triangular subdomains, see 

Figure 1, and the currents were computed in terms rooftop RWG basis functions [7], leading to a 

current vector i with M = 115 discrete components per element.  

                                     
Figure 1.  (a) Square array with ground plane and (b) square patch element with triangular 

subdomains.  Element spacing d=0.56λ, patch size l = 0.467λ, height over ground plane h=0.07λ  

The modes are derived from the element currents in the corresponding infinite array. We 

computed the currents for 19 incidence angles, uniformly spaced in the xz-plane, for both the TE 

and TM cases, constructed the corresponding matrix C and determined its SVD decomposition 

C=USV+  
[8]. The first 12 singular values s(n) are shown in Figure 2. Note that they drop off 

very rapidly, indicating that the currents can be well approximated by only a few ‘global modes’ 

represented by the column vectors of the matrix U. 
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                              Figure 2. The first 12 singular values of the element current matrix C for  

                                         an infinite array with elements shown in Figure 1 

  

 

7.2.4 Array Current Expansion in Terms of Global Modes  

For the finite array, with N elements and M subdomains per element we have the general 

equation 

 

     Ax=b      (1) 

                                         

where matrix A is symmetric with dim(A )=MN x MN,  and source vector b is known with  

dim(b)=MN, and the current vector x is unknown, with dim(x)=MN, i.e. an equation system 

with MN unknowns. 

 

We seek an approximate solution  

     
1

M N

n n


 = ex      (2) 

  

which uses only MN M N  basis functions en per element , i.e. a total of M N  basis functions 

with unknown amplitudes n .  Substituting x  into  (1) leads to  

 

                   =x bA B     (3) 

 

where now dim(B)= MN M N , so that (3) represents an overdetermined system of equations.  

We obtain M  by solving the  {n}1
M’N 

 in the LMS sense from  

 

                                                                     | B -b|
2 = min.     (4) 

 

 

7.2.5 Results 

We compared the approximate solution of (4) with the exact solution of (1), assuming a 5x5 

array, and using numbers of  modes ranging  from  M =1 to 10. A typical result for the relative 

error is shown in Figure 3, where x  and ( )x m,n  denote the exact and the approximate total 
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currents on the array, respectively. The  normalized error |A( x - x )| / |b| 
 
 decreases with 

increasing number of modes – as expected.  

 

 

                                       
                           

                         Figure 3. Relative solution error  |A( x - x )| / |b| vs. number of modes M .  

                         ( 5x5 array, incidence angle u=0.2 in the xz-plane, TM polarisation). 

  

To check the individual element currents and their dependence on location in the array we 

evaluated the currents ( )x m,n and ( )x m,n , where m and n denote the element location in the 

5x5 square array. Their norms  | ( )x m,n | and  and rel. current errors | ( )x m,n  - ( )x m,n |/ ( )x m,n

are shown in Table 1 below,  based on 10 modes. We define the norm | ( )x m,n |  as the sum of 

the current magnitudes over all individual triangular subdomains of the patch. 

    

Table 1    Element currents |x(m,n)| for 5x5 array 

      0.202    0.180    0.166    0.159    0.222 

      0.189    0.170    0.158    0.150    0.206 

       0.180    0.158    0.146    0.140    0.196 

     0.189    0.170    0.158    0.150    0.206 

                 0.203    0.181    0.166    0.160    0.222 

   

           Rel.  current errors |x(m,n) - x’(m,n)|/|x(m,n) 

       0.022    0.029    0.028    0.029    0.020                                                   

      0.008    0.014    0.010    0.013    0.007 

      0.007    0.008    0.006    0.009    0.006 

      0.008    0.012    0.011    0.012    0.008 

       0.021    0.028    0.028    0.029    0.020 

 

In summary this example shows that we reduced the number  of unknows by a factor ≈12, while 

maintaining a rel. current error  < 3%.  

Apparently the modal expansion converges well also for elements on the array periphery, 

even though the modes are derived from the infinite array element. There is a small  

asymmetry between the computed currents on the upper and lower half of the array, which 

may be due to the nonsymmetric triangular subdomains.  
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7.2.6 Remaing Work 

Remaining work includes extending the technique to an actual array antenna, presenting this 

study at the URSI conference July 2015 (see Section 7.5 Appendix), documenting it in an IEEE 

T-AP paper, and transitioning the approach to the MathWorks company, who are interested in 

including it in one of their MATLAB Toolboxes.  
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7.5 Appendix 
 

ANALYSIS OF FINITE ARRAYS WITH ELEMENTS OF COMPLEX SHAPE 
   

                  Hans Steyskal                                Sergey Makarov 
      ARCON Corporation                      Worcester Polytechnic Institute  
      Waltham, MA                                 Worcester, MA 
      USA                                               USA 
      Email: steyskal@arcon.com 
 
 

    The description of the current on a phased array element of complex shape 
typically requires on the order of 100 subdomain basis functions and thus the 
analysis of a finite array of (say) 100 elements leads to the order of 10,000 
unknowns.  This may cause inconveniently long computer times, particularly for 
use in an iterative design loop, and makes a reduction of the number of 
unknowns desirable. 
 
    Most phased array elements are small in terms of wavelength and often 
behave like a resonator. On physical grounds, therefore, it may be expected 
that the scan-dependent element currents can be closely approximated by only 
a few modes. This observation motivated our search for `custom modes' for 
arbitrarily shaped array elements, and lead to a computational technique based 
on the Karhunen-Loeve expansion. We showed these modes to efficiently 
approximate several given, exact current distributions on elements at various 
locations in a finite array and at various scan angles [H. Steyskal, J. Herd, 
PIERS, 1998]. However, our ultimate intent was to employ these modes for the 
analysis of the currents on an entire finite array, where they would potentially 
reduce the number of unknowns by one or two orders of magnitude. This is 
demonstrated in the present paper. 
 
    The custom modes are obtained from the current distribution on an element 
in an infinite array. We presently consider planar patch elements. Using a 
method of moments analysis we determine the surface current j(x,y,u,v) as a 
function of the spatial variables x,y and the scan variables u,v. Applying the 
Karhunen-Loeve expansion to j we obtain the desired set of modes { fn }, which 
are functions of x,y only. Finally, in the finite array analysis, each element 
current is approximated by a set of Mc such modes with unknown amplitudes, 
rather than by a set of M subdomain currents with unknown amplitudes. Since 
Mc << M this leads to a much smaller system of equations and to considerable 
computational savings.  
 

  We apply the modal expansion to the currents on several finite arrays, and 
show that it converges well also for elements on the array periphery, even 
though the modes are derived from the infinite array element. 
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Compressive Sensing   for Detection    of  Multipath     Spread  
Sources     with  Sparse   Arrays


John K. Schindler


Introduction


We investigate compressive sensing (CS) as an approach to processing signals from a sparse, receive array
with the objective of assessing CS capabilities for enhanced accuracy estimates of the angle of arrival of
multipath spread, received plane wave signals. Compressive sensing is an approach for solving a set of
under determined linear equations with the assumption that solutions have only a few non-zero or
dominant values when the remaining values are zero or small. Specialized algorithms for the solution to the
under determined equations are structured to emphasize the few dominant values of the solution [1]. The
processing of signals from sparse, receive arrays is a natural application of CS when (a) there are only a
few elements in the array providing only a few observations expressed as a linear combination of the
received plane wave signal amplitudes and (b) there are a large number of possible angles of arrival of
signals but only a few signals are actually present. The application to sparse arrays is important since the
larger aperture of the sparse array provides superior angular resolution and better estimates of the angle of
arrival of received plane wave signals. The generally poor sidelobe structure of the highly thinned arrays
may be compensated by the application of compressive sensing. Here we extend a previous study [2] which
examined signal detection and resolution of CS applied to a sparse array as a function of received signal to
noise. In this paper, we consider the case when signals have a spatial, angle of arrival distribution due to
multipath scattering of the source signal. This multipath case violates the CS assumption of only a few
signal sources present in the solution space and we investigate the detectability of a source signal when
such multipath spread signals are present. Multipath spread sources can result from a ground based
primary communication source and bistatic scattering from terrain or building re�ectors near the source.
Within the radar community, target scattering is sometimes characterized by a single dominant scattering
center along with a collection of small scattering surfaces on the target at di�ering viewing angles from the
dominant scattering center.


Formulation


For purposes of this analysis, we consider a collection of Na planar, receive apertures located randomly and
tangent to a large curved surface as shown in Figure 1. While the receive apertures are randomly located,
it is assumed that their positions are surveyed and are accurately known after positioning. Each of the
receive apertures is a digitally beamformed array with the ability to scan the main beam of the array
pattern over a large angular sector within the �eld of view of the array. Each of the digitally beamformed
arrays is assumed to be scanned to a common direction. The system is linear so that the received signal at
each aperture is a linear combination of the signal amplitudes from each of the external plane wave
excitations. As indicated in Figure 1, there are Ns possible angles of arrival of plane waves. We can write
the signals at the outputs of the receive apertures as


ea = Γ s,


where the Ns x 1 vector, s, represents the plane wave complex amplitudes from each angle of arrival,
sn, n = 1, 2, . . . , Ns, the Na x 1 vector, ea, represents the complex valued receive signals at the aperture
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2.5 Appendices


Appendix 2.5.1







Na planar phased arrays 
randomly positioned


.
 
.
 
.


.
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.


Ns plane waves distributed 
uniformly over a angular 


sector


Figure 1: Na planar phased arrays located randomly on a circular arc excited by a spectrum of Ns plane
waves distributed uniformly in an angular sector.


outputs, and the Na x Ns sensor matrix, Γ, with elements γi,m, represents the response at receive aperture
i due to plane wave m. Here


γi,m = pi(θm − θi)ejkri(θm),


where pi is the complex valued pattern of the ithaperture for a plane wave arriving at angle θm when the
aperture is located at an angle θi and ri is the distance from a common origin to the ith aperture phase
center along a path from the mth plane wave excitation. In this expression, k = 2π/λ where λ is the
wavelength of the monochromatic plane wave excitation.


An objective of this work is to design a beamforming matrix, B, to estimate the complex amplitudes of the
incident plane waves, ŝ, as a linear combination of the Na receive signals. That is, we require the Ns x Na
matrix B so that


ŝ = B Γ s = D s =


Ns∑
n=1


dnsn, (1)


where the Ns x 1 vectors, dn, are the columns of the matrix D = B Γ. Compressive sensing requires that
these vectors be as nearly orthogonal as possible, given, in our case, the constraints implicit in the sensor
matrix, Γ. This orthogonality requirement demands that DHD ∼= I, or as nearly diagonal as possible. Here
DH denotes the Hermitian or conjugate transpose of D. Abolghasemi et. al. [3] describe an iterative,
numerical approach for developing the matrix D.


The beamforming matrix can be found from the solution to


D̃ = B Γ , (2)


with D̃ denoting the matrix with near orthogonal column vectors d̃n. Our previous work [2] studied an
approach for developing the beamforming matrix and the resultant near orthogonality of these column
vectors.


Analysis


For the sparse array con�guration shown in Figure 1, we assume that Na = 5 sparse array elements are
located at random but known positions on one quarter of a circular arc of radius ρ = 500λ, where λ is the
wavelength of the received signal. Each element array is itself a fully �lled phased array which is 32λ in
size and located in the common plane of the arriving signals. We use the terminology �element array� to
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denote that each �element� of the sparse array is itself a phased array. The element arrays occupy
approximately 20% of the available surface length. Each element array is digitally beamformed with a
maximum gain pattern. The main beam of each element array is pointed in the common angular direction
assumed for the received plane wave if that direction is within the �eld of view of the element array.


For purposes of this analysis, the source exciting the sparse array consists of an angular spectrum of
monochromatic, multipath plane waves and a stronger, primary monochromatic plane wave within the
angular region occupied by the multipath spectrum. Physically, this source can result from a ground based
primary communication source and bistatic scattering from ground based or building re�ectors near the
source. Within the radar community, target scattering is sometimes characterized by a single dominant
scattering center along with a collection of small scattering surfaces on the target at di�ering viewing
angles from the dominant scattering center.


We use a quantitative characterization of the distribution of power with angle of arrival of signals from a
ground based communication source with ground multipath scattering adapted from Khan [6]. Bistatic
scattering from locations con�ned to an elliptical region near the primary source contribute to an angular
spectrum of multipath signals as illustrated in Figure 2. The total received power at an angle relative to
the primary source is found by non-coherently integrating the power bistatic scattered along a diverging
ray tube centered at the relative angle. The relative bistatic scattering power from a unit area is considered
to be constant throughout the elliptical scattering region. In general, the multipath scattered power is
distributed in both angle of arrival and time delay of arrival. However, since we are considering only
mono-chromatic (or narrowband) signals, the distribution in time delay is unimportant and the power
integration is taken over the total radial region contained in the multipath ellipse.


Local Scattering Region


Primary Source


Sparse Array


Angular Spectral Width of Multipath


Non-coherent Superposition 
of Bistatic Scattering Power 
Provides Multipath Power


Figure 2: Bistatic scattering model to provide the angular power spectral density of multipath interference
from a ground based primary source after Khan [6].


Compressive Sensing Algorithm


In order to assess the usefulness of CS for sparse array signal detection and estimation, we have
implemented a CS algorithm proposed by Çetin [4] and used by Varshney [5] for synthetic aperture
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processing. In general, compressive sensing requires that we minimize with respect to s


min
s


J(s) =
∥∥∥r− D̃s


∥∥∥2
2
+ α


Ns∑
n=1


|sn|p , (3)


when p < 1 and ‖x‖22 ≡
∑Ns


n=1 |xn|
2
. The regularization term, α


∑Ns


n=1 |sn|
p
, serves to reward large


elements and penalize small elements of the solution in the minimization process. In our case,
r = B Γe (so + m) + Bn where so denotes the true signal vector to be detected and m is the Ns x 1 vector
of complex, Gaussian random variants with variance given by the power determined from the multipath
model described above, and thus giving the angular spread multipath signal. Complex voltage samples in
each angle of arrival sample are statistically independent. Also, Γe represents the actual sensor matrix in
contrast to the sensor matrix model used to determine the beamforming matrix, and n represents the Na x
1 vector of complex, additive receiver noise at each element array output. Each entry of n is an
independent, complex Gaussian random variant.


A contribution of Çetin is to introduce a small constant, ε> 0 into the regularization term in (3) to give


min
s


Jε(s) =
∥∥∥r− D̃s


∥∥∥2
2
+ α


Ns∑
n=1


(|sn|2 + ε)
p
2 . (4)


Unlike the objective function in Equation (3), this objective function is di�erentiable and thus supports
iterative, numerical minimization with quasi-Newton approaches using complex data. The iterative
solution is [4, pp 73 - 76]


sn+1 = sn − γH(sn)−1∇sJε(sn), (5)


where γ denotes the iterative step size between estimates of the signal vector, sn+1, at stage n+ 1 and the
signal vector sn at stage n . Here


H(s) = 2D̃HD̃ + pαΛ(s),


and
Λ(s) = diag


{
(|sn|2 + ε)


p
2−1
}
,


giving for the gradient
∇sJε(s) = H(s)s− 2D̃Hr. (6)


Substituting this expression for the gradient into Equation (5) gives the iterative solution


H(sn)sn+1 = (1− γ)H(sn)sn + 2γD̃Hr, (7)


which can be solved at each iteration for sn+1. Iterations continue until incremental changes in the solution
vector are small.


Performance


The Çetin-Varshney iterative approach has been applied to the sparse array and signal with multipath
model described above to determine CS performance as a function of the ratio of signal to multipath power
(SMR). We investigated the probability of correct plane wave indication and the probability of false signal
direction indications as a function of SMR using simulation. We provided 100 simulation trials, each with
independently selected positions of the �ve planar arrays with the assumption that the �rst and last
element arrays are located 90o apart. The signal vector is of dimension Ns = 80 with the angular
separation between potential signal sources assumed to be 0.1 of the broadside, maximum gain beamwidth
of the element array.
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In our previous work we found that an n of m detection approach was useful to minimize false signal
detections due to receiver noise. Here a signal was declared present in a given direction if the CS algorithm
yielded an output which exceeded a threshold n or more times in m trials with independent observations of
receiver noise on each trial. For our simulations in this work, m = 4 independent trials occurred in each of
the 100 simulation trials. For each of the 100 array con�gurations, m = 4 independent samples of the
multipath signal were generated as described above. Justi�cation for the independent multipath samples
follows from either (1) assumed motion of the sparse array with respect to the signal source or (2) assumed
internal motion of elements of the multipath environment about the signal source. Receiver noise power is
assumed to be negligible in comparison with the signal and multipath power at the array receiver output.


Figure 3 shows the results of this simulation. The red curves represent the probability that a desired single
plane wave at an angle of 45o is declared and the blue curve represent the probability that a false signal
declaration occurs due to the multipath signal. The abscissa gives the signal to multipath power ratio
(SMR) where the multipath power is due to the contribution of the multipath in the same direction as the
desired signal. The left column gives results for the case when detections occur in 1 or more of the 4
multipath samples and the right column gives results when detections occur on all 4 samples. We provide
results for three values of the angular width of the multipath (MW ) in comparison with the 3 dB
beamwidth of the element array. The angular width of the multipath is given by the null to null width as
illustrated in Figure 2. The element array beamwidth is associated with the broadside beamwidth given by
BW3dB = 0.886λ/D with D = 32λ. In Figure 3, the �rst row gives results for MW/BW3dB = 1, the second
row for MW/BW3dB = 2, and the third row for MW/BW3dB = 5. The bands denote 0.95 con�dence
intervals for the smoothed simulation samples. The SMR values can be corrected to give the signal power
relative to the multipath power in the 3 dB beamwidth and the total multipath power using the correction
values in Table 1. The simulation results indicate that for small signal to multipath power
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Figure 3: Smoothed simulation results for the probability of source signal declaration (red) and multipath
declaration (blue) as a function of signal to multipath power (SMR). The left column gives results for 1 or
more detections in 4 trials and the right column gives results for 4 detections on 4 trials. Three values of
the multipath angular width (MW ) in comparison to the broadside, 3 dB beamwidth of the element array
(MW/BW3dB) are given. Bars denote 0.95 con�dence intervals for the simulation results.


(SMR < 0 dB), there is little di�erence between the probability of declaring a primary source signal and
its multipath component. That is, for the case of 1 or more detections in 4 trials, there is an approximate
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MW/BW3dB Power inBW3dB Total Power


1 8.8 dB 8.8 dB
2 11.4 dB 11.9 dB
5 14.2 dB 15.9 dB


Table 1: SMR correction for multipath power in 3 dB beamwidth and total multipath power


probability of one half of declaring either the source signal or its multipath component and there is little
evidence to indicate which is actually present. For the more restrictive case of 4 of 4 detections, the
probability of declaring both the signal and multipath components is much smaller, again assuming
statistically independent observations of the multipath component. The qualitative similarity of the
dependence on signal to multipath power between the signal and multipath declarations (blue and red
curves) for SMR < 0 dB seems to be further evidence that declarations can be either signal or multipath,
with nearly equal probability.


To more easily compare performance for large signal to multipath power (SMR > 0 dB), we examine the
probability of signal declaration versus the probability of multipath declaration shown in Figure 4. It is
clear that for any probability of multipath declaration, the probability of signal declaration is greater for
the 1 or more of 4 detection algorithm. Thus, while the 4 of 4 algorithm is superior for suppressing false
declarations for small SMR, it degrades correct signal declaration for large SMR.
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Figure 4: Probability of signal declaration vs probability of multipath declaration for SMR > 0 dB for
MW/BW3dB = 1, 2 and 5. The blue curve is for the 1 or more of 4 declaration algorithm and the red curve
is for the 4 or 4 algorithm.


Conclusions


We investigated compressive sensing for processing signals from sparse or highly thinned receive arrays.
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Sparse arrays are a natural application of CS when (a) there are only a few array observations expressed as
a linear combination of the received plane wave signal amplitudes and (b) there are a large number of
possible angles of arrival of signals but only a few signals are actually present. In this paper, we considered
the case when signals have a spatial, angle of arrival distribution due to multipath scattering of a primary
source signal. This multipath case violates the CS assumption of only a few signal sources present in the
solution space and we investigate the detectability of a source signal when such multipath spread signals
are present. Multipath spread sources can result from ground bistatic scattering from a ground based
communication source. Radar target scattering is sometimes characterized by a single dominant scattering
center along with a collection of small scattering surfaces on the target at di�ering viewing angles from the
dominant scattering center.


We evaluated CS with simulation for the problem of a �ve element sparse array located on a 90o sector of a
circular arc with large radius of curvature when compared to the wavelength of the incident radiation.
Each element of the sparse array is itself a digitally beamformed phased array with its beam steered to a
common direction. Signals from the beamformed arrays are linearly combined by the beamforming matrix
to provide data for the compressive sensing algorithm. The algorithm used here was proposed and
evaluated by Çetin [4] and Varshney [5].


As might be expected, we found that it is unlikely that compressive sensing can distinguish primary signal
radiation from its multipath components when the signal power is small in comparison with multipath
power in the signal direction. A 4 out of 4 detection algorithm tends to suppress signal and multipath
declarations when independent samples of the multipath are observed and the signal power is small.
However, when the signal power is large compared to the multipath power in the signal direction, reliable
declaration of the signal direction becomes possible, especially when 1 or more signal detections in 4
independent multipath trials are allowed. The simulation model used here is capable of determining the
average properties of the angular error in signal direction when the multipath contributions are present.
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