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1 Summary

The extreme impact loading consider in this work consists of high amplitude
loads with short durations which can result in high frequency content. These
conditions can result in wave propagation with significant nonlinear character-
istics. With the use of conventional, linear high fidelity methods, the effects
of the nonlinearity can be overlooked and its influence on the structure will
not be known. The focus of this work was the development of high fidelity
modeling and analysis methods for studying this nonlinear behavior. The
Alternating Frequency-Time Finite Element Method (AFT-FEM) was devel-
oped from the spectral finite element method (SFEM) in order to expand its
high fidelity performance to study nonlinear wave propagation. Later efforts
produced the Alternating Wavelet-Time Finite Element Method (AWT-FEM)
by using a wavelet basis. A wavelet basis is better conditioned for study-
ing localized and transient signal characteristics such as those encountered in
impact loading and, as a result, AWT-FEM provides further improvements
beyond AFT-FEM. A practical force identification scheme was also developed
by using SFEM to determine both temporal and spatial information about an
impact load by using only a small number of sensors. The force identification
scheme was first applied to linear systems and then, by using the concepts
developed for AWT-FEM, it was extended to be able to perform force identifi-
cation for nonlinear systems. These numerical simulation techniques and force
identification methods provide the means to gain new insight into the effects
of extreme impact loading on structures. This improved understanding can
them be used to design new systems and structures and to better understand
how they will perform under severe conditions.

Key words: Impact Response, Nonlinear Wave Propagation, Spectral Finite
Element Method, Wavelets, Force Identification



2 Introduction

In the majority of traditional scientific and technological applications, wave
propagation in solid structures is bounded by the elastic limit and a linear
approximation is often adopted. However, as the exploration is entering into
more advanced fields like new materials, extreme working environments, and
high fidelity analysis, nonlinearity can be introduced in various ways and can
become a crucial factor that must not be neglected. In the past decade, fa-
cilitated by the development of numerical techniques and high performance
computers, significant progress has been made in the study of nonlinear elas-
tic wave propagation for applications including biomedical analysis [1], non-
destructive evaluation [2], and seismic motion analysis [3].

In many military and civil applications, nonlinear mechanical wave prop-
agation occurs through structural components that can be approximated as
rods, beams, or plates. For example, in the force identification of aircraft
through impact wave analysis, the impact load often has a high amplitude
with a short duration, where high frequency content in the response will sig-
nificantly strengthen the influence of the nonlinear properties. The wings of
the aircraft can be approximated as a beam or plate structure with a geometric
nonlinearity. Another example is in the monitoring and control of drill strings
in the oilfield. Drill strings can be modeled as long geometrically nonlinear
beams with different cross sections and material properties [4]. Elastic waves
caused by impacts with the wellbore and stress waves in the mud flow can
be used to control the stability [5]. A third example is in the dynamics of
high-speed and high-precision parallel robots [6]. Each link of the robot can
be modeled as a beam undergoing large deformation. For these systems and
many other, exact solutions of linear wave equations for rod, beam, and plate
structures are known [7] and analytical relationships in the nonlinear wave
equation are also well established [8]. Incorporating those results with a gen-
eral numerical framework will greatly improve the computational performance
and provide significantly improved accuracy.

For these systems and many other, exact solutions of linear wave equations
for rod, beam, and plate structures are known [7] and analytical relationships
in the nonlinear wave equation are also well established [8]. Incorporating
those results with a general numerical framework will greatly improve the
computational performance and provide significantly improved accuracy.



2.1 Modeling Nonlinear Wave Propagation

Based on the specific nature of nonlinear elastic wave propagation, a good
numerical technique should fulfill three requirements. (1) Provide the means
to predict high fidelity responses - Nonlinear phenomenon can be accurately
captured in the response and available for further analysis. (2) Provide high
computational efficiency - The method should take advantage of current com-
putation technology to ensure studying larger models is not computational
prohibitive. (3) Be flexible - The method should be able to be applied to
various structures for a range of working constraints.

A comparison of existing methods is shown in Table. 1. There are five
examination criteria: (1) high fidelity performance, (2) applicability to study
linear behavior, (3) applicability to study nonlinear behavior, (4) ability to
represent physically realistic boundary constraints, and (5) parallel computing
compatibility. The check mark (X) indicates that the criterion is satisfied, the
dash mark (−) indicates the criterion is partially satisfied, and the X mark (×)
indicates that the criterion is not satisfied. The AFT-FEM and AWT-FEM
developed in this work are included for comparison.

Table 1: Comparison of different methods.

Methods High Fidelity Linear Nonlinear Boundary Parallel

TFEM [9] × X X X −
MTFEM [10] X X X X −
SFEM [11] X X × − X

WSFEM [12] X X × X X

AFT-FEM X X X − X

AWT-FEM X X X X X

The finite element method (FEM) [9] has been widely applied to study
structural dynamics and has developed into a class of numerical methods with
various time integration and space discretization techniques. In Table 1, the
time-domain FEM (TFEM) refers to a standardized procedure composed of a
serial time-integration technique like the Newmark method, an iteration ap-
proach like the Newton-Raphson method to address nonlinearity, and a stan-
dard finite element space discretization to approximate the geometry. Other
modified versions of FEM with various time-integration techniques like space-
time finite element method [13] is not considered here. TFEM can be used
to solve both linear and nonlinear problems with physically realistic boundary
conditions and complex geometries. However, for transient wave propagation,



especially those caused by impact loading with high frequency content, re-
sponses predicted with this method can exhibit spurious oscillations which re-
sults from erroneously introduced numerical dispersion and dissipation [10, 14].
This error will accumulate as the wave travels along a structure and signif-
icantly distort the response unless an extremely fine meshing is adopted to
capture the sharp gradient change in the wave shape. Also, due to the serial
nature of the Newmark method, TFEM cannot be directly incorporated into
a parallel computing framework. Speed-up procedures are needed to make it
compatible with a parallel computational framework.

In order to solve the spurious oscillation error and obtain a high fidelity
response, many modified time-domain finite element methods (MTFEM) have
been developed by using more advanced interpolation functions [10, 15]. The
spectral element method (SEM) first proposed by Patera [16] in fluid dynamics
has been adapted to study 1D linear wave propagation in solid structures [15].
In SEM, high order polynomials have been chosen as local shape functions and
a high degree of accuracy in the response can be observed. An application of
SEM to study 1D nonlinear wave propagation in a rod was reported in [17].
Even though theoretically SEM can be adapted to solve nonlinear problems,
other related works are surprisingly rare in the literature. Ham and Bathe
proposed another modified method using low-order polynomials enriched with
harmonic functions [10]. A specific scheme has also been designed to overcome
ill-conditioning. This method can be used to solve both linear and materially
nonlinear systems, but may encounter challenges for systems with geometric
nonlinearities. Extra efforts on reformation are needed to make these methods
compatible for the parallel computing framework.

Another class of methods transforms the model and solution procedure
into a spectral domain. A typical example is the fast Fourier transform (FFT)-
based spectral finite element method (SFEM) proposed by Doyle [7, 11]. In the
literature, there is some confusion over the terms SFEM and SEM [15]. Here,
SFEM specifically refers to the Fourier-based method developed by Doyle. For
linear problems, SFEM uses exact wave solution as frequency-dependent shape
functions and only one element is required to obtain highly accurate responses
for a given position in a structural component like a rod or a beam. For a
structure like a frame or a truss, an element-based procedure can be adopted
at each independent frequency. This makes the method inherently suitable
for parallel computing. With the incorporation of the exact analytical wave
solutions, the capacity for parallel computing and the fast computational per-
formance of FFT, the SFEM can be utilized as a real-time method to obtain
high fidelity responses to impacts with high frequency content. Various appli-
cations on linear 1D and 2D problems can be found in Gopalakrishnan and



Lee’s works [18, 19]. However, this method has two major drawbacks. First,
the periodic nature of the basis functions used for the Fourier transform can
result in wrap-around issues in which the signal outside the time-window will
become wrapped around to the beginning of the signal sequence. Semi-infinite
elements (non-reflecting boundary condition) are often added at the ends of a
structure to leak energy out of the system. For other types of boundary con-
ditions, additional damping combined with a longer time-window is required.
This greatly deteriorates the computational performance of SFEM when it
is applied to study wave propagation in structures with physically realistic
boundary constraints. Second, nonlinear terms often result in convolution
terms in the frequency-domain, which are computationally prohibitive to cal-
culate with iterative procedures. This makes SFEM not directly applicable for
nonlinear systems.

In order to avoid the wrap-around issue of SFEM, Mitra and Gopalakrish-
nan developed a wavelet-based spectral finite element method (WSFEM) [12].
Instead of using FFT, a discrete wavelet transform (DWT) on the sampling
scale was adopted to transform the linear wave equation into a wavelet-domain
where each wavelet point represents a shifting along time axis. A wavelet ex-
trapolation technique was also incorporated to represent non-periodic bound-
ary conditions [20]. WSFEM successfully circumvented the wrap-around issue
and can also be incorporated into a parallel computing framework after being
uncoupled through an eigenvalue analysis. Applications to linear wave propa-
gation in composite and nano-composite structures were reported in [21]. An
adaptation of the wavelet transformation technique in WSFEM with SEM spa-
tial interpolation was also applied to 2D and 3D linear elastic waves [22, 23].
Similar to SFEM, WSFEM cannot be directly applied to study nonlinear sys-
tems.

An intuitive solution to deal with the nonlinear problem in frequency-
domain methods is to transform the calculation of the nonlinear terms back to
the time-domain. An alternating frequency-time iterative framework is needed
to transform the result of the nonlinear calculation into the frequency-domain,
solve for the linear solution by using SFEM, and then return to the time-
domain to calculate new values of the nonlinear terms for the next iteration.
This framework was first proposed by Cameron [24]. A combination of it with
the SFEM was performed by Lee [25] to study 1D nonlinear blood flow in
human arteries.



2.2 Force Identification

Indirect methods for impact force identification have attracted researchers
due to the nonlinearity of the impact problem and complexity of impact inci-
dents [26, 27, 28, 29]. Numerous techniques have been developed which uses
inverse methods for impact force identification. Some common techniques for
force identification are the deconvolution method [26, 27], state variable for-
mulation [30], the sum of weighted accelerations [31], and the spectral finite
element method [12]. The most popular method is the deconvolution tech-
nique which uses the assumption of a linear response in order to allow for the
application of the convolution integral to identify the force information. For
linear systems, the convolution integral of a system’s impulse response and the
applied force results in the response of the system. This technique has been
applied in both the time-domain [26] and the frequency-domain [32].

In a study by Doyle, a time-domain deconvolution technique was success-
fully developed in order to experimentally obtain dynamic contact laws [26].
Response behavior was monitored by using strain gages affixed to a beam
structure and the impulsive load was applied by using a pendulous ball. In
other work, Chang and Sun calculated the applied impact force by using an
experimental Green’s function and time-domain signal deconvolution [33]. The
reconstructed force was identified independent of the location of the sensors
on a composite beam structure. In both cases, the position of the impact was
assumed to be known.

The deconvolution technique is also easily implemented in the frequency-
domain for conducting force identification due to the ease of performing the
deconvolution calculation since the convolution integral in the time-domain
corresponds to a simple multiplication operation in the frequency-domain. In
other work of Doyle, a frequency-domain deconvolution method was devel-
oped and used to experimentally determine contact laws [32]. The impact
force was estimated by using analytical relationship between contact force and
the strain response of structure. In order to improve the quality of the recon-
structed force, signal processing techniques were applied on the strain response
to avoiding the wrap-around problem [34, 35, 36].

Similar to the force identification methods, indirect methods of identifica-
tion of the impact location have been studied extensively due to limitations in
the direct identification of the impact location [26, 32, 37, 38, 39]. Methods
for the localization of impacts can be classified into two main categories. The
first type of method uses wave propagation speed and arrival time to determine
impact location [40, 41, 42, 43, 44]. Methods in the first category take advan-
tage of the wave speed and the recorded time for the traveling waves to reach



the sensors in order to calculate the position of the impact force. Gaul and
Hurlebaus developed a method based on the arrival times of waves at various
frequencies [40]. The location of the impact was identified by solving a nonlin-
ear equation extracted from the speed of the traveling waves. The second type
of localization of impact force is performed by minimizing an error function
which is defined based on the impact force and the system response [45, 46, 47].
The system response can be obtained from a system model or transfer function
which is derived analytically, numerically, or experimentally [48].

Additionally, it is possible for the two methods to be used simultaneously to
accurately locate the impact force. In the recent work of Liang et al., elements
of the two methods were combined to create a distributed coordination algo-
rithm for locating the impact force with greater computational efficiency [49].
However, further studies are required in order to fully explore the effectiveness
of this approach.

2.3 Overview

In the section 3, the key elements of the two techniques for (i) modeling non-
linear wave propagation and (ii) performing force identification are presented.
The performance of these methods is demonstrated in section 4. The main con-
clusions of this work and the direction of future work are presented in section 5.
The material presented in this report constitutes the main advances which
resulted from this work. For full details, refer to the publication produced
through this work [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

3 Methodology

In this section, the methods developed in this work are presented. First, the
Alternating Wavelet-Time Finite Element Method (AWT-FEM) is presented.
Then, the force identification and force localization methods are presented.

3.1 Modeling Nonlinear Wave Propagation

A specific wavelet transform is described in the first subsection. The spectral
finite element method formulation in the wavelet-domain is discussed in the
second section. The procedure of AWT-FEM is described in the third subsec-
tion. Its applications to an elementary rod model with a material nonlinearity,
an Euler-Bernoulli beam model with a geometric nonlinearity, and a conven-
tional plate model with a weak geometric nonlinearity are derived in the last



subsection.

3.1.1 Spectrally-Uncoupled Wavelet Transform

The general governing differential wave equation of a nonlinear structure is
given as [25]

Lu(x, t) +Mü(x, t) +N u̇(x, t) + f(u,x, t) = p(x, t), (1)

where L is the linear differential operator with respect to the spatial coordinate
vector x, the over-dot represents a derivative with respect to time t, M is the
inertial operator, N is the damping operator, u(x, t) is the displacement field
vector, p(x, t) is the external load vector, and f(x, t) is the nonlinear term
vector.

A single-scale wavelet Galerkin’s method using a Daubechies wavelet is
applied to transform Eqn. (1) into a set of spectrally-uncoupled partial differ-
ential equations (PDEs). Details of this method and its application to a 1D
linear wave equation can be found in [12, 20, 66]. Here, the application of this
method to the general nonlinear wave equation in Eqn. (1) is briefly described
in the following three steps.

Step 1:
A new variable τ = t/∆t is introduced. In the following derivation, τ is

regarded as a continuous variable since integration with respect to τ will be
performed.

u(x, t) is represented in an expansion form by translating the wavelet scal-
ing function ϕ(τ).

u(x, t) = u(x, τ) =
∑

k

uk(x)ϕ(τ − k), k ∈ Z, (2)

where uk(x) (referred as uk hereafter) is the approximation coefficient of u(x, t)
at an associated point k, Z is the set of integers.. By utilizing the orthogonality
of the scaling function, the approximation coefficient uk is obtained as

uk = ∆t

∫

u(x, τ)ϕ(τ − k)dτ. (3)

The scaling function ϕ(t) is defined on the finest scale (the sampling scale).
Hence, the integer k presents a shifting along the sampled time axis for k sam-
ple points. It is comparable to the frequency component at a given frequency
in the Fourier expansion, in the sense that both the expansion in Eqn. (2) and



Fourier expansion expand the original function by a class of basis function
indexed by a variable. The difference here is the index k indicates a shifting
in time but the corresponding variable in Fourier expansion represents a re-
finement of frequency. The physical meaning of k indicates that the expansion
in Eqn. (2) is in nature a shifting tool for a time integration technique. The
index k is referred as “wavelet point” to distinguish the time series index τ
before the expansion. Similarly, the nonlinear term f(x, t) and the loading
term p(x, t) are expanded by fk and pk as follows.

f(x, t) =
∑

k

fkϕ(τ − k), k ∈ Z, (4)

p(x, t) =
∑

k

pkϕ(τ − k), k ∈ Z. (5)

The above expansions are substituted into Eqn. (1). By multiplying the
resulting equation by the scaling function ϕ(τ−j) and integrating it over time,
the following set of equations are obtained.

Luj +

∫

M

∆t2

∑

k

ukϕ̈(τ − k)ϕ(τ − j)dτ+

∫

N

∆t

∑

k

ukϕ̇(τ − k)ϕ(τ − j)dτ + fj = pj, j = 0, 1, . . . , n− 1, (6)

where f(x, t), p(x, t), and the u(x, t) after the linear differential operator L
are transformed into their corresponding approximation coefficients fj, pj, and
uj due to the orthogonality of the wavelet scaling function. For the time
derivatives of u(x, τ), the two integrals associated with M and N in Eqn. (6)
are evaluated in the form of connection coefficients for compactly supported
wavelets [66], as defined in Eqn. (7) and (8). The index j represents a given
wavelet point. Similar to the definition of k, it originally indicates a shifting
along the time axis.

Ω1

j−k =

∫

ϕ̇(τ − k)ϕ(τ − j)dτ, (7)

Ω2

j−k =

∫

ϕ̈(τ − k)ϕ(τ − j)dτ. (8)

For a multidimensional problem, u = [u, v, w]T and uj = [uj , vj, wj]
T , a

complete matrix form of Eqn. (6) with respect to the three dimensions and the
wavelet point j is cumbersome. The couplings between different dimensions
(x, y, z) are assumed to be represented in the nonlinear term fj. Since fj will



be treated as an equivalent nodal force term without explicitly evaluating it,
and only its nodal values will be used in the numerical procedure to solve the
equation, Eqn. (6) can be regarded as decoupled with respect to dimensions.
The coupling in Eqn. (6) is with respect to the index j and is captured in the
matrix Ω. Hence, Eqn. (6) describes a set of spectrally coupled PDEs with
respect to j, and has to be solved for each wavelet point (translation along
time axis) j.

Step 2:
Next, a wavelet extrapolation technique [20] is adopted to address the time

boundaries. Specific treatments of periodic and non-periodic time boundaries
for linear wave equations can be found in [12]. It uses a polynomial of order
N/2−1 to extrapolate the values at the boundaries from the known coefficients
near the boundaries. The connection coefficient matrix Ω becomes a n × n
matrix Λ, which is a version with non-periodic time boundaries. The result
of this process is arranged into three decoupled matrix forms with respect to
the three dimensions, each of which will be further decoupled with respect to
the spectral index j in the next step.

Step 3:
A standard eigenvalue analysis is performed to uncouple the matrix form

of Eqn. (6) with respect to j. The eigenvalue and the n×n eigenvector matrix
of the n× n connection coefficient matrix Λ are λj, j = 0, 1, · · · , n− 1 and Φ,
respectively. After each dimension is spectrally uncoupled, the result can be
organized as

Lûj +
(

Mλ2

j +Nλj

)

ûj + f̂j = p̂j, j = 0, 1, . . . , n− 1, (9)

where the eigenvalue λj can be treated as a pseudo-frequency and is related to
the physical angular frequency ωj in the Fourier transform through λj = iωj,
and

ûj = [ûj , v̂j, ŵj]
T ,

f̂j =
[

F̂uj, F̂vj , F̂wj

]T

,

p̂j =
[

P̂uj , P̂vj, P̂wj

]T

,

{ûj} = Φ−1 {uj} ,

{v̂j} = Φ−1 {vj} ,

{ŵj} = Φ−1 {wj} ,



{

F̂uj

}

= Φ−1 {Fuj} ,
{

F̂vj

}

= Φ−1 {Fvj} ,
{

F̂wj

}

= Φ−1 {Fwj} ,
{

P̂uj

}

= Φ−1 {Puj} ,
{

P̂vj

}

= Φ−1 {Pvj} ,
{

P̂wj

}

= Φ−1 {Pwj} , (10)

where the bracket represents a vector formation with respect to j.
These three steps define a special single-scale wavelet transform to reduce

a temporal problem into a set of spectrally-uncoupled PDEs. This procedure
involves several wavelet-based numerical techniques [20, 66], an eigenvalue
analysis, and an inverse calculation of matrices. However, it is worth not-
ing that this procedure is independent of the system to be studied and must
only be performed once for a given wavelet scaling function ϕ(t) and length
of time window n. The resulting eigenvalues λj, eigenvector matrix Φ, and
the inverse of Φ can then be calculated and stored for future use. The scaling
function is defined at the sampling rate of the signal, which is also the finest
scale achievable for a given set of data. In the above wavelet transform proce-
dure, the approximation coefficient of a given signal is first obtained by using
a numerical applying of Eqn. (3). The vector of approximation coefficients,
which has the same length as the original signal, is multiplied by the inverse
of the eigenvector matrix Φ in order to obtain the corresponding values in the
defined wavelet-domain. The inverse transform is then performed by multipli-
cation by the eigenvector matrix Φ to obtain the approximation coefficients in
the time-domain. The signal is recovered by finally using Eqn. (2).

3.1.2 Spectral Finite Element Method Formulation

Various methods are available to solve the linear version of Eqn. (9). In [22, 23],
the SEM is chosen to solve general linear 2D and 3D problems in the wavelet-
domain. In this study, the research focus is to develop a numerical technique
for structures that can be modeled with rod, beam, and plate elements. Uti-
lizing the analytical wave solutions of those models may greatly improve the
computational efficiency and alleviate potential convergence issues with the
iterative approach that will be constructed to address nonlinearities.

The linear homogeneous wave equation is obtained by removing the non-



linear term and external force term in Eqn. (9).

Lûj +
(

Mλ2

j +Nλj

)

ûj = 0, j = 0, 1, . . . , n− 1. (11)

For 1D problems, x = x and Eqn. (9) is a set of nonlinear ODEs. Exact
solutions to Eqn. (11) for rod and beam structures are well-established [7].
In linear SFEM, those exact solutions are directly employed to solve for the
response at a given location x and only one element is needed for the formula-
tion. In this nonlinear derivation, the exact linear solutions are adopted as the
shape functions in a standard finite element framework in the wavelet-domain.
The spectral displacement vector ûj is expressed as

ûj = N(x;λj)qj, (12)

where N(x;λj) (referred as N hereafter) is the spectral shape functions based
on the exact linear wave solutions, and qj is the spectral nodal displacement
vector at the pseudo-frequency λj or wavelet point j. By following a stan-
dard Galerkin’s method, the nonlinear ODE in Eqn. (9) becomes the following
matrix form

K(λj)qj = qE + qN, (13)

where

K(λj) =

∫

(

A(N,N) +NT
(

Mλ2

j +Nλj

)

N
)

dx,

qE =

∫

NTpjdx,

qN =

∫

NT fjdx. (14)

The spectrally formulated dynamic stiffness matrix is represented byK(λj),
A(N,N) is the function resulting from integration by parts [19], qE is the
equivalent nodal force term for the distributive external load, and qN is the
equivalent nodal force term for the nonlinear term. It is worth noting that
the process to derive Eqn. (13) may involve several steps of iteration by parts,
so the sign on the right-hand side may change depends on the explicit form
of L. The expression in Eqn. (13) is for the purpose of a general and concise
representation.

For a 2D problem, x = {x, y} and Eqn. (9) is a set of nonlinear PDEs.
The wavelet transform is performed again on Eqn. (9) with respect to one of
the spatial coordinate y. After that, Eqn. (9) is reduced to a set of ODEs and
the model is simplified into a 1D problem. A similar spectral finite element



method formulation as above can be performed to obtain a matrix form as in
Eqn. (13). An example of this spatial reduction process for a plate model is
provided at the end of this section.

3.1.3 General Procedure of the AWT-FEM

Based on the spectrally-uncoupled wavelet transform and the spectral finite
element method formulation in the wavelet-domain, an alternating wavelet-
time framework is constructed to iteratively simulate nonlinear elastic wave
propagation responses. A flowchart of the AWT-FEM is presented in Fig. 1.
The initial state is obtained from the linear model by setting the nonlinear
term f(u,x, t) in Eqn. (1) equal to zero. The f(x, t) is written as f(u,x, t) to
indicate that the value of the nonlinear force term is directly determined by
the current value of u. At each iteration, the nodal values of the nonlinear
term f(u,x, t) are calculated from the current states in the time-domain. The
result and the nodal values of external force p(x, t) are transformed into the
wavelet-domain through the spectrally-uncoupled wavelet transform. At each
pseudo-frequency or wavelet point, a spectral finite element method formula-
tion is constructed based on Eqn. (13) to obtain nodal values of ûj. Nodal
values of the derivatives of ûj with respect to x are easily calculated based on
Eqn. (12). Since Eqn. (9) is uncoupled with respect to j, the above calculation
is performed in parallel at each wavelet point. The nodal information is then
transformed back to the time-domain via the inverse wavelet transform. New
values of the nonlinear term f(x, t) are calculated for use in the next itera-
tion. The process is continued until the predefined error measure defined in
Eqn. (15) is less than a prescribed tolerance.

The number of wavelet point is determined by the length of the signal.
The higher the sampling rate and the longer the signal length, the better
accuracy of the wavelet transform and a better performance of the AWT-
FEM, since Eqn. (2) and (3) are implemented through numerical integration
in the program. In most of the applications, the signal is collected through
experiments or predefined as inputs. Hence, the length of the signal or the
number of wavelet point is taken as fixed conditions in numerical simulation
in this study.

βi =
1

M

M
∑

m=1

∥

∥

∥

∥

fi(x0, tm)− fi−1(x0, tm)

fi(x0, tm)

∥

∥

∥

∥

, (15)

where M is the length of the time history, x0 is the impacted location, and the
subscript i represents the iteration number. The response at the impacted po-



sition has both the initial impulse profile and the interaction with the reflected
wave from the boundary within a given time-window. It can reflect most of the
accumulated nonlinear information in the wave propagation process. Hence,
the impact position is chosen to define the error measure. Other point might
also be used and the result will not be qualitatively different.
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Nonlinear Terms
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Figure 1: The flowchart for the AWT-FEM.

3.2 Applications to Structural Models

(1) Rod:

A rod model with a material nonlinearity is considered here. A general
nonlinear stress-strain relationship with a high order strain term has been
used in [8, 17, 67]. In the second order case, the nonlinear constitutive law
becomes

σ = E(ǫ+ αǫ2), (16)

where σ is the stress, ǫ is the strain, E is the elastic modulus, and α is the non-
linear coefficient. When α > 0, the quadratic term exhibits a hardening effect
on the constitutive curve. When α < 0, a softening effect can be observed.

A linear strain-displacement relationship ǫ = du/dx is assumed. By using
Hamilton’s principle, the governing materially nonlinear homogeneous wave
equation for a rod is obtained as

EAu′′ − ρAü+ F (x, t) = 0, (17)



where
F (x, t) = 2αEAu′u′′, (18)

the cross sectional area is represented by A, ρ is the density, u is the axial
displacement, the prime represents a derivative with respect to the spatial
coordinate x, and F (x, t) is the nonlinear term.

By using the spectrally-uncoupled wavelet transform previously described,
the governing equation of motion in the wavelet-domain is obtained as

EAû′′

j − ρAλ2

j ûj + F̂j = 0, j = 0, 1, . . . , n− 1. (19)

The expression of the spectrally-dependent shape function NR for a rod
model can be found in Eqn. (3.36) in [19]. It is a 1 × 2 vector with com-
ponents as functions of x and ω. The angular frequency ω associated with
the frequency-domain implementation in the references must be replaced by
ω = −iλj for this wavelet-domain method, which is indicated by comparing
the Eqn (11) in the wavelet-domain with Eqn (3.4) in [19] in the frequency-
domain. By substituting it into Eqn. (14), the dynamic stiffness matrix K and
the equivalent nodal nonlinear force term qN become

K =

∫

EAN′T
RN′

Rdx+ λ2

j

∫

ρANT
RNRdx,

qN =

∫

NT
RF̂jdx. (20)

(2) Beam:

A beam model with a geometric nonlinearity is considered here. The strain
is assumed to be small and the rotation is expected to be moderately large. The
von Kármán strain [9] is defined to represent the nonlinear strain-displacement
relationship. The constitutive relationship is assumed to be linear. By using
Hamilton’s principle, the governing geometrically nonlinear homogeneous wave
equations for a beam are obtained as

EAu′′ − ρAü+ FR(x, t) = 0, (21)

EIw′′′′ + ρAẅ − FB(x, t) = 0, (22)

where

FR(x, t) = EAw′w′′, (23)

FB(x, t) = EAw′′

(

u′ +
1

2
(w′)2

)

, (24)



the axial displacement is represented by u, w is the transverse displacement,
I is the second moment of inertia, FR(x, t) is the axial nonlinear force term,
and FB(x, t) is the transverse nonlinear force term. The definitions of E and
A are same as those for the rod model.

By using the spectrally-uncoupled wavelet transform developed in the first
subsection, the governing equations in the wavelet-domain is obtained as

EAû′′

j − ρAλ2

j ûj + F̂Rj(x) = 0, (25)

EIŵ′′′′

j + ρAλ2

j ŵj − F̂Bj(x) = 0, j = 0, 1, . . . , n− 1. (26)

The expression of the spectrally-dependent axial shape functions NR and
transverse shape functions NB can be found in Eqn. (3.36) and Eqn. (3.56) in
[19]. The transverse shape function NB is a 1× 4 vector with components as
functions of x and ω. As was done for rod structures, the angular frequency
ω in the references must be replaced by ω = −iλj. By organizing Eqn. (25)
and Eqn. (26) into a matrix form and performing the spectral finite element
formulation, the dynamic stiffness matrix K becomes

K =

















KR11 0 0 KR12 0 0
0 KB11 KB12 0 KB13 KB14

0 KB21 KB22 0 KB23 KB24

KR21 0 0 KR22 0 0
0 KB31 KB32 0 KB33 KB34

0 KB41 KB42 0 KB43 KB44

















, (27)

where KRij and KBij are components of KR and KB, respectively.

KR =

∫

EAN′T
RN′

Rdx+ λ2

j

∫

ρANT
RNRdx, (28)

KB =

∫

EIN′′T
B N′′

Bdx+ λ2

j

∫

ρANT
BNBdx. (29)

The dynamic stiffness matrix K is decoupled between axial and transverse
motions. The equivalent nodal nonlinear force term qN becomes

qN =



































∫

NR1F̂Rjdx
∫

NB1F̂Bjdx
∫

NB2F̂Bjdx
∫

NR2F̂Rjdx
∫

NB3F̂Bjdx
∫

NB4F̂Bjdx



































, (30)



where the terms NRi and NBi are elements of NR and NB, respectively. The

general spectral nodal displacement vector is defined as qj =
[

û1 ŵ1 θ̂1 û2 ŵ2 θ̂2

]T

,

where θ̂ is the rotation angle in the wavelet-domain.

(3) Plate:

A plate model with a geometric nonlinearity is considered here. In [9],
the classic and first-order plate theory with the von Kármán strain is chosen
to derive the governing equation of motion. The results are three coupled
nonlinear equations in the three spatial dimensions with respect to two in-
plane displacements u, v, and one out of plane displacement w. The equation
in the direction perpendicular to the plane can be written into the form of
von Kármán equation [68] as

D∇2∇2w(x, y, t) + ρhẅ(x, y, t) = F (x, y, t), (31)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator, h is the thickness of
the thin plate, w is the transverse displacement, D = Eh3/(12(1− ν2)) is the
flexural rigidity, and ν is the Poisson’s ratio. Other parameters are defined as
same as those in the rod model. The nonlinear term F (x, y, t) is

F (x, y, t) = Nxx
∂2w

∂x2
+Nyy

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y
, (32)

where Nxx, Nyy, and Nxy are resultant membrane forces defined as

Nxx =

∫ h/2

−h/2

σxxdz, Nyy =

∫ h/2

−h/2

σyydz, Nxy =

∫ h/2

−h/2

σxydz, (33)

where the expressions of stresses σxx, σyy, and σzz can be calculated from the
strains defined in Eqn.(6.2.5) in [9].

Equation (32) indicates that the nonlinear term is a function of three un-
knowns u, v, and w, which correspond to displacement along x, y, and z axis.
Two assumptions are made here to further simplify the model. First, it is
assumed that the plate is only subject to transverse loading. Second, it is as-
sumed that there are either no axial constraints on the boundaries or the plate
is large enough so that the propagating wave will not reach the boundaries
within the time window. In this weak geometric nonlinear case, the in-plane
displacement u and v are very small and can be assumed to be zero in Eqn. (31)
and Eqn. (32).

By using the spectrally-uncoupled wavelet transform, Eqn. (31) is trans-
formed into the wavelet-domain as

D∇2∇2ŵj(x, y) + ρhλ2

j ŵj(x, y) = F̂j(x, y) j = 0, 1, . . . , n− 1. (34)



The spectrally-uncoupled wavelet transform is applied again with respect
to one of the spatial dimension y and Eqn. (34) is reduced to a 1D problem as

D

(

d4w̃ij

dx4
+ 2β2

i

d2w̃ij

dx2
+ β4

i w̃ij

)

+ ρhλ2

j w̃ij = F̃ij. i, j = 0, 1, . . . , n− 1, (35)

where βi is a pseudo spatial frequency. For more information about this spa-
tially reduction process, refer to [21] where a similar example for a linear plate
model is presented (Chapter 7.3, Eqn. (7.34) to Eqn. (7.37)).

Equation (35) is analogous to a beam equation. By setting F̃ij as zero,
Eqn. (35) becomes a linear homogeneous wave equation. The exact solution is
assumed to be w̃ij = ce−ikx and substituted into the linear homogeneous wave
equation. Four values of the wavenumber k(βi, λj) are obtained through an
eigenvalue analysis. The spectrally-dependent shape function NB is defined in
Eqn. (3.56) in [19]. The wavenumber k in the references must be replaced by
the new calculated values. The dynamic stiffness matrix K and the equivalent
nodal nonlinear force term qN are derived as

K =

∫

DN′′T
B N′′

Bdx−

∫

2Dβ2

i N
′T
BN′

Bdx+
∫

(Dβ4

i + ρhλ2

j)N
T
BNBdx (36)

qN =

∫

NT
BF̃ijdx, (37)

where explicit expressions of integral terms can be referred to the ones in the
beam model.

3.3 Impact Force Identification

In the impact force identification method presented in this section, the dynamic
stiffness matrix is prepared for the structure and multiplied by the displace-
ment and slope information in order to calculate the identified force. However,
incomplete deflection and slope data results in errors in the calculated force
information. Mechanical wave propagation starts immediately after the im-
pact force is applied and it moves out from this location until it reaches the
ends of the structure and is reflected. In order to capture the complete wave
propagation data across the entire beam structure, accelerometers must be
mounted along the entire length of the beam, including at the ends. However,
mounting accelerometers at the ends of the structure and densely along the
length is not always practical. Therefore, in this work a force identification



method is presented that utilizes the data of the propagating wave recorded
by using accelerometers located near the location of the impact. Although the
exact location of the impact is unknown, it is assumed that the general area
in which the impact occurs is known.
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Figure 2: Simulated wave propagation (acceleration data) in a free-free beam.
The boxed area corresponds to data which is selected for analysis. This area
corresponds to only a section of the structure and does not include reflections.

The simulation acceleration data of wave propagation through the beam
structure is illustrated in Fig. 2. The figure illustrates the variation of acceler-
ation at each location of the beam through time. This response is used in order
to identify the impact force. After the impact occurs, mechanical waves travel
through the beam structure and reflect when they reach the ends. The reflec-
tions and dispersion in beam structures increase the difficulty of performing
successful force identification, especially if it is not possible to mount sensors
at the ends of the structure. In this force identification method, the impact
force is calculated by using a SFEM model and a subset of the response data.
This subset of the displacement and slope data corresponds to a reduction
in both the spatial and temporal dimensions around the location where the
propagated wave originated, as illustrated by the box in Fig. 2. Note that
acceleration data is presented in this figure. This subset of data chosen for the
identification procedure is selected so that it does not contain reflections. The
data subset is used with a beam segment model to calculate the desired force
information.

A flowchart of the force identification procedure is presented in Fig. 3. The



Figure 3: Flowchart illustrating the main steps of the force identification
scheme.

acceleration data from the structure is transformed into the frequency-domain
by using the fast Fourier transform (FFT) and is integrated twice to obtain
displacement. The slope information required for the identification process is
calculated by using a shape function-based method. Zero-padding is applied
to the response data in order to address the FFT’s assumption of periodicity.
The dynamic stiffness matrix of the SFEM model for a segment of the beam
is used to calculate the force information in the frequency-domain. Detailed
descriptions of each step are presented in the following subsections.

3.3.1 Time-Domain Signal Conditioning

The force identification procedure uses the propagating wave data immediately
after the impact to identify the impulsive force. A simple algorithm is applied
to the acceleration data in order to identify the general area of the beam
where the impact occurred. The geometry and material properties of the
structure are used to approximate the length of time after the impact when
reflections are expected to occur. Exponential windowing is applied to the
complete time series of the experimental acceleration data in order to reduce
frequency-domain leakage in the response [69]. Exponential windowing causes
the acceleration to decay to zero at the end of the full data set and ensures
periodicity in the response. Since only a small portion of the data immediately
after the impact is used, this windowing has a negligible effect on that data



and subsequently the identified force information.
Since the FFT algorithm assumes periodicity, it can result in wrap-around

issues. Zero padding is later applied in order to address this concern. Zero
padding has been shown to significantly improve the quality of force informa-
tion identified by using frequency-domain methods [32].

3.3.2 Deflection Information

Deflection information is required for the force identification procedure. The
deflections of the nodes are calculated from the acceleration data. The inte-
gration is performed in the frequency-domain in order to improve accuracy
and ensure compatibility with the frequency-domain representation of the sys-
tem [70]. The integration is performed by dividing the frequency-domain ac-
celeration data by the imaginary form of the frequency. For the zero frequency,
a DC value is used for the integration which is the summation of the acceler-
ation values in the frequency-domain [70]. However, this has been shown to
result in drift in the time history of displacement data. Fortunately, the small
portion of the displacement data right after the impact which is used for the
force identification problem is negligibly influenced by the drift.

3.3.3 Slope Calculation

The acceleration data only provides information regarding the one-dimensional
translational motion at discrete points along the structure but application of
the force identification procedure to a beam structure requires both deflection
and slope information. Therefore, it is necessary to calculate the corresponding
slope response at each location. This is accomplished by taking advantage
of the kinematics of the beam structure. In the slope calculation process,
the slope information of the beam structure is obtained by using the shape
function of the SFEM beam model of the structure. This technique is precise
when the kinematics of the structure is known. In order to calculate the slopes
by using shape functions, the beam structure is meshed with four-node beam
elements that provide C0 continuity.

The slope calculation procedure is performed in the frequency-domain by
using deflection data at each node. The deflection coefficients, Â, B̂, Ĉ, and D̂,
of each four-node beam element are calculated by substituting the deflection
values at the four nodes for the specified range of frequencies into the deflec-
tion equation and solving for the deflection coefficients. Slope information is
obtained by using the analytical derivative of the shape functions.
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Figure 4: Simulated mechanical wave propagation (acceleration data) using
segment model which includes two throw-off elements.

3.3.4 SFEM Model for Force Identification

The SFEM model used in the force identification process represents a seg-
ment of the beam structure. The implementation of the force identification
method presented here utilizes the response data from the five accelerometer
positions in the vicinity of the impact force. The spectral finite element model
is constructed by using a throw-off element at each end of the segment. For
these conditions, the frequency-domain dynamic stiffness matrix is prepared
to relate the displacement and slope information to the corresponding force
and moment information for the beam segment. Although this model dif-
fers considerably from the full structure model, a response predicted by the
segment model with the same impact force previously considered, shown in
Fig. 4, matches perfectly with the local response behavior of the full structure,
identified by the box in Fig. 2.

Due to the nature of SFEM, this force identification method calculates
nodal forces. For conditions where the location of the applied load and the
accelerometer are collocated, the force identification process does not require
any additional steps in order to obtain the identified force information. How-
ever, for cases where the impact is applied between two accelerometers, point
forces are calculated at the neighboring nodes when the force identification
procedure is applied. The summation of the two force time histories produces
the identified force when certain conditions are satisfied. These conditions and
the justification for this process is discussed in section 3.4 where the location



identification process is presented. This approach allows for the impact force
information to be efficiently identified independent of the exact location of the
impact.

3.3.5 Numerical Implementation and Parametric Study

The force identification procedure is first applied to the deflection and slope
data from the numerical simulations. This eliminates the potential error in-
troduced by the deflection and slope calculations and allows for the study to
focus on the influence of other conditions on the performance of the force iden-
tification method. The theoretical test structure used to numerically study the
performance of the force identification method is an 18 ft (5.49 m) long Alu-
minum beam with a square cross-section and width of 1 in (25.4 mm). Density
and Young’s modulus values of ρ = 2700 kg/m3 and EY = 75 GPa are used
and a damping coefficient value of η = 104 Ns/m4 is identified to match the
experimental response. The test structure is chosen for geometric simplicity
in order to facilitate experimental verification.

In order to study the effects of various parameters on the performance of
the force identification procedure, an ideal condition is defined. The theoretical
test structure is studied with free-free boundary conditions. The full structure
simulation is conducted by using a SFEM model with 66 evenly spaced nodes
and a point impact force is applied. The time window for the numerical
simulation is 2.56 s which allows for the propagating mechanical waves to
fully dissipate for the complete structure model without throw-off elements.
The force information calculated with the proposed method corresponds to the
accelerometer locations which were included in the subset of data analyzed.
For the ideal condition, the impact force is applied to a node in the middle of
the structure in order to minimize the effect of the reflections on the accuracy
of the identified force information. The duration of the impact is 0.4 ms, which
can be realized experimentally.

The SFEM model and numerical simulations of the response of the struc-
ture are prepared and performed by using MATLAB. The proposed force iden-
tification method is also implemented and studied by using MATLAB and
applied to the simulated response data to study the method. Both the simula-
tion of the response data and the analysis of this data are performed by using
SFEM-based approaches. This procedure is used since other simulation tech-
niques, such as time-domain methods, have been found to display limitations
with regard to high frequency performance [14]. For this reason, experimental
response data is also used in order to validate the performance of the force
identification method.
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Figure 5: Force information calculated for the simulated response for an 18 ft
(5.49 m) long beam. For this nominal case, there is strong agreement between
the identified (connected points) and simulated (circles) force information.

For the ideal conditions, the point force is detected at the location of the
impact, which is at node 33 at a position of 8.85 ft (2.70 m) from the reference
end of the beam. The peak calculated forces at the other nodes within the
subset of data analyzed have values less than 6 N (< 2%), which are easily
distinguished from the identified impact force. The force information identi-
fied from the simulated response, shown in Fig. 5, agrees very well with the
simulated force. In order to quantify the accuracy of the force identification
method, a Root Mean Square (RMS) error is calculated by comparing the
identified force values to the values used in the simulation. The RMS error
for impact force identification [27] provides quantitative information about the
average error through the impact time history. The quantification of the error
is performed by first separating the time series into two regions: the impulsive
load and the remaining portion of the time history, as shown in Fig. 5. For the
nominal case, the RMS error is 2.72 N during the impact and an average value
of 2.46 N exists for the impact force considered over the remainder of the 1 ms
presented. These errors are quite small when compared with the 300 N peak
value of the impulsive load, less than 1 percent. The presence of error in the
identified force information for the nominal case results from the use of the
segment model and how it differs from the complete structure. However, the
use of the segment model provides the means for the practical implementation
of the force identification method.



The geometric and loading properties corresponding to the results pre-
sented in Fig. 5 provide nominal conditions for performing force characteriza-
tion. Variations of these properties are studied in order to determine how they
influence the ability of the force identification method to accurately calculate
the applied impulsive load. This includes the effects of (i) varying the length
of the structure, (ii) using calculated slope information instead of simulated
slope information, (iii) varying the location of the applied force, (iv) varying
the duration of the impulsive load, and (v) varying the length of the response
data analyzed. During each part of the parametric study, the values of the pa-
rameters not currently being investigated are set to the values corresponding
to the ideal conditions. The acceleration signals used in the numerical studies
do not contain noise.
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Figure 6: Acceleration response at a node near the center of the beam for
(top) 18 ft (5.49 m) beam and (bottom) 6 ft (1.83 m) beam. Vertical lines
identify when the reflection returns to the impact location.

(i) Structure Length
In order to study the influence of the length of the structure on the accuracy of
the calculated force information, the force identification process is applied to
response behavior simulated for a range of lengths from 0.5 ft (0.15 m) to 18 ft
(5.49 m). In each case, the impact force is applied at a node in the middle of
the structure. While the length of the structure is varied, all other conditions
are maintained and the simulated displacement and slope information is used
for the force calculation. The main effect of varying the length of the structure
is to change the length of time before the reflected waves return the location



where the impact force was applied. This effect is illustrated in Fig. 6.
The vertical lines in Fig. 6 indicate the time when the reflection is observed

in the acceleration data. For the nominal case with an 18 ft (5.49 m) long beam,
the reflection is observed after 1.71 ms. When the beam length is reduced to
6 ft (1.83 m), reflections are observed after only 0.60 ms. Since the shorter
length is one-third the initial length, it takes roughly 1/3 of the time before the
reflected wave returns. This time depends on the length of the beam as well
as the wave speed. Since wave propagation is dispersive in beam structures,
the components of the mechanical waves at different frequencies travel with
different speeds. The return of the reflected waves is identified by detecting
oscillations in the response data after the initial wave.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

Length (m)

E
rr

or

 

 
RMS
Average
Exp. Fit

Figure 7: Force identification error with respect to the length of the structure.
RMS error (*) during the impulsive load, average force (o) after the impulsive
load, and a logarithmic curve (−) fit to the RMS error values are presented.

Error information is obtained by applying the force identification scheme
to the response data simulated for beam structures of lengths within identified
range. The RMS error values (*) obtained by comparing the simulated and
identified force values during the impulsive force and the average identified
force values (o) after the impulsive force are presented in Fig. 7. Examination
of these error values reveal that as the length of the structure is decreased, the
values of both error measures appear to increase along a logarithmic profile.
This is confirmed by using a least squares approach to fit the RMS error values
to a logarithmic curve: Error = −7.55ln (L) + 14.67 with R2 = 0.9999. A
similar logarithmic curve is also found to fit the trend of the values of the other
error measure (not shown). In addition to displaying the same logarithmic



behavior, it can also be seen in Fig. 7 that the values of the two error measures
are very close at all of the lengths considered. This suggests that the influence
of structure length on the performance of the force identification method is not
significantly affected by the magnitude of the force information. The increase
in the error measure values which are observed for beam structures with shorter
lengths is the result of the shorter amount of time before the reflected wave
returns to the position on the structure where the force was applied. With
less time before the reflections occur, the subset of data which can be used by
the force identification method is reduced and greater deviation exists between
the data and the behavior expected by the segment model.

(ii) Slope Calculation
The slope calculation method is tested by using deflection and slope data from
numerical simulations. The slope information calculated from the simulated
deflection data demonstrates excellent agreement with the simulated slope
information. The maximum difference between the calculated and simulated
slope data is between nine and ten orders of magnitude less than the values of
the slope from the simulation.

The error introduced by including the slope calculation in the force iden-
tification procedure is determined to be negligible for the simulated response
data. By using the shape function method to calculate the slope information,
the error in the identified impulsive force does not change from the nominal
case. However, noise in the response can cause the accuracy of the calculated
slopes, and subsequently the identified force information, to be reduced. The
calculated slope values and the corresponding identified force information are
predicted to be accurate as long as the signal-to-noise ratio remains greater
than about 100 : 1. This limitation is addressed in the experimental verifica-
tion by using accelerometers with sufficiently high sensitivity.

(iii) Impact Location
All of the calculated force information previously presented corresponds to
impulsive loading near the center of the structure. In order to investigate the
influence of the impact location on the accuracy of the calculated force infor-
mation, the impact force is applied at a number of locations on the structure.
The impact positions considered range from 1.43 ft (0.44 m) to 9.14 ft (2.79 m)
from the end of the 18 ft (5.49 m) long structure. As a result of moving the
impact location closer to the end of the structure, the reflections return to the
impact location more quickly. The increase in error resulting from moving the
impact location closer to the end of the structure is illustrated in Fig. 8.

The RMS error from the identified impulsive load and the average identified
force values after the impact both increase as the impact position moves closer
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Figure 8: Force identification error with respect to the length of the structure.
RMS error (*) during the impulsive load, average force (o) after the impulsive
load, and a logarithmic curve (−) fit to the RMS error values are presented.

to the end of the structure. Because moving the impact location has the same
effect as changing the length of the structure, i.e. reducing the length of time
before the propagating wave returns to the impact location, the error values
display the same logarithmic trend. In this case, the logarithmic curve fit to
the RMS error values takes the form Error = −4.636Ln (ximpact) + 6.6867
with R2 = 0.9916. When accounting for the fact that when the impact load
is applied in the middle of the structure, the length over which the wave
propagates before reflecting is half of the length of the structure, the data
in Fig. 7 and Fig. 8 are very close to each other. While all of the conditions
studied correspond to the same geometry and material properties, these factors
influence the wave propagation speed and subsequently the length of time
required for the propagating wave to be reflected and return to the impact
location.

(iv) Impact Duration
Next, the influence of impact duration on the performance of the force iden-
tification method is studied. System responses are simulated for impulsive
loads with half and twice the original duration. Changing the impact duration
affects the response of the system in two significant ways. The first and most
straightforward effect of changing the impact duration is that the amount of
time between the end of the impulsive load and when the reflection returns
the impact position is increased (reduced duration) or decreased (extended
duration). The effect on the performance of the force identification method



will be similar to changing the distance between the impact position and the
end of the structure. The second effect of changing the impact duration is that
shorter/longer duration loads will contain a larger/smaller range of frequency
content. Since the force identification method utilizes the SFEM, is it able to
accommodate the higher frequency content and the change in the error results
from the travel time of the propagating and then reflected wave. The two error
measures for these conditions and the nominal case are presented in Fig. 9.
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Figure 9: Force identification error with respect to the impulsive load dura-
tion. RMS error (*) during the impulsive load and average force (o) after the
impulsive load are presented.

From the data presented in Fig. 9, it can be seen that for a shorter impact
duration, the RMS error remains the same and the average force after the
impact is slightly decreased. When the impact duration is increased to 0.8 ms,
both error measures increase in value. The average force after the impact
increases more the RMS error during the impact. However, these variations
of the impact duration result in smaller increases in the error measures than
the other parameters.

(v) Length of Response Data
The influence of the length of the response data on the accuracy of the re-
constructed force is next studied. When less of the response data is available,
the wave propagation data may not have fully decayed. This will require the
application of more aggressive exponential windowing in order to reduce the
response to zero by the end of the data set. When this is done, the influence
of the exponential windowing on the data at the beginning of the data set
which is used for the force identification process is more significantly affected.



This can increase the error in the identified force information. Properties such
as damping and the boundary conditions of the structure can influence the
length of time required for the propagating wave to decay and subsequently
the length of the data set required to produce accurate results. In this study,
these properties are kept constant and various lengths of response data are
used to calculate the applied force. The error measures for the identified force
information when using response data sets of lengths ranging from 5.12 s to
down to 0.64 s are presented in Fig. 10.
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Figure 10: Force identification error with respect to the length of the response
data. RMS error (*) during the impulsive load and average force (o) after the
impulsive load are presented.

In this figure, it can be seen that above a threshold which lies between 0.64 s
and 1.28 s, the error measures for the identified force information is close to
the values for ideal conditions. However, after the length of the response data
set is decreased to 0.64 s, both of the error measures increase by an order of
magnitude. These results suggest that for a given set of conditions, a certain
amount of time is required for the response of the structure to sufficiently
decay in order for the force identification scheme to provide accurate results.
Additionally, when the response data of length 0.64 s is used, the identified
force information includes a consistent offset between the identified force values
and the simulated force values, as shown in Fig. 11. Based upon the results
of this numerical study, the presence of this characteristic in identified force
information indicates that a longer amount of response data is required to
improve the accuracy of the identified force.

Through this parametric study, the influence of (i) structure length, (ii)
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Figure 11: Identified (connected points) and simulated (circles) force informa-
tion when only one quarter of the nominal length of the data set is used.

slope calculation, (iii) impact location, (iv) impact duration, and (v) length
of response data on the performance of the force identification method was
studied. The accuracy of the reconstructed impact force is qualitatively high
comparing to previous works [26, 27, 29]. However, the variation in different
case studies and measurement methods is a significant factor in the accuracy
of the results. For instance, using calculated slope information in this work is
a source of error specific to this work which can be enhanced by using gyro-
sensors. Error in the identified force information was determined to increase for
decreasing structure length, impacts applied closer to the end of the structure,
longer impact durations, and when using response data with lengths below a
system dependent threshold. The length of the response data was determined
to have the potential to affect performance the most of the parameters stud-
ied. Changes to the structure length, impact location, and impact duration
where determined to all have similar effects on the performance of the force
identification method. When a signal-to-noise ratio of greater than 100 : 1
is maintained, the error introduced by the slope calculation is expected to be
negligible.

3.4 Impact Location Identification

The force identification method reconstructs the impact force in terms of nodal
forces. If the impact force is applied between the accelerometers, the distribu-



tion of the impact force is utilized to locate the impact location. A free-body
diagram of the element with the applied impact force F and the nodal forces,
F1 and F2, is shown in Fig. 12. By applying Newton’s method, the summation
of vertical forces and the summation of moments are calculated and presented
in Eq. (38) and Eq. (39), respectively.

∑

F = F − F1 − F2 = mV̈c, (38)

∑

Mcg = ∆M − F1

L

2
+ F2

L

2
+ F

(

L

2
− x

)

=
mL2

12
θ̈c. (39)

where the mass of the element, displacement of the center of mass of the
element, and the rotation of the element are represented by m, Vc, and θc,
respectively. The impact force is applied at the distance x from the first node
of the beam element of length L.
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Figure 12: Free-body diagram of the beam element with the impact force F
and the nodal forces, F1 and F2.

When the element is relatively short and the mass per length ρA of the
beam is small, the mass of the element is relatively small and the inertial force
can be considered negligible with respect to the applied force. For instance,
the mass of a 3.43 in (8.71 cm) element of an Aluminum beam with a 1 in2

(6.45 cm2) cross section is 0.137 kg (weighing 1.34 N) which is quite small
compared to the 300 N impact that is applied. By considering the mass of
the element negligible, the equation for the summation of vertical forces is
simplified to F1 + F2 ≈ F .

When these assumptions are satisfied, the summation of the two nodal
forces is equal to the applied impact force. As a result, it is possible to deter-
mine the impact force without knowledge of the exact location of the impact.
This can significantly reduce the computational costs when compared to other
approaches [27, 28, 29].

In order to calculate the impact location from the nodal forces, a straight-
forward nonlinear numerical solver is used. A flowchart illustrating the algo-
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Figure 13: Flowchart of the location identification algorithm.

rithm used for location identification is presented in Fig. 13. The first step is
to determine the distribution of the calculated impact force at the two ends of
the element by using the experimental data collected from the accelerometers.
The ratio of the impulses at the two neighboring accelerometers is used in
this process. Then, simulations are performed with the beam model to pro-
duce response data for comparison. In order for this process to be effective,
the model must accurately represent the structure. Known material properties
and system geometry are used for the model and the damping parameter value
is identified by comparing the simulated response of the model to the response
of the experimental system. In the simulation portion of the process illustrated
in Fig. 13, an extra node is added between the accelerometer positions for ap-
plying the impact force and predicting the response of the structure. However,
only data from the nodes which correspond to the accelerometer locations are
used in the location identification process. By using the ratio of the impulses
for the experimental data and the simulation data, the location of the impact
is calculated with the bisection method.

Although the relationship between the impulse ratio and the impact loca-
tion is nonlinear, it is also a one-to-one relationship. This allows for the use
of root-finding methods such as the bisection method. In order to start this
process, two points are chosen close to the two nodes of the element on which
the impact force was applied. The distance from the two starting points to the
nodes is chosen to be 5% of the length of the element. This level of precision
is selected as it corresponds to a practical limitation identified in the location
identification procedure. The simulated impulse ratios for the two points are
then compared to the impulse ratio for the experimental data. Based on the
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Figure 14: Implementation of the bisection method for the location identifica-
tion process.

differences between these ratios, one of the initial points is discarded and a
simulation is performed to obtain a simulated impulse ratio for a new point
directly between the two initial points. The bisection method is continued
in this way, as illustrated in Fig. 14, until the difference between the experi-
mental impulse ratio and a simulated impulse ratio is less than the prescribed
tolerance. The impact position used for the final simulated case provides the
impact location for the experimental data.

The ratio of the identified impact forces at the two nodes adjacent to the
impact location, calculated by using the simulation data, is shown in Fig. 15.
These results are for a specific case and the details of this relationship are
determined to be influenced by material properties, element length, and sam-
pling frequency. In order to study the relationship between the impulse ratio
and the location of the impact, the analytical model presented in Fig. 12 is
revisited. By using the relationship between the impact force and nodal forces
and similarly considering the rotational inertia to be negligible, Eq. (39) is
simplified. If the deformation of the beam element is sufficiently small and the
moment difference ∆M is considered negligible, an analytical formula for the
impact force ratio is obtained. This formula, F1/F2 = (x− L) /x, provides
the approximate ratio between the two nodal forces. The impact force ratio
for these assumptions is plotted as a function of position in Fig. 15 along with
impulse ratio data from numerical studies performed with the SFEM model of
the beam structure. The analytical results qualitatively agree with the numer-
ical results. The slight difference between the two is believed to result from
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Figure 15: Impulse ratio as a function of impact location for the SFEM model
(•) and the analytical model (−). Red dashed lines indicate ± 5 % of location
between nodes

neglecting the deformations of the beam element in the analytical model.
The impact force location identification process is applied to simulation

results in order to study the method. Representative results are presented
for a case where the impact force is applied between nodes 32 and 33 on the
18 ft (5.49 m) Aluminum beam at 20% of the element length (0.2L) from
node 32. The force information calculated from the simulated response data
is presented in Fig. 16. As anticipated, larger force values can be seen for
the node closer to the impact location. By combining the force information,
the identified impact force is calculated. These results, presented in Fig. 17,
display strong agreement between the identified force and the simulated force
without knowledge of the impact location. The RMS error for the impact
and the average for the remainder of the 2 ms period shown in the figure are
2.98 N and 2.76 N, respectively. By analyzing the two calculated force curves
presented in Fig. 16, an impulse ratio of 8.33 is calculated. The impact location
is calculated to be at a distance of 0.19L from node 32. This corresponds to
an error of 1% of the element length or 0.034 in (0.09 cm) on the 18 ft (5.49 m)
beam structure.
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Figure 16: Force information calculated using simulation data. The force is
applied at 20% of the element length from the 32nd node.

4 Analysis & Discussion

In this section, AWT-FEM is used to numerically simulation nonlinear wave
propagation in order to demonstrate the performance of the method. The
performance of the force identification method is demonstrated by using ex-
perimentally collected data.

4.1 Modeling Nonlinear Wave Propagation

In the first subsection, simulations on a materially nonlinear rod are conducted
by using AWT-FEM, AFT-FEM, and TFEM. The goal of this subsection is to
demonstrate the advantages of AWT-FEM in fidelity and computational effi-
ciency. Unlike beams or plates, which are strongly intrinsically dispersive, axial
wave in a rod has an intact wave shape and it is easier to identify the existence
of numerical errors. In the second subsection, simulations of a geometrically
nonlinear beam by using AWT-FEM with physically realistic boundary con-
ditions are conducted. The influence of the interaction with the boundaries
on the response is analyzed. In the third subsection, simulations of a plate
model with a weak geometric nonlinearity are presented to demonstrate the
adaptability of the AWT-FEM for 2D models.
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Figure 17: Summation of identified forces calculated using simulation data.
The force is applied at 20% of the element length from the 32nd node.
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Figure 18: Diagram of a fixed-free rod.

4.1.1 Materially Nonlinear Rod

A diagram of a fixed-free rod subject to an axial impact load at one end is
shown in Fig. 18. The parameters of the system are presented in Table. 2.
The rod is modeled with a nonlinear constitutive relationship as defined in
Eqn. (16) with a coefficient α = 20.

Simulation results for the materially nonlinear rod model in Eqn. (17) with
AWT-FEM, AFT-FEM, and TFEM are shown in Fig. 19. The Daubechies
wavelet with an order of N = 14 is used for the spectrally-uncoupled wavelet
transform and can yield sufficient smoothness in the responses. Fifty elements
are used for the AWT-FEM and the AFT-FEM and 350 elements are used
for the TFEM. For systems with physically realistic boundaries, additional
damping combined with a longer time-window is required for the AFT-FEM
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Figure 19: Velocity responses at the impacted position on the rod obtained by
using AWT-FEM, AFT-FEM, and TFEM.

to avoid wrap-around errors. However, convergence issues can occur for the
AFT-FEM iterative procedure with long time-window. In the simulation, the
AFT-FEM is not able to produce a reliable physical response. In order to
obtain a converged result for comparison with other methods, a large damping
factor η = 1× 104 combined with the original time window is used.

An impulse in the velocity is created by the impact load at 0.1 ms. The
wave is reflected by the fixed end and travels back to the impacted position
at 0.9 ms. The wave shape in the reflected wave is shifted to the left-hand
side. This distortion of wave shape caused by the nonlinearity is capture
by all these three methods. Due to the additional damping, the amplitude
response simulated by using AFT-FEM is severely reduced. Wrap-around
errors also occurs in the time-history. These results demonstrate that the AFT-
FEM cannot work for nonlinear structures without the use of non-reflecting
boundaries. In order to leak the energy out of the system, either a long
time window combined with artificial damping or a non-reflecting boundary
at one end is needed. The high fidelity performance of the AFT-FEM is only
possible with the help of these two mechanisms. In the comparison, a physical
boundary is presented and the same time-window is adopted for all three
numerical methods. The performance of AFT-FEM is greatly compromised.
Due to the periodic nature of FFT, the traveling signal gets wrapped back
into the reflected wave and results in periodic errors in the response. The
TFEM can produce a response with adequate resolution at the expense of a
refined meshing (350 elements). However, in the insert of Fig. 19, the reflected



Table 2: System parameters of rod.

Parameter Value

Elastic modulus, E 70 GPa
Cross section, A π × 25 mm×25 mm
Mass density, ρ 2800 kg/m3

Rod length, L 2 m
Time window, T 1 ms
Impact duration, Tp 50 µs
Impact amplitude, Ta 100 kN
Sampling frequency, f 1000 kHz
Nonlinear coefficient, α 20

Table 3: Computation time.

AWT-FEM AFT-FEM TFEM

11.9 s 6.3 s 25.8 s

wave is affected by spurious oscillations late in the time series resulting from
erroneously introduced numerical dispersion. For an impact load with shorter
duration and higher frequency content, this error can be further magnified
and completely distort the response [14]. On the contrary, the AWT-FEM
only uses 50 elements to produce an intact wave response and capture the
nonlinear distortion with high fidelity. The computation time for these three
methods is listed in Table. 3. A Dell desktop with a Intel Core Quad CPU is
used for all simulations. The parallel computing toolbox in MATLAB is used
to execute the calculation at different wavelet point in parallel. With the use of
parallel computing, the AWT-FEM only uses 11.9 s with 50 elements to obtain
an accurate response while the TFEM needs 25.8 s with 350 elements. The
AFT-FEM cannot produce a correct response for these conditions. However,
its fast computational performance indicates that if a fast numerical technique
similar to FFT can be applied to modify the wavelet transform procedure, the
computational performance of the AWT-FEM will be further improved.

A convergence study of the AWT-FEM and the TFEM is conducted. The
same impact condition in Table. 2 is adopted. Simulations start with 1 ele-
ments and incrementally refine the mesh by adding 10 elements. The error
is defined as the absolute value of the relative difference between the current
simulation result of the velocity response Vcur and the reference in the pre-
vious state Vpre at the impacted position, as defined in Eqn. (40. The state
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Figure 20: Comparison of convergence between the AWT-FEM and the non-
linear TFEM when the impact amplitude Ta = 100 kN and the nonlinear
coefficient α = 20.

being considered can be number of elements or order of Daubechies wavelet
depending on the convergence study.)

Error =

n
∑

i=1

‖Vcur(ti)− Vpre(ti)V ‖

n
∑

i=1

‖Vcur(ti)V ‖
. (40)

As show in Fig. 20, the convergence performance of the AWT-FEM is
significantly better than the TFEM. With 50 elements, the AWT-FEM has a
4.2% error level while the error of TFEM is 68.8%. By increasing the number
of elements to 90, the AWT-FEM can reach a 0.9% error level while the TFEM
still has an error of 23.1%.

A convergence study of the AWT-FEMwith respect to the order of Daubechies
wavelet is also conducted with the same error measure defined in Eqn. (40).
As shown in Fig. 21, the order of Daubechies wavelet starts from 4 to 20 with
an increment of 2. When the order is greater and equal to 8, the error level is
below 1%.

4.2 Geometrically Nonlinear Beam

A diagram of a cantilevered beam with clamped-free boundaries is studied as
shown in Fig. 22. A point impact load with amplitude 150 kN is applied at the
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Figure 22: Diagram of a cantilevered beam.

free end. The parameters of the system are presented in Table 4. Simulations
for a geometrically nonlinear beam model in Eqn. (21) and Eqn. (22) with
the clamped-free boundaries is conducted by using AWT-FEM. A Daubechies
wavelet with an order of N = 14 is used for the spectrally-uncoupled wavelet
transform and can yield sufficient smoothness in the response. Fifty elements
are used in the spectral element formulation to provide satisfactory accuracy
and sufficient resolution.

A comparison of the velocity response at the impacted position obtained us-
ing the AWT-FEM and a nonlinear TFEM is shown in Fig. 23. The AWT-FEM
uses 50 elements and the TFEM uses 100 elements. As reported in previous re-
search, the geometric nonlinearities have limited influence on transverse wave
propagation in beams in the intermediate strain regime [71, 72] compared to
the nonlinear dispersion in the rod model. Since the beam is a strong intrinsi-
cally nonlinear system, the influence of the nonlinear dispersion introduced by
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Figure 23: Velocity responses at the impacted position on the beam obtained
by using AWT-FEM and TFEM.

geometric nonlinearity on the intrinsic dispersion relationship of the beam in
the intermediate strain regime is negligible. The nonlinear responses obtained
using two methods are close to each other. The difference in the later part of
the response, where the reflected signal interacts with the forward traveling
waves, may be attributed to the extra dispersion introduced by the TFEM.

A convergence study of the AWT-FEM and the TFEM for the beam model
is conducted. The same impact condition in Table. 4 is adopted. Simulations
start with 1 and 10 elements and incrementally refine the mesh by adding 10
elements. The error measure defined in Eqn. (40) is adopted here. The error
level of the AWT-FEM is two orders of magnitude smaller than the TFEM.
With 50 elements, the AWT-FEM has only 0.1% error while the TFEM has
3.8%. By increasing the number of elements to 90, the error of the AWT-FEM
reduces to 0.04% while the TFEM is 0.2%.

A convergence study of the AWT-FEMwith respect to the order of Daubechies
wavelet is also conducted with the same error measure defined in Eqn. (40) for
the beam model. As shown in Fig. 25, the order of Daubechies wavelet starts
from 4 to 20 with an increment of 2. When the order is greater than and equal
to 6, the error level is below 0.5%.

4.2.1 Geometrically Nonlinear Plate

A diagram of a cantilevered plate with clamped-free boundaries along the x
dimension and free-free boundaries along the y dimension is shown in Fig. 26.
A point impact load is applied at the middle point of edge BC (Ly). Other



Table 4: System parameters of a beam

Parameter Value

Elastic modulus, E 70 GPa
Cross section, A 25 mm ×25 mm
Moment of inertia, I 3.26× 10−8 m4

Mass density, ρ 2800 kg/m3

Beam length, L 1 m
Time window, T 1 ms
Impact duration, Tp 50 µs
Impact amplitude, Ta 100 kN
Sampling frequency, f 1000 kHz

Table 5: System parameters of a plate

Parameter Value

Elastic modulus, E 70 GPa
Density, ρ 2800 kg/m3

Length 1, Lx 1 m
Length 2, Ly 0.1 m
Thickness, h 25 mm
Poisson’s ratio, ν 0.33
Time window, T 1 ms
Impact amplitude, Fm 100 kN
Impact duration, Tp 100 µs
Sampling frequency, f 500 kHz

general distributed load can also be chosen. The parameters of the system
are presented in Table. 5. Along the y dimension, free-free boundaries have no
constraints on the axial motion. Along the x dimension, the length is chosen to
be Lx = 1 m, the same as was used for the beam model in previous subsection.
The width is chosen to be Lx = 0.1 m to approximate a narrow 2D cantilever
beam.

Simulations for a plate model with a weak geometric nonlinearity based on
Eqn. (31) in the intermediate strain value regime is conducted by using AWT-
FEM. A Daubechies wavelet with an order of N = 22 is used for the wavelet
transform with respect to time. A Daubechies wavelet with an order of N = 16
with a sampling rate ∆y = 0.04 m is used for the wavelet transform with
respect to the spatial coordinate y. These wavelets are able to provide sufficient
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smoothness in the response. Twenty elements are used to approximate both
the x dimension and the y dimension.

The comparison of the velocity responses at the impacted position obtained
using the AWT-FEM, 1D TFEM, and 2D TFEM are shown in Fig. 27. The
1D TFEM with 100 elements is applied onto a 1D beam model with the same
length as in the previous subsection. Since the width of the plate is narrow,
the response of the AWT-FEM has a similar trend with the response of the 1D
TFEM. There are three major differences between them. First, the width of
the plate makes it stiffer than the corresponding 1D beam model, which results
in a smaller amplitude of the response in the AWT-FEM. Second, the response
in the AWT-FEM after the initial pulse includes small amplitude oscillations
due to the interaction with reflected waves from both sides while the response
in the 1D TFEM is smooth. Third, the later part of the responses in the
two methods when the reflected waves travel back is different. This may be
related to the effect of the sides of the plate and the influence of the different
stiffnesses on the wave speed. A 2D TFEM with a 50 × 20 elements using
ANSYS is also adopted here to produce the wave propagation process. As
shown by the dashed-doted green line, the response is significantly different
from the other two. For this problem with extreme impact loading, the 2D
TFEM with a reasonable fine mesh using a sequential time integrator cannot
produce a convergent result. It is also worth noting that by further increasing
the impact load and leading the strain into a strong value regime, all three
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Figure 26: Diagram of a cantilevered plate.

methods will encounter convergence issue.

4.3 Force Identification

The performance of the force identification method is further studied with
experimental response data in order to verify the performance observed by
using simulated response data. The experimental setup is a 6 ft (1.83 m) long
aluminum bar with a square cross-section and width of 1 in (25.4 mm), as
shown in Fig. 28. It is shorter than the ideal beam structure defined in the
numerical study in order to accommodate laboratory space limitations. The
structure is instrumented with twenty-two PCB 356A22 accelerometers, with
a frequency range of 0.5 to 4000 Hz, distributed evenly along its length. This
number of accelerometers allows for good resolution in the slope information
calculated from the acceleration data. These are triaxial accelerometers (axial,
transverse and lateral directions), but only transverse response data is used.
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Figure 27: Velocity responses at the impacted position on the beam obtained
using AWT-FEM, 1D TFEM, and 2D TFEM.

The acceleration data is collected with a sampling frequency of 102.4 kHz
in order to capture the response with good temporal resolution. The data is
down-sampled by a factor of four in order to accommodate memory limitations
when applying the force identification procedure. The structure is suspended
from bungee cords in order to approximate free-free boundary conditions. A
PCB 086D05 modal impact hammer is used to apply impulsive loads in the
vertical direction. The applied force is measured by the force transducer in
the impact hammer for comparison with the identified force information. For
transducer signal conditioning and A/D signal conversion, a LMS SCADAS
III acquisition system is used. The measured data is recorded by using LMS
Test.Lab Software, Ver. 11A. The acceleration data sets are chosen from the
accelerometers in the vicinity of the impact location. The acceleration data
contains the response signal of the structure due to the impact and also the
reflections due to the boundaries of the structure. The acceleration data is
dispersive due to the dispersive nature of the structure.

The impact force identification method is applied to experimental response
data collected for conditions when the impact location is collocated with an
accelerometer and when the impact is applied between accelerometers. Rep-
resentative results for these conditions are presented and discussed below.

As it was shown in the parametric study, the calculated impact force is
more precise at cases where the impact occurs close to the middle of the
structure. The first data set presented corresponds to an impact force being
applied to the experimental system at the location of accelerometer number 11



Figure 28: Photograph of the experimental setup.

near the middle of the structure. The force information obtained by applying
the force identification method is presented in Fig. 29. Since the impact force
was applied at the location of the accelerometer, the location of the impact
is easily identified as the position of accelerometer 11. The identified force
information agrees well with the measured force, successfully capturing the
qualitative characteristics of the impulsive load. However, some discrepancies
are observed. This error is believed to be introduced as a result of errors in
the slope calculation due to signal noise and also due to the low frequency
stop-band of the accelerometers which are used to perform modal analysis.
The RMS error for this case is 34.60 N and an average value of 10.45 N
exists during the remainder of the 1 ms time window presented in Fig. 29.
In comparison with the ideal conditions, the length of the beam is shorter
and noise is present in the acceleration data. While each of these differences
contributes to the reduced accuracy of the calculated force information, the
RMS error for the impulsive load is only 12% of the maximum force value.

The next two data sets presented were collected when the impact force
was applied between accelerometers. These data sets are used in order to test
the force identification as well as the location identification methods. The
impact force identification method is applied to calculate the forces applied
to the structure and the location identification method is used to determine
where the impact force was applied. The first of these two data sets corre-
spond to conditions where the impact force is applied at the center between
accelerometers 11 and 12. The impact force information obtained from the
force identification method is presented in Fig. 30. The detected force values
at nodes 11 and 12 exhibit similar properties since the impact was applied
at equal distances from the two accelerometers. However, after the impulsive
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Figure 29: Force information calculated from the experimental data, force
applied at node 11.

load, the identified force values increase or decrease linearly with time.
The summation of the identified forces at the accelerometers on either

side of the impact location provides the identified force. The identified force
information (∆) agrees well with the measured force information (o) during
the impact. After the impact, the calculated force exhibits a persistent offset
from the measured force values. The RMS error for the summation of the two
calculated forces is 39.20 N during the impact and averages 53.21 N during
the remainder of the 1 ms. Based on the parametric study, the force offset
after the impact is believed to be due to the short length of the acceleration
data set. Access to a longer set of the response data is expected to yield more
accurate results. The bungee cords supporting the experimental system also
apply a small but constant force to the structure which is not addressed in the
model and may influence the results. By using the impulse ratio calculated for
the force values at accelerometers 11 and 12, the impact location is calculated
to be at a distance of 0.52L from accelerometer 11. This corresponds to a
deviation of only 2% of the distance between the accelerometers which is less
than 2 mm.

The final data set correspond to conditions where the impact force is ap-
plied at a distance of 0.40L from accelerometer 11. The impact force informa-
tion obtained from the force identification method is presented in Fig. 31. As
the numerical study predicted, the calculated force values for the accelerom-
eter nearest to the impact location are larger than the values for the other
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Figure 30: Force information calculated using experimental data for the force
applied at 50% of the distance between the accelerometers from accelerometer
11.

location. Again, the calculated force values at the positions of the two ac-
celerometers gradually increase or decrease after the impact. The identified
force information is obtained from the summation of the calculated forces and
it agrees well with the measured force during the impact. The RMS error is
35.61 N during the impact and averages 83.78 N during the remainder of the
1 ms presented in Fig. 31. The impact force is identified to be at a distance
of 0.37L from accelerometer 11. This corresponds to a deviation of only 3%
of the distance between the accelerometers which is less than 3 mm from the
actual location of the applied impact force. Considering the fact that the im-
pact was manually applied and the hammer tip is 6 mm wide, the errors in
the results of the location identification method are acceptable.

The experimental verification illustrates a good agreement between the
experiment and the simulation predictions. However, the force identification
method of the experimental setup might experience errors due to the discrep-
ancies in the material properties, loading conditions, mass of accelerometers
and other different unknown factors. These errors can be reduced by conduct-
ing different tests in order to calibrate the method.
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11.

5 Closure

In this work, numerical simulation and force identification & localization meth-
ods were developed to facilitate the high-fidelity study of nonlinear wave propa-
gation caused by extreme impact loading conditions. By using a wavelet-based
spectral finite element method and an alternating wavelet-time framework, the
linear method was adapted for nonlinear systems. The alternating wavelet-
time finite element method (AWT-FEM) is demonstrated to provide high-
fidelity results, be compatible with parallel computing, and provide a means
to study general nonlinear behavior in a range of simple structures. The direct
iteration algorithm adopted in this study limits the convergence performance
of the AWT-FEM. For 1D beam and 2D plate with geometric nonlinearity,
the AWT-FEM is able to obtain a converged response within an intermediate
strain value regime (10−6 to 10−3) where the influence of the geometric nonlin-
earity is limited. In order to address this issue, a modified Newton-Raphson
iterative method was subsequently developed to replace the direct iteration
algorithm in order to improve the convergence performance of the AWT-FEM
and facilitate its application for large deformation problems.

An impact force identification method using the spectral finite element
method was also presented and demonstrated with a beam structure. With this
method, the impact force can be determined without precise information about
the location of the impact on the structure. The procedure was demonstrated



with simulated response data for propagating mechanical waves and validated
by using experimental data. In simulations, excellent agreement was observed
for nominal conditions. Sources of error in the identified force information were
investigated through a parametric study. The most influential parameter in
the force calculation procedure is the length of the response data set. Reduced
performance was identified when decreasing the structure length, moving the
impact location toward the end of the structure, and increasing the impact
duration. Also, the trends associated with varying the structure length, impact
position, and impact duration were studied. The force identification method
was also applied to experimental data and was able to successfully identify the
characteristics of the impact and provide identified impact force information
with relatively low error. In conjunction with the force identification method,
a new technique for accurately determining the location of the impact was
proposed. When applied to experimental data, the impact locations were
identified within 5% of the distance between the accelerometers from the actual
location, which corresponds to an error of less than 0.17 in (0.4 cm) on a 6 ft
(1.83 m) structure.

The AWT-FEM is promising tool with great potential for studying a wide
range of nonlinear wave propagation in various structural components. While
the numerical studies conducted in this work provided great insight into the
performance of the new numerical simulation technique, future studies will
incorporate significant experimental verification in order to further study and
refine the tool. Future work on the new methods for force identification and
localization will explore the offset in the calculate force information which fol-
lows the impulsive load. Further refinements to the force identification meth-
ods will also include incorporating more advanced sensor technology, such as
gyroscopic sensors to directly measure rotational response information. While
these force identification methods have been demonstrated for beam struc-
tures, its application to structures such as rods, plates, and more complicated
structures such as shells, trusses and arches will also be explored.
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tion of finite element methods using daubechies compactly-supported wavelets
for elastic wave propagation simulation. Wave Motion, 50(3):558–578, 2012.

[24] T. Cameron and J. Griffin. An alternating frequency/time domain method for
calculating the steady-state response of nonlinear dynamic systems. Journal of
applied mechanics, 56(1):149–154, 1989.

[25] U. Lee and I. Jang. Nonlinear spectral element model for the blood flow in
human arteries. In Proceedings of the 2011 International Symposium of Com-
putational Models for Life Sciences, pages 136–145. Toyama City, Japan, 2011.

[26] J F Doyle. An experimental method for determining the dynamic contact law.
Experimental Mechanics, 24(1):10–16, 1984.

[27] D E Adams, B Zwink, and N C Yoder. Impact loading and damage identifi-
cation using minimal dynamic sensing strategies. SAMPE, Long Beach, CA,
2008.



[28] N Hu and H Fukunaga. A new approach for health monitoring of composite
structures through identification of impact force. Journal of Advanced Science,
17(1-2):82–89, 2005.

[29] G Yan and L Zhou. Impact load identification of composite structure using
genetic algorithms. Journal of Sound and Vibration, 319(3-5):869–884, 2009.

[30] P E Hollandsworth and H R Busby. Impact force identification using the general
inverse technique. International Journal of Impact Engineering, 8(4):315–322,
1989.

[31] V I Bateman, T G Carne, D L Gregory, S W Attaway, and H R Yoshimura.
Force reconstruction for impact tests. Journal of Vibration and Acoustics,
113(2):192–201, 1991.

[32] J F Doyle. Further developments in determining the dynamic contact law.
Experimental Mechanics, 24(4):265–270, 1984.

[33] C Chang and C T Sun. Determining transverse impact force on a compos-
ite laminate by signal deconvolution. Experimental Mechanics, 29(4):414–419,
1989.

[34] V Calhoun, X Golay, and G Pearlson. Improved fMRI slice timing correction:
interpolation errors and wrap around effects. In Proceedings, ISMRM, 9th
Annual Meeting, Denver, page 810, 2000.

[35] S Liu, Q Wang, and G Liu. A versatile method of discrete convolution and
FFT (DC-FFT) for contact analyses. Wear, 243(1):101–111, 2000.

[36] Y Keller, A Averbuch, and M Israeli. Pseudopolar-based estimation of large
translations, rotations, and scalings in images. Image Processing, IEEE Trans-
actions on, 14(1):12–22, 2005.

[37] J F Doyle. An experimental method for determining the location and time of
initiation of an unknown dispersing pulse. Experimental Mechanics, 27(3):229–
233, 1987.

[38] C Chen and F G Yuan. Impact source identification in finite isotropic plates us-
ing a time-reversal method: theoretical study. Smart Materials and Structures,
19(10):105028, 2010.

[39] E Wu, J C Yeh, and C S Yen. Impact on composite laminated plates: an inverse
method. International Journal of Impact Engineering, 15(4):417–433, 1994.

[40] L Gaul and S Hurlebaus. Identification of the impact location on a plate using
wavelets. Mechanical Systems and Signal Processing, 12(6):783–795, 1998.

[41] T Kundu, S Das, S A Martin, and K V Jata. Locating point of impact in
anisotropic fiber reinforced composite plates. Ultrasonics, 48(3):193–201, 2008.

[42] J H Park and Y H Kim. Impact source localization on an elastic plate in a
noisy environment. Measurement Science and Technology, 17(10):2757, 2006.



[43] M Meo, G Zumpano, M Piggott, and G Marengo. Impact identification on
a sandwich plate from wave propagation responses. Composite Structures,
71(3):302–306, 2005.

[44] D Liang, S-F Yuan, and M-L Liu. Distributed coordination algorithm for
impact location of preciseness and real-time on composite structures. Measure-
ment, 46(1):527–536, 2013.

[45] R Seydel and F K Chang. Impact identification of stiffened composite panels:
I. system development. Smart Materials and Structures, 10(2):354, 2001.

[46] N Hu, H Fukunaga, S Matsumoto, B Yan, and X H Peng. An efficient approach
for identifying impact force using embedded piezoelectric sensors. International
Journal of Impact Engineering, 34(7):1258–1271, 2007.

[47] J Park, S Ha, and F K Chang. Monitoring impact events using a system-
identification method. AIAA journal, 47(9):2011–2021, 2009.

[48] Z Boukria, P Perrotin, and A Bennani. Experimental impact force location
and identification using inverse problems: application for a circular plate. In-
ternational Journal of Mechanics, 5(1):48–55, 2011.

[49] K Shin, H Yang, S-K Lee, and Y-S Lee. Group delay based location tem-
plate matching method for the identification of the impact location on a plate.
Journal of Sound and Vibration, 332(8):2111–2117, 2013.

[50] P Ghaderi, A J Dick, J R Foley, and G Falbo. High fidelity force location
identification in beam structures. In 83rd Shock and Vibration Symposium,
New Orleans, Louisiana, USA, November 4-8 2012.

[51] Y Liu, P Ghaderi, and A J Dick. A semi-analytical nonlinear spectral finite
element method for one-dimensional waveguides. In ASME International Me-
chanical Engineering Congress and Exposition (IMECE), 2012.

[52] P Ghaderi, A J Dick, J R Foley, and G Falbo. Topics in Nonlinear Dynamics,
Volume 3, chapter Spectral Domain Force Identification of Impulsive Loading
in Beam Structures, pages 157–165. Springer, 2012.

[53] Y Liu and A J Dick. Numerical simulation of lateral impact wave propaga-
tion in drill-strings. In 2013 CAPA Petroleum and Petrochemical Technical
Symposium, Houston, Texas, USA, October 25 2013.

[54] Y Liu and A J Dick. Nonlinear analysis of transient wave propagation in
beam structures using aft-fem. In ASME International Mechanical Engineering
Congress & Exposition (IMECE), San Diego, California, USA, November 15-21
2013.

[55] P Ghaderi, S Rich, and A J Dick. Spectral domain based impact force iden-
tification for rod structures. In ASME International Mechanical Engineering
Congress & Exposition (IMECE), San Diego, California, USA, November 15-21
2013.



[56] Y Liu and A J Dick. Numerical analysis of lateral wave propagation in drill-
string for stability monitoring. In ASME International Mechanical Engineering
Congress & Exposition, Montreal, Quebec, Canad, November 14-20 2014.

[57] Y Liu and A J Dick. Topics in Modal Analysis II, Volume 8, chapter On the
Role of Boundary Conditions in the Nonlinear Dynamic Response of Simple
Structures, pages 135–143. Springer, 2014.

[58] Y Liu, A J Dick, J Dodson, and J Foley. Topics in Modal Analysis II, Volume
8, chapter Nonlinear High Fidelity Modeling of Impact Load Responses in a
Rod, pages 129–134. Springer, 2014.

[59] Y Liu and A J Dick. ‘wave propagation in a materially nonlinear rod: Nu-
merical and experimental investigations. In IMAC XXXIII A Conference and
Exposition on Structural Dynamics, Orlando, Florida, USA, February 2-5 2015.

[60] Y Liu, Y Ji, and A J Dick. Numerical investigation of lateral and axial wave
propagations in drill-string for stability monitoring. Journal of Vibration and
Acoustics, 2015. DOI: 10.1115/1.4029992.

[61] Y Liu and A J Dick. High fidelity analysis of transient wave propagation in non-
linear one-dimensional waveguides. Journal of Computational and Nonlinear
Dynamics, 2015. DOI: 10.1115/1.4028015.

[62] Y Liu and A J Dick. Alternating frequency-time finite element method: High-
fidelity modeling of nonlinear wave propagation in one-dimensional waveguides.
Journal of Computational and Nonlinear Dynamics, in review.

[63] P Ghaderi, A J Dick, J R Foley, and G Falbo. Practical high-fidelity frequency-
domain force and location identification. Computers and Structures, in review.

[64] Y Liu and A J Dick. Alternating wavelet-time finite element method: Mod-
eling and analysis of nonlinear wave propagation in one- and two-dimensional
waveguides. Journal of Sound and Vibration, in review.

[65] Y Liu and A J Dick. Nonlinear wave propagation in one-dimensional structures:
Analysis and force identification. Journal of Computational and Nonlinear
Dynamics, in review.

[66] Gregory Beylkin. On the representation of operators in bases of compactly
supported wavelets. SIAM Journal on Numerical Analysis, 29(6):1716–1740,
1992.

[67] J. Li and Y. Zhang. Exact travelling wave solutions in a nonlinear elastic rod
equation. Applied Mathematics and Computation, 202(2):504–510, 2008.
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