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1. Executive Summary 
Mobile malware detection can be extremely challenging in the presence of cross-cutting 
control and data dependencies, invisible control switches due to multithreading or event 
processing. Moreover, inherent ambiguities of an application’s intent make it difficult to 
separate malicious behavior from legitimate functionality.  Given that provable 
automation is not possible in all cases, our proposed novel comprehension-driven 
graph-based approach enables an iterative refinement process capable of quickly 
discovering sophisticated malware.  We were the top-performing Blue team in Phase I 
and among the top 3 performers in Phase II.  We exceeded Phase I and Phase II BAA 
goals in terms of analysis time, and also in terms accuracy in Phase I.  The Red team, 
however, has clearly shown that malware detection is still an unsolved problem and 
more research is needed. The program has brought to the surface some of the hard 
problems of static analysis and the need for a program comprehension technology to 
enable humans to develop better hypotheses of potential malware. 
 
Our success on APAC is directly attributable to the identification of, and novel solutions 
for, the following research questions: 
 

1. How should a software analysis platform be built to facilitate both automation and 
human comprehension? 

2. How can a man-machine analysis system detect novel, sophisticated, and 
domain-specific malware?  

3. How can expressive, compact information flow summaries be mined from a 
library for accurate and scalable partial program analysis? 
 

How should a software analysis platform be built to facilitate both automation and 
human comprehension? 
 
Existing frameworks were insufficient for our purposes, providing either automation or 
static visualizations, but we required a flexible and interactive query-model-refine 
paradigm. To overcome the limitations of prior work and address this research question, 
we commissioned our subcontractor, EnSoft, to advance Atlas and its graph schema to 
meet our need. Atlas employs a graph-based mathematical abstraction of software. It 
preprocesses the Abstract Syntax Tree (AST) of a program into a rich, attributed graph 
data structure in an in-memory graph database. This software graph can be queried in 
automated and interactive ways. Automation is supported through an embedded Java 
DSL, allowing automated analyzers to be written on top of Atlas using very few lines of 
code. Interaction and comprehension are supported in several ways. First, analysis 
results can be viewed using intuitive graph visualizations that have a one-to-one 
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correspondence with the matching source or byte code. Second, Atlas provides a Shell 
View that allows the user to compute, query, and visualize results on-demand. Third, 
analyzers can be invoked automatically in response to user clicks through a 
configurable Smart View. For example, this view can be configured to instantly display a 
call graph, type hierarchy, or other artifact whenever the user clicks on a source token 
or graph element. This potent combination of automation and interaction has the effect 
of amplifying the intelligence of its users, enabling use cases that would be infeasible to 
automation or manual effort alone. 
 
How can a man-machine analysis system detect novel, sophisticated, and 
domain-specific malware?  
 
On its own, a software analysis platform that enables automation and interaction is not 
sufficient for malware detection –it is a foundation upon which a man-machine detection 
approach can be constructed. We recognized immediately that automated tooling can 
be used to point out interesting program behaviors, but a human analyst is required for 
making domain-specific judgment calls. The design of such a hybrid system 
necessitates answers to new questions such as (i) what behaviors are important to 
detect?, (ii) what behaviors can a static analysis feasibly detect?, (iii) how can we 
present behaviors to an analyst in a comprehensible way?, and (iv) how can we enable 
an analyst to effectively pose and answer follow-up questions? 
 
Question (iv) is particularly crucial for addressing the shortcomings of traditional, 
existing two-pass defect detection tools. In a traditional two-pass tool, automation 
performs the first pass, and then a human must manually confirm or reject its alarms. 
This places an unreasonable burden on the user. Today's malware detection 
approaches either fall into the two-pass category, or else they are fully-automated and 
therefore not suitable for detecting novel, sophisticated, or domain-specific malware. 
We used Atlas and its APIs to move beyond prior work and create the Security Toolbox. 
Unlike conventional two-pass approaches, the Security Toolbox uses an interactive 
approach. We detect malware using repeated iterations of automation and interaction; 
automation mines the artifacts to expose program behaviors, and the analyst 
synthesizes the results and formulates new questions for the automation to answer. 
 
How can expressive, compact information flow summaries be mined from a 
library for accurate and scalable partial program analysis? 
 
Android applications, like most modern software, are built on top of reusable libraries. 
Android provides a massive library, including the entire standard Java library, which 
applications can call. In addition, the Android framework itself makes callbacks into an 
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application in response to button clicks, interprocedural communication, component 
lifecycle changes, and many other events. Thus, analyzing an app by itself is a form of 
partial program analysis, defined as the analysis of a proper subset of a program's 
implementation. Due to the sheer size of the Android framework (orders of magnitude 
larger than an app), including it in order to perform whole program analysis was 
infeasible. Yet failing to capture its behaviors, particularly information flows, resulted in 
incomplete results and missed detections from the APAC performers. 
 
The APAC Blue teams tried divergent approaches to solve this problem. As reported in 
their research paper, Stanford had a small army of graduate and undergraduate 
students to hand-write coarse information flow specifications for “important” Android 
APIs, then later worked to dynamically verify them. This labor-intensive process 
produced succinct, but coarse, results of varying quality and coverage. At the other 
extreme, some performers attempted to include the entire Android framework into their 
analysis. This approach tackled the problems of quality and coverage, but introduced 
dire problems of computational scalability. Our ISU team felt that the best of both worlds 
could be captured by an automated, summary-based approach.  
 
Most prior work on the topic of library summarization focused on strategies for call 
graph construction, and thus was unhelpful. While at least one other APAC performer, 
Stanford, attempted to summarize library data flows, we found that their results were too 
coarse to be used accurately or capture flows involved in callbacks. To aggregate the 
benefits of their work while avoiding the drawbacks, we designed FlowMiner, an 
automated tool for extracting fine-grained, compact data flow summaries of Java library 
byte-code. FlowMiner employs the graph-based analysis paradigm and APIs of Atlas to 
perform a one-time static analysis of a Java library. It outputs sound data flow 
summaries as an abstract data flow graph, encoded using a portable XML format. Static 
analysis tools can use this portable summary file to achieve complete and accurate, yet 
scalable, partial program analysis. 

2. Introduction 
This work was performed by Iowa State University (ISU) and was issued by the Air 
Force Research Laboratory (AFRL) under Cooperative Agreement No. FA8750-12-2-
0126, Comprehension-Driven Program Analysis (CPA) for Malware Detection in Android 
Phones. The Defense Advanced Research Project Agency (DARPA) program manager 
was Tim Frasier and the AFRL Program Manager was Mark Williams. The PI was Dr. 
Suraj Kothari from ISU and the subcontractors were EnSoft. Corp and North Carolina 
State University (NCSU participated only during the early part of Phase I). 
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As described by DARPA [1] this program aims to address the following challenges. 
 

The Automated Program Analysis for Cybersecurity (APAC) program aims to 
address the challenge of timely and robust security validation of mobile apps by 
first defining security properties to be measured against and then developing 
automated tools to perform the measuring.  APAC will draw heavily from the field 
of formal-methods program analysis (theorem proving, logic and machine 
proofing) to keep malicious code out of DoD Android-based application 
marketplaces.  APAC will apply recent research breakthroughs in this field in an 
attempt to scale DoD’s program analysis capability to a level never before 
achieved with an automated solution.  
.. 
The second challenge APAC aims to address is producing practical, automated 
tools to demonstrate the cybersecurity properties identified.  Successful tools 
would minimize false alarms, missed detections and the need for human filtering 
of results to prove properties. 

  

2.1 Team 
Our team is composed of three sub teams, each of which brought a unique capability to 
this project.  
    
Suraj Kothari, the principal investigator, and his team at Iowa State University have a 
track record of innovative advancements in applications of program analysis. 
          
Jeremias Sauceda, the co-principal investigator and his team at EnSoft have 
experience in building world-class easy-to-use engineering tools that apply 
sophisticated algorithms.  
      
In the first year of Phase I, Xuxian Jiang and his team at North Carolina State University 
provided their expertise in Android malware in the wild. 

2.2 Goals and Progress Towards Goals 
 
The Automated Program Analysis for Cybersecurity (APAC) program was designed to 
find malware in Android phones.  The goals as set in the program BAA [2] are listed 
below. 
               

1. Develop a practical program analysis tool to keep malicious applications written 
in Java out of the DoD Android-based mobile marketplaces. 
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2. Conduct novel research that leverages advances in static program analysis to 
develop innovative capabilities, far beyond existing practices, to detect highly 
sophisticated malware attacks that the DoD needs to be prepared for. 

 
3. To meet the DoD needs for practical deployment, the proposed tool will surpass 

the following minimum performance requirements:     
            

A. False alarms less than 30% in Phase I and less than 5% in Phase II 
B. Missed detection less than 30% in Phase I and less than 5% in Phase II 
C. Manual labor required per mobile app less 160 hours in Phase I and less 

than 80 hours in Phase II 
D. An analyst with basic knowledge of software development and malicious 

techniques should be able to operate the tool effectively 
 
When evaluating our success of goal 1, we consider that we were the top performing 
Blue team in Phase I and among the top 3 performers in Phase II, but on the other 
hand, a missed detection rate of even 5% may have dire consequences when dealing 
with DoD level software audits.  The Red team has shown that even under somewhat 
ideal conditions, the problem of detecting malware is far from solved.  Additionally even 
though we performed well within our analysis time goals, the APAC performers received 
feedback from DoD analysts during PI meetings that human analysis time may need to 
be decreased further to meet current analysis demands.  That being said, our average 
analysis time was significantly under the proposed analysis time goals proposed in the 
BAA. 
 
In response to goal 2, our team has published peer-reviewed papers on novel program 
analysis techniques, which are detailed in the Publications section at the end of this 
report. 
 
With regard to goal 3A, our team found unintended malware (malicious behavior not 
purposely crafted by the Red teams, nonetheless found to exist in a challenge app).   In 
Phase I, we found 6 unintended malwares and 35 unintended malwares in Phase II. Our 
human-in-the-loop process did not produce false alarms in Phase I or II.  
 
Pertaining to goal 3B, we exceeded our Phase I goal of limiting missed detections to 30 
% with a missed detection rate of 6.49 %.  In Phase II, as a result of the changing 
nature of the challenge applications our missed detection rate increased to 25% and so 
we did not meet our Phase II goal of 5 %.  The Red team has clearly shown that 
malware detection is still an unsolved problem and more research is needed.  The 
APAC program has brought to the surface some of the hardest problems of static 
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analysis and the need for new technology to address those problems. Specifically, there 
is a critical need for new static analysis based program comprehension techniques to 
enable humans to better hypothesize the candidates for potential malware. In almost all 
challenge apps in Phase II where we did not find the planted malware, our failure was 
because of our inability to come up with the right hypothesis. In many of those case we 
hypothesized and found malware but it was not the one that was planted by the Red 
Team. Thus, in phase II although we found a lot more unintended malware (35 
instances of unintended malware in Phase II as compared to 6 instances in Phase I), 
our missed detection rate increased was worse in Phase II (25% missed detection rate 
in Phase II compared to 6.49% in Phase I).  
 
Our 3C goal of analyzing applications under 160 hours per application in Phase I and 
under 80 hours in Phase II was achieved.  In Phase I we averaged 1.13 hours per 
application and an average of 9.19 hours per application in Phase II.  Our analysis time 
increased between Phase I and Phase II, the bulk of the increase is due to the time that 
analysts needed for hypothesizing the malware.  The time for automated analysis was 
not the issue. In fact the apps in Phase II were typically much smaller than the apps in 
Phase I and the scalability of automated analysis was not the issue.  
 
As for goal 3D, we believe we have met this goal.  Throughout APAC Phase I and II, 
ISU has employed undergraduate students to provide feedback and assist with 
development tasks of the Security Toolbox.  And an undergraduate course in software 
engineering that used Atlas for homework on program analysis showed that users with 
limited background in software analysis and malware could operate the tool 
successfully.  The Red team continually praised our tool for its usability and maturity in 
the field. 
 
A further discussion of these results can be found in the Results and Discussions 
section. 

3. Methods, Assumptions, and Procedures 
Our research focused on the challenges not addressed, novel and sophisticated 
malware that unlike the malware reported in the wild, pose significant program analysis 
challenges. Unlike the other security attacks that are immediately noticeable through 
their denial of service, malware apps can silently leak sensitive information without 
revealing themselves. 
      
Detecting sophisticated and novel mobile malware can be extremely challenging in the 
presence of the following program analysis challenges:     
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● Non-local data and control dependencies in the malware that cut across several 
functions and data structures. 

● Invisible control switches due to multithreading or event processing - these 
control switches are not directly visible in static analysis as function calls or as 
control statements. 

● Inherent ambiguities of an application’s intent make it difficult to separate 
malicious behavior from legitimate functionality.  

     
Users of existing defect analysis (not just malware detection) tools employ two passes: 
(1st pass) the tool works automatically to produce a list of potential problems in the 
code, (2nd pass) tedious manual inspection to validate the problems. This approach 
runs into the following difficulties. Without any on-the-fly human intelligence to guide its 
trajectory, the tool makes wrong or highly conservative decisions resulting in many false 
negatives and/or positives. Moreover, the results produced by defect analysis tools lack 
evidence for humans to reason with to confirm or reject the tool findings. The existing 2-
pass approach is shown in Figure 1.   
     

 
Figure 1 - Existing 2-pass vs. Integrated Comprehension Driven Analysis Approach 

     
A tool by itself cannot deal with the program analysis challenges listed above, so we 
incorporate human guidance to tweak the trajectory of the tool to improve its precision in 
detecting malware. A human cannot guide the tool effectively without comprehending 
the application software. Nor can he comprehend the large and complex application 
software without an inordinate amount of effort, so we incorporate tool assistance by 
searching and extracting relevant software artifacts as evidence for the analyst to 
reason about the application’s intent and validate the malware detection results from the 
tool. In short, we proposed and researched a novel integrated comprehension-driven 
analysis-based approach.  
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As shown in Figure 1, we have a tightly coupled human-in-loop approach with iterative 
refinement as opposed to the existing 2-pass approach. Our approach succeeded 
reasonably well because it provided a viable alternative to address sophistications of 
attacks that make program analysis difficult. 
      
We leveraged the Query-Model-Refine (QMR) framework developed by EnSoft; it 
provides the tool mechanics necessary for our tightly coupled human-in-loop approach. 
Like the database language SQL, the framework incorporates a composable query 
language that can be used either interactively or embedded as a Java program to 
create programs to analyze programs. Because of the query language, the user is freed 
from the lower-level details of static analysis and enabled to focus efforts on the 
malware detection strategies at higher-level semantics. The “model” and “refine” 
capabilities work in conjunction with the query language to facilitate human 
comprehension by creating effective abstractions of large software. We developed 
Atlas, a QMR platform for Java. 
      
Another important aspect of our approach was to develop a tool that is evolution-friendly 
and highly usable, i.e., it is fairly easy to refine and extend its malware detection 
capabilities without requiring expertise in building static analysis tools. This is the case 
because our approach amounts to having the malware detection capabilities 
incorporated as a toolbox built on top of Atlas. The low-level details of static analysis 
reside inside Atlas, and the malware detection capability resides inside the toolbox as 
compact analysis programs using Atlas queries. Refining and extending the existing 
detection capabilities as well as creating entirely new capabilities is relatively easy 
because it can be done through query-enabled analysis programs. The underlying 
design philosophy is similar to environments like Matlab where the heavy lifting is done 
behind the scenes, making it much easier for the user to develop domain-specific 
programs. Since creating a complete list of properties is unrealistic, it is imperative that 
it be relatively simple to expand the cookbook of ready-made properties through the use 
of adversarial thinking. An evolution-friendly technology provides a cost effective path 
for DoD to maintain state-of-the-art in malware detection for years to come.   
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3.1  Technological Advances 
 
The DARPA APAC program gave us an opportunity to make three important 
technological advances that we will describe here.  

3.1.1 Graph Schema and Program Analysis Platform 
 
How should a software analysis platform be built to facilitate both automation and 
human comprehension? 
 
We have made significant advances to answer this key question. We came up with a 
graph schema, called the eXtensible Common Software Graph (XCSG) to provide an 
attributed directed graph as a common medium to express rich structural and behavioral 
semantics of programs in Java, Java byte code, C and C++. We advanced Atlas as the 
graph database platform to write program analyzers based on the XCSG schema. We 
have advanced the Atlas platform that enables one to write software analysis 
verification and transformation programs in minutes or hours that otherwise would take 
days or months. 
 
Atlas parses C, C++, Java, and Java bytecode to capture complex program semantics 
in a graph database. It provides APIs to mine, traverse, and transform the graph 
database.  Atlas APIs and program graph visualization capabilities enable quick 
prototyping of tools to experiment with and advance fundamental techniques to reason 
about complex problems of large software. Atlas is free for academic use. The XCSG 
schema is available online.  
 
Atlas decouples the domain-specific analysis goal from its underlying mechanism by 
splitting analysis into two distinct phases. In the first phase, polynomial-time static 
analyzers index the software AST, building a rich graph database. In the second phase, 
users can explore the graph directly or run custom analysis scripts written using a 
convenient API. These features make Atlas ideal for both interaction and automation. In 
our ICSE 2014 paper, we describe the motivation, design, and use of Atlas. We present 
validation case studies, including the verification of safe synchronization of the Linux 
kernel, and the detection of malware in Android applications.  
 
Demo Video: http://youtu.be/cZOWlJ-IO0k      

3.1.1.1 Graphs and Queries 
Graphs are a natural way to represent programs and program analysis results, where 
nodes typically correspond to entities such as methods and variables, and edges 
correspond to relationships such as control or data flow.  The Atlas database extracts 
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and stores rich program semantics as a unified graph representation that includes 
structural relationships (types, methods, fields, etc.) and control and data flows derived 
by conservative analyses as the base knowledge for writing refined path, object, 
context, and field sensitive analyses. 
 
Encoding the program semantics in a unified graph has the advantage of lending itself 
to composable analyses.  The result of a program analysis is usually another graph, 
which can then be used as the input to the next analysis.   In Atlas, graphs can also be 
displayed, but the visualization is not necessarily the end; the nodes and edges can be 
selected, and used as inputs for the next iteration of analysis. 
 
Many program analysis questions can be encoded as reachability queries, and so Atlas 
provides a query language to make these common queries easy to write.  Writing 
queries also involves knowing the graph’s schema, or how the program and analysis 
information is encoded.  The Atlas schema, called the eXtensible Common Software 
Graph (XCSG), will be discussed later. 

3.1.1.2 Human Interaction 
An unprecedented human interaction capability, far beyond any other existing program 
analysis tool, to reason about complex problems of software is enabled by: (a) a 
capability to visualize and interact with large program graphs in a way that fosters 
human comprehension of complex program semantics, (b) a correspondence with the 
code for program artifacts and the corresponding graphs depicting relationships 
between those artifacts - a correspondence that enables scalable navigation through 
large code, (c)  a query interpreter shell that enables composition of powerful queries to 
mine complex cross-cutting program semantics and its visualization.  
  
From our experiences during the first few engagements analyzing Android apps, we 
found that many queries were variations on data flow queries.  To help accelerate the 
iterative analysis process, “Atlas Smart Views” were introduced to help reduce common 
queries to a point-and-click operation, wherein the analyst selects an analyzer from a 
drop-down menu and that analyzer is applied automatically and the corresponding 
result is shown whenever the analyst clicks on an appropriate source code entity.  For 
example, the analyst selects the “call graph” analyzer, clicks on a method invocation in 
the source code being viewed, instantly the corresponding call graph is shown. As 
another example, the analyst selects the “data flow graph” analyzer, clicks on a 
parameter in for the method invocation in the source code being viewed, instantly the 
corresponding data flow graph is shown. New analyzers can be added to the “Atlas 
Smart Views.” We added Android-specific analyzers.  
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3.1.1.3 Extensibility 
Atlas serves as a platform to build domain-specific toolboxes such as the Security 
Toolbox we built for the APAC project. The Security Toolbox incorporates Android 
semantics by extending the graph database. For example, the graph database is 
extended to include the Graphical User Interface (GUI) semantics derived from the 
Android XML files.  The extension must be designed to follow the eXtensible Common 
Software Graph (XCSG) schema. 
 
The XCSG schema defines a semantically rich graph representation of software (i.e. 
source code or binaries) to support program applications such as mining software for 
patterns, malware and defect detection, building static analysis tools, and code 
comprehension. XCSG is based on the eXtensible Common Intermediate Language 
(XCIL) developed by Kothari and his team for the DARPA Software Enabled Control 
(SEC) program [3]. 
 
Like XCIL, XCSG has semantically precise definitions for program artifacts to enable a 
harmonious representation of software written in different languages. Without precise 
semantics, analysis tools can easily develop a language bias that leads to incorrect 
processing of other languages, especially while analyzing software written in multiple 
languages. For example, the keyword “static” in C and Java have overlapping but 
incompatible uses, which XCSG disambiguates. XCSG improves upon XCIL by tailoring 
it for a graph database, and by encompassing representations of analysis results such 
as control flow and data flow graphs. 

3.1.2 Android Security Toolbox 
 
How can a man-machine analysis system detect novel, sophisticated, and 
domain-specific malware? 
 
Our research to address this question led to several interesting innovations. Using the 
program analysis platform Atlas, we have incorporated these innovations in a domain-
specific toolbox, called the Android Security Toolbox for detecting malware in Android 
Apps. The Security Toolbox is designed with following goals: 
 

1. Minimize the human effort for (a) cross-verifying automatically detected malware, 
(b) performing what-if experiments to hypothesize, refine, and postulate 
application- specific malware that is not on the radar of automated malware 
detection.  

2. Incorporate the rich and complex Android semantics of API permissions, 
components such as Activities, Services, Content providers, Broadcast receivers, 
and XML resource files.  
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3. Provide a decoupled architecture for an evolution and user-friendly malware 
detection tool. The malware detection capability is decoupled and built on top of 
the program analysis platform (Atlas). The underlying design philosophy is similar 
to platforms like Matlab or Mathematica with domain-specific toolboxes built on 
top of general-purpose machinery.  

 
In our ICSE 2015 paper, we describe the design and use of the Android Security 
Toolbox.  
 
Video: http://youtu.be/WhcoAX3HiNU  

3.1.2.1 Permission Mapping 
Android's sensitive functionalities such as sending and receiving text messages, 
accessing geo-location information, or accessing user contacts are protected by runtime 
checks that enforce whether or not an application has been granted permission to 
invoke such functionalities. The Security Toolbox leverages the permission mapping 
produced by the Toronto PScout research group. For each API version of Android, we 
transform the PScout mapping to an XML file that precisely represents the permission-
protected methods. The Toolbox contains code for parsing an Application's manifest, 
and uses the XML file to automatically annotate the correct API mapping onto the Atlas 
program graph. We have automatically scraped and encoded into Java objects the 
Google developer documentation for permissions, permission groups, and protection 
levels to aid in developing analyzers. Additionally we have recovered mappings for 
Android permissions to protection levels, and permissions to permission groups by 
mining their relationships from the Android source. 

3.1.2.2 Analyzers 
An analyzer conforms to specifications defined by the Security Toolbox.  Specifically an 
analyzer encapsulates a name, description, set of analysis assumptions, and the 
analysis program to be executed. The programs written in Java invoke Atlas APIs to 
access the information in the graph database and typically its purpose is to check one 
or more security properties. The result of the analyzer, called “envelope,” is an Atlas 
graph that captures the program semantics relevant to the property. The graph can be 
empty if the property is undetected and non-empty if the security property is detected.  
The graph may be shown to be interacted with by the human analyst or used as input 
into another analysis.  For instance a confidentiality analyzer might first do a cheap 
insensitive taint leak (reachability test) between an automatically detected source and 
sink pair (e.g. a flow from the SIM card number to the Internet).  If the resulting graph is 
non-empty but very large we could pass the graph to a more expensive sensitive (call, 
object, type, flow, etc.) taint leak analysis to prune false positives from the graph.  The 
toolbox refers to this type of recommended analyzer chaining as “continuations”.   
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Analyzers have been subdivided into five categories: properties, smells, confidentiality, 
integrity, and availability.  A property is something the analyst should be aware of, but 
does not necessarily indicate malice, such as uses of native code.  A smell is a heuristic 
similar to a property that indicates a stronger suspicion, which demands a justification, 
such as using Java reflection to invoke a private Application Programming Interface 
(API) method. The Security Toolbox takes the conservative approach of making smells 
trend towards tighter heuristics that only report with high confidence.  The 
confidentiality, integrity, and availability (CIA) analyzers detect violations of CIA 
properties using taint analysis of sources and sinks, modification operations on sensitive 
mutables, and loop detection of expensive resources respectively.  Sources, sinks, 
mutables, and resources are inputs to the CIA Analyzers. 
 
The analyzers in the Security Toolbox are general-purpose analyzers.  We can only add 
analyzers and input models (e.g. sources and sinks) that can be written a priori.  
Domain specific knowledge such as the fact that the result of a certain sensitive 
calculation should be treated as a source of information for confidentiality leaks still 
needs to be determined at runtime by a human analyst.  Once the new confidentiality 
source is discovered however, it is a trivial task to run the various taint leak detection 
analyzers with the new information. 
 

3.1.2.3 Indexers 
Since Android makes extensive use of extensible markup language (XML) for its user 
interface, manifest, and other resources many important program artifacts are missing 
in the Java program graph produced by Atlas. The Security Toolbox provides indexers 
to annotate and add missing program elements from these resources to the Atlas 
program graph. 
 
In another use case for custom indexers, Atlas provides a conservative open-world 
approximation to resolve dynamic dispatches, but leaves the necessary raw information 
for type-sensitive answers to be computed.  This arrangement is ideal because it allows 
the Security Toolbox to explicitly choose a desired speed vs. accuracy tradeoff that suits 
the situation. For conservative dynamic dispatches, the Security Toolbox implements a 
type inference indexer that reduces the set of conservative edges by tagging edges that 
it can show are likely runtime behaviors.  To enable object sensitivity, Atlas provides 
unique object instance ids, which can be used to maintain call site histories and perform 
sensitive data flow traversals. 

3.1.2.4 Dashboard 
The Dashboard (shown in Figure 2) is an interface for automating the execution and 
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managing results of the Toolbox's automated analyzers. The Dashboard accounts for 
analyzer dependencies to enable the highest amount of parallel computation while 
running a multitude of analyzers. As results are computed, they are presented to the 
analyst in the work item queue on the right of the Dashboard. Results can be filtered by 
category and marked as reviewed. Optionally an analyst can make additional notes on a 
work item. Since work items correspond to subgraphs of the program graph, they can 
be named and even colored to help identify separate program subsystems. Program 
artifacts can be manually added or removed from a work item based on the colors given 
to program artifacts. 
 
Since some analyses depend on the results of another analysis, such as type inference 
or resource indexing, and other analyses do not have prerequisite analyses some 
results can be computed in parallel.  The Dashboard builds a precedence graph and 
prioritizes the analyses that enable the maximum amount of parallelization.   
 
Results can be inspected as soon as they are available, and the analyst can sort and 
filter results by type, contents, and state.  State can either be reviewed or un-reviewed 
and colored or uncolored.  An analysis result can optionally be assigned a color.  The 
color is simply an Atlas tag for all of the graph elements inside of the work item.  
Additional elements outside of the original result set can be colored with the same 
coloring to manually add elements to the work item. 
 
Each analysis work item has a note-taking field that allows the analyst to record time-
stamped notes.  Using a utility developed for the Security Toolbox called AuditMon, the 
Dashboard can record selection events directly into the Atlas program graph.  This 
information can later be used to review the audit.  
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Figure 2 - Dashboard 

Since analyses contain configurations options, such as selecting trade offs on accuracy 
vs. time, the Dashboard provides a configuration wizard (Figure 3) to enable or disable 
individual analysis programs or select analysis strategies. 
 

 
Figure 3 - Dashboard Wizard 
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3.1.3 FlowMiner 
 
How can expressive, compact information flow summaries be mined from a 
library for accurate and scalable partial program analysis? 
 
Our research to address this question has led a technological advance for analyzing 
programs that depend on software libraries.  
 
Static program analysis tools are critical to the field of software engineering, allowing us 
to compile, refactor, verify, and understand our code. Because modern software is built 
on top of reusable libraries and frameworks, whole program analysis is prohibitively 
expensive; hence tools must instead perform partial program analysis - analysis of a 
proper subset of a program's implementation. Missing data flow semantics of these 
components introduce problematic gaps for many use cases, including security-critical 
analyses. Prior attempts to overcome this, including hand-written models, heuristics, 
and dynamically inferred specifications, are too coarse for many analysis use cases, 
introducing inaccuracies. 
 
Supported by the additional seed funding in 2014, we started developing FlowMiner, a 
tool to mine expressive data flow summaries from Java library binaries to enable 
complete and accurate partial program analysis. This work was recently completed and 
it is a part of Tom Deering’s Ph.D. research.  As far as we know, we are the first to 
create fine-grained summaries that can be used in a context, type, field, object and flow-
sensitive manner. We also emphasize compaction – flow details that are not critical for 
accurate use are elided into simple edges between elements that are accuracy-critical. 
As a result, summaries extracted by FlowMiner are an order of magnitude smaller than 
the original library in size. The salient features of our technique are: (i) novel algorithms 
to extract fine-grained summary data flow semantics from a Java library, (ii) 
compactness of the summaries with respect to the original libraries, (iii) graph 
summarization paradigm that uses a multi-attributed directed graph as the mathematical 
abstraction to store summaries, (iv) open-source implementation (FlowMiner) of the 
above that saves summaries in a portable format usable by existing analysis tools, and 
(v) validation of our work by on some of the most popular Java libraries. We discuss the 
characteristics of our summaries versus those from other state-of-the-art tooling. We 
also demonstrate that our work allows our existing analysis tools to accurately handle 
previously unaddressed data flows in Android applications. 

3.1.3.1 Balancing Expressiveness and Compactness 
When summarizing the data flow semantics of a library, certain key artifacts in the 
library will be crucial to its data flow. For example, individual field definitions must be 
present if a summary is to be used in a field-sensitive way, and individual call sites must 
be preserved if library callbacks are to be captured. For example, we empirically show 
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that 93.07% of summarized field flows will be false positives if field definitions are not 
retained. Consequently, fields, method call sites, literal values, and formal and informal 
method parameters and return values are all key artifacts of a flow that must be 
preserved in a summary data flow. 
 
On the other hand, non-key features such as some def-use chains of assignments do 
not add value to the paths in which they participate, and can be abstracted away in the 
summary. FlowMiner elides (replaces paths with direct edges) uninteresting flow details 
to arrive at an abstract data flow graph that contains the key artifacts crucial to the data 
flow and reachability information between them, and is much more compact than the 
original program graph. This allows us to achieve significant savings and enhanced 
scalability versus the original library, while preserving soundness. In other words, the 
flows that are preserved in FlowMiner's summary are precisely those that are actually 
possible at runtime.  

3.1.3.2 Validation 
We have validated FlowMiner by demonstrating that our summaries of popular libraries 
are much smaller than the original programs, yet more expressive and accurate than 
other state-of-the-art summary techniques. We find that our summaries only contain 
26.89% of the nodes and 16.32% of the edges of the original library program graphs, on 
average. 

3.1.3.3 Open Source  
We provide FlowMiner, an open-source reference implementation of our algorithms that 
extracts summaries given the source or byte code of a library and exports them to a 
portable, tool-agnostic format. The FlowMiner research is described in more detail in 
Tom Deering’s Ph.D. thesis and a paper based on this work will be submitted for 
publication. The tool is available at the following site: 
http://powerofpi.github.io/FlowMiner/  

4. Results and Discussions 

4.1 Summary     
By the end of Phase I of the DARPA APAC project, our team audited 77 Android 
applications developed by the Red team, of which 62 contained novel malware. A 
control team was employed beginning with engagement 1C to use current state of the 
art tools to audit the apps alongside Blue team performers. Our process correctly 
identified malice in 57 (91.94 %) of the malicious apps and correctly classified 66 (85.71 
%) apps as malicious or benign.  We found 6 unintended malicious behaviors, and 
missed malware in only 5 (6.49 %) of the apps consistently beating the control team. 
We completed Phase I as the top performing Blue team. 
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At the end of Phase I (starting with engagement 2B) the nature of the malware in the 
challenge applications began to change from what was primarily seen in Phase I.  The 
malware became much more difficult and we saw the performance of all teams 
including the control team reduced.  Over the course of Phase II, our team audited 28 
challenge applications developed by the Red team, of which 25 contained novel 
malware.  Our process correctly identified malice in 18 (72 %) of the malicious apps and 
correctly classified 25 (89.29 %) apps as malicious or benign.  We found 35 unintended 
malicious behaviors, and missed malware in 7 (25 %) of the apps beating the control, 
but not by as much in Phase I.  
 
According to metrics provided at the PI meetings, we determined that we maintained 
our position in Phase II among the top 3 performing teams and weren’t far behind the 
leading team. 

4.2 Analyst Backgrounds 
The participating analysts included throughout the engagements included graduate 
students, a staff member from the ISU research group (the staff member has an MS in 
Computer Engineering), undergraduate research assistants, and software engineers 
from EnSoft.  During engagement 1A there were 6 analysts, but for every engagement 
thereafter there were only 2-4 analysts working on challenge application audits per 
engagement. 

4.3 Analysis Process 
Before the actual analysis, one person spent 1-2 hours to survey application size and 
prepare all apps as Eclipse projects to be ready to audit.  After preprocessing apps, two 
analysts were assigned to each app.  Each analyst worked independently and did not 
have access to the work of other analysts.  A coordinator who oversaw the process but 
did not audit apps reviewed the results of the analysis done by each analyst.  An 
additional analyst was assigned to audit an app by the coordinator if the results from the 
original two analysts were deemed to be in conflict or inconclusive.  All analysts worked 
independently without access to the results of analysis done by other analysts.  A single 
report for each application was chosen at the end of the experiment to submit in the 
collection of final reports.   
 
An emulator was used to verify the malicious behavior after the malware and triggers 
were discovered and reported by the analyst.  Emulation was not used to detect 
malware; it was done strictly to observe the malicious behavior predicted by our 
analysis.  In some cases, we could not observe the malicious behavior, but we have still 
reported the application as malware because we were certain of the presence of a 
malicious payload based on our analysis. 



4.4 Engagement Results 

It is difficult to interpret the resu lts of the engagements for many reasons. The 
experimental setup of each engagement evolved as engagements progressed. A 
control team was not added until engagement 1 C and the difficulty of the malware 
increased drastically starting with engagement 2A. In early Phase I some malicious 
applications contained more than one malware, while later engagements reduced the 
malicious surface area by limiting the malware to a single malicious behavior. In 
engagement 1 8 we were tasked with finding all malwares. Starting with engagement 
28 we were given access to a human oracle that confirmed malice when presented with 
the correct evidence. While the main idea of the oracle persisted to the end of Phase II, 
the oracles official response policy changed over engagements. The oracle was 
intended to stop teams from "short circuiting" on unintended malice. Engagements 1 C, 
28, and 38 were onsite and had limits on the number of analysts (4, 3, and 3 
respectively) and limits on time (8, 4, and 5 hours respectively). A few select 
applications in engagement 38 and 4A were "updates" to existing applications in 
previous engagements so that previous knowledge could be drawn upon for during the 
audits. Beginning with engagement 1 8, application support libraries came "packed" into 
the source instead of as dependent JAR libraries and were considered in scope of the 
audit. During engagement 4A all apps were known to be malicious, as opposed to 
previous engagements where the classif ication of the appl ication was unknown. 

Table 1 - Challenge Application Distribution 

Enaaaement #ADDS # Malicious ADDS # Benian ADDS # Malwares 

1A 26 21 5 29 

18 16 14 2 16 

1C 10 7 3 7 

2A 16 13 3 15 

28 9 7 2 8 

3A 10 8 2 8 

38 4 3 1 3 

4A 14 14 0 14 

Phase / 77 62 15 75 

Phase // 28 25 3 25 

Total 105 87 18 100 
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Not counting a dry run practice engagement, which had 8 challenge applications, our 
team completed 105 appl ication audits. Of the 105 appl ications, 87 were officially 
classified as malware containing 100 individual officially malicious behaviors. 

Table 2 - Challenge Application Metrics 

Average Average Average Average Average Average 
Java Java XML XML Other Other Average 

Engagement Files LOC Files LOC Files LOC Comments 

1A 65.65 7128.08 24.46 1778.77 4.08 922.77 3145.46 

18 80.5 8841.44 49.31 2233.25 0.56 83.94 4498.31 

1C 28 3417.8 27.1 1965.3 0 0 2548.4 

2A 50.44 6310.19 18.44 400.75 0 0 2095.81 

28 70.56 9144.33 17.89 530.56 0 0 9807.56 

3A 53.8 5743.7 24.3 813.8 0.1 25.5 2686.5 

38 18 2083.5 16.75 383 1.75 62.25 194.25 

4A 89.86 8819.29 17.79 604.79 0 0 4190.5 

Phase/ 66.71 6758.61 19.96 647.75 0.29 18 3082.46 

Phase// 61.26 7067.96 27.95 1465.19 1.49 329.03 3909.61 

Total 62.71 6985.47 25.82 1247.21 1.17 246.09 3689.04 
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Table 3 - Challenge Application Detection Rates 

Correct 
Classification 

Correctly Identified 
Malice 

Missed 
Detections Unintended Malware 

1000 

88.46 % 95.24 % 3.85 % 2 issues 

87.5 % 100 % 0 % 2 issues 

90 % 100 % 0 % 1 issue 

81.25 % 84.62 % 12.5 % 1 issue 

77.78 % 71.43 % 22.22 % Oissues 

80 % 62.5 % 30 % 4 issues 

100 % 0 % 75 % 10 issues 

92.86 % 92.86 % 7.14 % 21 issues 

85.71 % 91.94 % 6.49 % 6issues 

89.29 % 72 % 25 % 35 issues 

86.67% 86.31 % 11.43 % 41 issues 
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Figure 5 - Application Size vs. Detection Rate 
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Table 4 - Challenge Application Analysis Time 

Total Analysis Time Average Analysis Time 

29.72 hours 1.14 hours 

13.44 hours 0.84 hours 

8.24 hours 0.82 hours 

26.35 hours 1.65 hours 

9.03 hours 1.00 hours 

83.98 hours 8.40 hours 

13.01 hours 3.25 hours 

160.20 hours 11.44 hours 

86.78 hours 1.12 hours 

257.19 hours 9.19 hours 

343.98 hours 3.28 hours 

Application Size vs. Analysis Time 
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4.5 Engagement Observations 

In engagements 1A the Red team created new small applications, less than 500 lines of 
code (LOC), and utilized existing open source applications ranging from 2K LOC to 60K 
LOC.  The malice focused on breaking automation techniques. The general consensus 
was that the smaller applications were small enough to manually read to discover 
malware. 

After engagement 1C all applications had a minimum of 1000 LOC.  As we expected, 
our performance with respect to analysis time and correct detection of the intended 
malware was not correlated with the size of the application (see Figure 5 and Figure 6).  
This confirms our belief that the difficulty in finding the malware has less to do with the 
size of the code and more to do with the characteristics of the malware itself.  For 
instance a malware that connects to the Internet and uses a class loader to execute 
code that it downloads when the application starts stands out like a sore thumb in an 
application that primarily works offline regardless of the size of the application.  If the 
malware is blended with legitimate functionality and uses existing control flow and data 
flows for malicious purposes the task of detection becomes much more difficult even for 
applications of a few hundred lines of code.  Engagements in Phase II tended to 
increase the difficulty by creating subtle domain specific malware that could not be 
modeled a priori and thus coming up with a good malware hypothesis became the 
bottleneck.   

While the applications in 1A through 1C contained several modified open source 
applications, starting with engagement 2A the applications were developed from 
scratch.  This simulated an adversary that was intimately familiar with the environment 
the source code.  As an experiment the Red team hired an intern who produced large, 
complex, but poorly written application to confuse the human auditor.  In other cases 
large sections of dead, broken, or unfinished code were intentionally added to increase 
the difficulty of discovering malicious behaviors.  In such cases, the difficulty increased 
primarily due to poor code quality and not the size of the code. 

The general complexity of the base applications also increased in later engagements.  
While applications in early engagements included apps such as a countdown timer, 
bible, screensaver, battery monitor, calculator, and backup utilities, later engagements 
included apps such as an AI Short Message Service (SMS) bot, a network scanner with 
custom programming language and interpreter shell, device administration utilities, and 
a device tracking system with a signature based firewall to prevent abuse.  These 
applications took more human effort to understand and hypothesis potentially malicious 
behaviors. 

Early engagements were almost entirely confidentiality based, which made it easy to 
hypothesize malware and analyze code for its presence. The types of malware that we 
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failed to detect in Phase I were because of the difficult of generating malware 
hypothesis as such as malware that wasted battery by using an inefficient algorithm or 
an infinite loop in a background thread or issues that could have been detected with 
functional testing such a backup application that used a regular expression to incorrectly 
backup a Chinese phone number (flipping the 5 and 6 digits).  

Near the end of Phase I we saw applications that maliciously collaborated with other 
applications.  We also observed the difficulty of dynamic analysis increasing, 
presumably to thwart teams utilizing dynamic analysis approaches. This increased 
difficulty made the “trigger analysis” much more difficult because the malware would 
occur in a set of very precise conditions such as the 99th time an application was 
launched or after a menu 3 levels deep was selected on one screen and another menu 
was selected 3 levels deep on another screen. If one part of the malware was 
discovered, it was still difficult to figure out how that part could be triggered by another 
action or state in some other part of the application.  In many of the later challenge 
applications, the malware itself was external to the application and what was left to 
discover in the application was more of a vulnerability that could be leveraged by a 
malicious interaction with the application.  To make it more difficult these interactions 
tended to happen over custom protocols for which we only had the client libraries or 
interactions with a web server that was not provided during the audit, making it much 
more difficult to realize the big picture without additional time investments during the 
audit. 

We saw our analysis time increase from an average of approximately 1 hour per 
application in Phase I to approximately 9 hours per application in Phase II.  This 
became an issue during onsite engagements 2B and 3B where our maximum analysis 
time was capped at 4 and 5 hours respectively, resulting in poor performance. All Blue 
teams together could only discover two malwares in Engagement 3B.   

Especially in engagement 4A, “decoy malwares” were placed near the official malware.  
These decoy malware looked and felt malicious to a human, but were somehow subtly 
broken or deactivated (but not always) so as to misdirect the human analyst’s suspicion 
down the wrong trail.  These applications, while challenging, were not realistic in our 
opinion because malware authors tend not to intentionally draw suspicion to 
themselves.  

5. Tool Releases 
The Atlas platform enables the creation of much more powerful analysis tools than 
would be possible starting from scratch and represents years of research and 
development in practical, highly scalable techniques for software analysis.  
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The Security Toolbox and the Flow Analysis Toolbox are furnished to the Government 
with unlimited rights. At the end of the project EnSoft will furnish the Government with a 
perpetual organization-wide license of the version of Atlas necessary to run the final 
Security  
Toolbox and Flow Analysis Toolbox for the sole purpose of using the Security Toolbox 
and the Flow Analysis Toolbox at no additional cost. In addition, at the end of the 
project, EnSoft will furnish the Government one year of complimentary maintenance, 
which includes EnSoft's world-class support and all updates to Atlas during the 
maintenance period. 
 
Any and all modifications to the Atlas platform remain the sole property of EnSoft. All 
licenses of Atlas that will be furnished are for binaries of Atlas. EnSoft will provide 
binaries to non-Government parties including ISU and performers in other technical 
areas as required. EnSoft will provide source and binaries to the Government. This 
source code is licensed to the government for the sole purpose of building Atlas for use 
with the Security Toolbox and the Flow Analysis Toolbox. This source code may not be 
disclosed to non-Government parties and remains the sole property of EnSoft. 
 
Information about the commercial off the shelf (COTS) version of Atlas is available on 
the EnSoft webpage [5].  Information about the XCSG schema and tutorials for learning 
Atlas are available online [6]. Several components of the Security Toolbox have been 
extracted into smaller general-purpose toolbox plugins and released under the MIT 
License [7]. 

6. Concluding Remarks 
 
The DARPA APAC program gave us an opportunity to make three important 
technological advances: 
 

1. A graph database program analysis platform and a graph schema for 
representing program semantics that together facilitate both automation and 
human comprehension. 

2. Malware analysis techniques and their incorporation in a security toolbox to 
provide man-machine analysis system to detect novel, sophisticated Android 
malware. 

3. An innovative technique to summarize large software libraries and its 
incorporation in the FlowMiner tool that mines expressive, compact information 
flow summaries from a library for accurate and scalable partial program analysis. 

These technological advances have enabled us to perform well in challenge 
engagements. In almost every engagement our team’s analysis times were lower than 
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those of all other performers.  We attribute the speed and accuracy of our analysis to 
the maturity of our tools and their capabilities to quickly traverse and answer complex 
queries about very large code.  We believe that this is a highly relevant capability of any 
malware detection tool.  We were continually complemented on the maturity and 
usability of our tool by the Red teams. We believe our tool capabilities matured 
significantly as a result of the engagements, but since we cannot quantitatively define 
the difficulty of malware it is difficult to prove.  
 
The APAC Board Area Announcement (BAA) listed developing practical program 
analysis tools to keep malware out of Department of Defense (DoD) app stores as a 
primary goal for the program.  To determine tool relevance the challenge app reports 
requested written explanations of how the tooling was relevant to solve the challenge, 
but in many cases a tool’s relevancy would be better demonstrated through a video or 
live demo at program meetings.  Our team made strong efforts to provide 
demonstrations of our tool at PI meetings and to interested parties, but several teams 
did not.  
 
The Red team was able to craft very domain specific malicious vulnerabilities, such as a 
custom protocol that when combined with another instance of itself causes a broadcast 
storm of messages (SMSBot from engagement 2B). The crucial difficulty lies in 
generating a good malware hypothesis. Coming up with the right theorem is itself the 
difficult part!   
 
In the beginning our team was the only team that proposed a human-in-the-loop 
process, but it seems the teams that proposed fully automated processes all 
underestimated the importance of the human role and adopted similar strategies to our 
team’s proposal as the program progressed.  In our opinion, significant new research is 
warranted to enable the human analyst generate domain-specific malware hypotheses.  
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9. List of Acronyms 
 

AFRL Air Force Research Laboratory 
APAC Automated Program Analysis for Cybersecurity 

API Application Programming Interface 
AST Abstract Syntax Tree 
BAA Broad Area Announcement 
CIA Confidentiality, Integrity, and Availability 

COTS Commercial Off The Shelf 
CPA Comprehension-Driven Program Analysis 

DARPA Defense Advanced Research Projects Agency 
DoD Department of Defense 
GUI Graphic User Interface 
ISU Iowa State University 
LoC Lines of Code 
QMR Query-Model-Refine 
SEC Software Enabled Control 
SMS Short Message Service 
XCIL eXtensible Common Intermediate Language 

XCSG eXtensible Common Software Graph 
XML eXtensible Markup Language 

 


