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Optimal Index Policies for Anomaly Localization in
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Abstract—The problem of anomaly localization in a resource-
constrained cyber system is considered. Each anomalous compo-
nent of the system incurs a cost per unit time until its anomaly is
identified and fixed. Different anomalous components may incur
different costs depending on their criticality to the system. Due to
resource constraints, only one component can be probed at each
given time. The observations from a probed component are realiza-
tions drawn from two different distributions depending onwhether
the component is normal or anomalous. The objective is a probing
strategy that minimizes the total expected cost, incurred by all the
components during the detection process, under reliability con-
straints. We consider both independent and exclusive models. In
the former, each component can be abnormal with a certain prob-
ability independent of other components. In the latter, one and only
one component is abnormal. We develop optimal index policies
under both models. The proposed index policies apply to a more
general case where a subset (more than one) of the components
can be probed simultaneously. The problem under study also finds
applications in spectrum scanning in cognitive radio networks and
event detection in sensor networks.

Index Terms—Anomaly localization, composite hypothesis
testing, sequential hypothesis testing, sequential probability ratio
test (SPRT).

I. INTRODUCTION

C ONSIDER a cyber system with components. Each
component may be in a normal or an abnormal state. If

abnormal, component incurs a cost per unit time until its
anomaly is identified and fixed. Due to resource constraints,
only one component can be probed at a time, and switching
to a different component is allowed only when the state of
the currently probed component is declared. The observations
from a probed component (say ) follow distributions
or depending on whether the component is normal or
anomalous, respectively. The objective is a probing strategy
that dynamically determines the order of the sequential tests
performed on all the components so that the total cost incurred
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to the system during the entire detection process is minimized
under reliability constraints.

A. Main Results

The above problem presents an interesting twist to the classic
sequential hypothesis testing problem. In the case when there is
only one component, minimizing the cost is equivalent to min-
imizing the detection delay, and the problem is reduced to a
classic sequential test where both the simple and the composite
hypothesis cases have been well studied. With multiple compo-
nents, however, minimizing the detection delay of each com-
ponent is no longer sufficient. The key to minimizing the total
cost is the order at which the components are being tested. It is
intuitive that we should prioritize components that incur higher
costs when abnormal as well as components with higher prior
probabilities of being abnormal. Another parameter that plays
a role in the total system cost is the expected time in detecting
the state of a component, which depends on the observation dis-
tributions . It is desirable to place components that
require longer testing time toward the end of the testing process.
The challenge here is how to balance these parameters in the dy-
namic probing strategy.
We show in this paper that the optimal probing strategy is an

open-loop policy where the testing order can be predetermined,
independent of the realizations of each individual test in terms of
both the test outcome and the detection time. Furthermore, the
probing order is given by a simple index. Specifically, under the
independent model where each component is abnormal with a
prior probability independent of other components, the index
is in the form of , where is the expected de-
tection time for component . Under the exclusive model where
one and only one component is abnormal, the index is in the
form of where is the expected de-
tection time for component under the hypothesis of it being
normal. These index forms give a clean expression on how the
three key parameters—the cost, the prior probability, and the
difficulty in distinguish normal distribution from abnormal
distribution —are balanced in choosing the probing order.
Furthermore, it is interesting to notice the difference in the in-
dices for these two models. Intuitively speaking, under the in-
dependent model, the detection time of any component, normal
or abnormal, adds to the delay in catching the next abnormal
component, while under the exclusive model, only the detec-
tion times of components in a normal state adds to the delay in
catching the abnormal component.
The above simple index forms of the probing order are

optimal for both the simple hypothesis ( are

known) and the composite hypothesis ( have
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unknown parameters) cases. These index policies also apply
to the case where multiple components can be probed simul-
taneously. While the optimality of these indices in this case
remains open, simulation examples demonstrate their strong
performance.

B. Applications

The problem considered here finds applications in anomaly
detection in cyber systems, spectrum scanning in cognitive radio
systems, and event detection in sensor networks. In the fol-
lowing we give two specific examples.
Consider a cyber network consisting of components

(which can be routers, paths, etc.). Due to resource constraints,
only a subset of the components can be probed at a time. An
Intrusion Detection System (IDS) analyzes the traffic over the
components to detect Denial of Service (DoS) attacks (such
attacks aim to overwhelm the component with useless traffic to
make it unavailable for its intended use). Let the cost be the
normal expected traffic (packets per unit time) over component
. Thus, in this example minimizing the total expected cost
minimizes the total expected number of failed packets in the
network during DoS attacks. The exclusive model applies to
cases where an intrusion to a subnet, consisting of compo-
nents, has been detected and the probability of each component
being compromised is small (thus with high probability, there
is only one abnormal component).
Another example is spectrum sensing in cognitive radio sys-

tems. Consider a spectrum consisting of orthogonal chan-
nels. Accessing an idle channel leads to a successful transmis-
sion, while accessing a busy channel results in a collision with
other users. A Cognitive Radio (CR) is an intelligent device that
can detect and access idle channels in the wireless spectrum [1].
Due to resource constraints, only a subset of the channels can
be sensed at a time. Once a channel is identified as idle, the CR
transmits over it. Let be the achievable rate over channel .
Thus, in this example minimizing the total expected cost min-
imizes the total expected loss in data rate during the spectrum
sensing process.

C. Related Work

The classic sequential hypothesis testing problem which pi-
oneered by Wald [2] considers only a single stochastic process.
For simple binary hypothesis testing, Wald showed that the
Sequential Probability Ratio Test (SPRT) is optimal in terms
of minimizing the expected sample size under given type
and type error probability constraints. Various extensions
for M-ary hypothesis testing and composite hypothesis testing
were studied in [3]–[9] for a single process. In these cases,
asymptotically optimal performance can be obtained as the
error probability approaches zero.
A number of studies exist in the literature that consider

sequential detection over multiple processes. Differing from
this work that focuses on minimizing the total cost incurred
by anomalous components, these existing results adopt the
objective of minimizing the total detection delay. In particular,
the problem of quickly detecting an idle period over multiple
independent ON/OFF processes was considered in [10] where
a threshold policy was shown to be optimal. The ON/OFF

nature of the processes and the objective of minimizing the
total detection delay make the problems considered in [10]
fundamentally different from the one considered in this work.
In [11], the problem of quickest detection of the emergence
of primary users in multi-channel cognitive radio networks
was considered. In [12], the problem of quickest detection of
idle channels over independent channels was studied. The
idle/busy state of each channel was assumed fixed over time,
and the objective was to minimize the detection delay under
error constraints. It was shown that the optimal policy is to carry
out an independent SPRT over each channel, irrespective of the
testing order. In contrast to [12], we show in this paper that the
optimal policy in our model highly depends on the testing order
even when the processes are independent. In [13], the problem
of identifying the first abnormal sequence among an infinite
number of i.i.d sequences was considered. An optimal cumu-
lative sum (CUSUM) test was established under this setting.
Variations of the latter model have been studied in [14], [15].
The sequential search problem under the exclusive model was
investigated in [16]–[19]. Optimal policies were derived for the
problem of quickest search over Weiner processes [16]–[18].
It was shown in [16], [17] that the optimal policy is to select
the sequence with the highest posterior probability of being the
target at each given time. In [18], an SPRT-based solution was
derived, which is equivalent to the optimal policy in the case
of searching over Weiner processes. However, minimizing the
total expected cost in our model leads to a different problem
and consequently a different index policy.
The classic target whereabouts problem is also a detec-

tion problem over multiple processes. In this problem, mul-
tiple locations are searched to locate a target. The problem is
often considered under the setting of fixed sample size as in
[20]–[23]. In [20]–[23], searching in a specific location pro-
vides a binary-valued measurement regarding the presence or
absence of the target. In [22], Castanon considered the dynamic
search problem under continuous observations: the observa-
tions from a location without the target and with the target have
distributions and , respectively. The optimal policy was es-
tablished under a symmetry assumption that
for some .
The anomaly detection problem may also be considered as

a variation of active hypothesis testing in which the decision
maker chooses and dynamically changes its observation model
among a set of observation options. Classic and more recent
studies of general active hypothesis testing problems can be
found in [24]–[30].

D. Organization

In Section II we describe the system model and problem
formulation. In Section III we propose a two-stage optimization
problem that simplifies computation while preserving opti-
mality. In Section IV we derive optimal algorithms under the
independent and exclusive models for the simple hypothesis
case. In Section V we extend our results to the composite
hypothesis case: we derive asymptotically optimal algorithms
under the independent and exclusive models. In Section VI we
provide numerical examples to illustrate the performance of
the algorithms.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cyber system consisting of components, where
each component may be in a normal state or abnormal state.
Define

(1)

as the sets of the normal and abnormal components.
We consider two different anomaly models.
1) Exclusive model: One and only one component is ab-
normal; the a priori probability that component is the
abnormal one is , where .

2) Independent model: Each component is abnormal with a
priori probability independent of other components.

Every abnormal component incurs a cost
per unit time until it is tested and identified. Components in a
normal state do not incur cost. We focus on the case where only
one component can be probed at a time. The resulting probing
strategies apply to the case where a subset of the components
can be probed simultaneously and their performance in this case
are studied via simulation examples, given in Section VI. When
component is tested at time , a measurement (or a vector
of measurements) is obtained and is independently over
time. If component is healthy, follows distribution ;
if component is abnormal, follows distribution . We
focus first on the simple hypothesis case, where the distribu-
tions , are known. In Section V we extend our results
to the composite hypothesis case, where the distributions have
unknown parameters. We consider the case where switching
across components is allowed only when the state of the cur-
rently probed component is declared.
The detection process starts at time . The random

sample size required to make a decision regarding the state of
component is denoted by . We define as the stopping
time (counted from the beginning of the first test at ),
at which the decision maker stops taking observations from
component and declares its state. The vector of stopping
times for the components is denoted by .
For example, assume that and the decision maker tests
the components according to the following order: 3, 1, 2. Then,

, , .
Let be a decision rule, which the decision maker

uses to declare the state of component at time . if the
decision maker declares that component is in a healthy state
(i.e., ), and if the decisionmaker declares that compo-
nent is in an abnormal state (i.e., ). The vector of decision
rules for the components is denoted by .
Let be the set of components whose states have not

been declared by time and the index of the com-
ponent being tested at time (i.e., a selection rule). Let

be the set of all observations and
actions up to time . The selection rule is a mapping from

to , indicating which component is chosen to
be tested at time among the components whose states have
not been determined. Since switching across components is
allowed only when the state of the currently probed component
is declared, the selection rule satisfies for all

, . The vector of selection

rules over the time series is denoted by .
An admissible strategy is a sequence of sequential tests for
the components and denoted by the tuple .
The problem is to find a strategy that minimizes the total

expected cost, incurred by all the abnormal components during
the entire detection process, subject to type (false-alarm) and
type (miss-detect) error constraints for each component:

(2)

We point out that the total cost defined in (2) does not include
the cost incurred by miss-detected abnormal components. Since
the error constraints are typically required to be small, (2) well
approximates the actual loss in practice.
We have adopted a model where switching across compo-

nents is allowed only when the test of a currently chosen com-
ponent is complete. This model is desirable in practical sce-
narios when switching among components results in additional
cost or delay. This model also reduces the memory requirement
since only observations from a single component need to be
stored. Furthermore, this model is advantageous from a compu-
tational complexity perspective. Detection problems involving
multiple processes are partially-observed Markov decision pro-
cesses (POMDP) [22] which have exponential complexity in
general. As a result, computing optimal policies is intractable
(except for some special observation distributions as considered
in [16], [22]). Thus, simplifying the search model is necessary
to make the problem mathematically tractable and provide in-
sights and general design guidelines. Similar assumptions have
been adopted in [13], [18], [19] to simplify the search model
under different objectives.

III. DECOUPLING OF ORDERING AND SEQUENTIAL TESTING

In this section, we show that the probing order and the se-
quential testing of each component can be decoupled. As a con-
sequence, the solution to (2) can be obtained in two stages.
In the first stage, we solve the following optimization problem

for every component :

(3)

In the second stage, the problem is to find a selection rule
that minimizes the objective function, given the solution to the
subproblems specified in (3):

(4)

where

(5)

denote the vectors of stopping times and decision rules, respec-
tively, that solve the subproblems given in (3). Note that the
stopping times are completely specified by

and the selection rule that solves (4).
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The formulation of the two-stage optimization problem al-
lows us to decompose the original optimization problem (2) into

subproblems (3) and (4). In subsequent sections we show
that the two-stage optimization problem preserves optimality
under both the independent and exclusive models.

IV. THE SIMPLE HYPOTHESIS CASE

In this section we derive optimal solutions to both the inde-
pendent and exclusive models when the observation distribu-
tions under both hypotheses are completely known. We discuss
the implementation of the optimal policies in Section IV-C.

A. SPRT for Each Component

For the simple hypothesis case, the solution to the first stage
optimization problem (3) is given by the SPRT [2] as follows.
Assume that the state of component has been declared at time
and component is chosen to be tested at time . Let

(6)

be the Likelihood Ratio (LR) between the two hypotheses for
component at stage .
In SPRT, the stopping and decision rules are given by com-

paring the LR with boundary values at each stage [2]. Specif-
ically, let be the boundary values used by
the SPRT for component . The SPRT algorithm is carried out
as follows:
• If , continue to take observations
from component .

• If , stop taking observations from component
and declare it as abnormal (i.e., ). Clearly,
.

• If , stop taking observations from com-
ponent and declare it as normal (i.e., ). Clearly,

.
Implementation of the SPRT requires the computation of

and to ensure the constraints on the error probabilities. In
general, the exact determination of the boundary values is la-
borious and depends on the observation distribution. Wald’s ap-
proximation can be applied to simplify the computation [2]:

(7)

Wald’s approximation performs well for small and is
asymptotically optimal as approach zero. Since type
and type errors are typically required to be small, Wald’s ap-
proximation is widely used in practice [2].

B. Optimal Index Policies

We now consider the second stage optimization problem
specified by (4) and (5). Our main result is to establish the op-
timal selection rule as the -rule for the independent model
and the rule for the exclusive model. Specifically, the

-rule dictates that the components be tested in a decreasing
order of and the -rule dictates that the com-
ponents be tested in a decreasing order of .
Note that these optimal selection rules are open loop policies:

the testing orders can be determined offline (see Section IV-C
for the computation of the indices). With the optimal solution
to (3), the optimal anomaly detection strategy is to carry out a
series of SPRTs on the components ordered according to either
the -rule or the -rule. The resulting strategies are thus
referred to as -SPRT and -SPRT.
The index selection rules and are intuitively sat-

isfying. The priority of component in terms of testing order
should be higher as the cost increases, or the a priori proba-
bility of being abnormal increases. Under the independent
model, the priority of component in terms of testing order
should be higher as the expected sample size decreases
(since contributes to the cost of every component which
is tested after component ). On the other hand, under the exclu-
sive model, the priority of component in terms of testing order
depends on rather than . The reason is that if
component is abnormal, there is no additional cost, incurred
by other components (since only one component is abnormal).
On the other hand, if component is healthy, then
contributes to the cost of the components (which may be ab-
normal) tested after component .
The optimality of the algorithms is shown in the following

theorem.
Theorem 1: Under the independent and exclusive models, the
-SPRT and -SPRT algorithms, respectively, solve the

original optimization problem (2).
Proof: See Appendices VIII-A and VIII-B.

While -rule and -rule are open-loop policies, The-
orem 1 shows that they are optimal among the class of both
open-loop and closed-loop selection rules. It should be noted
that open-loop policies may not preserve optimality under non-
linear cost functions or other correlated models. In these cases,
the optimal testing order might need to be updated dynamically
based on the realizations of each individual test in terms of the
test outcome or the detection time.
The -rule and -rule bear some similarity with the

result developed in [31]. In [31], the problem of ordering inde-
pendent operations with given processing times was considered.
It was shown that the optimal selection rule for the problem of
minimizing an expected weighted sum of completion times of
all the operations is to select the components in decreasing order
of , where and are the weight and the ex-
pected processing time for operation , respectively. However,
the problem in (4) is different. First, each component may be
normal or abnormal (rather than a given processing time with
a fixed distribution) and the expected sample size depends on
the component state. Second, the objective is to minimize an
expected weighted sum of stopping times of abnormal compo-
nents only. Third, under the exclusive model, the states of the
components are dependent. Furthermore, the original opti-

mization (2) also includes the stopping rules which control the
expected sample size.

C. Computing the Indices

Arranging the components according to -rule or
-rule can be done in time via sorting al-

gorithms. However, computing the expected sample size
for all can be involved. In general,

it is difficult to obtain a closed-form expression for .
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One way to evaluate is to perform off-line sim-
ulations (i.e., carrying out independent SPRTs for the
components). Another way to evaluate is to use a
closed-form approximation as follows. Since the solution to (3)
is given by the SPRT, Wald’s approximation can be applied [2].
For every ,1, let

(8)

be the Kullback-Leibler (KL) divergence between the hy-
potheses and , where the expectation is taken with
respect to .
The expected sample size conditioned on each hypothesis is

well approximated by [2]:

(9)

where are the ap-
proximations to , given in (7). Note that (9) approach the
exact expected sample sizes ,

as the error constraints ap-
proach zero.
The expected sample size required to make a decision re-

garding the state of component is given by:

(10)

where the approximation approaches the exact expected sample
size for small .
Note that optimality of the algorithms is preserved as long as

the order of the indices is preserved (i.e., the exact index values
are not required for optimality). Therefore, optimality can be
achieved in practice even when Wald’s approximation is used.

V. THE COMPOSITE HYPOTHESIS CASE

In the previous section we focused on the simple hypothesis
case, where the distribution under both hypotheses are com-
pletely known. For this case, the SPRT was applied to solve (3).
However, in numerous cases there is uncertainty in the observa-
tion distributions.
For example, Consider a one-parameter distribution ,

where it is required to test against .
As discussed in [2], the SPRT can be applied to this problem by
testing against , where the boundary values
are set such that the error constraints are satisfied at .
For some important cases, such as an exponential family of dis-
tributions, this sequential test has the property that type and
type errors are less than , for all and

, respectively. However, while the SPRT minimizes the ex-
pected sample size at , it is highly sub-optimal
for other values of , as demonstrated in Section VI. Therefore,
other techniques should be considered under the composite hy-
pothesis case.

Let be a vector of unknown parameters of component .
The observations are drawn from a common distri-
bution , , where is the parameter space of
component . If component is healthy, then ; if
component is abnormal, then . Let ,
be disjoint subsets of , where
is an indifference region.1 When , the detector is indif-
ferent regarding the state of component . Hence, there are no
constraints on the error probabilities for all . The hy-
pothesis test regarding component is to test

Narrowing has the price of increasing the sample size.

(11)

be the Maximum-Likelihood Estimates (MLEs) of the parame-
ters over the parameter spaces , at stage , respectively.
In contrast to the SPRT (for the simple hypothesis case), the

theory of sequential tests of composite hypotheses does not pro-
vide optimal performance in terms of minimizing the expected
sample size under given error constraints. Nevertheless, asymp-
totically optimal performance can be obtained as the error prob-
ability approaches zero.
First, we provide an overview of existing sequential tests for

composite hypotheses which are relevant to our problem. Next,
we apply these techniques to solve (2).

A. Existing Sequential Tests for Composite Hypothesis Testing

The key idea is to use the estimated parameters to perform a
one-sided sequential test to reject and a one-sided sequential
test to reject . Note that these techniques were introduced for
a single process. However, in this paper we apply sequential
tests for components. Thus, we use the subscript to denote
the component index.
1) Sequential Generalized Likelihood Ratio Test (SGLRT):

We refer to sequential tests that use the Generalized Likelihood
Ratio (GLR) statistics as the SGLRT.
For , 1, let

(12)

be the GLR statistics used to reject hypothesis at stage . Let

(13)

be the stopping rule used to reject hypothesis . is the
boundary value.

1The assumption of an indifference region is widely used in the theory of se-
quential testing of composite hypotheses to derive asymptotically optimal per-
formance. Nevertheless, in some cases this assumption can be removed. For
more details, the reader is referred to [5].
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For each component , the decision maker stops the sampling
when . If , component
is declared as abnormal (i.e., is rejected). If ,
component is declared as normal (i.e., is accepted).
The SGLRT was first studied by Schwartz [3] for a one-pa-

rameter exponential family, who assigned a cost of for
each observation and a loss function for wrong decisions.
It was shown that setting asymptotically
minimizes the Bayes risk as approaches zero. A refinement
was studied by Lai [5], [7], who set a time-varying boundary
value . Lai showed that for a multivariate
exponential family this scheme asymptotically minimizes both
the Bayes risk and the expected sample size subject to error
constraints as approaches zero [7].
2) Sequential Adaptive Likelihood Ratio Test (SALRT): We

refer to sequential tests that use the Adaptive Likelihood Ratio
(ALR) statistics as the SALRT.
For , 1, let

(14)

be the ALR statistics used to reject hypothesis at stage . Let

(15)

be the stopping rule used to reject hypothesis , where is
the boundary value.
For each component , the decision maker stops the sampling

when . If , component is
declared as abnormal. If , component is declared
as normal.
The SALRT was first introduced by Robbins and Siegmund

[4] to design power-one sequential tests. Pavlov used it to de-
sign asymptotically (as the error probability approaches zero)
optimal (in terms of minimizing the expected sample size sub-
ject to error constraints) tests for composite hypothesis testing
of the multivariate exponential family [6]. Tartakovsky estab-
lished asymptotically optimal performance for a more general
multivariate family of distributions [8].
The advantage of using the SALRT is that setting

, satisfies the error probability constraints
in (3). However, such a simple setting cannot be applied to
the SGLRT. Thus, implementing the SALRT is much simpler
than implementing the SGLRT. The disadvantage of using the
SALRT is that poor early estimates (for small number of ob-
servations) can never be revised even though one has a large
number of observations.

B. Asymptotically Optimal Index Policies

It is intuitive that the selection rules in the composite hypoth-
esis case remain the same as in the simple hypothesis case. The
resulting strategies are thus referred to as -SGLRT/SALRT
and -SGLRT/SALRT algorithms. In the following
theorems, we show that the -SGLRT/SALRT and

-SGLRT/SALRT algorithms are asymptotically optimal
in terms of minimizing the objective function subject to the error

constraints (2) as the error probabilities approach zero.2 When
deriving asymptotics we assume that
for all such that the asymptotic optimality property in terms
of minimizing the expected sample size subject to the error
constraints holds for each single process for both SGLRT and
SALRT, as discussed in Section V-A.
Theorem 2: Consider the independent model under the

composite hypothesis case. Let be
the optimal solution to (2). Let be the solution
achieved by the -SGLRT/SALRT algorithm. Then, as

for all , we obtain:

(16)

Proof: See Appendix VIII-C.
Theorem 3: Consider the exclusive model under the

composite hypothesis case. Let be
the optimal solution to (2). Let be the solution
achieved by the -SGLRT/SALRT algorithm. Then, as

for all , we obtain:

(17)

Proof: See Appendix VIII-D.

C. Computing the Indices

Arranging the components in decreasing order of
or requires one to compute

the expected sample size for all . In
general, it is difficult to obtain a closed-form expression for the
exact value of . However, we can use the asymptotic
property of the tests to obtain a closed-form approximation of

, which approaches the exact expected sample size
as the error probability approaches zero.
For every ,1, let

(18)

be the KL divergence between the real value of and , where
the expectation is taken with respect to , and let

(19)

Let be disjoint subsets of and ,
such that for all we have

for , , 1. Let be a prior dis-
tribution on over (corresponding to ). Then, as

2As shown in the proof of Theorems 2, 3, the index policies are still optimal
in terms of testing order. The asymptotic optimality is due to the performance
of the sequential test under the composite hypothesis case.
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, the conditional expected sample size is
given by [6], [7]:

(20)

The expected sample size required to make a decision regarding
the state of component is given by:

(21)

which can be well approximated for small error probability
using (20).

VI. NUMERICAL EXAMPLES

In this section we present numerical examples to illustrate
the performance of the algorithms. Consider a cyber network
consisting of components (which can be routers, paths, etc.),
as discussed in Section I-B. Assume that an intruder tries to
launch a DoS or Reduction of Quality (RoQ) attacks by sending
a large number of packets to a component. RoQ attacks inflict
damage on the component, while keeping a low profile to avoid
detection. RoQ attacks do not cause denial of service.
To detect such attacks, the IDS performs a traffic-based

anomaly detection. It monitors the traffic at each component
to decide whether a component is compromised. Roughly
speaking, if the actual arrival rate is significantly higher than
the arrival rate under the normal state, then the IDS should
declare that the component is in an abnormal state. A similar
traffic-based detection technique was proposed in [32] for a
different model, considering a single process without switching
to other components. For each component , we assume that
packets arrive according to a Poisson process with rate .
When component is tested, the IDS collects an observation

every time unit, which represents the number of
packets that arrived in the interval . Assume that the
IDS considers component as normal if , and tests

against (i.e.,
is the indifference region). We set . As discussed
in Section I-B, under this setting the optimization problem
minimizes the maximal damage to the network in terms of
packet-loss.

A. Simple Hypothesis Case

We consider the case where the observations follow Poisson
distributions or de-
pending on wether component is healthy or abnormal, respec-
tively, where are known to the IDS. To implement the

-SPRT and -SPRT algorithms (which are optimal in
this scenario for the independent and exclusive models, respec-
tively), we need to compute the LR between the hypotheses, de-
fined in (6), and the expected sample sizes under the hypotheses,
which can be well approximated by (9). Let
be the Log-Likelihood Ratio (LLR) between the two hypotheses
of component at stage , where is defined in (6). After

algebraic manipulations, it can be verified that the LLR is given
by:

(22)

It can be verified that the KL divergence between the hypotheses
and , defined in (8), is given by:

(23)

Substituting (23) in (9) yields the required approximation to the
expected sample size.We note that the optimal indices order was
preserved using the approximation in (9) under all numerical
examples in this section.
Next, we provide numerical examples to illustrate the per-

formance of the algorithms. We compared three schemes: a
Random selection SPRT (R-SPRT), where a series of SPRTs are
performed until all the components are tested in a random order
(which is optimal for the problem of minimizing the detection
delay over independent processes [12]), and the proposed

-SPRT and -SPRT algorithms, which are optimal
under the independent and exclusive models, respectively.
Let . We set

(i.e., the costs are equally spaced in the interval
[10, 100]) and . The error constraints were set to

for all . For the independent and
exclusive models, we set and for all , re-
spectively. The performance of the -SPRT and -SPRT
algorithms are presented in Fig. 1(a) and 1(b) under the inde-
pendent and exclusive models, respectively, and compared to
the R-SPRT. It can be seen that the proposed algorithms save
roughly 50% of the objective value as compared to the R-SPRT
under both the independent and exclusive model scenarios.
Next, we simulate the independent model when 2 components

are observed at a time and the total number of components is
. Note that in this case the -SPRT algorithm may

not be optimal. We use an exhaustive search as a bench mark
to demonstrate the performance of the -SPRT algorithm
in this scenario. The exhaustive search is done by performing
a sequence of SPRTs among all the possible testing orders.
Then, the minimal objective value is chosen as a bench mark.
We set themaximal cost to and the costs are equally
spaced in the interval . The error constraints were set
to for all . The performance gain of the
exhaustive search scheme over the -SPRT algorithm as a
function of are presented in Fig. 2. It can be seen that the

-SPRT algorithm almost achieves the performance of the
exhaustive search scheme in this scenario for all . For small

both algorithms perform the same, since the difference be-
tween the indices increases. The exhaustive search outperforms
the -SPRT algorithm for , but the gain remains
very small.

B. Composite Hypothesis Case

We consider the case of composite hypotheses, where there
is uncertainty in the distribution parameters, as discussed
in Section V. To implement the asymptotically optimal the

-SGLRT/SALRT and -SGLRT/SALRT algorithms,
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Fig. 1. Objective value as a function of the number of components under the
independent and exclusive models. (a) An independent model scenario. (b) An
exclusive model scenario.

we need to compute the GLR or ALR statistics, defined
in (12), (14) and the expected sample sizes under the hy-
potheses, which can be well approximated by (20). The MLEs
of the parameters over the parameter spaces , are
given by the sample mean and the boundary of the alterna-
tive parameter space, respectively. As a result, substituting:

, in (12), (14) yields
the GLR and ALR statistics, respectively. The KL divergence
between the real value of and the parameter space is
given by:

(24)

Substituting (24) in (20) yields the approximate expected
sample size.
Next, we provide numerical examples to illustrate the per-

formance of the algorithms under uncertainty. We simulated
a network with homogenous components (i.e., any selection

Fig. 2. Performance gain of an exhaustive search over the -SPRT algo-
rithm as a function of under the independent model.

Fig. 3. Average number of observations as a function of the arrival rate of
packets (denoted by ).

rule is optimal). We compared three schemes: R-SPRT, and
the -SGLRT/SALRT or -SGLRT/SALRT algorithms
(which achieve the same performance in this case) using the
SALRT and the SGLRT, discussed in Section V-A. We set

, . Under uncertainty, the IDS considers
component as normal if , and tests against

(i.e., is the indifference
region). To implement the SGLRT, we set the cost per observa-
tion . According to the assigned cost, we obtained the
following error probability constraints for all :
for all and for all . We do
not restrict the detector’s performance for
(Note that narrowing the indifference region has the price of
increasing the required sample size). In Fig. 3 we show the
average number of observations (in a log scale) required for
the anomaly detection as a function of . As expected, for

and the R-SPRT requires lower sample size
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as compared to the proposed schemes. On the other hand, it can
be seen that for most values of the SGLRT and the SALRT
require lower sample size as compared to the R-SPRT. The
SALRT performs the worst for , and performs
the best for , roughly. The SGLRT obtains the
best average performance. It can be seen that for large values
of the anomaly is detected very quickly, since the distance
between the hypotheses increases. This result confirms that
DoS attacks are much easier to detect than RoQ attacks.

VII. CONCLUSION

The problem of anomaly localization in a resource-con-
strained cyber system was studied. Due to resource constraints,
only one component can be probed at a time. The observa-
tions are realizations drawn from two different distributions
depending on whether the component is normal or anomalous.
An abnormal component incurs a cost per unit time until it
is tested and identified. The problem was formulated as a
constrained optimization problem. The objective is to minimize
the total expected cost subject to error probability constraints.
We considered two different anomaly models: the independent
model in which each component can be abnormal independent
of other components, and the exclusive model in which there is
one and only one abnormal component. For the simple hypoth-
esis case, we derived optimal algorithms for both independent
and exclusive models. For the composite hypothesis case, we
derived asymptotically (as the error probability approaches
zero) optimal algorithms for both independent and exclusive
models. These optimal algorithms have low-complexity.
The algorithms developed in this paper can be applied to other

models of anomaly detection as well. We can modify the pro-
posed algorithms to any detection scheme that performs a se-
ries of tests according to the -rule or -rule. The re-
quired modification is to replace the SPRT/SALRT/SGLRT by
any given test. Such modified algorithms minimize the objec-
tive function among all the algorithms that perform the given
test.
Deriving optimal policies for the anomaly localization

problem considered in this paper requires the assumption that
switching to a different component is allowed only when the
state of the currently probed component is declared. A future
research direction is to examine the anomaly localization
problem under the case where switching to a different compo-
nent and declarations of the states of individual components
are allowed at all times.

APPENDIX

In this appendix we provide the proofs for Theorems 1–3. For
convenience, we use the superscripts when referring to
the -SPRT and -SPRT algorithms, respectively. We
use the superscripts when referring to the -SGLRT/
SALRT and -SGLRT/SALRT algorithms, respectively.
Throughout the proofs, we use the specific formula for the

updated posterior probability of component being abnormal.
Let be the probing indicator function, where
if component is probed at time and otherwise.
Let be the time when the decision maker starts the test.
For example, assume that and the decision maker tests
the components according to the following order: 3, 1, 2. Then,

(when the test starts), , .
Under the independent model, the posterior probability of

component being abnormal can be updated at time as
follows [22]:

(25)

where denotes the a priori probability of compo-
nent being abnormal. The term
denotes the -size vector of observations, taken from compo-
nent . Under the exclusive model, is given in (26),
shown at the bottom of the page. Note that in contrast to the
independent model, under the exclusive model the beliefs of all
the components are changed at each time due to the dependency
across components. The posterior probabilities depend on the
selection rule and the collected measurements.

A. Proof of Theorem 1 Under The Exclusive Model

Let be the expected sample size achieved by a
stopping rule and a decision rule , depending on
the time that component is tested (i.e., depend
on the selection rule), such that error constraints are satisfied.
Let be the expected sample size achieved by the
SPRT’s stopping rule and decision rule , independent
of the time that component is tested (i.e., are in-
dependent of the selection rule), such that error constraints are
satisfied. Clearly, for all , for

, 1.
Step 1: Proving the theorem for :

(26)
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Assume that

(27)

Consider selection rules , that select component 1
first followed by component 2 and component 2 first followed
by component 1, respectively. The expected cost achieved by

is given by:

(28)

The expected cost achieved by is given by:

(29)

Note that the expected cost achieved by both selection rules
can be further reduced by minimizing the expected sample sizes
(such that error constraints are satisfied) independent of the se-
lection rules, which is achieved by . Therefore, an
optimal solution must be or .
Next, we use the interchange argument to prove the theorem for

. The expected cost achieved by is given
by:

(30)

The expected cost achieved by is given by:

(31)

the expected cost achieved by is lower than that achieved
by since , which completes the
proof for .
Step 2: Proving the theorem by induction on the number of

components :
Assume that the theorem is true for components (where

one and only one component is abnormal). Assume that

(32)
Consider the case of components and denote as an op-
timal selection rule that selects component first.
Step 2.1: Proving the theorem for the last components:

Next, we show that the last components must be se-
lected in decreasing order of and tested
by the SPRT.
Let

(33)

Note that when the decisionmaker completes testing component
, the other components update their beliefs according to:

(34)

The expected cost achieved by given the outcome (at time
) by testing component (i.e., given the observations vector

) is given by:

(35)

Let

(36)

be the modified stopping time, defined as the stopping time from
until testing of component is completed. Thus, we

can rewrite (35) as:

(37)

The term in (37) follows since,

(38)

Minimizing

(39)
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at time , requires one to minimize

(40)

in (37).
Note that (40) is the cost for components (where one

and only one component is abnormal) starting at time
, with prior probability for compo-

nent being abnormal. By the induction hypothesis, for
any optimal selection rule that selects component first,
arranging the last components in decreasing order of

(and testing them by the SPRT) min-
imizes (40).
Since

(41)

then

(42)

Thus, the last components must be selected in decreasing
order of and tested by the SPRT.
Step 2.2: Proving the theorem for all the components:
Finally, we show that component 1 (i.e., the component with

the highest index) must be selected first. The expected cost
achieved by is given by:

(43)

First, note that the expected cost achieved by
can be further reduced for all by minimizing the ex-
pected sample size for , which is
achieved by . Therefore, an optimal solution must

be for an optimal selection rule . Thus, in
the following we consider solutions of the form .
Next, by contradiction, consider an optimal selection rule

that selects component first. Therefore,
selects the components in the following order:

As a result, the expected cost achieved by is
given by:

(44)

We use the interchange argument to prove the theorem. Con-
sider a selection rule that selects component 1 first followed
by components . Similar to (44), the
expected cost achieved by is given by:

(45)

By comparing (44) and (45), it can be verified that:

since .
The expected cost can be reduced by selecting component

1 first followed by component , which contradicts the op-
timality of . Hence, at time selecting component 1
minimizes the expected cost. We have already proved that
selecting the last components in decreasing order of

minimizes the objective function,
which completes the proof.

B. Proof of Theorem 1 Under The Independent Model

Let be the expected sample size achieved by a
stopping rule and a decision rule , depending on
the time that component is tested (i.e., depend
on the selection rule), such that error constraints are satisfied.
Let be the expected sample size achieved by the
SPRT’s stopping rule and decision rule , independent
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of the time that component is tested (i.e., are in-
dependent of the selection rule), such that error constraints are
satisfied. Clearly, for all , for

, 1 and are achieved by the -SPRT algorithm.
First, consider the case where . Assume that

Consider selection rules , that select component 1
first followed by component 2 and component 2 first followed
by component 1, respectively. The expected cost achieved by

is given by:

(46)

The expected cost achieved by is given by:

(47)

Note that the expected cost achieved by both selection rules
can be further reduced by minimizing the expected sample sizes
(such that error constraints are satisfied) independent of the se-
lection rules, which is achieved by . Therefore, an
optimal solution must be or .
Next, we use the interchange argument to prove the theorem for

. The expected cost achieved by is given
by:

(48)

The expected cost achieved by is given by:

(49)

The expected cost achieved by is lower than that achieved
by since , which completes the proof
for .
The rest of the proof follows by induction on the number of

components, as was done under the exclusive model.

C. Proof of Theorem 2

For every , let be the minimal expected sample
size that can be achieved by any sequential test, such that
error constraints are satisfied. Let be the ex-
pected sample size achieved by the -SGLRT/SALRT

algorithm, such that error constraints are satisfied. Clearly,
for all , for , 1.

Assume that

(50)

Similar to the proof of Theorem 1, it can be verified that the
optimal solution to (2) is to select the components in the fol-
lowing order: , where the components are tested by
a sequential test that achieves expected sample size
for all , for , 1. Therefore, the expected cost achieved by

is given by:

(51)

By the asymptotic optimality property of the SALRT/SGLRT
for a single process (used in the -SGLRT/SALRT algo-
rithm), it follows that for all ,
for , 1 as . As a result, for suf-
ficiently small error probabilities, the solution
is to select the components in the following order: ,
where the components are tested by an asymptotically optimal
sequential test that achieves expected sample size
for all , for , 1. Therefore, the expected cost achieved by

is given by:

(52)

Since for , 1 as
for all , the theorem follows.

D. Proof of Theorem 3

The structure of the proof is similar to the proof of Theorem
2. Hence, we provide a sketch of the proof, using notation
similar to that used in the proof of Theorem 2. Similar to
the proof of Theorem 1, it can be verified that the optimal
solution to (2) is to select the components in decreasing
order of , where the components are
tested by a sequential test that achieves expected sample size

for all , for , 1. By the asymptotic opti-
mality property for a single process of the SALRT/SGLRT
(used in the -SGLRT/SALRT algorithm), it follows
that for all , for , 1 as

. As a result, for sufficiently small
error probabilities, the solution is to select
the components in decreasing order of ,
where the components are tested by an asymptotically optimal
sequential test that achieves expected sample size
for all , for , 1. Similar to the proof of Theorem 2,
comparing the objective functions achieved by and

proves the theorem.
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