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Abstract—In general, battery-powered sensors in a sensor
network are operable as long as they can communicate sensed
data to a processing node. In this context, a sensor network
has two competing objectives: (i) maximization of the network
performance with respect to the probability of successful search
for a specified upper bound on the probability of false alarms,
and (ii) maximization of the network’s operable life. As both
sensing and communication of data consume battery energy
at the sensing nodes of the sensor network, judicious use of
sensing power and communication power is needed to improve
the lifetime of the sensor network. This paper presents an
adaptive energy management policy that will optimally allocate
the available energy between sensing and communication at each
sensing node to maximize the network performance subject to
specified constraints. Under the assumptions of fixed total energy
allocation for a sensor network operating for a specified time
period, the problem is reduced to synthesis of an optimal network
topology that maximizes the probability of successful search (of
a target) over a surveillance region. In a two-stage optimization,
a genetic algorithm (GA)-based meta-heuristic search is first
used to efficiently explore the global design space, and thena
local pattern search (PS) algorithm is used for convergenceto
an optimal solution. The results of performance optimization
are generated on a simulation test bed to validate the proposed
concept. Adaptation to energy variations across the network is
shown to be manifested as a change in the optimal network
topology by using sensing and communication models for under-
water environment. The approximate Pareto-optimal surface is
obtained as a trade-off between network lifetime and probability
of successful search over the surveillance region.

NOMENCLATURE

1) A(rcom, f): Acoustic attenuation
2) a(f): Absorption coefficient related to acoustic emission
3) Ei: Energy available to sensing nodei
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4) di: Out-degree of nodei
5) E: [E1, E2, . . . , EM ]
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6) E : Set of edges in a directed graph
7) f : Signal frequency
8) G: Directed graph
9) M : Number of sensing nodes

10) N(f): Noise power spectrum density
11) N i: Expected number of transmission trials at nodei

12) ni: Average rate of transmitted packets from nodei

13) ric: Radius of communication for sensori
14) rc: Radius of communication vector
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15) rid: Radius of detection for sensori
16) rd: Radius of detection vector
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17) S: Surveillance region
18) T: Life of the sensor network
19) T

goal: Specified minimum life of the sensor network
20) V : Set of vertices in a directed graph
21) W i

N : Nominal power draw for sensori
22) W i

c : Average communication power for sensori

23) W i
d : Detection power for sensori

24) W i
T : Total power available at sensori

25) W i
TR: Power for transmission of packets at nodei
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31) z: Position of the cellk in the surveillance region
32) α: Probability of successful packet transmission
33) ∆f : Receiver noise bandwidth
34) πdet: Probability of detection
35) πfa: Probability of false alarm
36) πmax

fa : Maximum allowable probability of false alarm
37) πss: Probability of successful search of a target
38) π

goal
ss : Specified probability of successful search

ACRONYM

1) CFAR: Constant false alarm rate
2) FAR: False alarm rate
3) GA: Genetic Algorithm
4) PS: Pattern Search
5) SNR: Signal-to-noise ratio
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1. INTRODUCTION

Sensor networks for underwater persistent surveillance are
equipped with a small number of affordable sensors that are
expected to yield a high probability of correct detection as
long as possible, while not exceeding a specified rate of false
alarms; such sensor networks are designed to be cost effective,
reliable, and long-lasting. For example, in littoral undersea
networks, the operational period may extend up to a few
months without the need for any external intervention. These
sensor networks have peculiar characteristics: they have large
propagation delay, high error rate, low bandwidth, and limited
energy [1]. Improving energy efficiency in such networks is
important since replacement of batteries is expensive. For
fixed (i.e., immobile) sensor networks deployed for persistent
surveillance, there are primarily two time-dependent sources
of power consumption:

• Sensing/Detection of targets.
• Communicating the information of detection.

Efficient management of the available energy across a
battery-powered sensor network is necessary to achieve the
competing objectives of: (i) improvement of the network
performance over a fixed time horizon, and (ii) enhancement
of the network lifetime for a minimal performance require-
ment. Most of the reported research in improving lifetime
expectancy of sensor networks (not necessarily restrictedto
underwater networks) involves designing better routing proto-
cols [2], [3], [4]. In this context, Badiaet al. [5] presented
an integer-linear programming approach to jointly optimize
routing, node-scheduling and node placement for underwater
sensor networks. Martinet al. [6] developed a sensor footprint
model based on energy availability of the sensors which is then
used to optimally control gain of sensors for energy efficiency.
Judrak et al. [7] proposed a cross-layer routing mechanism for
power efficient idle listening mode. Alfieriet al. [8] developed
algorithms that turn sensors on/off in groups to conserve
energy. Cardei et al. [9] developed a heuristic to organize
the sensors into a maximal number of disjoint set covers
that are activated successively. The advantage is that complete
coverage is ensured by picking up set covers while not using
all sensors at the same time. Recently, Jaleelet al. [10] pre-
sented a dynamic scheduling algorithm for sensors by taking
advantage of the power decay effects on the performance of
the individual sensors and the entire network. Specifically,
the concepts of stochastic geometry [11] were used to ensure
probabilistic coverage [12] of the surveillance region to design
a dynamic duty scheduling over the network. Most of the work
in current literature do not consider the runtime constraints,
such as false alarms and changes in the resource availability.
Consequently, there could be an inconsistency in design and
operation [10] as the dynamics of sensing and communication
in the network are decoupled. For example, the network
communication topology is not considered while deciding the
sensing capabilities (or variables) for the network. In this
paper, a network design procedure is presented with the goalof

maintaining a minimum desired performance level when there
are hard constraints of resource availability for the expected
life of the network.

In a majority of the work reported in open literature, efforts
have been expended to develop energy-efficient data-packet
routing protocols and to build efficient detection models; a
clear trade-off between performance and longevity of the
network has been apparently ignored. The work, proposed in
this paper, differs from those reported in the existing literature
in the sense that tools of network topology optimization have
been employed to judiciously allocate the available battery
power between the operations of sensing and node-to-node
communications to maximize the performance of the sensing
nodes as a network. While a majority of the existing work is
concentrated on finding the best communication and detection
rules (which are not necessarily energy-efficient), the goal
here is to improve the network performance for given routing
protocols with fixed criteria for operational activities (e.g.,
target detection). All such design procedures miss a critical
component, i.e., making a trade-off between performance and
network lifetime. The current paper addresses the problem of
striking a trade-off between performance and sustainable life-
time of networks by making optimal energy allocation between
sensing and communication at the node level. To this end, it is
imperative to develop optimization tools for maximizing the
network performance under a variety of operating conditions.

The objective of the current paper is to construct a reliable
and long lasting sensor network that will adaptively make
trade-off decisions between the sensing power and the commu-
nication power; such decisions should be independent for each
sensing node. From these perspectives, optimized node-level
energy management algorithms have been developed to extend
the average battery life at the sensing nodes by maintaining
an acceptable level of the sensor network’s performance. For
example, to increase the detection capabilities, a larger number
of sensing channels on a node may need to be activated,
which could draw more power; similarly, communications with
distant nodes, while reducing false alarms via decision fusion,
would also draw more power. As the network operations
evolve, the intermittency of target events may cause some
of the sensors to lose much of their energy reserves, and
the remaining sensors may be required to conserve available
energy to maintain the same level of network performance. Itis
noted that this paper is not proposing a new sensor scheduling
algorithm, rather it is optimizing the connectivity of the sensor
nodes so that the network performance is maximized. A two-
stage optimization procedure is proposed to solve the resulting
problem.

1) The optimization procedure is initiated with a genetic al-
gorithm (GA) that efficiently explores the global design
space to yield a nearly optimal solution.

2) Solutions of the genetic algorithm are fed into a pattern
search (PS) algorithm that produces an optimal solution
by gradient-free local search.
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The above two-stage optimization procedure yields the node-
level power for sensing and communication, which will main-
tain the required performance over the desired life of the
sensor network.

The paper is structured as follows. Starting with a descrip-
tion of the sensor power dynamics, the paper formulates the
fixed-time-horizon power trade-off problem with the probabil-
ity πss [13] of successful search as the cost function, where
πss is shown to be a function of the network topology under
specified constraints. This function is then optimized using
a genetic algorithm search and is followed by pattern search
to yield the optimal network topology. All the sensing nodes
communicate with the sink node that acts as the computation
node of the network; the sink node also keeps an account of
the energy levels across the network. Even though the sensors
start with homogeneous batteries with the same amount of
energy, variations in the energy level occur because different
sensors may use different amounts of energy for detection
and communication purposes. Based on the current energy
levels, the sink node recalculates the optimal topology which
is then broadcasted across the network to adapt to energy
variations over the network’s lifetime. The Pareto-optimal
surface [14] is obtained as a trade-off between network lifetime
and the performance of the network (measured in terms of
probability of successful search. Even though this paper uses
models relevant to underwater communication and detection,
the overall framework of energy management presented could
be very well suited for other types of sensor network.

2. NETWORK COMMUNICATION AND TARGET DETECTION

This section presents simple models of network communica-
tion and target detection for underwater surveillance. Figure 1
shows the schematic of a typical sensor network deployed
for surveillance, where the sensing nodes communicate with
the sink node to provide the information on both successful
and false detections. The numerical results presented in this
paper are based on the models detailed in the current section.
However, the applicability of the proposed framework is not
limited to any particular model.

A. Network Communication Model

A network communication link is said to be functional if the
signal to noise ratio (SNR) is above a nominal specified value.
For underwater applications, acoustic modems are known to
be the most efficient communications mechanism [15], where
messages are transmitted with a communication radiusric for
sensori at a frequencyf and the resulting narrow-band SNR
is approximated as:

SNR[rc, f ] =
WTR

A[rc, f ] ·N [f ] ·∆f
(1)

whereWTR is the transmitted power for communication (for
sensori), A[rc, f ] is the acoustic attenuation,N [f ] is the
noise power spectrum density, and∆f is the receiver noise

Fig. 1. Detection, false alarm, and communication in a typical sensor
network. Arrows denote the directed links for communication.

bandwidth that is normalized to unity. The superscripti is
dropped for simplicity in the following equations, because
acoustic attenuation of all sensor signals is given as:

A[rc, f ] = c0 · (rc)
η · a[f ]rc (2)

wherec0 is a constant for unit normalization,η is the spreading
factor, anda[f ] is the absorption coefficient. While detection
problems typically make the distinction between spherical
(η = 2) and cylindrical (η = 1) spreading, the acoustic
communications community resorts to a value ofη = 1.5
which is referred to as thepractical spreadingcoefficient. The
last term in Eq. (2) is the absorption coefficient that is given
by Thorp’s formula [15] that is valid in the range of hundreds
of Hz to 50 kHz:

10 log10 a[f ] ≈
0.11f2

1 + f2
+

44f2

4100 + f2

+2.75× 10−4f2 + 0.03 (3)

The noise power spectrum densityN [f ] in Eq. (1) results
from a number of sources, such as turbulence, shipping, waves,
and thermal effects. A reasonable approximation is to take the
net effects of noise [15] as follows:

10 log10 N [f ] ≈ 50− 18 log10 f (4)

where the frequencyf is in the units of Hz. This approxima-
tion is valid for the frequency range of tens of Hz up to tens
of kHz in a wide variety of ocean regions [15].

The power used for packet transmission determines the
radius of communication for individual nodes. It follows
from Eqs. (1) to (4) thatWTR is a monotonically increasing
function of communication radiusrc and the nominal SNR
threshold required to establish a link. The vector representing
the communication radii of all sensing nodesrc defines the
topology of the sensor network. For fixed sensor locations,
each sensing node has neighbors at fixed distances, i.e., the
power required for establishing communication links with the
neighbors is fixed. Hence, for a finite number of sensors, there
is a finite set of power requirement parameters that are used
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by a sensor to establish communication links with other nodes
in the network.

B. Target Detection Model

A constant false alarm rate (CFAR) [16] model has been
used for target detection, where

1) each sensing node in the surveillance region has a
constant false alarm rate, and

2) each sensor has a sensing radiusrd, within which the
sensor detects a target with probabilityπdet.

Fig. 2. Flowchart showing calculation ofπss
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Fig. 3. Sensor footprints in a typical surveillance region.The content of a
square box indicates the number of sensors that overlap.

The probability of successful search,πss, over the surveil-
lance region has been used as the performance measure for the
sensor network. The major steps in calculatingπss over the
surveillance region have been listed in the flowchart shown in
Fig. 2 and are briefly explained next.

As the sensing radius is calculated under the assumption of
Gaussian noise by using the following relationship:

rid = kd(W
i
d)

0.25 (5)

wherekd is the proportionality constant that is assumed to be
the same for all sensors. For a specified value of constant false
alarm rate (CFAR), the probability of successful searchπss

can be enhanced by increasing the power for detection [15].
However, without using additional power for detection, an
increase inπss may also increase the false alarm rate (FAR).
Figure 3 elucidates a typical surveillance region with the
corresponding sensor footprint calculated according to the
detection model in the presence of additive Gaussian noise.
The probability of successful search is calculated by taking
the mean of the probability of detection over the surveillance
region. For enhancement of computation, the surveillance
region is discretized into a finite number of grid cells, where
each cell is labeled by its center at the locationz[x, y]. The
probability of target detection at the cell, labeled byz, is then
calculated as:

πdet[z] = 1− (1− πdet)
kz (6)

wherekz is the number of sensors that can detect a possible
target in the cellz. A binary function,χi(z) is defined as:

χi(z) ,

{

1 if node i can detect a target at z
0 otherwise

(7)

where the sensing nodei ∈ 1, 2, ...,M . Then,kz is calculated
as:

kz =

M
∑

i=1

χi(z) (8)

The probability of successful searchπss is obtained by
taking the average over the entire surveillance regionS as:

πss =

∑

z∈S πdet[z]

Area[S]
(9)

whereArea[S] denotes the area of the surveillance regionS.
Remaining details of the passive sensing used for detection
are available in [17] and [18]. It is noted that, at anyt ∈
(

0,Tgoal
]

, the performance measureπss is a function of the
vectorWd as a result of the Eqs. (5) to (9).

C. Network Connectivity Model

The network is modeled as a directed graphG(V , E), where
V = Vs ∪ Vsink with Vs being the set of sensing nodes and
Vsink the (singleton) set of the sink node. If there areM nodes
in Vs, the cardinality of the node setV is MV = (M + 1),
because there is only one sink node. The edge setE represents
a collection ofME edges that provide interconnections or
links in the network. The sensor field under consideration is
constrained with fixed sensor locations, so that every sensor
has the information about all other sensors and the sink node.

The directed graphG is required to have the property that
there exists a path from every sensing node to the sink so that
the data packets, sent by each sensor, are able to reach the
sink node. It is noted that this notion is different from thatof
connectivity of directed graphs, where there must exist a path
between every pair of nodes. Hence, the concepts of graph
Laplacian and its spectrum may not be used to ensure the
connectivity. For a given topology of the network, the routes
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from every sensing to the sink are found by using Dijkstras
algorithm [19]. If there exists a route from each sensing node
to the sink, then the network is said to be connected. That
is, every node is connected to the sink node via the shortest
possible route for a given network topology; it is noted that
the routes, thus found, will depend on the network topology.
The metric used in measuring the distance of such routes is
the energy requirement for establishment of communication
links. Hence, the route requiring the minimum amount of
energy for data packet transmission to the sink is the shortest
route. Presence of a route, either single hop or multi-hop, from
each of the sensing nodes to the sink ensures the network
connectivity.

An important characteristic of a connected network is its
tendency to use single-hop links against multi-hop links. The
preference of multi-hop or single-hop communication would
depend on the relative position of the sensors and the process-
ing node (e.g., the sink node). The number of single-hop links
to the sink might increase the energy used in communication
by individual nodes. However, it should make the network
robust to link failures as there are more nodes which can act
as bottleneck nodes, other sensors can transmit through nodes
directly connected to the sink. This would, in general, also
depend on the relative placement of the sensors and variations
in energy availability across the network. It is noted that,at
any time t ∈

(

0,Tgoal
]

, the connectivity ofG(t) depends on
the the vectorWTR and thusWc.

D. Network Protocol Model

For perfect communication, all packets are received at the
sink in the first attempt and there are no retries or loss of
information. Associated with the sensing nodes, the packet
drop probability isα = 0. Data packets are sent to the sink
by finding the shortest route through the network depending
on the topology. Every time a sensor detects the possibility
of a target being present, it transmits data over a short time
interval (e.g., on the order of seconds); otherwise, the sensors
are directed to communicate with the sink at a predefined
frequency so that the sink can maintain a count of live sensors
and their battery levels.

For imperfect communication, there is a packet drop prob-
ability associated with packets sent by the sensing nodes, i.e.,
the packet drop probabilityα > 0. The expected number of
trials needed to send the data packets to the sink is calculated
by using the packet drop probability. Hence, the situation
of imperfect communication is modeled by increasing the
packet transmission time by an appropriate factor depending
on the packet drop probability. Although this paper makes
the assumption of perfect communication with no limit on
the amount of data at a node, the situation of imperfect
communication can be analyzed by increasing the time for
packet transmission by an appropriate factor that is dependent
on the packet drop probability. Such a model is presented
below.

Given the packet drop probabilityα ∈ (0, 1), the expected
value of the number of trials at nodei is evaluated as:

N i(α) =
[

1 · (1 − α) + 2 · α · (1− α) + · · ·

+N · αN−1 · (1− α) + · · ·
]

=
1

1− α
(10)

It follows from Eq. (10) that, for perfect communication (i.e.,
α = 0), the parameterN i(0) = 1.

The expected number,ni, of data packets transmitted per
unit time by nodei is obtained as:

ni ∝ FAR · di · N i(α) (11)

where the network design parameters, false alarm rate FAR
and out-degreedi of the nodei, are available for any topology
of the sensor network.

The expected energy requirements for data transmission is
obtained fromN i(α). The network protocol model together
with the communication model, described in Section 2-A,
determines the transmission power vectorWTR and thus the
average communication power vectorWc. For imperfect com-
munication (i.e.,α > 0), the average power for communication
for a nodei would increase by a factor ofN i(α), i.e.,

W i
c(α) =

W i
c(0)

1− α
, whereW i

c (α) ∝ ni.

3. PROBLEM FORMULATION

From the above perspectives, the problem of energy man-
agement in underwater sensor networks is treated as adaptive
optimal sharing of the available battery power between sensing
and communication. This multi-objective cost functional leads
to non-dominant optimization. Such a problem is formulatedas
a Pareto-optimal trade-off [14] between network performance
and lifetime in the underwater sensor network. In this setting,
each passive sensing node needs to adaptively select the
appropriate sensing radius based on the current level of its
battery life and the projected remaining life of the sensor
network that requires communications connectivity to remain
functional. From this perspective, sensor networks have two
competing objectives:

• Maximization of network performance with respect to
the probability of successful search with a specified false
alarm rate for a given coverage area.

• Maximization of the network’s operational life.

The goal here is to synthesize an adaptive energy manage-
ment policy for a given sensor network that will optimally
allocate available power between the operations of sensing
and communication at each node to maximize the network
performance under the following assumptions:

1) The2−D sensor network consists ofM sensing nodes
(without the sink node) that are located at fixed positions
i = 1, 2, ....M to perform cooperative surveillance. (It
is noted that the locations are randomly generated but
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they are fixed.) Each sensing node is allocated a fixed
amount of energy (i.e., theith sensing node has energy
Ei) and this allocated energy is to be shared for sensing,
communication and associated fixed nominal overhead
expenses.

2) Sensing nodes have power requirements for basic oper-
ational overhead (e.g., for central processing) as well as
for receiver capabilities, with a constant nominal power
drawW i

N for each sensing nodei.
3) The average power for communication is obtained by

time-averaging of expected communication power for
the remainder of the network life.

4) The communication of data packets from all sensors
to sink is perfect (i.e., no lost packets). As such, no
acknowledgment of the data packets received are sent
by the sink back to the sensing nodes.

5) The packet size of target detection messages, transmitted
by a sensing node, is small (e.g., on the order of a few
seconds) compared to the network operational time.

6) Target detection algorithms are constructed for specified
constant false alarm rates (CFAR).

7) The sensing radius is calculated in the presence of
Gaussian noise by using the relationship,rid ∝ (W i

d)
0.25.

8) The sensing radius at a node is calculated from the
sensing power of a signal in the presence of Gaussian
noise [16] by using the square-law detection model [18].

9) The network remains connected, i.e., data packets from
all sensing nodes reach the processing node (i.e., the
sink node) in a finite number of hops.

Remark 3.1:The network is designed based on the steady-
state behavior when it is allowed to have a specified number
of false alarms. Hence, all calculations for energy allocation
are made using the allowable number of false alarms. During
operation, however, the network may come across multiple
targets.

The life T of a sensor network is defined as the time
over which the network maintains an effective probability of
successful searchπss of at leastπgoal

ss , i.e.,

T , inf
{

t : πss[t] > πgoal
ss

}

(12)

In the above setting, a dual problem is to design the sensor
network to remain functional for a specified timeTgoal and
maximize the minimal value of the probability of successful
searchπss for the network over the specified life. Sufficient
information has to reach a sink node for verification of target
detection, which uses multi-sensor decision fusion rules (e.g.,
k-detections or track-before-detect) [13][20] to decide the
presence of a target or a false alarm. However, the sink node
has no sensing capabilities of its own.

As discussed earlier, the sensors start with batteries having
fixed energy and the detection rules are based on constant
false alarm rates (CFAR). Given these design criteria and the
expected network lifetimeTgoal, each sensing node calculates
its total available power. To meet its expected performance,

each sensing nodei allocates its total available powerW i
T as:

(i) sensing powerW i
d and (ii) the average power for com-

municating detection informationW i
c . Sensors communicate

only when they detect the presence of a target (including
false alarms), which is a sparse and intermittent event. Hence,
the power used for transmissionW i

TR of data packets is
different from the average power used for communicationW i

c

that is calculated by time averaging of the powerW i
TR for

transmission of data packets .
For a sensing nodei, the total power balance is then

expressed as

W i
T (t) = W i

N (t) +W i
d(t) +W i

c (t) ∀t ∈
(

0,Tgoal
]

(13)

whereW i
N (t) is considered to be a constant in this paper.

As shown in Section 2, the variablesW i
d and W i

c could
be expressed as functions ofrid and ric respectively, when
other factors, such as SNR anda(f), are kept constant. The
vectorsrd andrc (and thusWd andWc) together define the
network performance by determiningπss and the connectivity
of the sensors with the sink. Under the assumption of constant
W i

N , the optimization problem is to maximize the network
performanceπss under the constraints of fixed network life
and energy availability by identifying the optimal vectorsW

⋆
d

andW⋆
c . More formally, the objective is to findW⋆

d andW⋆
c

(and thus the correspondingr⋆d andr⋆c ) such that

(W⋆
d,W

⋆
c) = argmax

(Wd,Wc)

πss(Wd,Wc) (14)

under the constraints imposed by the following conditions.

• Power balance in Eq. (13).
• πss [t] > π

goal
ss ∀ t ∈

(

0,Tgoal
]

• G(t) is connected∀ t ∈
(

0,Tgoal
]

• πfa(t) ≤ πmax
fa ∀ t ∈

(

0,Tgoal
]

The above static optimization process finds out the best
network topology (i.e.,r⋆c ) that maintains the network con-
nectivity and maximizesπss. It is noted that every feasible
network topology, represented by the vectorrc, uniquely
identifies a detection radius vectorrd (see Eq. (13)). However,
the converse is not true (see Section 4 for details).

The network needs to be self-adaptive to the changes in
the remaining battery life and target behavior to maintain a
satisfactory performance level. The associated dynamic (or
adaptive) optimization is executed every time a significant
event is detected. The network is supposed to operate over
a sufficiently large period of time; real-time adaptation for the
network is not required. The network reconfigures over a slow
time scale as compared to the dynamics of the likely events
(targets) in the network. In this setting, behavioral changes
in network topology could be measured in terms of the ratio
of multiple hop and single hop paths present in the network
under the optimal and average operating conditions.

To obtain the optimal performance conditions over different
operational conditions of the network, a Pareto surface [14] is
generated as a trade-off between network lifetime and network
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performance for successful detection of targets, which helps
the choice of an operating point. Depending on the situation,
the network may select another search strategy by reducing
T

goal or vice-versa.
The problem of sensor network design, addressed in the

paper, is stated as follows.

Design of an energy-constrained sensor network that
will optimally allocate available power at each node
for sensing and communication to maximize the
network performance under constraints of fixed life.
It is noted that the network performance is measured
in terms ofπss and its connectivity which are global
variables. As a result, the decision variables (i.e.,
choice of sensing and communication power) of
sensors are tightly coupled and need to be decided
simultaneously.

Fig. 4. Flowchart showing major steps in the solution approach

4. PROPOSEDAPPROACH

The major steps involved in solution of the optimization
problem are shown as a flowchart in Fig. 4. As discussed in
the last section, the optimization process optimally allocates
available power at each node for sensing and communication
to maximize the network performance that is measured in
terms of probability,πss, of successful detection of a target,
which is obtained from Eqs. (5) to (9) and represents the global
behavior of the network. Under the current detection model,
presented in Section 2-B,πss is obtained as a function ofWd.
On the other hand, the network connectivity (or topology)
depends on the power vectorWc and hence onrc. Thus,
every sensor must decide which neighboring node it should
communicate with so that the network remains connected and
its performance is maximized. It is noted that these variables
need to be decided simultaneously for the all sensors, because
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Fig. 5. Effects of communication signal-to-noise ratio (SNR) on detection in
networks with constrained energy reserves. Higher requirements on SNR for
establishment of communication requires more transmission power (WTR) to
set up a communication link leaving less energy for sensing.

the objective function i.e.,πss is a global property of the
network.

Figure 5 shows the profiles of variations of communication
radius with sensing radius at different nominal thresholdsof
signal-to-noise ratio (SNR) to set-up inter-node communica-
tion links, under the constraints of a constant false alarm rate
(CFAR) and fixed energy. These relationships are obtained
by using Eqs. (1) to (3) in Section 2-A at a frequency of
approximately1 kHz. At a fixed alarm rate, the sensing radius
is evaluated from the energy left for detection (for a fixed time-
horizon) after meeting the communication requirements (over
the same time-horizon). It is seen in Fig. 5 that the sensing ra-
dius is less sensitive to changes in the communication radius at
relatively smaller SNR as the family of curves becomes more
flat at larger SNR. In essence, the communication radius has
less significant effects on the sensitivity of the sensing radius at
larger SNR. The implication is that, with a small SNR, a good
part of the available power would be used to ensure successful
communication and it would consequently result in a narrow
range of detection radius. Furthermore, since communication
powerW i

c varies super-linearly with communication radiusric
at high SNR, the bulk of the available power would be used
for communication even with the nearest neighbors resulting
in low detection radius. Optimization will be meaningful
only in scenarios where changes in the communication radius
have significant effects on the sensing radius. Otherwise, the
network can only have a small range of feasible probability
of successful searchπss while still being connected and the
optimal behavior would not significantly differ from average
behavior in those cases. Therefore, while designing a network,
the battery energy levels at the sensing nodes should be chosen
appropriately with due consideration to the communication
SNR. In other words, an ill-designed sensor network may
suffer from having a narrow region of performance, where
a trade-off between sensing and communication may not able
to significantly improve the network performance.
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Fig. 6. Discretization of the solution space under the assumption of fixed
sensor locations. The neighbors of a sensor (e.g., the one shown in the figure)
could be mapped to unique indices and a feasible solution is avectorrc ∈ R

M

Since the sensor locations are assumed to be fixed, every
sensor should have neighbors at fixed distances (e.g., as
seen in Fig. 6). Thus, there exists a discrete finite set of
communication radii for each sensor (e.g., if|Vs ∪ Vsink| =
M + 1, then ric ∈ {ri1c , · · · , riMc }. Consequently, new links
in the network are established only at discrete valuesW i

TR
and there are discrete values for feasibleW i

c , which can be
used for communication. The sensing nodes would encounter
only a discrete set of power levels that they may use for
communication. Using any other power level in between these
discrete levels for the same task may not have any advantage
for communication as no new links could be established. It is
reasonable to use discrete power levels of communication in
the optimization process, while the remaining power at each
node is available for sensing of targets. Using the current
model for communication, the vectorsWTR andWc could be
expressed as implicit functions of the communication radius
vectorrc. The vectorrc is an M-dimensional discrete vector
(e.g., rc = {r1pc , · · · , rMr

c } as there are M sensors in the
network) and it can be mapped to the latticeZM in the
euclidean spaceRM . Formally, there exists a map defined as:

f : rc 7→ (I1, I2, · · · , IM ) (15)

where Ik, k ∈ {1, 2, · · · ,M} is an integer and
(I1, I2, · · · , IM ) ∈ Z

M . It is noted that the mapf is
bijective, implying that the vectorrc can be uniquely mapped
to M-tuple of integers. Probability of successful search of
targets over the surveillance region, which serves as the
performance measure for the network, is calculated in terms
of a feasible vectorWd. Therefore,rd can attain values in the
continuous Euclidean spaceRM . Under the relation shown
in Eq. (13) and the facts thatWT is fixed and thatWc can
attain only discrete values, the vectorWd is constrained to
belong to a discrete set; consequently, the sensing radius
vector rd belongs to a discrete set. As discussed earlier, the
objective functionπss(Wd,Wc) is expressed as an implicit
function πss(Wd,Wc) = πss(Wc) of the communication
power vectorWc whenWT = Wd +Wc (see Eq, (13)). In
this setting, the objective functionπss becomes an implicit
function of the communication radius vectorrc, becauseWc

is determined byrc on a fixed time-horizon.
Remark 4.1:In view of the above arguments, the optimiza-

tion problem is now reduced to identification of the vector
r
⋆
c that uniquely determinesW⋆

c and W
⋆
d on a fixed time-

horizon. The optimalr⋆c keeps the network connected and
simultaneously maximizes the probabilityπss of successful
search over the surveillance region. Since a feasible operat-
ing point belongs to anM -dimensional space, Finding the
optimal solution is a combinatorial optimization problem.An
exhaustive search for finding the optimal combination could
be NP-complete [21].

Next a two-stage optimization process is introduced to solve
the discrete optimization problem.

1) The optimization process is initiated by a global search
of the M -dimensional solution space by using genetic
algorithm (GA)-based meta-heuristic search [22]. This
step is expected to provide a solution to a close vicinity
of the global optimal solution.

2) Solutions obtained by GA are fed as initial conditions
into gradient-free local search algorithm, known as
pattern search (PS) [22]. This step leads to a local
refinement of the solution by making small perturbations
in the solutions obtained from the genetic algorithm
search.

A. Genetic Algorithm

Genetic algorithms belong to a class of computationally
efficient meta-heuristic tools for searching optima in large
parameter-spaces with a limited structure [23]. Examples of
other directed random search techniques, which could be
used to obtain solutions close to the global optima, are the
following:

• Cultural algorithmsthat add a macro-evolutionary belief
function to the value of eachrc;

• Particle swarm algorithmsin which iterative variations
of rc are imposed by comparison to the best value ofrc

obtained to that point; and
• Ant colony optimizationthat involves adding artificial

pheromone levels to good values ofrc to draw further
iterations toward that direction.

Since all of the above alternative techniques involve
problem-specific tuning, this paper focuses on genetic algo-
rithms (GA) as a method that can be applied generically to the
problem at hand. In the setting of GA, a feasible solutionrc

is anM -dimensional vector representing the communication
radius for every sensing node, for which the set of all possible
neighbors (excluding itself) is created. Such a set is sorted in
the ascending order relative to the respective distances from
that node. An bijective mapf (see Eq. (15)) from the sorted
set to the integer latticeZM is then created. Then,rc can be
represented as an M-tuple of integers, which is representedas
a binary string and fed into GA to initiate the optimization
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process. Formally,

f(rc) 7→ (I1, I2, . . . , IM )

7→ 00010 . . . . . . 01

A sufficient number of runs of the genetic algorithm would
lead to a small neighborhood of the optimal solution. The
numerical details of GA are presented in the next section. The
solutions obtained by GA are used as initial conditions for
pattern search (PS), which performs a local greedy perturba-
tion and a local improvement of the solution is obtained. The
pattern search optimization method is described next.

B. Pattern Search Optimization

The idea is to be able to get closer to the optimal solution
by doing a finer gradient-free search around the solution
obtained from Genetic algorithm using a direct search method.
The pattern search algorithm starts with an initial guess to
evaluate the objective function and, after initialization, the
algorithm searches for a set of points around the initial point.
The objective function is calculated at each of the points
around the initial point and the best point is searched in that
neighborhood. The initial point is then moved to this ’best
neighbor’ and the process is terminated if either the tolerance
constraints are satisfied, or a maximum number of iterations
is reached.

The neighborhood of a point is constructed in the solution
space as a set of points in which one of the indices of the
communication vector have been perturbed by one. So every
point in the solution space will have2M neighbors except the
boundary points. For example, if the GA returns a solution
rc = {r1kc , r2lc . . . , rMp

c } wherek, l, p ∈ {1, 2, . . . ,M}, then
one of the possible neighbors ofrc = {r

1(k+1)
c , r2lc . . . , rMp

c }.
Consequently,rc will have 2M neighbors if it is not on the
boundary of a feasible set. The objective function is calculated
at each of those neighbors and the best neighbor is made
the next initial guess. Further details of the algorithms are
provided in Section 5.

A series of Monte-Carlo simulation runs have been con-
ducted under random network topologies of the sensor net-
work, and their respective performance is evaluated for com-
parison with the optimized behavior that is obtained by the
two-stage process as discussed earlier. The major steps in-
volved in the optimization process are delineated in Algorithm
1.

5. RESULTS AND INTERPRETATION OFNUMERICAL

SIMULATION FOR EXAMPLE PROBLEMS

This section presents the results of the proposed method of
network performance optimization. Examples are presentedto
demonstrate the operations of the optimization algorithmsand
the results are generated via simulation of the following two
sensor networks.

1) Network#1 that consists of8 sensing nodes (i.e.,M = 8)
and a sink node.

Algorithm 1 Two-stage optimization for Node-level Energy Man-
agement
Output: W⋆

c ,W
⋆

d

1: Fix false alarm rates,Tgoal, E andWN .
2: Assume a model for communication and a communication protocol for

the sensor network.
3: CalculateWTR andWc using the specified design variables.
4: Calculate the average power left for detection as an implicit function of

Wc, and thus,rc.
5: Find the radius of detection of sensors using the power fordetection

available at individual sensors.
6: Obtain probability of search,πss as an implicit function ofrc.
7: Representrc as unique M-tuple of integers and thus, create binary

representations for the same.
8: Useπss as an implicit function ofrc as the objective function. Initiate a

Genetic algorithm search by using a feasiblerc in binary representation
as the initial point. (This begins the first stage of optimization.)

9: Use the solution obtained by genetic algorithm as an initial point for the
pattern search (PS) optimization. (This finishes the optimization process.)

10: Using the optimized vectorr⋆c and the network lifetime, computeW⋆
c .

11: UsingW⋆
c , WT andWN , calculateW⋆

d
.

2) Network#2 that consists of32 sensing nodes (i.e.,M =
32) and a sink node.

As stated earlier, the sink node receives all information
for processing, but it transmits no messages except when it
has to broadcast the planned or re-planned topology of the
network. The network is required to remain active for a fixed
time horizonTgoal and the batteries of all sensing nodes are
initialized to be at the same energy level. To find the optimal
operating conditions, the design space of optimization is first
explored with a genetic algorithm (GA) that is executed for a
predefined number of generations (i.e., iterations). Then,the
best solution of GA is used as the starting point in the next
stage for execution of a pattern search (PS) algorithm. The
optimal solution of PS is then compared with the average
behavior obtained by using Monte-Carlo simulation for per-
formance evaluation of the optimization scheme.

Figure 7 shows the results derived from simulation of
Network#1, where nodes1 through 8 serve as the sensing
nodes, each having the probability of detection,πdet = 0.6,
while the node9 is the sink. The sensors have been randomly
placed within a1500m×1500m surveillance region. A feasible
solution is obtained by GA by execution over30 generations,
where each generation contains 100 members. Each member
of a generation is represented as a combination of discrete
communication levels for the sensing nodes, which is a binary
string of length L= 24. Only the fittest member of a population
is carried over to the next generation and the mutation proba-
bility is taken to be1

L
. The Pattern Search (PS) is terminated

when there is no further improvement in the performance of
the network with a local change in the solution point. The
same termination condition is used for Pattern Search (PS) in
all the simulations presented in this section.

Figure 7(a) shows the topology of Network#1, generated
by GA, where the achieved probability of successful search
πss is ∼ 0.86. The operating point obtained by GA is
used as an initial condition for local PS optimization that
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(a) Topology generated by the genetic algorithm (GA)
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(b) Topology generated by pattern search (PS) with
additional local optimization

Fig. 7. Optimized performance of Network#1 (The arrows denote the
directions of information flow)

eliminates the insignificant links in the network to make more
power available for target detection. Figure 7(b) shows the
corresponding network topology, where3 out of the8 sensing
nodes in Network#1 use single-hop links to communicate
to the sink (i.e., node9). Consequently,πss is improved to
∼ 0.89.

Figure 8(a) presents the convergence of GA used in Fig. 7(a)
for Network#1. Being a relatively small network, GA effi-
ciently explores the solution space as seen from the trend of
convergence over the generations as seen in Fig. 8(a). The re-
sults of Monte-Carlo simulation in Fig. 8(b) are approximately
fitted with Gaussian distribution by the regularχ2 goodness
of fit [24]. The mean performance is∼ 0.54 and the standard
deviation is∼ 0.24. Three out the eight nodes in the network
use single link communication with the sink in the optimized
scenario.

A sensor network is expected to adapt to the variations of
energy availability at different sensor nodes. Along this line,
Fig. 9 presents typical results of adaptation to energy variations
across Network#1. Since the GA parameters are the same as
in the previous cases of Figs. 7 and 8, the structure of the
sensor network is essentially unchanged with the exceptionof
assigning different sensor locations in the surveillance region.
After a certain period of operation, node5 in Network#1 hap-
pens to have maximum battery energy left, as seen in Fig. 9.
The optimal network topology is achieved when all sensors
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Fig. 8. Monte-Carlo simulation for convergence & stabilityanalysis and
performance evaluation of Network#1
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Fig. 9. Energy availability across Network#1

have equal energy as seen in Fig. 10(a). Apparently, node1
becomes as the potential bottleneck, because a vast majority
of the remaining nodes transmit their data packets via node
1. By making use of the information on variations in energy
availability across the sensor network, the optimal network
topology is presented Fig. 10(b), where node5 becomes the
new bottleneck instead of node1 as all neighboring nodes now
communicate through node5. Figure 10(c) shows the results
of Monte-Carlo simulation for variable energy availability.
The results are approximated with Gaussian distribution by
the regularχ2 goodness of fit [24]. The mean performance
is ∼ 0.51 and the standard deviation is∼ 0.21. The GA
optimization is able to achieve aπss of 0.76, which improves
to 0.79 via the local direct search by PS.
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(a) Optimal plan with equal energy across the network
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(b) Adaptation to energy availability across the network
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(c) Monte-Carlo results for network performance
(fitted with Gaussian distribution) when there is
energy variation across the network; GA=Genetic
Algorithm, PS=Pattern Search

Fig. 10. Optimized performance of Network#1. Arrows denotethe direction
of information flow

Figure 11 shows the results of GA for Network#2, where
nodes 1 through 32 serve as sensing nodes, each having
probability of detection,πdet = 0.6, while node33 is the sink.
The sensors have been randomly placed in the1500m×1500m
surveillance region, which is similar to that for Network#1.
The communication noise for Network#2 is increased to
maintain a comparable level of performance with a larger
number of sensors, which would require augmentation of the
energy level of the transmitted signal.

Similar to what was done for Network#1, GA is run for
200 generations, where each generation contains500 mem-
bers, to arrive at a near-optimal solution for the topology
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Fig. 11. Convergence and performance of genetic algorithm for Network#2
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Fig. 12. Results of Monte-Carlo simulation for Network#2; GA=Genetic
Algorithm, PS=Pattern Search

of Network#2. Each member in GA is represented as a
combination of discrete communication energy level for the
sensing nodes, which is a binary string with length, L= 160.
The best fitting member of a population is carried over to
the next generation. Taking the mutation probability to be1

L
,

GA converges to the near-global optimal where probability of
successful searchπss is approximately0.81. The operating
point, obtained by GA, is used as an initial condition for
pattern search (PS) optimization, where the local optimization
removes some of the redundant communication links in the
network. This makes more power available for detection with
an improvedπss ≈ 0.83, where about a third of the nodes
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TABLE I
COMPARISON OFOPTIMIZED BEHAVIOR VS THE AVERAGE BEHAVIOR

Network GA GA+PS MC Average MC Standard Deviation
1 0.86 0.89 0.54 0.24

1 (Case 2) 0.76 0.79 0.51 0.21

2 0.81 0.83 0.41 0.10

use single-link communication with the sink. Consequently,
no single node is overloaded with packets, which makes the
network robust to an unanticipated node failure.

Since the solution space of Network#2 is larger than that
of Network#1, a larger number of GA generations is required
before the search converges; however, the search is reasonably
stable and does converge to a neighborhood of the optimal
solution, as seen in Fig. 11(a). The near-global optimality
of GA is shown by the convergence of mean and standard
deviation of the objective function over the generations of
GA as seen in Fig. 11(b); after the transient phase of search
is over, the population of the successive generations slightly
fluctuates around the optimal solution. The results of the
Monte-Carlo simulation in Fig. 12 are approximated with a
Gaussian distribution by using the regularχ2 goodness of
fit [24]. The mean performance is∼ 0.41 and the standard
deviation is∼ 0.10. For clarity of presentation, all results are
also listed as a table in Table I.

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.7

0.75

0.8

0.85

0.9

Active life of the network (% of 2500 hrs)

 

 

P
ro

b
a

b
ili

ty
 o

f 
S

e
a

rc
h

, 
Π

ss

Fig. 13. Optimal trade-off between lifetime and performance in Network#2

Using a combination of GA and PS algorithms, Fig. 13
shows a Pareto-optimal surface obtained as a trade-off between
network lifetime and performance for Network#2 under the
constraints of constant false alarm rate (CFAR), constant
total energy, and fixed (communication) signal-to-noise ratio
(SNR). As the statistics of GA runs suggest, this Pareto-
optimal surface [14] is expected to be in a close vicinity of
the true global optimal surface.

6. CONCLUSIONS ANDFUTURE WORK

This paper presents optimization of energy-efficient sensor
networks for persistent surveillance in an underwater environ-
ment. The proposed optimization algorithm allocates the avail-
able energy between sensing and communication at individual
nodes, both of which are required for an active sensor network.
The problem is posed as optimal identification of the power
requirements for data-packet transmission for each node inthe

sensor network. It is shown by simulation on two networks of
different size that the proposed algorithm adapts to changes in
the energy availability across the sensor network, which might
occur due to nonuniform power requirements in different parts
of the network; a Pareto-optimal surface shows the trade-off
between performance and network lifetime.

The proposed algorithm is validated by using standard
statistical tools on simulated surveillance scenarios. Although
this paper uses models relevant to underwater communication
and detection, the framework of energy management could be
very well-suited for other types of sensor network.

Future research is recommended in the following areas for
the enhancement of the proposed method in the following
areas.

1) Improvement in computational efficiency of network
optimization for distributed execution on large sensor
networks: This research area would require identifica-
tion of the critical parameters in an abstract model,
which can be optimized locally by each node with local
information. For example, depending on the relative
position of the neighboring nodes, each sensor node will
decide to choose the link that uses minimum energy.
Simultaneously, in order to make the network more
robust to link failures, each sensor may attempt to
increase the number of connections to its neighboring
nodes.

2) Optimal sensor placement for energy efficiency: In view
of the fact that optimal network topology is a function of
sensor location, energy-efficient sensor placement will
tend to maximize the probability of successful search
with fixed energy availability constraints.
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