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Abstract—In general, battery-powered sensors in a sensor 4) d': Out-degree of node
network are operable as long as they can communicate sensed 5) E: [E1, B, .. .,EM]T
data to a processing node. In this context, a sensor network 6) &: Set of edges in a directed graph
has two competing objectives: (i) maximization of the netwik 7 ) Sj | f
performance with respect to the probability of successful earch ) [ '.gna requency
for a specified upper bound on the probability of false alarms 8) G: Directed graph
and (i) maximization of the network’s operable life. As both 9) M : Number of sensing nodes
sensing anq communication of data consume: ba.\ttlery energy 10) N(f): Noise power spectrum density
at the sensing nodes of the sensor network, judicious use of 11) Ni: Expected number of transmission trials at nade

sensing power and communication power is needed to improve . . :
the lifetime of the sensor network. This paper presents an 12) n': Average rate of transmitted packets from nade

adaptive energy management policy that will optimally alleate ~ 13) 7¢: Radius of communication for sensor

the available energy between sensing and communication aaeh  14) r.: Radius of communication Vectc{pa r2, ... 7T¢1:\4}T
sensing node to maximize the network performance subject to 15) ri: Radius of detection for sensor

specified constraints. Under the assumptions of fixed totalnergy @ : . 1 2 T
allocation for a sensor network operating for a specified tie ~ 16) ra: Radius of detection vectdug, 73, -+, ry']
period, the problem is reduced to synthesis of an optimal netork ~ 17) S: Surveillance region

topology that maximizes the probability of successful seah (of 18) T: Life of the sensor network

a target) over a surveillance region. In a two-stage optimiation, 19) T9°a: Specified minimum life of the sensor network
a genetic algorithm (GA)-based meta-heuristic search is fit 20) V: Set of vertices in a directed graph

used to efficiently explore the global design space, and thea - . .

local pattern search (PS) algorithm is used for convergencéo ~ 21) Wi Nominal power draw for sensar _

an optimal solution. The results of performance optimizaton ~ 22) W;: Average communication power for sensor

are generated on a simulation test bed to validate the propesl 23) Wy Detection power for sensar

cgnceptt. Agaptatio_? tc; t(ajnergy valf]iations_ actl;]oss tk;_e n:etvvda;r is y 24) W} : Total power available at senseér

shown to be manifested as a change in the optimal networ i - feai .

topology by using sensing and communication models for unde 25) Wrg: Povl/er f(2)r transn?wlssmn of packets at nade

water environment. The approximate Pareto-optimal surfae is ~ 26) Wi [WH, W2, ... W]

obtained as a trade-off between network lifetime and probabity 27) Wy [WJ{,, W,..., WJJ\\[4]T

of successful search over the surveillance region. 1 9 T
28) Wrg: [Wig, Wig, ..., W]

NOMENCLATURE 29) W [ Wi, W,.... W]
. , _ 30) Wi [Whw2,... . wM"
1) A(re™, f): Acoustic attenuation . . 31) z: Position of the cell in the surveillance region
2) a(f): Absorption coefficient related to acoustic emissiongyy - probability of successful packet transmission
3) E;: Energy available to sensing node 33) Af: Receiver noise bandwidth
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1. INTRODUCTION maintaining a minimum desired performance level when there

. . are hard constraints of resource availability for the ekgec
Sensor networks for underwater persistent surveillanee #fe of the network

equipped with a small number of affordable sensors that are o ] )

expected to yield a high probability of correct detection as ' @ majority of the work reported in open literature, eftort
long as possible, while not exceeding a specified rate of fali@ve been expended to develop energy-efficient data-packet
alarms; such sensor networks are designed to be costeé‘eclriou“ng protocols and to build efficient detection models; a
reliable, and long-lasting. For example, in littoral ursker Clear trade-off between performance and longevity of the
networks, the operational period may extend up to a fegtwork has been apparently ignored. The work, proposed in

months without the need for any external intervention. BhediS Paper, differs from those reported in the existingéitere
sensor networks have peculiar characteristics: they tage | " the sense that tools of network topology optimizationenav
propagation delay, high error rate, low bandwidth, andtéahi been employed to ]ud|C|ou_st allocate .the available bwtter
energy [1]. Improving energy efficiency in such networks iBOWer between the operations of sensing and node-to-node

important since replacement of batteries is expensive. Fgmmunications to maximize the performance of the sensing
fixed (i.e., immobile) sensor networks deployed for peesist nodes as a network. While a majority of the existing work is
surveillance, there are primarily two time-dependent sesir concentrated on finding the best communication and detectio

of power consumption: rules_(whif:h are not necessarily energy-eﬁicien_t), thel goa
. . here is to improve the network performance for given routing

* Sensmg/l?ett_achon OT targets_. . protocols with fixed criteria for operational activities.de

- Communicating the information of detection. target detection). All such design procedures miss a atitic

Efficient management of the available energy acrosscamponent, i.e., making a trade-off between performande an
battery-powered sensor network is necessary to achieve gh@work lifetime. The current paper addresses the problem o
competing objectives of: (i) improvement of the networktriking a trade-off between performance and sustainaigle |
performance over a fixed time horizon, and (ii) enhancemeirhe of networks by making optimal energy allocation betwee
of the network lifetime for a minimal performance requiresensing and communication at the node level. To this ensl, it i
ment. Most of the reported research in improving lifetimgnperative to develop optimization tools for maximizingth
expectancy of sensor networks (not necessarily restrittiednetwork performance under a variety of operating condtion
underwater networks) involves designing better routingi@r - rpe objective of the current paper is to construct a reliable

cols [2], [3], [4]. In this context, Badiat al. [S] presented 5.4 long lasting sensor network that will adaptively make

an integer-linear programming approach to jointly Optnizy,qe_off decisions between the sensing power and the cemmu

routing, node-scheduling and node placement for underwaj. ion power; such decisions should be independent fdr ea
sensor networks. Martiret al. [6] developed a sensor footprint

LRy 2P sensing node. From these perspectives, optimized nodé-lev
model based on energy availability of the sensors whiche thy o0y 'management algorithms have been developed to extend
used to optimally control gain of sensors for energy efficien

X _ the average battery life at the sensing nodes by maintaining
Judraket_a_l.[?] _prop_osed_a cross-layer routing mechanism faf,, acceptable level of the sensor network’s performance. Fo
power efficient idle listening mode. AIfl_eet al.[8] developed example, to increase the detection capabilities, a langetrer
algorithms that turn sensors on/off in groups t0 CONSerye gensing channels on a node may need to be activated,
energy. Cardei et al. [9] developed a heuristic to organize, hich could draw more power: similarly, communicationshwit
the sensor_s into a maxwpal number of d|310|_nt Set COVEfifsiant nodes, while reducing false alarms via decisioiofys
that are aqtlvated success_we_ly. The advantage is Fha“e‘mpwould also draw more power. As the network operations
coverage is ensured by plcklng up set covers while not USIBOolve, the intermittency of target events may cause some
all sensors at the same time. Recently, Jaleehl. [10] pre- - o¢ e sensors to lose much of their energy reserves, and
sented a dynamic scheduling algorithm for sensors by takifigh remaining sensors may be required to conserve available
adva}nta_\gle of the power decay eﬁe‘?ts on the performg.nceeglfergy to maintain the same level of network performandgs. It
the individual sensors a_nd the entire network. Specifically iaqthat this paper is not proposing a new sensor schedulin
the Cor!‘?ePtS of stochastic geometry [1_1] were u_sed t‘? ensﬂf&orithm, rather it is optimizing the connectivity of thensor
probabilistic coverage [12] of the surveillance region &3idn 1\, qes 50 that the network performance is maximized. A two-

a dynamic duty scheduling over the network. Most of the worka e optimization procedure is proposed to solve thetiegul
in current literature do not consider the runtime constsin ;110

such as false alarms and changes in the resource avaylabilit

Consequently, there could be an inconsistency in design and) The optimization procedure is initiated with a genetic al
operation [10] as the dynamics of sensing and communication gorithm (GA) that efficiently explores the global design
in the network are decoupled. For example, the network space to yield a nearly optimal solution.
communication topology is not considered while deciding th 2) Solutions of the genetic algorithm are fed into a pattern
sensing capabilities (or variables) for the network. Insthi search (PS) algorithm that produces an optimal solution
paper, a network design procedure is presented with theofoal by gradient-free local search.



The above two-stage optimization procedure yields the nhode
level power for sensing and communication, which will main-
tain the required performance over the desired life of the
sensor network.

The paper is structured as follows. Starting with a descrip-
tion of the sensor power dynamics, the paper formulates the
fixed-time-horizon power trade-off problem with the protbab
ity mss [13] of successful search as the cost function, where
s IS sShown to be a function of the network topology under
specified constraints. This function is then optimized gsin
a genetic algorithm search and is followed by pattern search
to yield the optimal network topology. All the sensing nodes
communicate with the sink node that acts as the computation
node of the network; the sink node also keeps an account of
the enefrgy levels across the net_work._Even though the ENIQYL 1. Detection, false alarm, and communication in a gpisensor
start with homogeneous batteries with the same amount retwork. Arrows denote the directed links for communiaatio
energy, variations in the energy level occur because difiter
sensors may use different amounts of energy for detectiB@ndwidth that is normalized to unity. The superscrigs
and communication purposes. Based on the current eneftjgpped for simplicity in the following equations, because
levels, the sink node recalculates the optimal topologyctvhi @coustic attenuation of all sensor signals is given as:
is t_he_n broadcasted across,thet\ n_etwork to adapt to energy Alre, f] = co - (re)" - alf]" )
variations over the network’s lifetime. The Pareto-optima
surface [14] is obtained as a trade-off between networtitifie  Wherec, is a constant for unit normalization s the spreading
and the performance of the network (measured in terms faftor, anda|f] is the absorption coefficient. While detection
probability of successful search. Even though this papes ugroblems typically make the distinction between spherical
models relevant to underwater communication and detectidgn = 2) and cylindrical (np = 1) spreading, the acoustic
the overall framework of energy management presented cogiimmunications community resorts to a valuempf= 1.5
be very well suited for other types of sensor network. which is referred to as thgractical spreadingcoefficient. The

last term in Eq. (2) is the absorption coefficient that is give

2 NETWORK COMMUNICATION AND TARGET DETECTION PY Thorp’s formula [15] that is valid in the range of hundreds

. . . . of Hz to 50 kHz:
This section presents simple models of network communica-

tion and target detection for underwater surveillanceuradL 101logq a[f] ~ 0.117° a4

shows the schematic of a typical sensor network deployed 1+ /2 4100+ f?

for surveillance, where the sensing nodes communicate with +2.75 x 10742 +0.03 3)
the sink node to provide the information on both successful
and false detections. The numerical results presentedisn
paper are based on the models detailed in the current secti
However, the applicability of the proposed framework is n
limited to any particular model.

__Bucc
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o

The noise power spectrum density[f] in Eq. (1) results
om a number of sources, such as turbulence, shipping,svave
M4 thermal effects. A reasonable approximation is to thke t
et effects of noise [15] as follows:

10log,o N[f] =~ 50 — 18logy, f (4)

A. Network Communication Model where the frequency is in the units of Hz. This approxima-

A network communication link is said to be functional if thdion is valid for the frequency range of tens of Hz up to tens
signal to noise ratio (SNR) is above a nominal specified valu@f kHz in a wide variety of ocean regions [15].
For underwater applications, acoustic modems are known tolhe power used for packet transmission determines the
be the most efficient communications mechanism [15], whef@dius of communication for individual nodes. It follows
messages are transmitted with a communication radider from Egs. (1) to (4) that¥rr is @ monotonically increasing
sensori at a frequencyf and the resulting narrow-band SNRfunction of communication radius. and the nominal SNR
is approximated as: threshold required to establish a link. The vector reprisgn
Wrr the communication radii of all sensing_ nodes defines thg

(1) topology of the sensor network. For fixed sensor locations,

Alre, f1- NIf]- Af each sensing node has neighbors at fixed distances, i.e., the
where WrR is the transmitted power for communication (fopower required for establishing communication links witle t
sensori), Alr., f] is the acoustic attenuationy|[f] is the neighborsis fixed. Hence, for a finite number of sensorsether
noise power spectrum density, addf is the receiver noise is a finite set of power requirement parameters that are used

SNRlr, f] =




by a sensor to establish communication links with other sodean be enhanced by increasing the power for detection [15].

in the network. However, without using additional power for detection, an
increase inrss may also increase the false alarm rate (FAR).
B. Target Detection Model Figure 3 elucidates a typical surveillance region with the

A constant false alarm rate (CFAR) [16] model has beegqorres_pondlng sensor footprint calculatt_aq accordmg © t.h
: etection model in the presence of additive Gaussian noise.
used for target detection, where o : .
) ) ) ) The probability of successful search is calculated by @kin
1) each sensing node in the surveillance region hasy@ mean of the probability of detection over the surveian
constant false alarm rate, and , region. For enhancement of computation, the surveillance
2) each sensor has a sensing radiyswithin which the qqion s discretized into a finite number of grid cells, wher
sensor detects a target with probability... each cell is labeled by its center at the locatigm, 3]. The
probability of target detection at the cell, labeled 4is then

025 calculated as:

Calculate ”'Ei = kd(Wé)

Taet]z] =1 — (1 — wdet)kz (6)
Discretize surveillance region
into N grids wherek, is the number of sensors that can detect a possible
Find k,, the number of sensors target in the celk. A binary function,y’(z) is defined as:
that can detect a possible target
in agrid z i(ya /1 ifnodeicandetectatargetatz
Calculate X'(2) = 0 otherwise (7)
Maee [2] = 1 — (1 — mgee )% ) ]
where the sensing nodec 1,2, ..., M. Then,k, is calculated
DreqTiarlZ

Calculate n, = Area(s) as:

M
ko= x(2) ®)
Fig. 2. Flowchart showing calculation af; s i=1
The probability of successful seareh is obtained by
taking the average over the entire surveillance regicas:

Ez Tdet [Z]
Ae;;ea[S’ ] ©

where Area[S] denotes the area of the surveillance regton
Remaining details of the passive sensing used for detection
are available in [17] and [18]. It is noted that, at any
(O,’]I‘gOa'], the performance measure, is a function of the
vector W, as a result of the Egs. (5) to (9).

Tss =

Y-coordinate of sensors

C. Network Connectivity Model

The network is modeled as a directed grafiv, £), where
X-coordinate of sensors Y = Vs U Vsink With V; being the set of sensing nodes and
Vsink the (singleton) set of the sink node. If there dafenodes
Fig. 3. Sensor footprints in a typical surveillance regi®he content of a in V.. the cardinality of the node sét is My = (M + 1)
square box indicates the number of sensors that overlap. s . . v '
because there is only one sink node. The edgé€ sepresents
The probability of successful search,,, over the surveil- a collection of M¢ edges that provide interconnections or
lance region has been used as the performance measure foliti@ in the network. The sensor field under consideration is
sensor network. The major steps in calculating over the constrained with fixed sensor locations, so that every senso
surveillance region have been listed in the flowchart shown has the information about all other sensors and the sink.node

Fig. 2 and are briefly explained next. The directed graplg is required to have the property that
As the sensing radius is calculated under the assumptiontieére exists a path from every sensing node to the sink so that
Gaussian noise by using the following relationship: the data packets, sent by each sensor, are able to reach the

) sink node. It is noted that this notion is different from tlo&t
connectivity of directed graphs, where there must existth pa
wherek, is the proportionality constant that is assumed to deetween every pair of nodes. Hence, the concepts of graph
the same for all sensors. For a specified value of consta#t fdlaplacian and its spectrum may not be used to ensure the
alarm rate (CFAR), the probability of successful seafigh connectivity. For a given topology of the network, the raute

i = ka0



from every sensing to the sink are found by using Dijkstras Given the packet drop probability € (0,1), the expected
algorithm [19]. If there exists a route from each sensingenodalue of the number of trials at nodds evaluated as:

to the sink, then the network is said to be connected. That i

is, every node is connected to the sink node via the shortest Nia)= [1-(I-a)+2-a-(1-a)+

possible route for a given network topology; it is noted that +N-NT(1—a) 4 }
the routes, thus found, will depend on the network topology. 1 10
The metric used in measuring the distance of such routes is T 1l-« (10)

Ithi enﬁrgy reqﬁlrement for ers';abhsrr:men_t _Of commumcanﬁnro"ows from Eq. (10) that, for perfect communicatione(,.
inks. Hence, the route requiring the minimum amount of _ 0), the parameted(0) — 1.

energy for data packet transmission to the sink is the sétorte The expected number;’, of data packets transmitted per
route. Presence of aroute, either smg!e hop or multi-haymn f uqi(t time by nodei is obtained as:
each of the sensing nodes to the sink ensures the networ

connectivity. n oc FAR - d" - N'(a) (12)
An important characteristic of a connected network is its .
tendency to use single-hop links against multi-hop linkse T Where the network design parameters, false alarm rate FAR

preference of multi-hop or single-hop communication wouland out-degred’ of the node;, are available for any topology

depend on the relative position of the sensors and the ps'océlj trr]]e sensor nc;atwork. . for d o
ing node (e.g., the sink node). The number of single-hogslink The expected energy requirements for data transmission is

to the sink might increase the energy used in communicati8HtaIneOI ffo”Wl(f?‘)- The network prot(_)col model t(_)gether
by individual nodes. However, it should make the networ‘fyIth thg commumcathn Imodel, described in Section 2-A,
robust to link failures as there are more nodes which can AG€MINes the transmission power vecWrg and thus the
as bottleneck nodes, other sensors can transmit througksndd/€r@9€ communication power vecf.. For imperfect com-
directly connected to the sink. This would, in general, a@'gunlcatlon' (i.e.o > 0), the average power f_orcor_nmunlcanon
depend on the relative placement of the sensors and vau?},atiBOr a nodei would increase by a factor of"*(a), i.e.,

in energy availability across the network. It is noted thet, ; Wi(0) ; ;

any timet € (0, T92], the connectivity ofG(¢) depends on Wi(a) = 1o whereW;(a) oc n'.

the the vectoiWtr and thusw..

3. PROBLEM FORMULATION

D. Network Protocol Model From the above perspectives, the problem of energy man-
For perfect communication, all packets are received at t e_ment in gnderwater sensor networks is treated as adlaptiv

sink in the first attempt and ’there are no retries or loss gtlmal sharlr_lg O.f the a\_/a|lablg baf[ter)_/ power betwgemegns

qu communication. This multi-objective cost functioredds

information. Associated with the sensing nodes, the p"’?"'%S non-dominant optimization. Such a problem is formulated

drop pf"bab"'ty isa = 0. Data packets are sent to the S'n.lél Pareto-optimal trade-off [14] between network perforogan
by finding the shortest route through the network dependln%d lifetime in the underwater sensor network. In this ggtti

on the topology. Every time a sensor detects the possibili ch passive sensing node needs to adaptively select the

i(;]ct(fr\:zlr g(;gt be(;r:]gtﬁéesre(:jnet; (I;[ft;igi?&f)-d;fe?v\\;geatﬁgort tIrT::{Bpropriate sensing radius based on the current level of its
9. ' ' @8N 4 ttery life and the projected remaining life of the sensor

?re directed :g i:(t)rngnl(lcate Wlt.h tthe sink att afll_predefln twork that requires communications connectivity to riema
requency so that the sink can maintain a count ot ive S&NSQi, ~ional. From this perspective, sensor networks hawe tw

and their battery levels. : S
. _— . ompeting objectives:
For imperfect communication, there is a packet drop proB— N )
o Maximization of network performance with respect to

ability associated with packets sent by the sensing nodes, i - s o
the packet drop probability > 0. The expected number of the probability of s_uccessful search with a specified false
alarm rate for a given coverage area.

trials needed to send the data packets to the sink is caculat oo ; ; .
by using the packet drop probability. Hence, the situation * Maximization of the network’s operational life.

of imperfect communication is modeled by increasing the The goal here is to synthesize an adaptive energy manage-
packet transmission time by an appropriate factor dependiment policy for a given sensor network that will optimally
on the packet drop probability. Although this paper makedlocate available power between the operations of sensing
the assumption of perfect communication with no limit o@nd communication at each node to maximize the network
the amount of data at a node, the situation of imperfeRerformance under the following assumptions:
communication can be analyzed by increasing the time forl) The2 — D sensor network consists af sensing nodes
packet transmission by an appropriate factor that is deg@nd (without the sink node) that are located at fixed positions
on the packet drop probability. Such a model is presented i = 1,2,....M to perform cooperative surveillance. (It
below. is noted that the locations are randomly generated but



they are fixed.) Each sensing node is allocated a fixedch sensing nodeallocates its total available pow&r’. as:
amount of energy (i.e., thé" sensing node has energy(i) sensing powerV; and (ii) the average power for com-
E;) and this allocated energy is to be shared for sensingunicating detection informatiof’?. Sensors communicate
communication and associated fixed nominal overheadly when they detect the presence of a target (including
expenses. false alarms), which is a sparse and intermittent eventcklen

2) Sensing nodes have power requirements for basic opile power used for transmissioW<, of data packets is
ational overhead (e.g., for central processing) as well diferent from the average power used for communicatiéh
for receiver capabilities, with a constant nominal powehat is calculated by time averaging of the powig, for
draw W} for each sensing node transmission of data packets .

3) The average power for communication is obtained by For a sensing node, the total power balance is then
time-averaging of expected communication power faxpressed as
the remainder of the network life. ; ; ; ; goa

4) The communication of data packets from all sensors Wi (t) = Wi (1) + Wa(t) + We(t) vt e (O,’]I“ q (13)

to sink is perfect (i.e., no lost packets). As such, N@nere 117i (1) is considered to be a constant in this paper.
acknowledgment of the data packets received are s shown in Section 2. the variablé&’i and Wi could
by the sink back to the sensing nodes. _be expressed as functions ef and 7’ respectively, when

5) The packgt size of tgrget detection messages, tranemitig, o, factors, such as SNR andf), are kept constant. The
by a sensing node, is small (e.g., on the order of a fe4ctorsy, andr, (and thusw, and W) together define the
seconds) compared to the network operational ime. petyork performance by determining, and the connectivity

6) Target detection algorithms are constructed for SpeLifigs the sensors with the sink. Under the assumption of cohstan

constant false alarm rates (CFAR). Wi, the optimization problem is to maximize the network
7) The sensing radius is calculated in the prie%e;;ce yﬁ’é]\rformancezrSS under the constraints of fixed network life
Gaussian noise by using the relationshipec (W3)" . a4 energy availability by identifying the optimal vectai&,

8) The sensing radius at a node is calculated from the w+ More formally, the objective is to find#V?* and W*
sensing power of a signal in the presence of Gaussigf},q thCUS the corresponding andr?) such that ¢
noise [16] by using the square-law detection model [18]. ¢

9) The network remains connected, i.e., .data packe_ts from (W5 W) = argmax mes(Wa, W) (14)
all sensing nodes reach the processing node (i.e., the (W, W.)

sink node) in a finite number of hops. o _ .
) ) under the constraints imposed by the following conditions.
Remark 3.1:The network is designed based on the steady- .
Power balance in Eq. (13).

state behavior when it is allowed to have a specified number® goal e

of false alarms. Hence, all calculations for energy allorat * 7ss [t] > ms” Vi€ (0,19 oa

are made using the allowable number of false alarms. During® 9(t) S connected ¢ (07?: ]

operation, however, the network may come across multiple® Tra(t) < TV L E (0, o]

targets. The above static optimization process finds out the best
The life T of a sensor network is defined as the timgetwork topology (i.e.r?) that maintains the network con-

over which the network maintains an effective probabilify ohectivity and maximizesr,,. It is noted that every feasible

successful search,, of at Ieastwgga', ie. network topology, represented by the vectqr uniquely
identifies a detection radius vectey (see Eq. (13)). However,
T £ inf {t D Tes|t] > wgga'} (12) the converse is not true (see Section 4 for details).

The network needs to be self-adaptive to the changes in

In the above setting, a dual problem is to design the sensbe remaining battery life and target behavior to maintain a
network to remain functional for a specified tini®°® and satisfactory performance level. The associated dynamic (o
maximize the minimal value of the probability of successfuddaptive) optimization is executed every time a significant
searchr,, for the network over the specified life. Sufficientevent is detected. The network is supposed to operate over
information has to reach a sink node for verification of targa sufficiently large period of time; real-time adaptation thee
detection, which uses multi-sensor decision fusion ruéeg.{( network is not required. The network reconfigures over a slow
k-detections or track-before-detect) [13][20] to decide thtime scale as compared to the dynamics of the likely events
presence of a target or a false alarm. However, the sink nqg&rgets) in the network. In this setting, behavioral clemng
has no sensing capabilities of its own. in network topology could be measured in terms of the ratio

As discussed earlier, the sensors start with batteriesigavof multiple hop and single hop paths present in the network
fixed energy and the detection rules are based on constander the optimal and average operating conditions.
false alarm rates (CFAR). Given these design criteria ard th To obtain the optimal performance conditions over différen
expected network lifetim&9°2, each sensing node calculatesperational conditions of the network, a Pareto surfacgifl4
its total available power. To meet its expected performanagenerated as a trade-off between network lifetime and né&two



performance for successful detection of targets, whiclpsel
the choice of an operating point. Depending on the situation
the network may select another search strategy by reducing

900

T9°2 or vice-versa.

The problem of sensor network design, addressed in the

paper, is stated as follows.

Design of an energy-constrained sensor network that
will optimally allocate available power at each node
for sensing and communication to maximize the
network performance under constraints of fixed life.
It is noted that the network performance is measured
in terms ofrgs and its connectivity which are global
variables. As a result, the decision variables (i.e.,
choice of sensing and communication power) of
sensors are tightly coupled and need to be decided
simultaneously.

COMMUNICATION DETECTION

Uzingthe total power and the
average power for
communication, find average
power for detection Wy

Fix the designvariablesi.e,
FAR, TE22hind total energy
for every node

Assume acommunication
modeland a routing
protocol for the network

Find radius of detectionrg
for all sensors using Eq.(5)

Calculate the average power
for communication Wyas [~
the time average of Wrg

Obtain m,,as an implicit
ﬂinction of r.

~

o

=]
T
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Fig. 5. Effects of communication signal-to-noise ratio ENon detection in
networks with constrained energy reserves. Higher remérgs on SNR for
establishment of communication requires more transmisg@wer {V1r) to
set up a communication link leaving less energy for sensing.

the objective function i.e.;rss is a global property of the
network.

Figure 5 shows the profiles of variations of communication
radius with sensing radius at different nominal threshafls
signal-to-noise ratio (SNR) to set-up inter-node commaric
tion links, under the constraints of a constant false alaate r
(CFAR) and fixed energy. These relationships are obtained
by using Egs. (1) to (3) in Section 2-A at a frequency of
approximatelyl kHz. At a fixed alarm rate, the sensing radius

| is evaluated from the energy left for detection (for a fixealett
v horizon) after meeting the communication requirementgov
Represent possible ras binary the same time-horizon). It is seen in Fig. 5 that the sensing r
string and use one such string to . . .. . . . .
initiate GA dius is less sensitive to changes in the communication saatiu
relatively smaller SNR as the family of curves becomes more
flat at larger SNR. In essence, the communication radius has
less significant effects on the sensitivity of the sensimiuzmat
larger SNR. The implication is that, with a small SNR, a good
part of the available power would be used to ensure sucdessfu
communication and it would consequently result in a narrow
range of detection radius. Furthermore, since commuwicati
power W/ varies super-linearly with communication raditjs
The major steps involved in solution of the optimizatiomt high SNR, the bulk of the available power would be used
problem are shown as a flowchart in Fig. 4. As discussed fior communication even with the nearest neighbors regyltin
the last section, the optimization process optimally @tes in low detection radius. Optimization will be meaningful
available power at each node for sensing and communicatimmly in scenarios where changes in the communication radius
to maximize the network performance that is measured lirave significant effects on the sensing radius. Otherwise, t
terms of probability,rss, of successful detection of a targetnetwork can only have a small range of feasible probability
which is obtained from Eqgs. (5) to (9) and represents theajlolof successful search,s while still being connected and the
behavior of the network. Under the current detection modelptimal behavior would not significantly differ from avemg
presented in Section 2-B; is obtained as a function &V,. behavior in those cases. Therefore, while designing a mktwo
On the other hand, the network connectivity (or topologyhe battery energy levels at the sensing nodes should berthos
depends on the power vectd®V,. and hence orr.. Thus, appropriately with due consideration to the communication
every sensor must decide which neighboring node it shouNR. In other words, an ill-designed sensor network may
communicate with so that the network remains connected aswffer from having a narrow region of performance, where
its performance is maximized. It is noted that these vaembla trade-off between sensing and communication may not able
need to be decided simultaneously for the all sensors, Becato significantly improve the network performance.

Use the solution obtained by GA
as an initial point for afurther
local optimization by PS

Fig. 4. Flowchart showing major steps in the solution apgioa

4, PROPOSEDAPPROACH



is determined byr. on a fixed time-horizon.
Remark 4.1:In view of the above arguments, the optimiza-
tion problem is now reduced to identification of the vector
r; that uniquely determine®} and W} on a fixed time-
horizon. The optimalr’ keeps the network connected and
[ simultaneously maximizes the probability,, of successful
r3 o search over the surveillance region. Since a feasible bpera
#Neighbor 3 ing point belongs to anm/-dimensional space, Finding the
7 optimal solution is a combinatorial optimization problefm
—--- exhaustive search for finding the optimal combination could
be NP-complete [21].
Fig. 6. Discretization of the solution space under the agpsiom of fixed Next a two-stage optimization process Is introduced toesolv

sensor locations. The neighbors of a sensor (e.g., the avensh the figure) the discrete optimization problem.
could be mapped to unique indices and a feasible solutionéstarr. € RM

= = Neighbor2
2] -~

Neighbor 1
@—"""-.

f'.' 5|

1) The optimization process is initiated by a global search
of the M-dimensional solution space by using genetic
algorithm (GA)-based meta-heuristic search [22]. This
step is expected to provide a solution to a close vicinity
of the global optimal solution.

2) Solutions obtained by GA are fed as initial conditions
into gradient-free local search algorithm, known as
pattern search (PS) [22]. This step leads to a local
refinement of the solution by making small perturbations
in the solutions obtained from the genetic algorithm
search.

Since the sensor locations are assumed to be fixed, every
sensor should have neighbors at fixed distances (e.g., as
seen in Fig. 6). Thus, there exists a discrete finite set of
communication radii for each sensor (e.g.)W U Vsink| =
M + 1, thenré € {rit ... riM} Consequently, new links
in the network are established only at discrete valués
and there are discrete values for feasiblg, which can be
used for communication. The sensing nodes would encounter
only a discrete set of power levels that they may use for
communication. Using any other power level in between these
discrete levels for the same task may not have any advantage
for communication as no new links could be established. It is
reasonable to use discrete power levels of communicationAn Genetic Algorithm
the optimization process, while the remaining power at each

node is available for sensing of targets. Using the curre icient meta-heuristic tools for searching optima in arg

model for comrnun_lc_anon, the Vectow'rr andWC_ cogld be . parameter-spaces with a limited structure [23]. Examples o
expressed as implicit functions of the communication I’adl%ther directed random search techniques, which could be

vectorr.. The lvecmrrcﬂ'fs an M-dimensional discrete vector, g 1, gptain solutions close to the global optima, are the
(e.g.,r. = {rl?,--- v} as there are M sensors in theToIIowing'

network) and it can be mapped to the lattizé! in the

euclidean SpacRI\'{_ Forma”y, there exists a map defined as: * Cultural algorithmsthat add a maCfO-eVOlUtionary belief
function to the value of each.;

fore (I I, Inr) (15 . Particle swarm algorithmsn which iterative variations
where I,k € {1,2,---,M} is an integer and of r. are imposed by comparison to the best value of

(I, Is,--- ,In;) € ZM. It is noted that the mapf is obtained to that_ point; and _ i _
bijective, implying that the vectar, can be uniquely mapped * Ant colony optimizationthat involves adding artificial
to M-tuple of integers. Probability of successful search of Pheromone levels to good values of to draw further
targets over the surveillance region, which serves as the Iterations toward that direction.

performance measure for the network, is calculated in termsSince all of the above alternative techniques involve
of a feasible vectoW ;. Thereforer, can attain values in the problem-specific tuning, this paper focuses on genetic-algo
continuous Euclidean spad®™. Under the relation shown rithms (GA) as a method that can be applied generically to the
in Eg. (13) and the facts thAW is fixed and thatW. can problem at hand. In the setting of GA, a feasible solutipn
attain only discrete values, the vectW, is constrained to is an M-dimensional vector representing the communication
belong to a discrete set; consequently, the sensing radiadius for every sensing node, for which the set of all pdssib
vectorry belongs to a discrete set. As discussed earlier, theighbors (excluding itself) is created. Such a set is darte
objective functionr,s(W,, W) is expressed as an implicitthe ascending order relative to the respective distanaes fr
function m,s(Wy4, W.) = m,(W,.) of the communication that node. An bijective mag (see Eq. (15)) from the sorted
power vectorW, whenWr = W, + W, (see Eq, (13)). In set to the integer latticE? is then created. Them, can be
this setting, the objective function,, becomes an implicit represented as an M-tuple of integers, which is represeasted
function of the communication radius vectar, becauséW,. a binary string and fed into GA to initiate the optimization

Genetic algorithms belong to a class of computationally



process. Formally, Algorithm 1 Two-stage optimization for Node-level Energy Man-

agement
fre) = (I, Iz, ..o Inr) Output: W5, W5
s 00010 ... .. 01 1: Fix false alarm ratesT9% E and W .

2: Assume a model for communication and a communicationopobtfor

i i ; ; the sensor network.

A sufficient number. of runs of the genetlt; algorlthm WOUId3: CalculateWr and W using the specified design variables.

lead tQ a Sma.” neighborhood of the .optlmal 50|Ut'0.n- The: calculate the average power left for detection as an sitgflinction of
numerical details of GA are presented in the next sectioe. Th W, and thusyr..

solutions obtained by GA are used as initial conditions fOF: Find the radius of detection of sensors using the powerdgection
available at individual sensors.

pattern search (PS), which performs a local greedy perurbg obtain probability of searchrss as an implicit function ofr..
tion and a local improvement of the solution is obtained. Th&: Representr. as unique M-tuple of integers and thus, create binary

pattern search optimization method is described next. _ representations for the same. - . -
8: Userss as an implicit function ofr. as the objective function. Initiate a

Genetic algorithm search by using a feasiblein binary representation

B. Pattern Search Optimization as the initial point. (This begins the first stage of optirtiaa)
9: Use the solution obtained by genetic algorithm as anainioint for the

The idea is to be able to get closer to the optimal solution pattern search (PS) optimization. (This finishes the ogtition process.)
by doing a finer gradient-free search around the soluti@fi Using the optimized vectar; and the network lifetime, computév'¢.
obtained from Genetic algorithm using a direct search miethg = USMIWe. Wr and Wy, caloulateW.

The pattern search algorithm starts with an initial guess to
evaluate the objective function and, after initializatiche
algorithm searches for a set of points around the initiahpoi 2) Network#2 that consists 82 sensing nodes (i.el/ =

The objective function is calculated at each of the points  32) and a sink node.

around the initial point and the best point is searched in tha s stated earlier, the sink node receives all information
neighborhood. The initial point is then moved to tht®est for processing, but it transmits no messages except when it
neighbot and the process is terminated if either the toleranggys 1o proadcast the planned or re-planned topology of the
constraints are satisfied, or a maximum number of iteratiogwwork. The network is required to remain active for a fixed
is reached. o _ _time horizonT9? and the batteries of all sensing nodes are

The neighborhood of a point is constructed in the solutiqRitiz|ized to be at the same energy level. To find the optimal
space as a set of points in which one of the indices of tgerating conditions, the design space of optimizationri fi
communication vector have been perturbed by one. So ev@Rpiored with a genetic algorithm (GA) that is executed for a
point in the solution space will haw\l' neighbors except the pragefined number of generations (i.e., iterations). Thiea,
boundary points. For example, if the GA returns a solutigfest solution of GA is used as the starting point in the next
re = {r;*,r2 ... r}P} wherek,l,p < 1%1,127 -, M}, then  gage for execution of a pattern search (PS) algorithm. The
one of the possible neighbors af = {re "™ 120 rMp}, optimal solution of PS is then compared with the average
Consequentlyr. will have 2M neighbors if it is not on the pehavior obtained by using Monte-Carlo simulation for per-
boundary of a feasible set. The objective function is cali®d formance evaluation of the optimization scheme.
at each of those neighbors and the best neighbor is madgjgyre 7 shows the results derived from simulation of
the next initial guess. Further details of the algorithme afetwork#1, where nodes through 8 serve as the sensing
provided in Section S. _ _ nodes, each having the probability of detectiap,, = 0.6,

A series of Monte-Carlo simulation runs have been cofypile the noded is the sink. The sensors have been randomly
ducted under random network topologies of the sensor ngfaced within al500m x 1500m surveillance region. A feasible
work, and their respective performance is evaluated for-coigy|ytion is obtained by GA by execution oVl generations,
parison with the optimized behavior that is obtained by thghere each generation contains 100 members. Each member
two-stage process as discussed earlier. The major stepsgiiy generation is represented as a combination of discrete
volved in the optimization process are delineated in Ao communication levels for the sensing nodes, which is a ginar

1 string of length l= 24. Only the fittest member of a population
is carried over to the next generation and the mutation proba
5. RESULTS ANDINTERPRETATION OFNUMERICAL bility is taken to beX. The Pattern Search (PS) is terminated
SIMULATION FOR EXAMPLE PROBLEMS when there is no further improvement in the performance of

This section presents the results of the proposed methodleé network with a local change in the solution point. The
network performance optimization. Examples are presetotedsame termination condition is used for Pattern Search (#®S) i
demonstrate the operations of the optimization algoritants all the simulations presented in this section.
the results are generated via simulation of the following tw Figure 7(a) shows the topology of Network#1, generated
sensor networks. by GA, where the achieved probability of successful search

1) Network#1 that consists 6fsensing nodes (i.elf =8) w4 is ~ 0.86. The operating point obtained by GA is

and a sink node. used as an initial condition for local PS optimization that
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(b) Performance evaluation by Monte-Carlo simula-
(b) Topology generated by pattern search (PS) with tion; GA=Genetic Algorithm, PS=Pattern Search
additional local optimization
Fig. 8. Monte-Carlo simulation for convergence & stabiléyalysis and
Fig. 7. Optimized performance of Network#1 (The arrows denthe performance evaluation of Network#1

directions of information flow)
14

eliminates the insignificant links in the network to make mor 12t
power available for target detection. Figure 7(b) shows the W4
corresponding network topology, wheseut of the8 sensing
nodes in Network#1 use single-hop links to communicate
to the sink (i.e., nod®). Consequentlyr,, is improved to
~ 0.89. o4r
Figure 8(a) presents the convergence of GA used in Fig. 7(a) 02}
for Network#1. Being a relatively small network, GA effi-
ciently explores the solution space as seen from the trend of
convergence over the generations as seen in Fig. 8(a). The re
sults of Monte-Carlo simulation in Fig. 8(b) are approxigigt Fig- 9- Energy availability across Network#1
fitted with Gaussian distribution by the regulgf goodness
of fit [24]. The mean performance is 0.54 and the standard have equal energy as seen in Fig. 10(a). Apparently, node
deviation is~ 0.24. Three out the eight nodes in the networlecomes as the potential bottleneck, because a vast majorit
use single link communication with the sink in the optimize@f the remaining nodes transmit their data packets via node
scenario. 1. By making use of the information on variations in energy
A sensor network is expected to adapt to the variations @failability across the sensor network, the optimal nekwor
energy availability at different sensor nodes. Along thig) topology is presented Fig. 10(b), where nddéecomes the
F|g 9 presents typicaj results of adaptation to energﬁﬁaﬂs new bottleneck instead of nodeas all neighboring nodes now
across Network#1. Since the GA parameters are the samec@&municate through node Figure 10(c) shows the results
in the previous cases of Figs. 7 and 8, the structure of tRE Monte-Carlo simulation for variable energy availalyilit
sensor network is essentially unchanged with the excepfionThe results are approximated with Gaussian distribution by
assigning different sensor locations in the surveillareggan.  the regulary® goodness of fit [24]. The mean performance
After a certain period of operation, nodeén Network#1 hap- is ~ 0.51 and the standard deviation is 0.21. The GA
pens to have maximum battery energy left, as seen in Fig.Q®timization is able to achiever,, of 0.76, which improves
The optimal network topology is achieved when all sensof@ 0.79 via the local direct search by PS.

3 7 8 9

4 5 6
Node Number
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Fig. 10. Optimized performance of Network#1. Arrows dertbie direction  Fig. 12.  Results of Monte-Carlo simulation for Network#2A&5enetic
of information flow Algorithm, PS=Pattern Search

Figure 11 shows the results of GA for NetWOfk#z, Whergf Network#2. Each member in GA is represented as a
nodes1 through 32 serve as sensing nodes, each havingymbination of discrete communication energy level for the
probablllty of detectionﬂdet = 06, while node33 is the sink. Sensing nodeS, which is a binary String with |ength§ L60.

The sensors have been randomly placed intt®m x1500m  The best fitting member of a population is carried over to
surveillance region, which is similar to that for NetWOfk#lthe next generation' Tak|ng the mutation probabmty to_ihe
The communication noise for Network#2 is increased @A converges to the near-global optimal where probabilfty o
maintain a comparable level of performance with a larg@iccessful search,, is approximately0.81. The operating
number of sensors, which would require augmentation of tb@int, obtained by GA, is used as an initial condition for
energy level of the transmitted signal. pattern search (PS) optimization, where the local optitiina

Similar to what was done for Network#1, GA is run foremoves some of the redundant communication links in the
200 generations, where each generation contaids mem- network. This makes more power available for detection with
bers, to arrive at a near-optimal solution for the topologgn improvedr,s ~ 0.83, where about a third of the nodes
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TABLE | . . .
COMPARISON OFOPTIMIZED BEHAVIOR VS THE AVERAGE BEHAVIOR sensor network. It is shown by simulation on two networks of

different size that the proposed algorithm adapts to chaimge
Netr’ork 0(58"2 %Aggps MCO/;‘ffage MC Sta(;‘ngd Deviation the energy availability across the sensor network, whicghini
1(Case 2) 0.76  0.79 051 021 occur due to nonuniform power requirements in differentgpar
2 0.81  0.83 0.41 0.10 of the network; a Pareto-optimal surface shows the trafle-of
between performance and network lifetime.
use single-link communication with the sink. Consequently The proposed algorithm is validated by using standard
no single node is overloaded with packets, which makes thgtistical tools on simulated surveillance scenarioth@lgh
network robust to an unanticipated node failure. this paper uses models relevant to underwater communicatio
Since the solution space of Network#2 is larger than thand detection, the framework of energy management could be
of Network#1, a larger number of GA generations is requiretry well-suited for other types of sensor network.
before the search converges; however, the search is ré@gona Future research is recommended in the following areas for
stable and does converge to a neighborhood of the optirtfa¢ enhancement of the proposed method in the following
solution, as seen in Fig. 11(a). The near-global optimaligreas.
of GA is shown by the convergence of mean and standardl) Improvement in computational efficiency of network
deviation of the objective function over the generations of  optimization for distributed execution on large sensor
GA as seen in Fig. 11(b); after the transient phase of search networks This research area would require identifica-
is over, the population of the successive generationstkligh tion of the critical parameters in an abstract model,
fluctuates around the optimal solution. The results of the  which can be optimized locally by each node with local
Monte-Carlo simulation in Fig. 12 are approximated with a information. For example, depending on the relative

Gaussian distribution by using the regulgf goodness of position of the neighboring nodes, each sensor node will
fit [24]. The mean performance is 0.41 and the standard decide to choose the link that uses minimum energy.
deviation is~ 0.10. For clarity of presentation, all results are Simultaneously, in order to make the network more
also listed as a table in Table I. robust to link failures, each sensor may attempt to
increase the number of connections to its neighboring
. nodes.
c 2) Optimal sensor placement for energy efficienoyview

of the fact that optimal network topology is a function of
sensor location, energy-efficient sensor placement will

‘g tend to maximize the probability of successful search
& with fixed energy availability constraints.
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