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1 Executive Summary

Ionospheric variability is a critical consideration for communication systems, GNSS, and space
asset management. At high magnetic latitudes, the convergent magnetic field acts as a lens,
focusing electromagnetic power originating from solar wind-magnetosphere interactions into a
limited latitudinal range. The geometry and ensuing complex coupling processes result in extreme
multi-scale time-dependent variations in the structure and composition of the ionized gases in
Earth’s outer atmosphere. Understanding the mechanisms and technological consequences of
these interactions benefits from distributed heterogeneous time-dependent measurements of the
ionosphere-thermosphere-magnetosphere system, and their application as constraints on predictive
space weather models.

This research used collaborative observations by UHF incoherent scatter radar (ISR), the HF
SuperDARN radar network, and wide-angle optical imagers, supported by first-principles numerical
modeling, to clarify the driving mechanisms and physical consequences of these interactions.
Critical new observational evidence has been provided by the electronically steerable Resolute
Bay Incoherent Scatter Radar (RISR, 74.7◦N, 94.8◦W), which has introduced a radically new
sensing capability to polar ionospheric science. The results of this research include both technical
contributions related to the application of phased array ISR in the polar cap, and scientific
contributions arising from the application of these techniques. The major published results may
be summarized as follows:

1) Development of a mathematical framework and software toolset for fusing optical imagery
with three-dimensional ionospheric imagery derived from multi-beam ISR experiments
[Semeter and Zettergren, 2014].

2) Development of a deconvolution framework for analyzing volumetric ISR measurements in a
spatially and temporally varying ionosphere. The approach takes advantage of the observing
flexibility of electronically steerable ISR to perform signal integration in the rest frame of a
convecting plasma patch [Swoboda et al., 2015].

3) Discovery of direct evidence for internal structuring of convecting polar plasma patches
[Dahlgren et al., 2012a].

4) Quantitative description of electrodynamic coupling within polar auroral arcs produced along
the nightside polar cap boundary [Perry et al., 2015].

5) Steepening of ionospheric density gradients via magnetosphere-ionosphere at the poleward
auroral boundary [Semeter et al., 2014].

6) Measurements of collisionless ion heating by Langmuir turbulence, related to soft particle
fluxes in the aurora – a possible important “hidden” energy source in the F -region [Akbari
et al., 2015; Akbari and Semeter, 2014].

The software toolset developed under this grant enables routine analysis of common volume
measurements of the ionosphere-thermosphere-magnetosphere system in response to changing solar
wind conditions. This toolset is currently being extended to include data from the SuperDARN HF
radar network, GPS scintillation sensors in the polar cap, and Fabry-Perot Interferometer (FPI)
measurements of the neutral wind field. The high-level data products produced through this data
fusion approach can be directly applied as constraints for regional and global models of the geospace
system, improving space weather predictive capabilities.
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2 Guiding Objectives of this Research

This research project was guided by two key questions:

1. How is F -region plasma structure modified during polar cap transit?
The relative contributions of transport, precipitation, recombination, field-aligned currents,
and thermal diffusion in controlling plasma structures in the polar cap remains poorly
understood. A major impediment has been the lack of diagnostic measurements able
to provide the requisite three-dimensional view of the evolving ionospheric state. The
electronically steerable Advanced Modular ISR (AMISR) sensors fill this need by allowing
acquisition of information in multiple directions simultaneously. Using common volume
observations by RISR, PolarDARN, and an all-sky spectral imaging system, we have carried
out the first quantitative and experimentally verified calculation of three-dimensional plasma
continuity at the geomagnetic pole [Dahlgren et al., 2012a; Perry et al., 2015; Semeter et al.,
2014].

2. How do magnetospheric drivers alter ionospheric composition, and what are the global
implications?
The topside polar ionosphere serves as a significant reservoir of magnetospheric ions. During
disturbed conditions, precipitation, frictional heating, and field aligned currents act to modify
F -region ion composition, converting the ionosphere from predominantly atomic (O+) to
predominantly molecular (NO+). But no systematic methodology has yet been developed to
quantify this effect through ground-based measurements. Progress on this question has come
in the form of clarifying the location and rate of energy deposition in the F -region and topside
ionosphere [Akbari et al., 2015; Akbari and Semeter, 2014], and developing a mathematical
framework through which produce sufficient observational constraints to access composition
information reliably [Semeter and Zettergren, 2014; Swoboda et al., 2015]

3 Project publications

Seven peer-reviewed papers were supported by this project and acknowledge AFOSR support under
this grant, as listed below. These papers were also presented at international conferences (AGU,
CEDAR, GEM, URSI) during the course of this project. In the remainder of this report we provide
a synoptic overview of the major findings reported in this body of work.

1) Dahlgren, H., G. W. Perry, J. L. Semeter, J.-P. St.-Maurice, K. Hosokawa, M. J. Nicolls,
M. Greffen, K. Shiokawa, and C. Heinselman, Space-time variability of polar cap patches:
Direct evidence for internal plasma structuring, Journal of Geophysical Research (Space
Physics), 117, A09312, doi: 10.1029/2012JA017961, 2012.

2) Semeter, J., and M. Zettergren, Model-Based Inversion of Auroral Processes, in Modeling
the Ionosphere-Thermosphere System, edited by J. Huba, R. Schunk, and G. Khazanov, John
Wiley & Sons, Ltd, Chichester, UK, doi: 10.1002/9781118704417.ch25, 2014.

3) Akbari, H., and J. L. Semeter, Aspect angle dependence of naturally enhanced ion
acoustic lines, Journal of Geophysical Research (Space Physics), 119, 5909–5917, doi:
10.1002/2014JA019835, 2014.
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4) Akbari, H., J. L. Semeter, M. A. Hirsch, P. Guio, and M. J. Nicolls, Evidence for generation
of unstable suprathermal electron population in the auroral F region, Geophys. Res. Lett., 42,
185–192, doi: 10.1002/2014GL062598, 2015.

5) Swoboda, J., J. Semeter, and P. Erickson, Space-Time Ambiguity Functions for Electronically
Scanned ISR Applications, Rad. Sci., 50, doi: 10.1002/2014RS005620, 2015.

6) Perry, G., et al., Spatiotemporally resolved electrodynamic propertiesof a sun-aligned arc over
Resolute Bay, Geophys. Res. Lett., 42, in press, 2015.

7) Semeter, J., H. Dahlgren, M. Zettergren, J. Swoboda, G. Perry, J.-P. St.-Maurice,
K. Hosokawa, K. Shiokawa, and M. Nicolls, Extreme F-region gradients generated by patch-
arc interactions in the polar cap, AGU Fall Meeting Abstracts, pp. SA24A–07, 2014 (Invited).

4 Research Accomplishments

This section highlights published results from the project. The results are organized into three
categories: (i) results derived from radar-optical sensor Fusion, (ii) optimal experiment design
approaches developed in support of these investigations, and (iii) F-region turbulence as a “hidden”
term in ionospheric energy balance. In each category, a synoptic overview of the results are
presented. For further details, see the full journal articles.

4.1 ISR-SuperDARN-Optical sensor fusion

Using the RISR facility, Dahlgren et al. [2012a] published the first direct three-dimensional time-
dependent measurements of a transiting polar plasma patch. Figure 1 shows an example composite
image. The plasma density slices at 340 km, 250 km and the vertical slice are produced by extracting
cuts of the trilinear interpolation of RISR multi-beam measurements. The positions of the radar
beams are marked on each horizontal slice as black circles (this method of RISR visualization has
been previously discussed by [Dahlgren et al., 2012b]). The structure has a peak electron density
of 1.5 × 1011m−3, close to 250 km in altitude. The contemporary 630.0 nm allsky camera image
is magnetically mapped to 200 km altitude for display purposes (the actual emission is closer to
250km). The emission ratio brightness of signal over average background is given by the horizontal
color bar at the bottom of the figure. The optical enhancements correspond to the location of the
plasma structures seen in the radar data. The coherent scatter from the SuperDARN radar is then
plotted at 300 km altitude. The strongest echo (up to 30 dB, color bar to the left in the figure) comes
from the region to the north-east of the vertical slice, partially overlapping the RISR-N plasma
structure.

Perry et al. [2015] extended this experimental approach to investigate relationship between optical
forms and derived electrodynamic parameters, in an effort to capture a full electrodynamic view of
magnetosphere-ionosphere interactions during the formation of a plasma patch near the poleward
auroral boundary. Figure 2 shows an example result from this work. Estimates of |E⊥| with vectors
indicating the direction of the field, and J‖ are plotted along with 630-nm allsky camera data.
The altitude of the contours for plasma density (Ne), ion temperature (Ti), Pedersen conductance
(
∑

P ), and J‖ are centered at 325 km. The
∑

P estimates are a product of integrating the Pedersen
conductivities between 200 and 500 km altitude along the magnetic field. The |E⊥| contours are
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shows the OMTImeridian-aligned keogram for the time period
22–24 UT, where each slanted structure illustrates a poleward
drift. The middle and bottom panels show the derived average
velocity and direction of the optical enhancements as they pass
the zenith of theOMTI imager. At 22UT the structures have an
optically measured velocity of close to 300 m/s, in the north-
east direction. The speed then increases and the direction
becomes more eastward. This is consistent with the plasma
velocity vectors in the region as constructed from data from the
SuperDARN network of HF radars for the same segment of
time.
[19] The faint 630.0 nm emissions are also visible in the

all-sky data from Qaanaaq, Greenland. At this time, Qaanaaq
is located anti-sunward of Resolute Bay and there is some
overlap in the FOVs of this imager and the OMTI imager,
but unfortunately it was not possible to track a specific
patch through both imagers. Even so, red line emission could
be seen drifting in the north-east (anti-sunward) direction

through the Qaanaaq imager (J. M. Holmes, private com-
munication, 2012).

4. Discussion

[20] In this paper we present simultaneous coherent and
volumetric incoherent scatter measurements of polar cap
irregularities. The results are compared with optical all-sky
measurements in order to clarify the dynamic evolution of
polar cap patches, and investigate their intrinsic variability.
The weak structures (electron densities of the order of
1011 m!3) seen to drift through the RISR-N FOV have
spatial sizes of about 100 km " 100 km " 100 km, which is
small for typical polar cap patches. Similar horizontal sizes
are measured from the optical data. The emissions are also
very faint, with brightnesses in the all-sky data of only up to
300 R in 630.0 nm and 50 R in 557.7 nm. The NASCAM
imager shows no or very faint emission in the N2

+ 427.8 nm

Figure 5. Three-dimensional view of an F region plasma density structure. The slices at 350 km and
250 km as well as the vertical slice show the electron density as derived from RISR-N data. The location
of the radar beams are marked as black circles on the horizontal slices. At 300 km altitude, the Super-
DARN echo is shown. The simultaneous 630.0 nm OMTI image is projected to 200 km altitude, for which
the emission brightness over the background level is indicated with the color bar below the combined plot.
Optical signatures are seen in the location of plasma density enhancements, whereas the coherent echo
from SuperDARN is strongest to the side of the plasma structure.

DAHLGREN ET AL.: VARIABILITY OF POLAR CAP PATCHES A09312A09312

6 of 15

Figure 1: Three-dimensional view of an F region plasma density structure. The slices at 350 km
and 250 km as well as the vertical slice show the electron density as derived from RISR-N data.
The location of the radar beams are marked as black circles on the horizontal slices. At 300 km
altitude, the Super- DARN echo is shown. The simultaneous 630.0 nm allsky image is projected to
200 km altitude, for which the emission brightness over the background level is indicated with the
color bar below the combined plot. Optical signatures are seen in the location of plasma density
enhancements, whereas the coherent echo from SuperDARN is strongest to the side of the plasma
structure. [From ?]
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PERRY ET AL.: ELECTRODYNAMICS OF SUN-ALIGNED ARC OVER RESOLUTE BAY X - 25
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Figure 3. Combined plots of the optical data from OMTI (grayscale) and RISR-N

contours for |E?| with corresponding vectors (top row), and Jk (bottom row). Dimensions

of the FOV and MLT meridians are indicated in red and blue, respectively.

D R A F T May 4, 2015, 8:09pm D R A F T

Figure 2: Combined plots of 630-nm allsky camera data (grayscale) and RISR contours for |E⊥|
with corresponding vectors (top row), and J‖ (bottom row). Dimensions of the field-of-view and
MLT meridians are indicated in red and blue, respectively. [From Perry et al., 2015]

constructed from data integrated over several hundred kilometres in altitude and mapped to 300 km
altitude. The allsky data is mapped to 250 km altitude, the usual practice for 630.0 nm emissions.

Structuring in |E⊥| due to both arcs is significant and easily identifiable in this figure. Between
05:10 and 05:18 UT, meridionally extended |E⊥| structures moved towards dawn, coincident with
the two optical arcs discussed earlier. At 05:10 UT, three structures with low —E— were in the
FOV. Two of the structures, both with |E⊥| of ∼25 mV/m, were collocated with two optical arcs
shown in grayscale. The low |E⊥| structures are indicative of the upward J‖ region of an arc; a
region of electron precipitation in which plasma production is enhanced, increasing the ionospheric
conductivities. With enhanced conductivities |E⊥| decreases to uphold current closure. The upward
J‖ associated with the low |E⊥| structure of the brightest of the arcs is estimated to be approximately
0.5 µA/m2, and maintains its intensity during the transit of the arc through the RISR FOV.

Semeter et al. [2014] used similar RISR experimental modes to focus on the interaction of plasma
density patches and auroral processes. Figure 3 shows three frames of this time-dependent dynamic.
The color contours are a vertical meridional representation of plasma density. The auroral images
are displayed as flat perpendicular gray scale images. The red dashed line indicates the projection of
the density cut into the allsky frame. These results suggested a time- steepening of F-region density
gradients within a downward field-aligned current channel. The evacuating region was sandwiched
in between a nascent sun-aligned arc and a plasma patch, indicating a mechanism of structuring
via plasma removal. The challenge in quantifying this result lies in dealing with sampling issues
associated with the limited number of radar beams and limited integration period used to construct
the density images. Future work that fuses these measurements with 3-D physics-based modeling
will contribute to clarifying this result.

The sensor fusion approach exemplified in these results represents a path forward for extracting
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Figure 3: Snapshots of vertical meridional cuts through a plasma density structure in the polar cap
(color contours) as rendered from RISR samples (black dots). These are overlain on on horizontal
maps of 630-nm brightness (gray scale) observed by the collocated allsky camera. The red dashed
line indicates the projection of the density cut into the camera frame. The figure illustrates an
evolving plasma patch sandwiched between two polar cap arcs. [From Semeter et al., 2014]
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optimal constraints on polar ionospheric dynamics. Such fused data products can be repackaged
in a variety of formats, which can then provide valuable quantitative constraints for first-principles
physical modeling efforts. As part of this effort, a mathematical framework and flexible software
package have been developed in beta form, with the goal of providing such a tool to the modeling
community. Activity on this effort is discussed in the following section.

4.2 Optimal experiment design for electronically steerable ISR

ACF(t)

Flux tube 
model

Neutral atmosphere

Plasma fluctuation 
model

Poynting Flux Particle Flux

Solar EUV

ISR Sensor 
model

Optical Sensor 
model

b!(t)
!""

Projection
model

Volume emission rate
ps(!,z,t)

Plasma state
Ne,Te,Ti,Vi(z,t)

"#$%(E,t)&'t)

Plasma autocorrelation function
ACF(t)

Optical Spectrum
b(!,t)

Figure 4: Schematic representation of the forward
problem treated by [Semeter and Zettergren,
2014]. A flux of incident electrons φtop impinges
the atmosphere, which heats, ionizes, and excites
the neutral gases. These rates are collectively
represented by p(x, y). A physical flux-tube
model maps these inputs to changes in the
ionosopheric state and optical emission rates.
State parameters (left side) are sensed as changes
in the plasma autocorrelation function measured
by ISR, optical emissions (right side) are sensed
as brightness variations in a camera system. This
data flow describes a forward model, which may
be reversed to reconstruct the magnetospheric
drivers, in this case φtop). [From Semeter and
Zettergren, 2014]

The aforementioned experimental results ap-
plied standard interpolation and mapping
strategies, without the use of any physical
knowledge of how the parameters should be
connected or what spatiotemporal variations are
allowed under known physics. An inverse-
theoretic framework for incorporating physics
knowledge into the analysis was developed
by [Semeter and Zettergren, 2014] under this
project. A schematic overview of the approach
is shown in Figure 4. The basic approach is
to develop parallel forward models between the
magnetospheric drivers and the ionospheric re-
sponse (both optical and ISR) which is sub-
sequently inverted using Bayesian techniques.
The Bayesian approach allows for incorporat-
ing uncertainties in model assumptions and
tracking how they impact the results.

A second track to improving sensor resolution
was pursued by Swoboda et al. [2015], who
exploited the unique multi-beam capability of
RISR to deal with motion of the ionospheric
target during the data acquisition period. Their
approach developed the concept of a three-
dimensional ISR ambiguity function. The
essential idea is captured by considering a
fixed ionospheric pattern moving through a
field that is being sampled by a regular grid of
radar beams. ISR backscatter is a stochastic
process, and so time-integration is required to
estimate the plasma parameters. If a plasma
parcel moves into an adjacent beam during
this integration period, then we have a classic
blurring problem, where echoes from multiple
beams could be combined to improve fidelity.
This notion is capture in Figure 5
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4.3 Langmuir turbulence: A hidden energy transfer mechanism
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Figure 5: Illustration of digital blurring for a CCD
focal plane (top) and for a set of ISR beams (right).
Electronically steerable ISR is able to integrate in an
effectively simultaneous manner in multiple beams, thus
enabling integration across multiple beams as the plasma
target moves. This framework has a strong analogy to
deblurring in optical imagery. [From Swoboda et al., 2015]

In addition to macro-scale (fluid) instabilities,
such as gradient-drift and shear-driven, parti-
cle fluxes and field-aligned currents also pro-
duce micro-scale (kinetic) instabilities—e.g.,
unstable Langmuir waves which couple to other
modes. These effects are manifested in ISR ob-
servations as enhanced non-thermal backscat-
ter, sometimes known as “Naturally Enhanced
Ion-Acoustic Lines” or NEIALs. [Akbari et al.,
2015] used PFISR to establish the geospatial
context of these scattering events, suggesting an
intriguing correlation with ground-based obser-
vation of “MF bursts”. [Akbari and Semeter,
2014] used the unique electronic steering capa-
bilities of PFISR to observed the dependence of
NEIALs on magnetic aspect angle.

These results suggested that Langmuir turbu-
lence may represent a “hidden” mode of energy
transfer in the high-latitude F -region, which
has direct effect on the structuring and com-
position objectives of this research. Explo-
ration along these lines has lead to experimental
modes able to isolate with unprecedented resolution the relationship between these instabilities to
the bulk properties of the ionosphere. Figure 6 exemplifies this result. Enhanced UHF backscatter at
100-150 km is caused by the usual auroral energy deposition mechanism, namely, impact ionization
of the neutral gases. But the enhanced echoes at 200-300 km are related to Langmuir turbulence
produced by collisionless energy deposition in the low-energy regime of the impinging electron
spectrum. The process is expected to occur broadly throughout the disturbed high-latitude geospace
system. The significance of this latter energy deposition process to the structure and composition of
the ionosphere is not known.

Figure 6: (a) Ion line range-time-intensity (RTI) plot derived from a separate 1 baud length pulse that accompanied
AC. The time axis is shown in minutes as well as in 16 s intervals (records). Coherent echoes are originating from thin
layers close to the F-region peak (∼250 km). (b–d) Examples of ion line spectra measured from the turbulence layers.
Each spectrum corresponds to different times. (e) Up- (blue) and down-shifted (red) plasma line spectra produced by
long-pulse measurements for record 16 in panel a. The spectra are averaged over a 70 km range gate centered at 290 km.
[From Akbari et al., 2015]
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