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1. Introduction 

Monte Carlo (MC) methods1 are often used when a closed-form solution for a 
property being studied cannot be developed. Mathematically, we are attempting to 
evaluate Ω⋅⋅∫

Ω

dFp )()( , where p(∙) is the combined probability function of all the 

input parameters, F(∙) is the function describing the property being studied, and Ω 
is the domain of interest (e.g., the 2-dimensional plane of the battlefield in a 
weapons analysis). If we cannot evaluate this definite integral, numerical methods 
must be used. MC methods are a set of numerical methods that are especially useful 
when dealing with probability distributions. 

The defining characteristic of MC methods is the random generation of input 
parameter values from probability distributions. For example, consider determining 
the value of the mathematical constant π. A straightforward geometric approach is 
shown in Fig. 1, where a circle of diameter D is inscribed in a square with side 
length D. Computing the ratio of the area of the 2 figures, 

 ,4/4/
2

2

ππ
==

D
D

SquareArea
CircleArea   (1) 

eliminates D and gives a value for π after multiplying by 4. A numeric or closed-
form solution for the ratio of the areas is not possible, so the use of an MC method 
to approximate π is appropriate.  

 

Fig. 1 Geometric domain for approximating π 

An MC method/algorithm to approximate π follows.  

1) Select 2 random numbers, x1 and x2, from the interval [0,D] (random 
generation of input parameter values). 
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2) Determine if the point defined by the ordered pair (x1,x2) lies within or on 
the circle. Keep track of the total number of points within or on the circle 
and the total number of points tested. 

3) Approximate the ratio of the areas by the number of points within or on the 
circle divided by the total number of points tested.  

4) Approximate π by multiplying the value in step 3 by 4. 

5) Repeat steps 1–4 until π is approximated to the desired accuracy.2 The 
number of times steps 1–4 is repeated is the number of iterations. 

Table 1 presents results for the approximation of π using the algorithm describe 
above for different numbers of iterations along with the percent difference between 
the approximation and π. 

Table 1 Approximation of π using the MC method π ≈ 3.14159265 

Number of Iterations Approximation to 
π Percent Difference 

100 3.4 8.2254 
1,000 3.104 –1.1966 

10,000 3.1608 0.6114 
100,000 3.14756 0.1899 

1,000,000 3.14260 0.0321 
10,000,000 3.1412788 –0.0100 

100,000,000 3.14155688 –0.0011 
 
As expected, the approximation of π becomes better as the number of iterations 
increases, and we would argue that the result is accurate to 3 decimal places. We 
expect the accuracy to increase as the number of iterations increases. Fortunately, 
as will be shown later, if the MC simulation is properly formulated, this is 
statistically true with the potential error in the approximation being proportional to 
1/√n with n being the number of iterations. This guarantees that for any MC 
simulation there is a calculable number of iterations to be performed that will 
provide an approximation to any desired accuracy. However, it does not tell us how 
many iterations should be performed. Or, more importantly, how accurate the 
resulting estimation is. These are important issues that the analyst should address 
before starting the analysis. Yet, Robey and Barcikowski3 cite a report by Hauck 
and Anderson4 stating that “in a survey of simulation studies, [they] found that only 
9 percent of the surveyed reports included a justification for the number of iterations 
utilized”.  
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The object of this report is to address statistical approaches to both of these 
questions. The remainder of this report is organized as follows. In Section 2, the 
central limit theorem5 (CLT) is discussed. The third section provides several 
approaches for estimating the number of MC iterations required to achieve a desired 
accuracy. Section 4 discusses estimating MC simulation result accuracy for both a 
large and small number of iterations. The use of the percentage error of the mean 
to estimate the number of MC iterations and accuracy is presented in Section 5. The 
final section provides conclusions. 

2. Central Limit Theorem 

The statistical foundation for the work presented in this report is the CLT. Before 
stating the theorem, some comments on notation are needed. Let Y represent a 
population with a distribution that has a mean of µ and a variance σ2

.  No assumption 
is made about Y’s distribution—it may or may not be a normal distribution. 
Suppose Y1, Y2,…, Yn is a random sample with replacement of size n drawn from 
the Y population. If we take the average of this sample, =y (ΣYi)/n, we produce a 
single point estimate for the mean of the Y distribution. There is another population 
with its own distribution known as the distribution of the sample mean. This 
population consists of all estimations of the Y distribution’s mean possible by 
averaging random samples of size n drawn with replacement from Y. Denote this 
distribution by Ῡ. Thus, y is an element of Ῡ. Since Ῡ is a population, it has a mean 
and variance denoted, respectively, by µῩ and σ2

Ῡ. The CLT gives the relationship 
between the mean and variance of the Y and Ῡ distributions. Devore5 defines the 
CLT as follows: 

CLT: Let Y1, Y2,…, Yn be a random sample from a distribution Y with mean µ 
and variance σ2. Then if n is sufficiently large, Ῡ has approximately a normal 
distribution with µῩ = µ and σ2

Ῡ = σ2/n. The larger the value of n, the better the 
approximation. 

To illustrate the CLT, we return to the MC algorithm for approximating π described 
in the previous section. The algorithm relied on taking the average of a number of 
samples drawn from the probability distribution defined by performing a single 
iteration of the algorithm. For a single iteration, if the selected point is within or on 
the inscribed circle, the ratio of the areas would equal one, thereby producing a 
value of 4 since the ratio of the areas is multiplied by 4 in the algorithm. If the point 
is not within or on the circle, the result is zero since the ratio of the areas is zero 
and multiplying by 4 is still zero. The probability density function (pdf) can be 
determined using geometric probabilities.6 So the probability that a random point 
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is within or on the circle is π/4, and outside the circle the probability is 1 – π/4. 
Formally, the pdf is 











−

=

4
1

4
)(

π

π

yp    (2) 

 
This pdf is the transformation of a binomial distribution. In terms of the CLT, this 
is the Y distribution. The terms “sample size” and “number of iterations” are used 
somewhat interchangeably. For example, if we perform n iterations, we have a 
sample of size n. 

Applying the standard formula for the mean (expected value) of a distribution, 
∑

∈

⋅==
Yy

ypdfyYE ),()(µ  yields 

 µ = 4 * π/4 + 0 * (1 – π/4) = π. (3) 

For future reference, notice that estimating π is equivalent to estimating or 
determining a characteristic of the Y distribution—specifically, we seek a 
numerical estimate of the mean of the Y distribution.  

Using the alternate formula for variance, σ2 = 22 )]([)( YEYE −  produces 

 σ2 = [16 * π/4 + 0 * (1 – π/4)] – π2 = 4π – π2. (4) 

In the MC simulation for this example, a sample with a single iteration would be a 
value of 0 or 4.  

If we were to perform 2 iterations and compute the average of the 2 samples, we 
would produce the distribution shown in Table 2. This is the CLT with n = 2 (i.e., 
a sample size of 2). 

Table 2 Distribution information for the average of 2 samples 

Sample 1 Sample 2 Average of Sample 1 
and Sample 2 Probability of Average 

0 0 0 (1 – π/4)2 

0 4 2 (1 – π/4) * π/4  
4 0 2 π/4 * (1 – π/4) 

4 4 4 (π/4)2 

 

if y = 4, i.e., a point within or on the 
circle  
 
if y = 0, i.e., a point outside the circle . 
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There are now 3 possible outcomes: 0, 2, and 4. If we were to use 2 iterations in a 
MC simulation and take the average, we would have a single value consisting of 
one of these values. Computing the mean and variance for the average of 2 samples 
yields the following results:  

µ = 0 * (1 – π/4)2 + 2 * [2 * π/4 * (1 – π/4)] + 4 * (π/4)2  

= π * (1 – π/4) + π2/4 = π - π2/4 + π2/4 = π                                  (5)  

and  

 
σ2 = 02 * (1 – π/4)2 + 22 * [2 * π/4 * (1 – π/4)] + 42 * (π/4)2  – π2  

= 2π – π2/2 + π2 - π2 =  2π – π2/2 = (4π – π2)/2.  (6) 

     
Eqs. 5 and 6 are the values predicted by the CLT for µῩ and σ2

Ῡ with a sample size 
of 2. This illustrates the predicted CLT values for the mean and variance of the 
distribution of the sample mean. To illustrate that the distribution of the sample 
mean tends toward a normal distribution, we will consider averages of samples of 
sizes 10 and 20. Figure 2 shows the pdf for the base distribution, Eq. 3, and sample 
sizes of 2, 10, and 20.  

 

Fig. 2 Pdf for the base distribution and for sample sizes of 2, 10, and 20 
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The trend toward a normal distribution with mean π is evident in the 4 pdfs. In all 
cases the computed mean for the pdf is π and the variances, in order, are 
2.696766213, 1.3483831, 0.2696766213, and 0.1348383106. The variance values 
are in agreement with the CLT (i.e., (4π – π2)/n for n = 1, 2, 10, and 20). As the 
sample size approaches infinity, the Ῡ distribution’s variance will approach zero. 
In effect, the Ῡ pdf is approaching the Dirac delta function centered at the mean of 
the original distribution.  

In general, how does the CLT apply to MC methods and simulations? In an MC 
simulation, values for the input parameters are randomly generated based upon 
knowledge of the pdf associated with each input parameter.7 These values serve as 
the inputs to a deterministic model/process to produce the answer for that particular 
set of input parameters. Since there is most likely variability in at least some of the 
input parameters, there is no single answer to the problem being studied; rather, 
there is a probability distribution characterizing the totality of the possible answers. 
In an MC simulation, we are attempting to determine the characteristics that define 
this distribution; this is the Y distribution mentioned in the CLT. The CLT is the 
theoretical tool that tells us how to determine the mean of the Y distribution and at 
the same time bound the confidence interval (CI) for the mean. The CLT also 
provides justification for an a priori (before running the MC simulation) estimate 
of the number of iterations to be performed by the MC simulation to provide a 
desired level of accuracy for the results.  

Suppose that we perform an MC simulation with n iterations. This means that we 
have drawn a sample of size n, Y1, Y2, …, Yn, from the Y distribution or population. 
There is a related population made up of the average values for every possible 
sample of size n, the Ῡ distribution in the CLT. Thus, the output of our MC 
simulation can be thought of as a sample of size n from the Y distribution or a 
sample of size 1 from the Ῡ distribution for sample size n. Since the goal of the MC 
simulation is to define characteristics of the Y distribution, why not simply use the 
sample of size n to determine the desired characteristics of Y? The simple answer 
is that we can estimate the mean of the Y distribution with the sample average, but 
we have no way to estimate the accuracy or error bound on the mean. Fortunately, 
the CLT guarantees that µῩ = µ, σ2

Ῡ = σ2/n, and the Ῡ distribution asymptotically 
approaches the normal distribution. Thus, the 100*(1 – α) % confidence interval is 
given by8  

 ,2/ n
szYaverage α±  (7) 

where Yaverage = average (Y1, Y2, …, Yn) and s = standard deviation (Y1, Y2, …, Yn) 
are used as the unbiased estimators for the Y distribution µ and σ. 2/αz  is the 



 

7 

standard normal distribution z-score such that α/2 is the area under the standard 
normal curve to the right of 2/αz . To compute the number of iterations to bound the 
half-width of the CI, we would need to know s. But s is unknown until a number of 
iterations have been performed; thus, the number of iterations to achieve a specific 
bound on the half-width of the CI cannot be estimated a priori. In those cases where 
the variance of the Y distribution is known, σ can be substituted for s and an a priori 
calculation for n is possible. As will be seen in the next section for the special case 
where Y has a binomial distribution, an upper bound on the number of MC 
iterations required for a given accuracy can be determined.  

Equation 7 does provide a condition that allows the MC simulation to be terminated 
when the desired half-width of the CI, Δ (i.e., the desired accuracy for the mean of 
the Y distribution) has been achieved. Specifically, 

 .2/ ∆<
n
szα  (8) 

We will return to Eq. 8 in the next 2 sections. 

3. A Priori Estimate of Number of MC Iterations 

Over the past several decades, analysts with the Advanced Lethality and Protection 
Analysis Branch (ALPAB) of the Weapons and Materials Research Directorate, US 
Army Research Laboratory, have grappled with questions regarding the number of 
iterations and the accuracy of results when performing their MC simulations. 
Several different approaches relying on the CLT and CI for a population proportion 
have been used. Since the majority of the ALPAB analyses involved a personnel 
incapacitation measure of performance, the idea of using a proportion 
(incapacitated or not incapacitated) was felt to be justified.  

The derivation of the CI for a population proportion, p, based upon a random 
sample of size n, can be found in almost every text on introductory statistics, such 
as Devore,9 and is given in Eq. 9. Here p̂ is the natural estimator of p and is given 
by the fraction of successes, X/n, from a random sample of size n drawn from the 
population; X is the number of successes; ;ˆ1ˆ pq −= α is the level of confidence, 
generally 95% or 99%; and 2/αz  is the z-score associated with α/2.  

 ααα −≈









<

−
<− 1

/ˆˆ
ˆ

2/2/ z
nqp

ppzP . (9) 
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The most common method used to determine CIs and the number of iterations for 
population proportion is the method by Wald10 (WM) that assumes the probability 
in Eq. 9 is equal to 1 – α and yields the formula  

 
2

/2
2

ˆ ˆz pqn α=
∆

 (10) 

for the number of iterations. Here, Δ is half the length of the confidence interval. 
Since we are talking about a population proportion, 0 < p < 1, Δ = 0.005 would 
represent a CI of width 1% (i.e., if 58.0ˆ =p or 58%, a Δ = 0.005 would give a CI 
between 57.5% and 58.5%, a width of 1%). Analysts with ALPAB used Eq. 10 to 
obtain an estimate for the number of iterations to use in the MC simulation by 
letting ,5.0ˆ =p the value that would maximize the right-hand side of Eq. 10. For 
example, with 5.0ˆ =p , Eq. 10 predicts that 960,400 iterations are required for a 
95% CI )96.1( 2/ =αz with Δ = 0.001.  

Returning to our estimation of π, we were estimating a proportion in calculating the 
ratio of the areas of the circle and square. To estimate π, we multiplied the 
calculated proportion by 4. Thus, if the half-width of the CI for the proportion is Δ, 
the half-width for the estimation of π will be 4*Δ. From Table 1, π was estimated 
to be 3.14260 for 1,000,000 iterations, and we would estimate the 95% CI to be 
approximately 3.14260 ± 0.004 or (3.13860, 3.14660). “Approximately” is used 
here because we would actually expect the CI to be slightly smaller since 1,000,000 
iterations, not 960,400, were used in the approximation of π. The difference 
between π and 3.14260 is approximately –0.00100, well within the ±0.004.  

Unfortunately, such good results are not always observed for our MC simulations, 
especially when p is close to 0 or 1. As stated by Dunnigan,11 

Careful study however reveals that it [Wald method] is flawed and inaccurate for 
a large range of n and p, to such a degree that it is ill-advised as a general 
method.[12,13] Because of this many statisticians have reverted to the exact Clopper-
Pearson method, which is based on the exact binomial distribution, and not a large 
sample normal approximation (as is the Wald method). Studies have shown 
however that this confidence interval is very conservative, having coverage levels 
as high as 99% for a 95% CI, and requiring significantly larger sample sizes for 
the same level of precision.[12–14] An alternate method, called the Wilson Score 
method is often suggested as a compromise. It has been shown to be accurate for 
most parameter values and does not suffer from being over-conservative, having 
coverage levels closer to the nominal level of 95% for a 95% CI. 
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Agresti15 further quantifies Dunnigan’s statement concerning the WM, stating that 
the method is inaccurate for small values of n and when p is close to 0 or 1 (extreme 
values).  

As a result of the critique of Wald’s method by Dunnigan and Agresti, as well as 
our own observations, we opted to use the Wilson score method16 (WSM). The 
WSM confidence interval is shown in Eq. 11.  

 ( ) ( )


















+

+++

+

+−+

nz
n

z
n
qpz

n
zp

nz
n

z
n
qpz

n
zp

/1
4

ˆˆ
2

ˆ
,

/1
4

ˆˆ
2

ˆ
2

2/

2

2
2/

2/

2
2/

2
2/

2

2
2/

2/

2
2/

α

α
α

α

α

α
α

α

. (11) 

We developed a procedure using Eq. 11 to determine when to terminate a 
simulation based upon the CI half-length being less than Δ. The procedure consisted 

of determining if the inequality ( ) ∆<
+

+

nz
n

z
n
qpz

/1
4

ˆˆ

2
2/

2

2
2/

2/

α

α
α

is true at the completion of 

each MC iteration. If the inequality is true, the MC simulation is terminated, 
otherwise the MC simulation would continue. However, this procedure was not 
very useful. The number of iterations that needed to be performed was sensitive to 
the value of Δ, often resulting in a large number of iterations being performed. This 
was especially true during the initial MC simulations performed during an analysis 
when the value of p̂ would not be well know. Use of the procedure was quickly 
discontinued. 

Although more complicated than the WM, the WSM can also be solved for the 
upper bound on the number of required iterations since 5.0ˆ =p also maximizes the 
expression for the half-width in Eq. 11. Using the WSM with the same values used 
earlier in the WM to estimate the number of iterations needed to achieve a half 
interval of 0.001 length gives 960,396 iterations versus the 960,400 iterations 
predicted previously using the WM. The difference of 4 iterations out of almost 
1,000,000 iterations is virtually meaningless and calls into question if the WSM is 
useful in estimating a priori the number of iterations because of its added 
complexity compared to the WM. We recommend that the WM be used for a priori 
estimates of the number of MC iterations since the maximizing value for the half-
width of the WM CI in Eq. 10 is 5.0ˆ =p , and this value is not close to 0 or 1 where 
the WM is inaccurate.15  

Although the WM and the WSM have generally proven useful in estimating the 
number of MC iterations and addressing the accuracy of the MC simulation results, 
these methods do have drawbacks. First, they both assume that the random variable 
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being studied is a binomial random variable. Fortunately, this is the case for many 
analyses if they are thought of “in the right way”. Consider our estimation of π 
using the algorithm above. The objective of the algorithm, estimating π, was not a 
binomial experiment. The binomial experiment was the counting of the number of 
times that the randomly chosen point was within the circle. This binomial random 
variable directly leads to the estimation of π when we multiplied the binomial 
random variable by 4.  

This transformation of the binomial random variable (i.e., multiplying by 4) leads 
to the second drawback: the measured accuracy of the variable being estimated by 
the MC simulation. In our example, we set the desired width of the half interval to 
be 0.001. But as illustrated above, this was not the precision of the estimation for 
π. It was the half-width of the CI for the binomial random variable, the probability 
of a randomly chosen point being within the circle. The precision of the estimation 
for π had to undergo the same transformation as the transformation applied to the 
binomial random variable to estimate π (i.e., multiply by 4). Thus, the half-width 
for the 95% CI for the accuracy of the estimation for π was 0.004. 

It is not difficult to keep track of the transformations between the random variable 
and adjust the CI half-widths so that the number of iterations or desired CI are 
correctly computed; however, it is possible to eliminate the dependency on 
requiring a binomial random variable and the added complexity. The cost of 
removing the requirement of a binomial random variable is that we cannot make a 
priori estimates of the number of iterations required to achieve a desired level of 
accuracy without additional information that will probably not be known. What the 
binomial random variable provided was a value for ,p̂  0.5, that provided an upper 
bound for the variance needed to calculate the number of iterations.   

Equation 8 can be solved for n to obtain a result similar to Eq. 10, 

 .2

22
2/

∆
=

szn α  (12) 

If the variance, σ2, of the Y distribution is known, it can be used in place of s2 in 
Eq. 12, and the value of n can be determined. If the variance is not known, the 
standard deviation of a small sample could be used to estimate n. As more iterations 
are performed, refined estimates for n can be obtained until the estimates for n 
converge.  

Table 3 summarizes the results of using this iterative approach to estimate the 
number of iterations required to estimate π to within an accuracy of 0.004 and 0.001 
based upon the information in Table 1. The actual variance for the base or Y 
distribution is 4π – π2  = 2.696766213 (see Eq. 4). Using this value for s2 in Eq. 12 
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with zα/2 = 1.96 (95% confidence level) yields n values of 647,494 and 10,359,897 
for Δ = 0.004 and 0.001, respectively. The estimated number of iterations in Table 
3 appears to be converging to these values as the sample size increases. Also, for a 
sample size of 1,000 (1,000 iterations) the estimated number of iterations for both 
levels of accuracy, Table 3, is only about 3% larger than the number of iterations 
calculated using the true value for σ in Eq. 12 (i.e., 668,431 vs. 647,494 for Δ = 
0.004 and 10,694,891 vs. 10,359,897 for Δ = 0.001).  

Table 3 Estimation of the number of MC iterations required to achieve a half-width of 0.004 
and 0.001 for the 95% level of confidence (variance of the Y population = 2.696766213) 

Sample Size Sample Variance (Estimation 
of Y Population Variance) 

Estimated Number 
of Iterations  

Half-Width = 0.004 

Estimated Number 
of Iterations  

Half-Width = 
0.001 

100 2.060606 494,752 7,916,024 
1,000 2.783968 668,431 10,694,891 
10,000 2.652809 636,939 10,191,031 

100,000 2.683133 644,220 10,307,524 
1,000,000 2.694466 646,941 10,351,061 

 
The WM or the WSM a priori estimate for the number of iterations required to 
achieve 0.004 accuracy in estimating π was approximately 960,400. As illustrated 
above, the iterative method using Eq. 12 to achieve the same accuracy indicates 
that approximately 650,000 iterations are required. Thus, the iterative method 
predicts about two-thirds of the number of iterations predicted by population 
proportion, WM or WSM, methods. As mentioned above, the WM and WSM 
provide an upper bound for the number of iterations since 5.0ˆ =p maximized the 
iteration estimate given by Eqs. 10 and 11, so the fewer number of required 
iterations predicted by the iterative method is not unexpected.  

4. MC Result Accuracy 

In Section 2 we stated that we are attempting to determine the characteristics that 
define the Y distribution mentioned in the CLT. If we are trying to determine the 
mean, µ, of the Y distribution, the CLT provides 2 approaches for determining the 
accuracy of our result. In the previous section, we discussed methods for selecting 
the number of MC iterations to guarantee a user-specified level of accuracy for µ. 
Unfortunately, the required number of iterations could be prohibitive in actual 
practice, most often due to time constraints. This brings us to the second approach 
that is the classical statistical methodology for CIs. Assuming n is sufficiently large, 
generally taken as n ≥ 30, the CLT states that Ῡ has an approximately normal 
distribution no matter the Y population distribution and17  
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Note that Eq. 9 is a special case of Eq. 13, applicable to the binomial distribution. 
Solving the inequality for µ produces a CI for µ with a confidence level 
approximately 100*(1 – α) % and is shown in Eq. 14,  

 .2/2/ n
zY

n
zY σµσ

αα +<<−  (14) 

Estimating Ῡ with the sample average, Yaverage, and σ with the sample standard 
deviation, s, gives the final equation for the CI, 

 .2/2/ n
szY

n
szY averageaverage αα µ +<<−  (15) 

Using the information in Tables 1 and 3 with Eq. 15, we find the 95% confidence 
levels for the sample average for sample size n (Table 4).  

 

Table 4 Confidence intervals at the 95% level of confidence for the estimation of π by the 
sample average for different sample sizes together with the length of the half-width of the 
confidence interval 

Sample Size 

Sample Variance 
(Estimation of Y 

Population 
Variance) 

Sample Average 
(Estimation of Y 

Population 
Average) 

Lower Bound 
95% 

Confidence 
Level for 

Mean 

Upper Bound 
95% Confidence 
Level for Mean 

Length of 
Half-Width 

100 2.060606 3.4 3.118645704 3.681354296 0.281354296 
1,000 2.783968 3.104 3.000583892 3.207416108 0.103416108 
10,000 2.652809 3.1608 3.128876606 3.192723394 0.31923394 

100,000 2.683133 3.14756 3.137407402 3.157712598 0.10152598 
1,000,000 2.694466 3.1426 3.139382694 3.145817306 0.0032173.6 

 
At this point we have 3 different ways to estimate CIs for the mean using a sample 
size of n. Besides Eq. 15, there are the 2 approaches under the assumption that the 
final distribution is the transform of a binomial distribution through the use of Eqs. 
9 and 11. A comparison of the results for these 3 methods is given in Table 5 for 
the sample size of 1,000,000. 
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Table 5 Confidence intervals at the 95% level of confidence for the estimation of π using the 
three methods discussed in the paper, sample size = 1,000,000 

Method Sample 
Average 

Lower Bound 
95% Confidence 
Level for Mean 

Upper Bound 
95% Confidence 
Level for Mean 

Length of 
Half-Width 

Wald: Eq. 9 3.14260 3.13938269 3.14581731 0.00321731 

WSM: Eq. 11 3.14259561 3.13937831 3.14581291 0.00321730 

CLT: Eq. 15 3.14260 3.13938269 3.14581731 0.00321731 
 
All 3 estimates are essentially the same with the WSM providing a slightly better 
estimate for π because of the correction of the average in Eq. 11. When the 
transformation (i.e., multiply by 4) is used, the binomial distribution standard 
deviation to use in Eq. 15 would be  

( ) 3.1426 3.1426ˆ ˆ4 1 4 1 4 0.78565*0.21435 4 .168404
4 4

4*0.4103706 1.641483.

p p  − = − = = 
 

= =

    (16) 

From Table 4, the computed sample standard deviation for a sample size of 
1,000,000 is 641483.1694466.2 = , which explains the same results between the 
3 methods.  

The CI calculations discussed in this section have assumed that the population 
distribution was a binomial distribution or that the sample size was sufficiently 
large so that the CLT could be used regardless of the nature of the population 
distribution. As mentioned earlier, a large sample size is considered to be n ≥ 30. 
Unfortunately, many of today’s high-fidelity physics-based performance models 
are time intensive, and performing 30+ MC iterations is prohibitive, resulting in a 
small sample size. For small sample sizes, a formula for the CI of the population 
mean can still be developed. This small sample size CI is tailored to the assumed 
population distribution (normal, gamma, etc.) and may be different for each 
population distribution assumption. 

For example, if the population distribution is assumed to be a normal distribution, 
the resulting formula for the CI of the population mean is based upon the  
t-distribution if the population standard deviation is estimated by s. This CI for µ 
with a confidence level approximately 100*(1 – α) % is shown in Eq. 17.18 

 .1,2/1,2/ n
stY

n
stY naveragenaverage −− +<<− αα µ   (17) 
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In Eq. 17, tα/2,n-1 is the t-critical value at the 100*(1 – α) % level of confidence with 
n – 1 degrees of freedom (DoF). As DoF ,→ ∞ the distribution approaches the 
normal distribution.17 For n = 30, the t-critical value, 2.042, is approximately 4% 
higher than the normal value, 1.96, for the 95% confidence level.  

For small sample sizes when there is no a priori knowledge of the population 
distribution, the CLT cannot be used to assume that the population distribution is 
approximately normal and the CI estimates discussed above may not be valid. In 
these circumstances, testing is necessary to determine if the sample could be from 
a normal distribution. Several approaches are available to assess if the sample could 
be from a normal distribution so that Eq. 17 could be used to estimate a CI for the 
population mean when dealing with small sample sizes. There are a number of 
statistical tests for normality available in most statistical software packages. 
Wikipedia summarizes several of these normality tests19 as follows. 

Tests of univariate normality include D'Agostino’s K-squared test, the Jarque–
Bera test, the Anderson–Darling test, the Cramér–von Mises criterion, the 
Lilliefors test for normality (itself an adaptation of the Kolmogorov–Smirnov test), 
the Shapiro–Wilk test, the Pearson's chi-squared test, and the Shapiro–Francia test. 
A 2011 paper from The Journal of Statistical Modeling and Analytics[20] concludes 
that Shapiro-Wilk has the best power for a given significance, followed closely by 
Anderson-Darling when comparing the Shapiro-Wilk, Kolmogorov-Smirnov, 
Lilliefors, and Anderson-Darling tests. 

Having used the Anderson-Darling and the Shapiro-Wilk tests, I recommend that 
care be taken when interpreting the results. Before any statistical test is used, a 
normal probability plot21 (NPP) should be constructed and analyzed. If the NPP 
indicates normality, one of the statistical tests for normality can be performed to 
quantify the confidence level of a normality assumption.  

The basic idea of an NPP is to plot the sample data in such a way that if the points 
fall on a straight line, the sample data were most likely randomly chosen from a 
population with normal distribution.22 Deviation from a straight line indicates that 
the population distribution is not normal, and how the points deviate from the 
straight line provides some insight into the true population distribution. For a 
discussion on interpreting NPPs, see, for example, Normal Probability Plot on the 
National Institute of Standards and Technology website.23  

Devore19 presents one of a variety of approaches for constructing an NPP that does 
not require the sample data to be transformed. His method relies on the definition 
of sample percentiles: 



 

15 

Order the n sample observations from smallest to largest. Then the ith smallest 
observation in the list is take to be the [100(i – 0.5)/n]th sample percentile.  

If the population from which the sample was drawn has a normal distribution, the 
sample percentile for a data point should match the normal z-percentile. The normal 
z-percentile is defined to be the z-value of the normal distribution at which the 
probability of the standard normal random variable will be less than or equal to a 
given probability. For example, the z-percentile for 0.025 is –1.96 (i.e., the value 
from the standard normal table for which the area to the left is 0.025. Plotting the 
(i – 0.5)/n z-percentile versus the ith smallest sample data point produces the NPP. 
MATLAB code for creating this NPP is provided in the Appendix.  

Figure 3 is the NPP based upon a sample size of 30 drawn from a normal 
distribution, with µ = 10 and σ = 3. The sample mean is 9.823 and the sample 
standard deviation is 3.3513. The red line in the figure is based upon Eq. 18 and is 
valid for the normal distribution with µ = Yaverage and σ = sample standard deviation.  

 averagepercentile YzsnObservatio += * . (18) 

The plotted points appear to form roughly a straight line indicating the sample was 
most likely drawn from a normal population. This conclusion was supported by 
using the Anderson-Darling test on the sample data. Results are not shown.  

 

Fig. 3 NPP for a sample of size 30 drawn from a normal distribution with µ = 10 and σ = 3 
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5. Using Percentage Error of the Mean to Estimate Number of 
MC Iterations 

As seen in the previous sections, the a priori estimation of the number of iterations 
to perform in an MC simulation to achieve the desired accuracy for the result was 
rather large. A large number of iterations was also required to achieve narrow CIs 
for the mean. Statistically, there is no way around this predicament unless we 
reduce the desired accuracy. This is seen from Eq. 12 since the sample standard 
deviation, s, and the z-score, zα/2, are fixed, leaving only an increase in the CI half-
width, Δ, as the only way to significantly reduce n. Driels and Shin25 recommend 
using the percentage error of the mean instead of the half-width of the CI. 
Essentially, this changes how we look at accuracy from an absolute (e.g., accurate 
to a specific number of decimal places) to what fraction of the true answer is our 
result. For example, for 1,000 iterations our estimation of π, Table 1, was accurate 
to within ≈ 0.0376 or 1.2%. Being accurate within less than 2 decimal places does 
not sound as good as being within 1.2% of the answer. Another advantage of this 
approach is that percentage error is a normalized value, and we do not have to 
choose accuracy based upon the expected true value. The percentage error of the 
mean can be found starting with Eq. 15. Subtracting Yaverage gives 

 .2/2/ n
szY

n
sz average αα µ <−<−  (19) 

Dividing by Yaverage produces  
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The middle term is the fraction of error for the mean, and multiplying through by 
100 will convert to percentage,  
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Thus, the maximum percentage error of the mean, denoted by ε, is the right-most 
expression26 

 .100
2/ nY
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Solving for n produces an estimate for the number of iterations required to achieve 
a percentage error of the mean equal to ε.27  

 .100
2

2/











=

averageY
szn

εα   (23) 

As with the application of Eq. 15, the sample average, Yaverage, and sample standard 
deviation, s, must be estimated using some initial sample size. Since the CLT is the 
basis for this estimate, the initial sample size should be greater than or equal to 30. 
As stated earlier, as more iterations are performed, refined estimates for n can be 
obtained until the estimates for n converge.  

To illustrate the use of this approach, suppose we wish to use our MC simulation 
for π to approximate π to within 2%. When the values from Table 4 are used with 
a 95% level of confidence for 100 iterations, Eq. 23 predicts that 1,712 iterations 
would be required. After 1,000 iterations we could recalculate the estimate for n. 
Again, using the values in Table 4, we find that the estimated number of iterations 
would be 2,775. When the exact values are used for Yaverage and s (Eqs. 3 and 4), π 
and 4π – π2 yield the exact number of iterations, 2,550. So if the MC simulation is 
run 2,550 times, we are 95% confident that the calculated value for π is within 2% 
of the true value of π. Since 2,775 exceeds 2,550, we would be closer than 2% if 
we did no update of the required number of iterations after 1,000 iterations.  

6. Conclusions 

From a statistical standpoint, the goal of MC simulation methodology is to 
determine the characteristics of the probability distribution associated with a 
random variable describing a real-world quantity of interest (QI) to the researcher. 
We can think of the MC method as consisting of 4 distinct components.  

1) A deterministic model that calculates a value for the QI given a set of values 
for the input parameters to the model. 

2) A process for selecting a set of values for the input parameters given 
sufficient information for the parameters. If there is no uncertainty in any 
of the input parameters, the unique value for each input parameter must be 
known. In this case, an MC simulation is not required, or we can think of 
this case as a trivial MC simulation with a single iteration and the 
probability distribution consists of a single point with probability 1.  

3) A loop that repeats 1 and 2. This component constructs a sample size of n 
for the population of the QI random variable.  
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4) A statistical analysis of the sample from 3 to estimate characteristics of the 
probability distribution for the population of the QI random variable. 
Generally, we are interested in the type of distribution (e.g., normal, 
gamma) and its defining characteristics (e.g., mean and variance for a 
normal distribution).  

In terms of the number of iterations, providing an a priori estimate of the number 
of iterations for the loop to guarantee a specified level of accuracy for the mean 
would be the goal. However, this is not possible unless additional information about 
the probability distribution of the random variable associated with the QI is known 
(specifically, the type of distribution and any parameters necessary to determine the 
width of CIs for a given level of confidence in that distribution). If the distribution 
is known to be normal, the variance is needed. The closest one can come to an a 
priori estimate for the number of iterations if the probability distribution is binomial 
or a linear transformation of a binomial distribution. For these distributions, p̂ = 
0.5 will maximize the variance, and an upper bound on the number of iterations can 
be estimated using the WM (Eq. 10) or the WSM (Eq. 11). Since both equations 
will give essentially the same result for large n, using the WM is recommended 
because of its simplicity. The WSM should be used when n is small or p̂  is close 
to 0 or 1 because of its better accuracy in these cases. In all cases, the WSM will 
provide a slightly more accurate estimation of the mean. An iterative approach to 
determining the number of iterations based upon the CLT can also be used. This 
approach does not provide an a priori estimate of the number of iterations but does 
provide a method for terminating the MC simulation while ensuring a desired level 
of accuracy for the QI. 

The accuracy of the estimation of the mean can be determined using Eq. 15, which 
is based upon the CLT and the properties of the normal distribution. This equation 
is valid no matter the type distribution of the random variable for the QI as long as 
the sample size is sufficiently large. Most statistical texts use a sample size of 30 
as the boundary between small and large samples. For small samples, the t-
distribution and Eq. 17 can be used to determine a CI for the population under the 
assumption that the population is normal. When the analyst is faced with a small 
sample size and uncertainty about the population distribution, NPP and statistical 
tests, such as the Anderson-Darling test, should be used to decide if the sample 
could have been drawn from a normal distribution. The use of NPP and statistical 
tests can only provide a level of confidence that the population is normal—they do 
not guarantee that the population distribution is normal. However, it is likely that 
in some analyses the analyst will have to deal with non-normal distributions for 
small sample sizes. No matter the sample size (i.e., number of MC iterations), 
analysis results should provide the statistical accuracy of the reported results 
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whenever possible. Using the percentage error of the mean provides a normalized 
approach to both estimate the number of iterations and quantify the accuracy of the 
simulation results.  

To summarize, this report has focused on 2 related topics: the number of MC 
iterations and the accuracy or error in the estimation of the mean of the probability 
distribution for the QI. For the majority of MC simulations, it is the estimation of 
this mean that is desired. These 2 topics are related through the CLT, and given 
one, the other can be determined when combined with the sample information for 
large sample sizes. Issues associated with small sample size have been mentioned 
and discussed in more detail for QI with a normal distribution.  
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Appendix. MATLAB Code to Produce a Normal Probability Plot 
for Data in Array A  

                                                 
 This appendix appears in its original form, without editorial change. 
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function makenormalplot = NorProbPiot(A) 

mu = mean(A); 
sd = std(A); 
AS = sort(A); 
N = length(A); 
fori= 1 :N 

X= {i-.5)/N; 
X(i) = norminv(x); 

end 

plot(X,AS,'.' ,'MarkerSize',20) 
title('Normal Probability Plot' ,'FontSize' ,20) 
xlabei('Z Percentile','FontSize', 15) 
ylabei('Observations', 'FontSize', 15) 
hold on 
XX = [X(1) X(N)]; 
yy = [sd*X(1 )+mu sd*X(N)+mu]; 
plot(xx,yy) 
t1 = strcat('Mu = ',num2str(mu)); 
text(-2,mu, 1 ,t1) 
t1 = strcat('StdOev = ',num2str(sd)); 
text(-2,mu-1, 1 ,t1) 
hold off 



 

25 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 2 DIRECTOR 
 (PDF) US ARMY RESEARCH LAB 
  RDRL CIO LL 
  IMAL HRA MAIL & RECORDS 
  MGMT 
 
 1 GOVT PRINTG OFC 
 (PDF) A MALHOTRA 
 
 9 DIR USARL 
 (PDF) RDRL WML A 
   W F OBERLE 
                    C PATTERSON 
                    M ARTHUR 
                    L STROHM 
                    T FARGUS 
                    R YAGER 
                    A THOMPSON 
                    B BREECH 
         RDRL WML H 
                    J NEWILL 
 
 
 
 
 
 

 
 
 



 

26 

INTENTIONALLY LEFT BLANK. 


	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Central Limit Theorem
	3. A Priori Estimate of Number of MC Iterations
	4. MC Result Accuracy
	5. Using Percentage Error of the Mean to Estimate Number of MC Iterations
	6. Conclusions
	7. References and Notes
	Appendix. MATLAB Code to Produce a Normal Probability Plot for Data in Array A0F(

