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Abstract 
Estimating casualties during military operations is critical in planning the medical response to 
military operations. Casualties dictate medical requirements, supplies, and staffing. Casualty 
data, which includes wounded in action (WIA), and disease and nonbattle injury (DNBI) 
casualty rates, are expressed as the rate per thousand of the population at risk per day. Casualty 
rate estimation processes vary considerably for WIA and DNBI and are typically estimated using 
computer programs. The emphasis of this paper is on the development of WIA casualty rates and 
their distributions using mixture model distribution functions. This paper compares the 
distribution of WIA casualty rates from various combat units involved in combat operations in 
Afghanistan and Iraq. 

Post-2004 casualty data were obtained from the Theater Medical Data Store, which is the 
authoritative in-theater database for service members’ medical information. This database allows 
patient disposition tracking and displays longitudinal medical record information. Data prior to 
2004 were obtained primarily from previously published technical reports, casualty counts from 
medical records, and casualty logs from various medical treatment facilities. 

Casualty occurrence variability poses analytic challenges since the range of casualties can be as 
few as 1 per day to as high as 50 per day, as evidenced during the second battle of Fallujah. In 
this paper, random variables from lognormal, exponential, gamma, and Weibull distributions 
were generated and compared with the actual distribution of the casualty rates evidenced from 
selected combat units who saw recent combat in Afghanistan and Iraq. Goodness-of-fit tests 
were used to compare the accuracy of the probability distributions with the empirical data. After 
the rates and distributions were determined, daily casualty estimates were generated and modeled 
using a mixture model consisting of the underlying distribution and a Poisson distribution. One 
of the main advantages of using mixture models is that multistage hierarchy systems are often 
easier to model because one distribution’s parameters become parameters for the other 
distribution. This paper defines a new approach to WIA casualty rate determination, contrasts 
that approach with past research, and provides insight into the approach’s assumptions and 
limitations, as well as the importance of casualty rate estimation. 
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Introduction 
Projecting illness and injury incidence during military operations is an essential element in 
medical resource planning. The Joint Staff Surgeons annually request service-specific casualty 
estimates through the combatant commands to establish expected patient workloads. Joint health 
service logistic support requires casualty estimates to determine the requirements for Class VIII 
medical supplies. For example, the Marine Air Ground Task Force Planner’s Reference Manual 
(2001), section Part IV Staff Planning Factors and Considerations, contains a designated area 
for casualty rate estimation. Additionally, military medical planning and analysis tools such as 
the Joint Medical Planning Tool (formerly known as the Tactical Medical Logistics Planning 
tool) require casualty estimates to assist in determining the needed operating room beds, medical 
supplies, evacuation assets, and staffing for theater-level medical treatment facilities (MTFs). 
The casualty data consist of wounded-in-action (WIA) and disease and nonbattle-injury (DNBI) 
casualty rates expressed as the rate per thousand of the population at risk (PAR) per day. 
Casualty rate estimation processes vary considerably for WIA and DNBI and are typically 
estimated using computer software programs. 

Casualty rate estimates can be refined through a number of adjustment factors, including type or 
number of troops engaged, battle intensity, geographical region, and the type or phase of an 
operation. Adjustment factors are coefficients that significantly influence casualty occurrences 
and require extensive data to quantify (Dupuy 1990). Examples of adjustment factors are 
weather, terrain, posture (offensive or defensive attacks), troop size, opposition strength, surprise 
of attack, sophistication of enemy, and pattern of operations. Although, the derivation and 
estimation of the adjustment factors are important elements in casualty estimation they have less 
impact on the probability distribution function of the casualty rates. For example, the WIA 
casualty rates of Battle of Okinawa were reported to be represented by an exponential 
distribution (O’Donnell & Blood 1993). Similarly, the WIA casualty rates from the major 
combat phase from Operation Iraqi Freedom (OIF) also fit an exponential distribution, as 
reported in this study. Consequently, this paper is limited to an examination and derivation of the 
distribution of the WIA casualty rates. 

The U.S. military employs tiered medical care architecture to treat casualties in theater. First 
responder care is administered at or near the front, followed by forward resuscitative care, and, 
after evacuation, theater hospitalization for the more seriously wounded. Prior to 2004, data from 
forward MTFs (first responder and forward resuscitative care) were rarely electronically 
captured. Consequently, casualty estimates were often reverse engineered through multiplicative 
factors applied to the theater hospital data to obtain the casualty estimates for forward medical 
care. With the increased information technology capabilities and medical systems (e.g., Joint 
Patient Tracking Application, Global Expeditionary Medical System, TRANSCOM Regulating 
and Command and Control Evacuation System [TRAC2ES], Composite Health Care System, 
Armed Forces Health Longitudinal Technology Application–Theater) data are captured forward 
of theater hospitalization. These data are uploaded to the Theater Medical Data Store (TMDS), 
allowing for more accurate projections of workload requirements, not only at theater hospitals 
but at forward MTFs as well.  

Computer-aided estimation tools have been developed based on previous research in casualty 
estimation. The Ground Forces and Casualty Forecasting System (Blood, Zouris, & Rotblatt 
1997) and the Casualty Incidence Rate Calculator & Injury Type (Zouris et al. 2013) tools are 
two such efforts. Algorithm refinements in these and other tools are now possible due to the 
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abundant casualty data contained in TMDS. These refinements are currently being incorporated 
into the Medical Planners’ Toolkit (NHRC 2013).  

The papers cited above discuss the advantages of using mathematical functions to model casualty 
occurrences, identify trends and patterns of variability, and emphasize the importance of using 
statistical approaches for estimating casualty rates during combat operations. It has long been 
known that casualty rates are a function of several factors, including, among others, the phase of 
an operation. It has been shown that similar operations conducted under similar conditions will 
exhibit casualty rates and wound distributions that are comparable to each other (Wing 2013, 
unpublished paper). It is this fact that makes prediction of future casualty rates based on 
empirical data so compelling. In this paper, a mixture model is developed and used to represent 
the presence of subpopulations within the overall population. While problems associated with 
“mixture distributions” relate to deriving the properties of the overall population from those of 
the subpopulations, “mixture models” are used to make statistical inferences about the properties 
of the subpopulations given only observations on the pooled population, without subpopulation 
identity information. This paper demonstrates the relationship of operational phase to WIA 
casualty rate using several examples from Operation Enduring Freedom (OEF) and OIF. 

Method 
Random variables from lognormal, exponential, gamma, and Weibull distributions were 
generated and compared with the actual distribution of the casualty rates evidenced from selected 
subpopulations (phases) in combat from recent Afghanistan and Iraq operations. Goodness-of-fit 
tests were applied to compare the probability distribution fit with the empirical data. After the 
rates and distributions were determined, daily casualty estimates were generated and modeled 
using a mixture model, based on the underlying distribution(s), and a Poisson distribution. The 
phases depicted in Table 1 were chosen as representative subpopulations because they offer 
examples of (very) low, medium, and high combat periods observed in OIF/OEF operations. 

Table 1  
Select OIF/OEF Combat Phases 
Phase Unit Duration 
OIF: Major combat MEF Mar–Apr 2003 
OIF: The second battle of Fallujah 2 RCT Nov–Dec 2004 
OIF: The Surge 2 BN Feb–Jul 2007 
OEF: 2011 1 BN Apr–Aug 2011 

Note. BN = Battalion; MEF = Marine Expeditionary Force; OEF = Operation Enduring 
Freedom; OIF = Operation Iraqi Freedom; RCT = Regimental Combat Team. 
 

Casualty Rate Formula 
At its simplest, WIA casualty rate estimation is based on the number of casualties, duration of 
the operation in days, and PAR. Since casualty rates are expressed as the number of casualties 
per 1,000 population per day, the relationship is specified as (1) below. 
 
(1)  
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Determination of Phases 
For this paper, WIA casualty rates for OEF and OIF operations were determined based on 
representative combat phases, determination of phase duration, identification of the participating 
units involved, and analysis of the daily casualty counts. The phases selected took into account 
the peak involvement of combat activity and the availability of electronic medical records to 
verify the cause of injury and the specific combat unit(s) involved. Department of Defense 
casualty reports were used to identify the periods that had peak involvement of combat activity 
as evidenced from high casualty counts. Since planners base medical requirements on the 95th 
percentile estimates, these “phases” are more relevant (Wojcik et al 2004). From these criteria, 
the major OIF combat phase (March–April 2003), the second battle of Fallujah (November–
December 2004), the troop surge in OIF (February–July 2007, described as the Surge), and high 
combat activity periods in OEF (April–August 2011) were selected.  

Numerator Data—Pre-2004  
The injury data for the OIF major combat phase (March–April 2003) were obtained from 
Marines seen at the Shock Trauma Platoons, Forward Resuscitative Surgical Systems, surgical 
companies, fleet hospitals, and Landstuhl Regional Medical Center. The data consisted of 
diagnostic codes in International Classification of Diseases, Ninth Edition (ICD-9) format, 
which provided cause, date, and severity of injury. TRAC2ES data and Personnel Casualty 
Reports were used to validate and verify information. 

Numerator Data—Post-2004  
The injury data for all the other phases (post-2004 data) were obtained primarily from the 
TMDS, which is the largest and most comprehensive expeditionary medical data warehouse. The 
TMDS was merged with additional data sources to create a comprehensive medical profile for 
each occurrence. No single data source exists that tracks patients from the point of injury, 
through acute care, and on through definitive care. Therefore, various data sets were used to 
generate a comprehensive hybrid database that capitalized on individual databases strengths 
(Zouris et al. 2011). The resulting hybrid database provides a single, more accurate, highly 
representative database depicting WIA events and casualty counts. 

Denominator Data 
The PAR data were compiled from the Defense Manpower Data Center  (DMDC), Contingency 
Tracking System. The DMDC documents all completed Overseas Contingency Operations 
deployment events from the DMDC Contingency Tracking System Deployment File. This file 
contains one record for each deployment event, including the beginning date of deployment, the 
end date of deployment, the location country, and deployment duration. 

Goodness-of-Fit Tests 
Goodness-of-fit tests were used to test if observed casualty rate distributions from each phase 
could be represented by gamma, exponential, lognormal and Weibull distributions, but results 
only showing significance or marginal significance are reported. All statistical procedures were 
conducted using SAS software (version 9.3 for Windows, SAS Institute Inc., Cary, NC). The 
casualty generation was then modeled using a Poisson distribution. The input parameter for 
Poisson was obtained from the random variate from the initial fitted distribution. Unlike most 
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statistical tests, we want to accept the null hypothesis, that is when p > α (α = .05 usually is the 
significance level). The larger the p value, the less likely the distribution fit occurred by chance, 
assuming the null hypothesis is true. 

H0: The data follow the specified distribution. 

Ha: The data do not follow the specified distribution. 

Implementing Mixture Model Derivation 
After the rates and distributions for each phase were determined, daily casualty estimates were 
generated and modeled using a mixture model consisting of the underlying distribution and a 
Poisson distribution. 

Results 
The casualty rates were calculated using formula (1) for each phase and are tabulated in Table 2. 
For all phases examined in this study, the second battle of Fallujah resulted in the highest 
average casualty rate (1.04) and the OIF major combat phase the lowest (0.14). Goodness-of-fit 
tests were performed for each phase and are examined in detail in the following sections. In 
addition, percentile distributions of the observed data are compared with the statistical 
distribution to enable the reader to visualize the estimates at various percentiles. In medical 
planning, upper percentile estimates are used rather than mean estimates to reduce risk (Zouris & 
Blood 2000; Wojcik et al. 2004). 

Previous research indicated that WIA casualties were characterized by a nonstationary Poisson 
process best approximated by an exponential distribution (O’Donnell & Blood 1993). This study 
shows and confirms that the WIA rates can be approximated by an exponential distribution, but it 
can also be approximated by lognormal and gamma distributions as well. 

Table 2  
Selected Phases of Combat Operations During OIF and OEF Among Marine Corps  
Units 

Phase Size Duration Days Average 
PAR 

WIA 
counts 

Average 
rate 

OIF: Major 
combat MEF Mar–Apr 

2003 41 49,154 273 0.14 

OIF: The 
second battle 
of Fallujah 

2 RCTs Nov–Dec 
2004 59 9,127 558 1.04 

OIF: The 
Surge 2 BN  Feb–Jul 2007 180 2,664 122 0.25 

OEF: Peak 
casualty 
counts 

1 BN Apr–Aug 
2011 122 1,115 139 1.02 

Note. BN = Battalion; MEF = Marine Expeditionary Force; OEF = Operation Enduring Freedom; OIF = 
Operation Iraqi Freedom; PAR = population at risk; RCT = Regimental Combat Team; WIA = wounded 
in action. 
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Major Combat Phase in OIF (March–April 2003) 
Chi-square goodness-of-fit tests for this phase were conducted using lognormal, exponential, 
gamma, and Weibull distributions and were significant for both gamma (χ2 = 2.87, p = .58, df = 4) 
and exponential (χ2 = 2.68, p = .67, df = 4) distribution functions (Tables 3 and 4). Although the 
gamma distribution provides a good model for` the distribution of WIA rates, the exponential is 
the simpler model to implement. 

Table 3  
Chi-Square Comparison of Exponential (β = 0.136) and Observed Wounded in Action Rates 
During the Major Combat Phase 

WIA rate interval Observed 
n = 41 (%) 

Expected 
n = 41 (%) 

Total 
n = 82 (%) 

[0, .025) 10 (24.39) 10.5 (25.61) 20.5 (25.0) 
[.026, .075) 6 (14.63) 6.9 (16.83) 12.9 (15.73) 
[.075, .15) 14 (34.15) 10 (24.39) 24 (29.27) 
[.15, .25)  5 (12.19) 7.1 (17.32) 12.1 (14.76) 
[.30, ∞) 6 (14.63) 6.5 (15.85) 12.5 (15.2) 

Note. χ2 = 2.36, df = 4, p = 0.67 

Table 4  
Chi-Square Comparison of Gamma (α = 1.26, β = 0.12) and Observed Wounded in Action Rates 
During the Major Combat Phase 

 

Note. χ2 = 2.36, df = 4, p = 0.67. 

The gamma distribution requires two parameters (α = shape and β = scale) as opposed to the 
exponential, which requires only the scale parameter. The shape and scale of the gamma 
distribution must be estimated using the method of moments or through maximum likelihood 
estimation. The shape and scale parameters were obtained using SAS. The scale of the 
exponential is equal to the mean (β = µ), which is easy to estimate, and when the shape 
parameter (α) is 1, the gamma distribution reduces to the exponential distribution. 

Table 5 shows the fit of the two models compared with the observed data. Both distributions are 
good models for the distribution of WIA casualty rates during the major combat phase. Also, 
there is a great deal of variability in the rates as evidenced by the range of percentile estimates. 

Table 5  
Gamma and Exponential Distribution Percentiles Compared 
With Observed WIA Rates During the Major Combat Phase 

  

Gamma 
(α = 1.26, β = 

Exponential 
(β = 0.136) 

WIA rate interval Observed 
n = 41 (%) 

Expected 
n = 41 (%) 

Total 
n = 82 (%) 

[0, .025) 10 (24.39) 7.9 (19.27) 17.9 (21.83) 
[.026, .075) 6 (14.63) 6.9 (16.83) 12.9 (15.73) 
[.075, .15) 14 (34.15) 11.1 (26.43) 25.1 (30.61) 
[.15, .25)  5 (12.19) 8.2 (20.0) 13.2 (16.10) 
[.30, ∞) 6 (14.63) 7.0 (17.07) 13.0 (15.85) 
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0.12) 
Percentile Observed estimates estimates 
5 0.000 0.002 0.007 
10 0.020 0.012 0.014 
25 0.040 0.042 0.039 
50 0.102 0.099 0.094 
75 0.163 0.191 0.188 
90 0.284 0.307 0.312 
95 0.351 0.393 0.406 
99 0.750 0.589 0.625 

Second Battle of Fallujah in OIF (November–December 2004) 
The goodness-of-fit tests for the second battle of Fallujah were significant for both lognormal (χ2 
= 2.78, df = 4, p = 0.59) and exponential (χ2 = 4.45, df = 4, p = 0.35) distribution functions 
(Tables 6 and 7). The lognormal distribution provides a good model for the distribution of WIA 
rates; however, the exponential is the simpler model to implement. The alpha (2) and beta (3) 
parameters for the lognormal distribution can be estimated using the following formulas, where 
the µn = 1.04 and σn = 1.36 are the sample mean and standard deviation of the data.  

 

 ) 

 
 

) 
 

Table 6  
Chi-Square Comparison of Lognormal (µn = -0.49, σn = 1.01) and  
Observed Wounded in Action Rates During the Second Battle of Fallujah 

WIA rate interval Observed  
n = 59 (%) 

Expected  
n = 59 (%) 

Total 
n = 118 (%) 

[0, .33) 20 (33.90) 15.9 (26.87) 35.9 (30.38) 
[.33, .55) 11 (18.64) 11.1 (18.75) 22.1 (18.70) 
[.55, 1.2) 13 (22.03) 17.1 (29.04) 30.1 (25.54) 
[1.2, 2.6)  9 (15.25) 10.4 (17.72) 19.4 (16.49) 
[2.6, ∞) 6 (10.17) 4.5 (7.63) 10.5 (8.90) 

Note. χ2 = 2.78, df = 4, p = 0.59. 
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Table 7  
Chi-Square Comparison of Exponential(β = 1.04) and Observed 
Wounded in Action Rates During the Second Battle of Fallujah 

WIA rate interval Observed  
n = 59 (%) 

Expected  
n = 59 (%) 

Total  
n = 118 (%) 

[0, .33) 20 (33.90) 16.1 
(27.27) 36.1 (30.59) 

[.33, .55) 11 (18.64) 8.2 (13.91) 19.2 (16.28) 

[.55, 1.2) 13 (22.03) 16.2 
(27.41) 29.2 (24.72) 

[1.2, 2.6)  9 (15.25) 13.7 
(23.28) 22.7 (19.26) 

[2.6, ∞) 6 (10.17) 4.8 (8.13) 10.8 (9.15) 
Note. χ2 = 4.45, df = 4, p = 0.35. 

Table 8 shows the fit of the two models compared with the observed data. Both 
distributions are good models for the distribution of WIA casualty rates during the major combat 
phase. The 75th percentile for the observed and exponential (β = 1.04) random variable are 
nearly identical (1.205 ≈ 1.213). 

Table 8  
Lognormal and Exponential Distribution Percentiles Compared 
With Observed Wounded in Action Rates During the Second 
Battle of Fallujah 

 

 

Lognormal 
(µn = -0.49,  
σn = 1.01) 

Exponential 
(β = 1.04) 

Percentile Observed estimates estimates 
5 0.110 0.053 0.117 
10 0.219 0.109 0.169 
25 0.329 0.298 0.311 
50 0.548 0.718 0.615 
75 1.205 1.437 1.213 
90 2.630 2.386 2.237 
95 4.492 3.104 3.227 
99 6.245 4.772 6.416 

The Surge in OIF (February–July 2007) 
The goodness-of-fit test for the Surge phase was marginally significant (χ2 = 7.06, df = 3, p = 
0.07) for a gamma distribution using the chi-square goodness-of-fit tests shown in Table 9. The 
upper percentile estimates are good approximations, which are typically more important for 
medical planning purposes. The 90th percentile estimate from the observed data was 5.95 
compared with 5.39 from the simulated data (Table 10). 
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Table 9  
Chi-Square Comparison of Observed Wounded in Action Rates and 
Simulated Gamma (0.74, 0.24) Random Variables 

WIA rate interval Observed  
n = 184 (%) 

Expected  
n = 184 (%) 

Total 
n = 368 (%) 

[0,.26) 150 (81.52) 147.2 (80.0) 297.2 (80.76) 
[.26, 595) 11 (5.98) 20.4 (11.1) 31.4 (8.54) 
[.595, 1.01) 13 (7.06) 9.2 (5.0) 22.2 (6.04) 
[1.01, ∞) 10 (5.43) 7.2 (3.9) 17.2 (4.66) 

Note. χ2 = 7.06, df = 3, p = 0.07 

Table 10  
Percentile Comparisons of Gamma Distribution 
and Observed Wounded in Action Rates 
During the Surge 

  
Gamma 

(α = 0.74, β = 0.24) 
Percentile Observed estimates 
5 0.00 0.000 
10 0.00 0.000 
25 0.00 0.000 
50 0.00 0.028 
75 0.251 0.183 
90 0.595 0.539 
95 1.006 0.876 
99 1.784 1.775 

 

OEF in 2011 
The goodness-of-fit test for the OEF phase showed a significance level (χ2 = 5.31, df = 4, p = 
.26) for a gamma distribution (Table 11). The observed data were compared with a gamma 
distribution (α = 0.24, β = 4.26). The majority of data contain zeroes, as evidenced by the 50th 
percentile of the observed data equal to zero. The percentile estimates are shown in Table 12. 

Table 11  
Chi-Square Comparison of Gamma (0.24, 4.26) and Observed Wounded 
in Action Rates 2011 

WIA rate interval Observed  
n = 121( 5) 

Expected  
n = 121(%) Total 

[0,.5) 83 (68.6) 77.33 (63.91) 160.3 (66.25) 
[.5,2) 19 (15.7) 24.54 (20.28) 43.54 (17.99) 
[2,3) 5 (4.13) 6 .46 (5.33) 11.46 (4.73) 
[3,5) 4 (3.31) 6.50 (5.37) 10.5 (4.34) 
[5,∞) 10 (8.26) 6.18 (5.11) 16.18 (6.69) 

Note. χ2 = 5.31, df = 4, p = 0.26. 
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Table 12  
Percentile Comparisons of Gamma Distribution 
and Observed Wounded in Action Rates 
During OEF 2011 

  
Gamma 

(α = 0.24, β = 4.26) 
Percentile Observed estimates 
5.0 0.00 0.00 
10.0 0.00 0.00 
25.0 0.00 0.00 
50.0 0.00 0.08 
75.0 1.09 0.53 
90.0 2.18 1.95 
95.0 3.26 3.81 
99.0 7.62 11.32 

Mixture Models Results 
After the rates were modeled, the generation of the daily number of casualties was modeled 
using a mixture model of the exponential distribution or gamma and a Poisson distribution. The 
counts from the mixture model and actual counts are shown in Table 13. The simulated WIA 
casualty counts were effectively generated from a negative binomial distribution, which is a 
gamma–Poisson mixture distribution where the mixing distribution of the Poisson rate is a 
gamma distribution. The mixture model is summarized in the following formula. 

(4) Daily number of WIA casualties = Poisson (λ) where 

λ~ Exponential(β) * PAR/1,000 or 

λ~ Gamma(α, β) * PAR/1,000 

Table 13  
Simulated Casualty Counts Using a Mixture Model 

    Mixture Actual 

Operation Phase Days F Poisson 
(F) WIA 

OIF: Major combat Mar–Apr 2003 41 Exponential (β = 0.14) 267 273 
OIF: The second 
battle of Fallujah Nov–Dec 2004 59 Exponential (β = 1.02) 570 558 

OIF: The Surge Feb–July 2007 180 Gamma (α = 0.74, β = 
0.24) 117 122 

OEF: Peak casualty 
counts Apr–Aug 2011 180 Gamma (α = 0.24, 

4.26) 175 167 
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Conclusions 
We found that WIA casualty rates can be modeled using an exponential or a gamma distribution 
across four representative combat phases from OIF and OEF. We have assumed that the four 
combat phases are representative of the combat operations over the past decade in Iraq and 
Afghanistan. Additional phases could have been proposed and examined and the results may 
have been different from what we obtained. We also found that the WIA casualty counts can be 
simulated using a Poisson mixture model, where the mixing distribution of the Poisson rate is the 
WIA casualty rate distribution. Statistical chi-square goodness-of-fit tests were used to select the 
WIA casualty rate probability distributions for the combat phases. The proposed casualty rate 
distributions were validated by the close correspondence of the Poisson mixture model simulated 
casualty counts to the actual casualty counts. 

WIA casualty rates have been previously modeled by an exponential distribution (O’Donnell & 
Blood 1993), and our research confirmed that the exponential distribution effectively modeled 
the OIF major combat phase and the second battle of Fallujah. However, the gamma distribution 
best modeled the OIF Surge and OEF 2011 phases. The exponential distribution is a special case 
of the gamma distribution (when the shape parameter, α, equals 1), and our research showed that 
the more flexible gamma distribution could be used to model WIA combat rates for any of the 
four representative combat phases. The simulated WIA casualty counts were effectively 
generated from a negative binomial distribution, which is a gamma–Poisson mixture distribution 
where the mixing distribution of the Poisson rate is a gamma distribution.  

Further, in modeling the WIA casualty rates and counts, we have ignored any auto-correlation of 
the rates and counts (O’Donnell & Blood 1993; Zouris et al. 2013) and other adjustment factors 
(Dupuy 1990; Zouris et al. 2013). The WIA rate auto-correlations and adjustment factors will 
need to be included in any medical planning tool that estimates WIA casualty rates. 

The current research draws on recent combat medical encounter data that are more accurate and 
abundant than at any other time in history, with the vastly improved electronic data collection 
mechanisms in place since 2004. This research is an extension and improvement from earlier 
work (O’Donnell & Blood 1993) that analyzed data drawn from unit diaries of Marine Corps 
battalions stationed in Okinawa and Korea operations. 

For future research, we propose that that DNBI rates be estimated by combat phases as in the 
current study. The WIA combat casualty rate estimation process should be modified to include 
adjustment factors and daily auto-correlations. 

U.S. Department of Defense medical planners need accurate percentile estimates of the WIA 
combat rates for estimating casualty workloads and associated patient streams from combat 
operations. This research estimated WIA casualty rates and counts using reliably coded data 
from more than a decade of recent combat operations in Afghanistan and Iraq. The results build 
on previous research and provide refined, empirically derived casualty rate estimates that will 
improve modeling and simulation in combat medical planning tools. 
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