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ABSTRACT 

The Synthetic Theater Operations Research Model (STORM) is the primary campaign 

analysis tool used by the Office of the Chief of Naval Operations, Assessment Division 

(OPNAV N81) and other Department of Defense organizations to aid in providing 

analysis to top-level officials on force structures, operational concepts, and military 

capabilities. This thesis describes how STORM works, analyzes the variability associated 

with many replications, and evaluates the trade-off between the expected number of 

replications and the precision and probability of coverage of confidence intervals. The 

results of this research provide OPNAV 81 with the ability to capitalize on STORM’s full 

potential on a time-line conducive to its high-paced environment. 

The distribution of outcomes is examined via standard statistical techniques for 

multiple metrics. All metrics appear to have sufficient variability, which is critical in 

modeling the combat environment. The trade-off for confidence intervals between the 

expected number of replications, precision, and the probability of coverage is very 

important. If a more precise solution and a higher probability of coverage are required, 

more replications are generally needed. This relationship is explored and a framework is 

provided to conduct this analysis on simulation output data. 
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EXECUTIVE SUMMARY 

The Synthetic Theater Research Operations Model (STORM) is a pillar of campaign 

analysis conducted by various Department of Defense (DOD) organizations. The Office 

of the Chief of Naval Operations, Assessments Division (OPNAV N81) is one of the key 

users of STORM and it has a requirement to perform quick, turn-around analysis in the 

fast-paced and budget-constrained environment in which it operates. N81’s analysis helps 

decision makers with force structure decisions, assists in developing operational plans, 

and helps to assess military capabilities. This thesis explains how STORM works, 

describes the variability inherent in STORM, and examines the trade-off between the 

number of replications and their associated precision with confidence intervals. The 

results of this research provide OPNAV 81 with the ability to capitalize on STORM’s full 

potential on a time-line conducive to its high-paced environment. 

STORM is a complex, stochastic, constructive, theater-level campaign simulation. 

Although there are hundreds of variables that could be analyzed, this thesis focuses on 

four metrics: The number of blue ships remaining at simulation termination, the number 

of red ships remaining at simulation termination, the day in which blue forces achieve air 

supremacy, and the number of blue multirole fighter missions flown. The unclassified 

scenario known as Punic21 is used to demonstrate how STORM works, to determine the 

variability in STORM output, and to examine the trade-off relationship in determining 

the number of replications to perform. Due to STORM’s inherent stochasticity, no input 

variables were changed; enough variability was found by changing the random seed in 

different replications. 

The complexity of STORM can be realized in the approximately one thousand 

pages of instructions found in the STORM User’s Manual (Group W., 2012c), STORM 

Analyst’s Manual (Group W., 2012a), and STORM Programmer’s Manual (Group W., 

2012b). This thesis focuses on the highlights from these resources by explaining how 

STORM works and the built-in analytical capabilities internal to it. After gaining an 

understanding of how STORM works and how N81 uses it, the next challenge was 

analyzing the inherent stochasticity. This is accomplished by examining the distribution 
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of outcomes of the four metrics mentioned above. Summary statistics and histograms of 

the metrics show the variability of STORM, as the outcomes are dispersed around the 

mean without changing any input variables. In addition, normality testing is conducted 

through hypothesis testing, using formal normality testing, and reviewing figures that can 

help determine normality. 

The largest portion of the analysis examines the trade-off between the number of 

replications and the associated precision and probability of coverage. Precision is the 

length of the confidence interval surrounding the estimated mean (e.g., the difference 

between [16.95, 17.05] and [15, 19] may be critical to a decision maker). The probability 

of coverage is the probability that the confidence interval contains the true, unknown 

mean. Replications have a cost of time and memory. As a result, the cost must be 

minimized to a level where the analyst is content with the precision and coverage 

obtained. The trade-off relationship is analyzed using previous stopping rule research 

conducted by Singham (Singham, 2010), which laid a framework for resampling original 

simulation output and running the simulation until a calculated half-width is less than the 

specified precision (delta). The half-width is the value that determines the precision 

around the mean in developing a confidence interval. Once the half-width is less than the 

required precision, we evaluate whether the confidence interval covers the true mean. 

Only after many replications can we estimate the probability of coverage. The 

relationship between the expected number of replications, precision, and probability of 

coverage is plotted, which helps the analyst visualize the trade-offs. As a result of this 

research, this methodology is being used in software, known as StormMiner, which is 

being built by the Naval Postgraduate School’s (NPS’s) Simulations, Experiments, and 

Efficient Designs (SEED) Center to develop postprocessing tools to increase the 

efficiency in analyzing the output data. See http://harvest.nps.edu for more information 

on the SEED Center. 

The trade-off relationship can be seen in Figure 1. The different Kstart values are 

broken out; Kstart is the minimum number of replications taken prior to examining the 

relationship between delta and the half-width. For an extremely small value of delta, the 

expected number of replications gets very large. Likewise, for a large value of delta, the 
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sleep expected number of replications goes down. This thesis explores this relationship in 

depth to include the coverage obtained, which increases with a higher expected number 

of replications. 

 
Figure 1. Expected number of replications versus delta for red ships remaining. 

Desired confidence equal to 95%. 
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I. INTRODUCTION 

The U.S. Navy and other Department of Defense (DOD) organizations use the 

Synthetic Theater Operations Research Model (STORM) as a campaign analysis tool to 

provide decision makers with information regarding force structures, operational 

concepts, and military capabilities. Force structure decisions revolve around the 

acquisition of military assets worth many billions of dollars. For example, the Joint Strike 

Fighter (JSF) program has an estimated total acquisition cost of almost 400 billion dollars 

(United States Government Accountability Office [GAO], 2012). Campaign simulations 

like STORM help decide whether a particular asset and its associated capabilities are 

worth the cost. This is especially the case when DOD-wide events, such as the 

Quadrennial Defense Review (QDR), are executed. Powerful simulations like STORM 

provide information to aid decision makers involved in critical activities such as the 

QDR. 

STORM was originally sponsored by Headquarters, United States Air 

Force/Studies and Analyses, Assessments, and Lessons Learned (HQ, USAF/A9). The 

U.S. Navy wanted to capitalize on the potential of STORM, specifically because it is a 

stochastic modeling environment. STORM’s predecessor is the Integrated Theater 

Engagement Model (ITEM), which is deterministic. As a result, the Office of the Chief of 

Naval Operations, Assessment Division (OPNAV N81) commissioned a study to 

determine whether adding a maritime capability to STORM was feasible, which it was, 

and a new project called STORM+ was created (Sweeney, Hamman, & Biemer, 2011). 

OPNAV N81 uses STORM to provide warfighting analysis to senior Navy and 

DOD leadership to inform operational planning and acquisition decisions. It currently has 

challenges using STORM due to the time frame in which it operates. A STORM model 

can take anywhere from 4 minutes to 12 hours to run a set of replications, depending on 

the complexity. In addition to the run time, analysts must also process output that can be 

millions of lines of data. This postprocessing can take up to three days for a single set of 

replications. Moreover, building a new scenario in STORM may take upwards of a year. 
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A major encumbrance to responsive analysis for OPNAV N81 is the time required 

in postprocessing the output data, which can take up to a few days. As a result, a project 

was started with the Simulation, Experiments, and Efficient Designs (SEED) Center at 

the Naval Postgraduate School (NPS) to develop postprocessing tools to increase the 

efficiency in analyzing the output data (see http://harvest.nps.edu for more information 

on the SEED Center). The main effort of the project was to develop a program that 

harvested output data from STORM, performed statistical analysis, and generated figures 

and plots that can help analysts in providing quick, turn-around analysis. This thesis 

supports that effort by focusing on developing a process for dynamically determining the 

minimum number of replications required to provide a desired level of precision. 

STORM is a stochastic simulation and, therefore, requires multiple replications to 

be made for a set of inputs. Replication allows analysts to better understand output 

measures (e.g., blue systems lost), evaluate the variance of responses, and determine the 

distributions of outcomes (Lucas, 2000). In addition, more replications add precision to 

these mean performance measures and also help to identify unique events or outliers. 

Due to the cost in time and computer memory, minimizing the number of 

replications required to capture most of the information becomes an important factor. 

Currently, STORM normally runs 30–50 replications unless there is not enough time 

available. Creating a sequential, dynamic method to determine the appropriate number of 

replications will ensure that analysts make enough runs to provide good, statistical 

information in a timely fashion. The quality of the simulation output data is analyzed by 

conducting trade-off analysis between the number of runs and quality of the confidence 

intervals. 

A. LITERATURE REVIEW 

Processing power and computer memory have increased substantially in the past 

few decades. Military researchers have been able to capitalize on these improvements 

since stochastic simulations require multiple replications, thereby requiring more 

processing power and memory than a single run of a deterministic simulation. The 

advantages of stochastically simulating a combat model versus strictly modeling 

deterministically are numerous, but the bottom line is that combat is inherently 
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uncertain—and stochastic models are often the only way to capture the variability in 

outcomes that may potentially occur (Lucas, 2000). OPNAV N81 decided to investigate 

simulating in the same stochastic simulation environment that the Air Force was using 

(known as STORM) as early as 2006 (Sweeney et al., 2011, pp. 327–328). 

The DOD divides simulations into four broad levels: campaign, mission, 

engagement, and engineering. Each level models a different level of detail. 

Understanding the different levels, and how much detail is required, is fundamental to 

proper modeling. An engineering simulation models an entity with the most detail, such 

as a missile’s navigation component. On the other end of the spectrum, a campaign model 

is less detailed and is used to study force–on–force engagements over an extended time 

horizon (e.g., two weeks to three months), based on forces, orders of battle, and 

probabilities of kill (Hawley & Blauwkamp, 2010). 

The developers of STORM publish three manuals that serve as reference 

documents for organizations using STORM. The User’s Manual is written as a resource 

for analysts operating STORM as software (Group W, 2012c). The Programmer’s 

Manual is designed for individuals who develop, maintain, and modify source code in 

STORM (Group W, 2012b). Analysts employing STORM as a campaign-level tool, 

reporting credible results to decision makers, use the Analyst’s Manual as their primary 

source of information (Group W, 2012a). All of these resources were used in for the 

composition of this thesis. 

The analytical work done for this thesis focuses on applying techniques proven in 

Dr. Dashi Singham’s research for selecting appropriate sequential sampling rules with 

stochastic simulations. Her dissertation describes how to optimally obtain nominal 

coverage with the minimum expected number of replications (Singham, 2010). It proved 

that these optimal stopping rules can be applied to independently and identically 

distributed data, and that the performance of these rules can be quantified (Singham & 

Schruben, 2012). It also proved that optimal stopping rules can be found for data that is 

not normally distributed by modifying various input parameters (Singham, 2014). 
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B. RESEARCH QUESTIONS 

It is not the intent of this thesis to analyze an actual existing campaign model, but 

rather to develop and implement a postprocessing tool on an unclassified scenario 

(Punic21) that comes with the STORM installation kit. As a result, this thesis is guided 

by the following questions: 

 Does the inherent stochasticity in STORM provide enough variability to 
adequately model combat? Can the output be considered approximately 
normally distributed? 

 What methods can identify the number of replications needed for a given 
scenario to achieve desired statistical significance in the mean output? 
What is the trade-off between the number of replications completed and 
the precision and confidence achieved by the procedure? 

 What techniques can help analysts more efficiently process and analyze 
the simulation output from STORM? 

C. BENEFITS OF THIS THESIS 

This thesis provides OPNAV N81 with the ability to capitalize on STORM’s full 

potential on a time line conducive to the high-paced environment that their analysts work 

in. A foundation for future research is also laid by describing STORM in detail, thereby 

enabling future researchers to gain a high level of understanding without attending a 

course on STORM. The main focus of this research is to ensure that analysts at OPNAV 

N81 have a methodology to determine the appropriate number of replications required to 

build a high level of confidence, based on their desired precision. 

D. METHODOLOGY 

This thesis begins with an in-depth review and provides an understanding of 

STORM. The variability of STORM due to its stochastic nature is analyzed; this analysis 

builds the foundation for stopping rule criteria. The stopping rule is applied to four 

metrics to obtain the performance (in terms of coverage and expected replications) for 

various stopping rules (with inputs of desired confidence and precision). This information 

is used in developing a tool that analysts at OPNAV N81 can use to assess the accuracy  
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of their results. In addition, members of the SEED Center are developing a broader 

postprocessing tool that incorporates the research on stopping rules completed in this 

thesis. 
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II. OVERVIEW OF STORM 

To facilitate a basic understanding of STORM and a baseline for future research 

in the SEED Center, this chapter provides a detailed description of how STORM works, 

which includes its characteristics and framework, input and output, and how the U.S. 

Navy uses it. STORM is a stochastic, closed-form analytical simulation of air, space, 

ground, and maritime planning and execution. It is a campaign-level simulation designed 

to help decision makers evaluate military strategy and capabilities in a theater of 

operations. 

A. STOCHASTIC SIMULATION 

In short, so-called mathematical, factors never find a firm basis in military 
calculations. From the very start there is an interplay of possibilities, 
probabilities, good luck and bad that weaves its way throughout the length 
and breadth of the tapestry. (Clausewitz, 1832, pp. 86) 

STORM is a complex, very high-dimensional, stochastic, campaign-level 

simulation that replaced its deterministic predecessor (a model known as ITEM) at 

OPNAV N81. As Clausewitz indicates to in the quote above, the nature of combat, along 

with fundamental mathematical principles, implies that most combat simulations should 

be stochastic because of combat’s inherent randomness (Lucas, 2000). For instance, a 

basic, deterministic Lanchester equation has one set of inputs and, therefore, only 

provides one output. In stochastic modeling, the same set of inputs provides a range of 

outcomes when the random seed(s) are changed for each replication. 

1. Arguments for a Deterministic Combat Model 

A common argument for using a deterministic model is that “A good point 

estimate is sufficient for my purposes” (Lucas, 2000, pp. 10). The point estimate, 

however, is frequently biased and does not provide information about variability (Lucas, 

2000). Many times, a decision maker might know the outcome is in his favor; on average, 

however, there is a significant chance that the outcome will be unfavorable. For example, 

if the probability of failure is one percent on a five million dollar project, the decision 
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maker might be willing to accept that risk. However, what if there is an eight percent 

chance of failure: Is the decision going to be different? Other arguments for deterministic 

models can be similarly contested (Lucas, 2000). In a meeting with the developers of 

STORM, they alluded to the fact that a deterministic model is a just an intuition 

confirmation device with knobs that can be changed to get any result the analyst wants. In 

other words, since there is no variability, one can adjust the input levels to get any result 

one likes. This is not always the case with a stochastic simulation, since there may exist 

chances for an unlikely result—even with the inputs set at generally favorable levels. 

2. Arguments for a Stochastic Model 

As stated previously, combat is inherently stochastic. Many uncertainties arise in 

combat, such as outcome, process, future, and decision uncertainty (Lucas, 2000). These 

factors are impossible to determine exactly. No battle fought will ever be exactly the 

same as another because of changing technologies, terrain, strategy, and human 

variability. As a result, the factors must be varied over a probability distribution to 

provide robust results of statistical significance. 

The stochastic nature of STORM comes from the numerous data input parameters 

specified from 12 common probability distributions—including, but not limited to, the 

normal, binomial, and uniform. For example, if a ship has a damage and repair capability, 

the amount of time it takes for the ship to be repaired may be pulled from a uniform 

distribution, with a mean of three hours and a standard deviation of six hours. Random 

variability exists throughout STORM, including in other areas such as the probability of a 

hit or the probability of an intercept. 

B. STORM—A CONSTRUCTIVE SIMULATION 

STORM is a constructive simulation. A constructive model involves simulated 

entities, operating simulated systems, making decisions and interacting. Real people 

prescribe the decision-making logic to such simulations, but are not involved in 

determining the outcomes once the inputs are provided (Department of Defense, 2010). 

In STORM’s case, at OPNAV N81, analysts select input data, build a scenario—

including the development of concepts of operations (CONOPS)—and execute the 
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simulation. The simulation runs without a human in the loop and the analyst receives the 

output data at the conclusion of the run (or set of runs, consisting of many replications). 

C. STORM—A CAMPAIGN SIMULATION 

STORM is a campaign-level simulation. A campaign is a series of related major 

operations aimed at achieving strategic and operational objectives within a given time 

and space (Department of Defense, 2014). DOD simulations are normally classified into 

the following four categories: engineering, engagement, mission, and campaign. The 

spectrum of differences is wide. A campaign model is one which is used to determine, for 

example, the best mix of “blue” forces to battle “red” forces by focusing on order of 

battle and broad probabilities of kill (Hawley & Blauwkamp, 2010). An engineering 

simulation, which is at the other end of the spectrum in terms of detail, might only model 

a certain weapon system’s components and interactions. An example of an engineering 

model would be exploring the relationship of the weight of a bomb and the range of an 

aircraft. As the weight of the bomb increases, the range of the aircraft decreases. It might 

be ideal to include the level of detail in an engineering simulation in all simulations; 

however, at the campaign level, it is virtually impossible to represent that much 

information for every entity. The result would be an extremely long run time and large 

amounts of memory required in order to get a single run. This, of course, is not conducive 

to the timeline in which current staff at OPNAV N81 operates. 

A theater in the context of military applications is the geographical area for which 

a commander of a geographic combatant command has been assigned responsibility 

(Department of Defense, 2014). STORM is typically utilized to simulate a single theater 

or combatant commander (COCOM), in a time frame of weeks to months, with a goal of 

completing operational objectives. 

D. STORM CONCEPTUAL MODEL 

STORM was originally developed as a campaign simulation by the Air Force. 

The interesting approach in design that the developers took, however, was to ensure that 

the model adapted an approach inclusive to definition, design, and development. The end 

goal was a simulation that can be an interservice tool. Such a tool might reduce the 
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“modeling wars” throughout the DOD. In addition, STORM was not hard-wired to 

include only current day issues, but, instead, has the capability to include the evolving 

environment of doctrine and operational concepts at low cost. This will maximize 

STORM’s use over an operational life of perhaps 20 or more years. 

1. COMMON ANALYTICAL SIMULATION ARCHITECTURE 

To maintain the flexibility desired, STORM employs the common analytical 

simulation architecture (CASA) decoupling components and applications, which endows 

modularity and segmentation, and insulates the system from local changes within 

individual segments. This enables STORM to operate with three different relational 

databases: Mini Structured Query Language (MSQL), Microsoft Office, and Oracle. In 

addition, this architecture enabled a database switch to be completed in less than two 

human days of programming effort (Group W, 2012a). 

2. STORM’S LOGICAL DESIGN 

STORM models military operations from the real world with five classes: 

command and control (C2) manager, asset, intelligence manager, environment, and 

interaction manager. The flow concept of these classes can be seen in Figure 1. 

 
Figure 1.  STORM’s conceptual model (from Group W, 2012a). 
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3. ASSETS 

Assets in STORM are entities that act or are acted upon. Therefore, they have the 

ability to complete activities like move, attack, conduct surveillance, or be killed. 

Examples of three different types of assets can be seen in Table 1. 

 
Surface Asset Air Asset Orbital Asset 

Armored Units Aircraft Satellites 
Ships Squadrons Space-based platforms 
Airbases Munitions  
Logistics Nodes Unmanned Aerial Vehicle 

(UAV) 
 

Table 1.   Asset examples from STORM. 

Assets are tasked by the C2 manager and receive perceptions from the intelligence 

manager, weather changes from the environment manager, and state changes from the 

interaction manager. They also communicate status reports and state changes to the 

intelligence manager and interaction manager, respectively. Each type of asset has 

explicit information embedded in it such as mobility, location, and intelligence, 

surveillance, and reconnaissance (ISR) characteristics. 

4. ENVIRONMENT 

The purpose of the environment class is to model real-world environmental 

conditions such as time of day, weather, and terrain. The environment in which an asset is 

operating affects its capabilities. For example, environmental factors, such as high sea 

state, darkness, and dense fog, may affect the ISR capabilities of numerous assets. 

5. INTERACTIONS 

Interactions take place when two or more assets have the opportunity to affect one 

another. The three types of interaction managers are the motion managers, adjudication 

managers, and support managers. The motion manager is responsible for the movement 

of assets in response to their tasking and battle space dynamics, subject to resource and 

environmental constraints. The adjudication manager provides the result of  engagements 

between two or more assets in combat, sensing, or communication missions. The support 
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manager enables the movement and interaction of assets, subject to resource and 

environmental constraints, such as airbase operations (Group W, 2012a). 

6. INTELLIGENCE 

The intelligence manager provides perceptions to the C2 manager and assets. 

Information is gathered by different ISR platforms and analyzed to provide information 

like targeting data. Intelligence is not always correct—and, therefore, can lead to bad 

targeting data. 

7. COMMAND AND CONTROL  

The command and control (C2) manager tasks and receives reports from assets. In 

addition, requests for intelligence are sent to the intelligence manager, and perceptions 

are sent from the intelligence manager back to the C2 manager. The objective of the C2 

manager is to coordinate asset behaviors to meet operational and strategic goals. The 

decision-making process is modeled using optimization techniques and other algorithms. 

E. INPUT FILES 

The information that populates the above-mentioned classes are contained in input 

files. The PUNIC21 scenario utilized in this thesis has over 100 input files. The files are 

available to view through STORM Front, which comes with the standard STORM 

installation. It is a tedious job to understand what each file contains. An example of an 

input file can be seen in Figure 2. The file designates the naval commanders for Allied 

and Red forces. 
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Figure 2.  Input file example for naval command. 

F. OUTPUT DATA IN STORM 

A majority of the information from a replication can be found in the dbase.out and 

debug.out files. The dbase.out files contain raw data and must be processed through a 

relational database before any analysis can be done. The processing of data takes place in 

the data warehouse that is built into STORM. Once the data is loaded into the data 

warehouse, STORM contains three analyst tools (the Map Tool, the Graph Tool, and the 

Report Tool) designed to analyze and view the data. Although these tools are very easy to 
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use and provide a quick way to look at different metrics, they are lacking in some desired 

capabilities. For example, not all output data is available to view in these tools. A 

programmer has the ability to write scripts in order to gain access to the information not 

included, but the typical analyst will usually require some additional training to 

accomplish this task. 

1. Map Tool 

The purpose of the Map Tool is to visually explore interactions taking place 

between different assets over time in a geographic region. The user is able to choose the 

time frame, how quickly the visualization of the simulation appears, and the geography 

and assets that they would like to be displayed. A screen shot of the Map Tool can be 

seen in Figure 3. 



 15 

 
Figure 3.  Screenshot of the Map Tool in STORM. 

2. Graph Tool 

The Graph Tool is designed to quickly and easily pull and graph user selected 

data from the data warehouse. Not all data is available in the Graph Tool, but there is a 

sufficient amount to gain insight rapidly on key output metrics of the simulation. An 

example of a Graph Tool output can be seen in Figure 4, which reveals the number of 

ships remaining for blue and red forces at the end of each day in the 20-day simulation. 
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Figure 4.  Screenshot of the Graph Tool in STORM. 

3. Report Tool 

The Report Tool function in the Study Tools of STORM allows the user to collect 

and organize specific data that can be further exported to conduct additional analysis. 

There is a wide selection of data available to collect in the Report Tool; however, like the 

Graph Tool, it is not inclusive of all output data from a simulation run. A nice feature of 

the Report Tool is the ability to export some of the data directly into a .csv file for 

analysis. An example of the output of the Report Tool can be seen in Table 2. This 

reflects a user─selected criterion to see which ships in the Blue Atlantic Surface Action 

Group (SAG) killed Red Cruisers on Day 2. 
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Table 2.   Screenshot of the Report Tool in STORM. 

G. PUNIC21 SCENARIO IN STORM 

For STORM to execute a run, a scenario is needed as input. The STORM 

installation comes with two unclassified baseline scenarios. This thesis focuses on one of 

these scenarios, known as Punic21, in particular, due to its strong maritime focus. This 

section describes the order of battle, geography, and phases of the war to provide the 

reader with a basic understanding of how the scenario plays out. 

The blue forces consist of two allied nations known as the Anglo Republic and 

Carthage. The red forces are made up of the Swiss Empire (SWEMP). Tensions have 

recently increased between Carthage and the SWEMP due to the SWEMPs goal of 

expansion. The SWEMP secretly lays mines in the vicinity of Gibraltar to slow 

Carthage’s attempt to resupply the Anglo forces arriving in Spain. The SWEMP forces 

initiate attacks against Anglo naval forces and Integrated Air Defense Systems (IADS). 

1. Order of Battle 

Based on the premise that this scenario is largely a naval campaign, the order of 

battle includes the blue and red naval and air forces. For a campaign that centered on land 

operations, the order of battle would include land forces such as Army divisions, tanks, 

and artillery. 

a. Naval Assets 

The force structure of the naval assets can be seen in Table 3. The blue forces 

have an additional carrier, mine warfare ships, and an amphibious capability. The red 

forces have a few more destroyers and cruisers. 
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 BLUE FORCES RED 
FORCES 

Cruiser (CG) 8 14 
Destroyer (DDG) 24 29 
Nuclear Powered Aircraft 
Carrier (CVN) 

3 2 

Submarine Nuclear (SSN) 10 11 
Guided Missile Submarine, 
Nuclear Powered (SSGN) 

1 0 

Mine Warfare Ship (MIW) 2 0 
Landing Craft Air Cushion 
(LCAC) 

3 0 

Combat Logistics Force Ship 
(CLF) 

11 3 

OILER 6 3 
Landing Helicopter Dock 
(LHD) 

3 0 

TOTAL 71 62 

Table 3.   Naval order of battle. 

b. Air Assets 

The blue forces have a slightly larger air capability, with additional multirole 

fighters (MRFs), fighters, and helicopters. The breakdown of the air forces can be seen in 

Table 4. 
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 Blue Naval Blue Air Force Red Naval Red Air Force 

MRF—N 120 0 100 0 
MRF—M 40 0 0 0 
MRF—Tanker 15 0 0 0 
MRF—EW 15 12 0 10 
MRF 0 138 0 144 
Fighter 0 70 0 64 
Vertical Assault 40 0 0 0 
AEW 9 12 3 10 
MPA 12 0 8 0 
Bomber 0 32 0 32 
Tanker 0 36 0 0 
UAV (ISR) 0 16 0 16 
Airlift 0 24 0 24 

Table 4.   Air order of battle. Multirole fighter (MRF), Navy (N), Marines 
(M), early warning (EW), airborne early warning (AEW), 

Intelligence-surveillance-reconnaissance (ISR), unmanned aerial 
vehicle (UAV). 

2. GEOGRAPHY 

The area of conflict is located in the Mediterranean Sea, the Bay of Biscay, and 

the English Channel. The land geography in the scenario is Northwest Africa and 

Western Europe. Figure 5 reflects a geographical outline with the location of current 

military forces. 
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Figure 5.  Current blue and red force layout in geographical perspective 

(STORM). 

3. PHASES OF THE CAMPAIGN 

The scenario is separated into four phases: The Battle of the Atlantic, the Battle of 

the Mediterranean, the fight for Spain, and the fight for Italy. These phases overlap, but 

generally take place in the order listed above. Although no input variables are changed, 

metrics that relate to these events are analyzed through the rest of this thesis and take 

place at different times, due to the stochasticity of STORM. 
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III. VARIABILITY IN STORM OUTPUT 

Given STORM’s inherent stochasticity, the variability of outcomes must be 

investigated to fully understand the power of this simulation. Chapter III focuses on 

analyzing the distribution of outcomes. This provides a basis for understanding how 

many replications are required, which will be explained in Chapter IV. In addition, key 

metrics are analyzed to determine whether the distributions of outcomes are 

approximately normal. Meeting the normality assumption allows the use of a wide 

variety of statistical techniques, such as developing valid confidence intervals. This 

exploration looks at the variability of STORM’s output without changing any of the input 

variables. That is, we are taking many replications, while varying only the random 

number seed. 

Millions of lines of output appear in the debug.out file from a single large 

campaign-level set of replications from STORM. Recall from Chapter II that this file is 

harvested for specific data, which is loaded into the data warehouse and made available 

in the Study Tools provided by STORM. The metrics reviewed in this chapter bypass the 

data warehouse load and the Study Tool. The metrics are directly pulled from the 

debug.out file, via specially developed scripts, and exported to an Excel file to be 

analyzed. The software programs used to conduct the analysis were Excel, R, and JMP. 

The following categories of metrics are analyzed in this chapter: 

 Blue and red force levels. 

 A what-it-takes-to-win (WITTW) metric; specifically, the time at which 

blue achieves air supremacy. 

 A high-variance metric; the number of blue, multirole fighter missions 

flown. 

A. FORCE LEVELS AT SIMULATION TERMINATION 

One of the most important metrics of any campaign simulation is to look at force 

levels at the beginning and end of the simulation. This information can provide 

breakpoints on how many and which types of forces are required to build the desired 
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confidence in how, and whether, the enemy should be engaged. The blue and red force 

levels analyzed in this section include blue and red ships remaining at simulation 

termination. 

Figures 6 (blue) and 7 (red) are histograms for force levels at the end of the 20-

day terminating simulation for 110 replications from the Punic21 scenario. The data 

appears to be distributed around the mean, displaying STORM’s inherent stochasticity, 

since no input variables other than the random number seed were ever changed. Summary 

statistics can also be seen in Table 5. The number of red ships remaining has a slightly 

smaller standard deviation than the number of blue ships remaining and, therefore, a 

slightly smaller 95 percent confidence interval. The ranges of the number of remaining 

ships are similar for both red and blue. In both cases, the median and mean are virtually 

equal. In addition, both distributions are slightly skewed to the left; the blue force 

remaining (skewness = –0.198) is more skewed than the red force (skewness = –0.072). 

 
Figure 6.  Blue ships remaining at simulation termination. 
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Figure 7.  Red ships remaining at simulation termination. 

 Blue Red 
Mean 55.45 42 
Sample Standard Deviation 3.97 3.30 
95% Confidence Interval on Mean [54.69,56.19] [41.36, 45.62] 
Min 46 32 
Max 63 50 
Median 56 42 
Skewness –0.198 –0.072 

Table 5.   Summary statistics for blue and red ships remaining at simulation 
termination. 

The remaining blue and red ships at simulation termination appear to be 

approximately normally distributed. This can be shown through a variety of analytical 

tools, such as histograms, QQ plots, and formal normality tests. 

To explicitly show that not all data is approximately normal and that the raw data 

in this case is closely related to a normal distribution, Figures 8 and 9 compare the raw 

output of the number of remaining ships to the exponential, uniform, and normal 

distribution. The sample mean, minimum, and maximum of the remaining ships for the 

blue and red forces were used to determine the parameter(s) for the random distributions. 



 24 

For the exponential distribution, a sample of size 110 was drawn with a rate of 1/sample 

mean. The uniform distribution draws were generated using the minimum and maximum 

of the raw data. The normal distribution was generated using the sample mean and 

variance. For both red and blue forces, the histograms of the raw data are most similar to 

the randomly generated normal distribution (top left and bottom right). The exponential 

and uniform distributions are clearly not normal (top right and bottom left). 

 
Figure 8.  Comparison of “blue force remaining ships” to distributions of ships 

remaining via histograms. 
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Figure 9.  Comparison of “red force remaining ships” to distributions of ships 

remaining via histograms. 

Quantile-Quantile (QQ) plots are also a good tool for checking for normality 

(Law, 2007). Figures 10 and 11 are QQ plots of the same data from the histograms above. 

QQ plots compare the two distributions. In each plot, the data is compared to the normal 

distribution. For a perfect fit, the plot would reveal a straight line. The QQ plots confirm 

that the raw data for the blue and red ships remaining is most similar to the normal 

distribution (top left and bottom right). 
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Figure 10.  Comparison of “blue force remaining ships” to distributions of ships 

remaining via QQ plot. 

 
Figure 11.  Comparison of “red force remaining ships” to distributions of ships 

remaining via QQ plot. 
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In terms of determining whether the raw data is approximately normally 

distributed in an analytic fashion, the Shapiro-Wilk, Anderson-Darling, Kolmogorov-

Smirnov, and Cramer-von Mises tests were used with the following hypotheses (Currie & 

Cheng, 2013): 

0     .
     .a

H The underlying distribution is normal
H The underlying distrition is not normal




  

The test was conducted by taking 1,000 random draws of size 30 from the original 

110 replications. A sample size of 30 was chosen since OPNAV N81 typically completes 

30 replications. The formal normality tests were then applied to the 1,000 draws of 

sample size 30. The p-values from the normality tests are plotted in Figures 12 and 13 for 

the blue and red forces, respectively. A p-value is the smallest level of significance for 

which the observed data indicates that the null hypothesis should be rejected (Wackerly, 

Mendenhall III, & Scheaffer, 2008. The vast majority of the p-values for the blue and red 

data are above the cutoff of 0.05, thereby not rejecting the null hypothesis that the 

underlying distribution is approximately normal. In this case, for samples of size 30 

drawn from the actual data, most of the time we will retain the null hypothesis; however, 

with a mean p-value of 0.2, there is evidence that the output is not quite normal. Indeed, 

since it is discrete, it cannot be. Most tests assuming normality, however, will be pretty 

accurate. 
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Figure 12.  Box plots of normality tests for the number of “blue ships remaining” 

at simulation termination. 

 
Figure 13.  Box plots of normality tests for the number of “red ships remaining” at 

simulation termination. 

Further results of the investigation of the raw data for blue and red ships 

remaining are displayed in Table 6. These results look at the original 110 replications and 

reveal the p-values for the four normality tests. Assuming a p-value cutoff of 0.05, there 

is a single normality test failure; specifically, the Kolmogorov-Smirnov test for blue ships 
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remaining. Being that only one out of the four tests failed, however, we can still assume 

normality with a high level of confidence that our statistical procedures will be robust to 

the mild nonnormality that may exist. 

 
 Blue Ships Remaining Red Ships Remaining 

Anderson-Darling 0.060 0.13 
Cramer-von Mises 0.060 0.13 
Kolmogorov-Smirnov 0.003 0.16 
Shapiro-Wilk 0.090 0.30 

Table 6.   P-Values from the four formal normality tests for 110 replications 
of the number of “red and blue ships remaining.” 

B. WHAT-IT-TAKES-TO-WIN METRIC 

OPNAV N81 is very interested in metrics they call “what it takes to win” 

(WITTW). That is, they want to identify key variables and thresholds that enable blue to 

win a given replication. The next metric analyzed is the time at which the blue forces 

achieve air supremacy in the simulation. An important distinguishing characteristic of 

some metrics, such as achieving a goal, is the fact that the event may not take place in all 

of the replications. This is common in a terminating simulation like the Punic21 scenario 

used for this research. Even if the event does not always occur, it is still informative to 

analyze what takes place when the event does happen. Alternative analysis would involve 

determining which variables in the scenario either support or prohibit the blue forces 

from achieving air supremacy. This would involve investigating relationships among 

different variables to determine whether there is causation of one event to another 

through correlation and or dependency relationships. 

The blue forces achieve air supremacy 82 times out of the 110 reps, which is 74.5 

percent of the time. The confidence in this point estimate can be expanded upon by taking 

the normal approximation to the binomial distribution to develop a confidence interval by  

 0.975
ˆ ˆ(1 )ˆ p pp z

n


  (Law, 2007), (3.1) 
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where p is the probability of success and n is the number of trials (i.e., 110). Confidence 

intervals constructed this way will include the true proportion approximately 95 percent 

of the time. The confidence interval on the estimate for the day that blue forces achieve 

air supremacy is [0.66, 0.83], by Equation 3.1. The remaining portion of this chapter 

focuses on the time at which air supremacy is achieved (using only 82 data points of 110 

replications), since it was achieved at some point. This is interesting to the decision 

maker because timing can be everything in a military campaign. For example, if a land 

attack cannot take place until air supremacy is achieved, the time at which it is achieved, 

and the precision of that estimate, become very important. 

The distribution of outcomes for the time at which blue forces achieve air 

supremacy, given they achieved it, can be seen in Figure 14 and Table 7. The outcomes 

are spread relatively evenly between the minimum of 11.75 and the maximum of 19.75 

days, with the exception of the majority of events taking place around the median. 

Although the median and mean are relatively close, this data does not appear to be 

normally distributed with such a long left tail. 

 
Figure 14.  Time in simulation at which blue forces achieve air supremacy. 
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 Time At Which Blue Achieves Air Supremacy 

Mean 16.55 
Sample Standard Deviation 1.98 
95% Confidence Interval [16.12,16.99] 
Min 11.75 
Max 19.75 
Median 17.25 
Skewness –1.00 

Table 7.   Summary statistics on the time at which air supremacy (blue) is 
achieved. 

Although the numbers of remaining ships for blue and red forces are 

approximately normally distributed, the case is made in this section that the time at which 

blue achieves air supremacy does not reflect an approximately normal distribution. We 

can still use the methods in Chapter IV to estimate the appropriate number of 

replications. The advantage of normally distributed data is that it exhibits predictability 

and probability, which results in easier computations in performing analysis, which many 

statistical tests assume. 

To visually represent how the air supremacy data is not normally distributed, 

Figure 15 represents the raw data compared to the exponential, uniform, and normal 

distributions, with parameters (mean, min, max) calibrated for the raw data. The raw data 

in the top left histogram does not appear to be normally distributed, especially when 

compared to the normally distributed data with the same mean on the bottom right. 
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Figure 15.  Histogram comparison of raw air supremacy data versus the 

exponential, uniform, and normal distributions, with parameters 
derived from the raw data. 

In addition to the histograms, QQ plots are good methods for comparing 

distributions. Since we are looking at whether the data is normally distributed, each data 

set from the histograms above is compared to a theoretical normal distribution. Figure 16 

reveals that the only distribution that approximately matches the normal distribution is 

the bottom right plot, which was randomly created with normally distributed data. The 

top left plot is the raw air supremacy data, which reveals nonnormality. 
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Figure 16.  QQ plot comparison of raw air supremacy data versus the exponential, 

uniform, and normal distributions, with parameters derived from the 
raw data. 

To analytically show that the air supremacy data is not normally distributed, the 

same hypothesis testing that was conducted on the ship remaining data. Figure 17 reveals 

that a large portion of the data is below the p-value of 0.05, which causes us to reject the 

null hypothesis of the underlying distribution being normally distributed. 
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Figure 17.  Normality testing of the air supremacy data. 

Formal normality tests on the original 82 replications of raw data reveal that the 

data is not normal. The results can be seen in Table 8. 

 
 Day in Which Blue Achieves Air Supremacy 

Anderson-Darling 8.2e-11 
Cramer-von Mises 1.27e-08 
Kolmogorov-
Smirnov 

1.02e-13 

Shapiro-Wilk 7.44e-07 

Table 8.   P-Values from the four formal normality tests for 82 replications of 
the day in which blue achieves air supremacy. 

C. HIGH-VARIANCE METRIC 

The final metric selected to analyze is the number of missions flown by blue force 

multirole fighter planes. This metric was selected due to its relatively larger variance 

when compared to the other metrics. It can also be categorized as a performance measure 

in that it reveals the frequency of an event in each replication. A metric such as this could 

be useful to an analyst and, ultimately, to a decision maker in a simple scenario. The 

number of missions that an aircraft can fly can be constrained by many things, such as the 
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sortie rate, which is the rate at which a force can deploy aircraft. Knowing the 

distribution of outcomes for the number of missions flown for a particular aircraft could 

help estimate the sortie rate required to meet the demand. Higher sortie rates have 

monetary costs, such as the need for an additional aircraft carrier or a more capable air 

base. As a result, looking at the statistics for the number of missions flown could help 

plan and save resources. 

The distribution of outcomes for the number of missions flown by future multirole 

fighters can be seen in Figure 18 and Table 9. From a qualitative perspective, the 

outcomes appear to be distributed fairly well and seem to represent an approximately 

normal distribution. 

 
Figure 18.  Number of missions flown by blue future multirole fighters (110 

Reps). 
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Summary Statistic Missions Flown by Blue Future Multirole Fighters 
Mean 1,267.09 
Sample Standard Deviation 332.73 
95% Confidence Interval on Mean [1204.21,1329.97] 
Min 652 
Max 2,024 
Median 1,243.5 
Skewness 0.06 

Table 9.   Summary statistics for the number of missions flown by blue future 
multirole fighters. 

So far we have seen two metrics, the number of blue and red ships remaining, 

which were approximately normal, and the time in which blue forces achieve air 

supremacy, which was not approximately normal. The number of missions flown for blue 

future multirole fighters appears to be normally distributed, although it has a much larger 

standard deviation. 

A visual representation of the actual outcomes to random variables from the 

exponential, uniform, and normal distributions can be seen in Figure 19. These 

distributions were derived from parameters developed from the raw data. Although the 

top left histogram does not pass the visual test for normality with confidence compared to 

the bottom right, which is a normal distribution, further testing reveals that it is 

approximately normal. 
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Figure 19.  Histogram comparison of raw blue future multirole fighter missions 

flown compared to the exponential, uniform, and normal distributions. 

The QQ plot in the top left of Figure 20 builds confidence that the raw data is 

approximately normally distributed because it follows an approximately straight line, 

which represents the theoretical values for the normal distribution. 
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Figure 20.  QQ plot comparison of raw blue future multirole fighter missions 

flown versus the exponential, uniform, and normal distributions. 

The same hypothesis from the previously analyzed data in this chapter applies 

here. The null hypothesis is that the distribution of outcomes is approximately normal. 

Referring to the box plots in Figure 21, we see that in almost all cases the data passes the 

stated normality tests. As a result, we can assume that the data in this case is distributed 

approximately normally. 
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Figure 21.  Normality testing of the number of blue future multirole fighter 

missions flown. 

Further investigation of the raw data for the number of blue force multirole fighter 

missions flown can be seen in Table 10. All the p-values from the four normality tests on 

the raw data are greater than 0.05; therefore, this data can be considered roughly normally 

distributed for statistical procedures. 

 
 Number of Blue Future Multirole Fighter Missions 

Flown 
Anderson-Darling 0.104 
Cramer-von Mises 0.132 
Kolmogorov-
Smirnov 

0.121 

Shapiro-Wilk 0.074 

Table 10.   P-Values from the four formal normality tests for 110 replications 
of the number of blue future multirole fighter missions flown. 

D. STEPS TO PROCESSING SIMULATION OUTPUT DATA 

This section is designed to be an aid to the analyst repeating the same steps that 

this chapter presents to gain insight into the distribution of outcomes and normality 

testing for any metric, for any campaign simulation run in STORM. The R code to 

accomplish the steps can be found in the Appendix A. 
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Selecting the metrics that require postprocessing is user defined and will vary, 

depending on the scenario and study objectives. Analysts may have many reasons to dive 

deeper into particular metrics. For example, they may know the historical impact of 

specific metrics from previous scenarios or need to be confident in the time in the 

campaign in which an event will take place. 

An initial look at the summary statistics and histograms provides the analyst with 

a high-level view of the data. This information can automatically be generated using the 

R code in Appendix A. It is insightful to compare the data to other distributions, such as 

the exponential, uniform, and normal distributions via histograms and QQ plots. Finally, 

formal normality tests can be conducted to determine whether the data is normally 

distributed. The significance of having normally distributed data is that it enables the 

analyst to do many statistical tests with confidence and allows for better stopping rule and 

confidence interval results. The formal normality tests used in the R code are Anderson-

Darling, Kolmogorov-Smirnoff, Cramer-von Mises, and Shapiro-Wilks. These normality 

tests are considered to be the most powerful, with the Shapiro-Wilks tests performing 

exceptionally well, even when there are a small number of data points (Currie, 2013). As 

a result, it is recommended for small sample-sized testing to utilize the Shapiro-Wilks 

normality test. 

It is also important to understand how many observations must be in a data set to 

determine normality. This is another reason for looking at the histograms and QQ plots, 

in addition to the formal normality tests. To demonstrate this, 1,000 normal, exponential, 

uniform, and gamma random variables were generated. The Shapiro-Wilks test was 

conducted on the random draws from the 1,000 variables in sample sizes 10, 30, 60, and 

100. A sample size of 10 usually causes a false positive by retaining the gamma, 

exponential, and uniform distributions as normal. As the sample size increases to 30, the 

exponential and uniform test results begin to fail the Shapiro-Wilks test. In this example, 

it takes a sample size of 100 for the Shapiro-Wilks test to reveal that the underlying 

distribution is not normal. Figure 22 depicts these results. These results are important to 

understand because there is risk in small sample-sized, normality tests. 



 41 

 
Figure 22.  Formal normality testing of 1,000 random draws of sample sizes 10, 

30, 60, and 100 from the normal, exponential, uniform, and gamma 
distributions. 
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IV. STOPPING RULES ANALYZED FOR STORM OUTPUT 
DATA 

This chapter focuses on analyzing the trade-off between the expected number of 

replications and desired performance measures, such as precision and confidence. The 

unclassified scenario Punic21 is used as a baseline test to discuss the validity of the 

simulation results utilizing previously established simulation stopping rules. The goal is 

to provide OPNAV N81 with insight and tools by describing a methodology to analyze 

the trade-off between the appropriate number of replications and the precision and 

confidence for a given scenario. 

The same metrics from Chapter III are tested, using stopping rules to help in 

understanding the relationship between variability and the normality assumption versus 

the expected number of replications required. The number of remaining ships for blue 

and red forces at simulation termination is examined first, followed by the day in which 

blue forces obtain air supremacy. The final metric analyzed is the high-variance metric, 

the number of missions flown by blue future multirole fighters. A high variance metric 

was selected because they tend to be the most sensitive to the choice of stopping rule 

parameters. 

This chapter is meant to demonstrate the process in determining the appropriate 

number of replications. A script was generated in R and appears in Appendix B to aid 

future users of STORM in applying this methodology. 

A. CONFIDENCE INTERVALS 

A confidence interval is designed to help the analyst and/or decision maker have 

an understanding of how precise an estimate is for an unknown population parameter. An 

easy way to define a confidence interval is to consider constructing a very large number 

of independent  = 1 –   percent confidence intervals; the proportion of the confidence 

intervals that contain the unknown parameter would be 1 –  , where   is the probability 

that the interval does not include the true population parameter (Law, 2007). The existing 

study tool in STORM does not output confidence intervals or variance. The output in 

STORM is simply given as a mean over the replications. The problem with a sample 
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mean is that its variance (related to risk) is not considered. For example, consider two 

stock portfolios, A and B, that are available as investments. Portfolio A has an average 

return of 10 percent and a variance of 3 percent. Portfolio B has an average return of 11 

percent and a variance of 20 percent. Although portfolio B has a slightly higher average 

return, knowing it is almost six times as risky in terms of variance may persuade the 

decision maker to choose portfolio A. Confidence intervals, which provide an estimate of 

the variability around the mean are defined next with examples from the Punic21 data set. 

It is important to understand confidence intervals prior to delving into stopping rules, 

since confidence interval procedures are often used with stopping rules. 

Each output metric STORM provides for a given variable of interest is different; 

therefore, it would be difficult to prove that the underlying distribution is normal for 

every metric. As a result, we must assume the central limit theorem applies and after a 

sufficiently large number of replications; the distribution of the mean becomes 

approximately normal (Law, 2007). In addition, most of the time we do not know the 

population variance ( 2 ), therefore, we estimate 2  by 2S , the sample variance, as the 

sample size (n) gets large. 

Let 1 2, ,..., nX X X  be independent, identically distributed random variables, with a 

finite mean and variance and, with the assumptions above, we can form a confidence 

interval. Equation 4.1 defines the two─sided confidence interval assuming a normal 

distribution by  

 
2

1 /2
( )( ) S kX k z
k  (Law, 2007), (4.1) 

where k is the number of replications, 2 ( )S k  is the sample variance of the first k samples, 

and 1 /2z   is the z-score (or (1 / 2)*100 percentile ) from the normal distribution. 

An even more conservative approach to confidence interval formulation is using 

the t-distribution rather than the normal distribution. This is because 1 1 /2 1 /2,kt z    , for 

small values of alpha, which is a direct reflection of the t-distribution’s lower peak and 

larger tails (Law, 2007). Equation 4.2 defines the confidence interval using the t-

distribution by  
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2

1 1 /2
(k)(k) ,k

SX t
k  .  (Law, 2007). (4.2) 

The only difference between Equations 4.1 and 4.2 is that the t-distribution is 

used. 

The last part of introducing confidence intervals is the realization of the half 

width. The half width is the value that we subtract or add from X , to form a confidence 

interval, and is a measure of precision. Decision makers like precise results (i.e., narrow 

intervals). The width of a confidence interval depends on the population variance, our 

desired coverage probability, and the number of replications. The smaller the half width, 

the more precise the results are. The half width is written as 

 
2

, , 1

( )
k k

k
HW t

k
S

    (Singham, 2012), (4.3) 

where   is the desired confidence and k is the number of replications. 

In examining the Punic21 data for STORM, and utilizing Equations 4.2 and 4.3, 

Table 11 represents raw data transformed into half-widths and their associated confidence 

intervals. 

 Mean Variance Half-Width 90% Confidence Interval 
Blue Ships 
Remaining 

55.45 15.48 0.62 [54.82, 56.07] 

Red Ships 
Remaining 

42 10.72 0.52 [41.48, 42.52] 

Day Blue Achieved 
Air Supremacy 

16.55 3.82 0.36 [16.20, 16.91] 

Number of Missions 
Flown by Blue 
Future Multirole 
Fighters 

1267.09 108706.30 52.15 [1214.94, 1319.24] 

Table 11.   Summary statistics for metrics. Blue, red, and multirole fighters are 
from 110 replications. Day Blue Achieved Air Supremacy is from 

82 replications. Air supremacy data is not normal; therefore, 
summary statistics are for comparison only. 
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B. BACKGROUND ON STOPPING RULE 

This research utilizes the methodology of determining a desired stopping 

condition based on the research of Singham (Singham, 2010). The research within her 

dissertation provides a framework to gain nominal coverage with a minimal expected 

number of replications. As a result, we will be able to quantify the confidence in the 

mean estimate for output data for a given number of STORM replications and a given 

precision level using a sequential stopping rule. 

Normally, stopping rules fall into two categories: fixed and sequential. Both fixed 

and sequential stopping rules are used in confidence interval procedures to generate 

confidence intervals. Fixed rules are simple; the user determines the number of 

replications to run and executes the simulation. This is the method that OPNAV N81 

currently uses on STORM, typically running between 30 and 50 replications due to data 

storage requirements and the need to provide quick, turn-around analysis. For sequential 

stopping methods, a baseline number of replications is completed and testing is 

conducted to determine whether the desired precision is obtained. If the test fails, more 

replications are completed one by one, or in batches, until the stopping rule criterion is 

met. 

1. Summary of Stopping Rules 

To compare how good or bad a given number of replications is in terms of its 

respective half-width, we compare it to a parameter delta (δ). Delta is defined as a 

desired level of precision. For a very precise solution, a small value for delta would be 

required. Therefore, our goal is to complete the minimum number of replications that 

ensures our half-width is less than δ, as the following inequality suggests: 

 ,
2

* arg k
k

k min HW 


  ,  (4.4) 

where k* is the minimum number of replications meeting the inequality. 

Intuitively, it can be seen that as δ gets smaller and smaller, the expected number 

of replications required would go to infinity. Now, we must complete testing at different  
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levels of η and δ. In this design, δ will be a function of the sample standard deviation. To 

get δ smaller, representing more precision, the sample standard deviation is be divided by 

a factor resulting in the following: 

 
2( )

,      {1,2,4,6,8,10,15}i

k
index delta by i

i
s   .  (4.5) 

The minimum number of replications for any experiment of this type is two, 

based on the premise that you must have two observations to calculate the sample 

variance, which is an input to determining the half-width. As a result, another factor, 

Kstart is used.  Kstart is defined as the minimum number of replications observed prior to 

calculating the half-width. Kstart will be varied at levels of {2, 5, 10, 20, 30, 40, 50}. 

Kstart turns out to be relevant if you imagine the following set of output: 

{1,1,1,1,1,0,0,1}. If Kstart was equal to two, then the sample variance is zero until Kstart 

is greater than five. Once Kstart is equal to six, variance would be non-zero for the first 

time. This implies there is a danger associated with conducting a small number of 

replications because values that may be less probable may not yet be observed. The 

example presented is a binary case, but holds true for a nonbinary case in the same 

manner. 

C. METHODOLOGY TO IDENTIFY THE RELATIONSHIP BETWEEN 
THE EXPECTED NUMBER OF REPLICATIONS, PROBABILITY OF 
COVERAGE, AND PRECISION 

This analysis is intended to outline the process and provide OPNAV N81 with a 

structured tool that can be applied to any metric for which they want to concretely define 

the confidence associated with the number of replications completed. The data used in 

this chapter is output from 110 replications from the Punic21 scenario in STORM. 

The R-Script employed reads in a metric file and calculates the summary statistics 

used for half-width calculations. The user defines the desired level of confidence and the 

values of   as inputs to the script. A half-width is calculated with Kstart number of 

replications. The data is resampled until the half-width is less than or equal to  , as the 

inequality in Equation 4.4 suggests. Solving the inequality is completed 10,000 times for 

each level of . The result allows the analysts to see the trade-off between the average 
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number of replications, the probability of coverage, and the precision. Three plots are 

generated, consisting of lines extrapolated though points: the expected number of 

replications versus  ,   versus the probability of coverage, and the expected number of 

replications versus the probability of coverage. From the graphs, the analyst can 

determine how many replications (approximately) should be completed for each   and 

the associated probability of coverage. In addition, a file is generated with the data that 

the script calculates for any follow-on analysis that the automatically generated plots do 

not reveal. 

Figure 23 summarizes the methodology of the script used to determine the 

recommended number of replications, based on desired precision and probability of 

coverage. 

 
Figure 23.  Flow chart of the process in which the R-Script determines the trade-

off between the expected number of replications, precision, and the 
probability of coverage. 

INPUT 
PARAMETERS: 

 Desired Confidence 
(ETA) 

Precision (DELTA) 
 Starting Number of 

Reps (Kstart) 

Do 10,000 times:    
Calculate k* from 

resampling raw data 
until half-width is less 

than delta. Take 
average to estimate 

E[k*] 

Generate tables for 
trade-offs between: 

ETA (observed) 
DELTA 

E[k*] 
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D. RELATIONSHIP BETWEEN DELTA AND THE EXPECTED NUMBER 
OF REPLICATIONS 

The parameters for satisfying Equation 4.4 are the   chosen and the desired 

probability of coverage. As   gets smaller, or the desired probability of coverage gets 

higher, the number of replications required increases. The experiment defines   as a 

factor of the standard deviation in order to provide robust analysis at multiple levels of 

precision. In addition, it is hard to choose an absolute precision level for , without 

knowledge of the scale of the data. In a real-world campaign simulation, analysts and 

decision makers would ultimately decide on the appropriate . This comes down to the 

desired level of precision. The importance of an event occurring by a certain time can be 

related to this. For example, if an event needed to take place by day 17 of a campaign, the 

precision would also be important. There is a noticeable difference in reporting a 95 

percent confidence interval for the time of occurrence as [15, 19] versus [16.95, 17.05]. 

This smaller precision in the second interval gives the decision maker much more 

information in the average result. 

The four metrics chosen from the Punic21 simulation selected are the number of 

blue and red ships remaining, the day in which blue achieved air supremacy, and the 

number of blue future multirole missions flown. The relationship between the expected 

number of replications and the delta of these metrics can be seen in Figures 24-27. 

Figures 24 and 25 represent the number of blue and red ships (respectively) remaining at 

simulation termination. The figures are similar in showing the relationship between the 

expected number of replications and the level of precision. For example, if the desired 

level of precision was 0.5, both graphs reveal that the expected number of replications 

would be approximately equal to 250. Figure 26, which uses a time-based metric, reveals 

that a lower number of replications would be required for a precision value of 0.5. In fact, 

this level of precision could be achieved with approximately 60-70 replications. Recall 

that in the final metric, the number of blue multirole fighter missions flown had a 

standard deviation of 332. Therefore, the scale on the precision ( ) axis is much larger, 

as seen in Figure 27. Although, the scale of this figure is much different than the other 

three, the same approximately exponential curve can be seen reflecting the trade-off 



 50 

between the expected number of replications and the precision. For example, Figure 27 

reveals that if you wanted a   of 50, one would need to complete approximately 180 

replications. In all of these figures, there is a sharp “knee in the curve” in which increased 

precision requires dramatically more expected runs. As the summary statistics revealed, 

the number of missions flown by the blue multirole fighter had a large variance of over 

108,000, whereas the day that blue achieved air supremacy had a variance of only four. A 

final observation is the Kstart value in this relationship. Although it appears Kstart does 

not have an effect on the relationship, the next section reveals its effect. 

 
Figure 24.  Expected number of replications versus delta for blue ships remaining. 

Desired confidence is equal to 95%. 
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Figure 25.  Expected number of replications versus delta for red ships remaining. 

Desired confidence is equal to 95%. 

 
Figure 26.  Expected number of replications versus delta for the number of days 

for      blue to achieve air supremacy. Desired 
confidence is equal to 95%. 
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Figure 27.  Expected number of replications versus delta for the number of 

multirole    fighter missions flown for blue forces. 
Desired confidence is equal to 95%. 

E. PROBABILITY OF COVERAGE VERSUS DELTA IN STORM 

An analyst or decision maker typically desires a level of confidence in the area of 

90 to 95 percent. The relationship between   and the probability of coverage for all 

metrics can be seen in Figures 28 through 31. Recall that we assumed the desired 

coverage in this experiment was 95 percent. The figures reveal that for small   values, 

the probability of coverage (approximately) meets our desired coverage of 95 percent for 

all levels of Kstart, with the exception of Kstart = 2. Next, the probability of coverage 

decreases as   increases until a break point at which coverage exceeds the desired 95 

percent. Considering the fact that small   requires a large number of replications and a 

large   requires fewer replications, the figures portray the trade-off. In many cases, 

experiments with a large   result in intervals that are not meaningful; therefore, it is 

preferred to have a sufficiently small  . 
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Figure 28.  Delta versus probability of coverage for blue ships remaining. Desired 

confidence is equal to 95%. 

 
Figure 29.  Delta versus probability of coverage for red ships remaining. Desired 

confidence is equal to 95%. 
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Figure 30.  Delta versus probability of coverage for the day that blue forces 

achieve    air supremacy. Desired confidence is equal to 
95%. 

 
Figure 31.  Delta versus probability of coverage for the number of blue multirole 

  fighter missions flown. Desired confidence is equal to 95%. 
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The relationship between   and the coverage shown in these figures, reveals that 

the coverage is approximately stable for Kstart values 10 or greater. This is portrayed in 

Figure 28, where, for all Kstart values that are greater than 10, they remain at or close to 

the desired probability of coverage (95 percent) for all values of  . It is recommended 

that analysts explore this relationship to gain insight into the minimum number of 

replications to obtain when applying a sequential stopping rule. 

F. EXPECTED NUMBER OF REPLICATIONS VERSUS PROBABILITY OF 
COVERAGE IN STORM 

In a perfect world, an infinite number of replications would be performed to get 

perfectly precise estimates of the mean and variance of simulation output. As the number 

of replications increases, the probability of coverage converges to the desired level of 

coverage. There is, however, a cost to the number of replications performed. This cost is 

usually time or available memory. As a result, the goal is to find the expected minimum 

number of replications required to achieve a desired level of precision. Recall that the 

goal in this experiment was to determine the expected number of replications to get a 

desired coverage of 95 percent using a sequential stopping rule. Figures 32 through 36 

reveal that the convergence to the desired level of coverage of 95 percent takes place at 

approximately 100-200 replications for all Kstart values   5. In addition, the figures 

show that a high probability of coverage can be achieved with an expected  low number 

of replications; however, this coverage reflects a larger  , which implies a larger half-

width, resulting in a wider confidence interval. Figure 35 also shows that for a lower 

number of replications, approximately 100, the desired probability of coverage can be 

achieved. This is a result of a larger   associated with the extremely high variance for 

this metric. 
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Figure 32.  Expected number of replications versus probability of coverage for the 

   number of blue ships remaining. Desired confidence 
is equal to 95%. 

 
Figure 33.  Expected number of replications versus probability of coverage for the 

   number of red ships remaining. Desired confidence is 
equal to 95%. 
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Figure 34.  Expected number of replications versus probability of coverage for the 

day   that blue forces achieve air supremacy. Desired 
confidence is equal to 95%. 

 
Figure 35.  Expected number of replications versus probability of coverage for the 

   number of blue multirole fighter missions flown. 
Desired confidence is equal to 95%. 
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In summary, coverage can be obtained with fewer than 100 replications. In fact, 

as seen in Figure 33, for Kstart values greater than 10, coverage can be obtained with 

approximately 50 replications. Analysts should explore this relationship on metrics of 

interest when determining the number of replications required in obtaining their desired 

coverage keeping in mind lower coverage may be acceptable. 

G. APPLYING STOPPING RULES TO MAKE DECISIONS 

Determining the number of replications required from trade-off analysis between 

precision and probability of coverage can be achieved with the methodology described in 

this chapter. Recall that there are two types of methods for sampling: fixed and 

sequential. Fixed sampling is determining the expected number of replications based on a 

desired probability of coverage and precision. Once the trade-offs between these factors 

are studied, the analyst will have an idea of how many replications to do. In contrast, 

sequential sampling involves calculations after each replication until the desired precision 

and probability of coverage is achieved. Both methods use the same idea as presented in 

this thesis, but differ slightly in the way in which the data is sampled. 

The following example illustrates how the three figures can be used to inform the 

analyst. Table 12 is summary data extrapolated from Figures 25, 29, and 33, which are 

the figures for the number of red ships remaining. Recall that the desired coverage is 

equal to 95 percent and the mean number of red ships remaining is 42. Assume that 

Kstart, or the minimum number of replications, is equal to 30 to simplify the explanation. 

Delta ( ) E[Number of Replications] Actual Coverage 
0.5 125 0.9450 
1.0 60 0.9550 
1.5 40 0.9875 
2.0 30 0.9900 

Table 12.   Data extrapolated from figures for the number of red ships 
remaining, which explains the trade-off between the expected 

number of replications, precision, and the probability of coverage. 
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From the information in Table 12, the following confidence intervals can be 

developed on the unknown population mean of the number of red ships remaining: 

 [41.5, 42.5] with 94.50 percent confidence and a cost of 125 replications 

 [41, 43] with 95.50 percent confidence and a cost of 60 replications 

 [40.5, 43.5] with 98.75 percent confidence and a cost of 40 replications 

 [40, 44] with 99.00 percent confidence and a cost of 30 replications 

From these approximate confidence intervals, the analyst can determine the 

precision that suits the problem best. If a very precise confidence interval is required, 

then 125 replications would be recommended. If, however, a less precise interval is 

satisfactory, 30 replications may suffice. 

Although this information is informative, it is important to understand that the 

results are approximate. If only one metric is used to determine the number of 

replications, then one stopping rule is being used for all metrics. In order to account for 

this, it is recommended that multiple metrics are tested with the stopping rule, as this 

research presents. High variance metrics are important because they can give worse 

results. In addition, since STORM is stochastic, it is possible that the output from a 

separate set of runs (e.g., different output metrics and scenario) has a completely different 

distribution of outcomes. If this is the case, stopping rule testing needs to be completed 

again to ensure that enough replications are completed. In addition, resampling the same 

data, as conducted in this research, provides approximate coverage. 

To account for these approximations, it is recommended that multiple metrics are 

tested at different levels of precision. For a conservative approach, it is also important to 

ensure that a portion of the metrics have a relatively large variance, as experimented with 

in this thesis. In addition, stopping rules should be tested on both normal and nonnormal 

data, as conducted in this thesis. Including high-variance metrics, and both normal and 

non-normal output data, will allow the analyst to take a conservative approach. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

This research will enhance the ability of OPNAV N81 analysts who utilize 

STORM to quickly and accurately inform senior leaders. The results from Chapters III 

and IV are being used in software, known as STORMMiner, developed by research 

associates from the SEED Center at NPS. The purpose of STORMMiner is to harvest 

output data from STORM and automatically generate figures and plots that will decrease 

the amount of time it takes analysts to gain insight into a particular campaign. The 

research in this thesis has been included in STORMMiner, so that analysts can have 

confidence in the number of replications executed. In addition, Chapter II explains the 

fundamentals of how STORM works, laying a foundation for future research in the SEED 

Center. 

A. DISTRIBUTION OF OUTCOMES 

Chapter III focused on the showing the robustness of outputs that STORM 

provides without changing any input variables. This reveals the inherent stochasticity 

embedded in STORM, which is critical for modeling the unpredictability of combat. It 

was also shown that some of the key metrics of STORM are approximately normal; 

however, some are not. The importance of normality does not affect the research in 

Chapter IV; however, many statistical tests and algorithms require the normality 

assumption to be met. 

B. THE VALUE OF REPLICATIONS 

Replications can become increasingly expensive in time and memory for large-

scale simulations such as STORM. The number of runs needed depends on the variability 

of the output, the precision required, and the coverage desired. Sometimes very few runs 

are needed (e.g., if the precision is large relative to the variance). Otherwise, many runs 

may be required to meet a narrow desired precision level. Organizations sometimes only 

do a certain number of replications due to the constrained environment in which they 

operate. Chapter IV quantifies the trade-off between the expected number of replications  
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versus precision and the probability of coverage. This trade-off is important to understand 

because if the precision and probability of coverage that the organization requires are not 

met, then the analysis is less valuable. 

The exploration of the value of replications for sequential stopping rules in this 

thesis is being applied directly in STORMMiner. Less exploration of the trade-off is 

required if a user-defined level of precision is established and the algorithm executes at a 

single level. The algorithm will reveal the number of replications and the probability of 

coverage required to meet the desired level of precision. Analysts would then know, at a 

minimum, they needed to complete the expected number of replications in order to be 

confident in their analysis. 

C. RECOMMENDATIONS 

It is recommended that normality testing be conducted on metrics that require the 

assumption of normality in the statistical analysis chosen. This will prevent analysts from 

presenting results that violate fundamental statistical assumptions. In addition, it is 

recommended that, for all key metrics, testing be completed to determine the number of 

replications required to meet a desired precision and probability of coverage. 

STORMMiner provides a great deal of analysis quickly. This analysis uses many 

statistical techniques, including those covered in this thesis. It is recommended that all 

analysts acquire the basic training to utilize STORMMiner and begin to take advantage of 

the “free” analysis that it can provide. 

There is room for follow-on research in two areas. The first is to apply the 

research from Chapters III and IV on a classified scenario at OPNAV N81 to determine if 

there is a significant difference. The second is to continue this analysis through a small 

design of experiments, which would not only the capture the stochasticity designed in 

STORM reviewed in this thesis, but the effect of changing key input variables. If key 

input variables are changed at different levels, more experiments have to be completed, 

thus reducing the time for experimentation at each level. As a result, it would be critical 

to know if an analyst could complete fewer replications for a desired level of precision. 
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APPENDIX A. CHAPTER III SOURCE CODE 

This appendix contains code used to conduct statistical analysis and normality 

testing on a STORM output metric. Once the file is read into R, summary statistics and 

histograms are easily developed. Next, visualizations for normality are created utilizing 

histograms and QQ plots. Finally, formality normality testing is conducted and the results 

can easily be interpreted through the box plots that are generated. 

 
##Calculates summary statistics and performs normality testing 
##LT Christian Seymour 
##May 2014 
 
metric<-read.csv(file.choose()) #Read in metric file of choice 
 
#calculate Summary Statistics 
avg<-mean(metric$time) 
min<-min(metric$time) 
max<-max(metric$time) 
med<-median(metric$time) 
n<-length(metric$time) 
sd<-sd(metric$time)*(n/(n-1)) 
error<-qt(0.975,df=n-1)*sd/sqrt(n) 
left<-avg-error 
right<-avg+error 
 
####Generate random variables based on actual data parameters 
exp.var.b.metric<-rexp(82, rate = 1/avg) 
unif.var.b.metric<-runif(82,min =min, max=max) 
norm.var.b.metric<-rnorm(82,mean = avg) 
 
##Install R Package e1071 
skewness(metric$time) 
 
###Build histogram, must click on plot where you would like legend 
hist(metric$time, breaks = 20, col = "light blue", main = "Title", xlab = "X axis Label") 
abline(v=avg, col = "blue", lwd = 2) 
abline(v=med, col = "blue", lty =2, lwd =2) 
legend(locator(1),lty=c(1,2),lwd=c(2,2), col = c("blue", "blue"), legend 
=c("Mean","Median") ) 
 
 
##Set up 4 by 4 plotting for comparing histograms 
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par(mfrow = c(2,2)) 
hist(metric$time, breaks = 20, col = "blue", main = "Title", xlab = "X axis Label") 
hist(exp.var.b.metric, breaks = 20, col = "Green", xlab = "Random Exponential Variables 
(rate = 1/16.55)", main = "82 Random Exponential Variables") 
hist(unif.var.b.metric, breaks = 20, col = "Green", xlab = "Random Uniform Variables 
(min = 11.75, max = 19.75)", main = "82 Random Uniform Variables") 
hist(norm.var.b.metric, breaks = 20, col = "Green", xlab = "Random Normal Variables 
(mean = 16.55)", main = "82 Random Normal Variables") 
 
##Build QQ Plots 
par(mfrow = c(2,2)) 
qqnorm(metric$time, col = "blue", main = "Title") 
qqnorm(exp.var.b.metric, col = "green", main = "QQ Plot of 82 Exp R.V.") 
qqnorm(unif.var.b.metric, col = "green", main = "QQ Plot of 82 Unif R.V.") 
qqnorm(norm.var.b.metric, col = "green", main = "QQ Plot of 82 Norm R.V.") 
 
 
#####NORMALITY TESTING 
par(mfrow=c(1,1)) 
val.ad<-c() 
vec.ad<-c() 
val.cvm<-c() 
vec.cvm<-c() 
val.ks<-c() 
vec.ks<-c() 
val.sp<-c() 
vec.sp<-c() 
 
n<-1 
while (n<1000){ 
  rnd <- sample(metric$time,30,TRUE) 
  val.ad<-ad.test(rnd)$p.value 
  vec.ad<-c(vec.ad,val.ad) 
  val.cvm<-cvm.test(rnd)$p.value 
  vec.cvm<-c(vec.cvm,val.cvm) 
  val.ks<-lillie.test(rnd)$p.value 
  vec.ks<-c(vec.ks,val.ks) 
  val.sp<-shapiro.test(rnd)$p.value 
  vec.sp<-c(vec.sp,val.sp) 
   
  n<-n+1 
   
} 
 
### NORMALITY PLOTS 
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boxplot(vec.ad,vec.cvm,vec.ks,vec.sp, col = "blue",names = c("Anderson-
Darling","Cramer-von Mises","Kolmogrov-Smirnov","Shapiro-Wilk"),xlab = "Normality 
test",ylab = "P-Value", main = "Title") 
abline(h=.05, lty = 2, col = "red", lwd = 3) 
legend(locator(1),lwd=3,lty=2,col="red",legend="P-Value = .05", cex = .8) 
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APPENDIX B. CHAPTER IV SOURCE CODE 

This appendix contains the code for exploring the relationship between the 

expected number of runs, the desired cover, and the required precision. The metric of 

interest is read into R and the code will reveal the relationship through the generated 

output plots, as seen in Chapter IV. A csv file with the results is also outputted for any 

further analysis to be conducted. 

 
# Calculates needed sample sizes for a simulation run for a set of metrics. 
# see Singham and Schruben: Finite-Sample Performance of Absolute Precision Stopping 
Rules 
# 2 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, for more details. 
# also see LT Christian Seymour's thesis 
# LT Christian Seymour 
# modifications by Stephen C. Upton 
# SEED Center for Data Farming 
# 7/23/2014 
 
# NOTE: NA's are removed from the metric values for this computation; you'll need to 
clean/pre-process your input to account for any possible NAs 
 
 
m.test <- 10000 
 
 
# del <- c(15) 
# k.start <- c(30,40,50) 
# eta <- c(0.95) 
 
del <- c(1,2,4,6,8,10,15) 
k.start <- c(2,5,10,20,30) 
eta <- c(0.8,0.85,0.9,0.95) 
 
in.file <- "blue_ships_110.csv" 
out.file.name <- "Blue_ships_110.stoprules-2.csv" 
 
#dat.storm<- 
read.csv("/Users/Seymour/Desktop/STORM_WORKING_DOCUMENTS/ACTUAL_T
HESIS/Chapter_4_N/blue.ships.remaining-offdailykillsreport.csv") 
 
dat.storm <- read.csv(in.file) 
start.seed <- 3141592 
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compute.needed.sample.size <- 
function(x,m=10000,nmax=1000,eta=0.90,kstart=2,delta=1,seed=693147) { 
  # Computes the needed sample size for a simulation output metric, with a specific 
confidence level. 
  # 
  # Args: 
  #   x: a vector of output metric data. 
  #   m: The number of bootstrap experiments to run to estimate probability of coverage 
and sample size needed. Default is 10000. 
  #   nmax: The number of resamples. Default is 1000. 
  #   eta: The number of resamples. Default is 0.90.  
  #   kstart: The number of resamples. Default is 2.  
  #   delta: The number of resamples. Default is 1. 
  #   seed: a starting seed to use for the bootstrap sampling 
  # 
  # Returns: 
  #   A dataframe with the starting input values for kstart, delta, and eta, and  
  # the output values of the approximate coverage, and needed sample size. 
   
  cat(sprintf("using m value of %d, kstart value of %d, delta value of %f, eta value of %f, 
seed is %d\n",m,kstart,delta,eta,seed)) 
   
  if (delta <= 0 ) { 
    cat("ignoring this input: delta value ", delta," is less than 0\n") 
    return(list(eta.star=0, k.avg=0,delta.star=0)) 
  }  
   
  mu <- mean(x)  
  ek.cov <- compute.Ek.cov(x,delta,mu,m,nmax,eta,kstart,seed) 
   
  df <- data.frame(kstart=kstart,delta.star=delta,eta=eta,eta.star=ek.cov$cov/m, 
k.avg=ek.cov$meanEk,runtime=ek.cov$runtime,seed=seed) 
  cat("run time: ",df$runtime," secs\n") 
  df 
} 
 
compute.Ek.cov <- function(x,delta,mu, m=10000,nmax=1000,eta=0.90, 
kstart=2,seed=693147) { 
  # set the seed for this particular experiment, so we can easily reproduce results for this 
specific input set 
  set.seed(seed) 
  tval <- sapply(1:nmax,function(z) qt((1+eta)/2,z)) 
  t1 <- system.time({ 
    tt <- lapply(1:m,function(xx) { 
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      rnd <- sample(x,nmax,TRUE) 
      k <- kstart 
      repeat{ 
        hw <- tval[k-1]*sqrt(var(rnd[1:k])/k) 
        if(hw <= delta || k >= nmax){ 
          break 
        } 
        k <- k + 1 
      }  
      xbar <- mean(rnd[1:k])  
      data.frame(k=k,cov=abs(xbar - mu) <= delta,xbar=xbar) 
    }) 
    df <- do.call(rbind,tt) 
  }) 
  # uncomment the next 2 lines if you want an output file listing intermediate results 
  # ofile <- paste0("ek_cov.",paste(kstart,eta,delta,sep="-"),".csv") 
  # write.csv(df,ofile,quote=FALSE,row.names=FALSE) 
  list(cov=sum(df$cov),meanEk=mean(df$k),runtime=t1[3]) 
} 
 
t0 <- system.time({ 
  for (p in names(dat.storm)){ 
    x <- dat.storm[,p] 
    x <- x[!is.na(x)] 
    if ( length(x) == 0 ) { 
      cat("WARNING: all of your input data is NA for this metric: ",p," - skipping 
computation\n") 
      break 
    } 
    sd<-sd(x) 
    del.vec<-c(sd/del) 
    o <- expand.grid(eta=eta,del.vec=del.vec,k.start=k.start) 
    set.seed(start.seed) 
    o$seed <- floor(runif(nrow(o))*1000000) 
    df <- Map(function(e,d,k,s) 
compute.needed.sample.size(x=x,m=m.test,eta=e,delta=d,kstart=k,seed=s),o$eta,o$del.ve
c,o$k.start,o$seed) 
    dynamic.df <- do.call(rbind,df) 
  } 
}) 
 
 
 
t <- c(t0[3],t0[3]/60,t0[3]/3600) 
m <- c("secs","mins","hrs") 
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cat("time to execute: ",paste(format(t,digits=2),m,collapse=":"),"\n") 
#out.file <- file.path(getwd(),"Blue_ships.stoprules.csv") 
#write.csv(dynamic.df, out.file,quote=FALSE,row.names=FALSE) 
out.file <- file.path(getwd(),out.file.name) 
write.csv(dynamic.df, out.file,quote=FALSE,row.names=FALSE) 
df.B <- read.csv("/Users/Seymour/Desktop/Thesis_Formatted/Blue_ships.stoprules.csv") 
df.B.95<-df.B[df.B$eta == .95,] 
 
####PLOT Delta versus Expected Number of 
Replications##############################################################
### 
p<-ggplot(df.B.95, aes(x=jitter(amount=0.06, df.B.95$delta.star), y = df.B.95$k.avg, 
fill=as.factor(kstart), color = as.factor(kstart)))+geom_line()+ 
  xlab("Delta")+ylab("E[Number of Reps]") #+labs(title = "Delta versus E[Number of 
Reps]\n Blue Ships Remaining\nEta = .95") 
p + guides(color=guide_legend(title="Kstart"))+theme(axis.text.x = element_text(angle = 
0, hjust = 0, size=14,color="black")) + theme(axis.title.x = element_text(size = rel(1.8), 
angle = 00))+ theme(axis.title.y = element_text(size = rel(1.8), angle = 
90))+theme(axis.text.y = element_text(angle = 0, hjust = 1, size=14,color="black"))+ 
  theme(legend.title=element_text(size=16)) +theme(legend.text=element_text(size=18)) 
p <- p + scale_color_manual(values=c("Red")) 
 
####DELTA versus Probability of 
Coverage################################################################
############## 
p<-ggplot(df.B.95, aes(x=jitter(amount=0.06, df.B.95$delta.star), y = df.B.95$eta.star, 
fill=as.factor(kstart), color = as.factor(kstart)))+geom_line()+ 
  xlab("Delta")+ylab("Actual Coverage") #labs(title = "Delta versus P(Coverage)\n Blue 
Ships Remaining\nEta = .95") 
p + guides(color=guide_legend(title="Kstart"))+theme(axis.text.x = element_text(angle = 
0, hjust = 0, size=14,color="black")) + theme(axis.title.x = element_text(size = rel(1.8), 
angle = 00))+ theme(axis.title.y = element_text(size = rel(1.8), angle = 
90))+theme(axis.text.y = element_text(angle = 0, hjust = 1, size=14,color="black"))+ 
  theme(legend.title=element_text(size=16)) +theme(legend.text=element_text(size=18)) 
p <- p + scale_color_manual(values=c("Red")) 
 
#######Desired Coverage versus Expected 
Reps########################################## 
p<-ggplot(df.B.95, aes(x=jitter(amount=0.06, df.B.95$k.avg), y = df.B.95$eta.star, 
fill=as.factor(kstart), color = as.factor(kstart)))+geom_line()+ 
  ylab("Actual Coverage")+xlab("E[Number of Replications]") 
p + guides(color=guide_legend(title="Kstart"))+theme(axis.text.x = element_text(angle = 
0, hjust = 0, size=14,color="black")) + theme(axis.title.x = element_text(size = rel(1.8), 
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angle = 00))+ theme(axis.title.y = element_text(size = rel(1.8), angle = 
90))+theme(axis.text.y = element_text(angle = 0, hjust = 0, size=14,color="black"))+ 
  theme(legend.title=element_text(size=16)) +theme(legend.text=element_text(size=18)) 
p <- p + scale_color_manual(values=c("Red")) 
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