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Abstract.  An unmanned air vehicle (UAV) can operate as a capable team 
member in mixed human-robot teams if the agent that controls it can 
intelligently plan. However, planning effectively in an air combat scenario 
requires understanding the behaviors of hostile agents in that scenario, which is 
challenging in partially observable environments such as the one we study. We 
present a Case-Based Behavior Recognition (CBBR) algorithm that annotates 
an agent’s behaviors using a discrete feature set derived from a continuous 
spatio-temporal world state. These behaviors can then be given as input to an air 
combat simulation, along with the UAV’s plan, to predict hostile actions and 
determine the effectiveness of the given plan. We describe an initial 
implementation of a CBBR prototype in the context of a goal reasoning agent 
designed for UAV control. 

1 Introduction 

Unmanned air vehicles (UAVs) can be capable wingmen in air combat scenarios 
when given an accurate plan to execute [1]. However, planning may be ineffective if 
the behaviors of the other agents operating in the world are unknown. To effectively 
account for hostile and allied agents we will use a Case-based Behavior Recognition 
(CBBR) algorithm that, in combination with a predictive planner, can effectively 
evaluate UAV plans in real time. In our work, a wingman is a UAV that is given a 
mission to complete and may optionally also receive orders from a human pilot. In the 
situations where the UAV’s agent does not receive explicit orders, it must create a 
plan for itself.  

We define a behavior as an overarching tendency or policy of the agent. Behaviors 
are encoded in a directed graph where each node is an action, such as ‘fly to target’ or 
‘fire missile’. The domain we are working with is Beyond Visual Range Air Combat, 
which entails precise tactics at large distances. In this domain we have little data 
about the hostile agents, and what we do have is partially observable. Yet if the UAV 
can identify a hostile agent’s behavior or plan it can use that information when 
creating and evaluating its own plan.  
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We hypothesize that behavior recognition is more effective than plan recognition in 
domains where information is scarce. We designed our CBBR implementation so that, 
by discretizing state information over time, it can identify a hostile agent’s current 
behavior. CBBR currently operates in two 2 vs 2 scenarios (i.e., each scenario 
involves two ‘friendly’ aircraft versus two ‘enemy’ aircraft). In our first scenario a 
pilot and their UAV wingman are conducting an attack, while in the second they are 
defending a specified area.   

In the rest of this paper we describe our agent for intelligent control of UAVs in the 
Beyond Visual Range Air Combat domain, focusing on its CBBR component. In 
Section 2 we summarize related work. In Section 3 we provide a model of the 
Tactical Battle Manager (TBM), which includes our CBBR component. In Section 4, 
we describe its case structure and similarity function. Section 5 details a simple 
example, and Section 6 concludes and describes potential future work. 

2 Related Work 

Our behavior recognition component, which lies within a larger goal reasoning (GR) 
agent (i.e., the TBM), can determine if a UAV wingman’s plan is effective. In recent 
years, case-based reasoning (CBR) has been an active area of research for GR agents. 
For example, Weber et al. [2] use a case base to formulate new goals for an agent. 
Jaidee et al. [3] uses CBR techniques for goal selection and reinforcement learning 
(RL) for goal-specific policy selection. In contrast, our system uses CBR to recognize 
the behavior of other agents, so that we can predict their responses to our agent’s 
actions. 

Opponent agents can be recognized as a team or as a single agent. Team 
composition can be dynamic [4], resulting in a more complex version of the plan 
recognition problem [5]. Another approach to team dynamics involves setting 
multiagent planning parameters, as addressed by Auslander et al. [6], which are then 
given to a plan generator. Recognizing higher-level behaviors encompasses these 
team behaviors. For example, two hostile agents categorized as ‘all out aggressive’ in 
our system could, acting according to the ‘all out aggressive’ graph, execute a pincer 
maneuver (a maneuver in which two agents attack both flanks of an opponent).   

A challenging task in agent planning is inferring the states of any adversarial 
agents because their strategies can change over time. Auslander et al. [7] use a case-
based reinforcement learner to combat changing conditions and overcome slow 
learning by employing a case base of winning policies. Rao and Murray [8] store the 
mental states of the agent representing their beliefs, desires, and intentions and use 
those to synthesize plans. Similarly, Jaidee et al. [9] use dual case bases to learn goals 
and agent policies, making their approach more flexible than either case-based 
learning or RL alone. Smith et al. [10] use a genetic algorithm (GA) system to 
develop effective tactics for their agents in a two-sided learning experiment. Aha et al. 
[11] employed a case base to select sub-plans for agents at each state and keep the 
opponent agents at bay. To ensure our case-based solutions are robust to dynamic 
behaviors, we use global features in our cases to serve as a memory of past actions 



and tendencies. We also frequently update the agent’s behaviors, which enables the 
most recent information to be used for future planning. 

 

3 Tactical Battle Manager 

The TBM (Figure 1) is a set of systems for pilot-UAV interaction and autonomous 
UAV control. The UAV’s intelligent controller, which is the focus of this paper, takes 
as input an incomplete world state and outputs, and subsequently executes, a plan for 
the UAV. Each known agent in a scenario is represented in the world model, which 
contains the agent’s past observed states and future predicted states as well as its 
capabilities and currently recognized behavior. A complete state contains, for each 
time step in the simulation, the position and actions for each known agent. An 
example of an action in our system is ‘fire missile’ or ‘fly to target’. For the UAV and 
its allies the past states are complete. However, any hostile agent’s position for a 
given time is known only if the hostile agent appears on the UAV’s radar or the radar 
of one of its allies. Also, a hostile agent’s actions are never known and must be 
inferred from the potentially incomplete past states. The capabilities of an aircraft are 
currently given, though in future work they will be inferred through observations. In 
Section 4 we describe the behaviors and how they are modeled by the CBBR 
algorithm. 

The updated world model is passed to the Goal Management System (GMS). This 
follows the normal goal reasoning cycle and is complemented by a desire system 
similar to a Belief Desire Intention (BDI) [12] architecture. The GMS maintains a set 
of goals based on the world model; it adds, removes, and reprioritizes them as 
necessary. These goals are used to generate a plan for the UAV with a corresponding 
set of predicted states for all agents. We refer to the system that performs these tasks 
as the Predictive Planner. Currently this planner is simple. However, we use a more 
sophisticated Plan Expectation Predictor (PEPR) to generate the predicted states; it 
runs an instance of the Air Force Simulator (AFSIM), which is a mature air combat 
simulation engine that is used by the USAF. AFSIM simulates the plan for the UAV 
and the other agents in a scenario by projecting their behaviors to determine the 
effectiveness of the UAV’s plan. Thus, the predicted future states are only as accurate 
as the behaviors contained in our models. 



 
Fig. 1.  Tactical Battle Manager (TBM) Architecture 

4 Case-Based Behavior Recognition 

The following subsections describe the CBBR algorithm in detail. The traditional 
CBR cycle consists of four steps: retrieval, reuse, revise, and retain. Currently our 
algorithm employs only steps for retrieval and reuse. In future work we plan to 
expand the algorithm to include steps for revision and retention. 

 
4.1 Case Representation 

A case in our system represents an agent over time. Cases are represented as 
〈problem, solution〉 pairs. A problem is represented by a set of features that discretize 
the agent’s model, while a solution is the behavior the agent was employing. The 
feature set contains two feature types: features that occur at a specific time step and 
global features (Figure 2). Global features act as a memory and represent overarching 
tendencies about how the agent has acted in the past. Time step features represent 
features that affect the agent for the duration of the time step.  

To keep the cases lean, we merge time steps that have the same features and sum 
their durations. Features can be represented as a boolean value or a percentage. We 
represent some features using a percentage value because it more fully describes a 
situation than does a boolean. For example the hasTrack feature, which describes 
whether an agent has another agent in its radar, is defined as the ratio of agents it has 
in its radar versus the total number of agents it currently knows exists in a scenario.  

The currently modeled behaviors are:  

• All Out Aggressive: an agent attacks and is not concerned for its safety.  
• Safety Aggressive: an agent that attacks but has concern for its safety.  



• Defensive: an agent that only attacks when a hostile agent is within a certain area.  
• Oblivious: an agent that acts as if hostile agents are not near. 
• Passive: an agent that knows hostile agents are near but does not attack. 

 
Fig. 2. A case’s design, including problem features and solution behaviors 

4.2 Case Base Population 

We populated our case base by running several 2 vs 2 scenarios in AFSIM, where the 
hostiles were encoded with explicit behaviors to exhibit. For example, a 2 vs 2 
scenario was run where both hostiles had all out aggressive behaviors and the pilot 
and UAV ran simple passive behaviors (in which they try to keep the hostiles in radar 
range but do not attack). Cases are created from the hostiles in the scenario and 
recorded in an xml file. We prune the cases twice; first during case generation and 
also after all the scenarios have been run. The first stage of pruning prevents cases 
with the same problem features and solution behavior to be added to the case base. 
The second stage deletes cases from the case base if their problem features are 
identical but their behaviors differ. 



4.3 Case Similarity 

To calculate the similarity between a query q and a case c’s problem descriptions, we 
compute a weighted average from the sum of the distances between their matching 
global and time step features in cases. We use a weight of α for time step features and 
β for global features, where α and β are both non-negative numbers that sum to 1. If a 
query contains mismatched features to a case (features that are not present in the case, 
or features in a case that are not present in the query) then those features are ignored 
in the similarity equation. Similarity is calculated in reverse chronological order, with 
a discount factor δ applied based on how far in the past the feature occurred. The full 
equation is shown below, where σ(qf,cf) is the distance between two values for 
(matching) feature f, N is the set of time step features, and M is the set of global 
features. 

sim 𝑞, 𝑐 = −  𝛼
𝛿 ∙ 𝜎 𝑞! , 𝑐!!∈!

𝑁
− 𝛽

𝜎 𝑞! , 𝑐!!∈!

𝑀
                  (1) 

We are currently identifying values to use for these weights and the discount factor. 
Future work will include optimizing these variables.  

Once the case with the most similar problem description is found its (solution) 
behavior is retrieved and used as the predicted behavior of the currently observed 
agent. The world model is also updated with that agent’s predicted behavior, which is 
used by PEPR to predict future states.  

5 Discussion 

In Section 5.1 we present a simple example of the case structure and similarity metric 
in the domain of Beyond Visual Range Air Combat. Following that, in Section 5.2 we 
briefly describe the evaluations we intend to conduct in the future.  

 
5.1 A Simple Example 

In a simple example of the CBBR system, we have a case base in a 2 vs 2 scenario. 
The agents are modeled using discrete time step and global features. Here we define 
each case to have time steps of 5 seconds (i.e., a trace of 15 seconds of observed 
states is split into three time steps). Global features are extracted from the entire 
trace’s observed states. Below we show an example of a query q1, where a hostile 
agent followed an agent friendly to the UAV for two time steps and then turned away 
at the third time step. 

[q1] Behavior: ? 
List<TimeStep> timeSteps = 
 {d=5, hasTrack(.5), isFacing(.5) hasWeaponLeft(T)} 
 {d=5, hasTrack(.5), isFacing(.5), hasWeaponLeft(T),    
        isClosingOnEntities(.5)} 
 {d=5. hasTrack(.5), hasWeaponLeft(T)} 



List<GlobalFeature> gFeatures = 
 {hasSeenOpposingTeam(.5), hasAggressiveTendencies(.5)} 

In query q1 we can see the hostile agent is following a friendly agent because it has 
a friendly in its radar (hasTrack), is facing a friendly agent, and is closing on a 
friendly agent. Since there are two friendly agents in the scenario but the hostile is 
only following one of them the features have a value of 0.5. We do not record which 
agent this hostile is following, but only that it is following one of them. This is 
because knowing which friendly the hostile agent is following will not affect which 
behavior the agent is exhibiting. The hasWeaponLeft time step feature is the only one 
shown that is represented by a boolean value. (In this example we did not infer that 
the hostile fired a weapon, and therefore believe it still has one or more weapons 
remaining.)  

For this example consider two cases in the case base, c2 and c3. Case c2 is an 
example of a passive behavior, which often involves flying away from an enemy and 
avoiding conflict. Case c3 is an example of an all out aggressive behavior, which is 
similar to the query q1. The case retrieval step would return case c3 due to the 
similarity of the features in their first two time steps, and their global features. As 
mentioned previously the mismatched features at the third time step do not count 
against the similarity between q1 and either of the other cases. Thus, for this situation 
the agent described by query q1 would be predicted to be an all out aggressive agent. 

[C2] Behavior: Passive 
List<TimeStep> timeSteps = 
 {d=5, hasWeaponLeft(T)} 
 {d=5, hasWeaponLeft(T)} 
List<GlobalFeature> gFeatures =     
  {hasSelfPreservationTendencies(.5)} 
 
[C3] Behavior: All Out Aggressive 
List<TimeStep> timeSteps = 
 {d=5, hasTrack(1), isFacing(1), hasWeaponLeft(T)} 
 {d=5, hasTrack(1), isFacing(1), hasWeaponLeft(T),  
        isClosingOnEntities(1)} 
List<GlobalFeature> gFeatures = 
 {hasSeenOpposingTeam(.5), hasAggressiveTendencies(.5)} 

5.2 Future Empirical Studies 

To evaluate our CBBR component we plan to conduct several experiments. The 
objective of the first experiment will be to determine the effectiveness of CBBR as 
compared to other behavior recognizers, including baseline algorithms. To do this we 
will compare CBBR to a random behavior choice, a random behavior choice based on 
a predetermined percentage, and a rule-based system. Additionally, since we 
hypothesize a behavior recognizer is more robust than a plan recognizer in a domain 
with partial information we will compare the two approaches empirically. Lastly we 



plan to assess the effectiveness of the UAV’s plan, since the end goal of CBBR is to 
help identify whether a UAV’s plan will succeed as predicted by PEPR. 

6 Summary 

In this paper we presented a Case-Based Behavior Recognizer that, in our domain 
(Beyond Visual Range Air Combat), facilitates planning in unmanned air vehicles. 
This behavior recognizer is given a trace of spatio-temporal information, which may 
be incomplete. Our CBBR component is designed to identify overarching behaviors 
(e.g., aggressive or passive) rather than plans. In our future work we will empirically 
compare CBBR versus other behavior and plan recognizers, and also assess the 
effectiveness of the plan. We will also expand the behavior recognizer to reason with 
possibly mislabeled state information and more complex team tactics. 
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