

Integrity **★** Service **★** Excellence

On Processing Hexagonally Sampled Images

SOAR2 Review 12-15 JULY 2011

Nicholas I. Rummelt, Ph.D. Research Engineer AFRL/RWGII Air Force Research Laboratory

Report Documentation Page				Form Approved OMB No. 0704-0188	
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.					
1. REPORT DATE 2. REPORT TYPE JUL 2011 N/A		3. DATES COVERED			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
On Processing Hex	agonally Sampled I	mages		5b. GRANT NUM	1BER
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory			8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited					
^{13. SUPPLEMENTARY NOTES} See also ADM202973. BioMav SOAR 2. Held at Chilworth Manor, United Kingdom on July 12-15, 2011, The original document contains color images.					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT SAR	OF PAGES 47	RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

Outline

- Hexagonal sampling
- Array set addressing (ASA)
- Processing with ASA
 - Gradient estimation, convolution, downsampling, wavelet decomposition, and hexagonal DFT
 - Comparison with spiral addressing
- Hex-Rect sensor
- Fourier transform experiment
- Conclusion / questions

Hexagonal vs. Rectangular

- Optimal representation
- Consistent connectivity
- Angular resolution is 60 degrees
- Equidistant Spacing
- 6-fold symmetry
- Mimics nature

- Non-optimal representation
- Connectivity ambiguity: 4-way vs. 8-way
- Angular resolution is 90 degrees
- Unequal spacing
- 4-fold symmetry
- Man-made

Natural Systems

Compound eye of the blowfly (*Calliphora Vomitoria*)

Reproduced from <u>http://www.bath.ac.uk/ceos/Insects1.html</u> © University of Bath

Distribution of cones in the fovea of a human retina showing high peak density (A) and low peak density (B) (bar is 10 microns).

Reprinted from Curcio et al. (1987) © AAAS

Why is Hex Optimal?

Ahex = Arect Ovides the most

The spatial sampling geometry determines the spectral tiling, and the density of the spatial samples determines to according to the spatial samples

- efficient packing of circles in
- :: the frequency domain.

DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2011-0325)

- ASA separates the hexagonal grid into two rectangular arrays
- A three coordinate system addresses the individual points on the grid a binary array coordinate followed by the familiar row and column coordinates: $(a,r,c) \in \{0,1\} X \mathbb{Z} X \mathbb{Z}$

- Finding a neighbor's address is an O((logN)²) operation using spiral addressing
- No connectedness ambiguity a neighbor is a neighbor

Converting ASA to Cartesian is a simple matrix multiplication:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & 1 \\ \sqrt{3}/2 & \sqrt{3} & 0 \end{bmatrix} \begin{vmatrix} a \\ r \\ c \end{vmatrix} = \begin{bmatrix} (a/2+c) \\ (\sqrt{3})(a/2+r) \end{bmatrix}$$

Euclidean distance (on the image plane) between two points $\mathbf{p}_1 = (a_1, r_1, c_1)$ and $\mathbf{p}_2 = (a_2, r_2, c_2)$:

$$d(\mathbf{p}_{1},\mathbf{p}_{2}) = \sqrt{\left(\left(\frac{a_{1}-a_{2}}{2}\right)+(c_{1}-c_{2})\right)^{2}+(3)\left(\left(\frac{a_{1}-a_{2}}{2}\right)+(r_{1}-r_{2})\right)^{2}}$$

"City-Block" distance (on the image plane) between two points $\mathbf{p}_{1} = (\mathbf{a}_{1}, \mathbf{r}_{1}, \mathbf{c}_{1}) \text{ and } \mathbf{p}_{2} = (\mathbf{a}_{2}, \mathbf{r}_{2}, \mathbf{c}_{2}):$ $U = (c_{1} - c_{2}) - (r_{1} - r_{2})$ $V = (a_{1} - a_{2}) + (2)(r_{1} - r_{2})$ $d_{6}(\mathbf{p}_{1}, \mathbf{p}_{2}) = \begin{cases} |U| + |V| & \text{if U and V have the same sign} \\ \max(|U|, |V|) & \text{otherwise} \end{cases}$

9

Vector Operations

Let $\mathbf{p}_i = \begin{pmatrix} \mathbf{a}_i \\ \mathbf{r}_i \\ \mathbf{c}_i \end{pmatrix} \in ASA$			
Operation	Definition		
Addition	$\mathbf{p}_{1} + \mathbf{p}_{2} \equiv \begin{pmatrix} \mathbf{a}_{1} \oplus \mathbf{a}_{2} \\ \mathbf{r}_{1} + \mathbf{r}_{2} + (\mathbf{a}_{1} \wedge \mathbf{a}_{2}) \\ \mathbf{c}_{1} + \mathbf{c}_{2} + (\mathbf{a}_{1} \wedge \mathbf{a}_{2}) \end{pmatrix}$		
Negation	$-\mathbf{p} \equiv \begin{pmatrix} \mathbf{a} \\ -\mathbf{r} - \mathbf{a} \\ -\mathbf{c} - \mathbf{a} \end{pmatrix}$		
Subtraction	$\mathbf{p}_1 - \mathbf{p}_2 \equiv \mathbf{p}_1 + \left(-\mathbf{p}_2\right)$		
Scalar Multiplication	$k\mathbf{p} \equiv \begin{pmatrix} (ak) \mod 2 \\ kr + (a) \lfloor k/2 \rfloor \\ kc + (a) \lfloor k/2 \rfloor \end{pmatrix}, k \in \mathbb{N} \text{and} -k\mathbf{p} \equiv k(-\mathbf{p})$		

ASA is a Z-Module

ASA satisfies the 8 properties of a Z-module:		
Property	Significance	
Commutativity of addition	$p_1 + p_2 = p_2 + p_1$	
Associativity of addition	$\mathbf{p}_1 + (\mathbf{p}_2 + \mathbf{p}_3) = (\mathbf{p}_1 + \mathbf{p}_2) + \mathbf{p}_3$	
Identity element of addition	$\exists 0 \in ASA: \mathbf{p} + 0 = \mathbf{p}, \forall \mathbf{p} \in ASA$	
Inverse elements of addition	$\exists \mathbf{q} \in ASA: \mathbf{p} + \mathbf{q} = 0, \forall \mathbf{p} \in ASA$	
Distributivity of scalar multiplication (wrt vector addition)	k(p + q) = kp + kq	
Distributivity of scalar multiplication (wrt scalar addition)	(k + j) p = k p + j p	
Compatibility of scalar multiplication (with multiplication of scalars)	k(j p) = (kj) p	
Identity element of scalar multiplication	1 p = p	

Gradient Estimation

DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2011-0325)

DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2011-0325)

Assumptions:

- Hexagonal and rectangular images are each M x N pixels
- Image borders are padded to allow each pixel to use the full convolution mask
- Let C_{ij} be the convolution of the i-array of the image with the j-array of the convolution mask
 ASA convolution (7 point mask):

Hexagonal Neighborhood of 1st Nearest Neighbors (7 point mask)

Rectangular Neighborhood of 1st Nearest Neighbors (9 point mask)

ASA convolution (7 point mask):			
Step	Multiplications	Additions	
Calculate C ₀₀	(3)(M/2)(N)	(2)(M/2)(N)	
Calculate C ₀₁	(4)(M/2)(N)	(3)(M/2)(N)	
Calculate C ₁₀	(3)(M/2)(N)	(2)(M/2)(N)	
Calculate C ₁₁	(4)(M/2)(N)	(3)(M/2)(N)	
Sum of C_{00} and C_{11}	0	(M/2)(N)	
Sum of C_{01} and C_{10}	0	(M/2)(N)	
TOTALS:	7MN	6MN	
Rectangular convolution (9 point mask):			
	Multiplications	Additions	
TOTALS:	9MN	8MN	

Canny Edge Detector

Angular Resolution

The increased angular resolution of the hexagonal grid may account for the increased performance of the Canny edge detector.

Downsampling

We want to use $\frac{1}{2}$ of each of the neighboring pixels since they are shared with adjacent "superpixels". So we are averaging together (6)(1/2) + 1 = 4 pixels, resulting in the above averaging mask.

After convolving the image with the averaging mask, the light blue pixels form the downsampled 0-array and the dark blue pixels form the downsampled 1-array. The resulting arrays are 1/4 the size of the original arrays (i.e. $(N/2) \times N \implies (N/4) \times (N/2)$).

HPF 3	HPF 2	HPF 3	
HPF 1	LPF	HPF 1	HF
HPF 3	HPF 2	HPF 3	

Rectangularly Sampled

Hexagonally Sampled

Idealized Frequency Domain Regions of Support

Perfect Reconstruction (PR) Example

ASA implementation of Allen PR wavelet, runtime = 0.5017 (0.0077) sec

Rect. implementation of CDF 9/7 wavelet, runtime = 0.5484 (0.008) sec

HDFT / HFFT

Mersereau's HDFT:

$$X(k_{1},k_{2}) = \sum_{n_{1}} \sum_{n_{2}} x(n_{1},n_{2}) \exp\left[-j\pi\left(\frac{1}{2N_{1}+N_{2}}(2n_{1}-n_{2})(2k_{1}-k_{2})+\frac{1}{N_{2}}(n_{2}k_{2})\right)\right]$$
$$x(n_{1},n_{2}) = \frac{1}{N_{2}(2N_{1}+N_{2})} \sum_{k_{1}} \sum_{k_{2}} X(k_{1},k_{2}) \exp\left[j\pi\left(\frac{1}{2N_{1}+N_{2}}(2n_{1}-n_{2})(2k_{1}-k_{2})+\frac{1}{N_{2}}(n_{2}k_{2})\right)\right]$$

Mersereau encountered an "insurmountable difficulty" when attempting to develop a fast algorithm to compute the hexagonal DFT, due to the product of mixed coordinates in the exponential.

HDFT / HFFT (Cont.)

The HDFT in ASA becomes:

$$X(b,s,d) = \sum_{a} \sum_{r} \sum_{c} x(a,r,c) \exp\left[-j\pi\left(\frac{1}{2m}(a+2c)(b+2d)+\frac{1}{n}(a+2r)(b+2s)\right)\right]$$
$$x(a,r,c) = \frac{1}{2mn} \sum_{b} \sum_{s} \sum_{d} X(b,s,d) \exp\left[j\pi\left(\frac{1}{2m}(a+2c)(b+2d)+\frac{1}{n}(a+2r)(b+2s)\right)\right]$$

Column Coordinates

Row Coordinates

$$X(b,s,d) = \sum_{a} \sum_{r} \left[\sum_{c} x(a,r,c) \exp\left(\frac{-j\pi}{2m}(a+2c)(b+2d)\right) \right] \exp\left(\frac{-j\pi}{n}(a+2r)(b+2s)\right)$$
$$x(a,r,c) = \frac{1}{2mn} \sum_{b} \sum_{s} \left[\sum_{d} X(b,s,d) \exp\left(\frac{j\pi}{2m}(a+2c)(b+2d)\right) \right] \exp\left(\frac{j\pi}{n}(a+2r)(b+2s)\right)$$

The Fourier kernel is separable in ASA space!

21

Fourier Transform of Allen's Filter Bank

High-Pass filter

The values given are *exact*. (They must be divided by 1014 to achieve normalization.) The other two filters can be visualized by rotating the High-pass filter 120° and 240°.

J. D. Allen, "Perfect reconstruction filter banks for the hexagonal grid," in *Proc. 5th Int. Conf. Information, Communications. and Signal Processing*, Dec. 2005, pp. 73–76.

ASA vs. HIP

Operation	HIP	ASA	Ratio
Address (Vector) Addition	23.85 (3.15)	2.11 (0.97)	11.28
Address (Vector) Subtraction	33.98 (3.56)	2.56 (0.47)	13.28
Scalar Multiplication	6652.08 (4076.89)	3.73 (0.73)	1782.20
Calculate Euclidean Distance	15.83 (2.43)	2.73 (0.56)	5.79
Calculate 6 Nearest Neighbor Addresses	118.94 (10.49)	3.31 (0.75)	35.89
Convert From Cartesian	9189.68 (3784.79)	4.48 (1.13)	2052.31

Each result is the mean of 10,000 operations on randomly selected addresses (µs, mean (std))

Operation	HIP	ASA
Address (Vector) Addition / Subtraction	O((logN) ²)	O(1)
Scalar Multiplication	O(N(logN) ²)	O(1)
Calculate Euclidean Distance	O(logN)	O(1)
Calculate 6 Nearest Neighbor Addresses	O((logN) ²)	O(1)
Convert From Cartesian	O(N(logN) ²)	O(1)

Hex-Rect Imager

Experiment Results

0.268/0.309 ≈ 0.867 ≈ (√3)/2 ≈ 0.866

- There are several advantages to sampling digital images hexagonally rather than rectangularly
- ASA is tri-coordinate system for addressing a hexagonal grid that provides support for efficient image processing
- Efficient ASA methods were shown for gradient estimation, convolution, downsampling, wavelet decomposition, and hexagonal DFT
- The Hex-Rect imager can be used to quantitatively compare hexagonal and rectangular sampling

DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2011-0325)

Backup Slides Follow

On-FPA Processing with Difference of Gaussians

Neuromorphic Infrared Sensor (NIFS)

- Carver Mead's Silicon Retina
- Hauschild's Prototype
- Gaber's Design
- Centeye's Hex-Rect
- More to come...

Hex-Rect Unit Cells

Examples

Input Data, Salt/Pepper Noise

After 3x3 Median Filtering

Input Scene

After DoG, zero-crossing

After Anisotropic Filtering

Hex-Rect Specs

Drawn chip size	6.1mm x 11.1mm
Focal plane size	4.7mm x 9.2mm
Focal plane resolution	Raw trapezoid pixels: 304 x 512
	Hexagonal array: 152 x 255 (even rows have 256 hex pixels)
	Rectangular array: 151 x 256
Pixel type	3-transistor active pixel, with support for both logarithmic response
	and linear response
Pixel pitch	18 microns wide by 15.6 microns high for raw pixels
Post-pixel circuitry	8-bit flash ADC
Interface	PIO12B parallel interface:
	8 bidirectional digital, 2 digital in, 1 analog out
	12-bit command bus in two 6-bit words
	8-bit digital out
	Optional 3 input chip select
	Optional analog out
	Alternative 12 bit input / 8 bit output parallel interface
Process	ON-Semi C5N 3 metal 2 poly 0.5 micron process
Chip operating voltage	4V to 5V preferred
Digital input $0/1$ threshold	About 0.95V
Voltage regulation	On-chip voltage regulator for analog circuits and bias generators

Hex-Rect Interface

IR Readout Considerations

From R. Hauschild et al., "A CMOS Optical Sensor System Performing Image Sampling on a Hexagonal Grid" in *Proc. 22nd European Solid-State Circuits Conf.*, 304-307, 1996.

- Typical readouts (ROICs) are designed to read out rectangular arrays
- Slight modifications should allow hexagonally sampled images to be read out into the ASA data structure
- Images from the prototype on the right could have been processed directly using ASA

- Indium Gallium Arsenide (InGaAs)
 - NIR (0.4 1.6 um), Uncooled or slightly cooled
- Indium Antimonide (InSb)
 MWIR (3-5 um), Cooled to 77K
- Mercury Cadmium Telluride (HgCdTe)
 - MWIR (3-5 um), Cooled to 77K or 120K+
 - LWIR (8-12 um), Cooled to 77K or 120K+
- QWIP
- Strained Layer Superlattice

Image Formation Results

Original Image

Hexagonally Sampled

Rectangularly Sampled

Pixel Geometries

"Pixel Geometries", P. Halasz Reproduced from: http://commons.wikimedia.org/wiki/File:Pixel_geometry_01_Pengo.jpg

ASA Storage

Use memory addresses as indices:

Assume an N x 2^{j} ASA image and a 32 bit address space Column index = j Row index = ceil(log₂(N/2)) bits = m Array index = 1 bit Base address = 32-(j+m+1)

Yields row-major order storage

For a regular hexagonal grid described by

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} d & d/2 \\ 0 & d\sqrt{3}/2 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$$

where x and y are Cartesian coordinates, n_1 and n_2 are integers (oblique coordinates), the conversion from ASA to Cartesian coordinates is a simple matrix multiplication:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} d/2 & 0 & d \\ d\sqrt{3}/2 & d\sqrt{3} & 0 \end{bmatrix} \begin{bmatrix} a \\ r \\ c \end{bmatrix} = \begin{bmatrix} (d)(a/2+c) \\ (d\sqrt{3})(a/2+r) \end{bmatrix}$$

The parameter d is the distance between any two adjacent grid points. Assume that d=1 for the remainder of the presentation.

Converting Cartesian to ASA

Convert the Cartesian coordinates (x, y) into integers (x_r, y_r) by first scaling each dimension, then rounding to the nearest integer:

Converting Cartesian to ASA (Cont.)

- Determine which quadrant (x_s, y_s) is in by comparing to (x_r, y_r)
- Using the known point and slope determine if (x_s, y_s) is above or below the line
- Adjust (x_r,y_r) to correct hexagon center
- Convert (x_r,y_r) to ASA using:

$$a = y_r \mod 2$$
$$r = \frac{y_r - a}{2}$$
$$c = \frac{x_r - a}{2}$$

Downsampling Example

Hex Characteristics

The spacing is important to maintaining the natural symmetry of the hexagonal grid.

