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1. Introduction 

The nonlinear radar studied in this report transmits multiple simultaneous 
frequencies and receives intermodulation products in the vicinity of those same 
frequencies. This work is similar to that on intermodulation radar;1–4 however, the 
simultaneous-frequency radar is wideband and allows for the generation of a range 
profile of the nonlinear radar environment.5–9 

A 2-tone simultaneous-frequency radar is shown in Fig. 1. The radar transmits 2 
frequencies, f1 and f2, at (approximately) the same amplitude. The radar receives at 
least 2 intermodulation frequencies, 2f1 – f2 and 2f2 – f1. Although not depicted in 
Fig. 1, the radar may also receive higher-order intermodulation frequencies such as 
3f1 – 2f2 and 3f2 – 2f1. The current experimental radar transmits 20 simultaneous 
frequencies and receives enough (higher-order) intermodulation products to 
adequately construct a range profile over more than 100 ft. 

 

Fig. 1 A simultaneous-frequency radar that transmits at the frequencies f1 and f2 and 
receives the intermodulation frequencies 2f1 – f2 and 2f2 – f1 

2. Experiment and Data 

The experiment used to collect simultaneous-frequency data is depicted in Fig. 2. 
The radar environment is currently simulated in hardware using 51 ft of Megaphase 
F130 cable to mimic transmission over the air from the radar to an electronic target 
and reflection over the air back to the radar. The target is a radio that has been 
connectorized (i.e., its antenna was removed and replaced with an SMA end-launch 
connector). 
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Fig. 2 Coaxial-line experiment to collect simultaneous-frequency data from nonlinear 
electronic targets of interest 

The transmitted signal source is the Tektronix AWG7052 arbitrary waveform 
generator. The MiniCircuits ZHL-42W amplifies this signal by 38 dB before it is 
input to the Hewlett-Packard 778D dual-directional coupler. The output of the HP 
778D feeds into 51 ft of low-loss, low-distortion Megaphase F130 cable (three  
12-ft lengths plus one 15-ft length in cascade). At the end of the 51-ft cable is the 
connectorized target. Data was collected from 2 targets: the Motorola FV300 and 
the Motorola T4500 (handheld radios). Photos of these 2 targets and a zoomed-in 
view of the connectorized FV300 are given in Fig. 3. 

               

Fig. 3 Targets: FV300 (left), T4500 (center), and connector in place of antenna (right) 

The output from the AWG7052 contains N = 20 simultaneous frequencies.10 The 
lowest frequency is fstart = 890 MHz. The highest frequency is fend = 966 MHz. The 
frequencies are evenly spaced by ∆f = 4 MHz. The output power is  
–54 dBm/frequency (–41 dBm total). 

The voltage wave that reflects from the target is separated from the wave 
transmitted to the target by the directional coupler. The transmit (Tx) and receive 
(Rx) waveforms are sampled at 20 dB down from their true amplitudes via the Tx- 
and Rx-coupled ports on the 778D. These sampled waveforms are captured by the 
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Lecroy Wavemaster 8300A digitizing oscilloscope; channel 1 captures vtrans and 
channel 2 captures vrec. A fast Fourier transform (FFT) computed in Matlab is used 
to view the time-domain-captured waveforms in the frequency domain. 

Figure 4 contains the time-domain transmitted and received waveforms for the 
Motorola FV300 as the target. Figure 5 contains the frequency-domain versions of 
these same waveforms. The transmit waveform contains a significant amount of 
intermodulation (below 890 MHz and above 966 MHz), which can be traced to the 
output from the AWG. For this wireline experiment, the current level of transmitter-
generated intermodulation is not prohibitive. For a wireless experiment, this 
intermodulation should be minimized using pre-distortion or feedforward 
cancellation (because the received intermodulation, which is expected to be much 
weaker in the wireless case, is likely to be masked by the transmitter-generated 
intermodulation). 

 

Fig. 4 Time-domain Tx and Rx waveforms for multitone experiment: the received 
waveform shown is from the Motorola FV300 radio 
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Fig. 5 Frequency-domain Tx and Rx waveforms: the received waveform is from the 
Motorola FV300 radio 

The received waveform contains intermodulation generated by the target 
(particularly in the ranges 800–886 and 970–1060 MHz, and relative to the power 
at the intended 20 transmit frequencies). In the upper part of Fig. 6, the target-
generated intermodulation is isolated from target’s linear response by band-stop 
filtering vrec between 890 and 966 MHz. An inverse FFT6,8 of this filtered vrec, 
whose horizontal axis is scaled from time to distance by 2pd u t= , is given in the 
lower part of Fig. 6 as hIMD. The propagation speed used for this calculation is that 
reported by the cable manufacturer: 1 1.27 ns ftpu = .11 

Figures 7–9 are the same as Figs. 4–6 but for the T4500 radio as the target instead 
of the FV300. Figures 10–12 are the corresponding data traces for an open circuit 
located at the end of the 51-ft cable instead of an actual target. 

The waveforms hIMD in Figs. 6 and 9 display a maximum at d = 53 ft, corresponding 
to the length of the cascaded Megaphase cables, plus an extra 2 ft due to the length 
of the 778D coupler and each cable between the coupler and the oscilloscope. 
Compared to the “no-target case,” i.e., the open-circuit data in Fig. 12, the presence 
of a well-defined peak indicates successful detection of each nonlinear target. The 
location of the peak at a distance d corresponding to the physical length of the 
coaxial line between the radar transceiver and the target indicates successful 
ranging of each nonlinear target. Simultaneous-frequency radar, for 20 tones and 
transmit frequencies between 890 and 966 MHz, has been successfully 
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demonstrated via wireline. A follow-up experiment will replace the “simulated 
radar environment” of Fig. 2 by a fully wireless transmit/receive channel. 

 

Fig. 6 Received waveform from the FV300, filtered and processed via inverse FFT into the 
range profile waveform hIMD 

 

Fig. 7 Time-domain Tx and Rx waveforms for multitone experiment: the received 
waveform shown is from the Motorola T4500 radio 
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Fig. 8 Frequency-domain Tx and Rx waveforms: the received waveform is from the 
Motorola T4500 radio 

 

Fig. 9 Received waveform from the T4500, filtered and processed via inverse FFT into the 
range profile waveform hIMD 
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Fig. 10 Time-domain Tx and Rx waveforms for multitone experiment: the received 
waveform shown is from an open circuit at the end of the 51-ft cable 

 

Fig. 11 Frequency-domain Tx and Rx waveforms: the received waveform is from the open 
circuit 
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Fig. 12 Received waveform from the open circuit, filtered and processed via inverse FFT 
into the range profile waveform hIMD 

3. Conclusions 

Simultaneous-frequency nonlinear radar was successfully demonstrated for 20 
transmitted tones, evenly spaced between 890 and 966 MHz, for 2 electronic targets 
of interest, at a distance of just over 50 ft, by receiving and processing 
intermodulation generated by each target. The wireline experiment implies that the 
results may be extended to a well-controlled (high transmit power, low noise, short-
range) wireless test. True standoff radar operation must be confirmed by replacing 
the wireline channel (coaxial line) with a fully wireless channel (over the air). 
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