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Abstract
The multicore revolution is having limited impact in safety-
critical application domains. The key reason is the “one-
out-of-m” problem: when checking real-time constraints
on a multicore platform with m cores, analysis pessimism
can easily negate the processing capacity of the additional
m− 1 cores. Two major approaches have been investigated
previously to address this problem: mixed-criticality alloca-
tion techniques that seek to provision less-critical software
components less pessimistically, and hardware-management
techniques that seek to make the underlying platform itself
more predictable. In this paper, the results of an experimen-
tal investigation are presented that shows that applying both
approaches together can have a much greater impact than
applying either alone. This investigation is based on a new
variant of the MC2 (mixed-criticality on multicore) frame-
work that enables tasks to be isolated by criticality level with
respect to the hardware resources they access.

1 Introduction
Multicore platforms have the potential of enabling a wealth
of new computationally intensive features in safety-critical
domains such as in the avionic and automotive industries.
However, certifying the real-time correctness of a system
running on m cores can necessitate using analysis that is so
pessimistic, the processing capacity of the additional m− 1
cores is entirely negated. In effect, only “one core’s worth” of
capacity can be utilized even thoughm cores are available. In
domains such as avionics, this “one-out-of-m” problem has
led to the common practice of simply disabling all but one
core.1 This problem is the most serious unresolved obstacle
in work on real-time multicore resource allocation today.

Two major approaches for addressing this problem have
been investigated. The first approach involves leveraging the
fact that systems often have tasks of differing criticalities.
The goal here is to produce analysis that enables less-critical
tasks to be provisioned less pessimistically, even though they
must co-exist with more-critical tasks in the same system.

∗Work supported by NSF grants CNS 1115284, CNS 1218693, CPS
1239135, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-
0161, ARO grant W911NF-14-1-0499, and a grant from General Motors.
The second author was also supported by an NSF graduate fellowship.

1In fact, the U.S. Federal Aviation Administration is currently consider-
ing the possibility of mandating such an approach when multicore platforms
are used in avionic systems.

The second approach focuses instead on the real root of the
problem, namely shared hardware resources, such as caches,
buses, and memory banks, that are not predictably managed.
By introducing such management, the goal here is to reduce
pessimism by enabling tighter task execution-time estimates.
While each approach seems promising by itself, a better way
forward might be to combine both approaches.
Isolation versus sharing. Such a combination strategy
gives rise to new allocation tradeoffs pertaining to sharing
and isolation that have not been considered before. For ex-
ample, while higher-criticality tasks might require strong
hardware-isolation guarantees, more optimistically provi-
sioned lower-criticality tasks might actually benefit from less
restricted hardware sharing because shared hardware is often
designed to improve average-case performance or through-
put. With respect to caches, higher-criticality tasks might
tolerate severe restrictions on cache usage, because they
are provisioned pessimistically anyway. For lower-criticality
tasks, the opposite may be true.

In this paper, we report on our efforts to construct an
experimental platform that enables such tradeoffs to be as-
sessed. We also present the results of an experimental inves-
tigation that demonstrates the virtues of applying hardware-
management techniques in a mixed-criticality (MC) setting.
Our new platform extends a framework called MC2 (mixed-
criticality on multicore) [11, 23, 27], which has been the
subject of continuing research by our group, by adding sup-
port for several hardware-management techniques.2 Specifi-
cally, we provide management for both the last-level cache
(LLC) and DRAM memory banks. Additionally, we provide
techniques that isolate the operating system (OS) from user-
space tasks with respect to the LLC and DRAM banks; to our
knowledge, disruptions caused by the OS have not been con-
sidered before in work on hardware management techniques.
We regard MC2 as a rich and interesting platform for our
investigation because (as discussed later) it supports several
criticality levels (and not just two, as typically assumed in
work on MC scheduling), has both hard real-time (HRT) and
soft real-time (SRT) components, both priority-scheduled
and time-triggered components, and both partitioned and
globally scheduled components.
Contributions. Our contributions are threefold. First, we
explain how we extended MC2 to provide support for LLC

2MC2 should not be confused with a similarly named European project
that began several years after work on MC2 commenced.
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and DRAM bank management and OS isolation. This new
MC2 variant is highly configurable and breaks new ground
by allowing sharing and isolation tradeoffs to be studied in a
criticality-cognizant way.

Second, we present a variety of experiments concerning
such tradeoffs that demonstrate the value of managing hard-
ware in MC systems. In the MC2 configuration considered
in these experiments, strong hardware isolation guarantees
were provided to highly critical tasks, but somewhat permis-
sive sharing was allowed for less-critical tasks.

Third, we provide evidence in favor of combining MC
analysis with hardware management in attacking the one-out-
of-m problem. This evidence is based on two case-study task
systems. For one of these task systems, applying both MC
analysis and hardware management on a quad-core ARM
machine resulted in a schedulable system with an average-
case utilization of 3.592. In contrast, applying only MC
analysis, average-case utilization rose to 4.768, applying
only hardware management, it rose to 5.466, and applying
neither, it rose to 8.688. Thus, for this system, over-utilization
can only be avoided if both techniques are applied together,
though applying each by itself has some impact.

We are certainly not the first to investigate MC analysis
techniques or approaches for managing shared hardware—
we review prior related work on these issues later, to properly
position our contributions. However, we are the first (to our
knowledge) to provide criticality-cognizant isolation—with
respect to both the OS and some of the most problematic
sources of shared-hardware interference—within a frame-
work as diverse as MC2.
Organization. The remainder of this paper, we provide
needed background and review prior work (Sec. 2), describe
relevant implementation details, (Sec. 3), present our experi-
mental results (Sec. 4), and conclude (Sec. 5).

2 Background
In this section, we present necessary background on real-
time systems, MC scheduling generally, the MC2 framework
specifically, techniques for isolating tasks with respect to
LLCs and memory banks, and prior related work.
Task model. We consider real-time workloads specified us-
ing the implicit-deadline periodic task model and we as-
sume familiarity with this model. We specifically consider
a task system τ = {τ1, . . . , τn}, scheduled on m proces-
sors,3 where task τi’s period and worst-case execution time
(WCET) are denoted Ti andCi, respectively. (Below, the task
model specified here is refined to allow multiple execution-
time estimates to be associated with the same task.) We de-
note the jobs released by Ti as Ji,1, Ji,2, . . .. We denote the
utilization of task τi as ui = Ci/Ti and the total system uti-
lization of τ as Usum =

∑
i ui. A periodic task system may

be scheduled following a partitioned approach (tasks are stat-
ically assigned to processors), a global scheduling approach
(any task may execute on any processor), or some hybrid of

3We use the terms “processor,” “core,” and “CPU” interchangeably.

the two. If a job Ji,j is released at time ri,j , has a deadline
at time di,j , and completes execution at time t, then its re-
sponse time is t− ri,j and its tardiness is max{0, t− di,j}.
Tardiness should be zero for any job of a hard real-time
(HRT) task, and should be bounded by a (reasonably small)
constant for any job of a soft real-time (SRT) task.

Mixed-criticality scheduling. The roots of most recent
work on MC scheduling can be traced to a seminal paper by
Vestal [26]. He observed that, from the perspective of certi-
fying the real-time requirements of a less-critical task, the
execution times assumed of more-critical tasks are needlessly
pessimistic. Thus, he proposed that schedulability tests for
less-critical tasks be altered to incorporate less-pessimistic
execution times for more-critical tasks. More formally, in a
system with L criticality levels, each task has a provisioned
execution time (PET)4 specified at every level, and L system
variants are analyzed: in the Level-` variant, the real-time
requirements of all Level-` tasks are verified with Level-`
PETs assumed for all tasks (at any level). The degree of
pessimism in determining PETs is level-dependent: if Level
` is of higher criticality than Level `′, then Level-` PETs will
generally be greater than Level-`′ PETs. For example, in the
systems considered by Vestal [26], observed worst-case exe-
cution times were used to determine PETs for tasks at lower
levels, and such times were inflated to determined PETs at
higher levels. The task model resulting from Vestal’s work
has come to be known as the MC task model.

MC2. Vestal’s work led to approximately 200 follow-up pa-
pers on MC scheduling by a variety of authors (see [5] for an
excellent survey). Most prior work on this topic has focused
on uniprocessors or has emphasized theoretical issues. MC2

was the first MC scheduling framework for multiprocessors
(to our knowledge) [11, 23, 27]. MC2 is implemented as a
LITMUSRT [21] plugin. In MC2, four criticality levels exist,
denoted A (highest) through D (lowest), as shown in Fig. 1.
Higher-criticality tasks are statically prioritized over lower-
criticality ones. Level-A tasks are partitioned and scheduled
on each core using a time-triggered table-driven cyclic exec-
utive.5 Level-B tasks are also partitioned but are scheduled
using a rate-monotonic (RM) scheduler on each core.5 On
each core, the Level-A and -B tasks are required to be sim-
ply periodic (all tasks commence execution at time 0 and
periods are harmonic), with the Level-B task periods being
integer multiples of the Level-A hyper-period. Level-C tasks
are scheduled via a global earliest-deadline-first (G-EDF)
scheduler.5 Level-A and -B tasks are HRT, while level-C
tasks are SRT. Level-D tasks are scheduled with no real-time
guarantees (so we do not consider them further). MC2 is

4We use “PET” instead of “WCET” because in the considered MC2

framework, some tasks are SRT, and hence may not be provisioned on a
worst-case basis.

5A RM (EDF) scheduler can be optionally used at Level A (B). Ad-
ditionally, any G-EDF-like (GEL) scheduler [8] can be used at Level C.
Furthermore, Level-C tasks can be defined according to the sporadic task
model. For simplicity, we do not consider these options further herein. Other
facets of MC2, such as slack reallocation, schedulability conditions, and
execution-time budgeting are discussed in prior papers [11, 23, 27].
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Figure 1: Scheduling in MC2 on a quad-core machine.

a flexible framework. For example, it can be configured to
have only two HRT criticality levels (as in most theoretical
work on MC scheduling) or to fully assign the Level-A and
-B subsystems to distinct, dedicated cores.

Page coloring. Page coloring is a technique that can be ap-
plied to eliminate interference within the LLC and memory
banks [14]. We explain the basic idea here with respect to
the LLC (which we assume to be set-associative). Consider
a physical memory that is subdivided into 4 KB pages and
consider each page in turn. Assign the color “0” to the first
page, and assign the same color to the sets in the LLC to
which its content’s addresses map. In a similar way, assign
the color “1” to the next page and corresponding cache sets,
and so on. Eventually, such color assignments will “wrap,”
in which case we reuse color “0,” color “1,” and so on. Once
all pages have been colored, we have the property that differ-
ently colored pages map to different sets in the LLC. Thus,
accesses to two differently colored pages cannot cause cache
conflicts. Note that this coloring process is based on physi-
cal memory addresses. Such addresses also determine how
memory pages map to DRAM banks, so pages can also be
colored with respect to the banks to which they are mapped.

Ensuring isolation with respect to the LLC. In most prior
work on eliminating or reducing interference in the LLC,
some variant of cache partitioning is used (see [18] for an
overview). Set-based cache partitioning can be implemented
by page coloring: each partition corresponds to a disjoint sub-
sequence of colors that maps to some disjoint subsequence
of sets in the LLC. Way-based cache partitioning is also pos-
sible, but this requires hardware support. The ARM platform
utilized in our experiments provides such support, which we
describe in detail later in Sec. 3 (see Fig. 3). As we will show,
these two techniques can also be used together given support
in both hardware and software.

Ensuring isolation with respect to memory banks. Mod-
ern DRAM designs contain multiple banks, which can be
interleaved to parallelize memory accesses. Each bank con-
sists of memory in an array of rows and columns, along with
a row buffer. For a memory location to be read or written
via the data bus, that location’s row must be stored in the
row buffer. If the row was already in the buffer, then we have
a row-buffer hit, otherwise we have a row-buffer miss. In
the event of a miss, the row previously in the buffer must
be copied back to the array. Row-buffer misses create extra
latency and should be avoided if possible. It is possible to

prevent a task executing on one processor from causing one
executing on a different processor to experience row buffer
misses by partitioning DRAM banks among processors [22].
Prior related work. The use of cache partitioning in real-
time systems has been investigated before. Kim et al. [17]
presented a cache-partitioning scheme that allows multiple
tasks to share the same cache partition on a single processor
(as we do in Sec. 3), but they did not consider MC systems.
Altmeyer et al. [2] considered uniprocessor scheduling on
a system with a direct-mapped cache and examined WCET
estimates as a function of cache size. They also presented
a cache-partitioning algorithm that is optimal under certain
assumptions. As an alternative to cache partitioning, a tech-
nique called cache lockdown can be used that prevents des-
ignated cached data or instructions from being evicted [6].
Also, it is possible to redesign the cache allocator itself to
provide a replacement policy that is more predictable [12].

Regarding memory-related issues generally, prior work
has been done on more predictable memory architectures
and memory controllers for single-criticality [20] and MC
[3, 24, 15] systems, on improved timing analysis for MC
multicore systems that more accurately assesses memory in-
ference [13], and on making bus accesses more predictable in
single-criticality [1, 25] and MC systems [9, 10]. Regarding
DRAM-related issues specifically, Kim et al. [16] presented
detailed analysis for predicting memory access delays in
which DRAM characteristics are carefully considered. How-
ever, they did not consider MC systems. Yun et al. [29]
presented an approach that reduces cache, bus, and mem-
ory interference in MC systems by stalling some memory
accesses. A survey of challenges created by shared hardware
interference has been presented by Kotaba et al. [19].

Yun et al. [28] presented PALLOC, a memory alloca-
tor that can specifically allocate pages to provide cache
and/or bank isolation. However, that work did not consider
MC systems, and their implementation makes use of Linux
CGROUPS, which are not supported in LITMUSRT. Inte-
grating PALLOC with LITMUSRT would provide greater
memory-allocation flexibility than the approach we present
in Sec. 3, but that would be a significant implementation
undertaking, and is therefore outside the scope of this work.

Perhaps most closely related to this work is that of Ward et
al. [27], who also considered cache management in MC2. In
their approach, all potentially accessed pages are prefetched
by the OS before job execution, which allows colors to be
controlled dynamically by the scheduler. Unfortunately, the
pre-fetching logic entails significant overhead and (obvi-
ously) can be applied only if it is a priori known which
pages will be accessed. In our work, we avoid prefetching
through static partitioning. That work also only considered
a two-criticality variant of the original MC2, and did not
manage code pages, nor manage access to memory banks.

While MC2 provides four criticality levels, almost all of
the work on MC systems cited above focuses on enabling
just two. Also, to our knowledge, no comparisons of set- and
way-based partitioning have been presented in prior work
on real-time multicore systems, nor has cache partitioning
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Figure 2: Quad-core ARM Cortex A9.

been considered in MC systems, or in systems in which both
partitioned and global schedulers are used. Additionally, we
are aware of no actual implementation of a prior resource-
allocation framework for MC multicore systems where inter-
ference with respect to both the LLC and DRAM memory
banks is addressed. Finally, there has been no prior work that
addresses interference through shared hardware caused by
the OS. Our new MC2 prototype breaks new ground on all
of these fronts. We discuss the design of this prototype next.

3 Implementation
We now describe the hardware-management extensions we
added to MC2. All source code for our new MC2 imple-
mentation is available online [21]. To discuss the specific
hardware resources to be managed, we must first describe our
considered hardware platform, which is a quad-core ARM
Cortex A9 machine. Each core on this machine is clocked
at 800MHz and has separate 32KB L1 instruction and data
caches. Additionally, the LLC is a shared, unified 1MB 16-
way set-associative L2 cache. 1GB of off-chip DRAM is
available, and this memory is partitioned into eight 128MB
banks. The basic architecture is illustrated in Fig. 2.

Way- and set-based LLC partitioning. Our ARM plat-
form provides per-CPU lockdown registers that enable the
LLC to be partitioned by way. This is illustrated in Fig. 3(a).
In the depicted situation, the lockdown bit corresponding
to Way 2 is cleared on CPU 0, which directs memory refer-
ences from CPU 0 to Way 2 of the LLC. Per-CPU lockdown
registers can be modified via the proc filesystem interface.

As an alternative to way-based partitioning, our imple-
mentation allows set-based partitioning via page coloring.
This is illustrated in Fig. 3(b) for our ARM platform, which
has an LLC with 16 colors. Note that it is possible to com-
bine way- and set-based partitioning to flexibly create LLC
areas that can be designated for the sole use of certain tasks.

DRAM banks. Our test platform allows DRAM bank inter-
leaving to be optionally enabled. This option controls how
physical memory pages map to banks. With bank interleav-
ing enabled, successive pages map to different banks; with it
disabled, the first 32K pages map to Bank 0, the next 32K
to Bank 1, and so on. Bank interleaving results in increased
memory throughput in certain use cases. However, if bank
interleaving is enabled on our test platform, then the bits
within a physical address that determine the mapped-to bank

Way  
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1

Way  
2 … Way 

15

Color 
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Color 
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Color 
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Color
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…

L2 Cache Lockdown Register

[1111 1111 1111 1011]
Lockdown bits [15:0] 

CPU 0 Lockdown Register

CPU 0
CPU 0

CPU 0CPU 0
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(b)

Figure 3: LLC partitioning (a) by way and (b) by set.

overlap those that determine the LLC color, and as a result,
each bank contains pages of only two LLC colors. In con-
trast, with interleaving disabled, each bank contains pages of
all LLC colors. The latter permits more fine-grained control
over page allocations, so we disable bank interleaving. How-
ever, when allocating pages to tasks, we attempt to distribute
a task’s pages across all of the banks that it can access, to
obtain the benefits of bank interleaving. (Under the canonical
allocation strategy primarily considered herein, only Level-
C tasks access multiple banks.) The manner in which we
allocate pages is discussed next.

Allocating pages to tasks. A memory location’s physical
address determines both its LLC color and DRAM bank. To
properly allocate LLC colors and DRAM banks to tasks, we
construct pools of pages for each color and bank combination.
We then reallocate pages to tasks from these pools. In our
experiments, we were able to fully allocate to these pools
all pages from six of the DRAM banks, Bank 2 through
Bank 7. As a result, the OS executes entirely within Banks 0
and 1 and our user-level tasks execute entirely within the six
other banks. Our page-coloring process is able to color all
pages associated with each task, except for a special signal-
handling page that should rarely be accessed. However, it is
currently limited to allocating only non-shared pages (though
shared libraries can be dealt with via static linking). We defer
full consideration of shared pages to future work.

Way-based OS isolation. Our prototype isolates the OS
from user-level tasks in the LLC via way-based partitioning.
Specifically, whenever kernel code begins executing as the
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result of an interrupt, exception, or system call, we modify
the lockdown register of the corresponding CPU so that the
OS code can access only a specific set of LLC ways. Together
with the DRAM isolation just described, this ensures that the
OS can only minimally interfere with user-level tasks.

Unmanaged hardware resources. Our prototype does not
provide management for L1 caches, translation lookaside
buffers (TLBs), memory controllers, or memory buses. How-
ever, we assume a measurement-based approach to deter-
mining PETs, so such unconsidered resources are implicitly
considered when PETs are determined. We adopt a measure-
based approach because work on static timing analysis tools
for multicore machines has not matured to the point of being
directly applicable. Moreover, measurement-based processes
for determining PETs are often used in practice.

Canonical LLC and DRAM allocation for MC2. Deter-
mining an optimal allocation of LLC areas and DRAM banks
to tasks and criticality levels is an interesting optimization
problem and is beyond the scope of this paper. However,
in a companion paper [7], we show that LLC areas can be
optimized for specific task systems by solving a linear pro-
gram. In this paper, we mainly consider the fixed allocation
depicted in Fig. 4. We allow half the LLC to be shared by
Level-C tasks and the OS. In prior work on MC2 [11, 23, 27],
Level-C tasks (being SRT) were assumed to be provisioned
on an average-case basis, and we assume that here. Under
this assumption, LLC sharing with the OS should not be a
major concern. The rest of the LLC is partitioned among
Level-A and -B tasks on a per-CPU basis. That is, the Level-
A and -B tasks on a given processor share a partition. This
scheme ensures that Level-A and -B tasks do not experi-
ence LLC interference due to tasks on other cores (spatial
isolation). Also, because Level-A tasks have higher priority
than Level-B tasks, Level-A tasks do not experience LLC
interference due to Level-B tasks on the same core (temporal
isolation).

As for the DRAM memory, two banks are dedicated to
the OS, as described earlier. Additionally, each CPU has
a dedicated bank for its Level-A and -B tasks, and the re-
maining two banks are shared by all Level-C tasks. This
scheme ensures strong isolation for higher-criticality tasks,
and allows hardware sharing for lower-criticality tasks.

4 Evaluation
In this section, we show how MC allocation and scheduling
combined with hardware management as provided in our
MC2 implementation can enable more work to be supported
on a multicore platform. We begin in Sec. 4.1 by examining
the impacts of LLC and DRAM bank isolation on task exe-
cution times. Then, in Sec. 4.2, we examine the impacts of
OS isolation. The experiments in both Secs. 4.1 and 4.2 only
focus on execution-time data collected for individual tasks.
In Sec. 4.3, we turn our attention to supporting sets of tasks.
In particular, we consider two case-study task systems and
investigate schedulability differences for these task systems
under different configurations of MC2.

4.1 LLC and DRAM Isolation Impacts

In analyzing the impacts of LCC and DRAM isolation, we
used synthetic micro-benchmark (µB) tasks because this al-
lowed us to control precisely the LLC- and memory-related
characteristics of the tasks under investigation. These µB
tasks were specifically designed to create potentially ex-
treme cases to stress the cache and memory subsystems. As
such, they can be used to demonstrate the upper limits of
potential performance improvements made possible by LLC
and DRAM bank management.

Each µB task consists of a main loop that reads from a
randomly chosen sequence of word addresses that align with
the first word in a cache line (32 bytes on our hardware). Dur-
ing each iteration of the loop, every cache line is referenced
exactly once. The loop is repeated 500 times, with each loop
iteration referencing a different random sequence of cache
lines. This has the effect of forcing each cache reference to a
random line and eliminating hits for successive references
within a line (reducing spatial and temporal locality in refer-
ences). Our µB tasks only use data that is statically allocated
at program startup.

A critical property of the µB tasks is the assumed working
set (WS), or the set of addresses used to reference data. The
assumed working set size (WSS) is controlled by a single
parameter. Note that the average cache reuse distance is the
same as WSS because all cache lines are referenced between
successive references to the same line (i.e., from one loop
iteration to the next).

In our experiments, we collected data for a range
of WSSs. However, due to space limitations we mainly
limit attention to a WSS of 256KB here. Some addi-
tional results are presented for a WSS of 32KB in an ap-
pendix, and still further WSSs are considered in an on-
line appendix (available at http://www.cs.unc.edu/
˜anderson/papers.html). A 256KB WS is larger
than the L1 data cache on our platform by a factor of eight,
but a task’s instructions easily fit in the L1 instruction cache.
The 32KB WS also fits into the L1 data cache.

We ran experiments in which a µB task was either run
alone on one core (we call this the idle scenario) or run
concurrently with stress-inducing tasks running on the other
three cores (we call this the loaded scenario). The stress-
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inducing tasks were configured to use the same random
cache-line referencing strategy as our synthetic µB tasks but
with a WS expanded to 1MB. We considered the following
four isolation configurations.

• Idle: The µB task was the only task in the system.

• Loaded, no cache or memory-bank isolation: The
µB and concurrent stress-inducing tasks accessed the
same LLC area and the same 128MB DRAM bank. This
case represents the worst-case unmanaged system.

• Loaded, cache isolation, no bank isolation: The µB
task was isolated in the LLC, but stress-inducing tasks
accessed the same DRAM bank.

• Loaded, cache and bank isolation: Stress-inducing
tasks were executed concurrently with the µB task, but
isolation was provided for the µB task in both LLC and
DRAM banks.

For each µB task and isolation configuration, we ran
experiments with all 256 possible LLC area sizes (given by
1 to 16 ways and 1 to 16 colors) allocated to the µB task.
In configurations that isolate the µB task in the LLC, the
remainder of the LLC area was used by the stress-inducing
tasks. We measured both WCETs and average-case execution
times (ACETs) over 100 runs for each scenario.

The data we collected for the 256KB WSS case is shown
in Fig. 5; corresponding data for the 32KB WSS case is given
in Fig. 10, which is discussed in the appendix. All plots show
the µB task execution time (either WCET or ACET) as a
function of the number of LLC colors for a number of ways
equal 1, 2, 4, 8, and 16. Note that each additional color or
way adds 4KB to the total LLC space. For example, 4 colors
and 16 ways yields an LLC area of 256KB, which is the µB
task WSS considered in Fig. 5.

From these experiments, we make several observations
about how WCETs and ACETs are affected by assumptions
regarding LLC and DRAM isolation. Our observations about
WCETs are highly relevant to Levels A and B of MC2, as
these are HRT levels that would (at least) require a worst-
case provisioning. Our observations about ACETs are highly
relevant to Level C, since tasks at this level are SRT and thus
might be provisioned on an average-case basis.
Obs. 1. LLC isolation reduced WCETs up to 400%.

Consider insets (e) and (g) of Fig. 5. These scenarios differ
only in that LLC isolation is provided in the former and not
the latter (and DRAM isolation is provided in neither). A
400% reduction in WCET can be noted by examining the
data points in these insets for 4 colors and 16 ways. Moreover,
by comparing insets (e) and (a), which gives data for an idle
system, the WCET for this LLC area-size choice approaches
that of an idle system. While a decrease of approximately
400% was the most significant seen, the reduction in other
cases is also quite substantial.
Obs. 2. The impact of LLC isolation on WCET becomes
more significant as the allocated space approaches WSS.

This can be seen by again examining the data point in
inset (e) for 4 colors and 16 ways. The corresponding LLC
area size here matches the µB task’s WSS, and by adding
more colors, the WCET does not substantially improve.
Obs. 3. Under LLC isolation or LLC and bank isolation,
allocating of LLC space by adding ways instead of adding
colors somewhat improves WCETs.

Recalling again inset (e), the data point for 8 colors and 8
ways gives the same LLC area size as that considered above.
While the decrease in WCET is substantial at this point, it is
not as much as in the case of 4 colors and 16 ways considered
above. A similar trend is seen in inset (c), where isolation is
provided for both the LLC and DRAM banks.
Obs. 4. Isolation with respect to both the LLC and DRAM
banks improves WCETs over LLC isolation alone especially
when the allocated LLC area is less than the WSS.

Data supporting this observation is found in insets (e) and
(c). In particular, note where the curves start on the y-axis.
The scenarios considered in these two insets differ only in
that DRAM bank isolation is provided in the former but not
the latter. Note that there is little improvement in WCET
from combining bank isolation with LLC isolation when the
allocated LLC area is at least the task’s WSS. This result
is not surprising since isolation in DRAM memory banks
reduces memory contention only when data must be fetched
as a result of a cache capacity miss.
Obs. 5. The effects of isolation on ACETs follow the same
improvement trends as for WCETs. Furthermore, ACETs are
lower than WCETs by approximately 5-10%.

The insets on the right-hand side of Fig. 5 give measure-
ment data for ACETs. The curves in these insets are quite
similar to those for WCETs in the insets on the left-hand
side. Although it may be difficult to see given the scale of
each plot, ACETs were generally 5-10% lower than WCETs.
This rather small difference is due to the very deterministic
nature of our µB tasks.

Obs. 6. Assuming Level C in MC2 is provisioned based on
measured ACETs, the ACET data for this particular µB task
vindicates our Level-C LLC allocation strategy. However,
data for other tasks could reveal interesting tradeoffs.

In much of our work on MC2, we have assumed that
Level C is provisioned on an average-case basis. When us-
ing a measurement-based process to determine WCETs, it
is clearly reasonable to perform measurements in the pres-
ence of an intensive cache- and memory-thrashing workload.
However, if one is interested in obtaining average-case mea-
surements, then the nature of the background workload that
should be considered is somewhat unclear. Insets (b) and
(h) of Fig. 5 provide two extremes: in the former scenario,
there is no background workload, and in the latter, there is
an intensive one. A reasonable measurement process might
consider some possibility between these two extremes.

If one were to provision Level C based on the data in inset
(b), then one possible conclusion would be that 8 colors and 8
ways would be sufficient because the ACET at this data point
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(a) Idle, WCET (b) Idle, ACET

(c) Loaded, cache isolation, bank isolation, WCET (d) Loaded, cache isolation, bank isolation, ACET

(e) Loaded, cache isolation, unmanaged banks, WCET (f) Loaded, cache isolation, unmanaged banks, ACET

(g) Loaded, unmanaged cache and banks, WCET (h) Loaded, unmanaged cache and banks, ACET

Figure 5: Execution-time data for a WSS of 256KB
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is 306ms, which is near the minimum ACET of this µB task.
This represents an LLC area that is half the size of 16 colors
and 8 ways allocated to Level C in Fig. 4. On the other hand,
if one were to provision Level C based on the data in inset (h),
then our allocation scheme would give an ACET of 952ms,
which corresponds to the data point for 16 colors and 8 ways
in this inset. Instead of requiring Level-C tasks to fully share
half the LLC, we could instead use way-based partitioning at
Level C. In particular, we could divide the Level-C LLC area
equally among the four cores, and use lock-down registers
to require a Level-C task executing on a given core to use
only the two Level-C ways allocated to that core. (This is
similar to the way-based OS isolation mechanism described
in Sec. 3.) In this case, each Level-C task would execute
within an isolated LLC area with 16 colors and 2 ways. How
does this way-based alternative compare to that depicted in
Fig. 4? For this particular µB task, if we examine inset (f)
of Fig. 5, and consider the data point for 16 colors and 2
ways, we see that this scheme would result in a larger ACET
of 1159ms. Thus, for this particular task, this way-based
allocation scheme would not be a win.

We caution the reader, however, that this conclusion is
based on examining one particular µB task. If we were to
examine data for tasks with smaller WSSs, or that exhibit
less deterministic behaviors, we might reach a much different
conclusion. Our intention here is to illustrate that interesting
tradeoffs exist when adding hardware management to MC
systems. As stated earlier, determining how to best resolve
these tradeoffs is beyond the scope of this paper.

This concludes our discussion of the data we collected
for the 256KB WSS case. As mentioned earlier, data for
the 32KB case is presented in the appendix, particularly in
Fig. 10. While we discuss that data in more detail there, we
do wish to make one observation concerning it. A quick
comparison of the data in Figs. 5 and 10 reveals a striking
difference: note the consistently jagged nature of the curves
in Fig. 10. At first, we found this behavior quite surprising
because a µB task with a 32KB WSS should quickly load
all of its referenced memory into the L1 data cache and
then experience only hits in the L1 thereafter. However, for
reasons explained in the appendix, such an assumption turned
out to be faulty. This leads us to one additional observation.

Obs. 7. The presence of the peak WCET and ACET values
in Fig. 10 where none was expected provides a cautionary
note for designers concerned with provisioning systems.

As explained in the appendix, in all other respects, the
data from the 32KB experiments corresponded to expecta-
tions. WCETs and ACETs were quite close to idle system
execution times, and isolation mechanisms had little effect.

4.2 OS Isolation Impacts

In the experiments discussed so far, no OS system calls were
done by any µB task and no attempt was made to isolate the
OS from application-level tasks. Here we examine the impact
of OS contention and how its effects might be ameliorated
using the OS isolation mechanisms proposed in Sec. 3.
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Figure 6: The effect of OS isolation

To assess this, we used the same µB task described earlier
and ran it on core 0 at Level B with and without OS isolation.
We used the allocation depicted in Fig. 4 to achieve OS
isolation. We set the WSS parameter of the µB task to match
the size of the cache allocation for the task (a Level-A/B
LLC area consisting of 4 colors and 8 ways, or 128KB).
To emulate the effects of OS executions, we implemented
a dummy system call that allocated and read 16 pages of
memory. While such a system call may seem somewhat
extreme, the point here is that if OS isolation is not provided,
then predictability can be lost, unless it is known with high
assurance which code paths the OS will take. The system call
was inserted in the code for the µB task between iterations
through the randomly selected cache lines. As in the prior
experiments, we measured execution times over 100 runs for
the µB task.

Obs. 8. OS isolation substantially reduced the WCET and
ACET of the µB task.

Fig. 6 shows the difference in execution times with and
without OS isolation for all 100 experimental runs. The
WCET and ACET were both reduced by about 20% when
OS isolation was provided. OS-related overheads can induce
a great deal of pessimism in schedulability analysis [4], but
these experiments suggest that the cost of these overheads
can be significantly reduced through OS isolation.

One potential concern with providing OS isolation is that,
by restricting the OS to execute within a smaller LLC area,
its own execution times might increase unacceptably. To test
this, we used the LITMUSRT API, which provides a user
program that measures raw system call overheads [21]. We
found that providing OS isolation increased system-call over-
heads by 35ns in the worst case and by 15ns on average.
Such increases are negligible, and are certainly outweighed
by the increased execution-time predictability afforded to
high-criticality tasks. We also performed additional experi-
ments to explore OS interference that may occur across cores.
These experiments are covered in the appendix.
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4.3 Case-Study Experiments

The µB experiments presented above show that each individ-
ual isolation feature that we added to MC2 can be applied in
a way that lessens task execution times. However, it remains
to be seen whether these features can be holistically applied
in a way that positively impacts overall schedulability. After
all, it could be the case that applying these features in a way
that reduces execution times for some tasks increases them
for others, with no real gain in terms of schedulability.

To shed light on this issue, we conducted additional ex-
periments involving two case-study task systems. The first
system, termed the LLC-heavy system, was designed as an
example that puts significant pressure on the LLC. This task
system consists of multiple instances of nine distinct syn-
thetic tasks. The synthetic tasks used here were constructed
similarly to those used in our µB experiments, except that
we carefully selected each task’s WSS and the number of
loop iterations it performed over its WS to achieve desired
execution time behaviors.

The PETs for the nine tasks used to define this task system,
with and without hardware management, are show in inset
(a) of Table 1. We determined PETs through a measurement
process (as noted earlier, on multicore platforms adequate
static timing analysis tools do not yet exist). Level-C PETs,
denoted PETC , were obtained by measuring average exe-
cution times in a loaded and in an idle system, and taking
the mean of these two measurements. This is in line with our
assumption stated earlier, that Level C, being SRT, might
reasonably be provisioned based on average-case execution
times. Level-B PETs, denoted PETB , were obtained by
measuring worst-case execution times in a loaded system.
Level-A PETs were obtained by inflating Level-B PETs by
a factor between 25% to 50%. Such an inflation is in keep-
ing with inflation factors derived from industrial use cases
considered by Vestal [26]. The justification for these choices
is that both Level B and Level A are HRT, and Level A is
of utmost criticality. In the case of hardware management
being applied, these measurements were taken with isolation
provided as depicted in Fig. 4. In the case of no hardware
management, the LLC was disabled and all memory refer-
ences were directed to the same DRAM bank. All tasks were
assigned periods, as indicated in inset (a) of Table 1. As
indicated in inset (b), the final task system was constructed
by assigning instances of these tasks to criticality levels, and
further assigning those assigned to Levels A and B to cores.

The second system, termed the LLC-light system, was
designed to put significantly less pressure on the LLC. It
was defined in a similar manner as the LLC-heavy system,
except that the synthetic tasks that were employed have
much smaller WSSs. Details are given in Table 2, which is
organized similarly to Table 1.

The hardware platform used in this study is the same quad-
core ARM platform considered earlier. In both task systems,
the total Level-C utilization (i.e., total utilization assessed
assuming Level-C PETs) is approximately 15% of the sys-
tem’s capacity for Level A and 20% for Level B, with overall
Level-C utilization (across all three levels) being about 90%.

Tasks PETA PETB PETC Period WSS, Loop
T0 4/5 3/4 2/3 100 32KB, 50
T1 15/24 11/18 10/13 100 48KB, 50
T2 24/41 18/31 16/22 100 64KB, 50
T3 41/72 31/55 27/38 200 96KB, 50
T4 27/40 20/31 17/21 200 128KB, 20
T5 58/99 44/75 38/54 400 128KB, 50
T6 123/199 93/151 82/109 800 256KB, 50
T7 246/395 186/299 167/221 800 512KB, 50
T8 549/816 416/618 359/459 1600 1024KB, 50

(a) Task PETs with/without hardware management, periods, and WSSs
and loop iteration counts.

CPU Levels Tasks

CPU0 A T0, T1
B T3, T4

CPU1 A T2
B T4, T5

CPU2 A T0, T1
B T3, T4

CPU3 A T2
B T1, T4, T5

Global C 4 instances of T6, T7, and T8

(b) Task assignments.

Table 1: LLC-heavy system. All times are in ms.

Tasks PETA PETB PETC Period WSS, Loop
T0 12/12 10/9 9/9 100 8KB, 1000
T1 5/5 4/4 4/4 100 16KB, 200
T2 13/13 10/10 9/9 100 16KB, 500
T3 62/63 47/48 46/46 400 8KB, 5000
T4 73/77 55/58 54/55 400 24KB, 2000
T5 186/197 141/149 136/140 800 24KB, 5000
T6 371/393 281/298 271/279 1600 24KB, 10000

(a) Task PETs with/without hardware management, periods, and WSSs and
loop iteration counts.

CPU Levels Tasks

CPU 0 A T0, T1
B T3

CPU 1 A T0, T2
B T3

CPU 2 A T0, T1
B T4

CPU 3 A T1, T2
B T3

Global C 6 instances of T5 and T6

(b) Task assignments.

Table 2: LLC-light system. All times are in ms.

This distribution of work across levels is somewhat difficult
to justify, but it was motivated by guidance provided to us
by several industry practitioners.
Results. We examined the schedulability of these two task
systems under four system configurations: (i) MC2 analysis
is used with all aforementioned isolation features assumed;
(ii) MC2 analysis is used but no isolation features are as-
sumed; (iii) MC2 analysis is not used but all isolation fea-
tures are assumed; (iv) MC2 analysis is not applied nor is
any isolation assumed. Under these four configurations, the
total Level-C utilization (across all levels) of the LLC-heavy
system was found to be 3.592, 4.768, 5.466, and 8.688, re-
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spectively. Moreover, under configuration (i), the system
was deemed schedulable using the tests presented in [23].
Schedulability clearly cannot be guaranteed under the other
configurations because the system is over-utilized. Referring
back to the one-out-of-m problem mentioned in the intro-
duction, this is a good example of a challenging system to
support. It significantly over-utilizes the assumed hardware
platform if no measures are taken to address this problem,
and still over-utilizes it if either MC analysis or hardware
management alone is applied.

In contrast, for the LLC-light system, total Level-C uti-
lizations (across all levels) was found to be 3.661, 3.721,
4.229, and 4.395, respectively. Moreover, schedulability un-
der MC2 can be ensured in both configurations (i) and (ii).
This system highlights the fact that the one-out-of-m prob-
lem may actually not be that severe for workloads consisting
of simple tasks that have small WSSs. On the other hand,
even for such workloads, isolation may be desirable. For
example, the isolation provided to Level A in MC2 comes
quite close to providing Level-A tasks with the illusion that
they run on dedicated uniprocessors. Such a strong isola-
tion guarantee could enable static timing analysis tools for
uniprocessor platforms to be adapted for the multicore case.

5 Conclusion
We have presented a significant extension to the MC2 frame-
work that provides LLC and DRAM bank isolation and that
isolates the OS from application-level tasks. We have also
presented the results of extensive experiments in which the
impact of the newly provided isolation mechanisms was
assessed individually as well as collectively from a system-
wide schedulability point of view. To our knowledge, this is
the first work on applying hardware management techniques
in a criticality-cognizant way, particularly within a context
as complicated as MC2, and the first work that considers
isolating the OS from application-level real-time tasks.

This paper suggests many avenues for future work.
Perhaps most importantly, further work is needed to bet-
ter understand how to optimize hardware allocations in a
crititality-cognizant way. In a companion paper, we have
taken some initial steps in this regard by presenting a linear-
programming-based scheme for optimizing allocated LLC ar-
eas [7]. Regarding our implementation itself, the most press-
ing concern is further extensions to handle shared pages. Sup-
port for dynamically allocated kernel pages is also needed.
Integrating ideas from PALLOC may be a promising way
forward in this regard [28].
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Appendix: Additional Experiments

A Cross-core OS Interference
In Sec. 4.2, we showed how OS isolation can improve per-
formance and predictability for tasks that issue system calls.
Here we study how system calls can cause interference across
cores, and demonstrate how OS isolation mitigates such inter-
ference. Because the OS can allocate pages from any color, if
not managed, it can cause LLC evictions of tasks on any core.
To measure this effect, we ran two µB tasks concurrently on
different cores. One task, which we call the caller, issued
dummy system calls after each loop iteration, while the other
task, the victim, did not. The WCET and ACET of each task
are depicted in Fig. 7.

Consistent with our previous measurements, the caller
task’s WCET and ACET were reduced by 20% as a result of
OS isolation. Additionally, the victim task also saw a 20%
improvement in both WCET and ACET due to OS isolation.
Therefore, cache and memory-bank isolation for userspace
tasks alone is not sufficient to eNsure isolation; the OS must
also be isolated to mitigate cross-core timing interference.

B Micro-Benchmark Experiments with a
32KB WSS

To compare to a large WSS µB task, we also considered a
µB task with a WSS of 32KB, which is the size of the L1
cache on our test platform. Results from these 32KB-WSS
experiments are shown in Fig. 10.

We originally expected that since this WSS matches the
size of the L1, all memory references would hit in the L1
with the exception of compulsory misses. However, the re-
sults in Fig. 10 do not support this hypothesis. Instead, some
odd-numbered color configurations resulted in increased ex-
ecution times. The baseline execution time of 20ms corre-
sponds to all references hitting in the L1, so these spikes are
due to L1 cache misses. To explain these spikes, we must
carefully consider the cache structure.

Our L1 data cache is a 32KB 4-way set-associative cache,
which has two colors, which we will denote A and B to
distinguish from the LLC colors. The WSS of the considered
µB task is 32KB, so there are eight data pages to be colored.
The peaks are observed when the colors of the pages are
not equally distributed, i.e., it is possible to have five pages
of color A and three pages of color B. For example, given
three LLC colors, LLC colors 0 and 2 are mapped to color A
and color 1 is mapped to color B. Thus, the eight pages are
divided amongst the LLC with three pages of color 0, three
pages of color 1, and two pages of colors 2. Thus, as shown
in Fig. 8, five pages are mapped to color A and three pages
are mapped to color B. Since our L1 cache is only 4-way
associative, the five pages compete for four ways, thereby
causing evictions. This behavior is not observed for all odd-
number color configurations. As shown in Fig. 9, assuming
nine colors, there are two cases of color assignment. Inset
(a) of Fig. 9 shows that the first page is mapped to color B.
In this case, there are four pages of color A (white regions)
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Figure 7: Cross-core OS interference.

and four pages of color B (shaded regions), and L1 evictions
do not occur. However, if the first page is mapped to color
A, as in inset (b) of Fig. 9, then there are five pages of color
A and three pages of color B, which again causes evictions,
explaining the execution-time spikes.

As noted in Obs. 7, the presence of these execution-time
spikes where none was expected provides a cautionary note
for designers concerned with provisioning systems.

Figure 8: Conflict in the L1 cache.

(a) A case where the color starts from 3

(b) A case where the color starts from 4

Figure 9: Color assignment for eight data pages.
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(a) Idle, WCET (b) Idle, ACET

(c) Loaded, cache isolation, bank isolation, WCET (d) Loaded, cache isolation, bank isolation, ACET

(e) Loaded, cache isolation, unmanaged banks, WCET (f) Loaded, cache isolation, unmanaged banks, ACET

(g) Loaded, unmanaged cache and banks, WCET (h) Loaded, unmanaged cache and banks, ACET

Figure 10: Execution-time data for a WSS of 32KB
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(a) Idle, WCET (b) Idle, ACET

(c) Loaded, cache isolation, bank isolation, WCET (d) Loaded, cache isolation, bank isolation, ACET

(e) Loaded, cache isolation, unmanaged banks, WCET (f) Loaded, cache isolation, unmanaged banks, ACET

(g) Loaded, unmanaged cache and banks, WCET (h) Loaded, unmanaged cache and banks, ACET

Figure 11: Execution-time data for a WSS of 64KB
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(a) Idle, WCET (b) Idle, ACET

(c) Loaded, cache isolation, bank isolation, WCET (d) Loaded, cache isolation, bank isolation, ACET

(e) Loaded, cache isolation, unmanaged banks, WCET (f) Loaded, cache isolation, unmanaged banks, ACET

(g) Loaded, unmanaged cache and banks, WCET (h) Loaded, unmanaged cache and banks, ACET

Figure 12: Execution-time data for a WSS of 512KB
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