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Abstract—Advanced Driver Assistance Systems (ADAS) have
made driving safer over the last decade. They prepare vehicles
for unsafe road conditions and alert drivers if they perform a
dangerous maneuver. However, many accidents are unavoidable
because by the time drivers are alerted, it is already too late.
Anticipating maneuvers a few seconds beforehand can alert
drivers before they perform the maneuver and also give ADAS
more time to avoid or prepare for the danger. Anticipation
requires modeling the driver’s action space, events inside the
vehicle such as their head movements, and also the outside
environment. Performing this joint modeling makes anticipation
a challenging problem.

In this work we anticipate driving maneuvers a few seconds
before they occur. For this purpose we equip a car with cameras
and a computing device to capture the context from both inside
and outside of the car. We represent the context with expressive
features and propose an Autoregressive Input-Output HMM to
model the contextual information. We evaluate our approach on
a diverse data set with 1180 miles of natural freeway and city
driving and show that we can anticipate maneuvers 3.5 seconds
before they occur with over 80% F1-score. Our computation time
during inference is under 3.6 milliseconds.

I. INTRODUCTION

Over the last decade cars have been equipped with vari-
ous assistive technologies in order to provide a safe driving
experience. Technologies such as lane keeping, blind spot
check, pre-crash systems etc., are successful in alerting drivers
whenever they commit a dangerous maneuver [23, 24]. Still in
the US alone more than 33,000 people die in road accidents
every year, the majority of which are due to inappropriate
maneuvers [4]. We need mechanisms that can alert drivers
before they perform a dangerous maneuver in order to avert
many such accidents [36]. In this work we address this
problem of anticipating maneuvers that a driver is likely to
perform in the next few seconds (Figure 1).

Anticipating future human actions has recently been a
topic of interest to both the robotics and learning commu-
nities [16, 17, 19, 50]. Figure 1 shows our system antici-
pating a left turn maneuver a few seconds before the car
reaches the intersection. Our system also outputs probabilities
over the maneuvers the driver can perform. With this prior
knowledge of maneuvers, the driver assistance systems can
alert drivers about possible dangers before they perform the
maneuver, thereby giving them more time to react. Some
previous works [12, 21, 30, 37] also predict a driver’s future
maneuver. However, as we show in the following sections,
these methods use limited context and do not accurately model
the anticipation problem.
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Fig. 1: Anticipating maneuvers. Our algorithm anticipates driving
maneuvers performed a few seconds in the future. It uses information
from multiple sources including videos, vehicle dynamics, GPS, and
street maps to anticipate the probability of different future maneuvers.

In order to anticipate maneuvers, we reason with the contex-
tual information from the surrounding events, which we refer
to as the driving context. In our approach we obtain this driving
context from multiple sources. We use videos of the driver
inside the car and the road in front, the vehicle’s dynamics,
global position coordinates (GPS), and street maps; from this
we extract a time series of multi-modal data from both inside
and outside the vehicle. The challenge lies in modeling the
temporal aspects of driving and in detecting the contextual
cues that help in anticipating maneuvers.

Modeling maneuver anticipation also requires joint reason-
ing of the driving context and the driver’s intention. The chal-
lenge here is the driver’s intentions are not directly observable,
and their interactions with the driving context are complex. For
example, the driver is influenced by external events such as
traffic conditions. The nature of these interactions is generative
and they require a specially tailored modeling approach.

In this work we propose a model and a learning algorithm
to capture the temporal aspects of the problem, along with
the generative nature of the interactions. Our model is an Au-
toregressive Input-Output Hidden Markov Model (AIO-HMM)
that jointly captures the context from both inside and outside
the vehicle. AIO-HMM models how events from outside the
vehicle affect the driver’s intention, which then generates
events inside the vehicle. We learn the AIO-HMM model
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parameters from natural driving data and during inference
output the probability of each maneuver.

We evaluate our approach on a driving data set with 1180
miles of natural freeway and city driving collected across two
states – from 10 drivers and with different kinds of driving
maneuvers. We demonstrate that our approach anticipates
maneuvers 3.5 seconds before they occur with 80% precision
and recall. We believe that our work creates scope for new
ADAS features to make roads safer. In summary our key
contributions are as follows:

• We propose an approach for anticipating driving maneu-
vers several seconds in advance.

• We model the driving context from inside and outside the
car with an autoregressive input-output HMM.

• We release the first data set of natural driving with videos
from both inside and outside the car, GPS, and speed
information, with lane and driving maneuver annotations.

II. RELATED WORK
Assistive features for vehicles. Recent years have seen many
advances in driver assistance systems. Such systems specialize
in lane departure warning, collision avoidance, traffic light
detection, and other safety features [2]. These systems warn
drivers when they perform a potentially dangerous maneu-
ver [23, 24]. In contrast to these systems, our goal is to
anticipate maneuvers several seconds before they occur. With
anticipation, assistive systems can alert drivers before they
make dangerous decisions.

Previous works have studied the driver’s intent to make
lane changes or turns by monitoring the vehicle’s trajec-
tory [7, 12, 21, 25, 37]. These works ignore the rich contextual
information available from cameras, GPS, and street maps.
The additional context from different sources also makes learn-
ing challenging, which previous works do not handle. Trivedi
et al. [45] and Morris et al. [30] predict lane change intent
using information from both inside and outside the vehicle.
They both train a discriminative classifier which assumes that
informative contextual cues always appear at a fixed time
before the maneuver. We show that this assumption is not
true, and in fact the temporal aspect of the problem should
be carefully modeled. Our AIO-HMM takes a generative
approach and handles the temporal aspect of this problem.
Anticipation and Modeling Humans. Our work is also
related to previous works on modeling human motion. The
modeling of human motion has given rise to many appli-
cations, anticipation being one of them. Wang et al. [50],
Koppula et al. [17], and Mainprice et al. [27] demonstrate
better human-robot collaboration by anticipating a human’s
future movements. Kitani et al. [16], Bennewitz et al. [6]
and Kuderer et al. [19] model human navigation in order
to anticipate the path they will follow. Dragan et al. [11]
reasons for human intention for better assistive teleoperation.
Similar to these works, we anticipate human actions, which
are driving maneuvers in our case. However, the algorithms
proposed in the previous works do not apply in our setting. In
our case, anticipating maneuvers requires modeling the inter-
action between the driving context and the driver’s intention.

Furthermore, the informative cues for anticipation can appear
at variable times before the maneuver. Such interactions and
variability in the cues are absent in the previous works. We
propose AIO-HMM to model these aspects of the problem.
Computer vision for analyzing the human face. The vision
approaches related to our work are face detection and track-
ing [14, 40, 46, 53], building statistical models of the face [8]
and pose estimation methods of the face [32, 52]. The Active
Appearance Model (AAM) [8] and its variants [28, 51, 54]
statistically model the shape and texture of the face. AAMs
have also been used to estimate the 3D-pose of a face from a
single image [52]. These vision algorithms have been used to
design assistive features to monitor drivers for drowsiness and
attentiveness [35, 41]. In our approach we detect and track the
driver’s face for anticipating maneuvers.
Learning temporal models. Temporal models are commonly
used to model human activities [10, 18, 29, 48, 49]. These
models have been used in both discriminative and generative
fashions. The discriminative temporal models are mostly in-
spired by the Conditional Random Field (CRF) [22] which
captures the temporal structure of the problem. Wang et
al. [49] and Morency et al. [29] propose dynamic extensions
of the CRF for image segmentation and gesture recognition
respectively. The generative approaches for temporal modeling
include various filtering methods, such as Kalman and particle
filters [42], Hidden Markov Models [34], and many types
of Dynamic Bayesian Networks [13, 31]. Some previous
works [7, 20, 33] used HMMs to model different aspects of the
driver’s behaviour. Most of these generative approaches model
how latent (hidden) states influence the observations. However,
in our problem both the latent states and the observations influ-
ence each other. In particular, our AIO-HMM model is inspired
by the Input-Output HMM [5]. In the following sections we
will explain the advantages of AIO-HMM over HMMs for
anticipating maneuvers and also compare its performance with
variants of HMM in the experiments (Section VI).

III. PROBLEM OVERVIEW

In this section we describe the maneuver anticipation prob-
lem and give an overview of our approach. Our goal is to
anticipate driving maneuvers a few seconds before they occur.
This includes anticipating a lane change before the wheels
touch the lane markings or anticipating if the driver keeps
straight or makes a turn when approaching an intersection.

Anticipating maneuvers is challenging for multiple reasons.
First, it requires the modeling of context from different
sources. Information from a single source, such as a cam-
era capturing events outside the car, is not sufficiently rich.
Additional visual information from within the car can also be
used. For example, the driver’s head movements are useful for
anticipation – drivers typically check for the side traffic while
changing lanes and scan the cross traffic at intersections.

Second, reasoning about maneuvers should take into ac-
count the driving context at both local and global levels. Local
context requires modeling events in vehicle’s vicinity such as
the surrounding vision, GPS, and speed information. On the
other hand, factors that influence the overall route contributes
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Fig. 2: System Overview. Our system anticipating a left lane change maneuver. (a) We process multi-modal data including GPS, speed,
street maps, and events inside and outside of the vehicle using video cameras. (b) Vision pipeline extracts visual cues such as driver’s
head movements. (c) The inside and outside driving context is processed to extract expressive features. (d,e) Using our trained models we
anticipate the probability of each maneuver.

to the global context, such as the driver’s final destination.
Third, the informative cues necessary for anticipation appear
at variable times before the maneuver. In particular, the
time interval between the driver’s head movement and the
occurrence of the maneuver depends on factors such as the
speed, traffic conditions, the GPS location, etc.

We obtain the driving context from different sources as
shown in Figure 2. Our anticipatory system includes: (1)
a driver-facing camera inside the vehicle, (2) a road-facing
camera outside the vehicle, (3) a speed logger, and (4) a global
position coordinate (GPS) logger. The information from these
sources constitute the driving context. We use the face camera
for tracking the driver’s head movements. The video feed
from the road camera is used for extracting lane information.
This information allows for additional reasoning on maneuvers
that the driver is likely to perform. For example, when the
vehicle is in the left-most lane, the only safe maneuvers are
a right-lane change or keeping straight, unless the vehicle is
approaching an intersection. Maneuvers also correlate with the
vehicle’s speed, e.g., turns usually happen at lower speeds than
lane changes. Additionally, the GPS data augmented with the
map information enables us to detect upcoming road artifacts
such as intersections, highway exits, etc.

Our approach is to jointly model the driving context and the
driver’s intention before the maneuvers. We extract meaningful
representations from the driving context (in Section V) and
propose a model to handle the temporal aspects of the problem.
We learn models for maneuvers and during inference we
jointly anticipate the probability of each maneuver. In the next
section, we describe our model and the learning algorithm.

IV. OUR APPROACH

Driving maneuvers are influenced by multiple interactions
involving the vehicle, its driver, outside traffic, and occa-
sionally global factors like the driver’s destination. These
interactions influence the driver’s intention, i.e. their state of
mind before the maneuver, which is not directly observable.
We represent the driver’s intention with discrete states that
are latent (or hidden). In order to anticipate maneuvers, we
jointly model the driving context and the latent states in a
tractable manner. We represent the driving context as a set of
features, which we describe in Section V. We now present the
motivation for our model and then describe the model, along
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Fig. 3: Variable time occurrence of events. Left: The events inside
the vehicle before the maneuvers. We track the driver’s face along
with many facial points. Right: The trajectories generated by the
horizontal motion of facial points (pixels) ‘t’ seconds before the
maneuver. X-axis is the time and Y-axis is the pixels’ horizontal
coordinates. Informative cues appear during the shaded time interval.
Such events occur at variable times before the maneuver. The order in
which the cues appear is also important. For the right turn maneuver
the driver first scans his right and then the traffic on his left.

with the learning and inference algorithms.

A. Modeling driving maneuvers

Modeling maneuvers require temporal modeling of the
driving context. The temporal aspect is critical because in-
formative events, such as the driver’s head movements, can
occur at variable times before the maneuver, as illustrated in
Figure 3. Discriminative methods, such as the Support Vector
Machine [9] and the Relevance Vector Machine [43], which
do not model the temporal aspect perform poorly (shown
in Section VI-B). Therefore, a temporal model such as the
Hidden Markov Model (HMM) [34] is better suited.

An HMM models how the driver’s latent states generate
both the inside driving context and the outside driving context.
However, a more accurate model should capture how events
outside the vehicle (i.e. the outside driving context) affect the
driver’s state of mind, which then generates the observations
inside the vehicle (i.e. the inside driving context). More



Fig. 4: AIO-HMM. The model has three layers: (i) Input (top): this
layer represents outside vehicle features X; (ii) Hidden (middle): this
layer represents driver’s latent states Y ; and (iii) Output (bottom): this
layer represents inside vehicle features Z. This layer also captures
temporal dependencies of inside vehicle features. T represents time.

specifically, the interactions between the outside events and
the driver’s latent states require discriminative modeling, while
the interactions between the driver’s latent states and the inside
observations are best modeled generatively. Such interactions
are well modeled by an Input-Output HMM (IOHMM) [5].
However, modeling the problem with IOHMM will not capture
the temporal dependencies of the inside driving context. These
dependencies are critical to capture the smooth and temporally
correlated behaviours such as the driver’s face movements. We
therefore present Autoregressive Input-Output HMM (AIO-
HMM) which extends IOHMM to model these observation
dependencies. Figure 4 shows the AIO-HMM graphical model.

B. Modeling with Autoregressive Input-Output HMM
Given T seconds long driving context C before the ma-

neuver M , we learn a generative model for the context
P (C|M). The driving context C consists of the outside driving
context and the inside driving context. The outside and inside
driving contexts are temporal sequences represented by the
outside features XK

1 = {X1, .., XK} and the inside features
ZK1 = {Z1, .., ZK} respectively. The corresponding sequence
of the driver’s latent states is Y K1 = {Y1, .., YK}. X and Z
are vectors and Y is a discrete state.

P (C|M) =
∑
Y K
1

P (ZK1 , X
K
1 , Y

K
1 |M)

= P (XK
1 |M)

∑
Y K
1

P (ZK1 , Y
K
1 |XK

1 ,M)

∝
∑
Y K
1

P (ZK1 , Y
K
1 |XK

1 ,M) (1)

We model the correlations between X , Y and Z with an
Autoregressive Input-Output HMM (AIO-HMM) as shown in
Figure 4. The AIO-HMM models the distribution in equa-
tion (1). It does not assume any generative process for the
outside features P (XK

1 |M). It instead models them in a
discriminative manner using equation (1). This captures the
reasoning that events outside the vehicle affect the driver’s
state of mind, which then generates the events inside the
vehicle before the driver performs the maneuver. The top (in-
put) layer of the AIO-HMM consists of outside features XK

1 .
The outside features then affect the driver’s latent states Y K1 ,
represented by the middle (hidden) layer, which then generates
the inside features ZK1 at the bottom (output) layer. The events
inside the vehicle such as the driver’s head movements are

temporally correlated because they are generally smooth. The
AIO-HMM handles these dependencies with autoregressive
connections in the output layer.

Model Parameters. The AIO-HMM has two types of param-
eters: (i) state transition parameters w; and (ii) observation
emission parameters (µ,Σ). We use set S to denote the
possible latent states of the driver. For each state Y = i ∈ S ,
we parametrize transition probabilities of leaving the state with
log-linear functions, and parametrize the output layer feature
emissions with normal distributions.

Transition: P (Yt = j|Yt−1 = i,Xt;wij) =
ewij ·Xt∑
l∈S e

wil·Xt

Emission: P (Zt|Yt = i,Xt, Zt−1;µit,Σi) = N (Zt|µit,Σi)

The inside (vehicle) features represented by the output layer
are jointly influenced by all three layers. These interactions are
modeled by the mean and variance of the normal distribution.
We model the mean of the distribution using the outside and
inside features from the vehicle as follows:

µit = (1 + ai ·Xt + bi · Zt−1)µi
In the equation above, ai and bi are parameters that we learn
for every state i ∈ S. Therefore, the parameters we learn for
state i ∈ S are θi = {µi, ai, bi, Σi and wij |j ∈ S}, and the
overall AIO-HMM parameters are Θ = {θi|i ∈ S}.

C. Learning AIO-HMM parameters

The training data D = {(XKn
1,n , Z

Kn
1,n )|n = 1, .., N} consists

of N instances of a maneuver M . The goal is to maximize
the data log-likelihood.

l(Θ;D) =
N∑
n=1

logP (ZKn
1,n |X

Kn
1,n ;Θ) (2)

Directly optimizing equation (2) is challenging because param-
eters Y representing the driver’s states are latent. We therefore
use the iterative EM procedure to learn the model parameters.
In EM, instead of directly maximizing equation (2), we
maximize its simpler lower bound. We estimate the lower
bound in the E-step and then maximize that estimate in the
M-step. These two steps are then iteratively repeated.
E-step. In the E-step we get the lower bound of equation (2)
by calculating the expected value of the complete data log-
likelihood using the current estimate of the parameter Θ̂.

E-step: Q(Θ; Θ̂) = E[lc(Θ;Dc)|Θ̂,D] (3)
where lc(Θ;Dc) is the log-likelihood of the complete data Dc
defined as:

Dc = {(XKn
1,n , Z

Kn
1,n , Y

Kn
1,n )|n = 1, .., N} (4)

lc(Θ;Dc) =
N∑
n=1

logP (ZKn
1,n , Y

Kn
1,n |X

Kn
1,n ;Θ) (5)

We should note that the occurrences of hidden variables Y
in lc(Θ;Dc) are marginalized in equation (3), and hence Y
need not be known. We efficiently estimate Q(Θ; Θ̂) using
the forward-backward algorithm [31].
M-step. In the M-step we maximize the expected value of the
complete data log-likelihood Q(Θ; Θ̂) and update the model



parameter as follows:
M-step: Θ = argmaxΘQ(Θ; Θ̂) (6)

Solving equation (6) requires us to optimize for the param-
eters µ, a, b, Σ and w. We optimize all parameters expect w
exactly by deriving their closed form update expressions. We
optimized w using the gradient descent. Refer to supplemen-
tary material for detailed E and M steps.

D. Inference of Maneuvers
We now describe how we use the learned models to antici-

pate maneuvers in driving scenarios not seen during training.
Our learning algorithm trains separate AIO-HMM models for
each maneuver. The goal during inference is to determine
which model best explains the past T seconds of the driving
context. We evaluate the likelihood of the inside and outside
feature sequences (ZK1 and XK

1 ) for each maneuver, and
anticipate the probability PM of each maneuver M as follows:

PM = P (M |ZK1 , XK
1 ) ∝ P (ZK1 , XK

1 |M)P (M) (7)
Algorithm 1 shows the complete inference procedure.
The inference in equation (7) simply requires a forward-
pass [31] of the AIO-HMM, the complexity of which is
O(K(|S|2 + |S||Z|3 + |S||X|)). However, in practice it is
only O(K|S||Z|3) because |Z|3 � |S| and |Z|3 � |X|. Here
|S| is the number of discrete latent states representing the
driver’s intention, while |Z| and |X| are the dimensions of the
inside and outside feature vectors respectively. In equation (7)
P (M) is the prior probability of maneuver M . We assume an
uninformative uniform prior over all the maneuvers.

Algorithm 1 Anticipating maneuvers

input Driving videos, GPS, Maps and Vehicle Dynamics
output Probability of each maneuver

Initialize the face tracker with the driver’s face
while driving do

Track the driver’s face [46]
Extract features ZK1 and XK

1 (Sec. V)
Inference PM = P (M |ZK1 , XK

1 ) (Eq. (7))
Send the inferred probability of each maneuver to ADAS

end while

V. FEATURES
We now describe the features we extract for anticipating

maneuvers. We extract features by processing the inside and
outside driving contexts. We denote the inside features as Z
and the outside features as X .

A. Inside-vehicle features.
The inside features Z capture the driver’s head movements.

Our autonomous vision pipeline consists of face detection,
tracking, and feature extraction modules. The face detection
and tracking modules track the driver’s face in the videos from
the driver-facing camera and generate face tracks (described
below). These face tracks are fed to the feature extraction
module, which then extracts the head motion features per
frame, denoted by φ(face). For AIO-HMM, we compute
Z by aggregating φ(face) for every 20 frames, i.e., Z =∑20
i=1 φ(facei)/‖

∑20
i=1 φ(facei)‖.
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Fig. 5: Inside vehicle feature extraction. The angular histogram
features extracted at three different time steps for a left turn maneuver.
Bottom: Trajectories for the horizontal motion of tracked facial pixels
‘t’ seconds before the maneuver. X-axis is the time and Y-axis is the
pixels’ horizontal coordinates. At t=5 seconds before the maneuver
the driver is looking straight, at t=3 looks (left) in the direction
of maneuver, and at t=2 looks (right) in opposite direction for the
crossing traffic. Middle: Average motion vector of tracked facial
pixels in polar coordinates. r is the average movement of pixels and
arrow indicates the direction in which the face moves when looking
from the camera. Top: Normalized angular histogram features.

Face detection and tracking. We detect the driver’s face using a
trained Viola-Jones face detector [46]. From the detected face,
we first extract visually discriminative (facial) points using the
Shi-Tomasi corner detector [38] and then track those facial
points using the Kanade-Lucas-Tomasi tracker [26, 38, 44].
However, the tracking may accumulate errors over time be-
cause of changes in illumination due to the shadows of trees,
traffic, etc. We therefore constrain the tracked facial points to
follow a projective transformation and remove the incorrectly
tracked points using the RANSAC algorithm. While tracking
the facial points, we lose some of the tracked points with
every new frame. To address this problem, we re-initialize
the tracker with new discriminative facial points once the
number of tracked points falls below a threshold [15]. Some
tracking results and failure cases are available here: https:
//sites.google.com/site/brainforcars/

Head motion features. For maneuver anticipation the hori-
zontal movement of the face and its angular rotation (yaw)
are particularly important. From the face tracking module we
obtain face tracks, which are 2D trajectories of the tracked
facial points in the image plane. Figure 5 (bottom) shows
how the horizontal coordinates of the tracked facial points
vary with time before a left turn maneuver. We represent
the driver’s face movements and rotations with histogram
features. In particular, we take matching facial points between
successive frames and create histograms of their corresponding
horizontal motions (in pixels) and angular motions in the
image plane (Figure 5). We bin the horizontal and angular



Fig. 6: Our data set is diverse in drivers, landscape, and weather.

motions using [≤ −2, −2 to 0, 0 to 2, ≥ 2] and
[0 to π

2 ,
π
2 to π, π to 3π

2 ,
3π
2 to 2π], respectively. We also

calculate the mean movement of the driver’s face center. This
gives us φ(face) ∈ R9 facial features for each frame.

B. Outside-vehicle features.
The outside feature vector X encodes the information

about the outside environment such as the road conditions,
vehicle dynamics, etc. In order to get this information, we
use the road-facing camera together with the vehicle’s GPS
coordinates, the speed, and the street maps. More specifically,
we obtain two binary features from the road-facing camera
indicating whether a lane exists on the left side and on the
right side of the vehicle. We also augment the vehicle’s
GPS coordinates with the street maps and extract a binary
feature indicating if the vehicle is within 15 meters of a road
artifact such as intersections, turns, highway exists, etc. In
order to represent the influence of the vehicle’s speed on the
maneuvers, we encode the average, maximum, and minimum
speeds of the vehicle over the last 5 seconds as features. This
results in a X ∈ R6 dimensional outside feature vector.

VI. EXPERIMENT

In this section we present the evaluation of our approach
on a driving data set. We first give an overview of our data
set, the baseline algorithms, and our evaluation setup. We then
present the results and discussion.

A. Experimental Setup
Data set. Our data set consists of natural driving videos with
both inside and outside views of the car, its speed, and the
global position system (GPS) coordinates.1 The inside car
video captures the driver and passengers, and the outside car
video captures the view of the road ahead.

We collected this driving data set under fully natural settings
without any intervention.2 It consists of 1180 miles of freeway
and city driving and encloses 21,000 square miles across two
states.3 We collected this data set from 10 drivers over a period
of two months. The complete data set has a total of 2 million

1The inside and outside cameras operate at 25 and 30 frames/sec, and
output frames of resolution 1920x1080 and 640x480 pixels, respectively. The
distance between successive GPS coordinates is 2 meters on average.

2Collection protocol: We set up cameras, GPS and speed recording device
in subject’s personal vehicles and left it to record the data for several weeks.
The subjects were asked to ignore our setup and drive as they would normally.

3Driving map in the supplementary material.

video frames and includes diverse landscapes and weather
conditions. Figure 6 shows a few samples from our data set.
We annotated the driving videos with a total of 700 events
containing 274 lane changes, 131 turns, and 295 randomly
sampled instances of driving straight. Each lane change or turn
annotation marks the start time of the maneuver, i.e., before
the car touches the lane or yaws, respectively. For all annotated
events, we also annotated the lane information, i.e., the number
of lanes on the road and the current lane of the car.

Baseline algorithms. We compare our method against the
following baselines:

• Chance: Anticipations are chosen uniformly at random.
• SVM [30]: Support Vector Machine is a maximum margin

discriminative classifier [9]. Morris et al. [30] takes this
approach for anticipating maneuvers.4 We train the SVM
on 5 seconds of driving context by concatenating all
frame features to get a R3840 dimensional feature vector.

• Random-Forest [39]: This is also a discriminative classi-
fier that learns many decision trees from the training data,
and at test time it averages the prediction of the individual
decision trees. We train it on the same features as SVM
with 150 decision trees of depth ten each.

• HMM: This models the contextual features with a Hid-
den Markov Model. We train the HMM on a temporal
sequence of feature vectors that we extract every 0.8
seconds, i.e., every 20 video frames. We consider three
versions of the HMM: (i) HMM E: with only outside
features from the road camera, the vehicle’s speed, GPS
and street maps (Section V-B); (ii) HMM F : with only
inside features from the driver’s face (Section V-A); and
(ii) HMM E + F : with both inside and outside features.

We compare these baseline algorithms with our input-output
models, IOHMM and AIO-HMM. The features for our model
are extracted in the same manner as in HMM E+F method.
Evaluation setup. We evaluate an algorithm based on its
correctness in predicting future maneuvers. In particular, we
anticipate maneuvers every 0.8 seconds (20 video frames)
where the algorithm processes the recent context and assigns
a probability to each of the four maneuvers: {left lane change,
right lane change, left turn, right turn} and a probability
to the event of driving straight. These five probabilities to-
gether sum to one. After anticipation, i.e. when the algorithm
has computed all five probabilities, the algorithm predicts
a maneuver if its probability is above a threshold. If none
of the maneuvers’ probabilities are above this threshold, the
algorithm does not make a maneuver prediction and predicts
driving straight. However, when it predicts one of the four
maneuvers, it sticks with this prediction and makes no further
predictions for next 5 seconds or until a maneuver occurs,
whichever happens earlier. After 5 seconds or a maneuver has
occurred, it returns to anticipating future maneuvers.

4Morries et al. [30] considered binary classification problem (lane change vs
driving straight) and used Relevance Vector Machine (RVM) [43]. However,
we consider multiple maneuvers and for such multi-class problems RVM
pseudo likelihoods are not comparable. In practice, for binary classification
problems SVM and RVM give similar performance[31].



TABLE I: Results on our driving data set, showing average precision, recall and time-to-maneuver computed from 5-fold cross-validation.
The number inside parenthesis is the standard error.

Lane change Turns All maneuvers

Pr (%) Re (%) Time-to-
Pr (%) Re (%) Time-to-

Pr (%) Re (%) Time-to-
Algorithm maneuver (s) maneuver (s) maneuver (s)

Chance 33.3 33.3 - 33.3 33.3 - 20.0 20.0 -
Morris et al. [30] SVM 73.7 (3.4) 57.8 (2.8) 2.40 64.7 (6.5) 47.2 (7.6) 2.40 43.7 (2.4) 37.7 (1.8) 1.20

Random-Forest 71.2 (2.4) 53.4 (3.2) 3.00 68.6 (3.5) 44.4 (3.5) 1.20 51.9 (1.6) 27.7 (1.1) 1.20
HMM E 75.0 (2.2) 60.4 (5.7) 3.46 74.4 (0.5) 66.6 (3.0) 4.04 63.9 (2.6) 60.2 (4.2) 3.26
HMM F 76.4 (1.4) 75.2 (1.6) 3.62 75.6 (2.7) 60.1 (1.7) 3.58 64.2 (1.5) 36.8 (1.3) 2.61

HMM E + F 80.9 (0.9) 79.6 (1.3) 3.61 73.5 (2.2) 75.3 (3.1) 4.53 67.8 (2.0) 67.7 (2.5) 3.72
(Our method) IOHMM 81.6 (1.0) 79.6 (1.9) 3.98 77.6 (3.3) 75.9 (2.5) 4.42 74.2 (1.7) 71.2 (1.6) 3.83

(Our final method) AIO-HMM 83.8 (1.3) 79.2 (2.9) 3.80 80.8 (3.4) 75.2 (2.4) 4.16 77.4 (2.3) 71.2 (1.3) 3.53
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Fig. 7: Confusion matrix of different algorithms when jointly predicting all the maneuvers. Predictions made by algorithms are represented
by rows and actual maneuvers are represented by columns. Numbers on the diagonal represent precision. (More matrices in supplementary.)

During this process of anticipation and prediction, the
algorithm makes (i) true predictions (tp): when it predicts the
correct maneuver; (ii) false predictions (fp): when it predicts
a maneuver but the driver performs a different maneuver; (iii)
false positive predictions (fpp): when it predicts a maneuver
but the driver does not perform any maneuver (i.e. driving
straight); and (iv) missed predictions (mp): when it predicts
driving straight but the driver performs a maneuver. We
evaluate the algorithms using their precision and recall scores:

Pr =
tp

tp+ fp+ fpp︸ ︷︷ ︸
Total # of maneuver predictions

; Re =
tp

tp+ fp+mp︸ ︷︷ ︸
Total # of maneuvers

The precision measures the fraction of the predicted maneu-
vers that are correct and recall measures the fraction of the ma-
neuvers that are correctly predicted. For true predictions (tp)
we also compute the average time-to-maneuver, where time-
to-maneuver is the interval between the time of algorithm’s
prediction and the start of the maneuver.

In our experiments we perform cross validation to choose
the number of the driver’s latent states in the AIO-HMM and
the threshold on probabilities for maneuver prediction. For
SVM we cross-validate for the parameter C and the choice of
kernel from Gaussian and polynomial kernels. The parameters
are chosen as the ones giving the highest F1-score on a
validation set. The F1-score is the harmonic mean of the
precision and recall, defined as F1 = 2∗Pr ∗Re/(Pr+Re).

B. Results and Discussion

We evaluate the algorithms on maneuvers that were not
seen during training and report the results using 5-fold cross
validation. Table I reports the precision and recall scores under
three settings: (i) Lane change: when the algorithms only
predict for the left and right lane changes. This setting is
relevant for highway driving where the prior probabilities of

turns are low; (ii) Turns: when the algorithms only predict for
the left and right turns; and (iii) All maneuvers: in this setting
the algorithms jointly predict all four maneuvers. All three
settings include the instances of driving straight.

As shown in Table I, the AIO-HMM performs better than
the other algorithms. Its precision is over 80% for the lane
change and turns settings. For jointly predicting all the ma-
neuvers its precision is 77%, which is 34% higher than the
previous work by Morris et al. [30] and 26% higher than the
Random-Forest. The AIO-HMM recall is always comparable
or better than the other algorithms. On average the AIO-HMM
predicts maneuvers 3.5 seconds before they occur and up to 4
seconds earlier when only predicting turns. On the other hand,
Morris et al. [30] predicts only 1.2 to 2.4 seconds in advance.

Figure 7 shows the confusion matrix plots for jointly
anticipating all the maneuvers. AIO-HMM gives the highest
precision for each maneuver. Modeling maneuver anticipation
with an input-output model enjoys two benefits: (i) it models
the more accurate reasoning that events outside the vehicle
affect the driver’s state of mind which then generates events
inside the vehicle; (ii) it also allows for a discriminative
modeling of the state transition probabilities using rich features
from outside the vehicle. On the other hand, the HMM E+F
solves a harder problem by learning a generative model of the
outside and inside features together. As shown in Table I, the
precision of HMM E+F is 10% less than that of AIO-HMM
for jointly predicting all the maneuvers.

Table II compares the fpp of different algorithms. False
positive predictions (fpp) happen when an algorithm wrongly
predicts driving straight as one of the maneuvers. Therefore
low value of fpp is preferred. HMM F performs best on
this metric with a fpp of 11% as it mostly assigns a high
probability to driving straight. However, due to this reason, it
incorrectly predicts driving straight even when drivers perform



TABLE II: False positive prediction (fpp) of different algorithms.
The number inside parenthesis is the standard error.

Algorithm Lane change Turns All
Morris et al. [30] SVM 15.3 (0.8) 13.3 (5.6) 24.0 (3.5)

Random-Forest 16.2 (3.3) 12.9 (3.7) 17.5 (4.0)
HMM E 36.2 (6.6) 33.3 (0.0) 63.8 (9.4)
HMM F 23.1 (2.1) 23.3 (3.1) 11.5 (0.1)

HMM E + F 30.0 (4.8) 21.2 (3.3) 40.7 (4.9)
IOHMM 28.4 (1.5) 25.0 (0.1) 40.0 (1.5)

AIO-HMM 24.6 (1.5) 20.0 (2.0) 30.7 (3.4)

Fig. 8: Effect of time-to-maneuver. Plot comparing F1-scores when
algorithms predict maneuvers at a fixed time-to-maneuver, and shows
how the performance changes as we vary the time-to-maneuver.

a maneuver. This results in the low recall of HMM F at 36%,
as shown in Table I. AIO-HMM’s fpp is 10% less than that of
IOHMM and HMM E+F when predicting all the maneuvers.
Importance of inside and outside driving context. An
important aspect of anticipation is the joint modeling of the
inside and outside driving contexts. HMM F models only the
inside driving context, while HMM E models only the outside
driving context. As shown in Table I, the precision and recall
values of both models is less than HMM E+F , which jointly
models both the contexts. More specifically, the precision of
HMM F on jointly predicting all the maneuvers in 3%, 10%,
and 13% less than that of HMM E + F , IOHMM, and AIO-
HMM, respectively. For HMM E this difference is 4%, 11%,
and 14% respectively.
Modeling observation dependencies. AIO-HMM extends
IOHMM by modeling the temporal dependencies of events
inside the vehicle. Handling this is important because events
such as human face movements are smooth and temporally
correlated. This results in better performance: on average AIO-
HMM precision is 3% higher than IOHMM, as shown in
Table I. Also on three maneuvers, AIO-HMM offers a higher
precision than IOHMM, as shown in Figure 7.
Effect of time-to-maneuver. In Figure 8 we compare F1-
scores of the algorithms when they predict maneuvers at
a fixed time-to-maneuver, and show how the performance
changes as we vary the time-to-maneuver. As we get closer
to the start of the maneuvers the F1-scores of the algorithms
increase. As opposed to this setting, in Table I the algorithms
predicted maneuvers at the time they were most confident, and
achieved higher F1-scores. Under both the fixed and variable

time prediction settings, the AIO-HMM consistently performs
better than the others.
Anticipation complexity. The AIO-HMM anticipates maneu-
vers every 0.8 seconds (20 videos frames) using the previous
5 seconds of the driving context. The anticipation complexity
mainly comprises of feature extraction and the model inference
in equation (7). Fortunately both these steps can be performed
as a dynamic program by storing the computation of the
most recent anticipation. Therefore, for every anticipation we
only have to process the incoming 20 video frames and not
complete 5 seconds of the driving context. Furthermore, due
to dynamic programming the inference complexity described
in equation (7), O(K|S||I|3), no longer depends on K and
reduces toO(|S||I|3). In our experiment on average we predict
a maneuver under 3.6 milliseconds on a 3.4GHz CPU using
MATLAB 2014b on Ubuntu 12.04 operating system.

C. Qualitative discussion
Common Failure Modes. When dealing with natural driving
scenarios, wrong anticipations can occur for different reasons.
These include failures in the vision pipeline and unmodeled
events such as interactions with fellow passengers, overtakes,
etc. In 6% of the maneuvers, our tracker failed due to changes
in illumination (in supplementary we show some instances
of failed tracking). Wrong anticipations are also common
when drivers strongly rely upon their recent memory of traffic
conditions. In such situations visual cues are partially available
in form of eye movements. Similarly, when making turns from
turn-only lanes drivers tend not to reveal many visual cues.
With rich sensory integration, such as radar for modeling the
outside traffic along with reasoning about the traffic rules,
we can further improve the performance. Fortunately, the
automobile industry has made significant advances in some
of these areas [1, 3, 47] where our work can apply. Future
work also includes extending our approach to night driving.
Prediction timing. In anticipation there is an inherent decision
ambiguity. Once the algorithm is certain about a maneuver
above a threshold probability should it predict immediately
or should it wait for more information? An example of this
ambiguity is in situations where drivers scan the traffic but do
not perform a maneuver. In such situations different prediction
strategies will result in different performances.

VII. CONCLUSION
In this paper we considered the problem of anticipating

driving maneuvers a few seconds before the driver performs
them. Our work enables advanced driver assistance systems
(ADAS) to alert drivers before they perform a dangerous
maneuver, thereby giving drivers more time to react. In order
to anticipate maneuvers, we equipped a car with multiple
cameras and a computing device to obtain the multi-modal
driving context. We proposed an AIO-HMM model to jointly
capture the driver’s intention and the contextual information
from both inside and outside of the car. The AIO-HMM
accurately models both the temporal aspects and generative
nature of the problem. It reasons how events outside the
vehicle affect the driver’s state of mind which results in events
inside the vehicle. We extensively evaluated our approach on



1180 miles of driving data and showed improvement over
many baseline algorithms. Anticipation using our approach,
on average, took only a few milliseconds therefore making
it suited for real-time use. We also publicly release the first
data set of natural driving with inside and outside videos.
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[50] Z. Wang, K. Mülling, M. Deisenroth, H. Amor, D. Vogt,
B. Schölkopf, and J. Peters. Probabilistic movement
modeling for intention inference in human-robot inter-
action. IJRR, 2013.

[51] X. Xiong and F. De la Torre. Supervised descent method
and its applications to face alignment. In CVPR, 2013.

[52] X. Xiong and F. De la Torre. Supervised descent method
for solving nonlinear least squares problems in computer
vision. arXiv preprint arXiv:1405.0601, 2014.

[53] C. Zhang and Z. Zhang. A survey of recent advances
in face detection. Technical report, Tech. rep., Microsoft
Research, 2010.

[54] X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark localization in the wild. In CVPR, 2012.


	Introduction
	Related Work
	Problem Overview
	Our Approach
	Modeling driving maneuvers
	Modeling with Autoregressive Input-Output HMM
	Learning AIO-HMM parameters
	Inference of Maneuvers

	Features
	Inside-vehicle features.
	Outside-vehicle features.

	Experiment
	Experimental Setup
	Results and Discussion
	Qualitative discussion

	Conclusion

