
 
 
 

 ARL-TR-7369 ● AUG 2015 
 
 
 

 US Army Research Laboratory 

 
 
Optimizing Performance of Scientific 
Visualization Software to Support Frontier-
Class Computations 

 
by  Richard C Angelini  
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-7369 ● AUG 2015 

 
 US Army Research Laboratory 

 
 
Optimizing Performance of Scientific 
Visualization Software to Support Frontier-
Class Computations 

 
by Richard C Angelini 
Computational and Information Sciences Directorate, ARL 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.

 



 

ii 
 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 
OMB control number  
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

August 2015 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

December 2014–May 2015 
4. TITLE AND SUBTITLE 

Optimizing Performance of Scientific Visualization Software to Support 
Frontier-Class Computations 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Richard C Angelini 
5d. PROJECT NUMBER 

R.0015490.1 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory 
ATTN: RDRL-CIH-S 
Aberdeen Proving Ground, MD 21005-5067 
 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-7369 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
 
14. ABSTRACT 

The Department of Defense (DOD) High-Performance Computing (HPC) Modernization Program has initiated a new class of 
funded research initiatives known as “Frontier” projects. These multiyear projects are devised to leverage using 
multidisciplinary teams to solve problems which are orders-of-magnitude larger than typical HPC-sized challenge projects. 
Current scientific visualization techniques are more than adequate for solving a vast majority of the datasets generated; 
however, these Frontier project datasets with anticipated mesh sizes of more than 10 billion cells offer a variety of challenges 
for data analysis applications. In this project, EnSight was evaluated against several Frontier-sized datasets to determine if this 
commercial software application could be optimized to process this data. EnSight has already been established as an essential 
application within the DOD for interactive data analysis of large HPC simulation results. This particular project focused on 
not only being able to produce results from very large Frontier-class computational data results but to also optimize overall 
performance to reduce the amount of time required to visualize those results. 
15. SUBJECT TERMS 

EnSight, high-performance computing, distributed rendering, large datasets, performance optimization 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

46 

19a. NAME OF RESPONSIBLE PERSON 

Richard C Angelini 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
19b. TELEPHONE NUMBER (Include area code) 

410-278-6266 
 Standard Form 298 (Rev  8/98) 
 Prescribed by ANSI Std  Z39 18 



 

iii 

Contents 

List of Figures iv 

Acknowledgments v 

1. Introduction 1 

2. Problem Description 3 

3. Methodology 5 

4. EnSight Configuration 7 

5. Results 11 

6. Conclusion 13 

7. References 15 

Appendix A. Simple 4-node Batch Example Script 17 

Appendix B. Simple 5-node Batch Example Script 21 

Appendix C. Mixed-Node Batch Script Example Script 25 

Appendix D. Cray Distributed Rendering Example Script 29 

Bibliography 35 

List of Symbols, Abbreviations, and Acronyms 37 

Distribution List 38 
 



 

iv 

List of Figures 

Fig. 1 Isosurface of Q_Criterion function and shock wave boundary 
generated using EnSight. Data courtesy of Dr Nicholas Bisek, US Air 
Force Research Laboratory/Aerospace Systems Directorate. ................4 

Fig. 2 The EnSight user interface provides an opportunity to set the step 
value for striding through a structured dataset .......................................6 

Fig. 3 Basic EnSight 4-node client-server configuration .................................8 

Fig. 4 EnSight 5-node client-server configuration ...........................................9 

Fig. 5 EnSight 5-node client-server configuration using hardware-enabled 
client node ..............................................................................................9 

Fig. 6 EnSight distributed rendering configuration using standard compute 
nodes ....................................................................................................10 

Fig. 7 EnSight distributed rendering configuration using hardware-enabled 
graphics nodes ......................................................................................11 

Fig. 8 Timing results from various EnSight releases .....................................12 

Fig. 9 Time to render a 4K image using various configurations against 3 
sample datasets.....................................................................................12 

Fig. 10 Timing results from a variety of DOD/HPCMP supercomputer 
resources ..............................................................................................13 

 
 



 

v 

Acknowledgments 

This work was supported in part by a grant of computer time and resources by the 
Department of Defense (DOD) High-Performance Computing (HPC) 
Modernization Program. The author thanks Dr Michael Stephens (US Army Corps 
of Engineers Engineer Research and Development Center) for general assistance 
with calculation of Q_critierion and shock wave boundary isosurfaces associated 
with the sample datasets; Dr Nicholas Bisek (US Air Force Research Laboratory, 
Aerospace Systems Directorate, Hypersonic Sciences Branch) for providing 
sample datasets and permission to use an image of Q_Criterion isosurface for this 
report; Dr Anders Grimsrud (Computational Engineering, Inc.) for extensive 
collaboration to test/debug EnSight software; Mr David Pratt (Secure Missions 
Solutions, Inc.) for assistance with accessing graphics processing unit (GPU)-
enabled nodes on the HPC utility server systems via the Portable Batch System 
(PBS) batch job queuing system; and Mr Philip Matthews (Lockheed-Martin, US 
Army Research Laboratory DOD Supercomputing Resource Center system 
administrator) for assistance with enabling PBS to access GPU-enabled resources 
to support hardware rendering. 



 

vi 

INTENTIONALLY LEFT BLANK. 



 

1 

1. Introduction 

EnSight, ParaView and VisIt are stable production-quality software packages 
supported by the Department of Defense (DOD) High-Performance Computing 
Modernization Program (HPCMP) for both interactive and batch processing of 
large HPC-sized datasets. In recent years, efforts have been made by the HPCMP 
Data Analysis and Assessment Center (DAAC) personnel to optimize using these 
tools by providing an easy-to-use graphical job-launching interface to allow for 
interactive client-server interrogation of very large datasets in an interactive session 
to the HPC systems. (Angelini 2011, 2012) These applications provide robust 
toolsets for data analysis and animation of results while leveraging the 
computational processing power of the HPC systems. Until recently however, batch 
processing of HPC data has not been given adequate attention to leverage the full 
capabilities of the HPC resources to provide optimal turnaround time for data 
analysis of very large datasets. 

The DOD HPCMP has initiated a new class of funded research initiatives known 
as “Frontier” projects. These multiyear projects are devised to leverage using 
multidisciplinary teams, HPCMP supercomputer resources, and advanced 
modeling techniques to solve problems which are an order-of-magnitude larger 
than a typical HPC-sized challenge project. Current scientific visualization 
techniques are more than adequate for solving a vast majority of the datasets 
generated on the DOD/HPC resources. However, the Frontier project datasets with 
anticipated mesh sizes of more than 10 billion cells offer a difficult challenge for 
the data analysis applications. To provide adequate turnaround time, effort must be 
made to optimize each step in the analysis pipeline to squeeze out the optimal 
performance from the currently allocated resources.  

Starting with a file format that can be efficiently processed in a parallelized HPC 
environment is the optimal first step. File formats such as NetCDF and XDMF are 
modern file formats that were specifically designed to provide peak input/output 
performance in an HPC environment. Often times, however, the simulation codes 
used to generate these datasets are more concerned with solving a particular 
engineering problem and less concerned about how the results are postprocessed. 
Unfortunately, many of the current simulation codes are using 20- or 30-year-old 
data formats that are in no way optimized for parallel processing. As a result, the 
scientific visualization applications are left to process these legacy file formats as 
efficiently as they can within the constraints of the file layout.  



 

2 

There are additional opportunities to maximize performance of the visualization 
applications. Tweaking the applications using various tricks and techniques to 
reduce the amount of time to process the data is an obvious first step. Finding those 
optimization tricks requires an intimate understanding of how the visualization 
applications work and recognizing where to look for opportunities to reduce 
processing time. There are also opportunities to reduce data processing time by 
understanding how the complex system of processes communicates within the 
allocated computational resources. Ensuring that the fastest communication path is 
chosen so that each processor within the application is exchanging information as 
fast as possible will also have a significant impact on processing time. Equally 
important is selecting the proper configuration of resources allocated to the data 
analysis process.  

More of an art than exact science, understanding how much memory per processor 
and the total number of processors required to adequately process a large dataset 
can significantly impact the data analysis process. Allocating an insufficient 
amount of memory and/or processors will starve the application due to inadequate 
resources and the dataset will either fail to load or the total processing time will be 
greatly increased. Conversely, allocating too many resources can possibly increase 
processing time by creating a thrashing condition as the processors spend more time 
exchanging information about the status of the calculation rather than performing 
the actual calculation. Unfortunately, there is no general rule of thumb for 
predicting the amount of resources required to process these large datasets as each 
dataset has unique characteristics that impact processing time. Dr Anders Grimsrud 
from Computational Engineering, Inc (developer of the EnSight scientific 
visualization tool) has suggested a rule of thumb of 75–100 million cells per server 
as a starting point for estimating the amount of resources required to adequately 
visualize a dataset. Generally, some educated guesses can be made as a first attempt 
to evaluate processing time, and iterations of tests can help to narrow down the best 
processor and memory configuration.  

A final opportunity for optimizing processing of Frontier datasets is at the image-
rendering step. Typically, an HPC calculation is transient in nature, generally 
consisting of several hundred timesteps or more of data. Therefore, the amount of 
time spent generating an image can be significant as this rendering time is 
accumulated over hundreds or thousands of timesteps. Traditionally, using batch 
processing on the HPC systems has relied on software rendering to generate images. 
Using software rendering provides a substitution for hardware-based rendering 
(which would be available on a traditional end-user workstation) and for most 
moderately sized datasets software rendering performance is more than adequate. 
For the largest datasets such as those generated by HPC Frontier projects where 



 

3 

several hundred million polygons of data could be generated, additional 
functionality offered by distributed rendering alleviates many potential rendering 
bottlenecks that can be encountered by a single-processor graphics engine. 
Distributing the rendering process over multiple nodes allows each allocated 
processor to work on a portion of the geometry and the final image is composited 
to produce the final image.  

For the purpose of this particular project, it was also of interest to determine how 
performance could be impacted by using graphics hardware resources. HPC 
compute nodes typically do not have graphics hardware that would normally be 
available on a traditional desktop workstation; however, the DOD HPCMP 
currently has a number of systems that offer compute nodes with graphics rendering 
hardware. Unfortunately, during the course of this particular project, there were 
numerous unexpected technical issues and administrative policies that prohibited 
the full use of enhanced graphics hardware rendering on the HPC systems. Enabling 
hardware rendering on HPC assets is an ongoing initiative and those results will be 
addressed in future projects. 

2. Problem Description 

Several datasets were made available for analysis during the course of this project. 
Those datasets were generated on DOD/HPC supercomputing assets in support of 
a particular Frontier project. This computational fluid dynamics simulation 
generated data in Plot3D format, a very common and well-tested structured data 
format developed by National Aeronautics and Space Administration 
(NASA)/Ames in 1990 (Pamela Walatka et al., NASA/Ames, 
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900013774.pdf). Plot3D was 
not specifically developed for highly parallelized computing architectures; however, 
the visualization software efficiently handled the relatively simple structured data 
format. The sample datasets provided by the researcher team included the following: 

• Set 1: 765 million cells, 8 blocks 

• Set 2: 2.2 billion cells, 1 block 

• Set 3: 2.2 billion cells, 64 blocks 

These sample datasets were representative of the type of data that might be 
generated in the earliest stages of the Frontier-project development timeline and 
provided an opportunity to measure performance against known computational 
results. The Frontier-project research team also provided guidelines for what type 
of analysis would typically be performed on the computational results: 



 

4 

• Create isosurface of Q_Criterion function 

• Create isosurface of shock wave boundary 

• Generate 4K hi-resolution image (3,840 × 2,160 pixels) 

Calculating the Q_Criterion value is a computationally expensive operation that 
needed to be derived from known values provided by the dataset. Moreover, the 
calculation and generation of the Q_Criterion isosuface proved to be a very difficult 
process. When processing the 765 million-cell dataset, the resulting isosurface of 
the Q_Criterion function consisted of over 150 million triangles. As it turns out, 
this geometry was larger than any single high-end graphics card could display and 
caused the visualization processes to crash. The 2.2 billion-cell dataset resulted in 
a Q_Criterion isosuface with more than 448 million triangles. Methods need to be 
developed and tested that would allow for geometry of this size to be properly 
rendered and saved out as an image. A sample of a resulting image showing 
isosurfaces of the Q_Criterion function and the shock wave boundary is shown in 
Fig. 1. 

 

Fig. 1 Isosurface of Q_Criterion function and shock wave boundary generated using 
EnSight. Data courtesy of Dr Nicholas Bisek, US Air Force Research Laboratory/Aerospace 
Systems Directorate.  



 

5 

3. Methodology 

At the time these datasets were made available, several common visualization tools 
were tested to see how they would handle datasets of this type and size. As 
mentioned previously, ParaView, VisIt and EnSight are the primary visualization 
software packages supported by the DOD/HPC DAAC. These packages were tested 
against the sample datasets starting in January 2015 and at that time EnSight was 
the closest to being able to complete the required tasks. In the earliest tests, an 
interactive EnSight session was able to load the entire dataset and calculate the 
Q_Criterion and shock wave boundary isosurfaces, but failed while rendering the 
final image. As mentioned previously, it was ultimately determined that the 
geometry required to render the scene was larger than could physically fit on a 
single workstation graphics card.  

A relatively simple work-around for this geometry issue was to not load the entire 
structured dataset for interactive analysis. Because of the nature of the structured 
data format of this Plot3D data, EnSight was able to set a “stride” value (Fig. 2). 
Setting the stride value to 2 instructed the Plot3D data reader to process every other 
mesh value in the I, J, and K direction, reducing the problem size to one-eighth of 
the original size. Larger stride values reduce the amount of data processed 
incrementally, allowing for quick analysis and a rough estimate of the final, full-
resolution result. It is not necessary to read in the dataset at full resolution to 
perform preliminary interactive analysis. All of the functionality from loading the 
data to calculating functions and generating isosurfaces are orders of magnitude 
faster when working with a decimated instance of the entire dataset. From this 
rough analysis of a subset of the data, it is then possible to save out EnSight 
commands scripts required to process the full dataset in batch mode. 



 

6 

 

Fig. 2 The EnSight user interface provides an opportunity to set the step value for striding 
through a structured dataset 

Once it was determined that EnSight could perform all of the required processing, 
a test plan was developed. Some of the critical objectives of this evaluation process 
included the following: 

• Determine if EnSight can be scaled and optimized to visualize Frontier-
sized HPC datasets on existing HPC resources 

• Evaluate EnSight performance and find opportunities to optimize 
performance 

• Evaluate alternative EnSight configurations  

o Impact of software-distributed rendering 

o Impact of hardware rendering if available 

o Locality of distributed rendering clients (DR Clients) 

 Performance of DR Clients running in the same nodes as the 
compute servers versus the DR Clients running on dedicated nodes 

The intent of this evaluation was not only to determine the feasibility of using 
EnSight to support Frontier-project analysis but to optimize execution to achieve 
the best performance. Several opportunities to improve performance were 
discovered early on in the evaluation process. Instructing EnSight to load the 
computational mesh as “nonvisual” saved a significant amount of time. 
Traditionally, the computational mesh is not visualized; features such as clip planes 
or isosurfaces are extracted from the computational mesh and visualized. Allowing 



 

7 

EnSight to read the mesh geometry while treating it as nonvisual eliminates all the 
communication overhead of sending the geometry of the entire computational mesh 
from the allocated servers (where the data resides) to the client. Knowledge of this 
seemingly simple task saves an extraordinary amount of processing time and the 
savings is incremental when accumulated over each timestep of data that is 
processed. 

Additional performance enhancements were obtained by instructing EnSight to use 
internal network interfaces to communicate between processes on the allocated 
compute nodes. EnSight is not an MPI-based parallel application and instead 
consists of a number of threaded applications and internode communication is 
handled via traditional transmission control protocol (TCP) socket communication. 
When establishing the infrastructure to support communication between nodes, the 
default hostname tends to be the public Ethernet connection that is shared by a 
variety of different system and user applications. After observing inconsistent 
performance results while re-running the same tests, it was discovered that the 
internode process communication was using the shared network interface rather 
than the private, high-speed interface. Changing the EnSight communication 
configuration to use the private network interface provided a substantial 
performance improvement and more consistent timing results.  

4. EnSight Configuration 

EnSight provides a significant amount of flexibility in determining how the various 
application client-side services and server-side computational processes are 
configured. This evaluation focused on 5 different configurations that were selected 
to assess a number of different technical implementations and demonstrate where 
performance improvements could be found. The number of nodes and processes 
per node was configured based on an estimate that would provide the best 
performance on the computational system where the initial testing was performed. 
The distribution of allocated resources is system dependent, based on the hardware 
configuration of the system compute nodes and the size of the computational mesh. 
For this particular dataset and hardware configuration, it was determined that 
4 processors and 8 processes per node were appropriate for the 765 million-cell 
dataset.  

The first configuration (Fig. 3) tested was also the most basic. In this example, the 
HPC job scheduling and resource allocation utility Portable Batch System (PBS) 
was tasked to allocate 4 compute nodes and 8 processes per node for each test. The 
EnSight client-side processes were started on the first allocated node. The EnSight 
server-side processes were started up on all 4 allocated nodes, with 8 servers 



 

8 

running on each node for a total of 32 data servers. In this example, the first 
allocated node had the burden of running all of the client-side processes along with 
the 8 server-side computational processes while the remaining 3 nodes ran only the 
8 data servers. Depending on the size of the data and the amount of geometry that 
was generated, this may not have been an appropriate configuration due to memory 
and computational limitations, but was adequate for most moderate-sized datasets. 
The details of the underlying PBS batch script for this example are documented in 
Appendix A of this document. 

 

Fig. 3 Basic EnSight 4-node client-server configuration 

The second configuration (Fig. 4) was very similar to the first configuration with 
the exception that PBS allocated a fifth node. This extra node was used to isolate 
the client-side and server-side processes to determine if there was any performance 
benefit to isolating the client-side render processes from the server-side compute-
intensive processes. This configuration also alleviated any potential burdens on the 
first allocated node related to the process overload potential described in the first 
configuration. The details of the underlying PBS batch script for this example are 
documented in Appendix B of this document. 



 

9 

 

Fig. 4 EnSight 5-node client-server configuration 

The third configuration (Fig. 5) tested was identical to the second configuration 
except that the client-side applications were running on a graphics node. This 
graphics node included nVidia graphics hardware and allowed EnSight to render 
the graphics objects using the dedicated nVidia graphics hardware rather than 
relying on software rendering as done in the first 2 configurations. One of the 
DOD/HPCMP utility server systems was modified to allow for mixed-node asset 
allocation (using both graphics and compute nodes in a single batch job). Using this 
mixed-node configuration, the client-side processes (including all of the graphics 
rendering) were dedicated to a single hardware-enabled graphics node. Hardware 
rendering should provide better performance than software rendering. The details 
of the underlying PBS batch script for this example are documented in Appendix C 
of this document. 

 

Fig. 5 EnSight 5-node client-server configuration using hardware-enabled client node 



 

10 

The fourth configuration was significantly more complicated because it 
implemented EnSight software-distributed rendering (also known as parallel 
compositing). As previously mentioned, distributed rendering allows multiple 
rendering clients to work on a subset of the geometry and the final image 
(consisting of partial images generated by each contributing distributed rendering 
client) is composited by a master collaborative rendering hub. The location of the 
distributed rendering client is highly configurable and in the example shown in 
Fig. 6, there is a single distributed rendering client running on each allocated node. 
However, there could be 4 software rendering clients running on a single node, 2 
software rendering clients on each of the 4 allocated compute nodes for a total of 8 
distributed renderers, or 3 rendering clients running on a unique node. As with other 
aspects of running EnSight in a parallel environment, there are numerous 
configuration options and many opportunities to tweak the configuration for a 
particular dataset on a particular computing resource. The details of the underlying 
PBS batch script for this example are documented in Appendix D of this document. 

 

Fig. 6 EnSight distributed rendering configuration using standard compute nodes 

The fifth configuration shown in Fig. 7 was the most complicated to set up and it 
had the potential to provide the best rendering performance, as all of the distributed 
rendering (along with final image compositing) would be performed using compute 
nodes with nVidia graphics acceleration. However, as stated earlier, numerous 
technical and administrative hurdles where encountered while trying to evaluate 
this configuration, and it was not possible to test this solution.  



 

11 

 

Fig. 7 EnSight distributed rendering configuration using hardware-enabled graphics 
nodes 

For the sake of consistency, each configuration was tested using the same batch 
command script. The script read the same dataset each time, which remained on the 
same file system, and the same image was generated at the completion of each test 
configuration. EnSight was able to generate timing results for each phase of the 
visualization process and the output from EnSight related to the timing evaluation 
looked like the following: 

Total elapsed time on client/seconds    TIME TO LOAD DATASET = 100.20 
Total elapsed time on client/seconds    TIME TO ACTIVATE VARIABLES = 194.44 
Total elapsed time on client/seconds    TIME TO CALCULATE ADDITIONAL VARIABLES = 1253.45 
Total elapsed time on client/seconds    TIME TO CALCULATE ISOSURFACES = 46.66 
Total elapsed time on client/seconds    TIME TO LOAD ISOSURFACES = 48.59 
Total elapsed time on client/seconds    TIME TO SAVE IMAGE = 82.84 
 

5. Results 

Initial performance timing was done on the various installed versions of EnSight 
available on an HPC utility server using an otherwise unoptimized configuration 
and those exploratory results are shown in Fig. 8. In the case of EnSight versions 
10.0.3c, 10.1.2a, and 10.1.2b, a distributed rendering option was not available and 
there were significant performance issues identified while generating the 4K 
images. EnSight 10.1.4a was under development at the time of this project, and the 
developers made code changes to this release as bugs and issues were identified. 
While overall performance improved with each incremental software version, there



 

12 

 was a substantial performance increase in the final release of EnSight 10.1.4a. The 
overall time to process the entire dataset was reduced from 1,985 to 672 s, while 
the 4K image-rendering step went from 1,050 to 260 s.  

 

Fig. 8 Timing results from various EnSight releases 

In Fig. 9, the results from each of the 5 different configurations described earlier 
are shown. The value shown in this table is the amount of time (in seconds) to 
render and save a 4K image using the various configurations. In some of the 
configuration tests, there was no appreciable timing improvement. There is some 
noticeable improvement when the client-side processes are executed on a single 
graphics node. However, a much more dramatic improvement can be seen when 
using distributed software rendering. As mentioned earlier, the evaluation of 
parallel compositing using hardware-enabled distributed rendering on compute 
nodes with nVidia graphics cards could not be completed due to implementation 
and policy issues that have yet to be resolved. 

 

 

Fig. 9 Time to render a 4K image using various configurations against 3 sample datasets 



 

13 

Finally, the performance tests were run on a number of different HPC compute 
systems. While the bulk of this project’s effort was focused on the utility servers, it 
was possible to do testing on other platforms using distributed software rendering. 
Figure 10 shows the results of running similar tests across different platforms. 

 

Fig. 10 Timing results from a variety of DOD/HPCMP supercomputer resources 

The performance value of software-distributed rendering is apparent on these other 
platforms but this also demonstrates how distributed rendering can be essential for 
Frontier-sized datasets. Those blocks on Pershing and Garnet that are marked as 
“FAILED” indicate that the resulting geometry could not fit on a single compute 
node and therefore could not possibly be rendered without using distributed 
rendering/parallel compositing. The best result for distributed software rendering 
was on the new DOD/HPCMP supercomputer system called Excalibur, a Cray 
XC40 computer system located at the US Army Research Laboratory at Aberdeen 
Proving Ground, MD. The Excalibur system does have graphics-enable compute 
nodes and future testing will include evaluation of distributed hardware rendering.  

6. Conclusion 

EnSight is a commercially available scientific visualization package provided by 
Computational Engineering, Inc. This software application has been used 
extensively at the US Army Research Laboratory and across the DOD/HPCMP for 
more than 20 years. EnSight has been established as an essential application for 
interactive data analysis of large HPC simulation results. This particular project 
focused on not only being able to produce results from very large Frontier-class 
computational data results but to also optimize overall performance to reduce the 
amount of time required to visualize those results.  



 

14 

When working on Frontier-class datasets, consideration needs to be given to the 
amount of resulting geometry generated by the visualization process. When 
processing multibillion cell computation meshes, it is possible, and even likely, to 
generate more geometry than can physically fit on a single graphics card or in 
memory on a single computational node. In these instances, distributed rendering 
(or parallel compositing) is essential functionality required to support Frontier-class 
datasets. Using hardware rendering on modestly sized datasets can significantly 
improve performance and there is future work to be done to evaluate distributed 
hardware rendering as applied to these multibillion cell datasets. However, as 
demonstrated in this project, the implementation of distributed software rendering 
provided essential and significant performance enhancements necessary to 
complete the stated requirements of the Frontier project computational researchers 
who contributed the sample datasets.  

Finally, EnSight provides a significant amount of flexibility in the distribution of 
functional processes across the allocated high-performance computing resources. 
The configuration of client-side rendering and data services, server-side 
computational servers, and the allocation of distributed rendering servers allows the 
application analyst to consider many different configurations, mitigating potential 
oversubscription of resources and providing the most appropriate configuration to 
allow for the visualization of a particular dataset. 

 

 



 

15 

7. References 

Angelini R. EnSight HPC job launching. DOD HPC InSights. Spring 2011. p. 10. 

Angelini R. Client-Server HPC job launching. DOD HPC InSights. Spring 2012. p. 3. 

Walatka P, Buning P, Pierce L, Elson P. PLOT3D User’s Manual. c2015 May 27 
[accessed 2015 July 06].  http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov 
/19900013774.pdf. 

 



 

16 

INTENTIONALLY LEFT BLANK. 



 

17 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A. Simple 4-node Batch Example Script



 

18 

This is a very basic EnSight batch command file used on a High-Performance 
Computing Program Modernization Program Utility Server system. This Portable 
Batch System (PBS) batch script allocates 4 compute nodes with 8 processors per 
node for a total of 32 allocated processes. The EnSight client will run on the first 
allocated node, and the 32 EnSight servers will be distributed across all 4 allocated 
nodes. 

 
#!/bin/csh 
 
Required PBS resource flags 
 
#PBS -N simple_batch 
#PBS -A Project_ID_Removed 
#PBS -q serial 
#PBS -l select=4:ncpus=16:mpiprocs=8:mem=250GB 
#PBS -l walltime=2:00:00 
#PBS -j oe 
#PBS –l application=ensight 
 
Create a job-specific subdirectory based on JOBID and move into it 
 
set JOBID=`echo ${PBS_JOBID} | cut -d '.' -f 1` 
set wkdir=${WORKDIR}/${JOBID} 
mkdir -p ${wkdir} 
cd ${wkdir} 
 
Load EnSight module to establish environment and copy user-provided scripts into 
working directory. Environment variable to increase internal buffer size to support 
4K image render. 
 
module load ensight/10.1.4b 
setenv CEI_4K_BUFFER 1 
 
 
cp ~/scripts/ensight.ctx* . 
cp ~/scripts/num_elements_nodes.py . 
cp ~/scripts/ensight_script.enc . 
 
Find out how many processor were allocated to this batch job 
 
cat $PBS_NODEFILE 
set NP=`wc -l $PBS_NODEFILE | cut -f1 -d" "` 
echo NUMBER OF PROCS = $NP 
 
The node where the program starts executing is the master node and needs to be 
passed to the server startup command. Make sure to use the private Infiband network 
interface rather than the default Ethernet interface.  The Infiband interface is 
designated in the form of hostname-n3. 
 
set master=`hostname -s`-n3 
 



 

19 

Create a random number to be used to establish unique port numbers for 
client/server communication 
 
set random=0 
while ($random < 10000) 
        set x="`date +%N` % 65000" 
        set random=`echo $x | bc` 
 echo $random 
end 
 
set CLIENT_PORT=$random 
@ SERVER_PORT= ${CLIENT_PORT} + 1 
echo $CLIENT_PORT $SERVER_PORT 
 
Start up the EnSight client on the first allocated ... listening for a ceishell connection on 
${CLIENT_PORT} 
 
${CEI_HOME}/bin/ceishell30 -app -v -end_after_ensight –child \ 
listen://\?port=${CLIENT_PORT}\&timeout=-1 & 
 
Start up Server-of-Servers (SoS) on First allocated Node.   Listening for communication 
from the EnSight servers on ${SERVER_PORT} and passing traffic back to the EnSight 
client via ${CLIENT_PORT} 
 
echo "Starting up SoS Process on first allocated node" 
 
${CEI_HOME}/bin/ceishell30 -parent 
connect://${master}\?port=${CLIENT_PORT}\&timeout=-1 \ 
-child listen://\?nconnections=${NP}\&timeout=-1\&port=${SERVER_PORT} -role SOS & 
 
Start up EnSight servers on each of the allocated nodes. Route all of the 
communication back to the SoS process via ${SERVER_PORT} 
 
echo "Start up servers on all allocated nodes using mpirun" 
 
mpirun -np ${NP} ${CEI_HOME}/apex30/machines/linux_2.6_64/ceishell \ 
-parent connect://${master}\?timeout=-1\&port=${SERVER_PORT} -role SOS_SERVERS  & 
 
Start up EnSight client on the first allocated node and connect to ceishell 
communication network 
 
ensight100 -X -batch -sos -ceishell -p ${cmd_file}  
 
 



 

20 

INTENTIONALLY LEFT BLANK. 



 

21 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. Simple 5-node Batch Example Script



 

22 

This Portable Batch System (PBS) batch command file is similar to the example 
from Appendix A except in this example the script allocates 5 compute nodes with 
8 processors per node for a total of 32 allocated processes. The EnSight client will 
run on the first allocated node, and the 32 EnSight servers will be equally 
distributed across the remaining 4 nodes. There is additional work required in this 
startup script to identify the first allocated node and remove that node from the pool 
of resources available to run the server-side processes. 

 
#!/bin/csh 
 
Required PBS resources flags.  In this instance, PBS is instructed to request 5 nodes in 
the “select” directive 
 
#PBS -N 5Node_Batch 
#PBS -A Project_ID_Removed 
#PBS -q serial 
#PBS -l select=5:ncpus=16:mpiprocs=8:mem=250GB 
#PBS -l walltime=2:00:00 
#PBS -j oe 
#PBS -l application=ensight 
 
Create a job-specific subdirectory based on JOBID and move to that directory 
 
set JOBID=`echo ${PBS_JOBID} | cut -d '.' -f 1` 
set wkdir=${WORKDIR}/${JOBID} 
mkdir -p ${wkdir} 
cd ${wkdir} 
 
Load the EnSight module to establish environment and copy user-provided scripts 
into working directory 
 
module load ensight/10.1.4b 
setenv CEI_4K_BUFFER 1 
 
set cmd_file="1.enc" 
cp ~/Ens_DR/${cmd_file} . 
cp ~/Ens_DR/num_elements_nodes.py . 
 
Need to generate a new host resources file to be used by MPIRUN later in the script.      
Remove the “current” node from the available host list. 
 
cat $PBS_NODEFILE > pbs.nodefile 
 
grep -v `hostname -s` $PBS_NODEFILE > pbs.nodefile2 
set NP=`cat pbs.nodefile2 | wc -l | cut -f1 -d" "` 
echo NUMBER OF PROCS = $NP sort -u pbs nodefile2 > unique_nodefile 
 



 

23 

FORCE the Infiband Interface  
 
set master=`hostname -s`-n3 
 
Generate a random number to be used to establish unique port numbers for 
client/server communication 
 
set random=0 
while ($random < 10000) 
        set x="`date +%N` % 65000" 
        set random=`echo $x | bc` 
 echo $random 
end 
set CLIENT_PORT=$random 
@ SERVER_PORT= ${CLIENT_PORT} + 1 
echo "PORTS=" $CLIENT_PORT $SERVER_PORT   
 
Start up the MASTER EnSight client on the first allocated node. Listen for inter-process 
communication on ${CLIENT_PORT} 
 
echo "Starting MASTER ceishell shell process on the first allocated node" 
${CEI_HOME}/bin/ceishell31 -X -app -end_after_ensight -child 
listen://${master}\?port=${CLIENT_PORT}\&timeout=-1 & 
 
Start up the EnSight Server-of-Servers (SOS) process on the first allocated node.    
Listen for communication from the servers on ${SERVER_PORT} and pass results back 
to the EnSight master client on ${CLIENT_PORT}. 
 
echo "Starting up SoS/CollabHUB process on first allocated node" 
${CEI_HOME}/bin/ceishell31 -parent 
connect://${master}\?port=${CLIENT_PORT}\&timeout=-1 \ 
-child listen://\?nconnections=${NP}\&timeout=-1\&port=${SERVER_PORT} -role SOS & 
 
Start up EnSight servers on the remaining 4 nodes. Note the use of the “-hostfile 
pbs.nodefile2” flag to mpirun to use a subset of the originally assigned nodes. Pass all 
traffic back to the master SoS process via ${SERVER_PORT}. 
 
echo "Start up servers on all allocated nodes using mpirun" 
mpirun -hostfile pbs.nodefile2  ${CEI_HOME}/apex31/machines/linux_2.6_64/ceishell \ 
-parent connect://${master}\?timeout=-1\&port=${SERVER_PORT} -role SOS_SERVERS  & 
 
Check the ceishell communication network. This command is very useful for 
debugging purposes. 
 
echo "Display the ceishell network" 
${CEI_HOME}/bin/ceishell31 -cmd show_net 
 
Start up the EnSight client and pass the user-provided batch command script that will 
be automatically executed. EnSight will automatically connect to the ceishell 
communication infrastructure and start up the appropriate underlying application 
executable programs. 
 
ensight101 -X -batch -sos -ceishell -p ${cmd_file} 



 

24 

INTENTIONALLY LEFT BLANK. 



 

25 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C. Mixed-Node Batch Script Example Script



 

26 

This Portable Batch System (PBS) batch command file is similar to the 5-node 
example from Appendix B except in this example the directives request a mixture 
of graphics processing unit (GPU)-enabled and large memory compute nodes. The 
EnSight client will run on the first allocated node (which is the graphics node), and 
the 32 EnSight servers will be equally distributed across the remaining 4 nodes. 
There is additional work required in this startup script to identify the first allocated 
node and remove that node from the pool of resources available to run the server-
side processes. There is also a section of code required to properly initialize the X-
windows environment on the allocated graphics node. 

 
#!/bin/csh 
 
Required PBS resources flags. The “select” directive is requesting mixed nodes 
assigned to a single batch job—1 GPU-enabled node and 4 large memory compute 
nodes. The “develop” queue was a limited-access resource set up specifically to test 
hardware rendering on the GPU-nodes. 
 
#PBS -N Mixed_Node 
#PBS -q develop 
#PBS -A Project_ID_Removed 
#PBS -l select=1:ngpus=1 ncpus=16:mpiprocs=1+4 ngpus=0:mpiprocs=8 mem=250GB 
#PBS -l walltime=02:00:00 
#PBS -j oe 
#PBS -l application=ensight 
 
Create a job-specific subdirectory based on JOBID and move to that directory 
 
set JOBID=`echo ${PBS_JOBID} | cut -d '.' -f 1` 
set wkdir=${WORKDIR}/${JOBID} 
mkdir -p ${wkdir} 
cd ${wkdir} 
 
Load the EnSight module to establish environment and copy user-provided scripts 
into working directory 
 
module load ensight/10.1.4b 
setenv CEI_4K_BUFFER 1 
 
set cmd_file="1.enc" 
cp ~/Ens_DR/${cmd_file} . 
cp ~/Ens_DR/num_elements_nodes.py . 
 



 

27 

Need to generate a new host resources file to be used by MPIRUN later in the script.      
Remove the “current” node from the available host list.     
 
echo PBS_NODEFILE 
cat $PBS_NODEFILE 
grep -v `hostname -s` $PBS_NODEFILE > pbs.hostname2 
echo pbs.hostname2 
cat pbs.hostname2 
set NP=`cat pbs.hostname2 | wc -l | cut -f1 -d" "` 
echo NUMBER OF PROCS = $NP 
 
Set internode communication to use the Infiband private network Interface  
 
set master=`hostname -s`-n3 
 
Generate a random number to be used to establish unique port numbers for 
client/server communication 
 
set random=0 
while ($random < 10000) 
        set x="`date +%N` % 40000" 
        set random=`echo $x | bc` 
 echo $random 
end 
 
set CLIENT_PORT=$random 
@ SERVER_PORT= ${CLIENT_PORT} + 1 
 
echo $CLIENT_PORT $SERVER_PORT 
 
These commands were necessary to set up the proper environment on the GPU-
enabled graphics node. This code is similar to what is done in some of the underlying 
SRD startup scripts and is very specific to the HPC utility servers.     
 
echo "HOSTNAME="`hostname -s` 
set XCOOKIESRD=/tmp/vgl_xauth_key 
 
set XAUTHORITY=${HOME}/.Xauthority 
 
#  Pull the display from the SRD x11 cookie. 
set DISP=`xauth -q -f $XCOOKIESRD list | cut -d " " -f 1` 
setenv DISPLAY :0 
echo "DISPLAY=$DISPLAY" 
 
ls -l $XCOOKIESRD 
getfacl $XCOOKIESRD 
 
# Merge in SRD generated cookie. 
xauth -f $XAUTHORITY merge $XCOOKIESRD 
 
# Verify direct rendering is enabled 
echo "before glxinfo" 
 
glxinfo > /dev/null 
if ($status != 0) then 



 

28 

 echo "NO VALID DISPLAY ... EXITING NOW" 
 exit 1 
endif 
glxinfo | grep -i "direct rendering" 
echo "after glxinfo" 
 
Start up EnSight client on the first allocated node and connect to ceishell 
communication network. Listen for inter-process communication on ${CLIENT_PORT} 
 
${CEI_HOME}/bin/ceishell31 -app -v -end_after_ensight -child 
listen://\?port=${CLIENT_PORT}\&timeout=-1 & 
echo "DISPLAY=$DISPLAY" 
 
Start up the EnSight Server-of-Servers (SOS) process on the first allocated node.    
Listen for communication from the servers on ${SERVER_PORT} and pass results back 
to the EnSight master client on ${CLIENT_PORT}. 
 
echo "Starting up SoS Process on first allocated node" 
${CEI_HOME}/bin/ceishell31 -parent connect://${master}\?port=${CLIENT_PORT} 
\&timeout=-1 \ 
-child listen://\?nconnections=${NP}\&timeout=-1\&port=${SERVER_PORT} -role SOS & 
echo "DISPLAY=$DISPLAY" 
 
Start up EnSight servers on the remaining 4 nodes. Note the use of the “-hostfile 
pbs.nodefile2” flag to mpirun to use a subset of the originally assigned nodes. Pass all 
traffic back to the master SoS process via ${SERVER_PORT}. 
 
echo "Start up servers on all allocated nodes using mpirun" 
echo "DISPLAY=$DISPLAY" 
 
mpirun -hostfile pbs.hostname2  ${CEI_HOME}/apex31/machines/linux_2.6_64/ceishell \ 
-parent connect://${master}\?timeout=-1\&port=${SERVER_PORT} -role SOS_SERVERS  & 
echo "DISPLAY=$DISPLAY" 
 
Start up the EnSight client and pass the user-provided batch command script that will 
be automatically executed. EnSight will automatically connect to the ceishell 
communication infrastructure and start up the appropriate underlying application 
executable programs. The command line argument “-X” has been removed from this 
startup command; removing this flags forces EnSight to do hardware-enabled 
rendering.   
 
ensight101 -batch -sos -ceishell -p ${cmd_file} 
# remove “-X” flag for hardware rendering! 
 
After EnSight has completed the batch job, clean up the X-windows environment on 
the graphics node. 
 
# Remove the cookie on shutdown. 
xauth -f $XAUTHORITY remove $DISP 
 



 

29 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D. Cray Distributed Rendering Example Script



 

30 

This is a complex sample Portable Batch System (PBS) batch script used to launch 
EnSight with distributed rendering in batch mode on a High-Performance 
Computing Modernization Program Cray supercomputer. In this example, PBS is 
asked to allocate 9 compute nodes. The first allocated node is reserved for the client 
processes, the Server of Servers (SOS) master process, and the distributed rendering 
(DR) collaborative hub. The EnSight compute-side servers are allocated to start on 
the remaining 8 nodes allocated by PBS. In this example, 4 distributed rendering 
clients will be used—a single DR process on each of the first 4 allocated server 
nodes. 

 
#!/bin/csh 
 
Required PBS resource flags 
 
#PBS -N 8_nodes_8dr 
#PBS -A Project_ID_Removed 
#PBS -q standard 
#PBS -l walltime=03:00:00 
#PBS -j oe 
#PBS -l select=9:ncpus=32:mpiprocs=8 
#PBS -l ccm=y 
 
How many server nodes will also run a single DR node? 
 
set DR_NODES=4 
 
Move to the system working directory 
 
set WORKDIR=/p/work1/angel 
cd ${WORKDIR} 
 
Create a job-specific subdirectory based on JOBID and move to that directory 
 
set JOBID=`echo ${PBS_JOBID} | cut -d '.' -f 1` 
if ( ! -d ${JOBID} ) mkdir -p ${JOBID} 
cd ${JOBID} 
 
 
Establish EnSight execution environment  
 
setenv CEI_HOME /usr/cta/DAAC/CEI/10.1.4b 
set path=($CEI_HOME/bin $path) 
setenv TMPDIR $WORKDIR/$JOBID 
 
 



 

31 

Identify required input files 
 
set cmd_file="1.enc" 
cp ~/DR/${cmd_file} . 
cp ~/DR/num_elements_nodes.py . 
 
Save off complete PBS node list. 
 
cat $PBS_NODEFILE > pbs.nodefile 
 
Determine how many processors per node were allocated 
 
@ procs_node = `wc -l pbs.nodefile | cut -f1 -d" "` / `sort -u pbs.nodefile | wc -l ` 
echo procs_node = $procs_node 
 
Remove first node from resource list-first node reserved for client-side processes 
 
set head_node=`head -1 $PBS_NODEFILE` 
grep -v $head_node $PBS_NODEFILE > server nodes 
 
Save off file with the remaining nodes allocated for servers/DR 
 
set TOTAL_SERVERS=`cat server.nodes | wc -l | cut -f1 -d" "` 
echo TOTAL SERVERS = $TOTAL_SERVERS 
 
Find out how many unique nodes we have to use for distributed rendering 
 
sort -u server nodes > unique.nodefile 
set UNIQUE_SERVERS=`cat unique.nodefile | wc -l | cut -f1 -d" "` 
echo UNIQUE_SERVERS = $UNIQUE_SERVERS 
 
Find out if we asked for more unique DR nodes than we have available 
 
if ($UNIQUE_SERVERS < $DR_NODES) then 
 echo SOMETHING IS WRONG - not enough nodes allocated 
 exit 0 
 endif 
echo NUMBER OF DR PROCS = $DR_NODES 
 
Create a random number that EnSight will use to generate unique port numbers 
 
set random=0 
while ($random < 10000) 
        set x="`date +%N` % 40000" 
        set random=`echo $x | bc` 
end 
 
set SERVER_PORT=$random 
@ DR_PORT = $random + 1 
 
 



 

32 

Make sure client-side batch script does not exist 
 
set sf="serial_startup.csh" 
if (-e ${sf}) rm ${sf} 
 
Create batch command script to start up serial processes on first allocated node 
 
cat << EOF > ${sf} 
#!/bin/csh 
 
setenv TMPDIR $WORKDIR 
setenv CEI_HOME ${CEI_HOME} 
set path=(\${CEI_HOME}/bin \$path) 
 
setenv ENSIGHT10_MAX_THREADS 4 
setenv ENSIGHT10_MAX_SOSTHREADS 8 
setenv ENSIGHT10_MAX_CTHREADS 8 
setenv ENSIGHT10_SOCKBUF 1048576 
setenv CEI_4K_BUFFER 1 
 
cd ${WORKDIR}/${JOBID} 
 
if (-e master node) rm master node 
hostname -s > master.node 
echo Master node processes running on \`hostname -s\` 
 
# start up EnSight and have it look for a CEISHELL network to connect to 
 
( ${CEI_HOME}/bin/ensight101 -X -prdist -batch -sos -ceishell -p ${cmd_file} )& 
 
echo ENSIGHT CLIENT STARTED 
 
# Start up CEISHELL network for client-side services 
 
( ${CEI_HOME}/bin/ceishell31 -X -app -end_after_ensight \ 
-child listen://\?nconnections=${TOTAL_SERVERS}\&timeout=-1\&port=${SERVER_PORT} \ 
-role SOS \ 
-child listen://\?nconnections=${DR_NODES}\&timeout=-1\&port=${DR_PORT} \ 
-role COLLABHUB ) & 
 
echo MASTER/SOS/COLLABHUB CEISHELL started 
 
# Query the CEISHELL network and to show all of the interprocess connections  
(${CEI_HOME}/bin/ceishell31 -cmd show_net) & 
 
wait 
EOF 
 
Set permissions on the client-side startup script and display the contents of the file 
 
chmod 755 ${sf} 
echo "\n============================\n" 
cat ${sf} 
echo "\n============================\n" 
 



 

33 

Make sure the server-side script file does not exist 
 
set df="dr_startup.csh" 
if (-e ${df}) rm ${df} 
 
 
Create batch command script to start up SoS/DR processes on remaining allocated 
nodes 
 
cat << EOF > ${df} 
#!/bin/csh 
 
setenv TMPDIR $WORKDIR 
setenv CEI_HOME ${CEI_HOME} 
set path=(\${CEI_HOME}/bin \$path) 
 
setenv ENSIGHT10_MAX_THREADS 4 
setenv ENSIGHT10_MAX_SOSTHREADS 8 
setenv ENSIGHT10_MAX_CTHREADS 8 
setenv ENSIGHT10_SOCKBUF 1048576 
setenv CEI_4K_BUFFER 1 
 
cd ${WORKDIR}/${JOBID} 
 
set master_node=\`cat master.node\` 
echo Starting up SoS/DR processes on \$master_node 
 
echo STARTING APRUN  SOS_SERVERS 
 
#pick up command line argument 
set DO_DR=\$1 
 
# main job launching loop.   Start up an SoS server on each node & processor allocated. 
# Start up a single DR client on each unique node if needed 
foreach i (\`seq 1 ${procs_node}\` ) 
echo inside loop \$i on `hostname -s` 
    echo start up SOS_SERVER on \`hostname -s\` 
    ( ${CEI_HOME}/apex31/machines/linux_2.6_64/ceishell \ 
     -parent connect://\${master_node}\?port=${SERVER_PORT}\&timeout=-1 -role 
SOS_SERVERS ) & 
    if (\$i == 1 && \$DO_DR == 1) then 
 echo STARTED DR_CLIENT on \`hostname -s\` 
 ( ${CEI_HOME}/apex31/machines/linux_2.6_64/ceishell \ 
 -parent connect://\${master_node}\?port=${DR_PORT}\&timeout=-1 -role 
DRCLIENTS -X) & 
    endif 
end 
 
# Don’t terminate this process until all of the background processes have completed 
wait 
EOF 
 



 

34 

Set permissions on the server-side startup script and display the contents of the file 
 
chmod 755 ${df} 
echo "\n============================\n" 
cat ${df} 
echo "\n============================\n" 
 
Use APRUN to submit batch command script to the first compute node 
 
( aprun -n 1 -d 1  ./${sf} ) & 
sleep 5 
 
Fire up the EnSight server executable on the allocated compute nodes using APRUN.  
Apparently, APRUN is smart enough to not re-use the first node and will use the 
remainder of the nodes only. Each iteration of this loop starts on a new node. 
 
set dr_counter=1 
foreach i (`seq 1 $UNIQUE_SERVERS`) 
   echo loop $i 
   if ($dr_counter <= $DR_NODES) then 
           echo starting up aprun with DR 
    (aprun -n 1  -N 1 ./${df} 1 ) & 
   else 
           echo starting up aprun without DR 
    (aprun -n 1  -N 1 ./${df} 0 ) & 
   endif 
   @ dr_counter = $dr_counter + 1 
end 
 
Don’t terminate this shell script until all of the background processes have completed 
 
wait 
echo " APRUN DONE `date`" 
 



 

35 

Bibliography 

DOD HPC Frontier Projects. DOD HPC Modernization Program; c2014 [accessed 
2015 July 6] http://www.hpc.mil/index.php/2013-08-29-16-04-43/resource 
-management/frontier-projects. 

DAAC Data Analysis and Assessment Center. DOD HPC Modernization Program; 
[accessed 2015 July 6] HPCMP DAAC Website: http://daac.hpc.mil. 

VisIt Website. Livermore (CA): Lawrence Livermore National Laboratory; 
[accessed 2015 July 6] https://wci.llnl.gov/simulation/computer-codes/visit. 

Welcome to ParaView. ParaView; [2015 July 6] http://www.paraview.org. 

EnSight 10.1. EnSight CSM and CFD Post processing; c2014 [accessed 2015 
July 6] http:// www.ceisoftware.com.  

Main Page. XDMF; 2014 Nov 7 [2015 July 6] http://www.xdmf.org. 

Network Common Data Form (NetCDF). Boulder (CO): Unidata; c2015 [accessed 
2015 July 6] http://www.unidata.ucar.edu/software/netcdf.



 

36 

INTENTIONALLY LEFT BLANK. 



 

37 

List of Symbols, Abbreviations, and Acronyms 

DAAC Data Analysis and Assessment Center 

DOD Department of Defense 

DR Clients distributed rendering clients 

GPU graphics processing unit 

HPC high-performance computing 

HPCMDC High-Performance Computing Modernization Program 

NASA National Aeronautics and Space Administration 

PBS Portable Batch System 

TCP transmission control protocol 

 



 

 38 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 2 DIRECTOR 
 (PDF) US ARMY RESEARCH LAB 
  RDRL CIO LL 
  IMAL HRA MAIL & RECORDS 
  MGMT 
 
 1 GOVT PRINTG OFC 
  (PDF)  A MALHOTRA 
 
 3 DIR USARL 
 (PDF) RDRL CIH S 
   R ANGELINI  
   D SHIRES  
   L BRAINARD  
 
 
 


