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Technical summary 

We have made major achievements during the funding period of this grant. We summarize 
the achievements based on area of research. Most the results summarized below have been 
published and details can be found in related publications. For the ones that are under review, we 
include a more detailed summary. 

1. Development of n-type dopants:

We have developed several efficient n-type dopants and gained important fundamental 
understanding on their operating mechanism and design rules. We demonstrated a number of 
applications of the n-type dopants developed in this program to control the Dirac point of 
graphene, fabrication of all-carbon solar cells, fabrication of transparent and flexible graphene 
photodetectors and enabling high performance organic solar cells. Some of the dopants we 
reported are now available from Sigma-Aldrich Co. Several research groups have used our 
reported dopants for conducting electrodes, organic solar cells and thermoelectrics. 

We have devoted significant time to understand the chemical mechanism of air-stable n-type 
dopants based on benzimidazolium salts and reduced benzimidazoles (Figure 1, DMBI-I and 
DMBI-H).  We found that DMBI-H dopants react with fullerenes by a hydride transfer 
mechanism in solution.  A consequence of this mode of reactivity is that the host material must 
form a C-H bond in the doping process; though, the reactivity is likely dependent on the specific 
materials combination.  For combinations where hydride transfer is operative, such as fullerenes, 
the free energy for doping will be described by ΔGdoping = ΔΔGC-H + F(E0/–

A – E+/0
D).  The 

spontaneity of doping is dependent on the difference in the free energy of hydrogenation, ΔΔGC-

H, of the dopant radical and neutral host.  Thus, predicting the doping effect is a major challenge 
for DMBI-H dopants.   

Figure 1: (Left) Various dimethylbenzimidazole (DMBI) based dopants, and the synthesis of 
DMBI dimers.  (Right Top) Host electron transport materials used in this study.  (Right Bottom) 
The basic doping reactions for an arbitrary organic semiconductor host, A, with either DMBI-H 
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or (DMBI)2 compounds.  It is anticipated that both open-shell and closed-shell hydrogenated 
acceptor species, A•-Hn (n is odd) or A-Hn (n is even), form in the doping reaction depending on 
how many C-H bonds a given host forms. 

 
We reported the neutral benzimidazoline-radical dimers (2-Cyc-DMBI)2, (2-Rc-DMBI)2 and 

(2-Fc-DMBI)2 (Figure 1) and their use to form the doped state DMBI+/A•–.  The distinct 
properties of the (DMBI)2 dopants relative to the DMBI-H dopants is evident from the solution 
doping rates, doped thin-film polaron band intensities, Fermi level shifts, and conductivities 
achieved using (2-Cyc-DMBI)2 and its DMBI-H analog, 2-Cyc-DMBI-H, as dopants (Figure 1 
1).  Greater variability of the doping effect in the different hosts was found for the DMBI-H 
compound than for the (DMBI)2 compound, which is attributed to the distinct reactions by which 
the two classes of dopants function.  Notably, a very high room-temperature conductivity of 12.0 
S cm-1 was obtained for C60 doped with (2-Cyc-DMBI)2.  In contrast to the DMBI-H dopants, the 
free-energy for a dimer doping reaction is approximately described by ΔGdoping = ΔGdiss - 2F(E0/-

A - E+/0
D) where ΔGdiss is the free-energy for homolysis of the dimer carbon bond (first step, 

Mechanism I, Figure 1), E+/0 is the reduction potential of the dopant cation, and E0/- is the 
reduction potential of the neutral polymer.   

 
Figure 2. Mechanisms by which dimeric n-dopants (D2) can react with acceptors (A). 
 
We evaluated the thermodynamics of the (DMBI)2 doping reaction by a combination of 

electron paramagnetic spectroscopy (EPR), and cyclic voltammetry (CV).  Additionally, the 
doping mechanisms were evaluated by UV-Vis-NIR spectroscopy with a variety of host 
materials.  EPR was used to measure the bond dissociation energies from the dimer into two 
monomer radicals.  The thermodynamics of the dissociation reaction of (2-Fc-DMBI)2 were 
determined to be ∆Hdiss = +109 kJ mol–1, ∆Sdiss = +163 J mol–1 K–1, and ∆Gdiss(300 K) = +60 kJ 
mol–1.  Using these parameters, the doping reaction free energy will be ~ 0 when E0/- = -1.93 V.   
Notably, the most reducing isolable organic compound that is air-sensitive has a reduction 
potential of -1.95 V, whereas (2-Fc-DMBI)2 is stable as a solid in air and of similar reducing 
strength.  The mechanisms as determined by rate experiments in collaboration with the Marder 
group at Georgia Tech revealed that the dopants react by one of two mechanisms depending on 
the bond strengths of the dimers, the LUMO of the acceptor, and the temperature.  In Mechanism 
I (Figure 2), dimer dissociation precedes electron transfer, and in mechanism II electron transfer 
is followed by dimer dissociation.  In either case, the reaction results in two electrons reducing 
two equivalents of acceptor.  Interestingly, the dimer with the weakest C-C bond, (2-Fc-DMBI)2, 
reacted primarily by mechanism II with PCBM, but reacted by mechanism I with the weaker 
electron acceptor TIPS-pentacene.  In contrast, (2-Cyc-DMBI)2 which has an estimated ∆Gdiss of 
143.6 kJ mol-1 reacted by mechanism II with both acceptors. 
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Publications related to this topic: 
 

B. D. Naab, S. Guo, S. Olthof, E. G. B. Evans, P. Wei, G. L. Millhauser, A. Kahn, S. Barlow, S. 
R. Marder, and Z. Bao, “Mechanistic Study on the Solution-Phase n-Doping of 1, 3-Dimethyl-2-
aryl-2, 3-dihydro-1 H-benzoimidazole Derivatives,” J. Am. Chem. Soc., vol. 135, no. 40, pp. 
15018–15025, 2013. 
 
B. D. Naab, S. Himmelberger, Y. Diao, K. Vandewal, P. Wei, B. Lussem, A. Salleo, and Z. Bao, 
“High mobility N-type transistors based on solution-sheared doped 6,13-
bis(triisopropylsilylethynyl)pentacene thin films,” Adv. Mater., vol. 25, no. 33, pp. 4663–4667, 
Sep. 2013. 

 
H. Wang, P. Wei, Y. Li, J. Han, H. R. Lee, B. D. Naab, N. Liu, C. Wang, E. Adijanto, B. C.-K. 
Tee, S. Morishita, Q. Li, Y. Gao, Y. Cui, and Z. Bao, “Tuning the threshold voltage of carbon 
nanotube transistors by n-type molecular doping for robust and flexible complementary circuits.,” 
Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 13, pp. 4776–81, Apr. 2014. 
 
H. Wang, B. Cobb, A. Van Breemen, G. Gelinck, and Z. Bao, “Highly stable carbon nanotube 
top-gate transistors with tunable threshold voltage,” Adv. Mater., vol. 26, no. 26, pp. 4588–4593, 
Jul. 2014. 
 
H. Wang, G. I. Koleilat, P. Liu, G. Jiménez-Osés, Y. C. Lai, M. Vosgueritchian, Y. Fang, S. 
Park, K. N. Houk, and Z. Bao, “High-yield sorting of small-diameter carbon nanotubes for solar 
cells and transistors,” ACS Nano, vol. 8, no. 3, pp. 2609–2617, 2014. 

 
 
2. Design rules for high performance n-doped conducting polymers 
 
We studied n-doping of several conjugated co-polymers based on perylene diimide (PDI) and 

napthalene diimide (NDI) acceptors co-polymerized with ethynylene, ethylene, and bithiophene 
by the dimeric dopant (2-Cyc-DMBI)2 (Figure 3).  The n-doping reactions were confirmed in 
solution by UV-Vis-NIR spectroscopy and in thin films with photothermal deflection 
spectroscopy (PDS).  The reduced species of the ethynylene-linked polymers were found to be 
more delocalized along the polymer backbone than the bithiophene-linked polymers by 
comparison of the absorption spectra (Figure 4).  A high conductivity of 0.45 S cm-1 was 
measured for the ethynylene-linked polymer P(PDI2OD-A) which is among the highest reported 
conductivity for a solution n-doped polymer.  In contrast, neither of the two bithiophene-linked 
polymers, P(NDI2OD-T2) and P(PDI2OD-T2), achieved conductivities greater than 4 x 10-3 S 
cm-1.  Furthermore, there is no correlation between the conductivity of the doped films and the 
mobility of the pure films, and GIXD measurements of the films find that a similar doped phase 
forms irrespective of the crystallinity of the pure host polymer.  In absence of a significant 
difference in morphology, these results suggest a link between the polaron delocalization length 
of the polymers and the conductivity, and more fundamentally between the backbone structure of 
the polymer and the polaron delocalization length.   
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Figure 3: Structure of polymers used for the n-doping study by the dimeric n-dopant (2-Cyc-

DMBI)2. 
 
 

 
 
Figure 4: Summary of the major result from the structure-property study on the n-doping of 

PDI-based electron accepting polymers. 
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Figure 5: Derivatization of P(PDI2OD-A) to make self-n-doped tertiary amine and 

quaternary amine derivatives. 
 
Modifications of the n-dopable polymer, P(PDI2OD-A), were then performed to attain a 

polar soluble self-n-doped polymer (Figure 5).  Both amine and quaternary amine side-chain 
substitution lead to increased conductivity over undoped P(PDI2OD-A) (Figure 3).  The effects 
of extrinsic n-doping by the dimer dopant (2-Cyc-DMBI)2 were evaluated spectroscopically in 
solution, by electrical measurements, atomic force microscopy, and grazing incidence x-ray 
diffraction.  Interestingly, the quaternary amine substituted polymer is highly conductive and 
amorphous without extrinsic doping.  The quaternary amine polymer is only soluble in polar 
solvents, and this property was exploited to fabricate an all polymer solar cell by orthogonal 
solvent processing to achieve a PCE of 4.2% (Figure 6).  Both the amine and quaternary amine 
polymers exhibit sub-gap absorption features in air that are characteristic of a polaronic state.  
Extrinsic doping of the quaternary amine polymer rapidly initiates a phase change to a 
zwitterionic polymer with a crystalline structure.  This result indicates that a highly crystalline 
conjugated polymer was prepared from an amorphous polymer simply by adding electrons to the 
backbone.  The conductivity of the zwitterionic polymer was slightly higher with enhanced air-
stability.   

 

[1]  
Figure 6: (a) Comparison of the air-stability of the quaternary amine functionalized self-n-

doped polymer, PDI-QI-amine, and 20 wt% (2-Cyc-DMBI)2 doped PDI-QI-amine, (b) J-V curve 
for all polymer solar cell with a PDI-QI-amine electron transport layer (PCE of 4.17%, JSC of 
8.75, VOC of 0.96 V, and FF of 0.50). 
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Publications related to this topic: 
 

B. D. Naab, X. Gu, Y. Zhou, T. Kurosawa, and Z. Bao, “High Conductivity Self-N-Doped 
Conjugated Polymers and Their Application as Electron Transport Layers in All Polymer Solar 
Cells,” J. Mater. Chem. A, vol. In Prepara, 2015. 
 
B. D. Naab, X. Gu, T. Kurosawa, J. W. F. To, A. Salleo, and Z. Bao, “Role of Polymer Structure 
on the Conductivity of N-Doped Electron Accepting Polymers: Synthesis, Electrical, and 
Spectroscopic Characterization,” J. Am. Chem. Soc., vol. Submitted, 2015. 

 
 
3. Fundamental understanding of tuning charge transport in organic 

semiconductors through molecular design, tuning molecular packing and morphology: 
 
We have developed a number of novel methods to achieve unprecedented charge transport 

ability of organic semiconductors. Our methods were developed through fundamental 
understanding on tuning electronic structures through molecular design, molecular packing and 
morphology. The important aspect of our research is that our design rule keeps in mind the 
method for fabrication needs to be scalable. As a result, the materials we developed are highly 
processable and reproducible through solution coating and the fabrication methods we reported 
are scalable methods that can be potentially translated into large-scale production. Additionally, 
the high performance semconductors developed through our work enabled high performance 
polymer solar cells, transparent display back plane, and high stable organic transistor sensors for 
marine environment and disease diagnosis. 

 
Organic semiconductors with higher carrier mobility and better transparency have been 

actively pursued for numerous applications, such as flat-panel display backplane and sensor 
arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the 
crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a 
highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-
BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-
coating method. Combined with a vertical phase separation of the blend, the highly aligned, 
meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility 
up to 43  cm2  Vs−1 (25  cm2  Vs−1 on average), which is among the highest value reported to date 
for all organic molecules. The resulting transistors show high transparency of >90% over the 
visible spectrum, indicating their potential for transparent, high-performance organic electronics. 
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Figure 7. (a) Device configuration (b) Schematic representation of off center spin coating 

method (c) Transparency of off center spin coated C8-BTBT / PVP:HDA films.  
 
Though the off center spin coating method enables very high performance organic transistors 

it is not very compatible with large areas.  In contrast, the solution shearing method described by 
our group previously is compatible with large area substrates.  6,13(bis-
triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, 
adopts metastable polymorphs possessing significantly faster charge transport than the 
equilibrium crystal when deposited using the solution-shearing method. Here, we use a 
combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence 
wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind 
formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization 
occurs first at the air–solution interface, and nanoscale vertical spatial confinement of the 
solution results in formation of metastable polymorphs, a one-dimensional and large-area 
analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that 
metastable polymorphism can be tuned with unprecedented control and produced over large 
areas by either varying physical confinement conditions or by tuning energetic conditions during 
crystallization through use of solvent molecules of various sizes. 
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Figure 8. (a) Schematic of in situ x-ray diffraction of solution sheared TIPS-pentacene films 
(b) Scattering regions of solution sheared TIPS-pentacene captured by the high speed GIWAXS 
detector. 

To demonstrate the applicability of solution shearing to large areas we then developed a 
method to deposit patterned transistor arrays of TIPS-pentacene. In our work, we use a simple 
chemical pre-patterning method to enable the solution shearing deposition of TIPS-pentacene on 
substrates with feature sizes as small as 100 µm. A schematic of our process is shown in Figure 
x. Grazing incidence x-ray diffraction (GIXD) was also used to confirm the existence of high
performance TIPS-pentacene polymorphs in the patterned thin films. Mobilities as high as 1.13 
cm2 V_1 s_1 were obtained on 400 µm wide patterns by depositing a high-performance, 
metastable polymorph of TIPS-pentacene. 

Figure 9. (a) Schematic solution shearing setup for the deposition of patterned organic 
semiconductors (b) Chemical structures of TIPS-pentacene, phenyltrichlorosilane, and 
octadecyltrichlorosilane (c) Illustration of the patterning method. 
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4. Stretchable and self-healing materials and device development. 
 
Future electronic devices will have unprecedented functions, robustness and capabilities if 

we can incorporate mechanical characteristics of skin. Therefore, skin-inspired electronics opens 
up a new field in electronic materials and device development. Our group is in the forefront of 
this emerging research field. We have reported several new electronic materials and devices 
concepts under this grant support. Specifically, we developed a new type of composite material 
that can self-heal at room temperature repeatedly and have electrical conductivity. Such 
materials, mimicking human skin functions, may have applications in electronic devices and 
coatings. We have developed understanding on materials design for high mechanical strength 
and stretchability. Finally, we have fabricated organic transistors with high stretchability. 

 
Organic stretchable electronics have attracted extensive scientific and industrial interest 

because they can be stretched, twisted, or compressed, enabling the next-generation of organic 
electronics for human/machine interfaces. However, identifying suitable stretchable electronic 
materials and accurate measurements of their electrical properties when stretched remains a 
considerable challenge.  Here we report a facile method to efficiently identify suitable 
semiconducting polymers for organic stretchable transistors using soft contact lamination. In our 
method, the various polymers investigated are first transferred on an elastomeric 
poly(dimethylsiloxane) (PDMS) slab and subsequently stretched (up to 100%) along with the 
PDMS. The polymer/PDMS matrix is then laminated on source/drain electrode-deposited Si 
substrates equipped with a PDMS dielectric layer. Using this device configuration, the polymer 
semiconductors can be repeatedly interrogated with laminate/delaminate cycles under different 
amounts of tensile strain. From our obtained electrical characteristics, e.g., mobility, drain 
current, and on/off ratio, the strain limitation of semiconductors can be derived. With a facile soft 
contact lamination testing approach, we can thus rapidly identify potential candidates of 
semiconducting polymers for stretchable electronics. 

 
 

 
Figure 10: Schematic illustration of our lamination method used to evaluate semiconducting 

polymers for stretchable electronics. The chemical structures of the polymer evaluated in this 
work are shown as an inset. 
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Building upon our previous work with nickel nanostructured micro-particle polymer 

composites we then developed an elastic nanocomposite material with the ability to rapidly self-
heal at room temperature by combining the unique features of hydrogen-bonded polymer and 
graphene oxide (GO) as a macro-crosslinker. Importantly, it also possesses mechanical strength 
comparable to commercial rubbers. Incorporation of GO enabled our composite with good 
mechanical strength; while the hydrogen bonding network within the polymer chains provide 
self-healing capability. GO is the oxidized form of graphene  and has been established for its 
high-mechanical strength, large surface area and its ease for chemical modifications.  The 
advantage of using GO instead of other typical crosslinkers is that only a small amount of GO is 
needed to achieve a dramatic improvement in the mechanical property of the composite, due to 
the multiple reactive sites on GO and its high mechanical strength.  As a result, the density of 
available hydrogen bond sites (highly critical for self-healing) is not significantly reduced. In 
specific, we observed that by adding as little as < 2 wt% of GO to the polymer, we obtained an 
elastic material (elastomer) with similar mechanical property to that of conventional rubbers, 
while possessing a very fast healing speed at room temperature. Our obtained nanocomposite 
displayed a fast spontaneous self-healing and can heal up to 50% of its pristine extensibility in 
~1 min in the absence of any healants, plasticizer, solvents, or external energy, while complete 
mechanical healing can be completed in ~1 hr. 

 

 
 
Figure 11. Stretchable self-healing material made with graphene oxide crosslinkers.  
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