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ABSTRACT

This research explores methods to increase the performance of HTTP traffic when operat-
ing on a network that is prone to disruptions. The SmartNet architecture is presented as an
open and extensible software framework for experimenting with and deploying application-
transparent network optimization solutions, including the incorporation of the disruption
tolerant networking (DTN) and split TCP (SplitTCP) technologies into an IP network. The
architecture fashions a plugin-based system architecture where each plugin implements
a small set of application or transport protocol specific network adaptations that can be
chained with other plugins to form a packet processing pipeline. The SmartNet framework
is implemented along with plugins to route packets through native-IP, the Bundle Protocol,
or SplitTCP. Performance of the SmartNet is measured under five network disruption pat-
terns and five link speeds. The results conclude that HTTP performance can be increased
by using the SmartNet to transparently route packets over the DTN bundle protocol or
SplitTCP when the network is prone to disruptions.
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CHAPTER 1:

Introduction

During its inception, the Internet was based around the Transmission Control Protocol
(TCP) and Internet Protocol (IP) for reliable end-to-end routing of packets. Both protocols
have been resilient to changing requirements and are able to adapt to many different situ-
ations. TCP and IP were designed during a time where network devices were commonly
connected via hardwire connections with low loss rate and latency. More recently, mobile
devices and wireless networking have expanded the Internet to include links that have high
latency and are prone to disruption. Over time, TCP and IP have slowly evolved in an
attempt to maximize performance on disrupted networks; however, the standard TCP/IP
stack is still less than ideal when operating on links with higher loss rates and latency[1].
With the rapid growth of the Internet, reliance on computer networks has become a critical
part of society, demanding fast and reliable connections even on networks prone to disrup-
tion. This research explores the implications of running TCP on disrupted networks and
methods to increase performance on these networks.

TCP was developed using an end-to-end connectivity model. In this model, the end hosts
are responsible for all aspects of the connection including detecting lost packets, packet re-
transmission, flow control, and congestion control. This works well in large networks, such
as the Internet, because the internal routers do not care about connection details and can
focus on forwarding single packets at a fast rate. When loss is low this model is adequate;
however, on networks with a high loss rate, the end-to-end model becomes burdensome not
only on the end hosts, but on the network as a whole.

Figure 1.1 shows a typical network in which a TCP connection might be established. In
this situation, the packets travel along a single path (shown in red) between the client and
server end hosts. The network depicted also has a link between R4 and R6 that is prone to
disruption. TCP ensures reliability by requiring the destination host to transmit a positive
acknowledgment to the sending host. In this scenario, when the client transmits a packet to
the server, it will wait for the acknowledgment. If the packet is lost over the disrupted link,
the client will wait for a predetermined amount of time for the acknowledgment, and then
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attempt to retransmit the packet. Even though the original packet made it all the way to R4,
the retransmitted packet in its entirety must traverse through R1 and R2 again, causing ex-
tra network strain on those routers and the networks they service. The strain on the network
is compounded with the addition of multiple disrupted links along the end-to-end path. If
several links are disrupted independently the probability of having a complete end-to-end
path decreases significantly. In such cases, it is likely that TCP will terminate the connec-
tion after several failed retransmissions. Additionally, certain TCP connection states, such
as the sending of the initial SYN during connection establishment, are particularily vulner-
able to disruption. In the case of a lost SYN, most TCP implementations will give up on
establishing a connection after fewer retransmission attempts.

Client

Server

R1

R2

R3

R4

R5

R6

Figure 1.1: A typical network con�guration with a disrupted connection (dashed). An end-to-end
TCP path is shown in red.

The alternative to the end-to-end connectivity model is a hop-by-hop model. In a hop-
by-hop model, each router is responsible for ensuring a packet successfully arrives at the
next hop. If a packet is lost between the R4 and R6 routers, the R4 router keeps a copy
of the packet and will retransmit it after a certain timeout period. Using a hop-by-hop
model eliminates the need for the client to retransmit the packet again through R1 and R2;
however, it places additional burden on R4, which needs to maintain state for each packet
passing through it.
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Disruption tolerant networking (DTN) is a field within the computer networking that stud-
ies the effect disruption has on networks and ways to mitigate the effect of the disruptions.
Since TCP uses end-to-end connections, several alternative protocols have been developed
to support hop-by-hop connections. The first and most prominent DTN protocol is the
Bundle Protocol (BP) as specified in RFC5050[2]. The BP operates by encapsulating data
inside a bundle, which is then forwarded through a BP-capable network. At each hop
within the network, custody of the bundle is transferred once verification has been made
that it arrived at the next hop successfully.

Another approach to supporting hop-by-hop communication is SplitTCP[3]. SplitTCP aims
to adapt TCP to support hop-by-hop connections while maintaining compatibility with ex-
isting TCP/IP network infrastructure. Each SplitTCP router within a end-to-end connection
intercepts all TCP packets flowing though it. Packets that require acknowledgment are ac-
knowledged by the SplitTCP router and the router becomes responsible for ensuring the
reliable transport of the packet from that point forward. A chain of SplitTCP routers will
continue this process, each taking custody of the packet, in effect creating a hop-by-hop
TCP connection. Like all hop-by-hop solutions, SplitTCP imposes extra processing and
storage requirements on the SplitTCP routers.

The research invested in various DTN technologies has resulted in several successful im-
plementations such as the National Aeronotics and Space Administration (NASA) deep
space network[4]. While DTN technology has made an impact in special case scenarios, it
has struggled to gain acceptance on the wider Internet. One major hold-back of widespread
adoption of this technology is that most DTN solutions require significant changes to the
application, replacing TCP/IP as the primary communication protocol. The predominant
approach to integrating DTN networks follows a vertical overlay model. In the case of
the BP, it is either IP-over-BP or BP-over-IP. This layered approach is simple to design
and implement, because neither data translation or the tracking of application states are
needed inside the network. However, it not only introduces extra encapsulation overhead,
but more importantly, imposes least-common denominator semantics when moving data
across network boundaries, and as such, may severely degrade the performance of many
applications originally designed to work over end-to-end IP connectivity. There is a pre-
vailing perception that the DTN technology is not plug-and-play and existing applications
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must be retrofitted to use DTN. This might explain the surprisingly limited deployment of
DTN, even though DTN has been repeatedly demonstrated to be beneficial in many scenar-
ios involving challenged networks. For these reasons, any effort to gain widespread DTN
acceptance would require compatibility with TCP/IP.

This research proposes a new architecture for general application-transparent network op-
timization called SmartNet. SmartNet is designed to replace selected routers within a net-
work where dynamic network optimization would be beneficial. The SmartNet is designed
to be flexible, using a plugin-based architecture where each plugin performs specific net-
work optimization. The plugins are chained together into a pipeline through which packets
are routed. Since the SmartNet is software based and configurable, it can make intelligent
decisions about which optimization to perform based on the network state or details of a
particular TCP connection.

For example, in Figure 1.2, R4 and R6 have been replaced with SmartNets. Since it is
known that the link between these two routers was subject to disruption, the SmartNets can
be used to optimize packet flow over this hop. The SmartNet could be used to implement
either the BP or SplitTCP over this disrupted link, requiring no changes to either the client
or server, or any of the other network devices. The dynamic nature of the SmartNet allows
for arbitrarily complex decision points. For example, the SmartNet configuration might
determine that real-time traffic, such as Voice over IP (VoIP), should be rerouted via R5
so that it arrives as quickly as possible while simultaneously buffering bulk traffic and
transferring it only when the disrupted link becomes available again.

This research explores the use of SmartNet technology to implement DTN protocols in an
application transparent way and provides the following three primary contributions:

1. Design and implement a general framework for application-transparent network opti-
mization, called SmartNet. The open design of SmartNet allows easy implementation
of new features and unlimited customization.

2. Use the SmartNet to transparently use both the BP and SplitTCP as a means of mit-
igating the effects of a disrupted network. Transparently using DTN technology
requires no changes to existing applications.

4



Client

Server

R1

R2

R3

SmartNet

R5

SmartNet

Figure 1.2: A typical network con�gurations using SmartNet to mitigate the e�ects of the
disrupted connection (dashed). The end-to-end TCP path is shown in red.

3. Measure the performance of the SmartNet in both disrupted and non-disrupted sce-
narios and compare to the performance to that of a normal TCP/IP network.

Chapter 2 explores several other architectures as possible candidates [3], [5]–[10] for seam-
less integration of DTN technology in to existing TCP/IP networks. Many of the existing
architectures provide some of the required functionality, but none satisfy all the criteria
needed to transparently support disrupted networks.

Therefore, in Chapter 3, a general framework for application-transparent network optimiza-
tion, SmartNet, is designed which can be used to alleviate the effects of network disruption
or degradation. The SmartNet acts as a network router that can dynamically alter the flow
of network traffic over multiple independent connections. The SmartNet design is open
and extensible, using a plugin-based system architecture where each plugin implements a
small set of application or transport protocol specific network adaptation requirements and
can be chained with other plugins to form a packet processing pipeline.

Chapter 4 describes a specific SmartNet implementation, NpsGate. The NpsGate core is
implemented along with several plugins each providing specific network optimization func-
tionality. Plugin pipelines for native IP, SplitTCP, and DTN are developed for evaluating
the performance of the NpsGate implementation.
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In Chapter 5 NpsGate is deployed to test the SmartNet architecture. First, iperf is used
to evaluate the effect the SmartNet has on network throughput including the maximum
throughput NpsGate supports. Second, a HTTP download scenario is tested against a vari-
ety of link speeds and disruption patterns to quantify the performance benefits of using the
SmartNet.

Final conclusions about the SmartNet design and performance are discussed in Chapter 6.
Summaries of the results found in Chapter 5 are presented and discussed along with analy-
sis of the effectiveness of the SmartNet. Weaknesses and limitations of the SmartNet design
are reviewed along with goals of future work on the system.
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CHAPTER 2:

Background

The problems surrounding the use of TCP/IP over disrupted networks are well known [1].
TCP provides the majority of reliable end-to-end inter-process communication on the In-
ternet. It is designed in such a way as to tolerate lost packets, network congestion, and high
latencies. TCP accomplishes this by requiring a positive acknowledgment for each packet
received. If an acknowledgment is not received within a predetermined amount of time, the
packet is retransmitted. The TCP model is acceptable on networks where packet loss is a
rarity; however, on a network prone to disruption, retransmission can cause an unnecessary
increase in network traffic. Figure 2.1 shows an example where, after a network disruption,
the sender must retransmit the entire data packet even though the receiver properly received
the packet.

In addition, the sender has no way of knowing whether the network is in a disrupted state.
The sender may try to retransmit the packet while the network is still in a disrupted state.
Eventually, after a certain number of retransmissions (typically three), the sender will as-
sume that the connection has been terminated and will close the connection. The applica-
tion must then re-initiate the connection, which is often a lengthy process, and typically
requires user interaction. In an application such as a web browser, disconnection often re-
sults in the complete loss of a partially downloaded file, requiring the application to start
the download again from scratch. This can result in hundreds of megabytes of duplicated
transmissions and can make it nearly impossible to complete large file downloads if the
connection is often disrupted.

2.1 Disruption Characteristics
Since this research focuses on operation over disrupted networks, it is important to fully
understand the characteristics of a disruption and under what circumstances they occur.
Disruption is categorized into three distinct categories: high latency/low data rate, discon-
nection, and long queuing times [9].
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Sender Receiver

DISRUPTION

DATA

ACK

DATA

ACK

Figure 2.1: Example of TCP retransmission on a disrupted network. Even though the data
arrived at the receiver, the acknowledgment was lost during a period of disruption requiring
retransmission of the entire data packet.

2.1.1 High Latency/Low Data Rate
The high latency/low data rate condition occurs in heterogeneous networks where certain
paths have higher latencies or lower data rates compared to the rest of the network. The
example given in [9] is that of an underwater acoustic network where data rates of 10 Kbit/s
and latencies of one to two seconds are common. Asymmetric links, found commonly in
satellite connections, where the uplink data rate is significantly less than the downlink are
another example of a situation where high latency/low data rate disruptions are possible.

2.1.2 Disconnection
Disconnection occurs when the physical medium between two network segments becomes
disrupted such that no information can be transmitted. This type of disruption often occurs
in wireless environments and can either be predictable, such as satellite passes, or sporadic,
such as nodes moving out of communication range[9]. Disconnection typically occurs as a
result of motion by either of the communicating nodes; however, it can also occur due to
action by a third party. For example, a microwave connection could be disconnected when
a low flying aircraft passes through the two nodes. The duration of a disconnection can be
as short as a second, as in the microwave example, or could last hours or more, such as
when a planetary satellite becomes occluded by the planet it is orbiting.

8



2.1.3 Long Queuing Times
In conventional multi-hop paths, queuing delays dominate propagation and transmission
delays[9]. Even so, the delays are typically short, rarely exceeding a second. When pro-
cessing packets, routers will typically drop a packet if the next hop is not instantly reach-
able. Queuing times while operating on a disrupted network, however, may be much longer.
In addition, source-initiated retransmissions on a disrupted network may be expensive in
both bandwidth and time.

Most current routing implementations have a default policy of dropping new packets when
the queue is full. During a period of disruption, queuing times may increase significantly,
resulting in many dropped packets. A disruption tolerant router needs the added capability
to handle large queue sizes while the network is disrupted.

2.2 DTN Architecture
In 2003, an architecture for a DTN was proposed in [9]. The architecture focuses around
designing a general purpose overlay architecture operating above existing protocol stacks.
The architecture is agnostic to the underlying protocol but is typically used with the TCP/IP
stack and operates as an application overlay. Figure 2.2 shows an example protocol stack
utilizing the OSI Network model for a DTN-enabled application. This architecture was
eventually used as the basis for the Bundle Protocol as specified in RFC5050 [2].

In this DTN architecture, applications would need to be specifically written to use the
overlay. This constraint is undesirable in general because the task of rewriting numerous
large software projects to take advantage of the DTN architecture is both time and cost
prohibitive.

The BP, defined in RFC5050[2], is the standard for DTN based communication. There are
several independent implementations of the specification [7], [11], [12]. The BP provides
hop-by-hop reliability and buffering capable of coping with intermittent connectivity and
taking advantage of opportunistic connectivity. As with the architecture in [9], BP oper-
ates above the transport layer and requires applications to be specifically written to use the
protocol. Since the BP is standardized and has multiple independent implementations, it
is an ideal choice to use in a SmartNet system to provide reliability over distrupted net-

9



works. One key obstacle to overcome this is to provide application transparency while
operating over the BP. To achieve this, the SmartNet must provide some type of middlebox
functionality to translate standard TCP/IP connections to operate seamlessly over the BP.

DTN Application

Bundle Protocol
(DTN)

Transport
(TCP/UDP/SCTP)

Network
(IP)

Bundle Protocol
(DTN)

Transport
(TCP/UDP/SCTP)

Network
(IP)

Bundle Protocol
(DTN)

Transport
(TCP/UDP/SCTP)

Network
(IP)

DTN Application

Bundle Protocol
(DTN)

Transport
(TCP/UDP/SCTP)

Network
(IP)

Host A

DTN Router DTN Router

Host B

Figure 2.2: DTN protocols operate using an overlay approach. Various transport and network
layer protocols can be used as the foundation for the Bundle Protocol, shown in red. While
this provides the ability to operate on existing TCP/IP networks, it requires speci�c application
support to take advantage of the DTN layer.

2.3 Middlebox Middleware
Prior work has focused on the vast array of middleboxes found in large network architec-
tures. Middleboxes are specialized network appliances such as proxies, firewalls, or in-
trusion detection systems (IDSs) that perform a specific functionality. These middleboxes
are often closed solutions, lacking the ability to extend or customize their capability [13].
In [5], the authors design an architecture called CoMb, which is designed to consolidate
middlebox deployments. CoMb consists of three primary components: classifier, policy
enforcement, and middlebox applications as seen in Figure 2.3.

The classifier and policy enforcement layers represent the new contributions by this paper
with the middlebox applications remaining unchanged from their current implementation.
The classifier layer serves to consolidate the process of decoding and classifying packets
based on fields in the TCP and IP headers. Once the packets are classified, they are sent to
the policy enforcement layer. This layer is responsible for taking the classified packets and
sending them to the appropriate middlebox application based on a set of policy rules.
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The CoMb architecture presents several components such as an extensible application pro-
gramming interface (API) and the use of queues between different layers that would be
beneficial to the SmartNet architecture. However, CoMb fails to address several issues
pertinent to a successful SmartNet deployment. First, CoMb does not provide an interface
that allows modules at different layers to communicate with each other. This capability
is critical to the SmartNet, since modules at all levels must be able to adapt to changing
network conditions. The CoMb architecture is designed specifically around middleboxes
and as such, lacks the scope needed for a SmartNet. A SmartNet architecture must be able
to operate on packets at all levels both before and after processing by a middlebox and have
the ability to interface directly with the host operating system (OS) network interfaces.

Packet Capture

Session Reconstruction

HTTP TFTP NFS

Load Balancer Cache Signature IDS FlowMon

Classifier

Policy

Enforcement

Middlebox

Applications

Figure 2.3: CoMb middlebox implementation. The CoMb architecture implements a three-tiered
system to aid in middlebox deployment. A packet is �rst classi�ed, then sent policy enforcement
modules before ending up a existing middlebox solutions, after [5].

Another software defined networking (SDN)-based solution is presented in [6] as the SIM-
PLE system. SIMPLE is designed as a policy enforcement layer that can efficiently steer
traffic to middlebox applications. SIMPLE uses tags and tunnels to eliminate the need for
individual routers to make policy-based routing decisions for individual packets. As with
the CoMb architecture, SIMPLE is designed to operate as a shell around existing middle-
box applications and does not cover the scope needed for a SmartNet. In addition, the
SIMPLE architecture specifically does not handle unanticipated link failures, a factor that
is a key requirement for the SmartNet.

11



2.4 ClickOS
The architecture described in [8] is another example of a SDN approach to the problem of
dynamic network processing. It works in a modular fashion by utilizing the Xen hypervisor
to create multiple ClickOS instances. Each ClickOS is a combination of MiniOS, a basic
OS provided by Xen, and Click, a modular router subsystem. Figure 2.4 graphically shows
the ClickOS architecture. Within the ClickOS, a configuration file specifies a graph of
connected Click elements. Each Click element performs a specific function such as packet
classification, traffic shaping, or modification of header fields.

The ClickOS architecture is significantly closer to achieving an adequate SmartNet solution
than the previously discussed systems. ClickOS is flexible due to its Click-based plugin
system and requires no changes to the end-user application or OS. In addition, it promotes
an open API, in effect turning the typical middlebox solution from a blackbox into a toolbox
for meeting a network’s specific needs, including new requirements for network adaption.

H
ypervisor Click ClickOS 1Mini-OS

Click ClickOS 2Mini-OS

Click ClickOS NMini-OS

Bridge CLI
Xen

Store
Dom0

...

NIC

Figure 2.4: An overview of the ClickOS architecture. A hypervisor is used to create multiple
Mini-OS instances, each of which contains a Click modular router, after [8].

ClickOS is closer to an ideal SmartNet architecture; however, it suffers from some unde-
sirable features due to its reliance on the Click modular router. Click is capable of running
in user-mode, but its primary target is running in kernel-mode. This implies a much lower-
level interaction, requiring OS specific modules and interfacing directly with kernel level
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data structures. In addition, running in kernel-mode places extraneous security require-
ments on the code since a single faulty module could bring down the entire OS. Running in
kernel mode does bring performance benefits; however, any performance losses by running
in user-mode are negligible with respect to the network disruptions being mitigated.

Click also suffers from a complex configuration scheme that requires the network admin-
istrator to understand the interworkings of various protocols to build a complete plugin
pipeline. Click trades ease of use for efficiency by requiring the configuration to work with
low-level abstractions such as raw packets.

For example, stripping a protocol header from a packet is a common task when classifying
packets. In the Click system, the task of stripping the Ethernet frame header requires
the network administrator to know the inner details of the protocol. Figure 2.5 shows an
example configuration using Click that strips an Ethernet frame from a raw packet. An
Ethernet frame header is normally 14 bytes, hence the Strip(14) line; however, the frame
could include the 802.1Q tag [14], in which case, the byte at offset 12 must be 0x8100 and
18 bytes must be stripped. Care must be taken by the network administrator to ensure that
the Click configuration handles all possible edge cases. This problem becomes significantly
harder moving up in the Open Systems Interconnection (OSI) network layers. For example,
both IP and TCP support optional headers which may result in a variable header size. Each
possible combination of supported headers must be captured in the Click configuration.
The SmartNet architecture should be designed to allow complete customization without
resorting to the low-level details found in a Click configuration.

cl :: Classifier(12/8100, -);

cl[0] -> Strip(18);

cl[1] -> Strip(14);

Figure 2.5: Stripping an Ethernet frame in Click

2.5 DTN-centric Solutions
In 2013, [10] describes an IP-cum-DTN architecture, combining both a traditional IP net-
work with a DTN. A visual representation of the IP-cum-DTN architecture designed in
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[10] is in Figure 2.6. Packets traverse through a pair of gateway routers connected to each
other via IP and a DTN protocol. The gateway routers, upon detection of a disruption on
the IP network, will reroute packets over the DTN. Once the packets arrive on the receiving
end, they are translated back to the IP before forwarding on to the destination host. This
rerouting happens transparently to the end hosts, thereby requiring no changes to the appli-
cation to take advantage of the DTN. The authors of [10] were successful in implementing
the described architecture on a testbed composed of commodity hardware. Their testbed
was capable of dynamically routing both Internet Control Message Protocol (ICMP) and
Session Initiation Protocol (SIP) protocols over DTN without modification to the applica-
tions.

While the architecture described in [10] was successfully implemented for ICMP and SIP,
these protocols are relatively simple and do not cover all the necessary functionality needed
to generalize to all commonly used protocols. The most significant unresolved issue is
the handling of of connection-oriented protocols, such as TCP. Both ICMP and SIP are
connection-less protocols meaning each packet operates independently and single lost or
out of order packet does not disrupt the flow of communication between hosts. On the
other hand, connection oriented protocols consist of a stream of data encapsulated in mul-
tiple packets, requiring the endpoints to maintain connection state. For SmartNet to be
effective, it will need to replicate some of this state, which can be a challenge if the net-
work is disrupted during the connection setup phase (when state is synchronized between
the endpoints). SmartNet must ensure that this state is not lost as a result of disruption.
This research aims to extend the architecture in [10] to improve HTTP reliability and per-
formance in challenged network environments.
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Figure 2.6: IP-cum-DTN layer architecture, from [10]
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CHAPTER 3:

Design Considerations

As seen in Chapter 2, several efforts have been made to implement middleware applications
that operate on packets in a way that is transparent to the end-user application. There have
also been several projects devoted to the design and implementation of a DTN and asso-
ciated protocols. Some of these individual efforts have resulted in successful implementa-
tions that are used in production environments. This research focuses on the overarching
goal of developing a single solution that combine both application transparent middleware
and a DTN architecture. As a stepping stone, this research concentrates only on HTTP-
based applications, with the intent that once a HTTP solution is developed, the lessons
learned will provide the required insights for extending support to a wider range of appli-
cations.

3.1 SmartNet Requirements
The overall objective of this research is to design a solution that can be seamlessly im-
plemented into existing networks rather than an independent solution requiring significant
changes to established network ideas. To minimize transitional costs, the following re-
quirements must be addressed in the SmartNet solution:

Use existing IP networks. Since the IP is deeply embedded in all Internet-based commu-
nications, the SmartNet must continue to operate over existing IP networks, and more
importantly, use a DTN solution only when an IP connection is degraded.

Require no changes to existing applications. There are thousands of applications that
use HTTP and rewriting all of these applications to support the SmartNet is cost-
and time-prohibitive. Therefore, the SmartNet must operate transparently to these
applications.

Have an extensible API. While this research focuses on HTTP, the SmartNet architecture
should provide an extensible API that allows adaptation to other applications and
protocols.
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Allow programmable adaptability. The SmartNet is designed to operate in on dynamic
networks with rapidly changing conditions. It must be flexible enough to detect
abnormal conditions and adapt its behavior accordingly without human intervention.

Achieve high performance. The SmartNet must be able to operate at a performance level
such that it does not cause significant delays on the network. Performance on high-
speed low-latency networks, however, is not the target. This research focuses on
networks where disruption is typical.

Easy to setup and configure. Key to the adaptation of any new technology is that it must
be easy to setup and configure. The SmartNet should allow network administrators
to easily configure basic functionality yet be it should be robust enough to allow for
the configuration of complex capabilities.

3.2 SmartNet Design
Chapter 2 identified several competing architectures designed to support dynamic network
adaptation; however, each of them has inherent pitfalls that underscore the need for a new
architecture specifically designed to be application transparent while operating on a dis-
rupted network. This new architecture is novel in that it combines several key capabilities:
extensible plugin architecture, zero-copy packet processing, and inter-plugin communica-
tion.

3.2.1 Extensible Plugin Architecture
In order to facilitate an extensible architecture that can accommodate a wide variety of
functionality, the SmartNet is designed to use plugins as building blocks. Plugins are con-
figured to form packet processing pipelines. Input plugins interface with external sources,
such as the OS or other user-space program, and selectively intercept and move new packets
into the SmartNet. Processing plugins form the middle of the plugin pipeline and process
packets received from input plugins or other processing plugins. Output plugins receive
packets from processing plugins and redirect them to modules external to the SmartNet.

Each plugin is designed with a standardized external interface such that the output of any
particular plugin can be designated as the input to any other plugin. The SmartNet manages
the packet flow between a pair of plugins through the use of a packet queue, allowing
individual plugins to operate asynchronously. Packet queues also allow flexibility when
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utilizing plugins that may take a non-trivial amount time to process each packet. The queue
will allow the slow plugin’s predecessor to continue to process packets without waiting for
the slower plugin to finish. In addition, the predecessor can query the queue size of the
destination plugin, and redirect some or all of the packets to an alternate plugin if the
queue is too long. Figure 3.1 illistrates the SmartNet plugin architecture.

SmartNet
Plugin

Packet Queue

SmartNet
Plugin

Packet Queue

SmartNet
Plugin

Packet Queue

Figure 3.1: SmartNet plugin architecture. Each plugin contains an input queue where packets
arrive. After processing is completed, the plugin forwards the packet to another plugin.

3.2.2 Zero-Copy Packet Processing
The basic data unit between plugins is a single IP packet. Operation at the packet level,
rather than higher constructs such as streams, allows SmartNet plugins unlimited flexibility
while handling packets. SmartNet is designed using a zero-copy method for passing pack-
ets between plugins. Each packet is managed by a shared packet storage unit and packets
are passed between plugins as references. Each packet can be processed by a maximum of
one plugin at any given time, allowing plugins the capability to modify the packet as part
of their processing.

3.2.3 Inter-plugin Communication
To facilitate adaptability to a variety of network conditions, plugins within a pipeline must
be able to communicate with each other. For example, an output plugin called IPOutput
takes packets from its input queue and passes the packet to the host OS for transmission.
There could be a situation where, for some reason, the IP route to the destination is down
due to disruption. In this case, the IPOutput plugin should be able to notify other plugins
that the capability to transmit packets is unavailable. Likewise, once the route comes back
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up, the plugin should notify other plugins that service has been restored. This type of
notification would allow plugins earlier in the pipeline to make dynamic routing decisions
based on the status of the IP link, such as the re-routing to a non-IP network or performing
packet aggregation.

The SmartNet includes an inter-plugin communication framework allowing efficient pass-
ing of arbitrary messages between plugins. The framework supports two communication
models: publish-subscribe and request-response. In the publish-subscribe model, a plugin
registers named objects with the central publish-subscribe subsystem. Once registered, ad-
ditional plugins may subscribe to the objects, indicating that they are interested in changes
to the object. When the originating plugin modifies the object, all subscribed plugins are
notified. Notification occurs asynchronously through a message queue that operates in a
similar manner to each plugin’s packet queue. In the above example, the IP plugin would
register a link-state object which indicates whether the link is up or down. Plugins that
forward packets to the IP plugin would then subscribe to the link-state object. If they are
notified that the link is down, they may choose to route the packet to an alternative destina-
tion.

The publish-subscribe model works well for information that aids a performance-based
decision, or for information that may be updated frequently. Some information used by
plugins may be required before more packet processing can continue, thus waiting for
asynchronous notification using the publish-subscribe mechanism would require the plugin
to cease packet processing while waiting for an update. In this case, the request-response
model is a better fit.

In the request-response model, a plugin can request information directly from another plu-
gin. The requesting plugin would wait for a response before continuing packet processing.
For example, suppose the SmartNet contains a routing plugin which provides an interface
to the kernel routing tables. The routing plugin could use the publish-subscribe model pro-
viding routing updates periodically to all subscribed plugins; however, this would require
the routing plugin to continuously poll the kernel routing tables. In addition, if the routing
tables were large, this could cause unnecessary communication for routes that may not be
used often. Instead, the routing plugin could use the request-response model. In this case,
when a plugin is processing a packet, it may send a request directly to the routing plugin.
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More importantly, the request can indicate what route is required, thereby eliminating the
need to transmit the entire routing table between plugins. The interaction between plugins
and the components of the SmartNet core is depicted in Figure 3.2.
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Figure 3.2: SmartNet plugin pipeline. Each plugin contains an input queue with references
to packets waiting to be processed. The inter-plugin communication system allows plugins to
communicate with each other.

3.2.4 Parallel Processing
The SmartNet architecture regards the packet as the fundamental data unit, thereby support-
ing parallel processing of individual packets. This gives SmartNet significant advantages
in two ways. First, it allows for maximum performance on modern commodity hardware
which often has more than one processing unit. Utilizing all hardware processing units can
significantly increase the processing speed resulting in lower latencies and higher through-
put. Second, since the SmartNet does not know how long processing a single packet might
take (due to disruption or other abnormal network conditions), it is important to allow
packets traversing a non-disrupted path to proceed while packets over the disrupted path
are held.

The concept of individual packet processing is often seen as rudimentary compared to more
advanced groupings such as per flow processing; however, due to SmartNet’s extensible
plugin architecture packet, pipelines can be created to process packets in any grouping
desired.
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3.3 Application Transparent HTTP SmartNet Solution
The SmartNet design described above allows flexible dynamic network processing and
routing. This research will use the SmartNet to transport HTTP over a disrupted network in
an application transparent way. The solution presented here is specific to HTTP; however,
future work could extend these concepts to other TCP-based application layer protocols.

HTTP relies on TCP as its transport layer protocol. A typical TCP stream operates as a
single end-to-end connection between the source and destination hosts. Even though there
may be several routers between the source and destination, the routers are agnostic to state
of the TCP connection. If a TCP packet is lost during transit, it is the responsibility of the
sending host to detect and retransmit the lost packet.

This research will attempt to overcome this challenge with two distinct solutions and evalu-
ate the effictiveness of each solution. The first solution is implementing SplitTCP[3] using
several SmartNets. The second solution is using the Spindle DTN[15] implementation to
route packets over disrupted links.

3.3.1 SplitTCP
In a SplitTCP network, the routers become TCP aware, and each packet is processed in
a hop-by-hop manner. When the first router receives a packet from the source host, it
immediately sends an acknowledgment back to the source indicating that the packet was
received correctly. The router then forwards the packet to the next router and waits for an
acknowledgment. If the packet is lost in the second hop, it is the responsibility of the first
router to detect and retransmit the packet. This process continues through all routers until
the packet finally reaches the destination host.

This solution is novel in that it uses SplitTCP transparently by means of the SmartNet and
does not require any changes to the end hosts or application. Rather than requiring all In-
ternet routers to support SplitTCP, the SmartNet solution uses SplitTCP between SmartNet
gateways. Figure 3.3 shows a network consisting of two SmartNet gateways between a
HTTP client and HTTP server. In this example, there would be a total of three SplitTCP
hops from the client to the server.
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Figure 3.3: End-to-end connection using the SplitTCP plugin. The SplitTCP plugin divides the
end-to-end TCP connection in to several hop-by-hop TCP connections.

Using this type of architecture will solve several outstanding issues when operating over
a disrupted network. First, since the SmartNet gateways implement SplitTCP, the client
and server are effectively only communicating with the SmartNet gateway, meaning they
no longer are responsible for ensuring a packet reaches the destination. Second, since
SplitTCP generates acknowledgments at every hop, the SmartNet is free to route the packet
over multiple networks without affecting either the client or server. Finally, since the Smart-
Net is aware of possible network disruption, it can adapt to the disruption by delaying
packets without causing unnecessary TCP retransmissions.

SplitTCP Plugin Pipeline
The solution presented here is implemented using three SmartNet plugins as shown in Fig-
ure 3.4. Each SmartNet gateway will be configured using the same pipeline. The IPInput
plugin serves as the only input to the system. It interfaces with the OS to receive packets
which need to traverse the SmartNet. In this case, the OS is instructed to deliver all packets
with a TCP source or destination port set to 80, the well-known port number for HTTP
traffic[16]. All other packets are processed by the OS in its normal fashion. The IPInput
plugin performs minimal processing on the raw packet data to transform it to a format suit-
able for processing by other SmartNet plugins. The IPInput plugin sends all packet to the
SplitTCP plugin.

The SplitTCP plugin implements the SplitTCP protocol as described in [3]. Upon receiving
a packet, the SplitTCP plugin transmits an acknowledgment to the previous hop, which
could be either the sending host or another SmartNet gateway. Next, the SplitTCP plugin
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examines packet’s TCP state. This state is unique each TCP connection but is also unique to
each specific hop. The SplitTCP plugin must maintain a record of each connection’s state to
associate each packet with a particular TCP connection. Once the packet is associated with
a particular connection, the state must be translated to the state for the next hop. Table 3.1
shows an example state table maintained by the SplitTCP plugin. The specific state values
shown in Table 3.1 are arbitrary, and are established in the same manner as the TCP state is
normally established between end-to-end connections. In the case where a packet can not
be associated with a connection, a new entry is created in the state table provided that the
packet is part of a TCP three-way handshake. Once the packet is translated, it is forwarded
to the Router plugin.

SplitTCP
Plugin

Packet Queue

IPInput
Plugin

IPOutput
Plugin

Packet Queue

Figure 3.4: SplitTCP plugin pipeline.

The IPOutput plugin is the single exit point from the SmartNet pipeline. It interfaces with
the OS or other external software to transfer packets from the SmartNet to be transmitted
on the wire. It makes use of the SmartNet inter-plugin communication system to export the
state of their respective networks to other plugins.

Source IP:Port Destination IP:Port Previous Hop State Next Hop State
192.168.1.100:37865 10.0.1.1:80 100 8000
10.0.1.1:80 192.168.1.100:37865 30000 2000
192.168.1.101:80 192.168.2.200:45522 400 70000

Table 3.1: SplitTCP plugin state table. The plugin maintains a separate TCP state for both the
previous hop and the next hop. As packets arrive, the state is translated to the next hop state.

3.3.2 DTN Solution
In the DTN-based solution, each of the SmartNets shown in Figure 3.5 encapsulates the
TCP data packets within the BP. The plugin pipeline configuration, seen in Figure 3.6,
consists of two distinct pipelines depending on the source of the packet, either from the
IP network, or from the DTN network. Each pipeline essentially takes raw IP packets and
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packs them in a bundle and reverses the process for received DTN bundles. Figure 3.6
shows the DTN SmartNet pipeline configuration.

The DTN-based solution has similar benefits to the SplitTCP solution. Both do not require
changes to the client or server OS or applications. Each deconstructs a single end-to-
end connection into multiple hop-by-hop connections. The DTN solution may provide
additional benefits over SplitTCP because the BP was designed for disrupted networks. On
the other hand, SplitTCP still uses TCP, which ensures greater compatibility with existing
network hardware and does not require the overhead of the overlay architecture used by the
DTN solution.

The DTN solution presented here is naïve in a couple of ways. First, this solution simply
encapsulates entire IP packets in to a DTN bundle. This increases the total packet size by
including not only the encapsulated headers, but also the BP header, and the transport/net-
work layer headers used by the BP. Secondly, the DTN solution does not remove flow
control or the reliability mechanisms of TCP. Since the BP provides these functions, the
duplicated efforts would decrease performance. Both of these issues will be addressed in
Chapter 4 with the specific SmartNet implementation.

DTN Network

TCP/IP Connection DTN Connection TCP/IP Connection

HTTP
Client

DTN
SmartNet

DTN
SmartNet

HTTP
Server

Figure 3.5: End-to-end connection using the DTN plugin. The DTN plugin encapsulates the
end-to-end TCP connection within a DTN bundle when traversing between the two SmartNets.
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Figure 3.6: DTN plugin pipeline.
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CHAPTER 4:

Implementation

4.1 Language and Libraries
NpsGate is implemented from scratch using C++ as the programming language. C++ was
chosen because it provides sufficient low-level operations to efficiently manipulate packet-
level data structures and hook directly in to the Linux kernel. To avoid duplication of effort,
NpsGate relies on several external libraries:

libcrafter (http://code.google.com/p/libcrafter)
Libcrafter is a high-level library designed to make the creation and decoding of net-
work packets easier. It uses C++ classes to provide object-oriented access to IP and
TCP headers and payload data. NpsGate uses the libcrafter Packet class as the high-
level packet abstraction. All plugins receive Packet objects and manipulate them
using the class interface.

libconfig++ (http://www.hyperrealm.com/libconfig)
Libconfig++ is a C++ library for parsing structured configuration files. The configu-
ration file grammar is simple yet allows for arbitrarily complex configurations. The
C++ interface is object-oriented and provides error checking and type-safety. Nps-
Gate uses libconfig++ to parse all plugin configuration files.

Boost C++ libraries (http://www.boost.org)
The Boost is a collection of over 80 individual libraries for the C++ language. Specif-
ically, NpsGate uses the Boost threads, foreach, and heap libraries. Using these
libraries increases the portability of NpsGate as well as reducing bugs by using these
well-tested third party libraries.

4.2 Class Organization and Description
NpsGate uses an object-oriented approach in its design. Six classes, seen in Figure 4.1,
form the NpsGate core which serves as the central coordination mechanism between indi-
vidual plugins. The six core classes are free to communicate among each other; however,
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plugins are only permitted to communicate with the NpsGate core via the NpsGatePlugin
base class and its associated PluginCore class.

Plugin
Core

Plugin
Core

Plugin
Core

(Instance 1) (Instance 2) (Instance N)

Plugin
Manager

Publish
Subscribe

Packet
Manager

Logger

Monitor

NpsGatePlugin NpsGatePlugin NpsGatePlugin

Plugin Plugin Plugin

(Instance 1) (Instance 2) (Instance N)

NpsGateCore

... ...

Figure 4.1: NpsGate class diagram. NpsGate is organized in to several classes, each implement-
ing a particular SmartNet feature. The PluginCore class serves as the interface between the
individual plugins and the NpsGate core.

4.2.1 Plugin Manager
The PluginManager class is responsible for the loading, validation, and destruction of
individual plugins. Upon starting NpsGate, the PluginManager reads the global configu-
ration file and creates a new PluginCore instance for each plugin. The PluginManager

ensures that the shared object contains the appropriate create and destroy functions and
then proceeds to spawn a new thread for the plugin and start its initialization routine.
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Destruction is handled by sending a cancel signal to the individual plugin’s thread. The
plugin has the opportunity to perform any cleanup necessary to exit before being unloaded
from memory by the PluginManager. Plugins that do not respond to the cancel signal in
a timely manner are forcibly terminated by sending the SIGKILL signal to the thread.

4.2.2 Plugin Core
During initialization of NpsGate, the PluginManager creates an instance of PluginCore
for each plugin. The PluginCore loads the appropriate shared library, parses the plu-
gin configuration file, and ensures the plugin exports the necessary plugin methods. The
PluginCore instance then spawns a thread and calls the plugin’s main method.

The PluginCore class provides the bridge between a plugin and the NpsGate core. Its in-
terface allows individual plugins to communicate with the NpsGate core and with other plu-
gins. It also provides the thread-safe boundary between the different plugin threads, which
ensures that necessary data structures are locked prior to modification. The NpsPlugin

base class described later is simply a lightweight wrapper around the functionality of the
PluginCore class.

The PluginCore manages the plugin’s input queue and performs destination plugin veri-
fication when a plugin forwards a packet. The plugin input queue is implemented with the
thread-safe JobQueue class. The JobQueue is a priority queue that stores both Packet and
Message objects. Each type of object is assigned a different priority such that messages
always take priority over packets. Since messages are generated as a result of either the
publish-subscribe or request-response system, the rationale behind prioritizing messages
over packets is so that during the processing of a packet, the plugin will always have the
most current information.

Each PluginCore object also contains a handle to a libconfig configuration file. The
configuration is accessed by the plugin using the Config object. During initialization of
the PluginCore, an optional configuration file is read and parsed. Plugins that handle
packets are required to have an “outputs” section of the configuration file that lists to where
the plugin can forward packets. The PluginCore parses these outputs during initialization
and restricts the forwarding of packets only to the allowed destinations.
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4.2.3 Packet Manager
The PacketManager class implements the shared packet store described in Chapter 3.
When raw packet data is received by an input plugin, the input plugin creates an instance
of the Packet class. When the packet is forwarded by the input plugin to another plugin,
the PacketManager assumes ownership of the packet. The PacketManager API is not
directly accessible to plugins; instead, plugins interact indirectly through the PluginCore

class. The packet manager uses a reference counting system to ensure packets are owned
by a maximum of one plugin at any given time and that memory is freed once all references
to the packet have been released.

The packet manager also provides statistical functions allowing the NpsGate core or other
plugins to determine the total number of packets within the SmartNet and the packet
throughput. During debugging, the packet manager can provide a step-by-step trace of
an individual packet’s progression through the plugin pipeline. This functionality can be
very useful in determining the flow of packets and identifying any plugins that are “losing”
packets.

4.2.4 Publish-Subscribe Subsystem
The PublishSubscribe class implements the publish-subscribe subsystem described in
Chapter 3. It is responsible for the processing and distribution of all messages between
plugins, including memory management of the Message objects. The PublishSubscribe
functionality is encapsulated in three primary methods: subscribe, publish, and
request.

The subscribe method indicates that the plugin is interested in a particular message. To
subscribe, the plugin must provide a fully qualified message name for which it wants to
subscribe. Message names consist of the publishing plugin’s name followed by an Ameri-
can Standard Code for Information Interchange (ASCII) decimal (.) character, followed by
the message name. The subscribe method always succeeds, even if the requested message
name has not been previously published. After subscribing, when a message arrives it is
placed in the plugin’s input queue and is dispatched during the plugin’s normal event loop.

The publish method is called by a plugin whenever it wishes to transmit information to
other interested plugins. The plugin must specify the fully qualified message name along
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with a NpsGateVar object. Message names do not need to be registered with the publish-
subscribe subsystem prior to publishing; the subsystem will dynamically allocate the new
message name and notify any subscribed plugins. The NpsGateVar represents the updated
data to publish and is passed as a constant value to all subscribed plugins. Passing as a
constant value prevents plugins from changing any of the contents, allowing only a single
copy of the NpsGateVar to be shared amongst all plugins.

Message Object
The Message class and the Packet class are the two types of items placed in a plugin’s
input queue. The Message class encapsulates all components of a inter-plugin message.
Each Message has a type, a fully qualified name, and a value parameter. The type, as
described in Table 4.1, represents the purpose of the message and how the plugin should
handle it.

Message Type Description

INVALID
Message is invalid and should be ignored (Automati-
cally removed by the NpsGatePlugin base class).

SUBSCRIBE
Message indicating that another plugin has subscribed
to something the current plugin published.

SUBSCRIBE_UPDATE
Message received when a variable that was subscribed
to has changed.

REQUEST
Message generated when another plugin specifically
requests a variable.

REQUEST_UPDATE
Message received when another plugin has responded
to a variable request.

Table 4.1: Message types handled by the publish-subscribe subsystem.

The fully qualified name is a string consisting of two components. The first component
indicates the plugin to which the message is being sent in the case of a request, or the name
of the plugin generating the response in the case of an update or response. The second
component indicated a particular variable or action that is of interest. Both components are
separated by an ASCII decimal (.). For example, an IPOutput plugin which writes packets
to a physical device could provide a variable indicating if the interface is up. The fully
qualified name of such a variable might be “IPOutput.link_up”.
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The value parameter of the Message class is a pointer to a NpsGateVar. The NpsGateVar
class is a generic type container that can store any type of data. Example types include
strings, integers, floating point numbers, and a list of any of the preceding types. The
type stored in the NpsGateVar can be queried at run-time by a plugin and converted to a
local variable. In the case of an update or response message, the NpsGateVar parameter
indicates the response to the initial request. For requests, the value parameter is optional,
but could be used in a plugin specific way to pass additional data with the request.

4.2.5 Logging Subsystem
The logging subsystem, as implemented in the Logger class, provides a consolidated inter-
face for all core modules and plugins to produce run-time logs. It provides five log levels
as shown in Table 4.2. Logging information can be written to the standard output, a file, or
it can be exported via the Monitor to remote monitoring software. Each log entry contains
a timestamp, the plugin generating the event, and the source file name and line number.
The NpsGate configuration file includes directives to filter the logging output based on log
level and source file name. During production operation it would be typical to only log
CRITICAL and WARNING messages.

Log Level Description

CRITICAL

A critical event such that the SmartNet can not continue operating. Ex-
amples include insufficient memory, failing to load a plugin, or the inabil-
ity to read a configuration file. The SmartNet is halted upon receiving a
critical event.

WARNING

An event that is undesirable, but the SmartNet can continue to run. Ex-
amples include failing to parse a packet, receiving a message of the
wrong data type, or if the OS is dropping packets due to hardware limi-
tations.

INFO
General informative messages used to provide information about the cur-
rent state of the SmartNet.

DEBUG
More detailed and descriptive messages used to aid in debugging Nps-
Gate or its plugins.

TRACE
Extremely detailed messages. Used to pinpoint specific errors when the
debug level doesn’t provide sufficient information.

Table 4.2: Log levels provided by the Logger class.
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4.2.6 Monitor
The monitor subsystem is designed to export information to external monitoring applica-
tions and is implemented as the Monitor class. The monitor creates a listen socket on
the SmartNet and waits for remote hosts to establish a TCP connection. Once connected,
NpsGate and the remote application use a text-based protocol similar to HTTP to transfer
information. The following capabilities are supported:

• General statistics about NpsGate including uptime, number of packets processed, and
number of bytes processed.

• Reading and making modifications to the NpsGate main configuration file and to
individual plugin configuration files.

• Saving configuration files to the local computer.
• Exporting a list of all the plugins along with their pipeline configuration.
• Statistics for each plugin including the number of packets received, packets dropped,

and packets forwarded.
• Exporting all log information produced by the Logger.
• A list of all the published variables and a list of plugins subscribed to those variables.
• The ability to modify published variables manually and send updates to all subscribed

plugins.

4.3 Plugin Interface and Design
While the NpsGate core provides simple yet robust capabilities, the real power of the Smart-
Net design is in the construction of individual plugins into a complete processing pipeline.
The plugin API is designed to be simplistic yet powerful, allowing for unlimited flexibility.
When compiled, each plugin is self-contained in its own shared object file that is loaded
dynamically at runtime by NpsGate based on the main configuration file. NpsGate provides
the npsgate_plugin.hpp C++ header file to aid plugin developers.

4.3.1 Plugin Entry Points
NpsGate uses the dlopen family of functions to dynamically load plugin shared ob-
jects. The dlsym function only supports loading functions with C linkage, so each plu-
gin must provide a create and destroy function with C linkage. This is accomplished by
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using the NPSGATE_PLUGIN_CREATE and NPSGATE_PLUGIN_DESTROY macros provided in
npsgate_plugin.hpp header.

The two macros create the npsgate_create and npsgate_destroy functions with C link-
age. The npsgate_create function creates an instance of the plugin’s main class (derived
from NpsGatePlugin) and returns a pointer to this class. The npsgate_destroy func-
tion cleans up and calls the plugin class destructor. These function names are loaded by
NpsGate with the dlsym function and are used to create and destroy a plugin instance.

4.3.2 NpsGatePlugin Base Class
All plugins are derived from the NpsGatePlugin base class. Figure 4.2 summarizes the
functions contained within the NpsGatePlugin base class. Functions are divided into two
categories: virtual functions and processing functions. Virtual functions are overridden
by the plugin class and are used as handlers called by NpsGate. Processing functions are
provided by NpsGate and are intended to be used by the plugin during processing.

NpsGate Virtual Functions
The six virtual functions specified in the NpsGatePlugin class are described below.
Implementation of the first four by each plugin is required for proper operation. The
message_timeout function is optional for all plugins and the exit_handler is only re-
quired for plugins that do not use the message loop.

bool init()

Called by the NpsGate core when the plugin is first loaded. Plugins may perform any
initialization required (such as parsing configuration file options); however, it should
not rely on other plugins being loaded at this point. Since loading of plugins can
occur in any order, it is possible that other plugins have not yet been loaded. Any
initialization requiring communication with other plugins should be done in the main
function.

bool main()

Called by the NpsGate core to start the plugin’s main event loop. When this function
is called, the plugin is running in its own thread and may begin processing packets
and messages. If any initialization requires the use of other plugins, it may be per-
formed in this function since all plugins are guaranteed to be loaded before main
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is called. Plugins not serving as an input or output plugin will normally call the
message_loop function provided by the NpsGatePlugin base class to start pro-
cessing packets. If the main function exits, the plugin thread is stopped and it is
unloaded from memory.

bool process_packet(Packet*)

When using the message loop functionality provided by the NpsGatePlugin class,
this function is called once for every new packet that arrives in the plugin’s input
queue. The packet is removed from the input queue and passed as a pointer to the
process_packet function. Packets belong to only one plugin at a given time so
the plugin is able to modify the packet if needed. Once the plugin has finished
processing the packet, it should be either forwarded to another plugin using the
forward_packet function or dropped using the drop_packet function. The plu-
gin may hold a reference to the plugin by returning without forwarding or dropping
the packet. This is useful in cases where the plugin needs to accumulate multiple
packets to make a routing decision. Inside the process_packet function packets
will continue to accumulate in the input queue; however, the plugin will not receive
any notification that new packets have arrived. Therefore, plugins should not perform
lengthy operations in this function.

bool process_message(Message*)

When using the message loop functionality provided by the NpsGatePlugin class,
this function is called whenever a new message arrives in the plugin’s input queue.
The message is removed from the input queue and passed as a pointer to the
process_message function. Unlike packets, messages may be shared by multiple
plugins, so individual plugins are restricted from modifying a Message. Addition-
ally, the Message object pointer will be invalid once the process_message function
returns, so plugins needing to a message for longer duration must make a local copy
of the message prior to returning.

bool message_timeout()

The message_timeout function is called whenever packets or messages have not ar-
rived within the time specified using the set_timeout function. The timeout func-
tionality provides a method for plugins to perform work at specific intervals while
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still using the message loop. This virtual function is optional if the plugins do not
need the provided functionality.

void exit_handler()

This function is called whenever NpsGate is requesting the plugin to terminate exe-
cution. If using the message loop provided by the NpsGatePlugin base class, termi-
nation of the loop occurs automatically, so no additional processing in this function
is required. If the plugin is not using the message loop, this function should signal to
the plugin to exit the main function as soon as possible. Typically a plugin will have
an exit flag that would be set by this function, and subsequently read by the main

which will trigger a graceful exit. Returning from this function does not immediately
terminate the plugin thread so plugin clean up can be deferred to the normal plugin
execution flow.

c l a s s NpsGateP lug in {
p u b l i c :

/∗ V i r t u a l f u n c t i o n s , imp lemen ted by p l u g i n d e v e l o p e r s ,
p r o v i d e c a l l b a c k s c a l l e d by t h e NpsGate core when
e v e n t s occur . ∗ /

v i r t u a l bool i n i t ( ) ;
v i r t u a l bool main ( ) ;
v i r t u a l bool p r o c e s s _ p a c k e t ( P a c k e t ∗ ) ;
v i r t u a l bool p r o c e s s _ m e s s a g e ( Message ∗ ) ;
v i r t u a l bool m e s s a g e _ t i m e o u t ( ) ;
v i r t u a l vo id e x i t _ h a n d l e r ( ) ;

/∗ Member f u n c t i o n s o f t h e NpsGatePlug in base c l a s s are
t h e API used by p l u g i n d e v e l o p e r s t o p r o c e s s p a c k e t s
and i n t e r a c t w i t h t h e r e s t o f t h e Smar tNe t . ∗ /

bool f o r w a r d _ p a c k e t ( s t r i n g , P a c k e t ∗ ) ;
bool d r o p _ p a c k e t ( P a c k e t ∗ ) ;
bool p u b l i s h ( c o n s t s t r i n g , NpsGateVar ∗ ) ;
bool s u b s c r i b e ( c o n s t s t r i n g ) ;
c o n s t NpsGateVar∗ r e q u e s t ( s t r i n g ) ;
s e t < s t r i n g >∗ g e t _ o u t p u t s ( ) ;
s t r i n g g e t _ d e f a u l t _ o u t p u t ( ) ;
void message_ loop ( ) ;
c o n s t Conf ig ∗ g e t _ c o n f i g ( ) ;
bool s e t _ t i m e o u t ( u i n t 3 2 _ t ) ;

}

Figure 4.2: NpsGatePlugin base class. The NpsGatePlugin base class de�nes virtual functions,
implemented by each plugin, and processing functions used to interact with the NpsGate core.
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NpsGatePlugin Processing Functions

The NpsGatePlugin base class provides the following processing functions used to inter-
act with the NpsGate core and other plugins. The get_config and set_timeout functions
may be called at any point after the plugin’s init function has been called. The remaining
functions may only be called after the plugin’s main function has been called.

bool forward_packet(string, Packet*)

Forwards the passed packet to the plugin specified by the first string arguments. The
packet pointer can either be a packet removed from the input queue or a packet cre-
ated by the plugin. For newly created packets, once forward_packet has been
called, the shared packet store takes custody of the packet and the plugin should
not free any memory associated with the packet. After forwarding a packet to an-
other plugin, the local pointer should be invalidated to prevent two plugins from
both attempting to modify the packet. The destination plugin name is specified as
the first argument. The specified plugin may be any plugin name returned from the
get_outputs function. Specifying a plugin not in the list of valid output plugins is
considered an error and will not be processed by the NpsGate core.

bool drop_packet(Packet*)

Drops the specified packet. Dropping the packet removes all references to the packet
and it is freed from the shared packet store. Dropping a packet is typically performed
by output plugins when the packet has finished traversing the plugin pipeline and
has been queued for transmission external to NpsGate. Additionally, plugins that
perform significant packet modification, such as aggregating several data packets in
to a single packet, should call drop_packet on packets that are no longer necessary.

bool publish(const string, NpsGateVar*)

Publishes a variable to other subscribed plugins. The first argument is the name of
the variable to publish. The NpsGate core will prepend the plugin name to make it
fully qualified. The second parameter is a pointer to NpsGateVar object that contains
the variable data. The publish-subscribe subsystem assumes ownership of the object
and will destroy the object once it is no longer needed.

bool subscribe(const string)

Subscribes to a variable published by another plugin. The first and only argument
is the fully qualified name of the variable to which the plugin wants to subscribe.
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When the publishing plugin publishes new data, the message will be inserted in to
the calling plugin’s input queue. The message loop will remove the message and call
the process_message function.

const NpsGateVar* request(const string)

Sends a request to another plugin for a specific variable. The first argument is the
fully qualified name of the variable to request. This function is a blocking function
that will not return until a response is generated by the publishing plugin. A pointer to
a NpsGateVar object, or NULL if the plugin did not satisfy the request, is returned.
The NpsGateVar object is read-only and the memory is managed by the publish-
subscribe subsystem.

set<string>* get_outputs()

Returns a list of valid plugins to which the the current plugin can send packets. Valid
output are restricted to those specified in the plugin’s configuration file. All plugins
should verify that the destination plugin is in this list prior to forwarding a packet.

string get_default_output()

Returns the default output plugin. This is normally the first output listed in the con-
figuration file and should be used if no specific plugin should receive the packet. In
the case of plugins that only have one output, this function can be used exclusively.

void message_loop

Starts the message loop provided by the NpsGatePlugin base class. The message
loop will automatically monitor the input queue for packets and messages, and will
call the process_packet and process_message virtual functions. Additionally,
the message loop provides timeout functionality and will gracefully exit when re-
quested by the the NpsGate core. Most plugins that are not input plugins should
make use of the message. Input plugins will typically rely on facilities provided by
the host OS to implement their own message loop. The call to the message_loop

function will return when the NpsGate core has signaled that the plugin should exit.
const Config* get_config()

Returns a pointer to the plugin’s libconfig object. This is the starting point for a
plugin to access its own specific configurations options. The Config object will
only contain the configuration for the current plugin and may not be modified by the
plugin.
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4.4 Plugins
The initial implementation of NpsGate includes several plugins primarily designed to allow
the SmartNet to test the HTTP download scenario discussed in Chapter 1. Each of the
plugins uses the NpsGate plugin API described above.

4.4.1 NFQueue
The NFQueue plugin serves as the input plugin for packets that have been received over
an IP network. The plugin uses the libnetfilterqueue library to hook in to the Linux
kernel’s NETFILTER subsystem. The NFQueue plugin specifically hooks in to the FOR-
WARD queue, preventing the SmartNet from processing packets destined for the SmartNet
host.

NETFILTER is the Linux kernel packet filtering framework. It consists of a set of hooks in-
side the kernel that allow other kernel modules to register callback functions. The callback
functions are called for every packet that traverses the respective hook within the network
stack. libnetfilterqueue is a user-space library that allows application developers to
transfer packets from the NETFILTER subsystem to user-space applications to perform
processing, and then re-inject the packet back into the network stack.

During initialization, the NFQueue plugin creates hooks to redirect all incoming packets
to the SmartNet. Configuration options can restrict the captured packets to only specific
subnets, in effect filtering only certain traffic through the SmartNet. Packets that are not
of interest are processed normally by the kernel, therefore they incurr no additional per-
formance penalties. Once a packet is received by NpsGate, the kernel is told to drop the
packet and not process it further. Figure 4.3 illustrates the scenario where the NFQueue
plugin selectively captures packets for processing by the SmartNet.

When packets are received by the plugin they are formatted as raw data. The first step is to
parse and package in to a Packet object. Using the Packet object increases performance
by only requiring parsing of the packet to occur twice; once at input to NpsGate, and once at
output, regardless of how many intermediate processing plugins are in the plugin pipeline.
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The NFQueue plugin hooks in to NETFILTER in a fault tolerant way. Should NpsGate
receive a packet it is unable to process for any reason, or if the NpsGate process is unex-
pectedly terminated, packets will continue processing through the kernel normally.

NETFILTER (Linux kernel)

NpsGate

Ethernet
In

Ethernet
Out

libnetfilterqueue

NFQueue IPOutput

Plugin Pipeline

P P P P P P P P

P

P

P

P

PP

P

P

P

Figure 4.3: NFQueue plugin operation. The NFQueue plugin uses libnetfilterqueue to
selectively capture packets from the Linux network stack. Packets are processed by the SmartNet,
then returned to the OS for transmission.

4.4.2 IPOutput
The IPOutput plugin serves as the primary output plugin and is used when the IP route is
up and the network is not in a disrupted state. When the plugin receives a packet in its input
queue, it is converted to raw data and pushed to the OS for transmission.

The plugin communicates with the host OS through a single raw socket. The socket is
created with the AF_INET address family and the IP_HDRINCL option is set. The user of an
IP level socket rather than using a packet level socket allows NpsGate to use the kernel to
prepend the link-layer header along with determining the appropriate link-layer addresses
from the kernel’s routing tables. The IP_HDRINCL option enables NpsGate to fully control
the IP header without interference from the host OS.

Since the IPOutput plugin interfaces directly with the host OS, it can query the state of the
IP link or the kernel routing tables to determine if a packet is able to reach its destination.
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The plugin makes this information available to other plugins in the SmartNet by publishing
the link state using the publish-subscribe subsystem. The link state is updated whenever
the host OS detects a change in the status of the IP link allowing all plugins in the SmartNet
to make dynamic routing decisions.

4.4.3 SplitTCP
The SplitTCP plugin provides the functionality to split an end-to-end TCP connection
within the SmartNet similar to what is described in [3]. When a TCP packet is received, the
SplitTCP plugin acts as a proxy for the destination host by creating two new TCP endpoints.
Each endpoint acts as one of the two communicating hosts, sending acknowledgments to
the sending host and taking responsibility for reliable delivery and flow control.

To reduce the amount of new code needed for the plugin, SplitTCP uses the Lightweight
Internet Protocol (LWIP) TCP/IP stack to manage the new intermediate TCP endpoints.
One endpoint terminates the TCP connection with either the client or server and the other
forms a new TCP connection with a peer SplitTCP plugin on the remote SmartNet node.
When packets arrive, they are sent to the LWIP stack. LWIP is configured to accept packets
for all IP addresses and all TCP ports. LWIP matches the packet with one of the established
endpoints and handles the packet by sending acknowledgments for data packets or handling
control packets per the TCP standard. When a data packet is received, the data is removed
from the packet and placed in the socket queue. Data is read from the socket queue and
immediately written to the receiver-side socket. LWIP then generates the necessary TCP
packets to send the data to the receiver. The generated packets are then forwarded to the
next plugin in the SmartNet pipeline. Figure 4.4 illustrates how the SplitTCP plugin creates
two new TCP endpoints and passes the packet data between the endpoints to divide the
end-to-end TCP connection. Figure 4.5 shows the effect of using two SplitTCP capable
SmartNets on a single end-to-end TCP connection.

The LWIP stack is configurable both at compile time and run time, allowing specific usage
scenarios to be fully optimized. Options such as window size, retransmission timeouts and
packet aggregation can be adjusted in real-time, to adapt to current network conditions.
These optimizations are independent of the end-hosts, requiring no modifications to exist-
ing hardware or software configurations. Additionally, using SplitTCP provides the benefit
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of hop-by-hop TCP transmission. Multiple SmartNets can be chained together resulting in
a single end-to-end TCP connection being composed of several small hops.

SplitTCP

TCP
Endpoint

TCP
EndpointData

LWIP

PP P P

Figure 4.4: SplitTCP plugin operation. The SplitTCP plugin creates two new TCP endpoints.
When packets arrive the data is read from one endpoint and sent out from the other endpoint
using the LWIP TCP/IP stack.
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Figure 4.5: End-to-end connection using SplitTCP plugin. The SplitTCP plugin divides the
end-to-end TCP connection in to several hop-by-hop TCP connections.

4.4.4 DTNInput
As seen in Figure 4.6, the DTNInput plugin interfaces with a user-space DTN protocol
API, receiving packets encapsulated in bundles and forwarding them through the plugin
pipeline. The initial version of the DTNInput plugin uses the BBN Spindle bundle protocol
agent (BPA) implementation. The plugin registers a DTN unique end-point name within the
entire DTN network. The Spindle implementation, which is run as a separate process, will
deliver any bundles for the registered end-point to the DTNInput plugin. Once a bundle
is received, the data is extracted, parsed into packets, and sent to the next plugin in the
pipeline. For the initial implementation, each bundle may contain one and only one IP
packet. Future work could add support for multiple packets within each bundle to increase
efficiency.
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Figure 4.6: DTNInput plugin. The DTNInput plugin receives bundles from the Spindle API. The
data from each bundle is extracted and parsed into individual IP packets.

4.4.5 DTNOutput
As seen in Figure 4.7, the DTNOutput plugin allows the SmartNet to send IP packets over
a DTN protocol. Like the DTNInput plugin, this plugin uses the BBN Spindle protocol
API. Upon initialization, the plugin registers a DTN end-point. All packets received by
the plugin are bundled using the Spindle API and sent to the destination end-point. The
destination end-point is specified in the plugin configuration file. Each instance of the
plugin supports only a single destination end-point name. Multiple instances of the plugin
combined with the Router plugin can be used to support multiple DTN destinations.

Spindle APIDTNOutput

Plugin Pipeline

NpsGate

P P P Bundle Bundle

Figure 4.7: DTNOutput plugin. The DTNOutput plugin receives bundles from the plugin
pipeline. Each packet is encapsulated in bundles and transmitted via the Spindle API.
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CHAPTER 5:

Deployment and Testing

In this section, the SmartNet design implemented in Chapter 4 is tested to determine any
performance gains or losses incurred running the HTTP download scenario described in
Chaper 1. First, the test networks for both the DTN and SplitTCP are described along with
enumeration of the different SmartNet configurations used. Next, iperf is used to quantify
processing overhead caused by the SmartNet and the plugin pipeline in a non-disrupted
scenario. The maximum throughput of SmartNet is determined under various network
speeds and pipeline lengths. Then both DTN and SplitTCP SmartNet configurations are
tested using the HTTP scenario described in Chapter 1. Tests are conducted under different
levels of disruption and the various SmartNet configurations are compared. Finally, the
flexibility of the SmartNet pipeline is demonstrated by creating a complex pipeline with
multiple decision points.

5.1 Deployment Setup
A testbed network was constructed to enable accurate performance measurement of the
SmartNet in a controlled environment. The testbed was designed to simulate a typical
disrupted network environment with multiple hops between the client and server. Common
to each configuration are a HTTP Client, a HTTP Server, and three routers.

The client and server machines were quad-core Intel Core i5 central processing units
(CPUs) running at 2.5GHz. Each had 4GB of random access memory (RAM) and a gigabit
Ethernet controller. The server ran Ubuntu Linux 13.04 with Apache 2.22 in its default
configuration. The client also ran Ubuntu Linux 13.04 using wget as the HTTP client. The
three routers were low-power dual-core AMD E-350 CPUs running at 1.6GHz. Each had
8GB of RAM and four gigabit Ethernet controllers. The routers ran Vyatta Core 6.6 with
the SmartNet implementation and BBN’s Spindle DTN software. Each router was capbible
of running either as a stand-alone DTN router or as a SmartNet with DTN capibilities.
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To test the HTTP download scenario two network layouts were used, one for configurations
using DTN and one for configurations using SplitTCP. The two network configurations are
described in detail below.

5.1.1 DTN Network Configuration
The network depicted in Figure 5.1 was used to test the performance of the SmartNet in
a disrupted environment. Two of the routers were configured to run as SmartNet with the
third, central router, configured as a DTN router. The direct links between the SmartNets,
HTTP Client, and HTTP Server have a link speed of 1 Gbit/s and suffer no disruption.
These links simulate fast and reliable links that typically connect computers on the same
local subnet. The links between the two SmartNets and the DTN routers varied in both
link speed and disruption pattern. The Linux tc utility was used to create a software-based
channel emulator allowing fine-grained control of the link speed. Each channel emulator
operated in bridged mode to provide minimal impact on the link operation. The disruption
pattern was implemented using a custom Perl script on the channel emulator host that set
the bridged interfaces up or down. Controlling the link state in this manner on the channel
emulator has two key benefits:

1. It allows a deterministic disruption pattern to be implemented and repeated for mul-
tiple tests. Each configuration was tested using a pseudo-random disruption pattern.
The seeds to the pseudo-random number generator were saved and reused for each
subsequent test to ensure that the disruption patterns are consistent between tests.

2. It prevents having to physically disconnect the network cables. Not only is physical
disconnection difficult to implement consistently, but most OSs can detect physical
disconnection and may prematurely disconnect clients.

The end-to-end link between the two SmartNet gateways is prone to disruption and there-
fore it is important to ensure both links are DTN capable. The SmartNets support the
Spindle DTN protocol via the DTNInput and DTNOutput plugins, and there is one DTN
capable router within the disrupted network. Since one key advantage of DTN is its hop-
by-hop transmission, more than one DTN hop is needed to expect any performance benefits
relative to TCP.
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HTTP Server

Disrupted Network

SmartNetSmartNetHTTP Client
DTN Router

Figure 5.1: DTN-enabled network used to test the SmartNet performance. HTTP performance
was tested over a disrupted network traversing two DTN hops with a variety of SmartNet con-
�gurations.

5.1.2 SplitTCP Deployment Setup
Testing of a pure SplitTCP-based configuration requires a slightly different network con-
figuration from that of the DTN configuration. This configuration is identical to the DTN
Network configuration with the exception that all three routers were configured to run the
SmartNet software seen in Figure 5.1. The three SmartNets run SplitTCP over the dis-
rupted connections enabling hop-by-hop transfer of TCP packets. Figure 5.2 illustrates the
SplitTCP configuration.

HTTP Server

Disrupted Network

SmartNetSmartNetHTTP Client SmartNet

Figure 5.2: SplitTCP network used to test the SmartNet performance. HTTP performance
was tested over a disrupted network traversing two SplitTCP hops with a variety of SmartNet
con�gurations.

5.2 SmartNet Overhead
Since SmartNet adds extra processing as each packet traverses the end-to-end connection, it
is important to quantify the effect SmartNet has on the overall performance. The overhead
of the SmartNet was measured using IPerf[17]. Iperf is a well-known network performance
measurement tool often used to optimize network connections. The goal of the Iperf testing
was to measure the following two characteristics of the SmartNet:
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1. The overhead SmartNet incurs on the host OS by running as a user-space application.
Running as a user-space application requires the host OS to transfer packets from
kernel-space to user-space. Once SmartNet has completed any processing on the
packet, the packet must again be transferred back to kernel-space. Each transfer
incurs extra I/O overhead which was measured by comparing the throughput while
running SmartNet to the throughput without running SmartNet.

2. The overhead incurred by the plugin pipeline. The SmartNet implementation runs
each plugin in its own thread and the packets are passed between plugins using
thread-safe queues. The implication of this is that each stage in the pipeline requires
a context switch consuming additional processing time. The additional delay caused
by the context switches was measured by comparing the SmartNet throughput with
increasing pipeline lengths.

Each test consisted of running IPerf in User Datagram Protocol (UDP) mode with various
link speeds. Four SmartNet pipeline configurations were tested; one with a pipeline length
of two, one with a length of three, one with a length of four, and one with a length of 20
plugins as shown in Figure 5.3. Each pipeline contained a IPInput and IPOutput plugins
with multiple copies of the Nothing plugin filling the internal pipeline positions. The
Nothing plugin is designed to incur minimal overhead by simply passing packets from its
input queue to the next plugin without performing any processing. Additionally, a control
case was tested without running SmartNet.

The results of the UDP tests are shown in Table 5.1. All SmartNet configurations were able
to saturate a 10 Mbit/s connection without packet loss and without any noticeable drop in
throughput. At a speed of 30 Mbit/s, performance of the SmartNet started to lag behind
the control and Iperf reported packet loss with greater than two plugins. The packet loss at
higher speeds can be attributed to SmartNet’s use of NFQUEUE to read packets from the
OS. NFQUEUE uses a fixed size buffer to transfer packets from the OS to SmartNet. If
SmartNet can not read packets fast enough and the buffer becomes full, new packets are
dropped.
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Link Speed Packets Transmitted Pipeline Length Throughput Loss

30 Mbit/s 688619

NoSmartNet 30.001 Mbit/s 0.0%
2 30.001 Mbit/s 0.0%
3 27.413 Mbit/s 8.5%
4 27.089 Mbit/s 9.5%
20 20.621 Mbit/s 30.4%

10 Mbit/s 8504

NoSmartNet 10.001 Mbit/s 0.0%
2 10.001 Mbit/s 0.0%
3 10.001 Mbit/s 0.0%
4 10.001 Mbit/s 0.0%
20 10.001 Mbit/s 0.0%

1 Mbit/s 852

NoSmartNet 978.460 Kbit/s 0.0%
2 972.282 Kbit/s 0.0%
3 972.236 Kbit/s 0.0%
4 978.170 Kbit/s 0.0%
20 975.000 Kbit/s 0.0%

512 Kbit/s 437

NoSmartNet 494.249 Kbit/s 0.0%
2 494.247 Kbit/s 0.0%
3 494.273 Kbit/s 0.0%
4 494.363 Kbit/s 0.0%
20 494.000 Kbit/s 0.0%

Table 5.1: Results from SmartNet overhead testing using IPerf in UDP mode. SmartNet is able
to saturate a 10 Mbit/s link without packet loss.

Experiments were made with increasing NFQUEUE buffer size in an effort to prevent
packet loss. While this was successful in eliminating packet loss, the processing delay
of SmartNet was unable to empty the buffer before iperf timed out and terminated the
test. Furthermore, increasing the buffer provided only temporary relief while operating
at speeds of 30 Mbit/s. Prolonged transfers at this speed would eventually overflow the
NFQUEUE buffer again. For this reason, 30 Mbit/s was determined to be the maximum
speed for which SmartNet can successfully operate on the low-power hardware used in the
testbed.
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The second SmartNet measurement was that of pipeline length overhead. Table 5.1 illus-
trates that the length of the pipeline has negligible impact on the throughput of the Smart-
Net. Even with a long pipeline of 20 plugins, the throughput drop was less than 0.1% from
the control case.

N = 2

N = 3

N = 4

N = 20

IPInput IPOutput

IPInput Nothing1 IPOutput

IPInput Nothing1 Nothing2 IPOutput

IPInput Nothing1 ... Nothing18 IPInput

Figure 5.3: SmartNet pipeline length testing con�gurations. Several SmartNet pipeline lengths
(N) were tested to determine what e�ect context switching between plugins has on throughput.

5.3 HTTP Performance
The overall objective of this research is to improve HTTP performance while operating
on a disrupted network by using SmartNet. This section will quantify any performance
improvements by testing the SmartNet under various configurations and comparing the
performance against a network not running SmartNet. The following configurations were
tested:

• NoSmartNet: A baseline configuration without running SmartNet. Packets flow
through the routers using traditional IP forwarding.

• IPPassthrough: Packets pass through a two-plugin SmartNet pipeline. The IPInput
plugin feeds directly in to the IPOutput plugin. No processing is performed on the
packets. The pipeline configuration is shown in Figure 5.4.

IPInput IPOutput

Figure 5.4: IPPassthrough pipeline con�guration implemented in each SmartNet gateway.
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• DTNPassthrough: The link between the two SmartNets operate exclusively over
DTN. Each SmartNet bundles all received IP packets and likewise unbundle them
on the remote side. No additional processing of the IP packets (such as removing
TCP flow control or unnecessary ACKs) is performed. The pipeline configuration is
shown in Figure 5.5.

IPInput

DTNInput IPOutput

DTNOutput

Figure 5.5: DTNPassthrough pipeline con�guration implemented in each SmartNet gateway.

• DTNBridge: Similar to the DTNPassthrough configuration except that the SmartNet
bridges the TCP connection over DTN, removing unnecessary elements of the TCP
protocol to better optimize over the DTN connection. The SmartNet removes TCP
ACKs relying on the DTN protocol to perform reliable delivery and removes TCP
congestion and flow control. The pipeline configuration is shown in Figure 5.6.

IPInput

DTNInput IPOutput

DTNOutput

DTNBridge

Figure 5.6: DTNBridge pipeline con�guration implemented in each SmartNet gateway.

• SplitTCP: SplitTCP divides a TCP flow at each hop, creating a hop-by-hop TCP
connection. In this configuration, there are three SmartNets and the DTN protocol is
not used. During a period of disruption, packets only need to be retransmitted over
the disrupted link rather than over the entire end-to-end connection. The pipeline
configuration is shown in Figure 5.7.
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IPInput SplitTCP IPOutput

Figure 5.7: SplitTCP pipeline con�guration implemented in each SmartNet gateway.

Each configuration was tested on both a non-disrupted network and a disrupted one. The
disrupted network was simulated using the channel emulator described in Section 5.1. Each
of the two disrupted links was controlled independently using an alternating on-off model.
Both the on and off periods were generated from an exponential distribution, with a mean
of 45 and 5 seconds, respectively. A graphical depiction of the disruption patterns are
illustrated in Figure 5.8.

To evaluate the performance relative to link speed, several different speeds were tested.
Link speeds of 30 Mbit/s, 10 Mbit/s, 1 Mbit/s, 512 Kbit/s, 128 Kbit/s, and 64 Kbit/s were
selected to fully evaluate both fast and slow links. Additionally, each test was conducted
with several file sizes: 10 MB, 1 MB, 100 KB, 10 KB, and 1 KB. The various file sizes
allow comparisons for both small and large files, specifically enabling time based features,
such as TCP slow start, to be included in the performance analysis.

This work does not aim to directly measure the performance of the DTN protocol or com-
pare various DTN implementations. Rather, measurement of the end-to-end performance
while transparently utilizing DTN with traditional TCP clients is the primary goal. To
quantify the performance, the primary evaluation metric is the total download time as seen
from the client. One test consisted of downloading a single file using a particular link speed
and one of the SmartNet configurations. Each test was performed five times in both a dis-
rupted and non-disrupted environment. In total, 1,500 tests were conducted covering all
possible combinations of file size, link speed, SmartNet configuration, and network state.
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Figure 5.8: Five random disruption patterns used during SmartNet performance testing. Each
link was independently disrupted using an exponential distribution. Red indicates periods when
the link was down; green indicates periods when the link was up.

Analysis of Performance on a Non-disrupted Network

When operating on a non-disrupted network, the average download times of the four Smart-
Net configurations (DTNPassthough excluded) were within 10% of each other. A box plot
of the download times can be seen in Figure 5.9. The box plots depict the download times
of the 1 MB file under four link speeds. The download times of the smaller file sizes and
under the 10 Mbit/s and 30 Mbit/s links did not clearly identify differences between the con-
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figurations because the time to download the files were very short. The complete results of
download tests for the non-disrupted network are listed in Appendix A.

With no disruptions, both the NoSmartNet and IPPassthough configurations were capable
of operating at their maximum potential, leaving the overhead of the SmartNet itself as the
only variable. As expected, the IPPassthough configuration performed only slightly slower
than the NoSmartNet configuration, further confirming the SmartNet overhead results in
Section 5.2.

In several of the tests, the DTNPassthough configuration performed much slower than the
other four configurations. The reasoning for this is that the DTNPassthough simply en-
capsulates IP packets within a DTN bundle, resulting in the transmission of both the DTN
header along with the original TCP and IP headers. Compared with the DTNBridge con-
figuration, which strips both the unnecessary TCP and IP headers along with the removal
of TCP flow control, this is a significant disadvantage of using a pure IP-over-DTN model.
The DTNBridge configuration performed similarly to both native-IP and IPPassthough,
indicating that when properly used, DTN is a viable alternative to TCP even under non-
disrupted conditions. While some trends do emerge, it should be noted that the large error
bars in Figure 5.9 are a result of only running five tests for each configuration. Addition-
ally, there were several factors not taken in to consideration such as TCP window size, the
BP neighbor-discovery timeout, and various BP convergence layer adapterss (CLAs). To
fully optimized the SmartNet, all of these additional factors need to be tested to determine
the best configuration options for each particular network condition.

The SplitTCP configuration has the potential to increase performance, even on non-
disrupted links. The test results show that the SplitTCP download time is always similar to
native-IP, but in some cases, decreases the download time. Since TCP speed is limited in
the beginning of a transmission by the overall round trip time (RTT) due to its slow start
mechanism. By splitting the connection, SplitTCP effectively reduces the RTT calculations
to individual segments rather than the whole end-to-end connection, thereby allowing TCP
to reach maximum speed at a quicker pace. Additionally, since SplitTCP uses the TCP
protocol, it can be seamlessly deployed as a single node on any existing network. Con-
trast with SmartNets running the BP which must contain at least two nodes, one to bundle
packet, and another to unbundle them.
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Figure 5.9: Download times of a 1 MB �le under various link speeds with no disruption.

Analysis of Performance on a 10% Disrupted Network
When operating on a 10% disrupted network, there were more significant differences be-
tween the five SmartNet configurations than in the non-disrupted case. A box plot of the
download times can be seen in Figure 5.10. The box plots depict the download times of the
1 MB file under four link speeds. As in the non-disrupted case, the download times of the
smaller file sizes and with the 10 Mbit/s and 30 Mbit/s link speeds did not clearly identify
differences between the configurations since the time to download the file was too short to
experience a significant number of disruptions. The complete results of download tests for
the 10% disrupted network can be found in Appendix B.
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Four of the five disruption patterns resulted in similar overall download times, but disrup-
tion pattern four proved to be a significant challenge for all the configurations to complete.
The download times for pattern four are the outliers in the box plots in Figure 5.10. A
closer look at Figure 5.8 indicates that disruption pattern four has a significant amount of
disruption near the 200 second mark, resulting in increased download times.

When operating on a 10% disrupted network, both the SplitTCP and DTNBridge config-
urations typically out performed the control. This result was expected since both configu-
rations use hop-by-hop transfer of packets allowing to move closer to the destination host
without the entire end-to-end path being up. Additionally, there tended to be a greater
performance increase on the 128 Kbit/s and 64 Kbit/s networks. Since the file sizes were
consistent among all the link speed, the slower links required more time to transfer the file
and thus was affected more by the network disruptions.

Both the IPPassthrough and DTNPassthrough configurations on average operated more
slowly than the control. In the case of the IPPassthrough configuration, this is expected
since it does nothing more than pass raw IP packets without performing any process-
ing, while incurring the performance penalty of running through the SmartNet. For DT-
NPassthrough, raw IP packets are simply encapsulated in the BP. Even though the bundles
can traverse hop-by-hop, the TCP flow control and acknowledgments are still handled by
the end hosts, taking away all the advantages of using a DTN protocol.
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Figure 5.10: Download times of a 10 MB �le under various link speeds with 10% disruption.
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CHAPTER 6:

Conclusion and Future Work

Flexibility of the SmartNet design was evaluated by constructing several different pipeline
configurations and completing 1,500 download tests under multiple network conditions and
link speeds. The results from testing have shown that transparently deploying the BP and
SplitTCP in existing HTTP applications can increase performance on disrupted networks
under certain conditions. In particular, slower link speeds with larger file sizes resulted in a
greater number of disruptions and more performance gains by using the BP and SplitTCP.
At higher speeds, both solutions performed similar or slightly slower to native-IP.

The SplitTCP solution is lighter weight, requiring less processing power and packet over-
head than the BP, and as such tended to outperform the DTN solution in most test cases.
Since SplitTCP is backwards compatible with any traditional TCP network hardware, it
required no extra protocol overhead unlike the BP which requires additional bundle header
information. These results do not dicredit the BP as inferior technology since there are
many features unique to the BP that were not tested in this research and may allow the BP
to surpass SplitTCP performance in certain situations. For example, one feature of the BP
is custody transfer of bundles which includes receipts that are returned back to the sending
host. The custody transfer feature would prove useful in situations where a bundle takes a
long period of time, on the order of hours or days, to traverse a network. For interactive
connections, such as a user downloading information from their web browser, this feature
is less useful since the typical user will not wait for lenghtly periods of time for a transfer
to complete. In these situations, SplitTCP has the adantage over the DTN solution.

The current SmartNet implementation is primitive in several aspects, yet it lays the ground
work for an open and flexible solution for deploying network optimization. The SmartNet
concept was developed into a working implementation and tested against a variety of net-
work conditions. Through iperf testing, the overhead imposed by the SmartNet system
itself was measured and found to have minimal effect on throughput at speeds less than
30 Mbit/s.
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Future work should include increased testing of the HTTP download scenario presented in
Chapter 1 with additional disruption patterns and file sizes. Specifically, analyzing partic-
ular disruption patterns to determine under what specific conditions each possible solution
(pure-IP, DTN, or SplitTCP) works best is critical to fully optimizing the connection. Once
specific criteria are developed, plugins to detect these specific changes to the network state
can be developed. Through these plugins the composable trigger functionality can be used
to enable SmartNet to adaptively toggle between DTN, SplitTCP and pure-IP routes de-
pending on the network state.

Within the SmartNet, performance over the DTN link could be improved by aggregating
multiple TCP packets in to a single bundle during periods of disruption. This functionality
can be performed by an independent plugin, allowing both SplitTCP and the DTN plugins
to benefit from aggregating multiple small packets into single large packets.

One of the key design goals of SmartNet is the composition of individual plugins into a
series that, when interconnected by queues, forms a packet processing pipeline. To fully
realize this goal, an array of new plugins to perform specific network optimizations needs
to be developed. Some examples include Network Address Translation, protocol-based
packet classification, packet aggregation, and maximum transmission unit (MTU) enforce-
ment.

These plugins would be configured into a complex plugin pipeline forming a mesh or lat-
tice rather than a discrete linear pipeline. Figure 6.1 shows an example of a complex plugin
pipeline in a lattice configuration. Decision points within each plugin can cause forks in
the pipeline, dynamically sending packets on different paths. Plugin developers can reuse
existing publish/subscribe parameters as input to their decision points when appropriate.
Merging of two paths is also supported, which allow selected packets to make small devia-
tions for additional processing before rejoining another pipeline. Such a configuration can
be customized on a per deployment basis involving a confederation of SmartNet gateways.

In the longer term, additional support for priority-based or proportional scheduling of plu-
gin threads should be considered. The possibility of integrating SmartNet into embedded
and real-time OSs would also bring SmartNet’s disruption tolerant capabilities to mobile
platforms which commonly suffer from disruption. Finally, general code optimization to
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increase performance on fast networks and a continuation to develop additional plugins
would be emphasized.

IPInput

DTNInput

Packet
Classifier

TCP

UDP

Bulk
Traffic

Interactive
Traffic

Link
Disrupted?

DTNOutput

IPOutput

Yes

No

Figure 6.1: An example of a complex processing pipeline. SmartNet is capable of arranging
plugins in a mesh or lattice con�guration allowing unlimited processing �exibility.

In conclusion, this research has shown our application-transparent solution to current verti-
cal IP/DTN integration approaches may help promote the deployment of DTN technology.
The SmartNet solution is novel in that it requires no changes to existing applications and
can transparently boost performance on disrupted networks.
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APPENDIX A:

HTTP Download Data (Non-Disrupted Network)

A.1 Link Speed: 30 Mbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

30 Mbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

DTNPassthrough
0.03 0.03 0.03 0.03 0.03

-200.00% -200.00% -200.00% -200.00% -200.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

30 Mbit/s 10 KB

NoSmartNet
0.02 0.02 0.01 0.02 0.01

– – – – –

IPPassthrough
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% -100.00% 0.00% -100.00%

DTNPassthrough
0.04 0.04 0.04 0.03 0.04

-100.00% -100.00% -300.00% -50.00% -300.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

50.00% 50.00% 0.00% 50.00% 0.00%

SplitTCP
0.29 0.29 0.29 0.29 0.29

<−1000% <−1000% <−1000% <−1000% <−1000%

30 Mbit/s 100 KB

NoSmartNet
0.02 0.02 0.02 0.02 0.02

– – – – –

IPPassthrough
0.07 0.07 0.07 0.08 0.07

-250.00% -250.00% -250.00% -300.00% -250.00%

DTNPassthrough
0.11 0.12 0.12 0.11 0.11

-450.00% -500.00% -500.00% -450.00% -450.00%

DTNBridge
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.09 0.09 0.35 0.09 0.35

-350.00% -350.00% <−1000% -350.00% <−1000%

30 Mbit/s 1 MB

NoSmartNet
0.06 0.06 0.07 0.07 0.06

– – – – –

IPPassthrough
0.48 0.48 0.48 0.53 0.50

-700.00% -700.00% -585.71% -657.14% -733.33%

DTNPassthrough
0.86 0.85 0.84 0.83 0.84

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNBridge
0.07 0.06 0.07 0.06 0.06

-16.67% 0.00% 0.00% 14.29% 0.00%

SplitTCP
0.68 0.66 0.69 0.65 0.64

<−1000% <−1000% -885.71% -828.57% -966.67%

30 Mbit/s 10 MB

NoSmartNet
0.21 0.21 0.21 0.22 0.21

– – – – –

IPPassthrough
4.46 4.65 4.68 4.91 4.74

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNPassthrough
8.24 8.09 8.20 8.24 8.19

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNBridge
0.22 0.22 0.21 0.22 0.20

-4.76% -4.76% 0.00% 0.00% 4.76%

SplitTCP
6.15 6.19 6.06 6.10 6.10

<−1000% <−1000% <−1000% <−1000% <−1000%
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A.2 Link Speed: 10 Mbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

10 Mbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.02 0.02 0.02 0.02 0.01

-100.00% -100.00% -100.00% -100.00% 0.00%

DTNPassthrough
0.03 0.02 0.02 0.03 0.03

-200.00% -100.00% -100.00% -200.00% -200.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

10 Mbit/s 10 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

DTNPassthrough
0.03 0.03 0.04 0.03 0.04

-200.00% -200.00% -300.00% -200.00% -300.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.29 0.29 0.29 0.29 0.28

<−1000% <−1000% <−1000% <−1000% <−1000%

10 Mbit/s 100 KB

NoSmartNet
0.02 0.02 0.02 0.02 0.02

– – – – –

IPPassthrough
0.07 0.07 0.07 0.07 0.07

-250.00% -250.00% -250.00% -250.00% -250.00%

DTNPassthrough
0.11 0.11 0.11 0.12 0.12

-450.00% -450.00% -450.00% -500.00% -500.00%

DTNBridge
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.09 0.35 0.35 0.35 0.35

-350.00% <−1000% <−1000% <−1000% <−1000%

10 Mbit/s 1 MB

NoSmartNet
0.06 0.06 0.06 0.06 0.05

– – – – –

IPPassthrough
0.49 0.50 0.48 0.49 0.48

-716.67% -733.33% -700.00% -716.67% -860.00%

DTNPassthrough
0.83 0.85 0.85 0.85 0.85

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNBridge
0.06 0.06 0.06 0.06 0.06

0.00% 0.00% 0.00% 0.00% -20.00%

SplitTCP
0.65 0.65 0.63 0.66 0.64

-983.33% -983.33% -950.00% <−1000% <−1000%

10 Mbit/s 10 MB

NoSmartNet
0.21 0.21 0.21 0.22 0.21

– – – – –

IPPassthrough
4.54 4.71 4.47 4.47 4.58

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNPassthrough
8.09 8.21 8.26 8.19 8.24

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNBridge
0.22 0.22 0.22 0.22 0.21

-4.76% -4.76% -4.76% 0.00% 0.00%

SplitTCP
6.08 6.17 6.09 6.05 6.07

<−1000% <−1000% <−1000% <−1000% <−1000%
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A.3 Link Speed: 1 Mbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

1 Mbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.02 0.02 0.01 0.02 0.02

-100.00% -100.00% 0.00% -100.00% -100.00%

DTNPassthrough
0.02 0.03 0.03 0.03 0.03

-100.00% -200.00% -200.00% -200.00% -200.00%

DTNBridge
0.01 0.02 0.01 0.01 0.01

0.00% -100.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

1 Mbit/s 10 KB

NoSmartNet
0.08 0.09 0.09 0.09 0.08

– – – – –

IPPassthrough
0.09 0.10 0.10 0.10 0.10

-12.50% -11.11% -11.11% -11.11% -25.00%

DTNPassthrough
0.13 0.12 0.12 0.12 0.13

-62.50% -33.33% -33.33% -33.33% -62.50%

DTNBridge
0.08 0.08 0.08 0.08 0.09

0.00% 11.11% 11.11% 11.11% -12.50%

SplitTCP
0.35 0.35 0.35 0.35 0.35

-337.50% -288.89% -288.89% -288.89% -337.50%

1 Mbit/s 100 KB

NoSmartNet
0.86 0.86 0.86 0.86 0.84

– – – – –

IPPassthrough
0.86 0.87 0.88 0.87 0.87

0.00% -1.16% -2.33% -1.16% -3.57%

DTNPassthrough
0.95 0.95 0.94 0.95 0.95

-10.47% -10.47% -9.30% -10.47% -13.10%

DTNBridge
0.85 0.85 0.86 0.86 0.86

1.16% 1.16% 0.00% 0.00% -2.38%

SplitTCP
1.13 1.14 1.15 1.14 1.15

-31.40% -32.56% -33.72% -32.56% -36.90%

1 Mbit/s 1 MB

NoSmartNet
8.77 8.74 8.75 8.75 8.76

– – – – –

IPPassthrough
8.83 8.83 8.83 8.85 8.86

-0.68% -1.03% -0.91% -1.14% -1.14%

DTNPassthrough
8.78 8.78 8.73 8.77 8.77

-0.11% -0.46% 0.23% -0.23% -0.11%

DTNBridge
8.78 8.75 8.74 8.74 8.73

-0.11% -0.11% 0.11% 0.11% 0.34%

SplitTCP
8.84 8.88 8.88 8.86 8.88

-0.80% -1.60% -1.49% -1.26% -1.37%

1 Mbit/s 10 MB

NoSmartNet
87.48 87.53 87.49 87.40 87.39

– – – – –

IPPassthrough
87.59 87.35 87.55 87.34 87.57

-0.13% 0.21% -0.07% 0.07% -0.21%

DTNPassthrough
87.50 87.44 87.37 87.41 87.54

-0.02% 0.10% 0.14% -0.01% -0.17%

DTNBridge
87.46 87.34 87.24 87.18 87.38
0.02% 0.22% 0.29% 0.25% 0.01%

SplitTCP
87.32 87.40 87.42 87.62 87.32
0.18% 0.15% 0.08% -0.25% 0.08%
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A.4 Link Speed: 512 Kbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

512 Kbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

DTNPassthrough
0.03 0.03 0.03 0.03 0.03

-200.00% -200.00% -200.00% -200.00% -200.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

512 Kbit/s 10 KB

NoSmartNet
0.15 0.15 0.16 0.16 0.15

– – – – –

IPPassthrough
0.19 0.16 0.19 0.18 0.16

-26.67% -6.67% -18.75% -12.50% -6.67%

DTNPassthrough
0.21 0.21 0.21 0.23 0.21

-40.00% -40.00% -31.25% -43.75% -40.00%

DTNBridge
0.15 0.16 0.15 0.15 0.15

0.00% -6.67% 6.25% 6.25% 0.00%

SplitTCP
0.42 0.42 0.42 0.42 0.42

-180.00% -180.00% -162.50% -162.50% -180.00%

512 Kbit/s 100 KB

NoSmartNet
1.66 1.68 1.69 1.64 1.68

– – – – –

IPPassthrough
1.70 1.70 1.70 1.70 1.70

-2.41% -1.19% -0.59% -3.66% -1.19%

DTNPassthrough
1.82 1.83 1.83 1.82 1.83

-9.64% -8.93% -8.28% -10.98% -8.93%

DTNBridge
1.67 1.68 1.66 1.64 1.66

-0.60% 0.00% 1.78% 0.00% 1.19%

SplitTCP
1.96 1.96 1.96 1.96 1.95

-18.07% -16.67% -15.98% -19.51% -16.07%

512 Kbit/s 1 MB

NoSmartNet
17.21 17.24 17.22 17.14 17.09

– – – – –

IPPassthrough
17.26 17.29 17.35 17.37 17.33

-0.29% -0.29% -0.75% -1.34% -1.40%

DTNPassthrough
17.24 17.14 17.25 17.25 17.17

-0.17% 0.58% -0.17% -0.64% -0.47%

DTNBridge
17.18 17.23 17.23 17.21 17.25
0.17% 0.06% -0.06% -0.41% -0.94%

SplitTCP
17.22 17.21 17.24 17.22 17.20

-0.06% 0.17% -0.12% -0.47% -0.64%

512 Kbit/s 10 MB

NoSmartNet
186.03 181.17 197.07 202.27 185.22

– – – – –

IPPassthrough
184.59 197.38 187.15 198.15 196.10
0.77% -8.95% 5.03% 2.04% -5.87%

DTNPassthrough
206.11 210.40 211.76 217.77 215.67

-10.79% -16.13% -7.45% -7.66% -16.44%

DTNBridge
190.07 182.63 196.72 202.64 183.93
-2.17% -0.81% 0.18% -0.18% 0.70%

SplitTCP
185.98 181.93 185.94 181.34 184.75
0.03% -0.42% 5.65% 10.35% 0.25%
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A.5 Link Speed: 128 Kbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

128 Kbit/s 1 KB

NoSmartNet
0.02 0.02 0.02 0.02 0.02

– – – – –

IPPassthrough
0.01 0.02 0.02 0.02 0.02

50.00% 0.00% 0.00% 0.00% 0.00%

DTNPassthrough
0.04 0.04 0.03 0.05 0.05

-100.00% -100.00% -50.00% -150.00% -150.00%

DTNBridge
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

128 Kbit/s 10 KB

NoSmartNet
0.59 0.58 0.59 0.59 0.59

– – – – –

IPPassthrough
0.60 0.69 0.59 0.59 0.59

-1.69% -18.97% 0.00% 0.00% 0.00%

DTNPassthrough
0.85 0.84 0.84 0.84 0.85

-44.07% -44.83% -42.37% -42.37% -44.07%

DTNBridge
0.59 0.59 0.58 0.58 0.59

0.00% -1.72% 1.69% 1.69% 0.00%

SplitTCP
0.85 0.85 0.85 0.84 0.85

-44.07% -46.55% -44.07% -42.37% -44.07%

128 Kbit/s 100 KB

NoSmartNet
6.62 6.69 6.70 6.69 6.70

– – – – –

IPPassthrough
6.74 6.72 6.72 6.71 6.74

-1.81% -0.45% -0.30% -0.30% -0.60%

DTNPassthrough
7.30 7.31 7.30 7.32 7.30

-10.27% -9.27% -8.96% -9.42% -8.96%

DTNBridge
6.70 6.61 6.72 6.73 6.61

-1.21% 1.20% -0.30% -0.60% 1.34%

SplitTCP
6.91 6.88 6.89 6.85 6.88

-4.38% -2.84% -2.84% -2.39% -2.69%

128 Kbit/s 1 MB

NoSmartNet
69.24 79.95 84.36 91.76 80.09

– – – – –

IPPassthrough
81.10 79.76 80.20 79.43 80.81

-17.13% 0.24% 4.93% 13.44% -0.90%

DTNPassthrough
92.26 69.18 79.95 79.67 69.19

-33.25% 13.47% 5.23% 13.18% 13.61%

DTNBridge
69.04 80.44 79.94 81.08 81.37
0.29% -0.61% 5.24% 11.64% -1.60%

SplitTCP
69.26 79.62 79.95 81.22 79.97

-0.03% 0.41% 5.23% 11.49% 0.15%

128 Kbit/s 10 MB

NoSmartNet
869.02 861.00 879.70 877.27 857.69

– – – – –

IPPassthrough
983.15 932.15 937.34 940.20 931.93

-13.13% -8.26% -6.55% -7.17% -8.66%

DTNPassthrough
1070.49 1066.18 1036.88 1107.74 1070.18
-23.18% -23.83% -17.87% -26.27% -24.77%

DTNBridge
862.39 859.71 879.37 856.02 865.61
0.76% 0.15% 0.04% 2.42% -0.92%

SplitTCP
858.74 859.44 867.60 864.93 892.12
1.18% 0.18% 1.38% 1.41% -4.01%
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A.6 Link Speed: 64 Kbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

64 Kbit/s 1 KB

NoSmartNet
0.02 15.04 0.03 0.02 0.02

– – – – –

IPPassthrough
0.03 0.03 0.04 3.03 0.03

-50.00% 99.80% -33.33% <−1000% -50.00%

DTNPassthrough
0.05 0.20 3.05 3.19 0.06

-150.00% 98.67% <−1000% <−1000% -200.00%

DTNBridge
0.02 0.02 0.03 0.02 0.02

0.00% 99.87% 0.00% 0.00% 0.00%

SplitTCP
6.25 0.02 0.02 0.02 0.02

<−1000% 99.87% 33.33% 0.00% 0.00%

64 Kbit/s 10 KB

NoSmartNet
1.17 1.17 1.17 1.17 1.18

– – – – –

IPPassthrough
1.18 1.37 1.37 1.18 1.17

-0.85% -17.09% -17.09% -0.85% 0.85%

DTNPassthrough
1.65 1.74 1.67 1.85 1.81

-41.03% -48.72% -42.74% -58.12% -53.39%

DTNBridge
1.17 1.17 1.16 1.16 1.17

0.00% 0.00% 0.85% 0.85% 0.85%

SplitTCP
1.43 1.43 1.43 1.43 1.43

-22.22% -22.22% -22.22% -22.22% -21.19%

64 Kbit/s 100 KB

NoSmartNet
13.48 13.49 64.97 59.11 66.49

– – – – –

IPPassthrough
28.41 66.91 13.54 77.72 13.49

-110.76% -396.00% 79.16% -31.48% 79.71%

DTNPassthrough
14.73 15.19 14.75 15.28 15.32

-9.27% -12.60% 77.30% 74.15% 76.96%

DTNBridge
103.27 61.68 86.77 76.81 13.48

-666.10% -357.23% -33.55% -29.94% 79.73%

SplitTCP
13.50 16.32 16.25 16.21 16.33

-0.15% -20.98% 74.99% 72.58% 75.44%

64 Kbit/s 1 MB

NoSmartNet
238.00 262.22 239.29 228.82 263.42

– – – – –

IPPassthrough
185.46 236.62 207.23 242.60 237.66
22.08% 9.76% 13.40% -6.02% 9.78%

DTNPassthrough
180.50 215.81 229.19 226.16 210.13
24.16% 17.70% 4.22% 1.16% 20.23%

DTNBridge
268.74 218.27 258.08 250.99 189.14

-12.92% 16.76% -7.85% -9.69% 28.20%

SplitTCP
199.00 176.14 194.11 190.89 188.00
16.39% 32.83% 18.88% 16.58% 28.63%

64 Kbit/s 10 MB

NoSmartNet
1860.89 1913.59 1901.71 1885.84 1948.62

– – – – –

IPPassthrough
1956.87 1915.91 1871.50 1872.14 1908.05
-5.16% -0.12% 1.59% 0.73% 2.08%

DTNPassthrough
1981.34 2034.32 1884.99 2067.30 1923.15
-6.47% -6.31% 0.88% -9.62% 1.31%

DTNBridge
1936.04 1878.44 1947.66 1935.77 1858.30
-4.04% 1.84% -2.42% -2.65% 4.64%

SplitTCP
1379.81 1373.91 1382.33 1375.53 1374.04
25.85% 28.20% 27.31% 27.06% 29.49%
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APPENDIX B:

HTTP Download Data (10% Disrupted Network)

B.1 Link Speed: 30 Mbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

30 Mbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

30 Mbit/s 10 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.29 0.28 0.29 0.29 0.29

<−1000% <−1000% <−1000% <−1000% <−1000%

30 Mbit/s 100 KB

NoSmartNet
0.02 0.02 0.02 0.02 0.02

– – – – –

IPPassthrough
0.02 0.02 0.02 0.01 0.02

0.00% 0.00% 0.00% 50.00% 0.00%

DTNPassthrough
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.35 0.35 0.35 0.35 0.35

<−1000% <−1000% <−1000% <−1000% <−1000%

30 Mbit/s 1 MB

NoSmartNet
0.06 0.05 0.06 0.06 0.05

– – – – –

IPPassthrough
0.06 0.06 0.06 0.06 0.06

0.00% -20.00% 0.00% 0.00% -20.00%

DTNPassthrough
0.06 0.06 0.06 0.06 0.06

0.00% -20.00% 0.00% 0.00% -20.00%

DTNBridge
0.06 0.06 0.06 0.07 0.06

0.00% -20.00% 0.00% -16.67% -20.00%

SplitTCP
0.65 0.67 0.65 0.64 0.62

-983.33% <−1000% -983.33% -966.67% <−1000%

30 Mbit/s 10 MB

NoSmartNet
0.23 0.22 0.22 0.22 0.23

– – – – –

IPPassthrough
25.88 65.03 38.98 31.90 28.00

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNPassthrough
0.23 0.22 0.22 0.22 0.23

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.22 0.24 0.22 0.22 0.21

4.35% -9.09% 0.00% 0.00% 8.70%

SplitTCP
26.53 63.70 39.68 33.94 27.75

<−1000% <−1000% <−1000% <−1000% <−1000%
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B.2 Link Speed: 10 Mbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

10 Mbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.02 0.02 0.02 0.02 0.01

-100.00% -100.00% -100.00% -100.00% 0.00%

DTNPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
31.08 0.01 0.01 0.01 0.01

<−1000% 0.00% 0.00% 0.00% 0.00%

SplitTCP
18.25 0.02 0.02 0.02 0.02

<−1000% -100.00% -100.00% -100.00% -100.00%

10 Mbit/s 10 KB

NoSmartNet
0.02 0.02 0.02 0.01 0.01

– – – – –

IPPassthrough
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% -100.00% -100.00%

DTNPassthrough
0.01 0.01 0.01 0.01 0.01

50.00% 50.00% 50.00% 0.00% 0.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

50.00% 50.00% 50.00% 0.00% 0.00%

SplitTCP
0.29 0.29 0.29 0.29 0.28

<−1000% <−1000% <−1000% <−1000% <−1000%

10 Mbit/s 100 KB

NoSmartNet
0.02 0.02 0.02 0.02 0.02

– – – – –

IPPassthrough
0.07 0.07 0.07 0.07 0.07

-250.00% -250.00% -250.00% -250.00% -250.00%

DTNPassthrough
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.35 0.35 0.35 0.35 0.35

<−1000% <−1000% <−1000% <−1000% <−1000%

10 Mbit/s 1 MB

NoSmartNet
0.06 0.06 0.06 0.06 0.06

– – – – –

IPPassthrough
0.49 0.48 0.49 0.48 0.49

-716.67% -700.00% -716.67% -700.00% -716.67%

DTNPassthrough
0.06 0.06 0.06 0.06 0.06

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.06 0.05 0.06 0.06 0.06

0.00% 16.67% 0.00% 0.00% 0.00%

SplitTCP
0.67 0.64 0.66 0.66 0.64

<−1000% -966.67% <−1000% <−1000% -966.67%

10 Mbit/s 10 MB

NoSmartNet
0.21 0.23 0.22 0.21 0.23

– – – – –

IPPassthrough
26.00 64.88 38.76 31.92 28.85

<−1000% <−1000% <−1000% <−1000% <−1000%

DTNPassthrough
0.22 0.22 0.23 0.21 0.22

-4.76% 4.35% -4.55% 0.00% 4.35%

DTNBridge
0.23 0.22 0.23 0.22 0.23

-9.52% 4.35% -4.55% -4.76% 0.00%

SplitTCP
26.22 65.74 40.01 33.62 27.91

<−1000% <−1000% <−1000% <−1000% <−1000%

70



B.3 Link Speed: 1 Mbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

1 Mbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

1 Mbit/s 10 KB

NoSmartNet
0.08 0.08 0.08 0.09 0.09

– – – – –

IPPassthrough
0.09 0.09 0.09 0.08 0.08

-12.50% -12.50% -12.50% 11.11% 11.11%

DTNPassthrough
0.09 0.08 0.09 0.08 0.09

-12.50% 0.00% -12.50% 11.11% 0.00%

DTNBridge
0.09 0.09 0.08 0.09 0.09

-12.50% -12.50% 0.00% 0.00% 0.00%

SplitTCP
0.35 0.35 0.35 0.35 0.35

-337.50% -337.50% -337.50% -288.89% -288.89%

1 Mbit/s 100 KB

NoSmartNet
0.85 0.85 0.86 0.85 0.84

– – – – –

IPPassthrough
0.85 0.84 0.86 0.86 0.85

0.00% 1.18% 0.00% -1.18% -1.19%

DTNPassthrough
0.86 0.86 0.86 0.85 0.85

-1.18% -1.18% 0.00% 0.00% -1.19%

DTNBridge
0.86 0.86 0.86 0.86 0.84

-1.18% -1.18% 0.00% -1.18% 0.00%

SplitTCP
1.15 1.15 1.16 1.14 0.89

-35.29% -35.29% -34.88% -34.12% -5.95%

1 Mbit/s 1 MB

NoSmartNet
33.09 69.14 42.48 35.18 33.15

– – – – –

IPPassthrough
29.25 69.22 43.01 36.24 33.24

11.60% -0.12% -1.25% -3.01% -0.27%

DTNPassthrough
29.16 69.15 43.41 36.13 33.19

11.88% -0.01% -2.19% -2.70% -0.12%

DTNBridge
30.16 73.53 44.54 37.59 30.13
8.85% -6.35% -4.85% -6.85% 9.11%

SplitTCP
28.16 68.95 43.41 36.15 31.42

14.90% 0.27% -2.19% -2.76% 5.22%

1 Mbit/s 10 MB

NoSmartNet
149.83 178.45 140.75 640.71 158.55

– – – – –

IPPassthrough
147.32 184.12 137.58 578.64 150.90
1.68% -3.18% 2.25% 9.69% 4.82%

DTNPassthrough
147.25 181.11 140.99 363.48 156.76
1.72% -1.49% -0.17% 43.27% 1.13%

DTNBridge
151.41 177.76 142.13 394.31 150.25
-1.05% 0.39% -0.98% 38.46% 5.23%

SplitTCP
150.42 183.61 141.31 318.27 154.96
-0.39% -2.89% -0.40% 50.33% 2.26%
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B.4 Link Speed: 512 Kbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

512 Kbit/s 1 KB

NoSmartNet
0.01 0.01 0.01 0.01 0.01

– – – – –

IPPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNPassthrough
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.01 0.01 0.01 0.01 0.01

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

-100.00% -100.00% -100.00% -100.00% -100.00%

512 Kbit/s 10 KB

NoSmartNet
0.15 0.15 0.16 0.15 0.15

– – – – –

IPPassthrough
0.15 0.15 0.15 0.15 0.15

0.00% 0.00% 6.25% 0.00% 0.00%

DTNPassthrough
0.15 0.15 0.16 0.16 0.15

0.00% 0.00% 0.00% -6.67% 0.00%

DTNBridge
0.15 0.15 0.15 0.15 0.15

0.00% 0.00% 6.25% 0.00% 0.00%

SplitTCP
0.42 0.42 0.42 0.42 0.42

-180.00% -180.00% -162.50% -180.00% -180.00%

512 Kbit/s 100 KB

NoSmartNet
1.64 1.69 1.68 1.65 1.66

– – – – –

IPPassthrough
1.69 1.69 1.63 1.68 1.68

-3.05% 0.00% 2.98% -1.82% -1.20%

DTNPassthrough
1.68 1.66 1.68 1.66 1.67

-2.44% 1.78% 0.00% -0.61% -0.60%

DTNBridge
1.67 1.66 1.69 1.67 1.68

-1.83% 1.78% -0.60% -1.21% -1.20%

SplitTCP
1.95 1.95 1.95 1.93 1.96

-18.90% -15.38% -16.07% -16.97% -18.07%

512 Kbit/s 1 MB

NoSmartNet
38.41 78.58 53.44 84.26 41.23

– – – – –

IPPassthrough
38.39 77.22 52.08 107.54 41.71
0.05% 1.73% 2.54% -27.63% -1.16%

DTNPassthrough
36.41 77.42 52.24 61.85 40.37
5.21% 1.48% 2.25% 26.60% 2.09%

DTNBridge
40.76 79.72 51.37 43.45 41.00

-6.12% -1.45% 3.87% 48.43% 0.56%

SplitTCP
36.79 75.84 51.79 44.27 41.00
4.22% 3.49% 3.09% 47.46% 0.56%

512 Kbit/s 10 MB

NoSmartNet
273.43 291.17 328.05 589.26 296.52

– – – – –

IPPassthrough
277.56 294.19 341.90 595.48 286.66
-1.51% -1.04% -4.22% -1.06% 3.33%

DTNPassthrough
284.40 287.52 437.93 651.35 293.92
-4.01% 1.25% -33.49% -10.54% 0.88%

DTNBridge
272.82 286.04 349.46 D 263.05
0.22% 1.76% -6.53% – 11.29%

SplitTCP
296.24 281.13 335.84 579.00 294.37
-8.34% 3.45% -2.37% 1.74% 0.73%
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B.5 Link Speed: 128 Kbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

128 Kbit/s 1 KB

NoSmartNet
63.14 1.01 0.02 0.02 0.02

– – – – –

IPPassthrough
1.02 0.02 0.02 0.02 0.02

98.38% 98.02% 0.00% 0.00% 0.00%

DTNPassthrough
0.02 0.02 0.02 0.02 0.01

99.97% 98.02% 0.00% 0.00% 50.00%

DTNBridge
0.01 0.02 0.02 0.02 0.02

99.98% 98.02% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

99.97% 98.02% 0.00% 0.00% 0.00%

128 Kbit/s 10 KB

NoSmartNet
0.59 0.59 0.60 0.59 0.59

– – – – –

IPPassthrough
0.59 0.69 0.59 0.59 0.68

0.00% -16.95% 1.67% 0.00% -15.25%

DTNPassthrough
0.58 0.58 0.59 0.59 0.59

1.69% 1.69% 1.67% 0.00% 0.00%

DTNBridge
0.59 0.60 0.59 0.59 0.59

0.00% -1.69% 1.67% 0.00% 0.00%

SplitTCP
0.85 0.85 0.84 0.86 0.85

-44.07% -44.07% -40.00% -45.76% -44.07%

128 Kbit/s 100 KB

NoSmartNet
86.89 60.23 119.94 104.14 100.94

– – – – –

IPPassthrough
118.25 62.64 58.81 105.95 68.05

-36.09% -4.00% 50.97% -1.74% 32.58%

DTNPassthrough
49.56 59.55 55.31 63.27 61.83

42.96% 1.13% 53.89% 39.25% 38.75%

DTNBridge
57.89 57.14 49.21 53.56 55.09

33.38% 5.13% 58.97% 48.57% 45.42%

SplitTCP
52.93 100.92 101.00 100.90 53.11

39.08% -67.56% 15.79% 3.11% 47.38%

128 Kbit/s 1 MB

NoSmartNet
139.39 187.08 140.28 514.52 129.47

– – – – –

IPPassthrough
135.01 190.76 131.89 D 139.41
3.14% -1.97% 5.98% – -7.68%

DTNPassthrough
141.87 179.18 122.92 357.51 137.35
-1.78% 4.22% 12.38% 30.52% -6.09%

DTNBridge
138.55 180.41 134.91 323.81 135.60
0.60% 3.57% 3.83% 37.07% -4.73%

SplitTCP
110.69 163.91 120.60 247.25 133.55
20.59% 12.39% 14.03% 51.95% -3.15%

128 Kbit/s 10 MB

NoSmartNet
1754.22 1719.39 1881.77 1580.12 1539.18

– – – – –

IPPassthrough
1688.06 1391.78 D 1774.20 1955.36
3.77% 19.05% – -12.28% -27.04%

DTNPassthrough
1778.46 D D 1560.10 1715.91
-1.38% – – 1.27% -11.48%

DTNBridge
D 1517.76 1751.85 D 1618.40
– 11.73% 6.90% – -5.15%

SplitTCP
1207.36 1182.48 1194.85 1309.13 1144.29
31.17% 31.23% 36.50% 17.15% 25.66%
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B.6 Link Speed: 64 Kbit/s
Link
Speed

File
Size

SmartNet
Configuration

Download Time (s)
1 2 3 4 5

64 Kbit/s 1 KB

NoSmartNet
0.02 0.02 0.02 0.02 0.02

– – – – –

IPPassthrough
0.03 0.03 0.03 0.03 0.03

-50.00% -50.00% -50.00% -50.00% -50.00%

DTNPassthrough
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

DTNBridge
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

SplitTCP
0.02 0.02 0.02 0.02 0.02

0.00% 0.00% 0.00% 0.00% 0.00%

64 Kbit/s 10 KB

NoSmartNet
1.16 1.17 1.17 1.17 1.18

– – – – –

IPPassthrough
1.18 1.18 1.18 1.18 1.37

-1.72% -0.85% -0.85% -0.85% -16.10%

DTNPassthrough
1.17 1.17 1.17 1.17 1.17

-0.86% 0.00% 0.00% 0.00% 0.85%

DTNBridge
1.17 1.17 1.17 1.17 1.17

-0.86% 0.00% 0.00% 0.00% 0.85%

SplitTCP
1.43 1.43 1.41 1.43 1.43

-23.28% -22.22% -20.51% -22.22% -21.19%

64 Kbit/s 100 KB

NoSmartNet
42.28 902.61 163.42 143.56 94.98

– – – – –

IPPassthrough
36.99 34.28 57.39 40.52 36.56

12.51% 96.20% 64.88% 71.77% 61.51%

DTNPassthrough
40.89 40.92 84.85 45.49 97.16
3.29% 95.47% 48.08% 68.31% -2.30%

DTNBridge
88.34 98.10 42.36 103.44 102.65

-108.94% 89.13% 74.08% 27.95% -8.08%

SplitTCP
18.73 18.73 43.57 43.42 18.49

55.70% 97.92% 73.34% 69.75% 80.53%

64 Kbit/s 1 MB

NoSmartNet
404.09 256.87 322.18 619.86 254.71

– – – – –

IPPassthrough
402.60 D 430.86 832.10 366.59
0.37% – -33.73% -34.24% -43.92%

DTNPassthrough
601.12 253.40 344.93 663.81 300.73

-48.76% 1.35% -7.06% -7.09% -18.07%

DTNBridge
398.24 252.73 321.73 627.04 298.64
1.45% 1.61% 0.14% -1.16% -17.25%

SplitTCP
257.18 231.34 281.17 427.21 235.40
36.36% 9.94% 12.73% 31.08% 7.58%

64 Kbit/s 10 MB

NoSmartNet
4468.18 D 4248.38 D 3324.08

– – – – –

IPPassthrough
D 4180.59 D D 4072.10
– <−1000% – – -22.50%

DTNPassthrough
D D D D D
– – – – –

DTNBridge
D D 4116.42 3653.21 3740.31
– – 3.11% <−1000% -12.52%

SplitTCP
2470.44 2368.78 2488.01 2562.17 2343.63
44.71% <−1000% 41.44% <−1000% 29.50%
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