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ABSTRACT 

With the growing interest in using composites in naval shipbuilding, it is crucial to 

understand the behavior of structures, especially the Fluid Structural  

Interaction (FSI) aspect of the composites under dynamic loading, to ensure the 

survivability of the platform at sea. The objective of this study is to perform 

displacement-controlled fatigue cyclic loading on quasi-isotropic E-glass 

laminate, which is commonly used in the shipbuilding industry. The fatigue cyclic 

loading is performed in both air and water environments with varied frequencies 

to analyze the structural behavior and failure pattern of composites under FSI.  

The results of the experiment show significant FSI effects on the fatigue 

failure life cycle of the composite under high frequency loading of 2 Hz, 5 Hz and 

10 Hz. The degree of FSI effect of the 5 Hz and 10 Hz cyclic loading is 

significantly higher than 2 Hz cyclic loading and the FSI effect varies for 5 Hz and 

10 Hz, with 5 Hz loading exhibiting a higher impact on the composite. The 

knowledge gained from the investigation will benefit ongoing research into 

understanding the dynamic response and failure mechanism of the composite 

structures under FSI. The insights and suggestions for follow-on studies will 

contribute to the development of future life prediction modeling or tools that will 

help to prevent premature failures in the design of composite vessel—particularly 

a naval ship—where survivability is vital. 
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I. INTRODUCTION 

A. BACKGROUND 

Modern-day shipbuilding has been steering toward the use of composites 

instead of the traditional steel hull to meet the increasing design requirements in 

the defense industry. Due to designers’ limited knowledge of composite 

manufacturing and its mechanical performance in the early years, naval 

composite vessels were limited to no more than 15 m in length and 20 tonnes 

displacement. Only in recent years the fabrication of larger ships such as the 

Visby Class Corvettes and Skjold-class corvettes was materialized with an 

optimized design, good material strength, and improved mechanical properties 

using low cost composites [1]. However, ships made entirely of composites of 

100m in length and longer are still undergoing paper design and have not been 

manufactured as yet.   

The corrosion resistance, electromagnetic absorption properties, and the 

significant weight savings of the composites provide potential growth and 

performance capabilities for future platforms. Renewed Interest in the exploration 

of using composite structures for naval shipbuilding were sparked after the first 

U.S. Navy DDG 1000 Zumwalt-class destroyer was contracted in February 2008 

for US$6.3 billion. It consisted of a full composite superstructure with steel  

hull [2]. With the growing interest in using composites in naval shipbuilding, it is 

crucial to understand the behavior of these structures, especially the fluid 

structural interaction aspect of the composites under dynamic loading, to ensure 

the survivability of the platform at sea.  
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Figure 1.  Picture of the Visby class and Skjold vessel (from [3], [4]). 

B. RESEARCH EFFORTS 

Previous research has highlighted the importance of fluid structure 

interaction (FSI) and how it lowers the natural frequency and influences modal 

shapes of structures. The effects of FSI primarily revolve around the theory that 

added mass causes structures to fail more rapidly in a submerged environment. 

Multiple experiments have been performed to verify the “added mass” theory and 

how the structure responds to dynamic loading in simulated sea-going 

conditions. This chapter looks into the cause of hydrodynamic mass effect, the 

structure’s reaction to low velocity cyclic loading, fatigue cycles, stress ratio, S-N 

curve, and moisture.   

1. Hydrodynamic Added Mass Effect 

Under a vibrating load in immersed conditions, the total kinetic energy of a 

structure increases due to the added kinetic energy from the water impacting the 

structure [5]. The inertial forces that result from the acceleration of the fluid 

impacting the structure create a virtual force known as the “added mass” effect. 

The increase in damping due to the “added mass” effect decreases the natural 

frequency and changes the dynamic response of a structure [6]. 

The degree of “added mass” effect is more detrimental to a composite 

structure than to the traditional steel hull. This is because, the ratio between 

water to composite density is higher than the ratio of water to steel density which 

results to a higher Non-dimensionalized Added Virtual Mass Incremental 

(NAVMI) facter,  , shown in Equation 1.2. The numerical formula for the NAVMI 

factor, , is used to approximate the degree of difference between steel and 
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composite structures under fluid structure interaction on circular and rectangular 

plates [7].  

 

1
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where wf  and af  are the natural frequency in water and air, w and p , 

represent the density of water and plate, and   is the non-dimensional 

correction factor. According to the published results from Kwah [7] and Owens 

[8], the NAVMI factor of a steel plate submerged in water ranges from 1.4 to 2.4 

and these values depend on the boundary conditions of the experiment, such as 

the height of the submerged volume and the geometrical dimensions of the 

rectangular plates. Research done by Owens [8] also found that the NAVMI 

factor for a composite plate is at least 6.6, which is significantly higher than the 

added mass effort on steel. This result gave a quantitative comparison to affirm 

and reinforce the importance of understanding the FSI on composite and the 

degree of hydrodynamic “added mass” effect which impacts the structures while 

submerged. 

2. Low Velocity Impact and Cyclic Loading 

Dynamic loading on the ship hull structure is often categorized as 

impact/impulsive loading and vibratory loading, which comes in the form of 

random, transient, or steady state [9]. Low velocity impact loading is often 

induced by the constant slamming loads from the waves and the debris at sea in 

green water. Damage due to cyclic loading on composites is usually subtle as a 

crack propagates though the fiber layers within the composite. Signs of failure 

are usually visible after a prolonged period of numerous loading. As such, it is 
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vital to understand the failure response and the effect of FSI of the composite 

under vibration loading.  

Under low velocity impact, composite structures experience an added 

mass effect which causes them to fail more rapidly in a submerged environment. 

Owens [8] found that the added mass effect due to FSI increased the force of 

impact by 50 percent and the strain exerted on a composite plate by 20 percent 

to 50 percent under low velocity impact. The natural frequency of the composite 

was also found to decrease by half when it was submerged in water. Research 

done by Violette [10] shows that composite structures in contact with water tend 

to exhibit a larger strain deformation compared to a dry baseline under low 

velocity impact. Furthermore, the delamination pattern of composite deformation 

propagates to a larger surface area in the submerged condition. Working upon 

the research done by Violette, Conner [11] affirms the results that the dynamic 

response of a composite structure in contact with water is significantly larger than 

a dry baseline and the added mass effect is not uniform throughout the surface of 

the composite panel.  

Priest [12] has done a series of experiments comparing the free vibration 

response of a composite structure under FSI and found that the natural 

frequency of the composite under submerged conditions decreased by one-third 

as compared to the natural frequency of the composite in air. Under free-free 

beam, the natural frequency of the composite was decreased by half with the 

added mass.  

3. Fatigue Cyclic Test 

There are numerous intensive studies in understanding the delamination 

and fatigue failure characteristics of composites. Having a good understanding of 

the loading conditions and the failure characteristics of the composite allows 

better prediction of the fatigue life of composites with respect to the anticipated 

loading.  



 5

Degriek and Van Paepegem [13] summarize the parameters that affect 

fatigue failure and these parameters involve the selection of fiber and matric 

types, reinforcement strictures (fabric, braiding, unidirectional), stacking 

sequence and orientation, environmental conditions (temperature and moisture), 

and loading conditions.  

The loading conditions that affect fatigue failure highlighted by [13] involve 

the stress ratio R and cyclic frequency of the dynamic loading. In the review, they 

pointed out that the cyclic frequency and loading rate have considerable 

influence on the fatigue failure of composites due to the internal heat generation 

and the possible associated temperature increase.  

a. Stress Ratio R 

The stress ratio, R, is governed by the ratio of the minimum, min , and 

maximum, max , stress of the loading cycle under fatigue test.  

 
min

max

R



                                                   (1.3) 

 

The R-ratio has been frequently used as a parameter that largely 

influences the fatigue response of composites. Fatigue test results done by Cain 

et al. [14] on E-glass composite laminate has shown quantitative and qualitative 

differences in both the life cycle and failure pattern for R-Ratio of values R=0.1 

(tension tension), R = -1 (tension compression), and R=10 (compression 

compression). Fatigue tests performed by Gaprino on glass fiber composite show 

that compressive cycle loading of R=1.43 has a longer life cycle when compared 

to R=10 and the stress ratio R has a strong influence on fatigue life [15]. 
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Figure 2.  Semi-log plot of the non-dimensional maximum applied stress 
against number of cycles to failure (from [15]). 

b. S-N Curve 

The degradation of a composite undergoing cyclic loading generally 

exhibits a different stage of damage loading which involves matrix cracking 

through the fiber-matrix interface, followed by fiber-matrix debonding, fiber 

breakage, and delamination between the composite layers. The microcracks on 

the surface of damage impact are described to distribute the stress concentration 

and increase the residual strength of the composite [16]. In most of the research, 

the classic S-N curve has been used to correlate the fatigue life cycle failure of 

composites. 

Khelifa and Al-Shukri discuss the fatigue-life diagram using the S-N curve. 

He has divided the characteristics and type of damage mechanism of glass 

polyster composites into three regions in a S-N curve. Region I shows scattered 

data with static critical stress to failure. The failure mechanism is due to a large 

volume of debonding across the composite. Region II is described as the 

progressive damage region with life cycles above 5x104 cycles. The damage 

progression rate increases proportionally with the loading rate of the composite. 
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Region III shows that the stress is insufficient to inflict any damage to the 

composite and the fatigue life cycle goes beyond 106 cycles [17].  

 

Figure 3.  The Fatigue Life Diagram (from [16]). 

c. Moisture  

Porter has experimentally evaluated the effects of moisture and 

temperature on the structural integrity of composite laminates which are flawed. 

Static and cyclic loading tests were performed on composite specimens with slits 

of varied sizes under dry and moist conditions. The moist condition for the wet 

specimen was prepared by soaking the specimen in water for eight weeks with a 

weight gain of 1.3 percent to 1.5 percent. The loads are applied perpendicular to 

the slit. Under static tension and compression loading for dry and wet specimens 

in varied temperature, the author has found the deflect size of the slit degrades 

more significantly with varied temperature for the wet specimen as shown in 

Figure 4. The author also indicates that the fatigue test results for the tension-

compression loading (R= -1) for the wet specimen degrades more significantly at 

the initial life cycles shown in Figure 5 [18]. 
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Figure 4.  Typical crack opening/closing displacement records for test 
specimen (from [18]).  

   

Figure 5.  Fatigue test data for 5/8” slit specimen at 394K (from [18]). 

A review of the current research on the effect of FSI on composites gives 

insight and motivation for understanding the effects of fluid structure interaction 

under cyclic loading. Sea going vessels are constantly being subjected to cyclic 

vibrations from the machineries onboard and the slamming impact from the sea 

waves. Little has been uncovered, though, to investigate the response of 

transient cyclic loading on composites and the possible response of and the 
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failure rate from the composite. Although there are numerous studies on fatigue 

failure and structural integrality of composites under cyclic loading, most of the 

experiments performed are uniaxial stress conditions which are rarely applicable 

to real structures [13]. 

Degriek and VanPaepegem [13] highlighted the difficulty of understanding 

fatigue failure was due to the complex structural component of composites and 

the difficulty of fabricating identical composites during experimental testing.  

C. OBJECTIVE 

This study focuses on performing displacement controlled fatigue cyclic 

loading on quasi-isotropic E-glass laminate, which is commonly used in the 

shipbuilding industry. The experimental work is performed in both the air and 

water submerged environment to simulate sea going conditions and for analysis 

of the structural behavior and failure pattern of composites under FSI. The 

knowledge gained from the investigation will benefit ongoing research into 

understanding the dynamic response and failure mechanism of the composite 

structures under FSI. The insights and suggested follow-on studies can 

contribute to the development of future life prediction modeling or tools which will 

help to prevent any premature failure in the design of a vessel—particularly, a 

naval ship, where survivability is vital.  
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II. COMPOSITE FABRICATION 

A. COMPOSITE SELECTION 

Composites are materials that are formed by combining two or more 

materials of different physical and chemical properties [19]. The fiber fabric and 

resins are usually the two main materials that form an advanced fiber-reinforced 

composite material. The strength and stiffness of the composite are usually 

derived from the type of woven fiber reinforcements chosen and the number of 

layers used to fabricate the composite. Figure 6 shows the different types of 

fibers and their corresponding specific strength.  

 

Figure 6.  Specific modulus and specific strength of the various 
engineering materials and fibers (from [20]). 

1. E-glass Fiber 

There are many types of fibers that are generally used in marine 

structures, but among them all, E-glass fiber is most commonly used in 

shipbuilding for massive ship structures such as ship hulls and ship 

superstructures. Being lightweight, cost effective, and resistant to moisture 

seepage, E-glass is a more commercially viable solution for shipbuilding and 
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repair. Figure 7 shows the list raw fiber properties compared to the cost of the 

materials. Many prior experiments and research have been performed using E-

glass fiber as the test specimen. Thus, there are many available resources and 

data that can be consulted when selecting E-glass as the test specimen [21].  

 

Figure 7.  Raw fiber properties (from [21]). 

The motivation of this study is to identify the failure pattern and the 

dynamic response of the composite under fluid structure interaction applied in the 

marine industry. Since E-glass is generally used for ship construction and there 

have been prior experimental and research efforts done using E-glass fibers, E-

glass is selected for this thesis (Figure 8).  
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Figure 8.  E-glass woven fabric. 

2. Epoxy Resin 

The selection of polymer matrix resin for E-glass reinforced fiber has to 

take into account curing time and temperature, ease of handling, and physical 

properties of the resin. In this study, epoxy resins are selected due to their high 

strength, the stiffness of the material, and their compatibility with the workshop 

manufacturing process which will be elaborated in the next section. The resin 

and hardener used are M1002 Resin with Pro-Set 237 hardener, and the epoxy 

is mixed in a ratio of 100:28, according to the recommendation from the supplier. 

 

Figure 9.  Epoxy resins. 
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B. FABRICATION PROCEDURE 

There are numerous ways to fabricate composites on a small scale, and 

since the objective of the thesis is to fabricate a small quantity of composites for 

testing, the molding facility has to be cost effective and easily set up in a 

laboratory while minimizing safety hazards. The fabrication method chosen is to 

perform “wet layup” of the composite laminates, followed by Vacuum Assisted 

Resin Transfer Molding (VARTM). 

1. Wet Layup 

“Wet layup” is a basic fabrication method that consists of layering the dry 

E-glass woven fabric with the epoxy resins. The epoxy resins are spread evenly 

onto each layer of E-glass woven fabric fibers using a hand roller, and each ply 

of the fabric is evenly coated with the resins [22].  

The number of layers of the composite fabric determines the strength and 

stiffness of the composite. For the experiment, 23 layers of E-Glass woven fabric 

are used to fabricate a composite panel measuring 21 inches long by 16 inches 

wide. To form the epoxy resin, 250 ml of Pro-Set M1002 Resin is gently mixed 

with 83 ml of Pro-Set 237 hardener at room temperature. According to the 

manufacturer’s directions, the hardener will take 4.5 hours to 6 hours of open 

time before the epoxy starts to harden. It is preferred to complete the wet layup 

within 3 hours before the epoxy resin starts to thicken and cure [23].  

The laminated composite will then go through VARTM to extract the 

excess epoxy and any trapped air pockets before curing takes place. Figure 10 

shows the process of layering the composite and the laminated composites 

before VARTM. 
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Figure 10.  Wet layup procedure. 

2. Vacuum Assisted Resin Transfer Molding (VARTM) 

Fabrication of composites using VARTM is a low pressure manufacturing 

process that is cost effective; it does not require any expensive equipment to 

maintain the environment of high heat or high pressure. The VARTM uses low 

pressure to draw out excess resins and trapped air pockets from the composite 

into a bleeder cloth by vacuum. The bleeder cloth will absorb the excess resins 

from the composite laminate and provide a constant air path for the vacuum to 

minimize trapped air at the surface of the laminate [24]. 

The materials required for VARTM, shown in Figure 11, are as follows: 

 Teflon Sheet‒Placed at the bottom of the composite laminate. 

 Perforated Ply‒Placed after the composite is laminated. It is used 
to separate the bleeder cloth and the composite laminate. The 
perforated holes allow the resins to bleed out.  

 Bleeder cloth‒A layer of white cloth that absorbs excess resins and 
creates a vacuum air path to prevent trapped air at the surface of 
the laminate. 

 Plastic Film–Acts as a vacuum bag to contain or prevent air 
leakage. 

 Sealant Tape–Seals the plastic film and creates a vacuum 
environment.  
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Figure 11.  Diagram of VARTM fabrication. 

Before the VARTM process starts, the laminated composite is first layered 

with the perforator ply followed by the bleeder cloth to remove excess resin and 

air pockets on the surface of the laminate. The laminated composite is then 

covered with a plastic film and placed over the top of the sealant tape to form a 

vacuum-tight seal. Once the vacuum pump is activated, the vacuum seals the 

composite laminate and keeps it at 103.4 kPa (15 psi) for the duration of 24 

hours for the composite to cure. Figure 12 shows a composite laminate panel 

made under the VARTM process.  

 

Figure 12.  VARTM and composite panel being made. 
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3. Composite Panels 

After 24 hours of curing, the composite panel is cut into 20 pieces of test 

samples for the experiment. Each sample is cut into rectangular strips measuring 

0.23 meters (9 in) in length by 0.038 meters (1.5 in) in width for cyclic loading 

testing. The diagram in Figure 13 shows the cutout from the composite panel and 

Figure 14 shows the composite panel after 24 hours of curing.  

  

Figure 13.  Cutout dimensions of the test sample. 

 

 

Figure 14.  Composite panel after curing. 
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III. EXPERIMENT METHODOLOGY 

The objective of the experiment is to perform fatigue cyclic loading on the 

composite samples in air and in water submerged conditions. The results derived 

from the experiment will be used as the basis to analyze the effects of FSI on 

composites and how the failure pattern will be affected by varying the frequency 

of the cyclic loading. 

To determine the loading condition for the cyclic loading experiment, a 

three point bending test is first performed to identify the stress strain 

characteristic and maximum yield strength of the composite. After that, the 

experiment proceeds with fatigue cyclic test of the test samples in air and water 

submerged environments. To perform the experiment, the following equipment 

and apparatuses are used.  

A. EQUIPMENT USED 

Both the three point bending test and fatigue cyclic test use the Material 

Testing System (MTS) machine to determine the mechanical strength and fatigue 

life cycle of the composite.  

1. Material Testing System (MTS 858) 

The MTS machine is a multipurpose servo-hydraulic testing system 

designed for dynamic and static loading. It is equipped with force transducers 

and load control modules that detect and exert precise static and dynamic 

loading. The MTS machine and its specifications are summarized in Figure 15 

and Table 1 respectively.  
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Table 1.   MTS 858 specifications (after [25]). 

Description Performance 
Force Range 1 kN – 500 kN 
Range of performance Moderate 
Testing Materials Usually lower strength materials ranging from plastics, 

elastomers to aluminum 
Specimen Size Small and Sub-sized 
Frequency Range 1 Hz to 10 Hz 
 
Capability Performance 

Monotonic Test (Tension, compression, and bending), 
Fatigue Test, Fracture Testing, Component Testing, 
*High Temperature Testing, *Biomedical Testing, 
*Thermal Mechanical Fatigue Testing, *Axial Torsion 
Testing, *Planar Biaxial Testing, and *High Force 
Testing 

 
Basic Test Ware 
Software 

Controls the setup of the MTS to perform monotonic 
and cyclic loading test by defining the inputs of the 
frequency, amplitude, and force or displacement 
control. Data capturing is enabled while the experiment 
is running in real time and data can be easily exported 
to word processing software.  

 
*Capabilities can be performed only if the required add-on equipment/loading jig is 
purchased.  
 
 

 

Figure 15.  MTS machine and the software mimics. 
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2. Loading Jig 

To position the test sample onto the MTS Machine for cyclic loading test, a 

loading jig is used. It holds the specimen in place as shown in Figure 16. To 

prevent slippage during the experiment, the ends of the specimen are loosely 

secured with Velcro strips onto the loading jig. 

 

Figure 16.  Loading jig. 

3. Water Tank 

As the experiments will be performed in water submerged conditions, a 

water tank is required to hold the sample and the loading jig during the cyclic 

loading test. A water tank made of acrylic, shown in Figure 17, is used for this 

purpose.  

 

Figure 17.  Water tank. 
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B. THREE POINT BENDING TEST 

As strength of the composite depends on many variable factors such as 

the fiber stacking layers, orientation, and fabrication methods, it is important to 

perform a three point bending test to determine the stress strain characteristic of 

the composite fabricated. The three point bending test is performed for every 

batch of composite panel and the values of the maximum force and displacement 

are used to determine the loading condition for the fatigue cyclic loading test.  

1. Test Procedure 

To set up the experiment, the sample is loosely secured to the loading jig 

to prevent any slippage during the test. The loading jig is subsequently clamped 

onto the MTS Machine with the load cell aligned to the center of the composite in 

preparation for the three point bending test shown in Figure 18. 

 

Figure 18.  Three-point bending test on MTS Machine. 

2. Data Acquisition 

Using the built-in software that comes with the MTS Machine, the strain 

rate and the data acquisition of the experiment can be controlled. The Basic Test 

Ware software was programmed to record the force reading from the transducer 

at the period of 0.05 seconds per data point and to control the strain rate of the 

load cell at 2 mm/min. The software plots and displays the force displacement 
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curve of the three point bending test in real time while the experiment is still 

running.   

Data captured from software shows the force displacement curve of the 

composite during the three point bending test. The ultimate yield strength of the 

composite can be easily identified from the graph when a sharp decrease in force 

is observed. This signifies the delamination of the composite and crack 

propagation through the adhesive bond layers which cause the specimen to fail. 

The results from the three point bending test are used to determine the natural 

frequency of the composite sample and the loading condition for the subsequent 

experiment for the fatigue cyclic test.  

The fatigue cyclic loading test will be conducted in both air and water 

submerged conditions to identify the possible pattern in fatigue failure and 

investigate the influence of FSI on composites. The fatigue cyclic experiment will 

be performed in the laboratory using the MTS Machine to perform the cyclic 

loading. The experiment will also vary the frequency of the loading to investigate 

its relationship to the failure pattern. 

3. Loading Conditions 

Using the results from the three point bending test, the load ratio of the 

compressive fatigue cycle is R=3, where R is the ratio of the maximum and 

minimum displacement of the composite fixed at 75 percent and 25 percent, 

respectively. The sinusoidal frequency for the compressive cyclic fatigue test is 

varied at 10 Hz, 5 Hz and 2 Hz in air and water submerged environment. The 

Target Set Point and Amplitude are calculated based on the formula shown in 

Figure 19. The loading condition is keyed into Basic Test Ware to control the 

cyclic loading of the machine. 
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.  

Figure 19.  Frequency of load. 

4. Test Procedure for Fatigue Cyclic Loading  

The testing principles for the cyclic loading on air and on water submerged 

environment are the same. However, to create the water submerged condition for 

the composite sample, a half-filled water tank is used in the experiment.  

a. Cyclic Loading in Air 

Similar to the three point bending test, the composite sample is secured to 

the loading jig, which is mounted onto the MTS Machine. Since the specimen will 

be undergoing high frequency cyclic loading, it is important to gently secure the 

sample to prevent any possible slippage during the experiment. The input 

parameters of the loading condition include the frequency, amplitude, target set 

point, and data acquisition rate for the fatigue cyclic test shown in Figure 20. 

After the values are keyed into the Basic Test Ware, the hydraulic servo motor 

and actuating system exert a displacement controlled cyclic loading onto the 

composite sample.  

Amplitude

 

Target Set Point 

=  
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Figure 20.  Cyclic loading in air and water submerged environment. 

b. Cyclic Loading in Water Submerged Condition 

To perform the experiment, the water tank is first mounted onto the MTS 

Machine. The loading jig holding the composite specimen is then fixed to the 

bottom of the water tank for testing. To ensure consistency in the results, the 

water is constantly filled to three-quarters full during the water submerged fatigue 

test. Figure 21 shows the setup of the experiment with the composite sample 

submerged in water.  
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Figure 21.  Setup for cyclic loading in water submerged condition. 

5. Data Analysis 

The output of the data files from the Basic Test Ware shows the transient 

response of the sample with force and displacement as a function of time. With a 

data acquisition rate of 0.025 seconds/data, we are able to observe the periodic 

response of the composite sample under constant displacement-controlled cyclic 

loading. The cyclic loading on the sample is tested to failure. Depending on the 

duration of the experiment, the data files populated by the software will be large 

and a MATLAB program has to be written to filter out the unnecessary data 

points collected.  
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IV. ANALYSIS OF RESULTS 

In this research, a total of five sets of test samples were chosen for this 

analysis. To ensure that all composites have the same baseline for the 

comparison study, the materials, manufacturing process, and dimensions of the 

samples were all kept constant. Twenty samples were cut from each batch of 

composites fabricated to perform the three point bending test and fatigue cyclic 

loading test. The initial experiment was to perform a cyclic loading test of 10 Hz 

but the scope of study has progressively expanded to perform cyclic loading for 5 

Hz and 2 Hz for both air and water submerged conditions.  

A. THREE POINT BENDING TEST RESULTS 

This section analyzes the results of the three point bending test, which 

was performed to determine the mechanical properties of the composite 

fabricated, as well as to determine the loading conditions for the subsequent 

fatigue cyclic loading experiment. In addition, this section examines the 

importance of determining the natural frequency of the composite sample to 

ensure that it does not coincide with the loading condition of the fatigue cyclic 

loading experiment. 

1. Mechanical Properties of Composite 

The three point bending test was performed to determine the mechanical 

properties of the composite fabricated. Although all the composites are fabricated 

using the same baseline, the maximum force and displacement of the 

composites still varies. Table 2 shows the mechanical properties of all the 

composites fabricated. 
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Table 2.   Mechanical properties of composites fabricated. 

*Batch 2 3 4 5 6 

Thickness (mm)     5 

Max Strength (N) 1777 1431 1573 1536 1548 

Max Displacement (mm) 13.4 15.9 12.7 14.0 12.4 

Stiffness (kN/m) 142.8 97.8 135.8 122.9 138.1 

*Batch 1 of the composite fabricated was not included in the experiment data due to the 
difference in loading condition from the rest of the specimens. 

 

The Figure 22 shows the force displacement curve of the composite 

samples under the three point bending test. All the composites exhibit an initial 

nonlinear and inelastic deformation trend and end with a catastrophic abrupt 

failure. The disparity of the failure strength among the composite samples can be 

due to the duration and initial learning curve of fabricating composites during the 

wet layup process.  
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Figure 22.  Graph of force displacement curve of all the composite 
samples. 

The objective of performing the three point bending test is to determine 

the loading conditions for the subsequent fatigue cyclic loading experiment. 

Since the mechanical strength of the sample varies slightly among the batch of 

composites fabricated, the loading conditions were fixed at 75 percent and 25 

percent of the maximum displacement of each set of composite samples. Table 3 

shows the loading conditions of the fatigue cyclic loading test. The loading 

conditions are applied to the rest of the specimens cut out from each set of 

composites fabricated.  
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Table 3.   Loading conditions for fatigue cyclic loading. 

Set 
Max Disp 

(mm) 
Upper Cyclic 

Disp (mm) 
Lower Cyclic 

Disp (mm) 
Mean Cyclic  
Disp (mm) 

2 13.4 10 3.35 6.68 

3 15.9 12 4 8.00 

4 12.7 9.6 3.2 6.40 

5 14.0 10.5 3.5 7.00 

6 12.4 9.3 3.1 6.20 

 

2. Natural Frequency of Sample 

To avoid resonance during the fatigue cyclic loading test, it is important to 

determine the natural frequency of the composite sample to ensure that it does 

not coincide with the loading condition of the experiment.  

According to the Euler’s equations, the natural frequencies of vibration for 

beam structure, n  can be computed using Equation (4.1), where l  is the 

effective length, E  is the elastic modulus, I  is the second moment of area,   is 

the mass per unit length of the specimen, and n  is the eigenvalue constant 

which depends on the boundary conditions of the problem. The value of  2

n   

for fundamental vibration mode is 9.87 from Table 4, listing the typical end 

conditions of  2

n  .  

 

2( )
n n

EI 


                                     (4.1) 
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Table 4.   Numerical values of  2

n  for typical conditions (from 

[26]). 

Beam Configuration  2

n  Fundamental  2

n  Second Mode  2

n  Third Mode 

Simply supported 9.87 39.5 88.9 

Cantilever 3.52 22.0 61.7 

Free-free 22.4 61.7 121.0 

Clamped-clamped 22.4 61.7 121.0 

Clamped-hinged 15.4 50.0 104.0 

Hinged-free 0 15.4 50.0 

 

 

To determine the elastic modulus and second moment of area, EI , of the 

specimen, the values can be computed from the force displacement curve 

generated from the results acquired from the three point bending test. According 

to the Euler–Bernoulli beam theory, the equation of deflection, δ, for a simply 

supported beam with point load at the middle and the equation of Beam 

Stiffness, k , is as shown in Equation (4.2) and Equation (4.3), respectively. The 

equation for EI can be derived in Equation (4.4) [26].  

 

3

48

F

EI
 


                                                             (4.2) 

 

F
k


                                                                 (4.3)                       

 

 
3
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                                                             (4.4) 
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Following the three point bending test, the physical parameters and the 

stiffness of the specimen were determined and are listed in Table 5. The natural 

frequency of each sample is calculated using Equation 4.1 and 4.5 are 

summarized in Table 6.  

Table 5.   Physical parameters of specimen. 

Parameters 

Length (m) 0.23 

Width (m) 0.039 

Thickness (m) 0.005 

Effective Length (m) 0.14 

Mass per unit length, ߩ 
(kg/m) 

0.3139 

Table 6.   Natural frequency of all the composite samples. 

Batch k  (N/m) EI ࣓࢔ (rad/s) ࣓࢔ (Hz) 

2 142800 8.1634 2567.98 408.65 

3 97800 5.5909 2125.19 338.19 

4 135800 7.7632 2504.25 398.51 

5 122900 7.0258 2382.34 379.11 

6 138100 7.8947 2525.37 401.87 
 

 

The result in Table 6 tabulates the natural frequency of a simply supported 

composite beam structure in air. For the water submerged condition, literature 

reviews and numerical analysis suggest that the natural frequency of structure is 

reduced by approximately half when compared to air conditions [8].  

Bearing in mind that the fatigue cyclic loading will be performed in both air 

and water submerged conditions, the natural frequency of the composite sample 

for both conditions is significantly higher than 10 Hz. As such, it is unlikely that 

resonance of vibration interfered with the results of the experiment.  
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B. FATIGUE CYCLIC LOADING 

This section analyzes the results of the fatigue cyclic loading, which was 

performed to determine the life cycle of the composite sample in air and water 

submerged conditions under varied frequency cyclic loading of 10 Hz, 5 Hz and 2 

Hz. This section will begin with the process of analyzing the data according to the 

data filtering algorithm shown in Figure 23 follow by the results of analyze for 

fatigue cyclic loading for 10 Hz, 5 Hz, and 2 Hz.  

 

Figure 23.  Data filtering algorithm. 

1. Data Representation 

With the data acquisition rate of 0.025 sec/data point captured by the MTS 

built-in software, a massive pool of data is collected for each composite sample 

tested. The data collected can be analyzed by plotting the maximum force and 

minimum force with respect to the fatigue cycle of the sample. Figure 24 shows 
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the plot of the first ten cycles of the composite sample, and the maximum and 

minimum force is selected in each data interval.  

 

Figure 24.  Data acquisition of the maximum and minimum force. 

Due to the massive amount of data collected for each experiment, a 

MATLAB program is written to filter the data by varying the data interval cycles 

as shown in the Appendix. A pictorial representation of the fatigue life cycle curve 

with and without data filtering is shown in Figure 25.  

     

(a) (b) 

Figure 25.  Fatigue cycle load with (a) no filtering (b) with filtering of 40 
cycles per data interval.  



 35

The stress-time relationship of the fatigue cyclic curve illustrates a 

fluctuating stress pattern where the minimum stress and mean stress do not pass 

through zero. Under fluctuating cyclic loading, it is evident that other than the 

maximum and minimum stress, the mean stress and mean amplitude are also 

important parameters that are often used to compare the fatigue strength of 

materials. In the modified Goodman diagram, the maximum and minimum stress 

is plotted against the mean stress to define the criterion of fatigue failure of 

materials [27].   

To further analyze the data, the mean of the maximum force and minimum 

force are calculated and denoted as Qmax and Qmin respectively. The mean and 

amplitude of the mean maximum force and mean minimum force are known as 

Qm and QA, shown in Figure 26. The ratio of Qmax and Qmin is also computed and 

denoted as the R-ratio. The mean Qm is used as the baseline parameter to 

compare the samples between the air and the water submerged conditions.  

 

Figure 26.  Terminology of data representation. 

Multiple samples have been performed for each loading condition to 

ensure repeatability of the testing data. For the initial discussion, the test 

specimen for the fifth set of composite samples is discussed. To compare the 

cyclic loading between air and water submerged conditions, a representative 

sample of each loading condition is chosen for the comparison study. 
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2. Fatigue Cyclic Loading at 10 Hz  

This section analyzes the results of the composite under fatigue cyclic 

loading of 10 Hz in air and water submerged conditions. The fatigue failure 

pattern of the 10 Hz cyclic loading in air and in water submerged loading will be 

discussed follow by a comparison study between the two medium (air and water). 

To ensure a baseline comparison between the failure pattern of cyclic loading in 

air and water, a representative sample with the same average mean force, Qm, is 

chosen for the comparison study.   

a. Air Loading 

The fatigue life cycle of the 10 Hz air loading is summarized in Table 7. 

The values of the Qm and Qa are consistent for all the samples and only a slight 

variation in the fatigue life cycle was observed. The observation could be due to 

the scattering of data collected and the nature of the experiment.  

Table 7.   Summary of 10 Hz air loading for Batch 5. 

Sample Weight 

(g) 

Fatigue 

Cycle 

R-ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

5.8 72.1 9500 4.10 0.69 0.421 1.11 0.27 

5.9 72.3 14000 4.07 0.69 0.416 1.10 0.27 

5.13 72.7 11000 4.03 0.68 0.415 1.09 0.26 
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Figure 27.  Max. force of 10 Hz air cyclic load for Samples 5.8, 5.9, and 
5.13. 

 

Figure 28.  Min. force of 10 Hz air cyclic load for Samples 5.8, 5.9, and 
5.13. 

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Max Force of 10Hz Air Cyclic Load

Cycles

F
or

ce
/k

N

 

 

Sample 5.8

Sample 5.9
Sample 5.13

0 5000 10000 15000
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Min Force of 10Hz Air Cyclic Load

Cycles

F
or

ce
/k

N

 

 

Sample 5.8

Sample 5.9
Sample 5.13



 38

The fatigue failure pattern of the composite shows a consistent trend for 

all the samples under constant cyclic loading of 10 Hz in air. The fatigue strength 

of the sample decreases rapidly at the initial loading cycles with signs of initial 

delamination observed in Figure 34. After the initial rapid decrease in strength, 

the composite exhibits progressive fatigue damage and fails abruptly at 0.9 kN. 

b. Water Submerged Loading 

The fatigue life cycle of the sample submerged in water exhibits a slight 

inconsistency in the mean force and amplitude of the fatigue strength of the 

composite samples. The slight difference in strength of the samples can be due 

to the difference in weight, dimensions, and stiffness of the individual samples 

tested.  

Table 8.   Summary of 10 Hz water loading for Batch 5. 

Sample Weight 

(g) 

Fatigue 

Cycle 

R-ratio Qm 

 (kN) 

Qa 

 (kN) 

Qmax 

(kN) 

Qmin 

(kN) 

5.3 72.6 6200 4.37 0.67 0.41 1.08 0.26 

5.6 74.5 6900 4.00 0.76 0.46 1.21 0.30 

5.7 74.2 5100 3.98 0.78 0.47 1.24 0.31 
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Figure 29.  Max. force of 10 Hz water cyclic load for Samples 5.3, 5.6, 
and 5.7. 

 

Figure 30.  Min. force of 10 Hz water cyclic load for Samples 5.3, 5.6, and 
5.7. 
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The fatigue failure pattern of all the composites under cyclic load in water 

follows a similar trend displayed in Figure 29 and Figure 30. The fatigue strength 

of the composite fails rapidly at the initial loading cycles. Thereafter, a 

progressive and gradual decrease in fatigue strength is observed. The failure 

force of the composite varies among the composite samples. This could be due 

to the differences in the average mean force, Qm, of the composite. As composite 

Sample 5.6 and Sample 5.7 have the same Qm, the point of failure for the two 

samples is approximately 1.1 kN while sample 5.3 fails at 0.8 kN. 

c. Comparing Air and Submerged Loading for 10 Hz 

To do a comparison study between the air and water submerged loading, 

a representative sample from each loading condition is chosen with the same 

average mean force, Qm. Sample 5.13 and Sample 5.3 were chosen 

representing the air and water submerged loading, respectively (Figure 31).  

Table 9 shows the comparison data between the air and water submerged 

loading for 10 Hz. With the same Qm as the base line, the fatigue life cycle for air 

loading is significantly higher than the life cycle for the loading under water 

submerged condition. The air-to-water ratio is approximately 1.77. The fatigue 

failure for both air and water submerged conditions follows the same tread, as 

shown in Figure 32 and Figure 33. 

Table 9.   Comparing air and water submerged loading for 10 Hz. 

Condition Sample Weight 

(g) 

Fatigue 

Cycle 

R ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

Air 5.13 72.7 11000 4.03 0.68 0.415 1.09 0.26 

Water 5.3 72.6 6200 4.10 0.67 0.410 1.08 0.26 
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Figure 31.  Max. force against fatigue life cycle for 10 Hz loading in air 
and water submerged conditions. 

 

Figure 32.  Min. force against fatigue life cycle for 10 Hz loading in air and 
water submerged conditions. 
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Figure 33.  Max. and Min. displacement against fatigue life cycle for 10 Hz 
loading in air and water submerged conditions. 

There is a rapid decrease in fatigue strength for both samples at the first 

500 life cycles, and delamination at the initial loading cycles was observed, as 

shown in Figure 34. The microcrack on the surface of the impact is described to 

distribute the stress concentration and prolong the initial life cycle of the 

composite [16]. The rapid decrease in fatigue strength at the initial loading can 

be attributed to the damage of the fiber matrix at high load. However, since the 

reinforcing fiber matrix is not damaged, the initial delamination does not affect the 

bulk strength of the composite sample.  

After the first 500 life cycles, both samples exhibit a progressive and 

gradual failure rate. However, the gradient of fatigue failure for the water 
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It was observed that both samples failed at 0.9 kN. This shows that the 

mechanical properties of the composite are unlikely to be affected by moisture 

which weakens the structure. The displacement curve in Figure 33 shows that 

the same displacement loading has been applied to both samples throughout the 

experiment.   

    
                            (a)                                                         (b) 

Figure 34.  Signs of delamination of sample after initial loading in (a) air 
load (b) submerged water loading. 

3. Fatigue Cyclic Loading at 5 Hz 

This section analyzes the results of the composite under fatigue cyclic 

loading of 5 Hz in air and water submerged conditions. The fatigue failure pattern 

of the 5 Hz cyclic loading in air and in water submerged loading will be discussed 

follow by a comparison study between the two medium (air and water). To 

ensure a baseline comparison between the failure pattern of cyclic loading in air 

and water, a representative sample with the same average mean force, Qm, is 

chosen for the comparison study.   

a. Air Loading 

The fatigue life cycle of the 5Hz air loading is summarized in Table 10. 

The values of the Qm and Qa are consistent for all the samples and only a slight 

variation in the fatigue life cycle was observed.  
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The fatigue failure of the 5 Hz cyclic load in air shows a similar trend for all 

the composite samples in Figure 35 and Figure 36. An initial rapid decrease in 

fatigue strength was observed for the first 500 cycles, followed by a progressive 

and gradual decrease in fatigue strength. The samples fractured and failed at the 

range of 1.0 to 1.15 kN.  

Table 10.   Summary of 5 Hz air loading for Batch 5. 

Sample Weight 

(g) 

Fatigue 

Cycle 

R-ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

5.10 71.7 6000 3.73 0.75 0.43 1.18 0.32 

5.11 72.9 8900 3.94 0.73 0.43 1.16 0.30 

5.14 72.3 5800 3.53 0.76 0.43 1.19 0.34 

 

 

Figure 35.  Max. force of 5 Hz air cyclic load for Samples 5.10, 5.11, and 
5.14. 
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Figure 36.  Min. force of 5 Hz air cyclic load for Samples 5.10, 5.11, and 
5.14. 

b. Water Submerged Loading 

The fatigue life cycle of the 5 Hz water loading is summarized in Table 11. 

The values of the fatigue life cycle, Qm and Qa, are consistent for Samples 5.4 

and 5.5, but Sample 5.16 shows a slight variation in the strength of the 

composite. This could be due to the difference in the physical dimensions of the 

sample as the weight of Sample 5.16 is significantly larger than Samples 5.4 and 

5.5.  

The fatigue deformation of all the composites follows a similar trend with 

an initial rapid fatigue failure at the first 500 cycles, followed by a progressive 

decrease in fatigue strength. The samples fractured at the range of 1.0 to 1.2 kN.  
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Table 11.   Summary of 5 Hz water loading for Batch 5. 

Sample Weight 

(g) 

Fatigue 

Cycle 

R-ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

5.4 73.4 3500 3.85 0.75 0.44 1.19 0.31 

5.5 73.5 3400 3.86 0.76 0.45 1.21 0.31 

5.16 77.3 3700 4.26 0.71 0.44 1.15 0.27 

 
 
 

 

Figure 37.  Max. force of 5 Hz water cyclic load for Samples 5.4, 5.5, and 
5.16. 
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Figure 38.  Min. force of 5 Hz water cyclic load for samples 5.4, 5.5, and 
5.16. 

c. Comparing Air and Submerged Loading for 5Hz 

To ensure that there is a baseline comparison for the air and water 

submerged condition, a representative sample of the same average mean force, 

Qm, is selected for comparison. Sample 5.10 and Sample 5.4 reflect the fatigue 

cyclic load for air and submerged conditions, respectively, as shown in Table 12.  

Table 12.   Comparing air and submerged loading for 5 Hz. 

Condition Sample Weight 

(g) 

Fatigue 

Cycle 

R-ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

Air 5.10 72.9 6000 3.73 0.75 0.415 1.18 0.32 

Water 5.4 73.4 3500 3.85 0.75 0.410 1.19 0.31 
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Both samples displayed a similar fatigue failure pattern with a rapid 

decrease in fatigue strength at the initial 500 cycles, displayed in Figure 39 and 

Figure 40. After 500 cycles, a progressive damage fatigue failure is observed. 

The gradient of fatigue damage is significantly steeper for the sample in the 

water submerged condition when compared to the air loading. FSI can be 

observed with the difference in fatigue failure rate between the two loading 

conditions. A higher fatigue failure rate at the progressive damage region was 

observed. This could be due to the “added mass” effect which increases the 

impact force exerted on the composite sample. The fatigue life cycle ratio 

between air and submerged water loading is 1.71. 

The fatigue failure for both samples occurred at approximately 1.05 kN. 

This shows that the mechanical strength of both samples exhibits the same 

characteristics and the fatigue strength of Sample 5.4 under water submerged 

conditions was not affected by moisture absorption during the experiment. Figure 

41 shows that the displacement loading was constant for both samples.  

 

Figure 39.  Max. force against fatigue life cycle for 5 Hz loading in air and 
water submerged conditions. 
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Figure 40.  Min. force against fatigue life cycle for 5 Hz loading in air and 
water submerged conditions. 

 

Figure 41.  Max. and Min. displacement against fatigue life cycle for 5Hz 
loading in air and water submerged conditions. 
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4. Fatigue Cyclic Loading of 2Hz 

This section analyzes the results of the composite under fatigue cyclic 

loading of 2 Hz in air and water submerged conditions. The fatigue failure pattern 

of the 2 Hz cyclic loading in air and in water submerged loading will be discussed 

follow by a comparison study between the two medium (air and water). To 

ensure a baseline comparison between the failure pattern of cyclic loading in air 

and water, a representative sample with the same average mean force, Qm, 

chosen for the comparison study.   

a. Air Loading 

The fatigue life cycle of the 2 Hz air loading is summarized in Table 13. 

Due to the limitation of the number of samples, only two samples were chosen 

for the experiment. Comparing the two samples, a large variation was observed 

with significant difference in the life cycle, Qm and Qa, of the experiment. Sample 

5.12 is suspected to have slipped during the experiment due to the low fatigue 

force at the onset of the experiment. The fatigue failure of 2 Hz air loading follows 

a similar trend as the rest of the samples with an initial rapid decrease in fatigue 

strength and followed by a progressively damaged region shown in Figure 42 

and Figure 43. 

Table 13.   Summary of fatigue cycle under 2 Hz air loading. 

Sample Weight 

(g) 

Fatigue 

Cycle 

R-ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

5.12 73.4 36000 4.20 0.54 0,36 0.9 0.19 

5.20 73.4 12500 3.98 0.78 0.47 1.25 0.31 
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Figure 42.  Max. force of 2 Hz in air cyclic loading for sample 5.12 and 
5.20.  

 

Figure 43.  Min. force of 2 Hz air cyclic loading for sample 5.12 and 5.20. 
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b. Water Submerged Loading 

The fatigue life cycle of 2 Hz water loading is summarized in Table 14. 

Due to the limitation of the number of samples available, only two samples were 

allocated for the experiment. The samples show only a slight variation in the 

average mean force, Qm, and fatigue life cycle of the two composite samples. 

Table 14.   Summary of fatigue cycle under 2 Hz water loading. 

Sample Weight 

(g) 

Fatigue 

Cycle 

R-ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

5.17 73.4 12000 3.85 0.67 0.507 1.18 0.17 

5.18 73.5 13000 3.86 0.60 0.502 1.11 0.10 

 

 

Figure 44.  Max. force of 2 Hz water cyclic loading for sample 5.17 and 
5.18. 
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Figure 45.  Min. force of 2 Hz water cyclic loading for sample 5.17 and 
5.18.  

c. Comparing Air and Water Submerged Loading for 2 Hz 

To ensure that there is a baseline comparison for the air and water 

submerged conditions, a representative sample of the same average mean force, 

Qm, should be selected. However, due to the limitation of the samples tested for 

the 2 Hz cyclic loading test, two samples of the same Qm cannot be found. As 

such, the comparison study was done choosing samples with the closest mean 

force, Qm. Sample 5.20 and Sample 5.17 were chosen and they depict the 

fatigue cyclic loading for air and water submerged conditions, respectively.  

Table 15.   Comparing air and water submerged loading for 2 Hz. 

Condition Sample Weight 

(g) 

Fatigue 

Cycle 

R ratio Qm 

(kN) 

Qa  

(kN) 

Qmax 

(kN) 

Qmin 

(kN) 

Air 5.20 73.4 12500 3.98 0.78 0.469 1.25 0.315 

Water 5.17 73.4 12000 7.12 0.67 0.507 1.18 0.166 
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Both samples display similar fatigue failure patterns with a rapid decrease 

in fatigue strength at the initial 500 cycles as shown in Figure 46 and Figure 47. 

After 500 cycles, a progressive damage fatigue failure is observed. The gradient 

of fatigue damage for the force is only slightly steeper for the sample with the 

water submerged condition when compared to the air loading. Although FSI can 

be observed with the difference in fatigue failure rates between the two 

conditions, the degree of difference is not significant. The fatigue life cycle ratio 

between air and submerged water loading is 1.04. 

The failure force for both samples is different because the average mean 

force, Qm, for both samples is not the same. Figure 48 shows that the 

displacement loading for both samples have the same throughout the 

experiment.  

 

Figure 46.  Max. force against fatigue life cycle for 2 Hz loading in air and 
water submerged conditions. 
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Figure 47.  Min. force against fatigue life cycle for 2 Hz loading in air and 
water submerged conditions. 

 

Figure 48.  Max. and Min. Displacement against fatigue life cycle for 2 Hz 
loading in air and water submerged conditions. 
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5. Comparing Fatigue Cyclic Failure for 10 Hz, 5 Hz, and 2 Hz 

Table 16 summaries the comparison data for Batch 5 composites with the 

fatigue cyclic loading of 10 Hz, 5 Hz and 2 Hz in air and water submerged 

conditions. The effect of FSI can be observed from the air-to-water ratio of the 

fatigue life cycle. From the table, the fatigue life cycle of the air-to-water ratio is 

significantly higher in high frequency loading of 10 Hz to 5 Hz when compared to 

the low frequency loading of 2 Hz.  

To ensure consistency in the data collected, a similar comparison study 

was done for the rest of the composite batches fabricated and the results are 

shown in Table 17, Table 18, Table 19, and Table 20. The data tabulated in 

Table 21 summarizes all the air-to-water ratios of the fatigue life cycle of the 

composites fabricated for the comparison study. The results from the other 

composite batches affirm the observation that the FSI effect is more prominent in 

high frequency loading of 10 Hz and 5 Hz while the low frequency loading of 2 Hz 

has a less significant effect.  

The observation of FSI being less significant in low frequency loading is 

due to the decrease in “added mass” effect. Under low frequency loading, the 

inertial force impacting the composite structure is reduced due to the decrease in 

loading speed on the composite. The decrease in inertial force impacting the 

composite structure reduces the FSI effect.   
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Table 16.   Comparing fatigue cyclic failure for 10 Hz, 5H z, and 2 
Hz of Batch 5 samples. 

Composite Fabricated: Batch 5 

Stiffness: 122.9 kN/m 

Loading Condition : 10.5mm (Max Disp)  and 3.5mm (Min Disp) 

Frequency 2Hz 5Hz 10Hz 

Air Water Air Water Air Water 

Sample 5.20 5.17 5.10 5.4 5.13 5.3 

Qm  0.78 0.67 0.75 0.75 0.68 0.67 

Qa  0.47 0.51 0.43 0.44 0.42 0.41 

Life cycle 12000 12500 6000 3500 11000 6200 

Air-to-Water 
Ratio 

1.04 1.71 1.77 

 
  



 58

Table 17.   Comparing fatigue cyclic failure for 10 Hz, 5 Hz, and 2 
Hz of Batch 6 samples. 

Composite Fabricated: Batch 6 

Stiffness: 138 kN/m 

Loading Condition : 9.3 mm (Max Disp)  and 3.1 mm (Min Disp) 

Frequency 2Hz 5Hz 10Hz 

Air Water Air Water Air Water 

Sample 6.5 6.8 6.4 6.13 6.3 6.14 

Qm  0.64 0.51 0.64 0.59 0.65 0.67 

Qa  0.39 0.37 0.39 0.35 0.40 0.42 

Life cycle 30000 27000 29000 21000 31000 24000 

Air-to-Water 
Ratio 

1.11 1.38 1.29 

 

Table 18.   Comparing fatigue cyclic failure for 10 Hz,and  5 Hz of 
Batch 4 samples. 

Composite Fabricated: Batch 4 

Stiffness: 135.8 kN/m 

Loading Condition : 9.6 mm (Max Disp) and 3.2mm (Min Disp) 

Frequency 5Hz 10Hz 

Parameter Air Water Air Water 

Sample 4.13 4.18 4.14 4.8 

Qm  0.72 0.72 0.70 0.71 

Qa  0.44 0.43 0.43 0.42 

Life cycle 11500 8000 25000 18000 

Air-to-Water Ratio 1.44 1.39 
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Table 19.   Comparing fatigue cyclic failure for 10 Hz of Batch 3 
samples. 

Composite Fabricated: Batch 3 

Stiffness: 97.8 kN/m 

Loading Condition : 12 mm (Max Disp) and 4 mm (Min Disp) 

Frequency 10Hz 

Parameter Sample Qm Qa Life cycle Air to Water Ratio 

Air 3.7 0.748 0.436 3000 1.2 

Water 3.5 0.744 0.4 1800 

 

Table 20.   Comparing fatigue cyclic failure for 10 Hz of Batch 2 
samples. 

Composite Fabricated: Batch 2 

Stiffness: 142.8 kN/m 

Loading Condition : 10 mm (Max Disp) and 3.35 mm (Min Disp) 

Frequency 10Hz 

Parameter Sample Qm Qa Life cycle Air to Water Ratio 

Air 2.8 0.617 0.44 27000 1.5 

Water 2.5 0.54 0.42 18000 
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Table 21.   Summary of the air-to-water ratio of all the 
composites fabricated.  

Batch  Stiffness 

(kN/m) 

Fatigue Cycle of Air-to-Water Ratio 

10Hz 5Hz 2Hz 

2 142.8 1.50   

3 97.8 1.20   

4 125.8 1.39 1.48  

5 122.9 1.77 1.7 1.04 

6 138.1 1.29 1.38 1.11 
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V. CONCLUSION 

The objective of the study was to investigate the effects of FSI on 

composites under cyclic loading. Cyclic loading of 10 Hz, 5 Hz, and 2 Hz were 

performed to determine the effect of FSI with the varied loading conditions. The 

results of the experiment show that FSI, due to “added mass” effect, significantly 

affects the composite structure under cyclic loading and the degree of influence 

is relatively higher in high frequency loading.  

According to the experiment data tabulated in Table 21, the degree of FSI 

on composites varies, but not proportionally, to the stiffness of the composite. On 

average, the effect of “added mass” due to high frequency loading of 10 Hz and 5 

Hz results in a decrease in the fatigue life cycle of the composite samples by 43 

percent and 52 percent, respectively. The decrease in fatigue life cycle of the 

composite samples for the 2 Hz cyclic loading is approximately 7.5 percent. The 

results show that the effect of FSI due to low frequency loading of 2 Hz is 

relatively less prominent. The reason for the observation can be due to the 

decrease in cyclic velocity on the composite sample which reduces the “added 

mass” effect.  

The results of the study affirm the importance of FSI and how it affects the 

mechanical properties and fatigue strength of composites. Due to the “added 

mass” effect, composite structures tend to fail earlier in fluid submerged 

conditions. As such, the FSI effect has to be addressed in ship hull design and 

construction. Ongoing research is being done to develop future life prediction and 

modeling tools for submerged structures in fluid. The results from this study 

provide valuable insights into the fatigue behaviors and failure pattern of 

composites under vibratory and cyclic loading in a fluid submerged environment.  
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To refine and improve on this experimental study, the mean displacement 

between the maximum displacement and the minimum displacement for the 

cyclic loading condition should be identified as the baseline loading condition for 

the entire batch of composites tested. This will reduce the variation of data and 

contribute to a better comparison study. In addition, the loading jig that holds the 

sample during the experiment should be modified to lightly secure the sides of 

the sample to prevent the movement of samples during the cycle load.    

Future studies can be performed to investigate the degree of FSI for 5 Hz 

loading. The results from Table 21 show that, on average, the effect of FSI for 5 

Hz loading is comparatively higher than for 10 Hz cyclic loading. More 

experimental research can be performed on varied frequencies of 4Hz to 7Hz to 

identify any possible trends during the cyclic loading.  
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APPENDIX 

% - Build array of time components.  
% Extract Data for 10Hz, 5Hz or2Hz 
  
clear all; 
  
load sample_4_2.mat 
Data = cell2mat(sample_4_2); 
Data = Data(2:end, :); 
data_interval=200; 
Ind = Data(:,1); 
Time = Data(:,2); 
Force = Data(:,3); 
Disp = Data(:,4); 
num_Sets = ((length(Ind))/data_interval); 
hz=5; 
period=1/hz; 
%num_Sets = length(Ind); 
  
% Find maximum in each set 
Max_Force = []; 
Min_Force = []; 
Max_Disp = []; 
Min_Disp = []; 
CMax_F_Time = []; 
CMin_F_Time = []; 
CMax_D_Time = []; 
CMin_D_Time = []; 
  
  
for i = 1:num_Sets 
     
    %Find Max Force 
    CurrSet_Force = Force((i-1)*data_interval+1 : i*data_interval); 
    Max_Force = [Max_Force ; max(CurrSet_Force)]; 
    Max_Ind_F = find(CurrSet_Force == Max_Force(i)) + ((i-
1)*data_interval);   
    if length(Max_Ind_F) > 1 
        Max_Ind_F = Max_Ind_F(end); 
    end 
    CMax_F_Time = [CMax_F_Time ; Time(Max_Ind_F)]; 
  
    %Find Min Force 
    Min_Force = [Min_Force ; min(CurrSet_Force)]; 
    Min_Ind_F = find(CurrSet_Force == Min_Force(i)) + ((i-
1)*data_interval);   
    if length(Min_Ind_F) > 1 
        Min_Ind_F = Min_Ind_F(end); 
    end 
    CMin_F_Time = [CMin_F_Time ; Time(Min_Ind_F)]; 
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    % Find Max Displacement 
    CurrSet_Disp = Disp((i-1)*data_interval+1 : i*data_interval); 
    Max_Disp = [Max_Disp ; max(CurrSet_Disp)]; 
    Max_Ind_D = find(CurrSet_Disp == Max_Disp(i)) + ((i-
1)*data_interval);   
    if length(Max_Ind_D) > 1 
        Max_Ind_D = Max_Ind_D(end); 
    end 
    CMax_D_Time = [CMax_D_Time ; Time(Max_Ind_D)]; 
     
    % Find Min Displacement 
    Min_Disp = [Min_Disp ; min(CurrSet_Disp)]; 
    Min_Ind_D = find(CurrSet_Disp == Min_Disp(i)) + ((i-
1)*data_interval);   
    if length(Min_Ind_D) > 1 
        Min_Ind_D = Min_Ind_D(end); 
    end 
    CMin_D_Time = [CMin_D_Time ; Time(Min_Ind_D)]; 
end 
  
Output_Data = [CMax_F_Time, Max_Force,CMin_F_Time, Min_Force, 
CMax_D_Time, Max_Disp,CMin_D_Time, Min_Disp]; 
  
Time_i=Time(1:data_interval:end); 
  
E=i-1; 
  
Max_Force_1=interp1(CMax_F_Time, Max_Force,Time_i); 
Min_Force_1=interp1(CMin_F_Time,Min_Force,Time_i); 
R=(Max_Force_1)./(Min_Force_1); 
  
m_Min_Force=mean((Min_Force_1(2:E))) 
m_Max_Force=mean(Max_Force_1(2:E)) 
 
figure(), hold on; 
plot((CMax_F_Time)/period, Max_Force,’b-’, (CMin_F_Time)/period, 
Min_Force,’g-’,’LineWidth’,2); 
title(‘Force against Time’) 
xlabel(‘Cycles’) 
ylabel(‘Force/kN’) 
legend(‘Max Force’, ‘in Force’); 
hold off; 
  
figure(), hold on; 
plot((CMax_D_Time)/period, Max_Disp,’b-’, (CMin_D_Time)/period, 
Min_Disp,’g-’,’LineWidth’,2); 
title(‘Displacement against Time’) 
xlabel(‘Cycles’) 
ylabel(‘Disp/inch’) 
legend(‘Max Displacement’, ‘in Displacement’); 
hold off; 
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