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ABSTRACT 

A tactical wireless sensor network (WSN) is a distributed network that facilitates wireless 

information gathering within a region of interest.  For this reason, WSNs are finding 

increased use by the Department of Defense.  A challenge in the deployment of WSNs is 

the limited battery power of each sensor node. This has a significant impact on the 

service life of the network.  In order to improve the lifespan of the network, load 

balancing techniques using efficient routing mechanisms must be employed such that 

traffic is distributed between sensor nodes and gateway(s).  In this thesis, we study load 

balancing from a cross-layer point of view, specifically considering energy efficiency. 

We investigate the impact of deploying single and multiple gateways on the following 

established energy aware load balancing routing techniques: direct routing, minimum 

transmission energy, low energy adaptive cluster head routing, and zone clustering. 

Based on the node die out statistics observed with these protocols, we develop a novel, 

energy efficient zone clustering algorithm called EZone.  Via extensive simulations using 

MATLAB, we analyze the effectiveness of these algorithms on network performance for 

single and multiple gateway scenarios and show that the EZone algorithm maximizes 

network lifetime and service area coverage. 
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EXECUTIVE SUMMARY 

A wireless sensor network (WSN) is a group of sensor nodes that are 

geographically distributed to provide data gathering and monitoring of tasks and events. 

Wireless sensor networks are increasing in popularity throughout society. This is a result 

of the fact that the integrated chip (IC) technology boom during the past 20+ years has 

miniaturized IC hardware while increasing computational capability. These WSNs can be 

used in a variety of applications such as atmospheric monitoring, human detection, video 

surveillance, or virtually any task that involves sensing and communicating information. 

As a result of their ubiquitous inclusion in society, WSNs are finding increased 

applicability to the Department of Defense (DoD) in areas specific to surveillance and 

reconnaissance. A WSN can be used to remotely monitor a battlespace making the 

presence of a warfighter unnecessary thereby increasing the safety of our forces. A WSN 

can be used to remotely monitor deployed systems and trigger alerts at a command-and-

control site when certain events occur. 

Since WSNs obtain and communicate information individually, sensor nodes are 

inherently more complex. Each node must have the ability to simultaneously serve as a 

sensing device and a wireless communication device that can exchange information with 

nearby nodes. It is critical that information from every node is communicated to a desired 

destination outside the network.  A typical WSN and its associated supporting 

infrastructure are shown in Figure 1. Individual sensor nodes capture information using 

the battery energy they are deployed with.  Nodes then utilize their peers (if necessary) to 

pass this information wirelessly to the gateway and then through supporting infrastructure 

to a command-and-control site for further processing.  In the case of Figure 1, data is 

passed using a minimum transmission energy (MTE) routing algorithm that uses 

neighboring nodes to establish a path that cumulatively reduces the energy consumption 

of the nodes. 

The focus of this thesis is the deployment of tactical WSNs.  Tactical WSNs are 

remotely deployed in potentially hostile areas with gateway nodes located on the outskirts 
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of these areas.  A key challenge in the deployment of tactical WSNs is the limited battery 

power of each sensor node. This has a significant impact on the service life of the 

network.  In order to improve the lifespan of the network, load balancing techniques 

using efficient routing mechanisms to achieve energy efficiency must be employed such 

that traffic is distributed between sensor nodes and gateway(s).    

In order to solve the load balancing problem, it is important to first understand the 

layout of a networking system.  Modern day networks abstract all the processes that take 

place between any two nodes and represent them in the form of layers. The general 

network layering construct is shown in Figure 2 and contains the following five layers 

labeled one through five, respectively: physical, medium access control (MAC), network, 

transport, and application layers. Generally, layers of one node only rely on information 

from the layer immediately above or below it, and the  information from Layer i of Node 

X is only accessed from the same layer i of node Y (logical links).  

 In this thesis, we exploit the opportunity to explore a cross-layer solution for the 

load balancing problem. A cross-layering method does not restrict a layer from utilizing 

information only from the layer directly above or below it. Specifically, for load 

balancing and energy efficiency, we allow the network layer access to the physical layer 

for battery parameters and distance between nodes in performance of energy-efficient 

routing strategies.  Allowing the network layer to access this information provides 

another level of control that can be incorporated into the network layer protocol. This 

level of control allows us to create a network layer protocol with two additional aspects 

of network layer energy efficiency: 1) creating routing paths that conserve transmission 

power, and 2) favoring those nodes with higher residual energy to perform high energy 

consumption tasks.  In a second cross-layering implementation, we allow the networking 

layer to access the application layer to perform data aggregation.  Performing data 

aggregation reduces the size of network data packets, which reduces the energy required 

to transmit each packet through the network.  
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Figure 1. Operational view of a 20 node WSN with supporting infrastructure. 

Sensor C is shown transmitting its payload to the gateway through nodes 
Q, N, and D. 

 
Figure 2. General network layering protocol stack between two communicating 

nodes.  All information flows via the channel (physical layer). The 
information from layer i of node X is only accessed from layer i of node Y 

(logical links). 

The protocols in place at each layer have a dramatic impact on the service life of 

the network and the coverage area. As node battery levels are depleted, they begin to die 

out.  Thus, various design techniques are needed at each layer to achieve load balancing 

across the network. 
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In this thesis we survey the load balancing opportunities at each layer and use 

these opportunities to build a WSN network protocol stack that extends the service life of 

the network and controls the topology of live nodes.  We control the topology of live 

nodes as the concentration of dead nodes increases such that we achieve uniform service 

coverage throughout the area of interest.  In addition, the use of an additional gateway to 

optimize load balancing under the considerations just discussed was investigated in this 

thesis.  As a result, the contributions of this thesis are as follows: 

• Survey and identify load balancing techniques for WSNs.  Design and 
simulate various network routing protocols and observe the impacts to the 
WSN. 

• Simulate traditional networking routing protocols and identify 
performance improvements of adding an additional gateway. 

• Develop a novel energy efficient WSN networking algorithm that uses a 
cross-layer approach and identify performance improvements compared to 
algorithms that do not consider energy efficiency.  We refer to this 
algorithm as EZone. 

• As sensor-node battery levels are depleted and nodes subsequently die out, 
show how the networking algorithm in operation affects the spatial 
distribution of alive nodes and dead nodes in the sensor field and how this 
affects the continuous service coverage throughout the sensor field. 

• Show detailed energy statistics for a specific node-gateway(s) 
arrangement. 

• Model network die out statistics as random variables to better characterize 
the distribution of the algorithm results over thousands of trial.  This 
technique allows us to better substantiate the performance of classical 
network algorithms and our novel energy efficient algorithm. 

As a result of our literature search on load balancing at each layer, we 

implemented the following models into each layer of the protocol stack.  We build these 

models for both single and multi-gateway implementations of each routing algorithm 

analyzed: 

• Physical layer: Our WSN is comprised of 100 uniformly distributed sensor 
nodes located in a 50 m x 50 m grid and the gateway (gateways for the 
multi-gateway simulation) is placed 100 m away from the grid.  We utilize 
a first order power amplifier and sensor model. This model assigns an 
energy cost-per-bit to collect, transmit and receive information. It 
considers direct path and multi-path wireless signal propagation theory to 
identify the amount of information required to transmit one bit of 
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information a certain distance between nodes while guaranteeing adequate 
signal-to-noise ratio at the receiving node. All our simulations assume that 
each node is within wireless transmission of the gateway that also means 
that each node is within communication range of any other node in the 
WSN. 

• MAC layer: We implement a Time-Division Multiple Access (TDMA) 
scheme that assigns each node in the WSN a timeslot during which it 
transmits information to the gateway. 

• Network layer: We implement several traditional and established routing 
algorithms observed in the literature.  We also develop and implement our 
own energy efficient routing algorithm (EZone).  The routing algorithms 
we implement are as follows: 

1. Direct: All nodes transmit their data message directly to the nearest 
gateway during each transmission round. 

2. Minimum Transmission Energy (MTE): All nodes transmit their 
data to the nearest gateway using a shortest-path MTE route that is 
calculated using Dijkstra’s shortest path routing algorithm[1].  The 
link cost parameter input into Dijkstra’s algorithm is the distance 
squared between nodes along the path.   

3. Low energy adaptive clustering hierarchy (LEACH) routing: 
LEACH routing elects a CH and nodes associate with the CH 
according to the LEACH algorithm [2].  Each node picks a random 
number between zero and one. Each node also computes a 
threshold number (Tn), which is a number between zero and one 
and is proportional to the current round. The probability for any 
node to serve as a CH is denoted as p.  If a node has been a CH in 
the last 1/p rounds, it is excluded from being a CH during the 
round. Otherwise, if the temporary random number is less than Tn, 
the node is elected as a CH during the round.  Nodes that were not 
elected as CHs during each round then associate in cluster with the 
nearest CH.  Each node then transmits its data message to its CH 
The CH collects all the messages of its nodes and retransmits them 
collectively to the gateway.  This process repeats during 
subsequent rounds until all nodes have died. 

4. Zone: Zone routing with random CH election partitions the 
network topology into zones. A CH is randomly assigned from the 
set of nodes in the zone to serve as the intermediate relay [3].  Our 
zones remain static throughout our simulations. 

5. EZone: Energy efficient zone routing is our novel routing 
algorithm designed in this thesis.  EZone implements Zone routing 
as described in 4, except EZone elects the node with the most 
energy at the beginning of each round to be the CH. 
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• Transport layer: Our transport layer implements a strategy similar to the 
modern day internet’s use of the User Datagram Protocol (UDP). User 
Datagram Protocol is a connectionless oriented protocol in which the 
source node gets no feedback that its messages reached the destination. 
This is applicable for WSNs as it provides a mechanism to prevent 
feedback transmissions that would unnecessarily deplete WSN energy 
levels. 

• Application layer: Our application layer implements two strategies, 1) use 
of a traffic generator, and 2) use of a data aggregation technique.  The 
traffic generator of each node generates a 2000 bit data message during 
each round for transmission to the gateway.  Data aggregation is used only 
for the clustering algorithms and the CH is the only node that can perform 
data aggregation.  The CH receives all the messages from nodes in the 
cluster. It then includes its own sensor’s message, compresses all the 
messages into one 2000-bit message, and transmits the compressed 
message to the gateway at the end of each round.  

The above layering strategy is implemented on the WSN shown in Figure 3, 

which is displayed with zone partitions.  This zoning arrangement is only used for zone 

related algorithms; other algorithms make no use of the vertical zone partitions. 

Gateways are displayed as solid green, and nodes are represented by a blue outline circle. 

We show the single gateway scenario in Figure 3. The multi-gateway scenario is similar 

except an additional gateway is placed on top of the network topology at the position (25 

m, 150 m).  All nodes have a starting energy of 0.5 J, and gateway(s) are assumed to have 

unlimited energy (they are not energy constrained).  We plotted the total WSN system 

energy level during each transmission round (Figure 4), number of live nodes during each 

round (Figure 5), and the energy variance that resulted from the distribution of individual 

node battery levels (Figure 6). We visually observed how nodes geographically die out 

throughout the simulation. In each legend of Figures 4–6, S after an algorithm name 

refers to the single gateway scenario and M refers to the multi-gateway scenario. 

The clustering algorithms dramatically outperformed the MTE and direct routing 

algorithms as a result of rotating and distributing the high energy role of nodes 

performing a long-range transmission and allowing the CHs to perform data aggregation.  

The single and multi-gateway clustering algorithms generally displayed similar energy 

depletion rates that are illustrated in the linear regions of Figure 4.  The clustering 

algorithms minimized the energy variance of the WSN, and our energy efficient zone 
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routing algorithm provided an indistinguishable flat variance plot compared to other 

algorithms as shown in Figure 5.  Our energy efficient zone routing algorithm (EZone) 

maximized the time when all nodes are alive with the single gateway simulation 

outperforming other multi-gateway algorithms.  This is significant in that it reveals the 

efficiencies that can be gained by implementing an energy efficient cross-layer approach. 

 
Figure 3. Single gateway network topology for simulations. The node grid is 

bound by the red perimeter; gateways are represented by a green 
circle.  Vertical zones are displayed and only utilized for zone 

routing algorithms. 

 
Figure 4. Total WSN system energy versus transmission round for all 

algorithms simulated. 
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Figure 5. Energy variance versus transmission round for all algorithms 

simulated. 

 
Figure 6. Total number of alive nodes versus transmission round for all algorithm 

simulated. Our energy efficient zone routing protocol provided the longest 
timeframe of 100 percent service area coverage. 



 xxxi 

Our energy efficient zone routing algorithm outperformed all other algorithms 

from a topology perspective during node die out as well.  While other algorithms created 

a pattern for die out, our energy efficient algorithm caused nodes to quickly die out 

immediately after the first node died. This also is significant in that we utilized a cross-

layer approach to maximize 100 percent service coverage of the WSN.  Node die out of 

other networking algorithms occurred in an unfavorable fashion. For example, in the 

direct case, live nodes farther from the gateway died first since their energy is depleted 

proportional to their distance from the gateway. As a result, areas farthest from the 

gateway lost service first, while areas closest to the gateway remained in service longest.  

In MTE routing, the node closest to the gateway is always chosen to be included in the 

route. This node is known as the hot-node. Since the hot-node is the relay point between 

the gateway and all traffic from other nodes, it is overwhelmed with traffic during each 

round and dies quickly. Another hot-node is then immediately chosen.  This hot-node 

concept in MTE routing causes nodes that are alive and that are closest to the gateway to 

die out first.  The LEACH algorithm inefficiently creates clusters that cause the network 

to die out starting in the center of the sensor field and progressing radially outward.  As a 

result of this die out mechanism, we lose coverage in the middle of the sensor field first.  

These die out mechanisms warrant the choice of our energy efficient zone routing 

algorithm for a tactical WSN since it preserves 100 percent network coverage the longest.   

Detailed statistics for our simulations are provided in Table 1 and Table 2.  

Statistics of the rounds when specific quantities of nodes are alive are provided in Table 

1.  This is graphically shown in Figure 6. A comparison of the impact of the additional 

gateway is also shown in Table 1.  The ratio of time the network is depleted from 100 

percent to 20 percent (80 percent die out range), and the timeframe that the network 

provides100 percent service coverage (the round the first node dies) is shown in Table 1.   

Instead of solely basing our conclusion on the network arrangement of Figure 3, 

we allowed the algorithms to run for thousands of times, regenerating a uniformly 

distributed sensor field to capture the distributions of the statistics we presented. This 

data is presented in Table 2 and graphically in Figure 7. All algorithms were executed for 

5,000 trials except for the MTE algorithms that were executed for 1,000 trials (Dijkstra’s 
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algorithm is computationally intensive, thus we limit the simulation to 1,000 trials).  The 

conclusions we made about the performance of the various algorithms are supported by 

the results shown in Table 2. On average, there is no performance advantage of adding 

the additional gateway in the LEACH algorithm also noted in Table 2.  There is little or 

no gain in service life statistics by adding the second gateway to the LEACH algorithm. 

An energy efficient routing strategy offers quantifiable gains to the service life of 

tactical WSNs.  It balances the use of individual battery levels at the node level to 

maximize the time when all nodes are fully capable. The techniques investigated in this 

thesis show the importance of a broader topic, that of load balancing in WSNs, and that 

design creativity can have significant impacts on achieving a lasting capability of WSN 

performance. 

Table 1. Network statistics that result from the WSN in Figure 3. 

 

Protocol Metric Single Gateway Multi Gateway % Increase

Dire
ct

Round First Dead 356 652 83
10% Nodes Dead 410 712 74
50% Nodes Dead 652 911 40
80% Nodes Dead 939 1128 20
Energy Depletion Rate (J2) 0.0798 0.0554 −31
80% Dieout Range (rounds) 583 476 −18
80% Dieout range/Round First Dead 1.6376 0.7301 −55

Dire
ct

MTE

Round First Dead 11 17 55
10% Nodes Dead 77 100 30
50% Nodes Dead 199 293 47
80% Nodes Dead 354 453 28
Energy Depletion Rate (J2) 0.2140 0.1418 −34
80% Dieout Range (rounds) 343 436 27
80% Dieout range/Round First Dead 31.1818 25.6471 −18

MTE

LEACH

Round First Dead 1642 1633 -1
10% Nodes Dead 1760 1805 3
50% Nodes Dead 1990 2112 6
80% Nodes Dead 2182 2327 7
Energy Depletion Rate (J2) 0.0245 0.0232 −5
80% Dieout Range (rounds) 540 694 29
80% Dieout range/Round First Dead 0.3289 0.4250 29

LEACH
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Table 2. Detailed statistics of random variable testing. All data is mean data 
averaged from 5,000 trials except MTE data is a result of 1,000 

trials. 

 

Protocol Metric Single Gateway Multi Gateway % Increase

Zon
e

Round First Dead 1649 1862 13
10% Nodes Dead 1821 1964 8
50% Nodes Dead 2022 2117 5
80% Nodes Dead 2140 2215 4
Energy Depletion Rate (J2) 0.0248 0.0235 −5
80% Dieout Range (rounds) 491 353 −28
80% Dieout range/Round First Dead 0.2978 0.1896 −36

Zon
e

EZon
e

Round First Dead 2003 2116 6
10% Nodes Dead 2007 2119 6
50% Nodes Dead 2026 2126 5
80% Nodes Dead 2051 2134 4
Energy Depletion Rate (J2) 0.0246 0.0235 −4
80% Dieout Range (rounds) 48 18 −63
80% Dieout range/Round First Dead 0.0240 0.0085 −65

EZon
e

Protocol Metric Single Gateway Multi Gateway % Increase

Dire
ct

Round First Dead 350 660 89
10% Nodes Dead 395 714 81
50% Nodes Dead 664 942 42
80% Nodes Dead 1004 1163 16
80% Dieout Range (rounds) 654 503 −23
80% Dieout range/Round First Dead 1.87 0.76 −59

Dire
ct

MTE

Round First Dead 12 16 33
10% Nodes Dead 73 97 33
50% Nodes Dead 202 289 43
80% Nodes Dead 351 472 34
80% Dieout Range (rounds) 339 456 35
80% Dieout range/Round First Dead 28.25 28.50 1

MTE

LEACH

Round First Dead 1840 1844 0
10% Nodes Dead 1987 1995 0
50% Nodes Dead 2294 2319 1
80% Nodes Dead 2523 2565 2
80% Dieout Range (rounds) 683 721 6
80% Dieout range/Round First Dead 0.37 0.39 5

LEACH

Zon
e

Round First Dead 1566 1841 18
10% Nodes Dead 1777 1976 11
50% Nodes Dead 2031 2122 4
80% Nodes Dead 2151 2210 3
80% Dieout Range (rounds) 585 369 −37
80% Dieout range/Round First Dead 0.37 0.20 −46

Zon
e

Ezo
ne

Round First Dead 1936 2070 7
10% Nodes Dead 1944 2076 7
50% Nodes Dead 2035 2132 5
80% Nodes Dead 2083 2157 4
80% Dieout Range (rounds) 147 87 −41
80% Dieout range/Round First Dead 0.08 0.04 −45

Ezo
ne
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Figure 7. Summary of WSN availability for each algorithm in single and 

multi-gateway scenarios.  Our energy efficient zone routing 
protocol provided the largest number of transmission rounds with 

full network service coverage. 
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I. INTRODUCTION: A BRIEF OVERVIEW AND SURVEY OF 
THE UTILITY OF WIRELESS SENSOR NETWORKS  

Computer networking principles have changed the landscape of global 

communications since the original Advanced Research Projects Agency Network 

(ARPANET) was established in the late 1960s. Networking theory, coupled with 

substantial improvements in integrated chip (IC) hardware, has enabled vast new 

technologies and capabilities over the past 20+ years.  In this thesis, we study one of the 

significant capabilities enabled by networking and IC improvements: wireless sensor 

networking (WSN).   

Modern warfare is transitioning to a status quo largely occupied by unmanned 

systems with ubiquitous situational awareness and means to communicate.  Our forever-

improving technology facilitates real-time knowledge of the environment. This can be 

readily provided by WSNs.  Wireless sensor networks can provide information wirelessly 

to the warfighter so that other warfighters do not have to. This idea is significant because 

it ultimately improves the safety of warfighters in areas too hostile or too extreme to 

provide reliable human data collection.  

Our investigation into WSNs is from a tactical perspective in that the networks 

are remotely deployed. The network must operate reliably and maximize sensor network 

coverage for the maximum amount of time in the absence of human contact. A key 

challenge in the deployment of WSNs is the limited battery power of each sensor node.  

This has a significant impact on the service life of the network.  In order to improve the 

lifespan of the network, load balancing techniques using efficient routing mechanisms 

must be employed such that traffic is adequately distributed between sensor nodes and 

the gateway node (relay node to WSN backbone infrastructure).   

In this thesis, we show that various traditional routing algorithms have a negative 

impact on the service life of a WSN because their design does not take into account 

energy efficient strategies required to extend the life of the WSN. Realistic insights on 

how to incorporate an energy efficient strategy into a routing algorithm to maximize 

service life is provided in this thesis.  We simulate several classic load balancing routing 
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algorithms for WSNs and introduce our own novel energy efficient routing algorithm that 

reveals a performance improvement as a result of our energy optimization.  We further 

consider and obtain performance improvements by tactically including an additional 

gateway in our simulations.  Whereas the research community traditionally only models 

one specific node-gateway network arrangement, we model one specific node-gateway 

arrangement and extend signal processing methodologies to model WSN die out 

parameters as random variables. This allows us to generate thousands of data points and 

draw our conclusions on an expansive subset of data instead of just one trial.   

The contributions of this thesis are summarized as follows:  

• Survey and identify existing load balancing techniques for WSNs that use 
efficient routing algorithms.  Load balancing is described in detail in 
Chapter II but generally consists of techniques to extend network service 
lifetime. 

• Simulate traditional network routing algorithms using MATLAB and 
identify performance improvements of adding an additional gateway. The 
traditional network routing algorithms studied are:  

• Direct routing: An algorithm in which each node transmits its 
payload directly to the gateway. 

• Minimum transmission energy (MTE): Each node transmits its 
payload to its nearest neighbor in a path to the gateway such that 
the energy consumption along the path is reduced. MTE uses 
Dijkstra’s classic shortest path routing algorithm to construct the 
paths.  

• Low energy adaptive clustering hierarchy (LEACH): A popular 
network clustering algorithm specific to WSNs [1] [2]. 

• Zone: A zone-based network clustering algorithm that partitions 
the network into zones and hierarchically determines node to 
gateway routes using a cluster-head (CH) assigned in each zone. 

• Develop a novel energy efficient WSN networking algorithm, called 
EZone, using a cross-layer approach and identify performance 
improvements compared to algorithms that do not consider energy 
efficiency.  EZone partitions the sensor field tactically and assigns a CH in 
each zone using an energy efficient strategy. The CH serves as an 
intermediate relay for node-gateway routing in each zone. 

• As sensor-node battery levels are depleted and nodes subsequently die out, 
we show by simulation how the load balancing algorithm affects the  
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spatial distribution of live nodes and dead nodes in the sensor field and 
how this affects the continuous service coverage throughout the sensor 
field. 

• Show detailed energy statistics for specific node-gateway(s) arrangement. 

• Model network die out statistics as random variables to better characterize 
the distribution of the algorithms’ results over thousands of trials.  This 
technique allows us to better validate the performance of classical network 
routing algorithms in comparison to our novel energy efficient algorithm 
(EZone). 

A. WIRELESS SENSOR NETWORKS: A BRIEF INTRODUCTION 

Terms such as wireless sensor network (WSN), unmanned ground sensor network 

(UGS), autonomous sensor network (ASN), and ad hoc sensor network all refer to a 

collective wirelessly inter-connected network of nodes. In this thesis, we refer to this 

network topology as a WSN.  A WSN is a collection of nodes distributed over a 

geographic area to perform some type of monitoring or data-gathering task [1].   In this 

thesis, tactical WSNs that are autonomous are considered; that is, they must operate in the 

absence of physical human interaction, yet their information must traverse the network 

reliably and efficiently to a desired destination.   

An operational view (OV1) of a 20-node WSN along with its significant 

supporting infrastructure is shown in Figure 1. The WSN is assumed to be deployed in a 

remote geographic location. Each node must rely solely upon the battery energy it was 

deployed with and use wireless transmissions to communicate with other nodes within 

communication range or to the gateway.  The supporting infrastructure primarily consists 

of a backbone, which performs the long-haul communications between the gateway, and 

a communication site, which is connected to the command and control node. Three 

possible backbones are displayed in Figure 1: a satellite wireless link, a terrestrial 

wireless link, and a wired backbone.  The type of backbone employed by a WSN is 

variable depending on how and where the WSN is deployed.  For example, an 

organization desires to deploy a WSN to study CO2 levels in a remote jungle. They 

intend to deploy their WSN by scattering sensors from an airplane and dropping a 

gateway into the sensor field.  In this example, it would be practical for the gateway to 

communicate via a commercial satellite since a wireless communication tower in the area 
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is not likely nor would it be practical to run a wired backbone through the jungle. 

Conversely, in another example a nuclear power-plant design company desires to outfit a 

nuclear power plant with internetworked sensors that monitor water temperature inside 

the nuclear reactor. In this case, a wired backbone is optimal to interconnect the sensors 

to minimize circumstances of an unreliable wireless connection and possible wireless 

interference.  

 
Figure 1. Operational view (OV1) or a 20 node WSN with supporting infrastructure 

and shown with sensor C transmitting its payload to the gateway through nodes 
Q, N, and D. 

The scenario presented in Figure 1 is that of node C communicating its payload 

with the gateway such that the routing algorithm in place utilizes the path C  Q  N  

D  gateway.  This route was decided upon by the protocol implemented at the network 

layer of each node. We describe our layering construct in Chapter II. It is important to 

note that the route chosen here may not be the most beneficial route for the WSN as a 

whole. In particular, the route chosen here was that of a minimum transmission energy 

(MTE) path, in which the routing algorithm determined that the route along C  Q  N 

 D  gateway minimizes the total wireless transmission energy and propagation 

distance along the path. Since a wireless device is only constrained by its transmission 
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radius at any time, there are other creative ways for a node to determine the route its 

payload takes to the gateway. We discuss the specifics of this further in Chapter IV. 

In the construct of our WSN, each node only cares that its information is routed to 

the gateway (i.e., the destination for a source node’s payload is always the gateway). 

While significant infrastructure and algorithms are required to communicate information 

beyond the gateway to a command and control site, this is beyond the scope of this thesis. 

For the purposes of the research presented in this thesis, we are not concerned with 

communication beyond the gateway.  

Every node in the WSN is simultaneously serving as a sensing/communication 

device and as a router.  This can be both an advantage and disadvantage. The advantage 

is that wireless nodes have a large number of possible communication paths at their 

disposal for their payload to be routed through the network. Conversely, a disadvantage is 

that if all nodes previously within communication range are energy depleted (dead nodes) 

and the gateway is farther than the node’s wireless transmission range, the node can no 

longer communicate with the gateway. Thus, its remaining energy is effectively wasted. 

In this state, a useful node is partitioned from the network and can no longer serve its 

purpose.  

To understand the framework for our study and simulations, it is worthwhile to 

discuss the similarities and differences between nodes and gateways. 

1. Nodes 

Each node is made up of at least four basic subsystems, which are shown in 

Figure 2 [3]. The four subsystems are power, sensing, processing, and communication 

subsystems.  The power system provides energy for the node to perform its function and 

may obtain its energy from a number of different sources including battery, solar or hard-

wired (i.e., plugged into another source). The most common power source for deployable 

WSN nodes are batteries. 

The sensing subsystem may include any sensor (or sensors) desired for the 

system. Common sensor examples include atmospheric monitoring (temperature, 
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pressure, humidity), sound, imagery, motion detection, or more elaborate sensors such as 

a mechanism to detect presence of a particular signal (cellular, short-wave radio).  The 

sensing subsystem receives power from the power subsystem and provides the sensed 

data to the processing subsystem so it can be packetized for transmission. 

 
Figure 2. The basic architecture of a WSN node consists of four subsystems 

including power, sensing, processing, and communication subsystems. 

The processing subsystem utilizes a microprocessor to handle all the processing 

needs of the node. The processing needs of the node are those involved in packetizing 

data received from the sensor and performing wireless networking functions for the node.  

The processor utilizes a small software operating system to provide minimal processing 

capability that utilizes the smallest amount of energy feasible but also provides enough 

computational capability to satisfy the node’s technical requirements.  One such example 

is TinyOS, which is an open source operating system engineered for low-power wireless 

devices [4]. 

The communication subsystem includes a transceiver, which includes both a 

transmitter and receiver to handle send and receive operations.  The transceiver enables 

several modes of operation designed to minimize the energy draw of the node. 

Specifically, the transceiver may vary the transmission power of a particular signal. We  

discuss several more energy load balancing techniques later in this thesis. 
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2. Gateway 

The gateway serves as a collection point for all the information that is coming out 

of the WSN.  From the perspective of individual nodes, the gateway represents the 

destination for a node’s packets.  The gateway is not limited to being located at the 

periphery of the sensor network as we have shown in Figure 1. The gateway could also 

be located somewhere within the sensor grid.  The gateway differs from traditional WSN 

nodes in two ways: 1) The gateway is less energy constrained than other nodes in the 

network, and 2) the gateway provides the link to the outside of the network for all nodes 

inside the network.  A gateway that is less energy constrained refers to the notion that it is 

not limited by energy.  The gateway has enough energy to handle all the communications 

from the network until the last node in the WSN dies. This means it has a battery energy 

level a few magnitudes greater than a normal node, or it has an external source of power. 

We use this assumption to preclude the possibility that the gateway is the limiting factor 

in the network.   

The gateway is of such significance to the network that its location must be 

considered.  Without the gateway, the network is useless. As a result, we focus our 

attention toward gateway locations on the periphery of the sensor field.  Since our 

research is focused toward tactical WSNs, we assume that a location on the periphery is 

more likely to be a safe zone compared to that where the sensor nodes are deployed.  Our 

use of safe zone refers to a location where the gateway is outside normal environmental 

and physical constraints to which sensor nodes may be subjected.  The gateway is not a 

sacrificial device as the sensor nodes are.  In this thesis we do not consider nor determine 

the optimal placement of the gateway on the periphery. We place the gateway(s) on the 

periphery and use the same location(s) for all simulations contained in Chapters V and 

VI. 

We investigate two types of WSNs: 1) a single gateway, which was shown in 

Figure 1, and 2) a multi-gateway scenario.  The majority of existing research in WSNs 

generally includes the perspective of a single gateway [1] [2] [5] [6][1]–[9]. Thus, it is 

important to extend WSN concepts to a multi-gateway framework and identify the 

resulting performance improvements by including an additional gateway. 



 8 

B. MULTI-GATEWAY WIRELESS SENSOR NETWORKS 

A multi-gateway WSN performs the same functions as the single gateway case, 

except each sensor now must choose which gateway to send its payload to at any given 

time. The multi-gateway version of Figure 1 is shown in Figure 3 and two gateways to 

support the WSN are shown.  While more gateways can be used, we limit our research to 

two gateways, which is practical from a cost and logistics perspective since more 

gateways are expensive to deploy and maintain.  We assume that the WSN in Figure 3 is 

a tactical network, thus the gateways are located on the periphery in a safe zone. 

 
Figure 3. Multi-gateway WSN version of Figure 1. 

C. COMMERCIALLY AVAILABLE SYSTEMS 

There are several commercially available solutions for WSNs.  One such example 

is the Waspmote from Libelium, which utilizes an ultra-low power housing that provides 

options for 60 available plug-and play sensors [10].  The Waspmote provides eight 

physical radio technologies ranging from long range (third generation mobile 

communication technology, 3G, and general packet radio service, GPRS) to short range  
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(radio frequency identification, RFID, near field communication, NFC and Bluetooth) 

communication capabilities.  A picture of the Waspmote is shown in Figure 4 and is 

small enough to fit in the palm of the hand. 

 
Figure 4. The multi-configurable Waspmote wireless sensor node from Libelium 

(from [10]). 

National Instruments produces WSN starter kits that includes a package of nodes 

with optional plug and play sensors and a gateway that can be connected to a personal 

computer to configure the WSN. Each node operates on four AA batteries, which can 

provide power for up to three years [11].  Their kit is displayed in Figure 5. 
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Figure 5. National Instruments WSN starter kit consisting of nodes, a gateway and 

network configuration utility software (from [11]). 

D. APPLICATIONS OF WIRELESS SENSOR NETWORKS 

Examples of WSNs are common place in society.  We present a few examples to 

demonstrate their utility and show how WSNs can influence our daily activities. 

1. Radiation Detection Levels in Fukushima 

Wireless sensor networks play a vital role in tracking radiation levels at and 

around the tragic Fukushima Daiichi reactors as a result of the Japanese tsunami that 

occurred on March 11, 2011 [12].  The system employs Geiger counters attached to a 

control circuit board. The Geiger counters measure the number of counts per minute, 

which represents the amount of radiation in the area, at which point the information is 

transmitted to a control point (gateway) so it can be monitored by a command and control 

network.  The system is powered with internal batteries and claims an operable lifetime 

on the order of years of available service [12]. 

2. Environmental Parameter Monitoring for Smart Cities 

Smart cities of the future will employ WSNs to provide real time information to 

any citizen. Specifically, the digital smart city of Santander, Spain is a test bed for smart 

city design and implementation.  The Santander test bed is comprised of approximately 

three thousand 802.15.4 devices (Zigbee protocol with medium transmission range 
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capability), two thousand general packet radio service (GPRS) modules and two thousand 

joint radio frequency identification (RFID) tag labels fixed at street lights, bus stops, and 

other fixed locations. These devices provide real-time information regarding traffic 

intensity monitoring, guidance to parking lots with available spaces, mobile 

environmental monitoring, and control of park and garden irrigation systems [13], [14]. 

3. Agricultural Monitoring  

Wireless sensor nodes can be imbedded near crops and in the soil at farms to 

monitor conditions such as temperature, humidity, leaf wetness and many other 

parameters.  One such project at a vineyard in Galicia, Spain employs WSNs to predict 

the onset of a plague, thereby allowing personnel to take action to minimize the plague 

[15]. Another example uses a WSN incorporating image processing to detect when a 

vineyard has any type of deficiency to its grapes or leaves [16]. 

 By continuously monitoring parameters of crops, one can better tailor the 

environmental parameters (soil wetness) in zones that are most favorable to the crop, 

which can increase the quality of the crop yield.  A field test at a Pickberry Vineyard in 

Sonoma, California covered a 30 acre site by sensors measuring humidity, temperature, 

soil humidity and soil temperature to control the irrigation system.  Using this crop 

management, they were able to lower their operating costs and increase the vineyard’s 

grape yield [17].  

E. APPLICABILITY OF WIRELESS SENSOR NETWORKS TO 
DEPARTMENT OF DEFENSE 

1. Remote Monitoring and Surveillance 

Remote monitoring and surveillance by way of WSNs offers the most utility to 

the Department of Defense (DoD) as many government program offices are engaged in 

this arena.  Video surveillance requires that millions of pixels of information be 

transmitted at every instance of time, which requires optimized WSN protocols that 

enable maximum WSN service duration. Wireless sensor networks can be placed in battle 

as well as in training scenarios to provide useful feedback to commanders. For example, 

desert training sites could be instrumented with smart sensors similar to the smart city 
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previously discussed to monitor critical training parameters such as atmospheric 

conditions or more elaborate monitoring such as troop movements, noise levels due to 

explosions or munitions use and to track area activity.  Weaponry could be instrumented 

to track ammunition use that could feed back to logistical systems to minimize the 

overhead of and improve efficiency of ammunition availability.  Individual soldiers could 

be instrumented with micro-sensors to track individual fatigue and readiness over time 

while in battle.  This information might not be on demand, but each sensor could transmit 

its storage payload when it is within range of a gateway, a process that would occur 

periodically through the performance of daily activity. 

Wireless sensor networks can offer remote monitoring of military bases instead of 

having to rely heavily on personnel to physically patrol a perimeter. The data provided by 

a WSN can be fused together at a base command and control node to minimize perimeter 

lookouts, which also minimizes their safety risk.  Wireless sensor networks can be 

deployed to foreign operating bases (FOB) or remote outposts setup by small forces 

occupying imminently hostile areas to increase the situational awareness of their 

surroundings and provide better warning in the event of an attack.  

2. Vehicular Networks 

Wireless sensor networks can be incorporated in military vehicular networks to 

provide situational awareness.  Force movement by individual groups of vehicles can be 

tracked. When a tracking sensor is within range of a gateway, its position is logged and 

sent to a database.  Over time, such tracking can provide means to balance out force 

distribution in an area, optimize vehicle and personnel movements, and provide a way to 

track anyone or anything containing a tracking sensor in an automated fashion. 

3. Remotely Operated Vehicles 

Wireless sensor networks can provide an inexpensive way to operate remotely 

operated vehicles (ROVs). As we previously mentioned, since sensor nodes operate as 

both sensors and routers, an ROV could be controlled by a WSN with minimal 

infrastructure with sensor nodes serving as relays in remote areas to allow 

communication with the ROV. The ROV could also be designed to deploy the WSN as it 
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travels to its mission. This could offer tremendous flexibility and range.  For example, 

[18] predicts a trillion sensor world by 2020.  In order to achieve the maximum life of 

sensors under the presence of data throughput requirements, custom and specific 

protocols must be implemented to achieve a networked energy efficiency. 

F. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows.  The basic layering structure 

employed by networks and the concept of load balancing is discussed in Chapter II. The 

models we employ for our physical and medium access layers in our simulations are 

described in Chapter III.  We use mathematical principles of signal propagation theory to 

show that there are tradeoffs based on physical layer technology that impact the design of 

the load balancing algorithm.  In Chapter IV, we describe the algorithms we implement in 

the networking layer, which include: direct, MTE, LEACH, Zone and EZone.  The 

simulations and our analysis of the results for one WSN node arrangement are provided 

in Chapter V.  We demonstrate by simulation how load balancing techniques and routing 

algorithms impact the service life of the WSN, as well as how sensor nodes in the 

network die out over time.  In Chapter V, we focuse on one specific network 

arrangement. In Chapter VI, the algorithms implemented in Chapter V are executed many 

times to model network die out parameters as statistical random variables (RV). We then 

obtain the distribution of these RVs and make observations of the characteristics of each 

algorithm. We conclude the thesis in Chapter VII and propose topics for future work. The 

authors biography is included as Appendix A, and all code for the algorithms 

implemented in this thesis are provided in Appendix B. The appendices also provide 

insight on how we chose our simulation platform and many of our coding strategies. 

G. CHAPTER I SUMMARY 

In this chapter, we provided an introduction and overview of WSNs introducing 

the concepts, contributions, and motivations for this thesis. We briefly looked at the 

topology and architecture of a typical WSN and the basic process of a node 

communicating its payload to a gateway. We described the basic components of a WSN 

and the differences between nodes and gateways. Single gateway versus multi-gateway 
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WSNs were discussed, which was followed by a brief survey of WSN technologies and 

capabilities, current WSNs in use, and their utility to DoD.   
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II. METHODOLOGY FOR LOAD BALANCING IN WSNS 

In this chapter we introduce the problem of load balancing in WSNs.  Load 

balancing generally requires optimization of protocols at different layers of the network 

stack. We describe the layering construct for wireless devices as this is the basis for our 

models in subsequent chapters.  Various load balancing techniques for each layer are 

presented based on our background research.  We conclude the chapter by providing the 

framework for the load balancing strategies we implement later for single gateway and 

multi-gateway WSNs. 

A. WSN LOAD BALANCING 

One substantial problem regarding tactical WSNs is that they are severely energy 

constrained.  Nodes must rely on little energy storage for potentially years of service (i.e., 

the National Instrument nodes presented in Chapter I lasts up to three years using AA 

batteries).  Improvements and miniaturization of semiconductor chip devices has 

outpaced the ability to miniaturize equivalent batteries to service those devices. As we 

previously stated, a node is not useful to its peers when its energy is depleted. As a result, 

the designer of the protocols and algorithms used by the node must implement a design 

that extends the nodes’ service to subsequently extend the service life of the WSN.  We 

define WSN load balancing, as a group of energy management techniques implemented 

at each layer with the intent of minimizing the energy depletion rate of the node and that 

of the WSN. 

Load balancing must be considered to achieve optimal performance. We consider 

optimal performance of the WSN to be when all nodes function for the maximum amount 

of time. Since nodes rely on their peers to pass information to a gateway, if a peer 

prematurely dies that wireless communication route is no longer available. If that 

communication route was the last viable route in the network, then the network becomes 

partitioned. Nodes with available energy no longer have a communication path to the  
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gateway, which creates suboptimal network performance. In order to understand where 

load balancing opportunities exist, it is pertinent to present a generic version of the 

layering construct for networked devices. 

B. NETWORK LAYERING CONSTRUCT 

The networking layer construct is a conceptual model that describes the internal 

operation of a node by separating activities into layers of abstraction.  The generic 

network layering construct is shown in Figure 6 for wireless communication between two 

nodes.  Each node, node X and node Y, contain a stack of layers including physical, 

medium access control (MAC), network, transport, and application layers numbered L1 

to L5, respectfully. The dashed lines represent logical links in that each layer of Node Y 

will only interface with information corresponding to the same layer as node X.  

Information can only flow up or down a device’s layer stack. A layer relies upon 

information only from layers immediately above or below the layer.  There is an 

opportunity to break this restriction, known as a cross-layer approach, which we present 

later in this thesis.  

 
Figure 6. Generic network layering construct between two nodes. 

L5: Application

L4: Transport

L3: Network

L2: MAC

L1: Physical

L5: Application

L4: Transport

L3: Network

L2: MAC

L1: Physical

Node X Node Y

F
lo

w
 B

et
w

ee
n 

La
ye

rs F
low

 B
etw

een Layers

Channel: Physical Link

Logical Links



 17 

Briefly describing the layers of Figure 6, the physical link (solid line) is the 

process of node X passing data to node Y through a wireless medium, also known as the 

channel.  A node’s physical layer uses energy (battery power) to transmit and receive 

information according to the MAC layer. The MAC layer provides a control mechanism 

for when and how the physical layer accesses the channel, such that many wireless 

devices have the opportunity to use the same channel in a controlled fashion.  The 

network layer is responsible for deciding which node the packet is sent to next.  In our 

example from Figure 1, each node along the route C  Q  N  D  gateway needs to 

decide the next node to forward information to since there are potentially many choices 

(nodes) within wireless range that could be used.  The transport layer provides end-to-end 

communication services in that it keeps track of information coming back and forth to 

ensure all data is received.  The application layer provides services for an application 

program to communicate with the stack. For example, internet browsing uses an 

application protocol hypertext transfer protocol (HTTP) to connect the internet browser 

(the application) to the layering stack for the internet browsing experience. 

C. CROSS-LAYER DESIGN 

In describing the traditional implementation of the layering construct, information 

only flows up or down a device’s layer stack; a layer only relies upon information from 

layers immediately above or below.  The research presented in this thesis is focused on 

energy efficiency (physical layer) and routing (network layer). Thus, the network layer 

must have knowledge of the physical parameters (battery level). A layer relying on 

information from another layer that is not immediately above or below is known as A 

cross-layer design. We allow the network layer to directly obtain battery energy level or 

physical distance between nodes to permit routes be calculated with energy efficiency in 

mind. From this perspective, the energy aware strategies employed in this thesis use a 

cross-layer design.  

D. LOAD BALANCING OPPORTUNITIES AT EACH LAYER 

Load balancing opportunities are based on engineering acumen as well as design 

creativity.  They are present at each layer and can be specific to a capability.  We 
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performed an extensive literature search to identify load balancing techniques at different 

layers of the network stack that could be of use to WSNs. 

1. Physical Layer Load Balancing 

Physical layer load balancing can be categorized into two groups: software and 

hardware.  The hardware in use has a significant effect on the life of the node. If the 

transceiver is not being used efficiently when transmitting and receiving, unnecessary 

power is consumed. An example of an inefficient use of the transceiver is transmitting at 

a higher power than needed, which could be a result of inefficient implementation of the 

transceiver. Efficient use of a transceiver is well documented in the literature. For 

example, a personal cell phone utilizing the Global System for Mobile Communications 

(GSM) uses the minimum power required for the signal to reach the cell tower.  The base 

station (gateway) can increase the power of the mobile device in increments of 2.0 dBm 

up to a maximum threshold level [19]. 

Improvements in transceiver design and threshold has led to low power terminals 

for WSN applications. For example, a transceiver design where the received signal is 

amplified and filtered at baseband frequencies instead of some other high intermediate 

frequency results in a lower current drain in the transceiver’s amplifiers and filters is 

implemented in [20]. An energy efficient complementary metal oxide semiconductor 

(CMOS) power amplifier (PA) for WSN nodes that uses high quality bond wire 

inductors, capacitance compensation technology, and chock inductors to enhance the 

efficiency and linearity of the PA produced improvements in power efficiency was 

introduced in [21].  

Antenna design also influences WSN power consumption, thus recent work has 

focused on the design of antennas specific to WSN nodes. A smart, secure, power-

efficient, beam-steerable transmission system for WSNs was devised in [22].  The system 

is programmed to adjust antenna characteristics to transmit a signal in a desired direction 

such that no signal is sent in many undesired directions. 
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2. MAC Layer Load Balancing 

Medium access control layer load balancing consists of contention-based and 

contention-free protocols.  Contention-based protocols require that when a device is 

receiving data, transmissions from other devices are impeded. A device senses when no 

other devices are transmitting, imposes a back-off delay, and proceeds to access the 

channel. A consequence of this mode is that there may be an uncontrolled delay for a 

node to transmit, which results in idle energy consumption [23].  As a result, most WSNs 

employ a contention-free MAC protocol, which divides a period of time known as a 

frame into small reservation periods by which nodes are assigned to transmit.  Also, these 

time-division multiple access (TDMA) protocols may permit energy efficient techniques, 

such as transceiver sleep scheduling, to minimize idle energy consumption.  The MAC 

protocols we employ later assume a non-contention TDMA scheme for each node. 

Researchers are experimenting with MAC layer protocols specific to WSNs.  One 

implementation, S-MAC, uses three techniques to reduce WSN energy consumption: 1) 

nodes periodically sleep, 2) neighboring nodes form clusters that synchronize their sleep 

schedules, and 3) message parsing is applied to reduce contention latency [24]. Networks 

with a large number of sensor nodes frequently have a lot of duplicate information 

injected into the network by many sensors that sense the same event, which increases 

data processing and energy depletion. Another MAC implementation specific to WSNs is 

called Sift [25], which provides a mechanism to avoid multiple nodes in the same 

neighborhood from transmitting information for a common detected event.  

3. Network Layer Load Balancing 

The network layer is a huge research focus area for WSN load balancing because 

the routes that are chosen have a huge impact on the total energy expended in a WSN 

over time.  Inefficient route determination causes the network to prematurely die out. As 

long as transmit/receive operations and access to the channel are performed efficiently 

(those process are well tried and tested) the network layer offers fruits for load balancing 

opportunities in any custom WSN.  Network layer WSN routing protocol surveys have 

been performed in [5]–[9], [26]–[28]. The literature generally includes two areas of 
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network layer load balancing: the traditional minimum cost path for information to pass 

through many nodes to the gateway and group clustering.  In Figure 1, an example of a 

minimum cost route in which the route from node C to the gateway was determined to be 

C  Q  N  D  gateway is provided.   

The traditional minimum cost path involves each node determining the next hop 

to send the information according to an algorithm that incorporates some type of cost 

parameter.  The cost parameter varies significantly in the literature and can be any cost 

metric of interest to the application being designed. Traditional minimum cost routing 

can degrade a WSN. In [29], the authors showed that minimum cost routing paths tend to 

overuse certain nodes. These nodes are then overloaded with traffic from the rest of the 

network and, thus, experience faster energy depletion compared to other nodes.  To 

address this problem, the authors include a cost metric that accounts for network load 

where the greater the load, the greater the cost metric. These costs are then used to route 

around high traffic nodes, which provides an increase in network lifetime and fault 

tolerance [29].   

We implement an energy-efficient version of Dijkstra’s algorithm [30] in our 

simulations to analyze the performance of minimum cost routing in WSNs.   Minimum 

cost routing is generally based on Dijkstra’s shortest path algorithm [30]. We describe the 

specifics of this routing algorithm in Chapter VI. 

An alternative to traditional minimum cost routing is clustering. In clustering, a 

cluster head (CH) is chosen from a group of nodes to serve as an intermediate relay 

between a group of nodes and the gateway(s). In other words, nodes with data to send 

forward the data to their respective CH, at which point the CH then forwards the data to 

the gateway. This scenario is presented in Figure 7, which was adapted from Figure 3. 

Cluster heads P, M and O are chosen from a clustering algorithm at the network layer 

followed by an association of child nodes to associate with the CH to form three smaller 

WSNs.  

An illustration of a multi-gateway network is shown in Figure 7, which adds 

further complexity at the network layer.  Whether the network layer is using a traditional 
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minimum cost routing algorithm or a clustering algorithm, the algorithm must be 

designed to use the gateway that provides the least energy cost to a WSN.  In the case of 

clustering, this may mean that a CH chooses the closer gateway to minimize required 

transmission power.  Another instance may require the CH to choose the gateway that is 

further away to avoid increased interference at the closer gateway.  

 

 
Figure 7. Clustering in a multi-gateway WSN with cluster heads: P, M, and O. 

The foundation of a clustering algorithm is the method for choosing a CH and the 

method for nodes in the WSN to associate with their CH. One popular clustering 

mechanism is LEACH, originally proposed by [1].  This algorithm was originally 

presented in 2000 as a proposed solution for CH election criteria.  Specifically, the high 

energy CH role is periodically rotated throughout the network so that energy 

consumption at each node is balanced throughout the network lifetime.   There has been a 

significant amount of research on LEACH and variants of the algorithm that have been 

proposed.  At the time of writing of this thesis, the IEEE Explore database indicated 1604 

citations for [1], while GOOGLE citation tracking claimed it was cited 9600 times.  The 

author republished LEACH in 2002, addressing several improvements of the algorithm 

[2].  We utilize LEACH in our research and explain the algorithm in detail later. 
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Another clustering mechanism is that of zone based clustering, in which nodes are 

assigned to a cluster according to a predefined spatial arrangement [31].  Cluster heads 

are then chosen based on some prioritization of the nodes. This prioritization was 

performed randomly in [31].  We employ this technique in our simulations. In addition, 

we implement our own zoning technique and introduce a novel energy-efficient process 

to elect CHs with the desire to minimize WSN energy depletion.   

Network control message schemes are implemented at the network layer and 

provide an autonomous control mechanism for the network to manage communications 

and errors. The control message scheme that dominates the internet is called internet 

control management protocol (ICMP) in which events trigger the generation of control 

messages to be exchanged between network devices [32]. Version 4 of ICMP (ICMPv4) 

is based on the internet protocol version 4 (IPV4).  The applicability of ICMP to WSN 

load balancing is that as control messages are generated, they must be processed by WSN 

nodes, which may cause unnecessary energy use.  Thus, control message 

implementations for WSNs must specifically minimize the amount of messages generated 

to lower node overhead. For example, [33] introduced a multi-path routing algorithm 

with a reduced control message structure for WSNs that ensures messages are only sent 

to specific nodes instead of to everyone (flooding). In terms of clustering algorithms, 

control messaging is used for CH selection, CH announcement and during the phase that 

nodes are associating with their CH. We do not simulate control messages in this thesis.  

However, we adapt best practices from the literature to describe our proposed messaging 

scheme and offer further simulations as future work.  

4. Transport Layer Load Balancing 

The common area for transport layer load balancing is in the form of flow control 

techniques. A flow control technique is used to individually track the communications 

(packets) from start to completion of the entire message and provide a mechanism to 

control an orderly transmission of messages, which is also known as congestion control.  

If a packet is missing or in error, flow control is used to correct the deficiency.  
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In [34], the authors implemented a flow control load balancing scheme where 

each node kept track of the sequence of packets it received from every source node. A 

gap in sequence number indicates packet loss at which point the missed sequence number 

is added to a missing packet list. At the end of the transmission for all packets in a 

sequence, the missing sequence numbers are requested from the previous node, and the 

packets are obtained. In another work, [35], a flow control scheme on multiple paths 

without causing packet reordering is described, which minimized processing demand and 

packet latency. Li et al. developed a feedback congestion control scheme specific for 

WSNs that detects the onset of congestion using queue length [36]. They then 

implemented a newly proposed control scheme to throttle packet transmission to 

minimize energy consumption and increase throughput. 

5. Application Layer Load balancing 

Application layer load balancing requires that an application operating at a source 

node scales its generated traffic in a manner that is optimal for a particular network or 

scenario. For example, a video surveillance WSN may contain several redundant video 

feeds that are not valuable at a particular instance in time. If the application somehow 

knows that its traffic is redundant or unnecessary, it can be triggered to lower its 

generated traffic. This preserves the sensor’s battery life and lowers downstream network 

traffic, allowing other data to have priority and subsequently reduced latency.  

Context modeling is used in [37] to capture multiple context parameters at 

different layers of the network stack to balance runtime application demands of the node 

and other nodes in the network. Some strategies at the application layer throttle the 

program based on a demand signal at a lower layer. Application layer scheduling can also 

be implemented as a load balancing technique. Here, application layer programs are 

scheduled to perform functions at predetermined times to minimize the energy demand 

on the node.  

Data aggregation, also known as data fusion is the process of combining data 

fusing techniques such as compression, suppression (eliminating redundant data), data 

reduction, and other signal processing techniques [8].  Data aggregation has been 
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employed by several protocols such as [38], [39].  An example of data aggregation is 

shown in Figure 8 for a clustering mechanism, where the CH (Node P) receives six 2000-

bit data packets from its child nodes and aggregates them along with its own 2000-bit 

packet into one 2000-bit packet that is transmitted to the gateway. 

Data aggregation requires that each node have the processing capability to 

perform the data fusion, which brings along an energy cost to the node.  Data aggregation 

can be employed by both MTE and cluster based routing approaches. With respect to 

MTE routing in Figure 1, Node D can collect several messages over time, perform data 

aggregation, and transmit the data to the gateway to minimize the number of 

transmissions required by Node D, subsequently extending its energy life.  In Chapter V 

we simulate data aggregation for the clustering mechanisms developed in this thesis. We 

leave data aggregation in MTE routing as a topic of future work. 

 
Figure 8. Data aggregation by node P (the CH), which receives a 2000-bit packet 

from each child node and compresses it into a 2000-bit packet, which is 
transmitted to the gateway. 

E. DESIGN METHOLODY FOR LOAD BALANCING 

We have summarized several load balancing techniques in this chapter, several of 

which we incorporate in our simulations.  The load balancing techniques used in this 

thesis are summarized as follows: 
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• Physical layer: Variable transmit power with a sleep cycle such that a 
source node only transmits with the power required to reach the 
destination node with acceptable signal-to-noise ratio (SNR). 

• MAC layer: Contention-free TDMA based MAC layer where time 
division is divided into rounds with each node having a timeslot to 
transmit information within each round. 

• Networking layer: We implement the following cases, which are 
thoroughly discussed in Chapter IV: 

1. An algorithm in which each node transmits its payload directly to 
the gateway (direct). 

2. Each node transmits its payload using a MTE routing scheme using 
Dijkstra’s classic shortest path algorithm.  

3. LEACH clustering algorithm. 

4. A zone-based network clustering algorithm (zone) that partitions 
the network into zones and hierarchically determines node to 
gateway routes using a CH assigned in each zone. 

5. Our energy efficient zone routing algorithm (EZone) that partitions 
the sensor field tactically and assigns a CH in each zone using an 
energy efficient strategy. Each CH serves as an intermediate relay 
for node-gateway routing in each zone. 

• Transport layer and application layer: Modeled as constant bit rate 
payloads, where for every round, every node sends a similar sized packet 
to the gateway.  Data aggregation is employed by the CH in the clustering 
mechanisms. 

F. CHAPTER II SUMMARY 

In this chapter we introduced the problem of load balancing in WSNs.  We 

described the layering construct for wireless devices, which provides load balancing 

opportunities that can be employed at each layer of a WSN to extend its service life. 

Various load balancing techniques for each layer were presented based on our 

background research.  We concluded the chapter by providing the framework for the load 

balancing strategies we implement later for single gateway and multi-gateway WSNs. 
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III. PHYSICAL AND MEDIUM ACCESS LAYER MODELS 

In this chapter we describe our implementation of the sensor grid, the physical 

layer, and the MAC layer.  We describe how the sensors and gateways are distributed for 

both a single gateway scenario and a multi-gateway scenario.  We then describe our 

wireless propagation model and perform an analysis to demonstrate the desirability of a 

clustering mechanism for the network layer based on energy analysis of the physical 

layer protocol. We complete the chapter by describing the implementation of the MAC 

layer and our associated assumptions.  

A. SENSOR AND GATEWAY PLACEMENT 

Sensor and gateway placement are inputs to the physical layer.  Sensors and 

gateways are all placed on a Cartesian grid with axes x and y.  Our analysis involves a 

grid of 100 sensors such that each sensor’s x and y coordinate is modeled as a uniformly 

distributed random variable between 0 and 50 m:  

 ( , ) ( [0,50], [0,50]).x y U U=  (1) 

Our scenarios assume that the network is a tactical WSN that requires the 

gateways to be placed reasonably far from the sensor network. Following this 

assumption, the single gateway scenario employs the gateway at (x, y) = (25 m, −100 m), 

while the multi-gateway simulations have the gateways positioned at (x1, y1) = (25 m, 

−100 m) and (x2, y2) = (25 m, 150 m).   The single gateway and multi-gateway WSNs are 

graphically shown in Figure 9 and Figure 10, respectively.  

Our presentation of the WSN is consistent throughout this thesis. Gateways are 

always displayed as they are in Figure 9 and Figure 10 as a solid green circle. Live nodes 

are shown as a white circle with a blue outline. Although we only show live nodes in 

Figure 9 and Figure 10, as nodes eventually die out, they are then represented as a solid 

red circle at their same location.  We show the perimeter and field zones (for zone routing 

algorithms) as sold red lines. 
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Figure 9. Single gateway WSN arrangement simulated in Chapter V. 

 
Figure 10. Multi-gateway WSN arrangement simulated in Chapter V. 
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B. NODE STARTING ENERGY LEVEL 

All nodes in our simulations begin with a starting energy level of 0.5 Joules (J).  

This is a value commonly used in the literature because it provides small enough energy 

to quickly see the effects of the varying algorithms involved yet it provides enough 

energy to demonstrate the longevity by making algorithmic improvements.  That being 

said, 0.5 J is a very small amount of energy. In comparison, a typical 1.5 V alkaline AA 

battery contains approximately 1,500 mAh of energy, which provides 1500 mA for one 

hour at 1.5 V.  Ignoring load curves versus voltage for the battery, the equivalent energy 

in Joules is 

 ( )3 3600(1500 10 ) 1.5 (1 ) 8100
1

sA V hr J
hr

 × = 
 

 (2) 

which indicates that just a few AA batteries in a small sensor node can provide 

significant lifetime for a WSN node using nano-watts of energy at any given time.  

C. PHYSICAL LAYER MODEL 

The physical model relates the amount of energy a sensor node consumes during 

transmit and receive operations. As a result, principles of wireless propagation must be 

included.  We utilize the first order radio energy model, which is common throughout the 

literature [1] [2] [40]. This model relates the energy expended to send and receive an L- 

bit message over a distance d when considering direct path and multi-path propagation.  

The first order radio energy dissipation model is shown in Figure 11. 

 
Figure 11. First order radio energy model for physical layer simulation. 
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The energy expended in the transmit electronics of Figure 11 for free space (direct 

path) propagation, ETx-fs, is described by  

 2( , ) ( ) ( , )Tx fs Tx elec Tx amp elec fsE L d E L E L d E L Ldε− − −= + = +  (3) 

and for multipath propagation by 

 4( , ) ( ) ( , )Tx mp Tx elec Tx amp elec mpE L d E L E L d E L Ldε− − −= + = +  (4) 

where Eelec corresponds to the energy per bit required in transmit and receive electronics 

to process the information, ETx-amp is electrical energy required to transmit an L-bit 

message over a distance d, and εfs and, εmp are constants corresponding to the energy per 

bit required in the transmit amplifier to transmit an L-bit message with adequate SNR 

over a distance d2 and d4 for free space and multi-path propagation modes, respectively. 

The energy expended to receive the L-bit message in the receive electronics of 

Figure 11 is described by 

 ( ) .Rx elecE L E L=  (5) 

The corresponding values from equations (3), (4), and (5), for the amplifiers and 

electronics used in our subsequent simulations are described in Table 1.   

Table 1.   Radio energy dissipation parameters used during our simulations. 

Constant Value 
Transmit Electronics, Eelec 
Receiver Electronics, Eelec 

50 nJ/bit 

Transmit Amplifier, free space 
propagation, fsε  

10 pJ/bit/m2 

Transmit Amplifier, multi-path 
propagation, mpε  

0.0013 pJ/bit/m4 

 

By equating Equations (3) and (4), we determine the distance d=d0 when the 

propagation transitions from direct path to multi-path:  

 0 .fs
Tx fs Tx mp

mp

E E d
ε
ε− −= ⇒ =  (6) 
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Distance d0 is solely a function of the transmit amplifier parameters as shown in 

Equation (6). Substituting the amplifier parameters of Table 1 into (6), d0= 87.7 m.  

Specific to the sensor network shown in Figure 9 and Figure 10, communications 

between nodes are generally direct path propagation, and communications between nodes 

and the gateway are multi-path propagation. 

D. PHYSICAL LAYER IMPACT TO THE NETWORK LAYER 

Our implementation suggests that the physical layer has the largest impact on a 

sensor’s energy level since this is where our model depletes energy based on the 

magnitude of the wireless propagation distance.  This concept provides two options at the 

network layer.  Each node sends their information to the gateway directly, or each node 

sends their information with MTE by utilizing the nearest neighbor in the optimum path 

toward the gateway.  If we assume the propagation is solely direct-path propagation in 

which the energy is proportional to d2, there exists an energy balance such that in some 

cases either direct transmission or MTE routing to the gateway is preferred.  For example, 

a simple network is shown in Figure 12, in which n nodes are separated a distance r apart 

from each other.  If direct routing is performed, each node transmits its packet a distance 

nr to the gateway.  If employing MTE routing, each node (except the source node) 

receives a packet and retransmits the packet to the next node a distance r away.  

 
Figure 12. A simple network of n nodes and one gateway each separated by a 

distance r. 

Performing the energy analysis of Equation (3) for direct and MTE routing, we 

get 

 2 2 2( , ) ( ) ( )direct Tx elec fs elec fsE E n d nr E L L nr L E n rε ε= = = + = +  (7) 
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and 

 
2

2

( , ) ( 1) ( ) ( 1)

((2 1) ),
MTE Tx Rx elec fs elec

elec fs

E nE L d r n E L n E L Lr n E L

L n E nr

ε

ε

= = + − = + + −

= − +
 (8) 

respectively. 

The preferred networking mode is the one that requires less energy.  Direct 

communication with the gateway requires less energy than MTE routing provided: 

 .direct MTEE E<   (9) 

Substituting Equation (7) and (8) into Equation (9), we get 

 2 2 2( ) ((2 1) )elec fs elec fsL E n r L n E nrε ε+ < − +  (10) 

which after being simplified, provides 

 
2

.
2

elec

fs

E r n
ε

>  (11) 

Equation (11) reveals that the optimal routing technique is a function of the 

amplifier parameters and network topology. A simulation using this analysis with a 

n=100 node network in which the network dimension was increased from 10 m × 10 m to 

100 m × 100 m, each node had a starting energy of 0.5 J, L = 2000 bits, Eelec was 

increased from 10 to 100 nJ/bit, εfs held constant and the gateway was placed at (x=0, 

y=−100 m) was performed in [1]. From these parameters, Figure 13 was produced, which 

graphically demonstrates that the most energy efficient algorithm to use depends on the 

network topology and the radio parameters of the system.   

A simulation was performed on one 100 node network arrangement with sensors 

uniformly distributed in a 50 m × 50 m grid with similar gateway placement (x=0, y = − 

100 m) and constant amplifier parameters.  The results are shown in Figure 14.  The 

tradeoff between MTE and direct routing from when the first node dies until the last node 

dies are revealed in Figure 14.  The direct case provided the longer network lifetime with 

all nodes alive since MTE routing overwhelmed some preferred nodes with network 

traffic. These preferred nodes subsequently die out first.  Conversely, MTE routing  
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provided the longer network lifetime with at least some nodes alive. This indicates that 

nodes in a less preferred position relative to the gateway are underwhelmed with network 

traffic and subsequently remain in service longer. 

 
Figure 13. Total energy dissipation for Direct and MTE routing versus network 

dimension versus Eelec demonstrating the tradeoffs of each technique utilizing 
direct path propagation (from [1]). 

The tradeoff occurs in the design methodology of the network. Does the network 

designer prefer to have all nodes operating the maximum amount of time, or is it 

preferred to have only some nodes operating the maximum amount of time?  Our 

response to this question is somewhat a mix of both, as the topology of the network die 

out must also be considered to achieve a desired functionality. For example, if the last 10 

to 15 nodes in the MTE algorithm of Figure 14 are tightly grouped together on the 

periphery of the WSN field, this coverage may offer little benefit to network 

functionality. However, if the last 10 to 15 nodes maintain a consistent uniform 

distribution throughout the sensor field, useful coverage still exists, and the WSN 

continues to serve its purpose. 
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Figure 14. Tradeoff of direct versus MTE routing on sensor die out for direct path 

propagation (from [1]). 

With respect to MTE routing, the node closest to the gateway is termed the hot-

node. The hot-node is repeatedly chosen by other nodes to route information to the 

gateway. The first hot-node dies out quickly, and the next hot node is subsequently 

chosen by the MTE algorithm.  This results in the node closest to the gateway dying out 

very quickly and the least preferred node (least preferred position for routing) dying out 

last because no other node utilizes it in the calculation of the preferred route. Thus, these 

farther nodes always transmit with minimum energy to reach the closest nearby node. 

This creates the MTE die out curve in Figure 14.  Conversely for direct routing, nodes 

that are farthest away from the gateway expend the most energy transmitting and 

subsequently die out first while those nodes closest to the gateway remain in service 

much longer since their energy consumption is lower due to lower propagation distances. 

Our purpose for going through this analysis is to briefly demonstrate that the 

physical layer has a significant impact on the network layer and the spatial die out 

distribution of the network. Since our WSNs are tactical and rely solely on battery power, 

we require a networking algorithm that maximizes the network lifetime when all the 

nodes contain energy and that, as nodes begin to die out, we still obtain service coverage 
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from any particular area in the network.  For direct and MTE routing, our qualitative 

discussion above reveals that as the overall WSN depletes energy, areas are left without 

service while other areas continue to provide service. 

The previous discussion leads us to consider a cluster based network layer 

algorithm.  We initially presented the basic framework for such an approach in Chapter 

II, Section D.3.  The CH as chosen by the networking algorithm transmits all the data that 

was obtained from the nodes in the cluster.  Provided the CH role is periodically rotated, 

the batteries of all nodes are expected to deplete in a more uniform fashion.  This causes 

the die out of the network to occur in a more preferred fashion, preserving coverage areas 

during WSN die out.  A cluster based approach also allows node data aggregation to take 

place to minimize the energy consumed by the CH when performing long haul 

transmission. This is revisited and further explained in Chapter IV. 

E. MEDIUM ACCESS CONTROL LAYER 

We simulate the MAC layer simply through the performance of transmission 

rounds. Each simulation begins at round one (zero for LEACH) and ends at some 

maximum number of rounds (or when the last node dies). During each round, each node 

in the WSN sends an L- bit packet from the application layer to the gateway. We assume 

a TDMA scheme is in place, in which each node is assigned a timeslot to transmit its 

packet.  We are not concerned with how the TDMA assignment takes place, just that 

during each round, each node transmits its packets to the gateway. For clustering 

algorithms, there are MAC protocols in the literature that allow for nodes within a cluster 

to transmit to their CH at similar times as nodes in an adjacent cluster transmitting to 

their respective CH. This approach uses a coding scheme that eliminates the possibility of 

inter-cluster interference.  We adopt these techniques for our MAC layer implementation. 

F. CHAPTER III SUMMARY 

In this chapter we described our implementation of the sensor grid, the physical 

layer, and the MAC layer.  We described how the sensors and gateways are distributed 

for both a single gateway scenario and a multi-gateway scenario.  We presented our 

methodologies for each node’s starting energy level and then described our wireless 
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propagation model.  We performed an analysis that demonstrated how our physical layer 

model motivated our research toward a clustering algorithm at the network layer. We 

completed the chapter by describing the implementation of the MAC layer in this thesis 

and our associated assumptions.  
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IV. NETWORKING LAYER MODEL 

In this chapter, we describe the network layer algorithms implemented for 

simulation in Chapters V and VI.  We utilize certain algorithms from the literature that 

were analyzed in single gateway WSNs and apply them to our single gateway and multi-

gateway scenarios.  The algorithms we utilized from the literature are: each node 

transmits its information directly to the gateway(s) (Direct), MTE routing utilizing 

Dijkstra’s algorithm (MTE) Low Energy Adaptive Cluster head (LEACH) routing, and 

zone clustering with random CH assignment (Zone).  We then describe an energy-

efficient zone clustering algorithm (EZone) that we devised as a result of our research. 

Our interest is to investigate the result of load balancing techniques in single 

gateway and multi-gateway WSNs by employing load balancing techniques at each layer 

while focusing on the impact of varying network layer routing algorithms on the WSN.   

Our goal is to show how WSN service life can be extended by implementation of load 

balancing techniques and the addition of another gateway while continuing to provide 

uniform service in all areas of the WSN as nodes die out.    

A. SUMMARY OF PHYSICAL AND MAC LAYER PARAMETERS 

The physical and MAC layers were described in Chapter III. For each simulation, 

sensor network parameters must be entered or generated. For the purpose of comparison, 

we utilized the same network for each network layer model simulated. The sensor 

network parameters, as well as description of each parameter, are provided in Table 2.  

The parameter descriptions and symbols are common to each network layer protocol. 

The x-coordinates for each node are obtained from a uniform distribution between 

zero and xm meters and y-coordinates are similarly obtained from a uniform distribution 

between zero and ym.  The amplifier constants were chosen to match those commonly 

used in the literature [1] [2] [40]. We explain our choices for the probability of being a 

CH (p) and the number of zones z in Sections E and F in this chapter. 
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Table 2.   Summary and description of physical layer parameters. 

Description Parameter Value 
Maximum rounds for iteration rmax variable 
Maximum Cartesian x range (m) xm 50 
Maximum Cartesian y range (m) ym 50 
x-coordinate of gateway 1 (m) sink.x1 25 
y-coordinate of gateway 1 (m) sink.y1 −100 
x-coordinate of gateway 2 (m) sink.x2 25 
y-coordinate of gateway 2 (m) sink.y2 150 
Packet size (bits) L 2000 
Number of nodes in the field n 100 
Initial node energy (Joules, J) Eo 0.5 
Energy to Transmit (nJ/bit) ETX 50 
Energy to Receive (nJ/bit) ERX 50 

Free space propagation (pJ/bit/m2) Efs 10 

Multi-path propagation (pJ/bit/m4) Emp 0.0013 
Probability of being a CH  (LEACH) p 0.05 
Number of Zones (Zone clustering) z 5 

 

Our WSN simulations assume that every node is within communication range of 

the gateway.  In actual practice, this may not be the case. Each of the network layer 

algorithms tested (except for the direct transmission to gateway scenario) can be extended 

to a scenario where all nodes are not within communication range. These are not 

simulated in this research. However, we explain later how the models can be extended 

and leave this task as an area of future work. 

B. DIRECT TRANSMISSION TO THE GATEWAY 

Direct transmission to the gateway involves each node sending a packet to the 

gateway directly without using any other nodes along the way.  During each round, the 

Euclidean distance is calculated between the node and the gateway, the distance is 

compared to d0 (Chapter III) in order to determine the propagation mechanism, and the 

node’s energy is decremented in proportion to the required energy for packet 

transmission to the gateway. For the multi-gateway scenario, the node chooses the 

gateway that requires the smaller transmit energy (i.e., the closer gateway) and transmits 
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the packet to that gateway. The pseudocode for the direct transmission case is provided in 

Figure 15.  The complete code is provided in Appendix B. Results for this simulation are 

provided in Chapter V. 

 
Figure 15. Pseudo code for direct transmission to gateway. 

% % denotes comment or to i mp l e:ment a task 

%i nput sensor network parameters 
% or generate sensor network 

%setup plotti ng fo rmats 

%Ass i gn star t i ng Energi es 
fo r node = l :n 

S(node) . E=EO 
end 

% 
fo r round = l : rmax 

end 

fo r i =l :n %check and ass i gn a l i ve nodes to a a l i veNode array 
i f (S( i ) . E>=O 

al i veNode ( i )=l 
end 

end 

fo r i = a l i veNode 
di stance = E~cl i dean di stance between node and gateway 

i f (di stance > do) %mul i t path propagation 

end 
S( i ) . E = S( i ) . E - ( (ETX) *(L) + Emp*L*( di stanceA4 )) 

i f (di stance <= dO) %di rectpath propagation 

end 
S( i ) . E = S( i ) . E - ( (ETX) *(L) + Emp*L*( di stanceA2 )) 

%obtai n node energy at concl usion of each round fo r post process i ng 
fo r i=l :n 

end 
energyBar(i )=S( i ) . E; 

%determi ne dead nodes and al i ve nodes fo r post process i ng 

%plot and obtai n des i red statisticts each round 

%i f all nodes a re dead , break out of t he l oop 
i f (a l i veNode i s empty) 

break 
end 

%plot and save stati sti cts fo r r ound l : rmax 
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C. MINIMUM TRANSMISSION ENERGY WITH DIJKSTRA’S 
ALGORITHM  

To perform the MTE scenario, an algorithm must be generated that produces a 

route from every node to the gateway using the node’s closest peers without generating 

loops in a fashion that minimizes propagation distance to the gateway. We desire to 

minimize propagation distance to the gateway in order to produce a route that minimizes 

the overall sensor energy depletion rate.  In this construct, we utilize propagation distance 

as our link cost parameter to input into the MTE algorithm. Previously, our d0 parameter 

indicated that propagation inside our sensor network grid is mostly a free space 

propagation (direct path instead of multi-path propagation), which allows the Euclidean 

distance between any two nodes (d)2 to be utilized as the link cost parameter for a link 

cost algorithm. 

There have been several link cost MTE algorithms developed to generate routes, 

some of which are energy conservation algorithms for WSNs. For the purpose of this 

research, we utilize the classic networking algorithm known as Dijkstra’s algorithm to 

generate our MTE routes.  Dijkstra’s algorithm is the foundation for most least-cost 

packet switching networks [30].  Utilizing d2 as the link cost parameter represents an 

energy efficient routing technique because it is minimizes the d2 propagation distance 

between a source node and the gateway. The implementation of Dijkstra’s algorithm is 

described in [30] and is executed in three steps (steps two and three are performed until 

all nodes T = N are incorporated by the algorithm) where N  is the set of nodes in the 

network, S is the source node, T  is the set of nodes incorporated by the algorithm, w(i,j) 

is the link cost from node i to node j and L(n) is the cost of the least cost path from node S 

to node n that is currently known to the algorithm. 

 If two nodes cannot communicate with each other, the link cost between them is 

infinity.  Since our simulations assume the gateway is within transmit range of any node, 

there exists a total link cost from each node to the gateway. 

1. Dijkstra’s Algorithm, Step 1: Initialization 

T = {S}, the set of nodes incorporated begins with the source node. 
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L(n) = w(s,n) for n≠s, source neighbors are incorporated by the algorithm with the 

initial path costs to neighboring nodes represented by the link costs. 

2. Dijkstra’s Algorithm, Step 2: Get Next Node 

Find the neighboring node, x, not in T that has the least-cost path from node S and 

incorporate that node into T. Incorporate the edge of x into N and calculate updated routes 

for other nodes in T.  

3. Dijkstra’s Algorithm, Step3: Update Least Cost Paths 

If an updated route from S to another node x is minimized, then that route 

becomes the updated route. 

Utilizing Dijkstra’s algorithm, we determine a path from the source node to the 

gateway during each round for each transmission. While this is computationally 

intensive, it must be done each round for each node so that, if a node dies mid-round, that 

node can no longer be utilized by other nodes and must be excluded from further route 

calculations.  The output of the algorithm for each node is a least cost path that the packet 

travels through to reach the gateway.  Using the distance between nodes along the path, 

we can use our physical layer implementation to deduct the energy to transmit and the 

energy to receive at each hop along the path. The pseudocode for implementing an MTE 

algorithm utilizing Dijkstra is shown in Figure 16. 

To verify that our implementation of Dijkstra’s three-step algorithm produces 

reasonable routes, we first tested just the algorithm solely to generate the path, which 

corresponds to the function dijkstra( ) from the pseudocode presented in Figure 16. Our 

function dijkstra( ) was constructed in MATLAB. The function dijkstra( ) using the three 

step process described above, utilizes the distance squared between nodes as the link cost 

routing metric.  Two examples of our implementation are shown in Figure 17 and Figure 

18, where each network has 50 nodes and one gateway (node 51). Figure 17 and Figure 

18 are for example only and are not representative of networks used in later simulations. 

The function, dijkstra( ), was used to calculate the path from node 1 (the source node)  to 

node 51 (the gateway).  Nodes are indicated by a circle with a blue outline while nodes 
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used for routing are indicated by a solid black circle inside the blue circle with the node 

number plotted alongside.  The gateway (node 51) is indicated by a solid green circle at 

position (25 m, −100 m).  The route in Figure 17 was determined to be 14540 6  

43451. 

 
Figure 16. Pseudocode for MTE routing using Dijkstra’s algorithm. 

% % denotes comment or to impl ement a task 

%I nput sensor network parameters or generate sensor network . 
%Setup pl otting formats . 

%Assign starti ng Ene rgies 
for node = l :n 

S(node) . E=EO 
end 

for round = l : rmax 

end 

for node = l :n 
nodesAvailabl e [ ] % initi alize nodesAva i lable to an empty a rray to preclude 

%the route contribution of nodes that died mid round 
for i = l :n 

i f(S(i) . E>O) 
ali veNode(i)=l 

end 
end 
numAl i ve = sum(al i veNode) 

NodesAvailabl e = find(aliveNode = 1) %available nodes for routing 

%output the path from the node to the gateway using NodesAvailable 
%output path provides sequential node numbe rs from sou rce to gateway 
path = dijkstra(node , gateway , NodeAvailable) 

%Decrement the ene rgy for each node i n path 
for i =path 

if (i i s not the f i rst or last element in path) 

end 

%Decrement ene rgy for each node to reci eve the message . 
%Do not i nclude the first element since it is the source . 
%Do not i nclude the l ast element since i t i s the gateway. 

S(i).E = S(i) . E- ERX*L 

distance = Euclidean distance between i and the next node i n path %TX distance 

if(distance > do) %mul itpath propagation 

end 
S(i) . E = S(i).E - ((ETX)*(L) + Emp*L*( di stanceA4 )) 

if (distance <= dO) %di rectpath propagation 
S(i) . E = S( i ) . E - ((ETX)*(L) + Emp*L*( di stanceA2 )) 

end 
end 

end 

%obtai n node energy at conclus ion of each round for post processing 
for i =l :n 

end 
energyBar(i)=S(i) . E; 

%determi ne dead nodes and alive nodes for post processing 
%plot and obtain desi red statisticts each round 

%i f all nodes are dead , break out of the loop 
if (al i veNode is empty) 

break 
end 

%plot and save statisticts for round l : rmax 
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Figure 17. Dijkstra’s algorithm from node 1 to node 51 (gateway) produced the path 

14540 6  43451. 

The route chosen in Figure 17 minimizes the direct path energy transmission cost 

between the source and the gateway (151) and produces a visually expected result.  

The route chosen from the left region of the sensor field to the gateway moves toward the 

center before choosing the least cost node that performs the long-range wireless 

transmission to the gateway.  Node 4 is also considered to be the aforementioned hot-

node for this WSN in that it is in the most preferred position for transmission to the 

gateway. This is a position that guarantees its continued use by other nodes, causing it to 

die out quickly.  Another randomly generated WSN is shown in Figure 18 in which 

dijkstra() is tested. The path from Node 1 to the gateway node 51 was chosen to be to be 

12894451. 

Even though we are implementing an energy efficient MTE algorithm, we allow 

the network to be greedy in selection of the routes. The way that the dijkstra( )is 

implemented allows nodes that are commonly in the least cost path to be significantly 

used during each round; thus, their battery energy levels deplete quickly, and 

subsequently, they die out first.   
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Figure 18. Dijkstra’s algorithm from node 1 to 51 (gateway) produced the path 

12894451. 

Our MTE algorithm does not employ any data aggregation strategy since at each 

round every node is assumed to transmit its message in a TDMA scheme where there is 

only one message passing from source to gateway through the network at a time. This 

prevents any sort of efficient data aggregation technique to be employed. However, it 

remains useful to see the behavior of this type of MTE algorithm to observe how the 

network dies out over time as well as the distribution of battery level over time. 

The multi-gateway scenario runs in a similar fashion as the single gateway except 

each node maintains a least cost route to both gateways. As each node transmits its 

message, the gateway with the smaller least cost route is chosen, and the battery energy 

levels for each node along the least cost path are decremented, respectively.  Maintaining 

a least cost route to both gateways increases the processing required to generate the route 

but provides additional options for a node’s payload to be transmitted to a gateway. 

Utilizing a multi-gateway WSN in this fashion offers an opportunity to utilize a different 

link-cost metric in our implementation of dijkstra ( ) (i.e., to tailor route identification in 

some specific fashion). For example, if one tailored the link cost parameter to link-SNR 

versus time, changes in weather patterns and atmospheric conditions can be incorporated. 
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The node would choose the optimal route to either of the gateways considering the less 

than optimal propagation environment.  We continue using distance squared as the link 

cost parameter for this research. Analyzing the impact of varying the link cost parameter 

for WSNs is left for future work. 

D. LOW ENERGY ADAPTIVE CLUSTER HEAD ROUTING 

We now move into describing our first clustering technique. Our motivation for 

employing a clustering technique is aimed at rotating the energy intensive role of the 

node that performs the long-range wireless transmission to the gateway as well as 

providing the opportunity to perform data aggregation. In Figure 17, Node 4 is the hot-

node because it consistently performs the long haul wireless transmission to the gateway.  

Coupled with a physical layer that expends only an amount of energy required for the 

transmission, this causes the hot-node to die out first. As a hot-node dies, the next most 

preferred hot-node is utilized and one can quickly conceptualize how the network will die 

out. Utilizing a clustering mechanism, we rotate the role of the CH to minimize the 

probability that any node is a hot-node in an effort to balance the energy depletion of all 

nodes and take into consideration the topology of the network as subsequent nodes die 

out. 

The clustering techniques in the literature primarily investigate a single gateway 

WSN. We study clustering from a single gateway perspective but also identify WSN 

performance benefits from introducing another gateway.   

In our overview of the network layer load balancing techniques, we briefly 

described the LEACH networking algorithm. LEACH periodically generates CHs 

through a random process. LEACH operates on a round-by-round basis in phases, which 

are summarized in [1].  A block diagram of the LEACH algorithm is shown in Figure 19. 

The LEACH algorithm shown in Figure 19 starts with a WSN consisting of 

energized nodes starting at transmission round zero.  The first phase elects the CHs using 

a random process. Once CHs are chosen, they are assigned a TDMA assignment by the 

gateway to communicate their payload to the gateway at each round. For intra-cluster 

communications,  each  CH is  assigned  a  different  coding  scheme  by  the gateway  to 
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communicate with its child nodes (i.e., nodes contained within the cluster excluding the 

CH). Each cluster uses different clustering schemes to reduce the likelihood of cluster 

communications interfering with the communications from other clusters. Each CH then 

broadcasts a CH announcement message to the entire WSN. The message is broadcast at 

the same power-level by all CHs.  Individual sensors receive the broadcast messages 

from the cluster head and choose the one that is received at the highest SNR to associate 

with.  The individual sensors respond back to their preferred CH requesting cluster 

association for the round.  The CH then assigns the node its coding scheme and a 

transmission time slot within the round. The time slot indicates when the node can 

transmit its data to the CH. At this point all clusters within the WSN are formed, each 

node is assigned a timeslot and a coding scheme to communicate with the CH, and the 

CH is assigned a timeslot to communicate all the information generated by the cluster to 

the gateway. The round then continues with the CH receiving all the packets from the 

associated nodes. The CH then aggregates the packets, performs signal compression to 

reduce the final packet size (data aggregation at the application layer), and transmits the 

final packet to the gateway.  At this point, the round is complete; all sensor data packets 

have reached the gateway, and it is time to rotate the high-energy CH role to another 

node.  As long as nodes are still alive (they have remaining energy), the process 

continues with subsequent rounds. 

 

Figure 19. LEACH algorithm block diagram.  

LEACH CH selection utilizes a random process.  The network designer chooses a 

desired percentage of nodes to serve as CHs (p). This value is known apriori by the 
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network. The desired percentage of CHs does not change during the network’s service 

life.  For example in a 100-node WSN, if the designer desires 10 CHs, p=0.10.  At the 

beginning of each round, every node computes a uniform random number, temp_rand, 

between zero and one. Each node then individually computes or performs a table lookup 

to determine its threshold number Tn for the round. The threshold number is a function of 

p, the round r, and whether or not the node has been a CH in the last 1/p rounds (i.e. the 

node is contained in G, where G represents the subset of nodes that have not been a CH 

in the last 1/p rounds).  The threshold number for each round is represented as: 

 [ ]1 mod( ,1 )( )
0

p if node G
p r pTn r

Otherwise

 ∈ −=  
  

 (12) 

where mod() is the modulus function.  In order to identify if the node is elected as a CH 

for the round, the node compares its random number generated for the round (temp_rand) 

with the threshold number that it just calculated.  If the node’s random number is less 

than the threshold number, the node is elected as a CH for the round, and a flag is flipped 

to indicate the node has been a CH in the last 1/p rounds (which includes it in G for 

subsequent calculations): 
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This scheme ensures that all nodes are elected a CH within 1/p rounds. This is 

ensured based on the calculation of the threshold number since Tn increases after each 

round. At (1/p) −1 rounds, Tn = 1, and any remaining nodes that have not been CHs in 

the previous 1/p rounds are elected as CHs.  A plot of Tn is shown in Figure 20 for p = 

0.01, 0.02, 0.05, 0.10 and 0.20 (representing 1 percent, 2 percent, 5 percent, 10 percent 

and 20 percent of nodes desired to act as CHs, respectively) to show how the threshold 

number increases each round during 1/p round increments. If p=0.01 (only one node in 

100 nodes is desired to be a CH), all nodes are guaranteed to have been chosen as CHs 

every 100 rounds. If p=0.02 (only two nodes in 100 are desired to be a CHs), all nodes 

are guaranteed to be CHs every 50 rounds. As p increases, nodes are guaranteed to  
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become CHs at faster 1/p intervals, which intuitively make sense since there are more 

nodes serving in the CH role, thus increasing the probability that any node is serving as a 

CH at any time. 

 
Figure 20. Threshold number Tn versus transmission round when varying the 

probability of a node being elected as a cluster head. 

The threshold number increases in subsequent rounds for a given p value to one as 

illustrated in Figure 20, which guarantees that all nodes become a CH in 1/p rounds. 

However, since CHs are chosen in a random fashion, there is a possibility that all nodes 

will have been chosen in the last 1/p rounds, which results in an empty set of nodes 

available to be chosen as CHs (i.e., G is a null set).  This is noted in later rounds, when 

many of the nodes have died and it takes substantially less than 1/p rounds for all nodes 

to be chosen as CHs.  This aspect of LEACH is not addressed in the original 
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documentation of LEACH [1]. In these circumstances there are two options: 1) No CHs 

are chosen and each node sends its information directly to the gateway (assuming each 

node is within communication range of the gateway), or 2) the set of nodes G that have 

served as CHs is reset so they can be used as a CH in the remaining 1/p rounds.  Since we 

utilize the assumption that all nodes are within communication range of the gateway, we 

implement option 1 in our LEACH simulations. 

Pseudocode for the LEACH algorithm is provided in Figure 21, and the full code 

used in our simulations is provided in Appendix B.  The multi-gateway case requires an 

extra step in that each CH identifies the preferred gateway to transmit its aggregated 

packet. In our research, the preferred gateway is the closer gateway to minimize energy 

from the wireless transmission. 

The desired probability for a node to be chosen as a CH is an input to the 

algorithm and must be specified.  The original author of LEACH performed analysis to 

determine the optimum value for p, p = 0.5 [1].  This value was determined by running 

simulations increasing p and plotting the rate of energy depletion normalized against the 

equivalent rate if the network algorithm used was each node communicating directly with 

the gateway.  Their results show that there is an initial steep decline in energy depletion 

rate of LEACH as p increases from zero to approximately five percent. The normalized 

energy depletion rate of LEACH starts at one because the condition where there are no 

CHs corresponds to each node communicating its payload directly to the gateway, which 

is the same as the direct routing case.  Similarly, 100 percent of nodes as CHs (p=1.0) 

also corresponds to the same routing process as the Direct case because each node is 

serving as a CH but contains no serviced nodes, thus both have a normalized energy 

dissipation of 1.0 in Figure 22. In addition, there is a distinct point where LEACH’s 

normalized energy dissipation is minimized Figure 22, which was determined to be 0.05. 

As a result, we set our probability for any node to be chosen as a CH as 0.05 (p=0.05) in 

single and multi-gateway simulations. 
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Figure 21. Pseudocode for our implementation of LEACH. Complete code is 

provided in Appendix B. 
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Figure 22. Percentage of CHs in LEACH versus normalized energy dissipation rate 

with p = 0.05; therefore, energy dissipation for LEACH is minimized (from [1]). 

E. ZONE CLUSTERING WITH RANDOM CLUSTERHEAD SELECTION 

Zone clustering appears less frequently in the literature as compared to LEACH. 

However, for a tactical network, it may be a preferred networking algorithm because the 

user can specify how zones are characterized for the network. This yields another aspect 

of network layer control as compared to LEACH.   

The general methods that we use for our zone routing algorithm are based on 

techniques described in [31]. In [31], the authors utilize a sensor filed comprised of 

homogenous zones.  A sensor in each zone has a probability p of becoming a CH during 

each round.  The probability p is determined relative to the number of nodes in the zone: 

p = 1/(number of nodes in zone).  Their methodology is useful for a tactical network in 

that the objective of zoning in a WSN is to ensure that CHs are uniformly selected 

through the network.   

Our zone clustering algorithm divides the sensor field into z equal zones. Equal 

zones were chosen because the distribution of nodes is uniform in the field.  Equal zones 

span along the Cartesian x-axis to create z vertical rectangular zones.  As shown in Figure 

23, our simulation uses z = five zones. Five zones were chosen to provide a comparison 
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with the LEACH algorithm. Recall that in our LEACH algorithm, the probability of any 

node being chosen a CH is p=0.05. Thus, in a 100 node network, we would on average to 

have five CHs. To ensure there are five CHs for our zone clustering algorithm, we must 

have five zones and each zone is only allowed to have only one CH. 

 
Figure 23. Our single gateway (green circle), 100 node (blue outlined circles) 

partitioned into five zones along the x-grid axis. 

The pseudocode for our zone based simulation is shown in Figure 24. The 

algorithm is executed in three phases: 1) setup, 2) CH election for each zone, and 3) 

communications between nodes and the gateway.  Network layer functions take place in 

phases 2 and 3.  The setup phase utilizes the user’s inputs for the WSN (or creates the 

WSN) and partitions the network into the required number of zones. Partitioning the 

network in zones essentially creates several smaller WSNs that all utilize the same 

gateway.  The zone assigned to any node is described by the node’s x-coordinate in the 

field, which is shown in Figure 24. 
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Figure 24. Pseudocode for zone routing algorithm simulation with random CH 

election in each zone. 

Once all nodes are assigned to a zone, we begin the simulation at round one and 

complete the simulation at the maximum desired round. In each round, the set of live 

nodes for each zone is identified, and the CH is chosen based on a random assignment 

from this set.  Each node in the zone then transmits its L-bit packet to the zone’s CH and 

its energy is decremented according to our radio energy model. The CH for the zone then 

aggregates all the messages from the nodes in the zone and transmits the aggregated 

message to the gateway. The process is repeated for each zone at each round.  The 

pseudocode for the multi-gateway configuration is similar to Figure 24, except for each 
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zone at each round, the CH chooses the optimal gateway to which the aggregated data is 

sent. In our simulations, the optimal gateway corresponds to the closest gateway to the 

CH, which minimizes the energy required for the transmission. 

For ease of simulation, our MAC based approach uses rounds where each node 

sends a packet to the gateway sometime within each round.  All the packets must be 

received by the CH in each round, at which point the CH aggregates all L-bit packets into 

one collective L-bit packet and transmits the aggregated packet to the gateway at a later 

point in the round. We assume the MAC process is similar to that described for LEACH, 

in which CHs are assigned a TDMA timeslot for transmission to the gateway and CHs 

are assigned code-division multiple access (CDMA) schemes for intra-cluster 

communications to prevent interference with other zones. Each zone is assigned a CDMA 

scheme for the life of the network. Another possible strategy is to develop an aggregation 

scheme where CHs transmit the aggregated packet to the gateway using a more energy 

efficient strategy.  This aspect is not simulated but is an opportunity for future work. 

F. ZONE CLUSTERING WITH ENERGY EFFICIENT CLUSTER HEAD 
SELECTION  

The zone clustering case described in Section E chooses the CH for each zone 

randomly.  A clustering algorithm that partitions nodes into specific zones is an energy 

saving technique when compared to the previous LEACH algorithm because there is a 

lower maximum distance that any node must transmit to reach its CH. Our 

implementation of the zones guarantees a nearby CH in the zone as compared to that of 

LEACH.  In LEACH the nearest CH may be on the other side of the network since the 

criteria for a node to be elected as a CH may have only been met randomly on the other 

side of the field (we show this effect later).  After observing the results that we present 

later in Chapter V, we noted significant differences in the energy distribution of the nodes 

in the network.  The differences in energy levels across the WSN caused some nodes to 

die out earlier and some nodes to die out later.  

As a result of our observation of how nodes’ energy levels are depleted (visual 

observation based on energy distributions plotted later in Chapter V),  we modified our 
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zone based CH election criteria based on a cross-layer implementation between the 

networking layer and the physical layer. Specifically, in any given round, if the highest 

energy node is chosen to be the CH, individual node energy depletion rates are 

minimized with the battery levels in any zone depleting at a uniform rate. 

To accomplish this strategy, we modify our zone routing pseudocode in Figure 24 

to revise the process of electing the CH in each zone at each round and is shown in Figure 

25. Instead of randomly choosing the CH from the live nodes in the zone, we choose the 

CH that has the maximum energy level in the zone.  Based on this election criteria, nodes 

that are in a more preferred location (a location that minimizes energy depletion rate such 

as locations closer to the gateway) are chosen to be the CH for the zone more than those 

in a less preferred location (a location farther away from the gateway). 

 
Figure 25. Pseudocode for zone routing protocol with energy efficient CH election.  



 56 

In practice, electing the highest energy node to be the CH during each round in 

each zone requires additional processing by the gateway to perform CH election.  Our 

simulations perform this aspect automatically with the assumption that it is normally 

performed by the gateway. One possible implementation of this strategy in practice is that 

the aggregated packet sent to the gateway includes updated node energies for each node 

in the zone in the packet header. The gateway, being unconstrained by energy, can then 

estimate the amount of energy consumed by the CH to transmit the aggregated packet. 

The gateway can then decide which node in each zone should be assigned the CH for the 

next round and broadcast this information back to the WSN. In our case, since each node 

is within communication range of the gateway, every node in every zone will know who 

its CH is for the next round.   

G. APPLICATION LAYER 

We employ two application layer strategies, 1) a constant bit rate (CBR) generator 

and 2) a data aggregation application.  The CBR application allows each node to send an 

L=2000 bit message to the gateway at each round.  We are not concerned with the 

contents of each message. Instead, we only care that messages are produced so that we 

may observer how energy is depleted throughout the network due to the network routing 

algorithm in use.  Our CBR technique is most analogous to that of the user datagram 

protocol (UDP) used in the modern day Internet. In UDP, a connection-less link is used 

in which the source node does not obtain any acknowledgement that its packets were 

successfully delivered to the gateway.  Eliminating the acknowledgement precludes 

additional transmissions providing a further load balancing strategy. 

Only clustering mechanisms use data aggregators in our scenarios.  Data 

aggregation requires energy to perform the signal compression, which must be accounted 

for. We adopt a similar technique, used in the literature, which applies an energy cost to 

the data aggregator for the task of aggregating all the data during a round [1], [2], [38]–

[40].  The node performing data aggregation is always the CH, and a data aggregation 

constant EDA is used to account for the energy to compress messages into one final  
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L=2000 bit message. The data aggregation constant used in our scenarios is consistent 

with the literature (EDA = 5 nJ/bit) and results in an aggregation cost of EDA × L [1], 

[2], [38]–[40]. 

H. CHAPTER IV SUMMARY 

Our network layer algorithms for simulation in Chapter V and VI were described 

in Chapter IV.  We utilized certain algorithms from the literature that were analyzed in 

single gateway WSNs. We apply them to our single gateway and multi-gateway 

scenarios.  Algorithms we utilized from the literature are where each node transmits its 

information directly to the gateway(s) (direct), MTE routing utilizing Dijkstra’s 

algorithm (MTE), low energy adaptive cluster head (LEACH) routing, and zone 

clustering with random CH assignment (zone).  We then described an energy-efficient 

zone clustering algorithm (EZone) that we devised as a result of our research.  
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V. SIMULATIONS AND RESULTS 

In this chapter, we provide the results for the algorithms described in Chapter IV. 

All simulations were executed using MATLAB. We start by describing metrics of 

interest for our simulations.  We then provide results for each algorithm individually for 

single and multi-gateway simulations and then show and discuss how all results compare 

to each other.  Each algorithm was executed on the same WSN that was shown 

previously (Figure 9 and Figure 10) for the single and multi-gateway cases, which 

provide a means to compare the networking layer performance of each case with one 

another. We then let each algorithm run separately thousands of times, each time 

regenerating a WSN with 100 uniformly distributed nodes.  We capture die out metrics 

and model them as random variables. The purpose of the random variable testing is to 

draw further conclusions on our results from many network simulations instead of the 

single WSNs scenario we present in this chapter. Random variable modeling is presented 

in Chapter VI. 

A. SIMULATION METRICS 

Our simulation metrics are based on the motivations of this thesis: to identify the 

performance advantages of load balancing techniques of various network layer 

algorithms on the lifetime of a WSN in single gateway and multi-gateway configurations.  

To accomplish this, we model the WSN for its total useful life, observing how and why 

the network dies out over time.  For the clustering mechanisms, we are interested in the 

number of clusters at each round, the distribution of clusters across the sensor field, and 

how CH election criteria impacts the distribution of the network dying out over time.  

More specifically, we track the energy level of each node at each round to produce the 

metrics displayed in Table 3.  Tracking the energy level of each node allows the 

calculation of a discrete energy variance at each round, which provides realization of the 

magnitude of the energy difference between all the nodes each round.  The energy 

variance is given by 
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In Equation. 14, E is the random variable for energy, n represents the number of live 

nodes in the round, ei is the energy of the ith live node in the round, and µ is the mean 

energy for the round. 

Table 3.   Simulation metrics for WSN network simulations. 

Summary of Simulation Metrics 
1. Energy level of each node at each round 
2. Number of alive nodes at each round 
3. Variance of the WSN energy distribution 
4. Total WSN energy level at each round 
5. The round and location of the first dead node 
6. The round and distribution of nodes when 10% of the nodes are dead 
7. The round and distribution of nodes when 50% of the nodes are dead 
8. The round and distribution of nodes when 80% of the nodes are dead 
9. Number and location of CHs at each round (clustering algorithms only) 

 

The service life of a WSN is subject to opinion.  Some would contest that the 

WSN is completely in service as long as all nodes in the network are live while some 

pick a percentage of nodes that must be alive during each round for the network to be 

considered at full service. The metrics in Table 3 consider both perspectives since we 

account for the round and location of the first dead node and the round and locations of 

10 percent, 50 percent and 80 percent of nodes being dead.   

B. DESCRIPTION OF PLOT RESULTS 

Every round we generate several plots to characterize energy consumption and the 

distribution of live and dead nodes in the network. We update three plots each round 

dynamically. The first plot is a bar plot that provides the energy of each node from 1 to 

100 where node 1 is the closest node to x=0 (the y-axis) and node 100 is on the other side 

of the sensor field closest to the line x=50 m. The second plot is a three-dimensional 

energy stem plot where each stem is located in the position of the node in the field, and 

the height of the stem represents the amount of residual battery energy available. The 
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final plot is an overhead of the sensor field including the gateway.  We refer to the first 

plot as the energy bar plot, the second plot as the energy stem plot and the third plot as 

the node distribution plot.  These plots are interactive and contain information that 

updates each round.  For example, the energy stem plot is green, and the elevation 

(energy level) decreases each round corresponding to energy consumption.  When the 

stem reaches zero energy (the floor), the green bubble changes to red to indicate the node 

has died.  The node distribution plot shows live nodes as a circle with a blue outline and 

dead nodes as solid red bubbles.  The node distribution plot also contains the round from 

which all three plots are drawn.  The energy bar and stem plots are stacked on top of each 

other on the left hand side of the subplot, and the node distribution plot is on the right 

side of the subplot.  For each simulation, this is plotted four times corresponding to the 

round the first node dies and the round that 10 percent, 50 percent, and 80 percent of 

nodes have died. 

The node distribution plots for our clustering simulations indicate which nodes 

are the CHs for the round the plot is drawn from. The CHs are indicated by a blue 

asterisk that fills the nodes that are outlined in blue on the plots. For LEACH, this allows 

the reader to see how LEACH inefficiently partitions the sensor field with CHs without 

regard to any spatial arrangement.  For the zone routing algorithms (Zone and EZone), 

there exists only one node in each zone during each round that serves as the CH. As a 

result, the reader can observe one blue asterisk in each zone during each round. Our 

display of CHs involves one caveat for LEACH and zone routing algorithms. In some 

cases, the CH asterisk indicator is plotted over with a solid red circle because its energy 

was fully depleted in its last round as the CH. Our plots are drawn at the end of each 

round; thus, if a node is dead and it was the CH during the round, it is depicted as a dead 

node. 

At the conclusion of each simulation, we obtain three additional plots that provide 

information from the start of the simulation to the end of the simulation. The simulation 

is over after the round in which the last node died.  We plot the total WSN energy level 

during each round where the total energy is the sum of individual node energies.  There is 

a distinct linear region of this plot that allows extraction of the WSN energy depletion 
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rate when all nodes are alive. We then plot the energy variance versus round for the WSN 

throughout the simulation, and the final plot shows the number of live nodes versus 

transmission round.  After all individual results are plotted, we conclude the chapter by 

plotting the total WSN energy, energy variance, and distribution of alive nodes for each 

algorithm on common plots to compare network layer performance. 

C. DIRECT TRANSMISSION TO THE GATEWAY  

1. Single Gateway 

Direct transmission to the gateway routing initiates each node to send an L=2000 

bit packet to the gateway during each round.  The first node dead, 10 percent, 50 percent, 

and 80 percent nodes dead subplots are provided in Figure 26 through Figure 29, 

respectively, for the single gateway case.  The total system energy, energy variance, and 

number of nodes versus transmission round are shown in Figure 30 through Figure 32, 

respectively. The first node dead, 10 percent, 50 percent, and 80 percent nodes dead 

occur at round 356, 410, 652, and 939, respectively.  The energy stem plot and node 

distribution plots demonstrate that nodes farthest from the gateway die out first, quickly 

eliminating service coverage in areas farthest from the gateway.  This die out topology is 

expected because our physical layer depletes energy proportional to transmission 

distance.   

The energy stem plot demonstrates that nodes closest to the gateway remain in 

service longer than nodes farther from the gateway because our physical layer depletes 

energy proportional to distance squared for free space (direct) propagation and d4 for 

multi-path propagation.  Since our d0 parameter is approximately 87 m and the gateway is 

at least 100 m below the closest node, all propagation in this simulation is multi-path 

propagation.  The same is also true for the multi-gateway simulation since the additional 

gateway is at least 100 m above the closest node.  The energy depletion rate of the 

network during the linear region of Figure 30 is 0.0798 J/round. 
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Figure 26. Direct routing in a single gateway WSN illustrating first node dead die out 

topology versus transmission round versus round and energy distributions. 

 
Figure 27. Direct routing in a single gateway WSN illustrating 10 percent nodes dead 

die out topology versus transmission round and energy distributions. 
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Figure 28. Direct routing in a single gateway WSN illustrating 50 percent nodes dead 

die out topology versus transmission roundand energy distributions. 

 
Figure 29. Direct routing in a single gateway WSN illustrating 80 percent nodes dead 

die out topology versus transmission roundand energy distributions. 



 65 

 
Figure 30. Direct routing in a single gateway WSN. The total WSN energy versus 

transmission round is illustrated.   

 

 
Figure 31. Direct routing in a single gateway WSN.  The WSN energy variance 

versus transmission round is illustrated. 
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Figure 32. Direct routing in a single gateway WSN. The number of nodes alive 

versus transmission round is illustrated. 

2. Multi-gateway 

Direct transmission to multi-gateway routing initiates each node to send an 

L=2000 bit packet to the closest gateway during each round.  The first node dead, 10 

percent, 50 percent, and 80 percent nodes dead subplots are provided in Figure 33 

through Figure 36, respectively, for the multi-gateway case.  The total system energy, 

energy variance, and number of nodes versus transmission round are shown in Figure 37 

through Figure 39, respectively. The first node dead, 10 percent, 50 percent, and 80 

percent nodes dead occur at round 652, 712, 911, and 1128, respectively. This 

corresponds to a percent increase of 83 percent, 74 percent, 40 percent, and 20 percent, 

respectively, when compared to the single gateway die out statistics for the same 

algorithm.  The energy stem plot and node distribution plots demonstrate that nodes 

farthest from the closer gateway die out first, quickly eliminating service coverage in the 

center region of the field along the line y=25 m.  This is expected since the physical layer 

depletes energy based on required transmission distance and nodes along the line y=25 m 
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are farthest away from the gateway in the multi-gateway case. The energy depletion rate 

of the network during the linear region of Figure 37 is 0.0554 J/round, which corresponds 

to a 31 percent reduction in network energy depletion rate compared to the single 

gateway case. 

 
Figure 33. Direct routing in a multi-gateway WSN illustrating first node dead die out 

topology versus transmission round and energy distributions. 

 
Figure 34. Direct routing in a multi-gateway WSN illustrating 10 percent nodes dead 

die out topology versus transmission round and energy distribution. 
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Figure 35. Direct routing in a multi-gateway WSN illustrating 50 percent nodes dead 

die out topology versus transmission round and energy distribution. 

 

Figure 36. Direct routing in a multi-gateway WSN illustrating 80 percent nodes dead 
die out topology versus transmission round and energy distribution. 
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Figure 37. Direct routing in a multi-gateway WSN.  The total WSN energy versus 

transmission round is illustrated. 

 
Figure 38. Direct routing in a  multi-gateway WSN.  The WSN energy variance 

versus transmission round is illustrated. 
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Figure 39. Direct routing in a multi-gateway WSN.  The number of nodes alive 

versus transmission round is illustrated. 

D. MTE WITH DIJKSTRA (MTE) 

1. Single Gateway 

Minimum transmission energy with Dijkstra routing initiates each node to send an 

L=2000 bit packet to the gateway during each round utilizing a route through neighboring 

nodes that minimizes the d2 propagation link cost to the gateway.  The first node dead, 10 

percent, 50 percent, and 80 percent nodes dead subplots are provided in Figure 40 

through Figure 43, respectively, for the single gateway case.  The total system energy, 

energy variance, and number of nodes versus transmission round are shown in Figure 44 

through Figure 46, respectively. The first node dead, 10 percent, 50 percent, and 80 

percent nodes dead occur at round 11, 77, 199, and 354, respectively. The energy stem 

plot and node distribution plots demonstrate that nodes closest to the gateway die out first 

and then fan out as subsequent live nodes closest to the gateway become the hot-nodes.  
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This quickly eliminates service coverage in those areas as expected but is a negative 

aspect of MTE routing in WSNs.  The energy depletion rate of the network during the 

linear region of Figure 44 is 0.2140 J/round. 

The energy bar and stem plots in Figure 40 through Figure 43 reveal a large 

variation in energy across all nodes. Nodes that are farthest away from the gateway are 

not used by their peers as frequently for routing, thus their energy is preserved.  This 

creates a large energy variance and the quickest die out for all results collected in this 

thesis.  The first node dies out quickest using this algorithm in part because there is no 

data aggregation strategy in place.  This increases the transmission energy required of the 

hot-node at each round, thus fully depleting its battery power quickly.  Since the first 

node dies out quickly, the timeframe for a linear energy depletion rate is also low (Figure 

44).  Also, since nodes farthest from the gateway are not utilized compared to nodes 

closer to the gateway, they remain in service the longest (Figure 46).  

 
Figure 40. MTE routing in a single gateway WSN illustrating first node dead die out 

topology versus transmission roundand energy distribution. 
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Figure 41. MTE routing in a single gateway WSN illustrating 10 percent nodes dead 

die out topology versus transmission roundand energy distribution. 

 
Figure 42. MTE routing in a single gateway WSN illustrating 50 percent nodes dead 

die out topology versus transmission round and energy distribution. 
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Figure 43. MTE routing in a single gateway WSN illustrating 80 percent nodes dead 

die out topology versus transmission round and energy distribution. 

 
Figure 44. MTE routing in a single gateway WSN.  The total WSN energy versus 

transmission round is illustrated. 
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Figure 45. MTE routing in a single gateway WSN. The WSN energy variance versus 

transmission round is illustrated. 

 
Figure 46. MTE routing in a single gateway WSN. The number of nodes alive versus 

transmission round is illustrated. 
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2. Multi-gateway 

Minimum transmission energy with Dijkstra routing initiates each node to send an 

L=2000 bit packet to the gateway during each round utilizing a route through neighboring 

nodes that minimizes the d2 propagation link cost to the closer gateway.  The gateway 

with the lower total link cost route metric is used. The first node dead, 10 percent, 50 

percent, and 80 percent nodes dead subplots are provided in Figure 47 through Figure 50, 

respectively, for the multi-gateway case.  The total system energy, energy variance, and 

number of nodes versus transmission round are shown in Figure 51 through Figure 53, 

respectively. The first node dead, 10 percent, 50 percent, and 80 percent nodes dead 

occur at round 17, 100, 293, and 453, respectively, corresponding to a percent increase of 

55 percent, 30 percent, 47 percent, and 28 percent, respectively, when compared to single 

gateway die out statistics for the same algorithm.  The energy stem plot and node 

distribution plots demonstrate nodes closest to each gateway die first quickly, eliminating 

service coverage in those areas.  The energy depletion rate of the network during the 

linear region of Figure 51 is 0.1418 J/round, which corresponds to a 34 percent reduction 

in network energy depletion rate compared to the single gateway case. 

The previous single gateway case depleted nodes farthest from the gateway 

slowly. In the multi-gateway scenario, nodes in the middle of the sensor field are 

preserved longest since they are not used for routing as much as hot-nodes that are closest 

to the gateway. There is an opposite node die out reaction when using Dijkstra’s 

algorithm in MTE routing compared to the direct routing simulation. Specifically, the 

direct packet transmission algorithm depleted nodes farthest from the gateway, while 

MTE transmission depleted areas needed for packet routing first. 

Our comments regarding energy variance are similar in the single gateway and 

multi-gateway MTE scenarios except the multi-gateway yields a smaller energy variance 

during each round.  The addition of the second gateway lowers the total number of 

transmissions during each round, which is an improvement and, subsequently, lowers the 

energy variance as compared to the single gateway case.  However, the lack of data 

aggregation and the fact that nodes use their neighbors excessively for routing causes a 

large energy variance and, therefore, nodes die out quickly. 
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Figure 47. MTE routing in a multi-gateway WSN illustrating first node dead die out 

topology versus transmission round and energy distribution. 

 
Figure 48. MTE routing in a multi-gateway WSN illustrating 10 percent nodes dead 

die out topology versus transmission round and energy distribution. 
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Figure 49. MTE routing in a multi-gateway WSN illustrating 50 percent nodes dead 

die out topology versus transmission round and energy distribution. 

 
Figure 50. MTE routing in a multi-gateway WSN illustrating 80 percent nodes dead 

die out topology versus transmission round and energy distribution. 
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Figure 51. MTE routing in a multi-gateway WSN. The total WSN energy versus 

transmission round is illustrated. 

 
Figure 52. MTE routing in a multi-gateway WSN. The WSN energy variance versus 

transmission round is illustrated. 
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Figure 53. MTE routing in a multi-gateway WSN. The number of nodes alive versus 

transmission round is illustrated. 

E. LOW ENERGY ADAPTIVE CLUSTERHEAD (LEACH) ROUTING 

1. Single Gateway 

LEACH routing initiates LEACH clustering, and each node sends an L=2000 bit 

packet to the gateway through the CH during each round. The CH aggregates all packets 

into a single 2000 bit packet for the round and performs the transmission to the gateway. 

The first node dead, 10 percent, 50 percent, and 80 percent nodes dead subplots are 

provided in Figure 54 through Figure 57, respectively, for the single gateway case.  The 

total system energy, energy variance, and number of nodes versus transmission round are 

shown in Figure 58 through Figure 60, respectively. First node dead, 10 percent, 50 

percent, and 80 percent nodes dead occur at round 1642, 1760, 1990, and 2182, 

respectively. The energy stem plot and node distribution plots demonstrate that nodes die 

out starting in the middle of the network and progress out. From this outward 

progression, nodes toward the top of the network die out more quickly than nodes at the 

bottom of the sensor field because nodes at the top of the gateway use more energy to 
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transmit a cluster’s payload to the gateway during the random times they are selected as 

the CH. Nodes at the center of the field start to die out first as a result of LEACH’s 

mechanism for determining CHs and cluster assignments at each round. We examine this 

again later in the chapter when we compare the dynamics of our simulated clustering 

algorithms.  The energy depletion rate of the network during the linear region of Figure 

58 is 0.0245 J/round. 

This simulation presents a first look at the performance advantage of using a 

clustering algorithm with data aggregation as we realize a significant increase in our 

service life die out parameters.  As a result, our energy variance versus transmission 

round and energy depletion rate versus transmission round is significantly lower 

compared to the other network algorithm simulations presented (i.e., MTE and direct).  

Also, the range of all nodes live compared to the range of nodes dying out is much 

greater than the previous algorithms, indicating that all nodes are live in the network for a 

much longer period of time relative to the other algorithms.  This indicates a longer 

relative time of complete service coverage. 

 
Figure 54. LEACH routing in a single gateway WSN with first node dead die out 

topology versus transmission round and energy distribution. The node 
distribution plot indicates three CHs chosen during round 1642. 
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Figure 55. LEACH routing in a single gateway WSN with 10 percent nodes dead die 

out topology versus transmission round and energy distribution. The node 
distribution plot indicates at least four CHs however a dead node may have 

masked other CHs. 

 
Figure 56. LEACH routing in a single gateway WSN with 50 percent node dead die 

out topology versus transmission round and energy distribution. The node 
distribution plot indicates at least one CH however a dead node may have 

masked other CHs. 
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Figure 57. LEACH routing in a single gateway WSN with 80 percent node dead die 

out topology versus transmission round and energy distribution. The node 
distribution plot indicates at least one CH however a dead node may have 

masked other CHs. 

 
Figure 58. LEACH routing in a single gateway WSN. The total WSN energy versus 

transmission round is illustrated. 
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Figure 59. LEACH routing in a single gateway WSN. The WSN energy variance 

versus transmission round is illustrated. 

 
Figure 60. LEACH routing in a single gateway WSN. The number of nodes alive 

versus transmission round is illustrated. 
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2. Multi-gateway 

Like the single gateway case, LEACH routing initiates LEACH clustering, and 

each node sends an L=2000 bit packet to the gateway through the CH during each round. 

The CH aggregates all packets into a single 2000 bit packet for the round and performs 

the transmission to the closer gateway.  The first node dead, 10 percent, 50 percent, and 

80 percent nodes dead subplots are provided in Figure 61 through Figure 64, respectively, 

for the multi-gateway case.  The total system energy, energy variance, and number of 

nodes versus transmission round are shown in Figure 65 through Figure 67, respectively.  

The first node dead, 10 percent, 50 percent, and 80 percent nodes dead occur at round 

1633, 1805, 2112, and 2327, respectfully, corresponding to a percent increase of −1 

percent, three percent, six percent, and seven percent, respectively, when compared to the 

single gateway die out statistics for the same algorithm.  The energy stem plot and node 

distribution plots demonstrate that nodes die out starting in the middle of the network and 

progressing outwards.  In comparison to the single gateway LEACH case, the presence of 

an additional gateway causes nodes to die out in a consistently radial fashion from the 

center of the field.  The energy depletion rate of the network during the linear region of 

Figure 65 is 0.0232 J/round, which corresponds to a five percent reduction in network 

energy depletion rate compared to the single gateway case.  

The addition of another gateway does not significantly extend the life of the WSN 

for the LEACH algorithm due to the network topology during die out. During die out for 

both the single and multi-gateway simulations, nodes die out radially from the center of 

the sensor field.  The additional gateway causes the algorithm to extend to a few extra 

rounds during the die out because nodes are not predominantly dying out toward the top 

of the network as occurred during the LEACH single gateway scenario.  We note that the 

round the first node dies for the multi-gateway case is nine rounds earlier than the single 

gateway case.  We would expect the die out occur during a similar round because 

LEACH die out starts in the center of the field for both cases.  However, because LEACH 

CHs are chosen through a random process, running the same algorithm on the same 

sensor field arrangement causes slightly different results. This is because CHs are chosen 
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dynamically, and the time and place of these CHs results in a slightly different value for 

the round when the first node dies.  

 
Figure 61. LEACH routing in a multi-gateway WSN. The first node dead die out 

topology versus transmission round and energy distribution is illustrated. Four 
CHs are inefficiently and tightly grouped together are shown on the node 

distribution plot. 

 
Figure 62. LEACH routing in a multi-gateway WSN. The 10 percent nodes dead die 

out topology versus transmission round and energy distribution is illustrated. At 
least three CHs are plotted on the node distribution plot however a dead node 

may have masked other CHs. 
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Figure 63. LEACH routing in a multi-gateway WSN. The 50 percent nodes dead die 

out topology versus transmission round and energy distribution is illustrated.  No 
CHs are shown on the node distribution plot however a dead node may have 

masked other CHs. 

 
Figure 64. LEACH routing in a multi-gateway WSN. The 80 percent nodes dead die 

out topology versus transmission round and energy distribution is illustrated. 
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Figure 65. LEACH routing in a multi-gateway WSN. The total WSN energy versus 

transmission round is illustrated. 

 
Figure 66. LEACH routing in a multi-gateway WSN. The WSN energy variance 

versus transmission round is illustrated. 
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Figure 67. LEACH routing in a multi-gateway WSN. The number of nodes alive 

versus transmission round is illustrated. 

F. ZONE CLUSTERING WITH RANDOM CLUSTER HEAD ELECTION  

1. Single Gateway  

Zone clustering with random CH election splits the field into five zones, 

randomly elects a CH in each zone to receive all L = 2000 bit packets from supported 

nodes and then aggregates the packet into a 2000 bit packet for transmission to the 

gateway.  The first node dead, 10 percent, 50 percent, and 80 percent nodes dead subplots 

are provided in Figure 68 through Figure 71, respectively, for the single gateway case.  

The total system energy, energy variance, and number of nodes versus transmission 

round are shown in Figure 72 through Figure 74, respectively. First node dead, 10 

percent, 50 percent, and 80 percent nodes dead occur at round 1649, 1821, 2022, and 

2140, respectively.  

The energy stem plot and node distribution plots demonstrate much more uniform 

energy depletion as compared to all the other algorithms tested thus far. The location of 
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the first node dead appears to be random but favors the upper region of the plot since 

nodes in that region require the most energy for transmission to the gateway when they 

are chosen as the CH.  The location of the first node that dies is a random location 

because it is a function of how many times it had previously been selected to be a CH 

combined with how far away it resides from the gateway.  Since any node can be 

randomly selected to be a CH more than any other node in the network, this creates a 

random mode for nodes to die out. Observing the node distribution plots in Figure 68 and 

Figure 69, as nodes begin to die out, many of their peers remain alive, preserving sensor 

coverage in those regions.  There is a slightly higher concentration of dead nodes at the 

top of the zones since those nodes require more energy to transmit over a larger distance. 

However, since CH election is random, we do see some nodes have died at the bottom of 

the zones in Figure 70 and Figure 71 as they were randomly chosen to be a CH for the 

zone more frequently. Zones in the node distribution plots die out consistently with no 

one zone dying out earlier than another zone. This algorithm with the first node dead at 

round 1649 provides the longest service life of 100 percent of nodes alive of all 

algorithms tested thus far. The energy depletion rate of the network during the linear 

region of Figure 72 is 0.0248 J/round. 

 
Figure 68. Zone clustering algorithm with random CH election routing. The first 

node dead die out topology versus transmission round and energy distributions is 
illustrated. 
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Figure 69. Zone clustering algorithm with random CH election routing. The first 

node dead die out topology versus transmission round and energy distributions is 
illustrated. 

 
Figure 70. Zone clustering algorithm with random CH election routing. The 50 

percent nodes dead die out topology versus transmission round and energy 
distributions is illustrated. 
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Figure 71. Zone clustering algorithm with random CH election routing. The 80 

percent nodes dead die out topology versus transmission round and energy 
distributions is illustrated. 

 
Figure 72. Zone clustering algorithm with random CH election routing in a single 

gateway WSN. The total WSN energy versus transmission round is illustrated. 
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Figure 73. Zone clustering algorithm with random CH election in a single gateway 

WSN. The WSN energy variance versus transmission round is illustrated. 

 
Figure 74. Zone clustering algorithm with random CH election routing in a single 

gateway WSN. The nodes alive versus transmission round is illustrated. 
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2. Multi-gateway 

Like Zone clustering for the single gateway case, Zone clustering with random 

CH election for the multi-gateway scenario splits the field into five zones, randomly 

elects a CH in each zone to receive all L = 2000 bit packets from supported nodes and 

then aggregates the packet into a 2000 bit packet for transmission to the gateway.  The 

first node dead, 10 percent, 50 percent, and 80 percent nodes dead subplots are provided 

in Figure 75 through Figure 78, respectively, for the multi-gateway case.  The total 

system energy, energy variance, and number of nodes versus transmission round are 

shown in Figure 79 through Figure 81, respectively. First node dead, 10 percent, 50 

percent, and 80 percent nodes dead occur at round 1862, 1964, 2117, and 2215, 

respectively. This corresponds to a percent increase of 13 percent, eight percent, five 

percent, and four percent, respectively, when compared to the single gateway die out 

statistics for the same algorithm.  The energy depletion rate of the network during the 

linear region of Figure 79 is 0.0235 J/round, which corresponds to a five percent 

reduction in network energy depletion rate compared to the single gateway case. 

The addition of another gateway in a zone routing algorithm with random CH 

election extends the time when 100 percent of nodes are alive and induces better 

uniformity of individual node energy depletion.  This can be observed in the energy plots 

and the energy variance versus transmission round plot shown in Figure 80.  We note that 

the maximum y-axis of Figure 80 is 8 ×10-4 J2, which is the smallest (maximum) energy 

variance of any algorithm tested thus far.  The number of rounds between the first node 

dead and 80 percent of nodes dead is 353.  This results in the die out time versus 100 

percent nodes alive time being 353/1862 = 0.19.  This is the smallest fraction for the die 

out period presented thus far. 



 94 

 
Figure 75. Zone clustering algorithm with random CH election routing in a multi-

gateway WSN. The first node dead die out topology versus transmission round 
and energy distribution is illustrated. 

 
Figure 76. Zone clustering algorithm with random CH election routing in a multi-

gateway WSN. The percent nodes dead die out topology versus transmission 
round and energy distribution is illustrated. 
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Figure 77. Zone clustering algorithm with random CH election routing in a multi-

gateway WSN. The 50 percent nodes dead die out topology versus transmission 
round and energy distribution is illustrated. 

 
Figure 78. Zone clustering algorithm with random CH election routing in a multi-

gateway WSN. The 80 percent nodes dead die out topology versus transmission 
round and energy distribution is illustrated. 
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Figure 79. Zone clustering algorithm with random CH election routing in a multi-

gateway WSN. The total WSN energy versus transmission round is illustrated. 

 
Figure 80. Zone clustering algorithm with random CH election routing in a multi-

gateway WSN. The WSN energy variance versus transmission round is 
illustrated. 



 97 

 
Figure 81. Zone clustering algorithm with random CH election in a multi-gateway 

WSN. The nodes alive versus transmission round is illustrated. 

G. ZONE CLUSTERING WITH ENERGY EFFICIENT CLUSTER HEAD 
ELECTIONS  

1. Single Gateway 

Zone clustering with energy efficient CH election (EZone) splits the field into five 

zones, elects a CH in each zone to receive all L = 2000 bit packets from supported nodes 

according to the node that contains the highest energy, and then aggregates the packet 

into a 2000 bit packet for transmission to the gateway. The first node dead, 10 percent, 50 

percent, and 80 percent nodes dead subplots are provided in Figure 82 through Figure 85, 

respectively, for the single gateway case. The total system energy, energy variance, and 

number of nodes versus transmission round are shown in Figure 86 through Figure 88, 

respectively. The first node dead, 10 percent, 50 percent, and 80 percent nodes dead 

occur at round 2003, 2007, 2026, and 2051, respectively.  

The energy stem plot and node distribution plots demonstrate that zones die out 

from the outer zones in the sensor network progressing toward the center. By restricting 

CH election criteria to choose the highest energy node in a zone, the energy level of all 



 98 

nodes in a common zone are uniformly preserved throughout the simulation. Nodes die 

out evenly such that there can potentially be several nodes dying out in any zone.  This is 

noted in Figure 82 in that during the round where the first node died, there were actually 

two nodes that had died. Since the expected value of CH transmission distance is largest 

in outer zones, we expect them to die out first.   The nodes alive versus transmission 

round plot shown in Figure 88 illustrates a very sharp knee with the network, going from 

100 percent nodes alive to zero very quickly (approximately 50 rounds). This extends and 

preserves the timeframe that 100 percent of nodes are alive. The energy depletion rate of 

the network during the linear region of Figure 86 is 0.0246 J/round, which is a similar 

energy depletion rate for the other clustering mechanisms tested.  By using an energy 

efficient clustering mechanism, we have extended the timeframe where 100 percent of 

nodes are alive, offering the greatest timeframe for total WSN service coverage. 

 
Figure 82. EZone cluster routing algorithm in a single gateway WSN. The first node 

dead die out topology versus transmission round and energy distributions is 
illustrated. 
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Figure 83. EZone cluster routing algorithm in a single gateway WSN.  The percent 

nodes dead die out topology versus transmission round and energy distributions 
is illustrated. 

 
Figure 84. EZone cluster routing algorithm in a single gateway WSN. The 50 percent 

nodes dead die out topology versus transmission round and energy distributions 
is illustrated. 
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Figure 85. EZone cluster routing algorithm in a single gateway WSN.  The the 80 

percent nodes dead die out topology versus transmission round and energy 
distributions is illustrated. 

 
Figure 86. EZone cluster routing algorithm in a single gateway WSN. The total WSN 

energy versus transmission round is illustrated. 
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Figure 87. EZone cluster routing algorithm in a single gateway WSN. The WSN 

energy variance versus transmission round is illustrated. 

 
Figure 88. Zone EZone cluster routing algorithm in a single gateway. The nodes alive 

versus transmission round is illustrated. 
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Figure 82 through Figure 85 make it difficult to visualize the distribution of node 

energy since once the first node dies out, all nodes subsequently die out.  To capture our 

claim that our energy efficient zone routing algorithm improves the energy distribution of 

all nodes, we show our energy bar plot and stem plots at round 500, and energy bar plots 

for rounds 1000 and 1500 in Figure 89 through Figure 91, respectively.  A near uniform 

energy distribution is displayed in Figure 89 through Figure 91, which thus far has not 

been observed in previous simulations discussed in this thesis. As the round approaches 

1500, the energy remains uniform in each zone, and the energy in each zone differs 

slightly from adjacent zones. 

 

 
Figure 89. EZone cluster routing 

algorithm in a single gateway 
WSN. Round 500 is displayed 

with a uniform energy 
distribution. 

 
Figure 90. Similar to Figure 89 except 

the simulation is for round 1000. 

 
Figure 91. Similar to Figure 89 except 

the simulation is for round 1500. 

  
 



 103 

2. Multi-gateway 

EZone cluster routing algorithm for a multi-gateway scenario splits the field into 

five zones, elects a CH in each zone to receive all L = 2000 bit packets from supported 

nodes according to the node that contains the highest energy, and then aggregates the 

packet into a 2000 bit packet for transmission to the closest gateway. The first node dead, 

10 percent, 50 percent, and 80 percent nodes dead subplots are provided in Figure 92 

through Figure 95, respectively, for the multi-gateway case.  The total system energy, 

energy variance, and number of nodes versus transmission round are shown in Figure 96 

through Figure 98, respectively.  The first node dead, 10 percent, 50 percent, and 80 

percent nodes dead occur at round 2116, 2119, 2126, and 2134, respectively. This 

corresponds to a percent increase of six percent, six percent, five percent, and four 

percent, respectively, when compared to single gateway die out statistics for the same 

algorithm.  Nodes die out in a similar fashion as compared to the single gateway case 

except the knee on Figure 98 is sharper, causing just an 18 round period between the first 

node dead and 80 percent of nodes dead. Once the first node dies, all nodes quickly die. 

This is an ideal die out topology because it preserves the time of 100 percent network 

service. Maximizing the timeframe for 100 percent coverage is ideal to best provide 

maximum coverage area from all nodes.   The energy depletion rate of the network 

during the linear region of Figure 96 is 0.0240 J/round, which corresponds to a four 

percent reduction in network energy depletion rate compared to the single gateway case. 

The energy variance plot of Figure 95 shows a very small energy variance with a 

scale of 10-4 J2.  Rotating CHs according to highest energy in each zone causes an 

oscillatory compensating effect at the start of the simulation.  This slowly increases 

toward the end of the simulation as the last zone to die out is the center zone because 

transmission energy required by the CH is less than the energy required by CHs in side 

zones. 
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Figure 92. Multi-gateway EZone cluster routing algorithm. The first node dead die 

out topology versus transmission round and energy distributions is illustrated. 

 
Figure 93. Multi-gateway EZone cluster routing algorithm. The 10 percent node dead 

die out topology versus transmission round and energy distributions is illustrated. 
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Figure 94. Multi-gateway EZone cluster routing algorithm. The 50 percent nodes 

dead die out topology versus transmission round and energy distributions is 
illustrated. 

 
Figure 95. Multi-gateway EZone cluster routing algorithm.  The 80 percent nodes 

dead die out topology versus transmission round and energy distributions is 
illustrated. 
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Figure 96. EZone cluster routing algorithm in a multi-gateway WSN. The total WSN 

energy versus transmission round is illustrated. 

 
Figure 97. EZone cluster routing algorithm in a multi-gateway WSN.  The WSN 

energy variance versus transmission round is illustrated. 
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Figure 98. EZone cluster routing algorithm in a multi-gateway WSN. The number of 

nodes alive versus transmission round is illustrated. 

Figure 92 through Figure 95 make it difficult to visualize the distribution of node 

energy since once the first node dies out, all node subsequently die out.  To capture our 

claim that our energy efficient zone routing algorithm improves the energy distribution of 

all nodes, we show our energy bar plot and stem plots at round 500, and energy bar plots 

for rounds 1000 and 1500 in Figure 99 through Figure 101 for the multi-gateway 

scenario.  A near uniform energy distribution is shown in Figure 99 through Figure 101, 

which is only noted as a result of the energy efficient zone routing approach taken in this 

thesis.  As the round approaches 1500, energy variance is indistinguishable between 

zones.  The additional gateway improves the uniformity of node depletion in comparison 

with the single gateway simulation. 
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Figure 99. EZone cluster routing 

algorithm in multi-gateway WSN. 
Simulation for round 500 is shown 

with uniform energy depletion.  

 
Figure 100. Similar to Figure 99 except 

the simulation is for round 1000. 

 
Figure 101. Similar to Figure 99 except 

the simulation is for round 1500. 

H. ALGORITHM DATA COMPARISONS 

1. WSN Die out Statistics and Energy Consumption Comparisons 

An overall comparison of statistics for our WSN is provided in Table 4 and Figure 

102 through Figure 104.   The networking protocol for each simulation, several metrics of 

interest, and the transmission round in which the metric occurred for our single and 

multi-gateway simulations is described in Table 4.  The percent increase of adding an 

additional gateway is calculated in Table 4 for each metric of each protocol.  The energy 

depletion rates of the direct and MTE routing algorithms are much greater than those for 

clustering algorithms due to the energy balance at the physical layer imposed by the 

networking layer and data aggregation at the application layer of the CH.  Zone routing 

with energy efficient CH election (EZone) provided the longest timeframe of full WSN 
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service (all nodes alive). The single gateway case performed better than the multi-

gateway cases for LEACH and zone clustering with random CH election.  This 

demonstrates the impact of optimizing an energy efficient network layer strategy. As 

efficiency is gained at the network and application layer, the impact of the additional 

gateway is lowered when looking at the energy depletion rate (without consideration for 

topology of WSN die out).  The clustering algorithms all demonstrated approximately 

similar energy depletion rates for respective single and multi-gateway configurations. 

This value was obtained in the linear region of the plots with all nodes alive and five CHs 

elected for each round.  

The 80 percent die out range in each round is simply the round when 80 percent 

of nodes are dead subtracted from the round the first node died.   This range, divided by 

the round the first node died, provides a metric for the timeframe during which network 

die out occurs compared to 100 percent WSN service life.  The MTE algorithms (single 

gateway and multi-gateway) clearly behaved the worst due to the hot-node phenomena. 

Zone routing with energy efficient CH election (EZone) performed the best and 

minimized the die out range to the smallest possible value as a result of the physical layer 

amplifier used, the location of the gateway(s), and sensor field parameters. 

LEACH provided the longest timeframe preserving some WSN service (80 

percent nodes dead, or 20 nodes alive) due to the dynamic nature of choosing the CH.  

However, LEACH did not control the topology of WSN die out in any stable fashion. We 

provide further comments later in the chapter by comparing the clustering techniques 

utilized. 

A comparison of the total system energy is illustrated Figure 102, a comparison of 

energy variance is illustrated in Figure 103, and a comparison of nodes alive versus 

transmission round is illustrated in Figure 104.  The addition of another gateway was 

most significant in the direct and MTE algorithms, as shown in Figure 103, as the energy 

variance is lowered by approximately 50 percent.  Energy variance of the zone routing 

algorithms were both lower than LEACH, with the single gateway scenarios performing 

better than LEACH in a multi-gateway configuration. The direct and MTE number of 

nodes alive do not cross in Figure 104 as they do in [1] because the authors only used a 



 110 

direct path propagation model, while our research uses both direct path and multi-path 

propagation models.  Zone routing with energy efficient CH election (EZone) offered the 

most time with all nodes alive; however, LEACH offered the most time with at least one 

node alive. 

Table 4.   Overall algorithm die out statistics with a comparison of single and multi-
gateway.  

 

Protocol Metric Single Gateway Multi Gateway % Increase

Dire
ct

Round First Dead 356 652 83
10% Nodes Dead 410 712 74
50% Nodes Dead 652 911 40
80% Nodes Dead 939 1128 20
Energy Depletion Rate (J2) 0.0798 0.0554 −31
80% Dieout Range (rounds) 583 476 −18
80% Dieout range/Round First Dead 1.6376 0.7301 −55

Dire
ct

MTE

Round First Dead 11 17 55
10% Nodes Dead 77 100 30
50% Nodes Dead 199 293 47
80% Nodes Dead 354 453 28
Energy Depletion Rate (J2) 0.2140 0.1418 −34
80% Dieout Range (rounds) 343 436 27
80% Dieout range/Round First Dead 31.1818 25.6471 −18

MTE

LEACH

Round First Dead 1642 1633 -1
10% Nodes Dead 1760 1805 3
50% Nodes Dead 1990 2112 6
80% Nodes Dead 2182 2327 7
Energy Depletion Rate (J2) 0.0245 0.0232 −5
80% Dieout Range (rounds) 540 694 29
80% Dieout range/Round First Dead 0.3289 0.4250 29

LEACH

Protocol Metric Single Gateway Multi Gateway % Increase

Zon
e

Round First Dead 1649 1862 13
10% Nodes Dead 1821 1964 8
50% Nodes Dead 2022 2117 5
80% Nodes Dead 2140 2215 4
Energy Depletion Rate (J2) 0.0248 0.0235 −5
80% Dieout Range (rounds) 491 353 −28
80% Dieout range/Round First Dead 0.2978 0.1896 −36

Zon
e

EZon
e

Round First Dead 2003 2116 6
10% Nodes Dead 2007 2119 6
50% Nodes Dead 2026 2126 5
80% Nodes Dead 2051 2134 4
Energy Depletion Rate (J2) 0.0246 0.0235 −4
80% Dieout Range (rounds) 48 18 −63
80% Dieout range/Round First Dead 0.0240 0.0085 −65

EZon
e
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Figure 102. Comparison of total system energy versus transmission round for all 

algorithms in single and multi-gateway simulations. 

 
Figure 103. Comparison of Energy Variance versus transmission round for all 

algorithms in single and multi-gateway simulations. 
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Figure 104. Comparison of Nodes Alive versus transmission round for all algorithms 

in single and multi-gateway simulations. 

2. Comparison of Clustering Mechanisms 

The difference in the WSN topology during die out is attributed to the CH 

election mechanism in each algorithm. Since LEACH employs a random method of CH 

election, the number of CHs is dynamic at each round yet maintains an average number 

of CHs. The number of CHs during each round in LEACH (blue) and a 50-point moving 

average (red) along with die out parameters for the single and multi-gateway scenarios 

are plotted in Figure 105 and Figure 106, respectively.  The 50-point moving average 

remains at approximately five until the first node dies, corresponding to the input for the 

desired percentage of nodes to act as CHs (p=0.05).  We note that after the first node dies, 

the average number of CHs is reduced to zero during the remaining rounds.  This 

signifies that the LEACH process is stable only when all nodes are alive.  As the number 

of CHs increases in the stable region, there is less demand on the CH performing data 

aggregation since each CH is aggregating fewer messages.  This dynamic does not have 

an impact on the energy depletion rates because the algorithms only decrement energy to 

aggregate a final L-bit message without accounting for how many messages the CH is 
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aggregating.  This assumption is somewhat limiting. However, it is consistent with data 

aggregation techniques employed in the literature. Additional data aggregation strategies 

and their impacts are proposed as future work. 

At approximately round 1750 and 2000 for the single and multi-gateway 

scenarios, respectively, there are no CHs chosen. Many more such occurrences are seen 

in later rounds. In this circumstance, each node transmits its payload directly to the 

closest gateway, eliminating any data aggregation opportunity.  The result is that no CHs 

are chosen.  This is a disadvantage of LEACH that can occur regularly as discussed in 

Chapter IV. 

 
Figure 105. LEACH routing in a single-gateway WSN. The number of CHs chosen 

during each round (blue) along with a smoothed 50-point moving average filter 
(red) is illustrated. 
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Figure 106. LEACH routing in a multi-gateway WSN.  The number of CHs chosen 

during each round (blue) along with a smoothed 50-point moving average filter 
(red) is illustrated. 

The moving averages plotted in Figure 105 and Figure 106 along with the number 

of CHs for the zone algorithms (Zone and EZone) versus each round are plotted in Figure 

107. The zone routing algorithm reveals a stair-step pattern because each zone guarantees 

one CH at each round until all nodes in the zone are dead.  Once all nodes in a zone dies, 

there is one less zone in the simulation, and subsequently, one less CH at each round is 

elected. Maintaining a more consistent number of CHs in each round over the lifetime of 

the WSN causes the energy variance of the zone routing algorithms to be lower than that 

of the LEACH algorithm (Figure 103). 

To further investigate the topology of clustering in LEACH, we plot a Voronoi 

diagram for a few rounds. A Voronoi diagram partitions a space into areas according to a 

specific parameter.  This relates nicely to our clustering algorithms because we can view 

the arrangement of the clusters in any round. A Voronoi diagram is shown for a few 

rounds during the performance of the LEACH simulations in Figure 108 through Figure 

113.  These figures illustrate the dynamic nature of LEACH CH election as it relates to 



 115 

Figure 105 and Figure 106.  In each Voronoi diagram, all nodes of the WSN are plotted 

as outlined blue circles, while the CH chosen for each round is a sold blue circle.  Lines 

are plotted in the diagram to partition the space into clustered areas where each line 

divides the space in areas closest to their CH.  All nodes in a particular area are served by 

the CH in the corresponding area.  We note that there is a significant dynamic in the 

number of CHs chosen (ranging from three to nine) and the arrangement of each cluster 

spatially in the sensor field.   

 
Figure 107. Comparison of the number of CHs versus transmission round for 

clustering and zone algorithms.  The LEACH plot is the 50-point moving average 
contained in Figure 105 and Figure 106 (S~Single Gateway, M~Multi-gateway). 

LEACH does not partition the sensor field into even nor tactically motivated clusters. 

For example, two CHs side by side with the third CH on the opposite side of the network 

are depicted in Figure 108. As a result, some nodes in an area have to transmit their 

payloads over far distances, contributing to them dying out earlier.  The number of nodes 

in each LEACH cluster clearly is not balanced since nodes associate with their closest 

CH. Since LEACH is a dynamic zoning mechanism, it does not consider WSN topology 

in the decision of how and where to form clusters. 
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Figure 108. A Voronoi diagram from a round in the single gateway LEACH 

simulation displaying three clusters. 

 
Figure 109. A Voronoi diagram from a round in the single gateway LEACH 

simulation displaying nine clusters. 
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Figure 110. A Voronoi diagram from a round in the single gateway LEACH 

simulation displaying 10 clusters. 

 
Figure 111. A Voronoi diagram from a round in the single gateway LEACH 

simulation displaying five clusters. 
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Figure 112. A Voronoi diagram from a round in the single gateway LEACH 

simulation displaying five clusters. 

 
Figure 113. A Voronoi diagram from a round in the single gateway LEACH 

simulation displaying seven clusters. 
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Compare the clustering mechanism of LEACH to that imposed by our zone 

clustering algorithms.  Zones fully describe clusters, and each zone has an equal number 

of sensors. We chose this mechanism for clustering since sensors are uniformly 

distributed across the network and application layer loading is CBR for each round.  A 

Voronoi diagram for zone clustering is simply the node distribution plots of the results 

discussed earlier in this chapter. In those plots, the CH is represented by an asterisk in the 

corresponding blue circle as compared to the solid blue circle in the LEACH Voronoi 

diagrams. The zone clustering Voronoi diagram differs from the LEACH Voronoi 

diagrams in that LEACH zones separate nodes corresponding to their closest CH.  In the 

event that the application layer loading is not uniform or nodes are not uniformly 

distributed throughout the field, zoning could be performed in some other tactical fashion 

to impact WSN service life and network die out characteristics.  This is left as an 

opportunity for future work. 

I.  CHAPTER V SUMMARY 

In this chapter, we provided the results for the algorithms described in Chapter 

IV.  We described metrics of interest for our simulations and the specific metrics that we 

obtained from each algorithm.  We provided results for each algorithm individually for 

single and multi-gateway simulations and then showed and discussed how all results 

compare to each other.  We specifically focused on how the network layer routing 

algorithm affects when and how nodes die and the energy distribution of the WSN during 

the entire simulation. Ultimately, our energy efficient zone routing algorithm (EZone) 

provided the longest timeframe of 100 percent WSN service in a tactically motivated 

fashion, but LEACH provided the longest timeframe with at least one node alive.  

Extending the timeframe of 100 percent service coverage is desired to provide the 

greatest lasting performance of the entire WSN.  The results presented in this chapter 

only focused on one WSN sensor field arrangement. To investigate other arrangements, 

we modeled network die out parameters as random variables and obtained the distribution 

of network die out. This is presented in the next chapter.  
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VI. WSN DIEOUT RANDOM VARIABLE MODELING 

The results presented in Chapter V only focused on one WSN sensor field 

arrangement. To investigate other arrangements, we modeled network die out parameters 

as random variables and obtained the distribution of network die out. In this chapter, we 

describe our random variable (RV) WSN die out testing. We simulated each algorithm 

many times to obtain die out distributions and to obtain the mean and standard deviation 

of the distributions.  We performed these simulations to extend our conclusions beyond 

the one WSN configuration simulated in Chapter V. 

A. MODELING WSN DIE OUT AS RANDOM VARIABLES 

All pseudocode presented in Chapter IV and their actual code in Appendix B is 

easily modified to model the round the first node dies and the rounds when, 10 percent, 

50 percent and 80 percent of nodes die.  This is accomplished by including another loop 

in the code. Every iteration, a new random WSN with uniform node distribution is 

created and run using similar parameters as before with die out parameters being 

appended to each RV array.  We utilized similar parameters for the number of nodes in 

the field, field dimensions, gateway locations, and physical and networking parameters. 

The only difference is that during each iteration of the algorithm, nodes are placed in 

different uniform locations in the grid. 

All algorithms were executed for 5,000 iterations except for the MTE algorithms 

that were executed for 1,000 iterations. These numbers were chosen to offer a large 

sample size to obtain a representative distribution yet small enough to limit total 

processing time. Each 5,000 iteration run required about one day of dedicated processing 

time on a modern Windows personal computer while the MTE algorithms required four 

and seven days for single and multi-gateway configurations, respectively. The MTE 

algorithms required significantly more time because of the computational complexity in 

calculating the MTE path for each node, each round, and each iteration using Dijkstra’s 

algorithm. As we said previously for each node, and each round, Dijkstra’s algorithm 

calculates the updated path, so that nodes that die mid round are not used by remaining 
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live nodes. This technique can be optimized to update individual node routes to the 

gateway only after changes in WSN topology (nodes dying).  However, we left the 

algorithm as is to ensure robust accounting for all routes all the time.  To minimize 

required processing time, each iteration was completed when 80 percent of the nodes 

were dead nodes. 

Results for our random variable testing are contained in Table 5.   Individual 

algorithm die out distributions are plotted in Figure 115 through Figure 124.  A graphical 

bar plot of our mean value results of Table 5 is shown in Figure 114. The standard 

deviation of network die out statistics is given in Table 6.   Histograms of the data (blue) 

along with a Gaussian curve fits for mean and standard deviation values are shown in 

Figure 115 through Figure 124.  The arithmetic mean and standard deviation values in 

Table 5 and Table 6 are calculated using first and second moment principles of the 

discrete sampled data set: 
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The performance improvement of WSN clustering algorithms with data 

aggregation (LEACH, Zone, and EZone) and the improvement of WSN lifetime by the 

addition of an additional gateway compared to MTE and Direct Routing is illustrated in 

Figure 114.  We noted similar results in Chapter V for the one uniform WSN 

arrangement tested.  The energy efficient zone routing algorithm (EZone) maximized the 

service life when all nodes are alive by rotating the high energy CH role to the node in 

each zone with the most energy. LEACH provided the most time through 80 percent of  
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network die out because of the random approach of CH election and the instability of the 

network to maintain a uniform number of CHs during each round after the first node dies 

(see Figure 105 and Figure 106). 

Table 5.   Mean value network die out statistics in single and multi-gateway simulations for 
all algorithms simulated. 

 
 

 

Protocol Metric Single Gateway Multi Gateway % Increase

Dire
ct

Round First Dead 350 660 89
10% Nodes Dead 395 714 81
50% Nodes Dead 664 942 42
80% Nodes Dead 1004 1163 16
80% Dieout Range (rounds) 654 503 −23
80% Dieout range/Round First Dead 1.87 0.76 −59

Dire
ct

MTE

Round First Dead 12 16 33
10% Nodes Dead 73 97 33
50% Nodes Dead 202 289 43
80% Nodes Dead 351 472 34
80% Dieout Range (rounds) 339 456 35
80% Dieout range/Round First Dead 28.25 28.50 1

MTE

LEACH

Round First Dead 1840 1844 0
10% Nodes Dead 1987 1995 0
50% Nodes Dead 2294 2319 1
80% Nodes Dead 2523 2565 2
80% Dieout Range (rounds) 683 721 6
80% Dieout range/Round First Dead 0.37 0.39 5

LEACH

Zon
e

Round First Dead 1566 1841 18
10% Nodes Dead 1777 1976 11
50% Nodes Dead 2031 2122 4
80% Nodes Dead 2151 2210 3
80% Dieout Range (rounds) 585 369 −37
80% Dieout range/Round First Dead 0.37 0.20 −46

Zon
e

Ezo
ne

Round First Dead 1936 2070 7
10% Nodes Dead 1944 2076 7
50% Nodes Dead 2035 2132 5
80% Nodes Dead 2083 2157 4
80% Dieout Range (rounds) 147 87 −41
80% Dieout range/Round First Dead 0.08 0.04 −45

Ezo
ne
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Table 6.   Standard deviation of network die out statistics in single and multi-gateway for all 
algorithms simulated. 

 

 
Figure 114. Summary of WSN availability for each algorithm (S~single gateway, 

M~Multi-gateway). 

Protocol Metric Single Gateway Multi Gateway % Increase

Dire
ct

Round First Dead 7 11 57
10% Nodes Dead 15 15 0
50% Nodes Dead 45 33 −27
80% Nodes Dead 56 33 −41

Dire
ct

MTE
Round First Dead 3 5 67
10% Nodes Dead 9 9 0
50% Nodes Dead 12 20 67
80% Nodes Dead 19 31 63

MTE

LEACH
Round First Dead 53 53 0
10% Nodes Dead 34 35 3
50% Nodes Dead 22 23 5
80% Nodes Dead 29 30 3

LEACH

Zon
e

Round First Dead 69 47 −32
10% Nodes Dead 32 17 −47
50% Nodes Dead 20 9 −55
80% Nodes Dead 20 12 −40

Zon
e

EZon
e

Round First Dead 53 30 −43
10% Nodes Dead 49 27 −45
50% Nodes Dead 24 11 −54
80% Nodes Dead 26 12 −54

EZon
e
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An interesting result is that there was effectively little to no performance gain 

when adding an additional gateway to the LEACH algorithm.  The single gateway round 

when the first node died and subsequent metrics (10 percent, 50 percent, 80 percent) were 

so close to the multi-gateway parameters that the addition of another gateway is 

insignificant when only considering service life.  

Plots for all algorithms examined in this thesis generally demonstrate that our die 

out distributions follow a normal distribution as illustrated in Figure 115 through Figure 

124 except for the round the first node died, which displays a well-defined initial spike.  

A positive relative skew as compared to the corresponding standard normal for the round 

first dead and 10 percent of nodes dead is depicted in Figure 115 and Figure 116, and a 

negative skew for the same parameters is shown in Figure 121 and Figure 122.  The 

significance of the plots aligning with the normal distribution is that WSN die out 

approximately follows the most common distribution seen in natural phenomena (i.e., the 

normal distribution [41]). 

When considering standard deviation, the addition of another gateway generally 

decreases the distribution spread except for the MTE algorithm, in which the addition of 

another gateway increased the spread.  The addition of another gateway did little to 

impact the distributions in LEACH as illustrated Figure 117 and Figure 118. The single 

and multi-gateways for LEACH displayed similar spread, which continues to follow our 

claim that an additional gateway did little to improve the characteristics of LEACH 

(Figure 119 and Figure 120). 

Since the die out of our energy efficient zone routing algorithms occurred over a 

small number of rounds, the histograms have significant overlap (Figure 123 and Figure 

124).  We also note negative skew of the energy efficient zone routing algorithms, which 

causes the histograms to shift slightly to the right as compared to their Gaussian overlay. 

The first node dead and 10 percent node dead rounds see a bit of activity at the tails, 

which leads to a kurtosis effect in comparison to the standard normal. 
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Figure 115. Direct routing in a single gateway WSN. The die out statistics with 5,000 

trials are illustrated. 

 
Figure 116. Direct routing in a multi-gateway WSN. The die out statistics with 5,000 

trials are illustrated. 
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Figure 117. MTE routing in a single gateway WSN.  The die out statistics with 1,000 

trials are illustrated. 

 
Figure 118. MTE routing in a multi-gateway WSN.  The die out statistics with 1,000 

trials are illustrated. 
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Figure 119. LEACH routing in a single gateway WSN. The die out statistics with 

5,000 trials are illustrated. 

 
Figure 120. LEACH routing in a multi-gateway WSN. The die out statistics with 5,000 

trials are illustrated. 
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Figure 121. Zone routing with random CH election in a  single gateway WSN. The die 

out statistics with 5,000 trials are illustrated. 

 
Figure 122. Zone routing with random CH election in a multi-gateway WSN. The die 

out statistics with 5,000 trials are illustrated. 
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Figure 123. EZone routing in a single gateway WSN. The die out statistics with 5,000 

trials are illustrated. 

 
Figure 124. EZone routing in a multi-gateway WSN.  The die out statistics with 5,000 

trials are illustrated. 
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B. CHAPTER VI SUMMARY 

In this chapter, we described our random variable testing to consider many other 

network arrangements than what we analyzed in Chapter VI.  Our results in Chapter VI 

were in line with what we presented in Chapter V except we were able to show the 

impact of an additional gateway on the distribution of our RVs. Our energy efficient zone 

routing algorithms provides the longest service life with 100 percent coverage, while the 

LEACH algorithm provides the longest life with at least one node alive.  Extending the 

timeframe of 100 percent service coverage is desired to provide the greatest lasting 

performance of the entire WSN. 
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VII. CONCLUSTIONS AND FUTURE WORK 

In this chapter, we summarize the results and contributions of this thesis as well 

as offer future work opportunities based on our analysis to further improve the 

networking layer of WSNs.   

A. SUMMARY AND CONCLUSIONS 

1. Impact of Network Layer Load Balancing 

We can achieve significant gains in WSN service lifetime through the use of load 

balancing in multi-gateway networks.  Specifically, implementing an energy efficient 

cross-layer network routing algorithm can be used to dynamically balance the energy 

depletion rates of nodes and, subsequently, minimize the overall energy depletion rate of 

the network resulting in full WSN service coverage.  

Network layer load balancing can be used to cause the network to die out in a 

tactically oriented fashion.  From our first algorithm, the direct to gateway routing 

protocol, and the last algorithm (our energy efficient zone routing protocol-EZone), we 

covered the variety of ways a network can die out. This information allows a designer to 

implement or further research the specific type of network algorithm required for a WSN 

application and, thereby, obtain a desired WSN depletion rate and die out topology. 

2. Opportunities Offered by Clustering Algorithms 

Clustering algorithms offer additional control of the physical layer through the 

performance of the networking layer. Allowing the network layer to determine the 

optimal CHs at any given time achieves a balance of which nodes should realize a high 

probability of being the CH (nodes in a high power role) and which nodes have a lower 

probability of being a CH (nodes desired to be in a low power role).   

Clustering algorithms allow the physical independence of nodes to be optimally 

realized; nodes that are not connected wirelessly can make decisions on which of their 

peers they should communicate with at any given time.  Clustering essentially makes this 

decision for the nodes based on what is best for the network since every node is forced to 
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send their payload to their assigned CH. This wireless independence allows the algorithm 

to force nodes into certain aggregations which optimize routes chosen in the best interest 

of the network instead of nodes being personally greedy as the Direct and MTE 

algorithms allowed.   

The largest takeaway of clustering algorithms is how the CHs are determined.  

The mechanism for determining the CH affects the distribution of how and when nodes 

die out. If a particular node is chosen to be a CH more than other nodes in a similar area, 

it will likely die out earlier.  This can be an advantage or a disadvantage in that we have 

some level of control over which nodes die out earlier or later.  The advantage is that we 

can take control of this aspect and prevent high value (critical collection) nodes from 

being CHs and extend their life to the end of the network. For example, we can employ a 

clustering algorithm and hierarchically assign nodes a probability of becoming a CH 

commensurate with the priority of their collected information.  If their information is of 

high priority, their probability to become a CH should be low or zero. However this could 

be a disadvantage in that selecting a node to be excluded from the CH role requires other 

nodes to perform the CH role more frequently, which causes them to die out sooner. 

Conversely, if we want to extend the full service life of the network, CHs should be 

chosen with energy efficiency in mind so that the energy of all nodes is depleted 

uniformly, causing them to die out at a similar time. The LEACH algorithm did this in a 

random fashion, preserving some nodes longer than others. 

Clustering algorithms offer an efficient mechanism to perform data aggregation. 

By doing so, the energy required to transmit a compressed message is less than if packets 

are not aggregated. This allows a great deal of information to be transmitted a short 

distance while requiring lower transmission energy to be expended. 

3. Performance Gain of Additional Gateway 

The inclusion of an additional gateway extended WSN service life in every 

network layer algorithm except LEACH and offered improved coverage during die out as 

compared to the single gateway scenario. The use of an additional gateway caused die out 

to occur in a way that preserved area coverage even while nearby nodes died.  As energy 
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efficiency within the algorithm improved, the impact of the additional gateway was 

lowered. For example, the direct-to-gateway algorithm realized an 83 percent increase in 

the time when all nodes were alive compared to just a 13 percent and 6 percent gain for 

zone routing algorithms, respectively (zone and EZone algorithms). 

While the additional gateway extended full service node availability (except for 

LEACH), as nodes began to die out, the additional gateway mitigated gaps in service area 

coverage as a result of longer wireless propagation distances.  This aspect resulted in a 

more preferred network topology during die out compared to the single gateway cases. 

B. TACTICAL NETWORK PROTOCOL RECOMMENDATION  

Our zone clustering with energy efficient CH election algorithm (EZone) offers 

the best opportunity to extend WSN service life while maintaining tactical control of the 

network layer in both single and multi-gateway configurations. It produced the least 

variance in energy distribution at any round and smartly balanced cluster and node 

loading since our zones were implemented based on knowledge of physical layer 

topology and anticipated application layer loading.  This algorithm also demonstrated the 

advantages of a cross-layer approach by allowing the network layer to make routing 

decisions based on node battery levels contained at the physical layer. 

C. CONTRIBUTIONS OF THIS THESIS 

The contributions of this thesis are as follows: 

• We surveyed and identified load balancing techniques for WSNs.   

• We simulated traditional networking algorithms and identified 
performance improvements from adding an additional gateway. 

• We developed an energy efficient WSN networking algorithm and 
identified the performance improvements compared to algorithms that do 
not consider energy efficiency. 

• As sensor-node battery levels are depleted and nodes subsequently die out, 
we showed how the networking algorithm in operation affects the spatial 
distribution of live nodes and dead nodes in the sensor field and how this 
affects the continuous service coverage throughout the sensor field. 

• We illustrated detailed energy statistics for specific node-gateway(s) 
arrangement(s) and modeled network die out statistics as random variables 
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to better characterize the distribution of the algorithms’ results over 
thousands of trials.  This technique allowed us to better substantiate the 
performance of classic network algorithms and our novel energy efficient 
algorithm. 

D. FUTURE WORK 

1. Further Optimize the Cluster Approach 

Our research of clustering techniques only considered non overlapping clusters; 

each node could only send packets to the gateway through one CH. Clusters could be 

allowed to overlap, thereby allowing nodes the decision authority to select which CH 

they transmit their payload to and when. 

This requires the development of a clustering algorithm that takes information 

from the application layer as well as the physical layer to create energy efficient and 

application layer efficient clusters in the network. Application layer loading should be 

altered in a predictable fashion at which point application layer and physical layer load 

balancing could be incorporated into the network layer to produce clusters that are 

dynamically efficient at every round or during some cycle of rounds. This technique 

would better simulate the reality of collection (i.e., in which information is collected non- 

uniformly throughout the sensor field). 

2. Devise and Employ MTE Data Aggregation Strategies to Minimize 
Hot Node Energy Consumption 

Our simulations of the MTE algorithm allowed a hot-node scenario to ensue.  

Various techniques relating to energy efficiency and our MTE algorithm could be 

employed such as: 1) allow the hot-node to aggregate data to minimize the final long-haul 

transmission to the gateway, and 2) extend the link cost metric that was used in this thesis 

to include other metrics.  Other metrics could include transmission distance and other 

parameters such as hot-node energy level or the number of packets that have gone 

through it in attempt to balance hot-node energy depletion. 
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3. Dynamic Zoning Based on Anticipated Sensor Loading 

We mentioned that our identification of zones for our zone clustering algorithms 

was a result of sensor arrangement in the field and anticipated CBR loading at each round 

to effectively balance total zone throughput at each round.  This technique could be 

employed dynamically such that the network topology is re-zoned periodically as sensor 

traffic load changes and node die out begins. Periodically re-zoning based on anticipated 

WSN load changes may offer a technique to balance energy loading throughout the 

network service life and avoid unnecessary transient network energy reductions. 

4. Extend Sensor field Dimensions Beyond Individual Node 
Communication Range  

We made extensive use of the assumption that any node in the WSN was within 

communication range of the gateway, which allowed for simulation of our direct-to-

gateway algorithm, by-passing the LEACH clustering in later rounds if no CHs were 

chosen, and any node to be employed as a CH any time during clustering simulations. 

While modern day wireless techniques can communicate efficiently up to several miles, a 

WSN may be required to communicate at distances greater than any node’s 

communication range.  There are several possible options that could be tested to extend 

our concepts simulated in this thesis in order to allow a larger sensor field than a node’s 

communication range. Specifically, further zoning could be utilized to hierarchically 

divide a grid space to guarantee communication ranges between zones.  This technique 

would require CHs to communicate with adjacent CHs in a hop-by-hop basis in a path to 

the gateway.  This scenario should also be tested in a multi-gateway configuration to 

keep the number of CH hops to a minimum. 

5. Implement LEACH and EZone in Robust Advanced Simulation 
Software 

Our research primarily utilized MATLAB for simulation.  There exist several 

other WSN simulation software platforms that could further investigate the algorithms in 

this thesis. We briefly describe a few of these advanced platforms in Appendix B. We 
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propose that our Zone routing algorithms be programmed and explored in these utilities 

as they may offer more specific and accurate WSN solution results. 

6. Implement an Energy Efficient Message Structure 

We described a message structure for LEACH that was adopted from [1] that is 

applicable to any of our clustering algorithms. We did not simulate the impact of the 

message algorithm, which is another WSN load balancing opportunity.   

7. Impact of Varying the Link Cost Parameter for WSNs as Future 
Work 

The distance squared between nodes was utilized as the link cost parameter since 

the distance is proportional to the energy required at the physical layer for transmission 

between nodes in our sensor field.  Devising a different link cost strategy may offer an 

opportunity to tailor network traffic to a specific condition, which could offer a benefit to 

certain designs. 

E. FINAL THOUGHTS 

As WSNs become more prevalent in society, an understanding of how each layer 

affects performance is required so that the WSN can be most efficiently tailored to its 

application.  An energy efficient routing strategy offers quantifiable gains to the service 

life of tactical WSNs.  It balances the use of individual battery levels at the node level to 

maximize the time when all nodes are fully capable. This routing strategy also magnifies 

the use of a clustering algorithm to balance wireless transmission range coupled with data 

aggregation to reduce energy demand during transmit operations.  Our techniques in this 

thesis show the importance of load balancing in WSNs and that design creativity at the 

network layer can have significant impacts on achieving lasting capability of WSN 

performance.  Specifically, implementing energy efficient load balancing techniques at 

the network layer offers a tactical advantage allowing the DoD to extend network 

performance and autonomously control the die out topology as the WSN degrades from 

100 percent service coverage, improving their effectiveness and suitability in the 

battlespace.  
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acquisition certifications in program management (Level 2), production quality and 

manufacturing (Level 1) and systems engineering (SPRDE-SE Level 1) and Lean Six 
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Sigma LT White lateral transferred to the engineering duty officer  community via the 

June 2010 lateral transfer. LT White completed EDO Basic School in May 2011 earning 

the Founders Award and conditionally qualified engineering duty officer in August 2011. 

LT White left SPAWAR in December 2011 and reported to the Naval 

Postgraduate School (NPS) in Monterey CA to complete a Master’s Degree in Electrical 

Engineering with emphasis in networking and cyber. While at NPS, LT White also 

completed the Navy’s Joint Professional Military Education curriculum. LT White was 

selected for promotion to lieutenant commander in July 2013 and will graduate NPS in 

December 2013.  

Following NPS graduation, LT White will report to SPAWAR Bahrain as the 

officer-in-charge in April 2014. 

Kevin married the former Lisa Costanza of Glendora, CA in March 2006 and has 

a son Tyler (March 2008) and a daughter Rylie (May 2010).  
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APPENDIX B. MATLAB CODE 

The full version of MATLAB code to generate the results reported in Chapters V 

and VI, which was described by pseudocode in Chapter III and IV is provided in 

Appendix B.  While the code was useful to compare all network algorithms simulated in 

this research, the structure of each of the algorithms could be easily manipulated to 

simulate other networking algorithms.  The background research performed in choosing a 

WSN simulation platform and a few manipulations that anyone in the future could 

consider to reuse this code for their own research are briefly summarized. 

1. Simulation Platforms for WSNs 

There are many options for one to perform simulations of a WSN. A WSN and 

associated layers can be modeled using a bottom up approach with mainstream 

programming languages directly, such as C, C++, Java, etc., which requires extensive 

expertise in the programming language as well as the protocol, which is desired to be 

modeled, or it can be modeled from a top-down approach using network specific 

simulation software such as Qualnet, NS2, or many others. The point is that there are a 

variety of options to choose from and each has its specific advantages and disadvantages.  

There are several evaluations in the literature surveying the various pros and cons of each 

WSN simulation package such as [42]–[44].   

Network specific simulation software contains an industry standard buffet of 

protocol options available for simulation at each layer. Layer specific protocols are based 

on request for comment (RFC) documentation that has been transformed into a 

programming language codes for direct use in simulation. The user can select the 

protocols they desire to simulate at each layer, at which point the software creates a 

simulation scenario by merging the existing protocols into a runtime program. For 

example, protocols in NS2 and Qualnet are created using the C++ language. They are 

lengthy and are the product of many years of development; however, they provide a 

comprehensive representation of industry standard protocols in use today.  The key word 



 142 

here is “in use” as research protocols are not provided with the software and the 

knowledge base for these paid utilities are small. 

We started our early research experimenting with Qualnet. While its graphical 

user interface was efficient at creating WSN simulations, we quickly realized an 

intermediate C++ programming ability was insufficient to generate and integrate a 

custom protocol into Qualnet in the time available and with available manpower.  

Qualnet does offer tailored contract programming help; however, that was neither in our 

budget nor our timeframe.  As a result, we elected to utilize a MATLAB environment. 

A key advantage with MATLAB are the simple built in functions and the ease 

with which any function in MATLAB can be quickly researched and incorporated into an 

algorithm. Also, since the user base for MATLAB is so big, there are a huge number of 

support forums that address literally any problem that has been encountered before. 

MATLAB is readily available at the Naval Postgraduate School, and its use in the 

majority of courses during a graduate study guarantees a student’s ability to jump into 

MATLAB for their thesis work. 

2. MATLAB Programming Strategies 

Our strategy for WSN MATLAB programming was to think of the WSN layering 

concept and incorporate each layer necessary with associated assumptions. Thinking of 

the MAC layer as a TDMA strategy where each node is allocated time in each time 

division offers a simple loop using rounds to simulate this layer. We can then simulate 

the application layer of each node generating an L-bit message and pushing it to the 

network layer. The network layer then identifies the route or creates the desired network 

topology for the round to pass information to the gateway and then use the physical layer 

to transmit and account for required information.  After handling the nuances of 

decrementing energy to transmit in direct or multi-path propagation, energy to receive, 

and energy for a CH to aggregate data, the simulations take proper form quickly. 

Data presentation obviously is a key aspect of any research. Since our research 

focused on energy efficiency and extending network lifetime using load balancing 

techniques in single and multi-gateway scenarios, it made sense to track energy levels, 
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the distribution of energy, and alive and dead nodes each round.  Thus, our subplot 

graphics capture these priorities, and we obtain the energy variance each round as a 

statistical measure of energy spread, the total WSN energy to obtain energy depletion of 

the network when all nodes are alive as an indication of network efficiency. Our interest 

also was the topology of the network as nodes die out, which caused us to display the 

network topology when the first node died, and at 10 percent, 50 percent, and 80 percent 

total nodes dead to obtain observations of service area coverage as the network depleted. 

3. Comments on our MATLAB Code 

While our research considered both single and multi-gateway, we only provide in 

total the multi-gateway code in the following sections.  Single gateway scenarios can be 

easily generated from the code by removing the second gateway and changing logic that 

incorporated transmitting information to the closest gateway.  All our simulations in 

Chapter VI used a common sensor field. To achieve this effect, we first generated the 

uniform sensor filed and our required parameters and passed them into each algorithm. 

This required the first several lines of code to be suppressed in the following algorithms, 

indicated by our statement to “SUPPRESS ABOVE IF STARTING WITH COMON 

WSN PARAMETERS.” Maintaining commonality of variables across all algorithms was 

important to ensure the inputs were accepted by each algorithm. 

All data that is generated in our algorithms is meticulously saved in multiple 

formats. This was to allow access to complete simulation data for post processing as 

needed. Every figure was sized and set in a specific, yet similar way to achieve scale 

commonality to alleviate rescaling images as they were copied into this paper.  Also each 

algorithm creates a simulation movie file that captures every fifth frame of our main 

graphical figure to allow simulations to be viewed after they completed. This was a nice 

technique to go back and review the simulations to form observations. Since the 

simulations could not be imbedded in this paper copy, our observations are also 

supported using the plots at round first dead, 10 percent, 50 percent, and 80 percent total 

nodes dead. 
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Our simulations in Chapter VI executed each algorithm many times. Here we 

allowed the network to be regenerated each time. This required each of the algorithms to 

be contained in another for loop to execute the code the desired number of iterations.  To 

speed up the simulations, we suppressed majority of our graphics so that the output of 

each iteration appended the metrics of interest. Our metrics of interest were network die 

out statistics of round first dead, and the round where 10 percent, 50 percent, and 80 

percent of nodes are dead.  Once we obtained these arrays of 5,000 values for each 

parameter, the data was post processed to generate the figures and plots in Chapter VII. 

Several of our algorithms involved “structure” programming techniques. 

Variables that have a period (i.e., S(i).E) were used to constrain multiple variables under 

a common notation. This technique allowed us to incorporate “meta-data” into our 

algorithms that were tracked at specific times and used in the network and physical layer. 

While there are other ways to do this, the use of structures help keep accounting of data 

under better control. 

4. Direct to Multi-gateway  

%Direct to Multi-gateway simulation 

 

clc; 

clear all; 

close all; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Field Dimensions - x and y maximum (in meters) 

xm=50; 

ym=50; 

 

%x and y Coordinates of Sink1 

sink.x1 = 25; 

sink.y1 = -100; 

%x and y Coordinates of Sink 2 

sink.x2 = 25; 

sink.y2 = 150; 

 

%Packet size in bits 

L = 2000; 

 

%Number of Nodes in the field 
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n=100; 

 

%Energy Model (all values in Joules) 

%Initial Energy 

Eo=0.5; 

%Eelec=Etx=Erx 

ETX=50*0.000000001; 

ERX=50*0.000000001; 

%Transmit Amplifier types 

Efs=10*0.000000000001; 

Emp=0.0013*0.000000000001; 

%Data Aggregation Energy 

EDA=5*0.000000001; 

 

%maximum number of rounds 

rmax= 2000; 

 

%%%%%%%%%%%%%%%%%%%%%%         END OF PARAMETERS      %%%%%%%%%%%%%%%%%%%%% 

%%%%%%   **SUPPRESS ABOVE IF STARTING WITH COMMON WSN PARAMETERS**   %%%%%% 

 

%Computation of do 

do=sqrt(Efs/Emp); 

 

%Get the screensize so each figure can be normalized in a similar manner 

%for thesis writeup 

scrsz = get(0,'ScreenSize'); 

 

%Creation of the random Sensor Network 

fig = figure(1); 

set(fig, 'Position',[1 scrsz(4)*.25 scrsz(3)*.7 scrsz(4)*.75]); 

 

subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

hold on; 

 

for i=1:1:n; 

        S(i).xd = SensorX(i); 

%     S(i).xd = rand(1,1)*xm; 

    XR(i)=S(i).xd; %copy of the x-coordinate outside of the S struct 

        S(i).yd = SensorY(i); 

%     S(i).yd = rand(1,1)*ym; 

    YR(i)=S(i).yd; %copy of the y-coordinate outside of the S struct 

    S(i).E=Eo; 

    plot(S(i).xd,S(i).yd,'o'); 

end 

 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

 

%plot the sink 

S(n+1).xd1=sink.x1; 

S(n+1).yd1=sink.y1; 

S(n+2).xd2=sink.x2; 
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S(n+2).yd2=sink.y2; 

plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10) 

plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10) 

axis([-5 xm+5 sink.y1-5 sink.y2+5]) % Set axis of the plot 

 

%plot horizontal boundaries of the sensor field 

bottomY=[0,0]; 

bottomX=[0,xm]; 

topY = [ym,ym]; 

topX = [0,xm]; 

 

%plot vertical extremes of the sensor field 

vertLeftX=[0,0]; 

vertLeftY=[0,ym]; 

vertRightX=[xm,xm]; 

vertRightY=[0,ym]; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

set(perimeter,'Color','r','LineWidth',1); 

hold off; 

 

%start the plot for the node energy bar graph 

energyBar = zeros(1, n); 

for iii = 1:n; 

    energyBar(iii) = S(iii).E; 

end 

 

subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

bar(energyBar); 

ylim([0 0.51]); 

xlim([-10 110]); 

xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

 

%Start the plot for 3D Energy Stem 

subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

stem3(XR, YR, energyBar, 'Fill', 'g'); 

hold on 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

set(perimeter,'Color','r','LineWidth',1); 

axis([-1 xm+1 -1 ym+1 0 Eo]); 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

set(get(gca,'xlabel'),'rotation',14); 

set(get(gca,'ylabel'),'rotation',338); 

grid off; 

hold off 
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drawnow; 

 

deadNode = zeros(1,n); 

energyBar =zeros(1,n); 

DEAD_DIRECT_M = zeros(1, rmax); 

ENERGY_DIRECT_M = zeros(1, rmax); 

ENERGY_VARIANCE_DIRECT_M = zeros(1, rmax); 

flag_first_dead = 0; 

flag_10P_dead = 0; 

flag_50P_dead = 0; 

flag_80P_dead = 0; 

roundString = '1'; 

 

myObj=VideoWriter('MOVIE_DIEOUT_DIRECT_M.avi'); 

open(myObj); 

 

for round = 1:rmax; 

    round 

 

    for aa=1:n; 

        %checking if there is a dead node 

        if (S(aa).E <= 0); 

            deadNode(aa) = 1; 

        end 

    end 

 

    [notUsed, AliveNodeNo] = find(deadNode == 0); 

 

    for bb = AliveNodeNo; 

        %Calculate the distance from each node to the base station 

        distance = min( sqrt( (S(bb).xd-(S(n+1).xd1) )^2 + ... 

            (S(bb).yd-(S(n+1).yd1) )^2 ), sqrt((S(bb).xd-(S(n+2).xd2) )^2 + ... 

            (S(bb).yd-(S(n+2).yd2) )^2 ) ); %(S(n+1) is to the basestation) 

 

        %energy cost for the clusterhead in the zone to aggregate and 

        %transmit the message to the basestation 

        if (distance > do); 

            S(bb).E = S(bb).E - ( (ETX)*(L) + Emp*L*( distance^4 )); 

        end 

        if (distance <= do); 

            S(bb).E = S(bb).E - ( (ETX)*(L)  + Efs*L*( distance^2 )); 

        end 

    end 

 

    %obtain total system energy at the conclusion of each round and plot 

    for cc=1:n; 

        energyBar(cc) = S(cc).E; 

    end 

 

    %Every round, obtain the energy variance 

    ENERGY_VARIANCE_DIRECT_M(round) = var(energyBar); 
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    ENERGY_DIRECT_M(round)=sum(energyBar); %for Statistics 

    DEAD_DIRECT_M(round)=sum(deadNode); %for Statistics 

 

    % Below is used for figure plotting later 

    AliveNodeNo; 

    [notUsed2, DeadNodeNo] = find(deadNode==1); 

    DeadNodeNo; 

 

    AliveX = []; 

    AliveY = []; 

    DeaDX = []; 

    DeaDY = []; 

    EnergyAlive = []; 

    trackMeAlive = 1; 

    trackMeDead = 1; 

    for yyy = AliveNodeNo 

        AliveX(trackMeAlive) = XR(yyy); 

        AliveY(trackMeAlive) =YR(yyy); 

        EnergyAlive(trackMeAlive) = S(yyy).E; 

        trackMeAlive = trackMeAlive +1; 

    end 

    for zzz = DeadNodeNo; 

        DeaDX(trackMeDead) = XR(zzz); 

        DeaDY(trackMeDead) = YR(zzz); 

        EnergyDead(trackMeDead) = 0; 

        trackMeDead = trackMeDead+1; 

    end 

 

    %plot a running bar chart of energy for animation 

    figure(1); 

    subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

    bar(energyBar); 

    ylim([0 0.51]); 

    xlim([-10 110]); 

    xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

    ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

 

    %3D Stem Energy Plot 

    subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

    stem3(AliveX, AliveY, EnergyAlive, 'Fill', 'g', 'LineStyle','--'); 

    hold on; 

    if trackMeDead > 1; 

        stem3(DeaDX, DeaDY, EnergyDead, 'Fill', 'r', 'LineStyle','--'); 

    end 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    set(perimeter,'Color','r','LineWidth',1); 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

    set(get(gca,'xlabel'),'rotation',14); 

    set(get(gca,'ylabel'),'rotation',338); 
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    axis([-1 xm+1 -1 ym+1 0 Eo]); 

    grid off; 

    hold off; 

 

    deadholder = sum(deadNode); 

 

    % Save the round to a string for display on plots 

    roundString = num2str(round); 

 

    subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

    plot(AliveX, AliveY, 'o'); 

    hold on; 

    text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

    text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

    plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

    plot(S(n+1).xd1,S(n+1).yd1,'o', 'MarkerFaceColor','g', ... 

        'MarkerSize', 10); 

    plot(S(n+2).xd2,S(n+2).yd2,'o', 'MarkerFaceColor','g',... 

        'MarkerSize', 10); 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

    set(perimeter,'Color','r','LineWidth',1); 

    xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

    hold off; 

    drawnow 

 

    %turn every 10th frame into a movie 

    if mod(round,5)==0; 

        MOVIE_DIEOUT_DIRECT_M = getframe(figure(1)); 

        writeVideo(myObj,MOVIE_DIEOUT_DIRECT_M); 

    end 

 

    %find round first node dead plot and save network figures 

    if(flag_first_dead == 0); 

        if (deadholder >= 1); 

            flag_first_dead = 1; 

            ROUND_FIRST_DEAD_DIRECT_M = round; 

            fig1dead = figure(8); 

            set(fig1dead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(S(n+1).xd1,S(n+1).yd1,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            plot(S(n+2).xd2,S(n+2).yd2,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 



 150 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig1dead,'1_Node_Dead_grid_DIRECT_M.bmp'); 

            saveas(fig1dead,'1_Node_Dead_grid_DIRECT_M'); 

            saveas(fig1dead,'1_Node_Dead_Grid_Energy_DIRECT_M'); 

            saveas(fig1dead,'1_Node_Dead_Grid_Energy_DIRECT_M.bmp'); 

        end 

    end 

 

    %find the round when 10% of nodes are dead and save network figures 

    if(flag_10P_dead == 0); 

        if (deadholder/n >= 0.1); 

            flag_10P_dead = 1; 

            ROUND_10P_DEAD_DIRECT_M = round; 

            fig10Pdead = figure(9); 

            set(fig10Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            set(gcf,'Units','normal') 

            set(gca,'Position',[.06 .06 .9 .9]) 

            plot(S(n+1).xd1,S(n+1).yd1,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            plot(S(n+2).xd2,S(n+2).yd2,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig10Pdead,'10P_Node_Dead_grid_DIRECT_M.bmp'); 

            saveas(fig10Pdead,'10P_Node_Dead_grid_DIRECT_M'); 

            saveas(fig10Pdead,'10P_Node_Dead_Grid_Energy_DIRECT_M'); 

            saveas(fig10Pdead,'10P_Node_Dead_Grid_Energy_DIRECT_M.bmp'); 

        end 

    end 

 

    %find round when 50% of nodes are dead 

    if(flag_50P_dead == 0); 

        if (deadholder/n >= 0.5); 

            flag_50P_dead = 1; 
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            ROUND_50P_DEAD_DIRECT_M = round; 

            fig50Pdead = figure(10); 

            set(fig50Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            set(gcf,'Units','normal') 

            set(gca,'Position',[.06 .06 .9 .9]) 

            plot(S(n+1).xd1,S(n+1).yd1,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            plot(S(n+2).xd2,S(n+2).yd2,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]) 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig50Pdead,'50P_Node_Dead_grid_DIRECT_M.bmp'); 

            saveas(fig50Pdead,'50P_Node_Dead_grid_DIRECT_M'); 

            saveas(fig50Pdead,'50P_Node_Dead_Grid_Energy_DIRECT_M'); 

            saveas(fig50Pdead,'50P_Node_Dead_Grid_Energy_DIRECT_M.bmp'); 

        end 

    end 

 

    %find round when 50% of nodes are dead and save network figure 

    if(flag_80P_dead == 0); 

        if (deadholder/n >= 0.8); 

            flag_80P_dead = 1; 

            ROUND_80P_DEAD_DIRECT_M = round; 

            fig80Pdead = figure(11); 

            set(fig80Pdead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(S(n+1).xd1,S(n+1).yd1,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            plot(S(n+2).xd2,S(n+2).yd2,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 
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            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig80Pdead,'80P_Node_Dead_grid_DIRECT_M.bmp'); 

            saveas(fig80Pdead,'80P_Node_Dead_grid_DIRECT_M'); 

            saveas(fig80Pdead,'80P_Node_Dead_Grid_Energy_DIRECT_M'); 

            saveas(fig80Pdead,'80P_Node_Dead_Grid_Energy_DIRECT_M.bmp'); 

        end 

    end 

 

    if deadholder == n; 

        break; 

    end 

 

end 

 

close(myObj); 

 

ALIVE_DIRECT_M = zeros(1,round); 

for i = 1:round; 

    ALIVE_DIRECT_M(i) = n - DEAD_DIRECT_M(i); 

end 

 

RoundDeadStats= [ROUND_FIRST_DEAD_DIRECT_M ROUND_10P_DEAD_DIRECT_M ... 

    ROUND_50P_DEAD_DIRECT_M ROUND_80P_DEAD_DIRECT_M]; 

 

fig2 = figure(2); 

set(fig2,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ALIVE_DIRECT_M(1:round), 'LineWidth', 2); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Number of Nodes Alive','FontSize',12,'FontWeight','bold'); 

ylim([0 n+1]); 

saveas(figure(2), 'NodesAliveVsRound_DIRECT_M'); 

saveas(figure(2), 'NodesAliveVsRound_DIRECT_M.bmp'); 

 

fig3 = figure(3); 

set(fig3,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_DIRECT_M(1:round) , 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_DIRECT_M(RoundDeadStats(1)),... 

    'p', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_DIRECT_M(RoundDeadStats(2)),... 

    'd', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_DIRECT_M(RoundDeadStats(3)),... 

    's', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_DIRECT_M(RoundDeadStats(4)),... 

    '^', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 
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ylabel('Total System Energy (J)','FontSize',12,'FontWeight','bold'); 

leg = legend('Total System Energy','1st Node Dead', '10% Nodes Dead',... 

    '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

ylim([-0.1 Eo*n+1]); 

saveas(figure(3), 'ENERGY_DIRECT_M'); 

saveas(figure(3), 'ENERGY_DIRECT_M.bmp'); 

hold off; 

 

fig4 = figure(4); 

set(fig4,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_VARIANCE_DIRECT_M(1:round) , 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_VARIANCE_DIRECT_M(RoundDeadStats(1)),... 

    'p', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_VARIANCE_DIRECT_M(RoundDeadStats(2)),... 

    'd', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_VARIANCE_DIRECT_M(RoundDeadStats(3)),... 

    's', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_VARIANCE_DIRECT_M(RoundDeadStats(4)),... 

    '^', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Energy Variance','FontSize',12,'FontWeight','bold'); 

leg = legend('Variance of Energy Disribution','1st Node Dead',... 

    '10% Nodes Dead', '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

hold off; 

saveas(figure(4), 'ENERGY_VARIANCE_DIRECT_M'); 

saveas(figure(4), 'ENERGY_VARIANCE_DIRECT_M.bmp'); 

 

save('DIRECT_M_DATA'); 

Published with MATLAB® R2013a 
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5. Minimum Transmission Energy with Dijkstra—Multi-gateway 

% MTE Multi Gateway with DIJKSTRA shortest path 

clc; 

clear all; 

close all; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Field Dimensions - x and y maximum (in meters) 

xm=50; 

ym=50; 

 

%x and y Coordinates of the Sink1 

sink.x1 = 25; %0.5*xm; 

sink.y1 = -100; %0.5*ym; 

 

%x and y Coordinates of the Sink1 

sink.x2 = 25; %0.5*xm; 

sink.y2 = 150; %0.5*ym; 

 

%Packet size in bits 

L = 2000; 

 

%Number of Nodes in the field 

n=100; 

 

%Energy Model (all values in Joules) 

%Initial Energy 

Eo=0.5; 

%Eelec=Etx=Erx 

ETX=50*0.000000001; 

ERX=50*0.000000001; 

%Transmit Amplifier types 

Efs=10*0.000000000001; 

Emp=0.0013*0.000000000001; 

%Data Aggregation Energy 

EDA=5*0.000000001; 

 

%maximum number of rounds 

rmax= 1500; %9999 

 

%%%%%%%%%%%%%%%%%%%%%%         END OF PARAMETERS      %%%%%%%%%%%%%%%%%%%%% 

%%%%%%   **SUPPRESS ABOVE IF STARTING WITH COMMON WSN PARAMETERS**   %%%%%% 

 

%Computation of do 

do=sqrt(Efs/Emp); 

 

%Get the screensize so each figure can be normalized in a similar manner 

%for thesis writeup 

scrsz = get(0,'ScreenSize'); 
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%Creation of the random Sensor Network 

fig = figure(1); 

set(fig, 'Position',[1 scrsz(4)*.25 scrsz(3)*.7 scrsz(4)*.75]); 

subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

hold on; 

axis([-10 xm+10 sink.y1-10 sink.y2+10]); 

 

for i=1:n 

    S(i).xd = SensorX(i); 

    %     S(i).xd = rand(1,1)*xm; 

    XR(i)=S(i).xd; %copy of the x-coordinate outside of the S struct 

    S(i).yd = SensorY(i); 

    %     S(i).yd = rand(1,1)*ym; 

    YR(i)=S(i).yd; %copy of the y-coordinate outside of the S struct 

    plot(S(i).xd,S(i).yd,'o'); 

    S(i).E = Eo; 

end 

 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

 

%plot the sink 

S(n+1).xd=sink.x1; 

S(n+1).yd=sink.y1; 

S(n+2).xd=sink.x2; 

S(n+2).yd=sink.y2; 

sinkX = [sink.x1 sink.x2]; 

sinkY = [sink.y1 sink.y2]; 

 

plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10); %plots the location of the sink1 

plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10); 

axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

 

%plot horizontal boundaries of the sensor field 

bottomY=[0,0]; 

bottomX=[0,xm]; 

topY = [ym,ym]; 

topX = [0,xm]; 

 

%plot vertical extremes of the sensor field 

vertLeftX=[0,0]; 

vertLeftY=[0,ym]; 

vertRightX=[xm,xm]; 

vertRightY=[0,ym]; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

set(perimeter,'Color','red','LineWidth',1); 

hold off; 

 

%start the plot for the node energy bar graph 
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energyBar = zeros(1, n); 

for iii = 1:n; 

    energyBar(iii) = S(iii).E; 

end 

 

subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

bar(energyBar); 

ylim([0 0.51]); 

xlim([-10 110]); 

xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

 

%Start the plot for 3D Energy Stem 

subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

stem3(XR, YR, energyBar, 'Fill', 'g'); 

hold on; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

set(perimeter,'Color','r','LineWidth',1); 

axis([-1 xm+1 -1 ym+1 0 Eo]); 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

set(get(gca,'xlabel'),'rotation',14); 

set(get(gca,'ylabel'),'rotation',338); 

grid off; 

hold off; 

 

ENERGY_MTE_M_DIJKSTRA = zeros(1,rmax); %Initialize ENERGY vector 

ALIVE_MTE_M_DIJKSTRA = zeros(1,rmax); %Initialize ALIVE vector 

ENERGY_VARIANCE_MTE_M_DIJKSTRA = zeros(1,rmax); 

flag_first_dead = 0; 

flag_10P_dead = 0; 

flag_50P_dead = 0; 

flag_80P_dead = 0; 

roundString = '1'; 

 

myObj=VideoWriter('MTE_M_DIJKSTRA.avi'); 

open(myObj); 

 

%Setup for DG matrix 

index = 1; 

PointNode1 = zeros(1,(n+2)^2); 

PointNode2 = zeros(1,(n+2)^2); 

 

for i = 1:(n+2) 

    for j = 1:(n+2) 

        PointNode1(index)=i; 

        PointNode2(index)=j; 

        index = index + 1; 

    end 

end 
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for round = 1:rmax 

    tic 

    round 

 

    %for every node, identify the set of nodes that still have energy, 

    %ie the set of nodes that are not dead 

    for node = 1:n 

        node; 

        NodesAvailable = []; %Initialize NodesAvailable to an empty matrix 

        alive = zeros(1,n); 

        for aa = 1:n 

            %build a vector of alive nodes 

            %this needs to be done each round for each node becasue a 

            %nodes battery life could go dead in the middle of a round 

            %thus it should not be allowed to be used again in the 

            %computation of routing paths 

            if ( S(aa).E > 0 ) 

                alive(aa) = 1; 

            end %if 

 

        end %k loop 

        NumberAlive = sum(alive); 

        %Initialize NodesAvailable to a matrix of zeros each round to 

        %eliminate previous results being on the end of this array as it 

        %gets smaller and smaller 

        NodesAvailable = zeros(1,NumberAlive); 

        NodesAvailable = (find(alive == 1)); % this provides the nodes 

        %available for routing between, NodesAvailable must be 

        %initialized to an empty array at the beginning of the k for 

        %loop so as the array becomes smaller, higher order elements 

        %do not accidentally remain. 

        NodesAvailableAndGateway = [NodesAvailable, (n+1), (n+2)];%include 

        %the gateway , if multi gateway, need to have 102 as well 

 

        DSQ = zeros(n+2); %initialize distance squared matrix 

        for bb = NodesAvailableAndGateway 

            for cc = NodesAvailableAndGateway 

                %populate the wireless weighting matrix DSQ 

                DSQ(bb,cc)=(S(bb).xd-S(cc).xd)^2+(S(bb).yd-S(cc).yd)^2; 

            end %cols 

        end %rows 

 

        weightVector = zeros(1,(n+2)^2); 

        format long 

        index = 1; 

        for dd = 1:(n+2) %note for multigateway, it should be 102 

            for ee = 1:(n+2) %note for multigateway, it should be 102 

                weightVector(index) = DSQ(dd,ee); 

                index = index + 1; 

            end 

        end 
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        DG = sparse(PointNode1,PointNode2, weightVector); 

 

        hasenergy = S(node).E; 

 

        if (hasenergy > 0) %node will only send its data if it has energy! 

 

            %Now lets obtain the minimum path to the sink. 

            %Calculate a path to both sinks and minimize the dist 

            [dist1,pathToGateway1,pred1] = graphshortestpath(DG,node,101); 

            [dist2,pathToGateway2,pred2] = graphshortestpath(DG,node,102); 

 

            %Obtain the minimum cost path to either gateway 1 or gateway 2 

            dist = min(dist1, dist2); 

            if (dist == dist1) 

                pathToGateway = pathToGateway1; 

            else 

                pathToGateway = pathToGateway2; 

            end 

 

            % now we have a path, and we need to deduct transmit and 

            % recieve energy along the path for each node 

 

            %every node except the first node in path and the sink (the 

            %last node) should have their energy decremented 

            %corresponding to the cost to recieve the message 

 

            trackIndexInPath = 1; 

            for ff = pathToGateway 

 

                %decrement energy for ERX along path 

                % eliminates energy from being decremented from the first 

                %node in the path (i.e the source), and the last node in 

                %the path which is the gateway 

                if (ff ~= pathToGateway(1)) && ... 

                        (ff~=pathToGateway(length(pathToGateway))) 

                    S(ff).E = S(ff).E - ERX*L; %cost of the node to RX 

                end 

 

                %decrement energy for ETX along path 

                if (ff~=pathToGateway(length(pathToGateway))) %the last node 

                    %is the gateway, which does not transmit 

 

                    %calculate the distance to the next node in the path 

                    distance= sqrt((S(ff).xd - ... 

                        S(pathToGateway(trackIndexInPath+1)).xd)^2+... 

                        (S(ff).yd -S(pathToGateway(trackIndexInPath + 1)).yd)^2); 

                        %the euclidean distance to the next node in path 

 

                    if (distance > do) %mulipath propagation, decrement 

                        %energy accordingly 

                        S(ff).E = S(ff).E - ( (ETX)*(L) + Emp*L*( distance^4 )); 
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                        %No data aggregation (EDA) in MTE routing 

                    end %if 

                    if (distance <= do) %direct path propagation 

 

                        S(ff).E = S(ff).E - ( (ETX)*(L)  + Efs*L*( distance^2 )); 

                        %No data aggregation (EDA) in MTE routing 

                    end %if 

                end %if 

                trackIndexInPath = trackIndexInPath + 1; 

            end %ff 

 

        end %if (S(j).E > 0) lop 

    end %j loop 

 

    %Every round, obtain the number of nodes that are alive 

    ALIVE_MTE_M_DIJKSTRA(round) = NumberAlive; 

    %note that we get NumberAlive after iterating thru all nodes 

    NumberDead = n - NumberAlive; 

 

    %obtain the node energy at the conclusion of each round and plot 

    for cc=1:n 

        energyBar(cc) = S(cc).E; 

    end 

    ENERGY_MTE_M_DIJKSTRA(round)=sum(energyBar); 

 

 

    %Every round, obtain the energy variance 

    ENERGY_VARIANCE_MTE_M_DIJKSTRA(round) = var(energyBar); 

 

    DeadNodeNo = find(alive==0); 

 

    AliveX = zeros(1,NumberAlive); 

    AliveY = zeros(1,NumberAlive); 

    DeaDX = zeros(1,NumberDead); 

    DeaDY = zeros(1,NumberDead); 

    EnergyAlive = zeros(1,NumberAlive); 

    EnergyDead = zeros(1,NumberDead); 

    trackMeAlive = 1; 

    trackMeDead = 1; 

    for yyy = NodesAvailable; 

        AliveX(trackMeAlive) = XR(yyy); 

        AliveY(trackMeAlive) =YR(yyy); 

        EnergyAlive(trackMeAlive) = S(yyy).E; 

        trackMeAlive = trackMeAlive +1; 

    end 

    for zzz = DeadNodeNo; 

        DeaDX(trackMeDead) = XR(zzz); 

        DeaDY(trackMeDead) = YR(zzz); 

        EnergyDead(trackMeDead) = 0; 

        trackMeDead = trackMeDead+1; 

    end 
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    %plot a running bar chart of energy for animation 

    figure(1) 

    subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

    bar(energyBar) 

    ylim([0 0.51]) 

    xlim([-10 110]) 

    xlabel('Node Number','FontSize',12,'FontWeight','bold') 

    ylabel('Energy (J)','FontSize',12,'FontWeight','bold') 

 

    %3D Stem Energy Plot 

    subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

    stem3(AliveX, AliveY, EnergyAlive, 'Fill', 'g', 'LineStyle','--'); 

    hold on 

    if trackMeDead > 1; 

        stem3(DeaDX, DeaDY, EnergyDead, 'Fill', 'r', 'LineStyle','--'); 

    end 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    set(perimeter,'Color','r','LineWidth',1); 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold') 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold') 

    zlabel('Energy (J)','FontSize',12,'FontWeight','bold') 

    set(get(gca,'xlabel'),'rotation',14) 

    set(get(gca,'ylabel'),'rotation',338) 

    axis([-1 xm+1 -1 ym+1 0 Eo]); 

    grid off 

    hold off 

    drawnow 

 

    % Save the round to a string for display on plots 

    roundString = num2str(round); 

 

    subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

    plot(AliveX, AliveY, 'o'); 

    hold on; 

    text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

    text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

    plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

    plot(S(n+1).xd,S(n+1).yd,'o', 'MarkerFaceColor','g', 'MarkerSize', 10); 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

        'g','MarkerSize',10) 

    axis([-5 xm+5 sink.y1-5 sink.y2+5]) 

    set(perimeter,'Color','r','LineWidth',1); 

    xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

    hold off; 

    drawnow 

 

    % turn every 5th frame into a movie 

    if mod(round,2)==0; 
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        MOVIE_MTE_DIJKSTRA = getframe(figure(1)); 

        writeVideo(myObj,MOVIE_MTE_DIJKSTRA); 

    end 

 

    %Flag the round the first node dies 

    if (flag_first_dead == 0) 

        if (NumberDead > 0); 

            flag_first_dead = 1; 

            ROUND_FIRST_DEAD_MTE_M_DIJKSTRA = round; 

            fig1dead = figure(8) 

            set(fig1dead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            plot(S(n+1).xd,S(n+1).yd,'o','MarkerFaceColor','g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k',... 

                'MarkerFaceColor','g','MarkerSize',10) 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig1dead,'1_Node_Dead_grid_MTE_M_DIJKSTRA.bmp'); 

            saveas(fig1dead,'1_Node_Dead_grid_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'1_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'1_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA.bmp'); 

        end %if 

    end %if 

 

    %find round when 10% of nodes are dead 

    if(flag_10P_dead == 0); 

        if (NumberDead >= n*0.1); 

            flag_10P_dead = 1; 

            ROUND_10P_DEAD_MTE_M_DIJKSTRA = round; 

            fig10Pdead = figure(9); 

            set(fig10Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            plot(S(n+1).xd,S(n+1).yd,'o', 'MarkerFaceColor',... 

                'g', 'MarkerSize', 10); 



 162 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k',... 

                'MarkerFaceColor','g','MarkerSize',10); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig10Pdead,'10P_Node_Dead_grid_MTE_M_DIJKSTRA.bmp'); 

            saveas(fig10Pdead,'10P_Node_Dead_grid_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'10P_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'10P_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA.bmp'); 

        end 

    end 

 

    %find round when 50% of nodes are dead 

    if(flag_50P_dead == 0); 

        if (NumberDead >= n*0.5); 

            flag_50P_dead = 1; 

            ROUND_50P_DEAD_MTE_M_DIJKSTRA = round; 

            fig50Pdead = figure(10); 

            set(fig50Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            plot(S(n+1).xd,S(n+1).yd,'o', 'MarkerFaceColor','g',... 

                'MarkerSize', 10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k',... 

                'MarkerFaceColor','g','MarkerSize',10) 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig50Pdead,'50P_Node_Dead_grid_MTE_M_DIJKSTRA.bmp'); 

            saveas(fig50Pdead,'50P_Node_Dead_grid_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'50P_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'50P_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA.bmp'); 

        end 

    end 

 

    %find round when 80% of nodes are dead and save network figure 

    if(flag_80P_dead == 0); 
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        if (NumberDead >= n*0.8); 

            flag_80P_dead = 1; 

            ROUND_80P_DEAD_MTE_M_DIJKSTRA = round; 

            fig80Pdead  = figure(11); 

            set(fig80Pdead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(AliveX, AliveY, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(DeaDX, DeaDY, 'r .', 'MarkerSize', 20); 

            plot(S(n+1).xd,S(n+1).yd,'o','MarkerFaceColor''g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k',... 

                'MarkerFaceColor','g','MarkerSize',10); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1) 

            xlabel ('x-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel ('y-Grid Axis (m)','FontSize',12,'FontWeight','bold'); 

            drawnow; 

            hold off; 

            saveas(fig80Pdead,'80P_Node_Dead_grid_MTE_M_DIJKSTRA.bmp'); 

            saveas(fig80Pdead,'80P_Node_Dead_grid_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'80P_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA'); 

            saveas(figure(1),'80P_Node_Dead_Grid_Energy_MTE_M_DIJKSTRA.bmp'); 

        end 

    end 

 

    %break out of the loop when all nodes are dead 

    if ALIVE_MTE_M_DIJKSTRA(round) == 0; 

        break; 

    end 

 

    toc 

end %i loop (all rounds are done!) 

 

close(myObj); 

 

RoundDeadStats= [ROUND_FIRST_DEAD_MTE_M_DIJKSTRA ROUND_10P_DEAD_MTE_M_DIJKSTRA ... 

    ROUND_50P_DEAD_MTE_M_DIJKSTRA ROUND_80P_DEAD_MTE_M_DIJKSTRA]; 

 

fig2 = figure(2); 

set(fig2,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ALIVE_MTE_M_DIJKSTRA(1:round) , 'LineWidth', 2); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Number of Nodes Alive','FontSize',12,'FontWeight','bold'); 

ylim([0 n+1]); 

saveas(figure(2), 'NodesAliveVsRound_MTE_M_DIJKSTRA'); 
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saveas(figure(2), 'NodesAliveVsRound_MTE_M_DIJKSTRA.bmp'); 

 

fig3 = figure(3); 

set(fig3,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_MTE_M_DIJKSTRA(1:round) , 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_MTE_M_DIJKSTRA(RoundDeadStats(1)),... 

    'p', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_MTE_M_DIJKSTRA(RoundDeadStats(2)),... 

    'd', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_MTE_M_DIJKSTRA(RoundDeadStats(3)),... 

    's', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_MTE_M_DIJKSTRA(RoundDeadStats(4)),... 

    '^', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Total System Energy (J)','FontSize',12,'FontWeight','bold'); 

leg = legend('Total System Energy','1st Node Dead', '10% Nodes Dead',... 

    '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

ylim([-0.1 Eo*n+1]); 

hold off; 

saveas(figure(3), 'ENERGY_MTE_M_DIJKSTRA'); 

saveas(figure(3), 'ENERGY_MTE_M_DIJKSTRA.bmp'); 

 

fig4 = figure(4); 

set(fig4,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_VARIANCE_MTE_M_DIJKSTRA(1:round) , 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_VARIANCE_MTE_M_DIJKSTRA(RoundDeadStats(1)),... 

    'p', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_VARIANCE_MTE_M_DIJKSTRA(RoundDeadStats(2)),... 

    'd', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_VARIANCE_MTE_M_DIJKSTRA(RoundDeadStats(3)),... 

    's', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_VARIANCE_MTE_M_DIJKSTRA(RoundDeadStats(4)),... 

    '^', 'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Energy Variance (J^2)','FontSize',12,'FontWeight','bold'); 

leg = legend('Variance of Energy Disribution','1st Node Dead',... 

    '10% Nodes Dead', '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

hold off; 

saveas(figure(4), 'ENERGY_VARIANCE_MTE_M_DIJKSTRA'); 

saveas(figure(4), 'ENERGY_VARIANCE_MTE_M_DIJKSTRA.bmp'); 

 

save('MTE_M_DIJKSTRA_DATA'); 

Published with MATLAB® R2013a 
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6. LEACH—Multi-gateway 

%LEACH Multi gateway 

 

clc; 

clear all; 

close all; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Field Dimensions - x and y maximum (in meters) 

xm=50; 

ym=50; 

 

%x and y Coordinates of Sink 1 

sink.x1 = 25; 

sink.y1 = -50; 

%x and y Coordinates of Sink 2 (FOR MULTIGATEWAY CASE) 

sink.x2 = 25; 

sink.y2 = 100; 

 

%Packet size in bits 

L = 2000; 

 

%Number of Nodes in the field 

n=100; 

 

%Optimal Election Probability of a node to become cluster head 

p=0.05; 

 

%Energy Model (all values in Joules) 

%Initial Energy 

Eo=0.5; 

 

%Eelec=Etx=Erx 

ETX=50*0.000000001; 

ERX=50*0.000000001; 

%Transmit Amplifier types 

Efs=10*0.000000000001; 

Emp=0.0013*0.000000000001; 

%Data Aggregation Energy 

EDA=5*0.000000001; 

 

%maximum number of rounds 

rmax= 4000; %9999 

 

%%%%%%%%%%%%%%%%%%%%%%         END OF PARAMETERS      %%%%%%%%%%%%%%%%%%%%% 

%%%%%%   **SUPPRESS ABOVE IF STARTING WITH COMMON WSN PARAMETERS**   %%%%%% 

 

%Computation of do 

do=sqrt(Efs/Emp); 
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%Get the screensize so each figure can be normalized in a similar manner 

%for thesis writeup 

scrsz = get(0,'ScreenSize'); 

 

%Creation of the random Sensor Network 

fig = figure(1); 

set(fig, 'Position',[1 scrsz(4)*.25 scrsz(3)*.7 scrsz(4)*.75]); 

 

subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

hold on 

 

for i=1:n; 

    S(i).xd = SensorX(i); 

    %     S(i).xd = rand(1,1)*xm; 

    XR(i)=S(i).xd; %copy of the x-coordinate outside of the S struct 

    S(i).yd = SensorY(i); 

    %     S(i).yd = rand(1,1)*ym; 

    YR(i)=S(i).yd; %copy of the y-coordinate outside of the S struct 

    S(i).G=0; 

    %initially there are no cluster heads, only nodes 

    S(i).type='N'; 

    S(i).E=Eo; 

    plot(S(i).xd,S(i).yd,'o'); 

end 

 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

 

%plot the sink 

S(n+1).xd1=sink.x1; 

S(n+1).yd1=sink.y1; 

S(n+2).xd2=sink.x2; 

S(n+2).yd2=sink.y2; 

plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10) 

plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10) 

axis([-5 xm+5 sink.y1-5 sink.y2+5]) 

 

%plot horizontal boundaries of the sensor field 

bottomY=[0,0]; 

bottomX=[0,xm]; 

topY = [ym,ym]; 

topX = [0,xm]; 

 

%plot vertical extremes of the sensor field 

vertLeftX=[0,0]; 

vertLeftY=[0,ym]; 

vertRightX=[xm,xm]; 

vertRightY=[0,ym]; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 
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    vertRightX, vertRightY); 

axis([-5 xm+5 sink.y1-5 sink.y2+5]) 

set(perimeter,'Color','r','LineWidth',1); 

figure(1); 

hold off 

 

%start the plot for the node energy bar graph 

energyBar = zeros(1, n); 

for iii = 1:n; 

    energyBar(iii) = S(iii).E; 

end 

 

subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

bar(energyBar); 

ylim([0 0.51]); 

xlim([-10 110]); 

xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

 

%Start the plot for 3D Energy Stem 

subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

stem3(XR, YR, energyBar, 'Fill', 'g'); 

hold on; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

set(perimeter,'Color','r','LineWidth',1); 

axis([-1 xm+1 -1 ym+1 0 Eo]); 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

set(get(gca,'xlabel'),'rotation',14); 

set(get(gca,'ylabel'),'rotation',338); 

grid off; 

hold off; 

 

%counter for CHs, initializes the countCHs metric to zero 

countCHs=0; 

%counter for CHs per round 

rcountCHs=0; 

cluster=1; 

 

countCHs; 

rcountCHs=rcountCHs+countCHs; 

 

flag_first_dead = 0; 

flag_10P_dead = 0; 

flag_50P_dead = 0; 

flag_80P_dead = 0; 

roundString = '1'; 

ENERGY_VARIANCE_LEACH_M = zeros(1, rmax); 

CLUSTERHS_LEACH_M = zeros(1, rmax); 

ENERGY_LEACH_M = zeros(1, rmax); 
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DEAD_LEACH_M = zeros(1, rmax); 

 

myObj=VideoWriter('MOVIE_DIEOUT_LEACH_M.avi'); 

open(myObj); 

 

for r=0:rmax; 

    r 

 

    %Initialize arrays 

    ClusterHeads = []; 

    ClusterHeadsX = []; 

    ClusterHeadsY = []; 

 

    %Reset G and cl every 1/p rounds 

    if(mod(r, round(1/p) )==0); 

        for bbb=1:n; 

            S(bbb).G=0; 

            S(bbb).cl=0; 

        end 

    end 

 

    for aaa=1:n; 

        if (S(aaa).E<=0); 

            S(aaa).type='D'; 

        end 

        if S(aaa).E>0; 

            S(aaa).type='N'; 

        end 

    end 

 

    cluster=1; 

    in_while = 0; 

    while(cluster==1); 

        for bb=1:n; %this loop goes through each node and identifies the CHs 

            if(S(bb).E>0); 

                temp_rand = rand; 

                if ( (S(bb).G) <= 0); %Only chooses nodes that belong to 

                    %set G (nodes that havent been clusterheads in last 

                    %1/p rounds) as clusterheads 

 

                    %Election of Cluster Heads 

                    if(temp_rand <= (p/(1-p*mod(r,round(1/p))))); 

 

                        S(bb).type = 'C'; 

                        S(bb).G = round(1/p)-1; %Annotates the node has been 

                        %a CH in the last 1/p rounds 

                        C(cluster).xd = S(bb).xd; 

                        C(cluster).yd = S(bb).yd; 

                        ClusterHeadsX(cluster) = S(bb).xd; 

                        ClusterHeadsY(cluster) = S(bb).yd; 

                        ClusterHeads(cluster) = bb; 
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                        %Incoporate multigateway below 

                        distance = min([(sqrt( (S(bb).xd-(S(n+1).xd1))^2 +... 

                          (S(bb).yd-(S(n+1).yd1))^2))(sqrt((S(bb).xd-(S(n+2).xd2) )^2+... 

                           (S(bb).yd-(S(n+2).yd2) )^2 ))]); %Takes the 

                            %shortest distance to either Sink1 or Sink 2 

 

                        C(cluster).distance = distance; 

                        C(cluster).id = bb; %The C(cluster).id is id of the CH 

                        X(cluster)=S(bb).xd; 

                        Y(cluster)=S(bb).yd; 

                        cluster=cluster+1; 

 

                        %Calculation of Energy dissipated (ONLY FOR CHs) 

                        distance; 

                        if (distance > do); %MultiPath Propagation 

                            S(bb).E=S(bb).E - ( (ETX+EDA)*(L) + Emp*L*( distance^4 )); 

                        end 

                        if (distance <= do); %DirectPath Propagation 

                            S(bb).E=S(bb).E - ( (ETX+EDA)*(L)  + Efs*L*( distance^2 )); 

                        end 

                    end 

 

                end 

            end 

        end 

        in_while = in_while+1; 

        if in_while == 100; 

            break 

        end 

    end 

 

    CLUSTERHS_LEACH_M(r+1)=cluster-1; 

 

 

    %Each node picks its closest clusterhead 

    %Every node it checks distance to each basestation and the distance to 

    %each clusterhead, the output being the smallest distance, which is the 

    %distance to transmit the nodes' energy 

    for cc=1:n; % Check all the nodes 

        if ( S(cc).type=='N' && S(cc).E>0 ); 

            if(cluster-1>=1)% What if no clusterheads are chosen... i.e. cluster-1 = 0?? 

                min_dis = min([(sqrt( (S(cc).xd-(S(n+1).xd1) )^2 +... 

                    (S(cc).yd-(S(n+1).yd1) )^2 )) (sqrt( (S(cc).xd-(S(n+2).xd2) )^2 +... 

                    (S(cc).yd-(S(n+2).yd2) )^2 ))]); %Each 'N' node identifies the 

                    %minimum distance to the basestation 

                min_dis_cluster = 1; 

                for dd=1:cluster-1; %cluster - 1 is the number of CHs for that round 

                    temp = min(min_dis, sqrt( (S(cc).xd-C(dd).xd)^2 +... 

                        (S(cc).yd-C(dd).yd)^2 ) ); %take smaller of distance to 

                        %basestation or distance to CH 

                    if ( temp < min_dis ) 

                        min_dis=temp; 
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                        min_dis_cluster = dd; 

                    end 

                end 

 

                %Energy dissipated by the node to transmit the message to 

                %its clusterhead 

                min_dis; 

                if (min_dis>do); %MultiPath Propagation 

                    S(cc).E = S(cc).E - ( ETX*(L) + Emp*L*( min_dis^4)); 

                end 

                if (min_dis<=do); %DirectPath Propagation 

                    S(cc).E = S(cc).E- ( ETX*(L) + Efs*L*( min_dis^2)); 

                end 

                %Energy dissipated for the node's clusterhead to recieve 

                %and aggregate the message. 

                if(min_dis>0); 

                    S(C(min_dis_cluster).id).E=S(C(min_dis_cluster).id).E-((ERX+EDA)*L ); 

                end 

                S(cc).min_dis=min_dis; 

                S(cc).min_dis_cluster = min_dis_cluster; 

            end 

            if (cluster == 1);  % this is the case where no clusterheads are chosen 

                %nodes communicate directly with sink 

                min_dis = min([(sqrt( (S(cc).xd-(S(n+1).xd1) )^2 +... 

                    (S(cc).yd-(S(n+1).yd1) )^2 )) (sqrt( (S(cc).xd-(S(n+2).xd2) )^2 +... 

                    (S(cc).yd-(S(n+2).yd2) )^2 ))]); 

                %Energy dissipated by the node to transmit the message to 

                %closest basestation in case there are no clusterheads 

                %chosen 

                disp('NO CLUSTERHEADS CHOSEN ... SENDING DIRECT TO SINK') 

                if (min_dis>do); %MultiPath Propagation 

                    S(cc).E = S(cc).E - ( ETX*(L) + Emp*L*( min_dis^4)); 

                end 

                if (min_dis<=do); %DirectPath Propagation 

                    S(cc).E = S(cc).E- ( ETX*(L) + Efs*L*( min_dis^2)); 

                end 

            end 

        end 

    end 

 

    %obtain the energy variance and determine dead nodes 

    energyBar = zeros(1, n); 

    deadholder = 0; 

    for www = 1:n; 

        energyBar(www) = S(www).E; 

        if S(www).E <=0; 

            deadholder = deadholder+1; 

        end 

    end 

    DEAD_LEACH_M(r+1)=deadholder; 

 

    ENERGY_VARIANCE_LEACH_M(r+1) = var(energyBar); 



 171 

    ENERGY_LEACH_M(r+1) = sum(energyBar); 

 

    %plot a running bar chart of energy for animation 

    figure(1); 

    subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

    bar(energyBar); 

    ylim([0 0.51]); 

    xlim([-10 110]); 

    xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

    ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

    drawnow 

 

 

    % Save the round to a string for display on plots 

    roundString = num2str(r); 

 

    trackitAlive = 1; 

    trackitDead = 1; 

    %preallocate for speed 

    RoundDead = zeros(1, deadholder); 

    RoundDeadx = zeros(1, deadholder); 

    RoundDeady = zeros(1, deadholder); 

    EnergyDead = zeros(1, deadholder); 

    RoundAlive = zeros(1, n - deadholder); 

    RoundAlivex = zeros(1, n - deadholder); 

    RoundAlivey = zeros(1, n - deadholder); 

    EnergyAlive = zeros(1, n - deadholder); 

    RoundCHx = []; 

    RoundCHy = []; 

    RoundCHs = []; 

    NormalNode = []; 

    NormalNodex = []; 

    NormalNodey = []; 

 

    for hh = 1:n; 

        if S(hh).E > 0; 

            RoundAlive(trackitAlive) = hh; 

            RoundAlivex(trackitAlive) = XR(hh); 

            RoundAlivey(trackitAlive) = YR(hh); 

            EnergyAlive(trackitAlive) = S(hh).E; 

            trackitAlive = trackitAlive +1; 

        end 

        if S(hh).E <=0; 

            RoundDead(trackitDead)= hh; 

            RoundDeadx(trackitDead)= XR(hh); 

            RoundDeady(trackitDead)= YR(hh); 

            EnergyDead(trackitDead) = 0; 

            trackitDead = trackitDead + 1; 

        end 

    end 

 

    %3D Stem Energy Plot 
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    subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

    stem3(RoundAlivex, RoundAlivey, EnergyAlive, 'Fill', 'g', 'LineStyle','--'); 

    hold on; 

    if trackitDead > 1; 

        stem3(RoundDeadx, RoundDeady, EnergyDead, 'Fill', 'r', 'LineStyle','--'); 

    end 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    set(perimeter,'Color','r','LineWidth',1); 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

    set(get(gca,'xlabel'),'rotation',14); 

    set(get(gca,'ylabel'),'rotation',338); 

    axis([-1 xm+1 -1 ym+1 0 Eo]); 

    grid off; 

    hold off; 

    drawnow; 

 

    subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

    plot(XR,YR, 'o'); 

    hold on; 

    text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

    text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

    plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

    if deadholder > 0; 

        plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

    end 

    plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

        'g','MarkerSize',10); 

    plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

        'g','MarkerSize',10); 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

    set(perimeter,'Color','r','LineWidth',1); 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    hold off; 

    drawnow; 

 

    %turn every 5th frame into a movie 

    if mod(r,5)==0; 

        MOVIE_DIEOUT_LEACH_M = getframe(figure(1)); 

        writeVideo(myObj,MOVIE_DIEOUT_LEACH_M); 

    end 

 

    %find round first node dead 

    if(flag_first_dead == 0); 

        if (deadholder >= 1); 

            flag_first_dead = 1; 

            ROUND_FIRST_DEAD_LEACH_M = r; 
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            fig1dead = figure(8); 

            set(fig1dead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig1dead,'1_Node_Dead_grid_LEACH_M.bmp'); 

            saveas(fig1dead,'1_Node_Dead_grid_LEACH_M'); 

            saveas(figure(1),'1_Node_Dead_Grid_Energy_LEACH_M'); 

            saveas(figure(1),'1_Node_Dead_Grid_Energy_LEACH_M.bmp'); 

        end 

    end 

 

    %find the round when 10% of nodes are dead and save network figures 

    if(flag_10P_dead == 0); 

        if (deadholder >= 0.1*n); 

            flag_10P_dead = 1; 

            ROUND_10P_DEAD_LEACH_M = r; 

            fig10Pdead = figure(9); 

            set(fig10Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor','g',... 

                'MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor','g',... 

                'MarkerSize',10); 
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            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig10Pdead,'10P_Node_Dead_grid_LEACH_M.bmp'); 

            saveas(fig10Pdead,'10P_Node_Dead_grid_LEACH_M'); 

            saveas(figure(1),'10P_Node_Dead_Grid_Energy_LEACH_M'); 

            saveas(figure(1),'10P_Node_Dead_Grid_Energy_LEACH_M.bmp'); 

        end 

    end 

 

    %find round when 50% of nodes are dead 

    if(flag_50P_dead == 0); 

        if (deadholder >= 0.5*n); 

            flag_50P_dead = 1; 

            ROUND_50P_DEAD_LEACH_M = r; 

            fig50Pdead = figure(10); 

            set(fig50Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor','g',... 

                'MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor','g',... 

                'MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig50Pdead,'50P_Node_Dead_grid_LEACH_M.bmp'); 

            saveas(fig50Pdead,'50P_Node_Dead_grid_LEACH_M'); 

            saveas(figure(1),'50P_Node_Dead_Grid_Energy_LEACH_M'); 

            saveas(figure(1),'50P_Node_Dead_Grid_Energy_LEACH_M.bmp'); 

        end 

    end 

 

    %find round when 80% of nodes are dead and save network figure 
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    if(flag_80P_dead == 0); 

        if (deadholder >= 0.8*n); 

            flag_80P_dead = 1; 

            ROUND_80P_DEAD_LEACH_M = r; 

            fig80Pdead = figure(11); 

            set(fig80Pdead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor','g',... 

                'MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor','g',... 

                'MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig80Pdead,'80P_Node_Dead_grid_LEACH_M.bmp'); 

            saveas(fig80Pdead,'80P_Node_Dead_grid_LEACH_M'); 

            saveas(figure(1),'80P_Node_Dead_Grid_Energy_LEACH_M'); 

            saveas(figure(1),'80P_Node_Dead_Grid_Energy_LEACH_M.bmp'); 

        end 

    end 

 

    if deadholder == n; 

        break; 

    end 

 

end 

 

close(myObj); 

 

ALIVE_LEACH_M = zeros(1,r); 

for ii = 0:r 

    ALIVE_LEACH_M(ii+1) = n - DEAD_LEACH_M(ii+1); 

end 

 

RoundDeadStats= [ROUND_FIRST_DEAD_LEACH_M ROUND_10P_DEAD_LEACH_M ... 

    ROUND_50P_DEAD_LEACH_M ROUND_80P_DEAD_LEACH_M]; 
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fig2 = figure(2); 

set(fig2,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ALIVE_LEACH_M, 'LineWidth', 2); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Number of Nodes Alive','FontSize',12,'FontWeight','bold'); 

ylim([0 n+1]); 

saveas(figure(2), 'NodesAliveVsRound_LEACH_M'); 

saveas(figure(2), 'NodesAliveVsRound_LEACH_M.bmp'); 

 

 

fig3 = figure(3); 

set(fig3,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_LEACH_M(1:r), 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_LEACH_M(RoundDeadStats(1)), 'p',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_LEACH_M(RoundDeadStats(2)), 'd',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_LEACH_M(RoundDeadStats(3)), 's',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_LEACH_M(RoundDeadStats(4)), '^',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Total System Energy (J)','FontSize',12,'FontWeight','bold'); 

ylim([-0.1 Eo*n+1]); 

saveas(figure(3), 'TotalSystemEnergy_LEACH_M'); 

saveas(figure(3), 'TotalSystemEnergy_LEACH_M.bmp'); 

 

fig4 = figure(4); 

set(fig4,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_VARIANCE_LEACH_M(1:r), 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_VARIANCE_LEACH_M(RoundDeadStats(1)), 'p',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_VARIANCE_LEACH_M(RoundDeadStats(2)), 'd',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_VARIANCE_LEACH_M(RoundDeadStats(3)), 's',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_VARIANCE_LEACH_M(RoundDeadStats(4)), '^',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Energy Variance (J^2)','FontSize',12,'FontWeight','bold'); 

leg = legend('Variance of Energy Disribution','1st Node Dead',... 

    '10% Nodes Dead', '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

hold off; 
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saveas(figure(4), 'ENERGY_VARIANCE_LEACH_M'); 

saveas(figure(4), 'ENERGY_VARIANCE_LEACH_M.bmp'); 

 

%Filter the Clusterheads per round for plotting 

filterRounds = 50 

c = 1/filterRounds; 

for i = 1:filterRounds 

    b(i) = c; %b is vector for matlab filter() 

end 

a = 1; %a is vector for matlab filter() 

filtered_CLUSTERHS_LEACH_M = filter(b,a, CLUSTERHS_LEACH_M(1:r)); 

 

fig5 = figure(5) 

set(fig5,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(CLUSTERHS_LEACH_M(1:r), 'LineWidth', 1); 

hold on; 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

plot(filtered_CLUSTERHS_LEACH_M, 'r -', 'LineWidth', 2); 

plot(RoundDeadStats(1), filtered_CLUSTERHS_LEACH_M(RoundDeadStats(1)), 'p',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), filtered_CLUSTERHS_LEACH_M(RoundDeadStats(2)), 'd',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), filtered_CLUSTERHS_LEACH_M(RoundDeadStats(3)), 's',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), filtered_CLUSTERHS_LEACH_M(RoundDeadStats(4)), '^',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

xlabel('Round','FontSize',12,'FontWeight','bold') 

ylabel('Number Of Cluster Heads','FontSize',12,'FontWeight','bold') 

leg = legend('Clusterheads per round','50 Round Moving Average Filter',... 

    '1st Node Dead', '10% Nodes Dead', '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

hold off 

saveas(figure(5), 'ClusterheadsPerRound_LEACH_M'); 

saveas(figure(5), 'ClusterheadsPerRound_LEACH_M.bmp'); 

 

save('LEACH_M_DATA'); 

Published with MATLAB® R2013a 

7. Zone Clustering with Random CH Electio—Multi-gateway 

% User identified Zone Based Protocol with random CH Election Multi Gateway 

 

clc; 

clear all; 

close all; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Field Dimensions - x and y maximum (in meters) 

xm=50; 

ym=50; 

 

%x and y Coordinates of Sink1 

sink.x1 = 25; 

sink.y1 = -100; 

 

%x and y Coordinates of Sink 2 

sink.x2 = 25; 

sink.y2 = 150; 

 

%Packet size in bits 

L = 2000; 

 

%Number of Nodes in the field 

n = 100; 

 

% Number to zones to subdivide the field 

z = 5; 

 

%Energy Model (all values in Joules) 

%Initial Energy 

Eo=0.5; 

%Eelec=Etx=Erx 

ETX=50*0.000000001; 

ERX=50*0.000000001; 

%Transmit Amplifier types 

Efs=10*0.000000000001; 

Emp=0.0013*0.000000000001; 

%Data Aggregation Energy 

EDA=5*0.000000001; 

 

%maximum number of rounds 

rmax= 9999; 

 

%%%%%%%%%%%%%%%%%%%%%%         END OF PARAMETERS      %%%%%%%%%%%%%%%%%%%%% 

%%%%%%   **SUPPRESS ABOVE IF STARTING WITH COMMON WSN PARAMETERS**   %%%%%% 

 

%Computation of do 

do=sqrt(Efs/Emp); 

 

%Get the screensize so each figure can be normalized in a similar manner 

%for thesis writeup 

scrsz = get(0,'ScreenSize'); 

 

%Creation of the random Sensor Network 

fig = figure(1); 

set(fig, 'Position',[1 scrsz(4)*.25 scrsz(3)*.7 scrsz(4)*.75]) 

 

subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

hold on; 
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for i=1:n 

    S(i).xd = SensorX(i); 

    %     S(i).xd = rand(1,1)*xm; 

    XR(i)=S(i).xd; %copy of the x-coordinate outside of the S struct 

    S(i).yd = SensorY(i); 

    %     S(i).yd = rand(1,1)*ym; 

    YR(i)=S(i).yd; %copy of the y-coordinate outside of the S struct 

    S(i).E=Eo; 

    S(i).totalAsCH = 0; 

    plot(S(i).xd,S(i).yd,'o'); 

end 

 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold') 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold') 

 

%plot the sink 

S(n+1).xd1=sink.x1; 

S(n+1).yd1=sink.y1; 

S(n+2).xd2=sink.x2; 

S(n+2).yd2=sink.y2; 

plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor','g',... 

    'MarkerSize',10); 

plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor','g',... 

    'MarkerSize',10) 

axis([-5 xm+5 sink.y1-5 sink.y2+5]) 

 

%plot horizontal boundaries of the sensor field 

bottomY=[0,0]; 

bottomX=[0,xm]; 

topY = [ym,ym]; 

topX = [0,xm]; 

 

%plot vertical extremes of the sensor field 

vertLeftX=[0,0]; 

vertLeftY=[0,ym]; 

vertRightX=[xm,xm]; 

vertRightY=[0,ym]; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

set(perimeter,'Color','r','LineWidth',1); 

 

%plot the vertical zone partitions 

for bb = 1:z-1; 

    vertX = [xm/z*bb, xm/z*bb]; 

    vertY = [0 , ym]; 

    line(vertX,vertY, 'Color', 'r'); 

end 

figure(1); 

hold off; 
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%start the plot for the node energy bar graph 

energyBar = zeros(1, n); 

for iii = 1:n; 

    energyBar(iii) = S(iii).E; 

end 

 

subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

bar(energyBar); 

ylim([0 0.51]); 

xlim([-10 110]); 

xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

 

%Start the plot for 3D Energy Stem 

subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

stem3(XR, YR, energyBar, 'Fill', 'g'); 

hold on; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

for bb = 1:z-1; 

    vertX = [xm/z*bb, xm/z*bb]; 

    vertY = [0 , ym]; 

    line(vertX,vertY, 'Color', 'r'); 

end 

set(perimeter,'Color','r','LineWidth',1); 

axis([-1 xm+1 -1 ym+1 0 Eo]); 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

set(get(gca,'xlabel'),'rotation',14); 

set(get(gca,'ylabel'),'rotation',338); 

grid off; 

hold off; 

 

%Partition the field into zones, assign each point a zone starting from x = 

%0 and increasing to x max.  Zones are verticle zones in the field. 

for dd = 1:n; 

    S(dd).zone = ceil(S(dd).xd/(xm/z)); %each zone only corresponds 

    %to its x coordinate 

end 

 

%Set flags, preallocate arrays for speed 

ENERGY_ZONE_M = zeros(1, rmax); 

ENERGY_VARIANCE_ZONE_M = zeros(1, rmax); 

DEAD_ZONE_M = zeros(1, rmax); 

CLUSTERHS_ZONE_M = zeros(1, rmax); 

flag_first_dead = 0; 

flag_10P_dead = 0; 

flag_50P_dead = 0; 

flag_80P_dead = 0; 

roundString = '1'; 
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myObj=VideoWriter('MOVIE_DIEOUT_ZONE_M.avi'); 

open(myObj); 

 

for round = 1:rmax; % Perform zone based CH rotation every round 

    round 

 

    for ee=1:n; 

        if (S(ee).E <= 0); 

            S(ee).type = 'D'; 

        end 

        if (S(ee).E > 0); 

            S(ee).type='N'; 

        end 

    end 

 

    %Initialize arrays 

    ClusterHeads = []; 

    ClusterHeadsX = []; 

    ClusterHeadsY = []; 

 

    clustersHeadsPerRound = 0; 

 

    for jj = 1:z; %do it for every zone 

 

        %initialize arrays & variables that are used each round: 

        zoneCHinZone = []; 

        zone = []; 

        index = 1; 

        zoneCHx = 0; 

        zoneCHy = 0; 

        distance = 0; 

 

        for kk = 1:n; %first lets separate the nodes into their zones 

            %if they have energy 

            if(S(kk).zone == jj) && (S(kk).E > 0); %only nodes that have 

                %energy can be included in all calculations 

                zone(index) = kk; 

                index = index + 1; 

            end 

        end 

 

        %now there is a vector “zone” with the id's of members S in the zone 

        %randomly select a node from from the “zone” array to be a CH 

 

        %randomly select an array position in zone then identify what node 

        %was selected 

        if (length(zone)>1); %if (length(zone)>1) is required for when 

            %there is only 1 node left in a zone 

            zoneCHinZone = randi(length(zone),1,1); % randomly chooses 1 

            %integer from 1 to length(zone) 

            zoneCH = zone(zoneCHinZone); %gives the original index of the CH 
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        else 

            zoneCH = zone; %there is only one node left in the zone so it 

            %must be a CH 

        end 

 

        if (~isempty(zoneCH)); 

 

            clustersHeadsPerRound = clustersHeadsPerRound + 1; 

 

            %if inside this if statement, that means there is at least one 

            %node in the current zone. 

            %This must be in an if statement becasue otherwise there would 

            %be errors as one zone completely dies out but other zones have 

            %not. Thus if a zone has no remaining nodes with energy, it 

            %simply bypasses to the next zone 

 

            S(zoneCH).totalAsCH = S(zoneCH).totalAsCH + 1; 

            S(zoneCH).type = 'C'; 

            zoneCHx = S(zoneCH).xd; 

            zoneCHy = S(zoneCH).yd; 

            ClusterHeads(jj) = zoneCH; 

            ClusterHeadsX(jj)= zoneCHx; 

            ClusterHeadsY(jj)= zoneCHy; 

 

            %Identify the smaller distance to the Sink 1 or 2; 

            distance = min(sqrt((zoneCHx-S(n+1).xd1)^2 + (zoneCHy-S(n+1).yd1)^2),... 

                sqrt((zoneCHx-S(n+2).xd2)^2 + (zoneCHy-S(n+2).yd2)^2)); 

 

 

 

            %energy cost for the CH in the zone to aggregate its 

            %own sensor data and and transmit the message to the gateway 

            if (distance > do); 

                S(zoneCH).E=S(zoneCH).E - ( (ETX+EDA)*(L) + Emp*L*( distance^4 )); 

            end 

            if (distance <= do); 

                S(zoneCH).E=S(zoneCH).E - ( (ETX+EDA)*(L)  + Efs*L*( distance^2 )); 

            end 

 

            %the total number of nodes under the CH is length(zone)-1 

            %then the CH will recieve length(zone)-1 messages 

 

            %energy cost for the CH to recieve and aggregate 

            %messages from its nodes. 

            S(zoneCH).E = S(zoneCH).E - (ERX+EDA)*L*(length(zone)-1); 

 

            %Now, for each node in the zone, except for the zone's CH, 

            %Let's deduct energy cost for each node to send the message to 

            %the CH. 

 

            %Iterate through each node in the zone except for the 

            %cluster head node. 
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            %Use the “zone” array since it is a vector for each node in 

            %the zone (but dont include the CH) 

 

            for gg = zone; 

                %for each iteration, gg represents the ID of the node we are 

                %ranging to the CH 

 

                if (gg ~= zoneCH); 

                    %calculate the distance to the CH 

                    distance = sqrt( (S(gg).xd - zoneCHx)^2 + (S(gg).yd - zoneCHy)^2 ); 

 

                    %Energy cost to transmit L bits to CH 

                    if (distance > do); %Multipath Propagation 

                        S(gg).E = S(gg).E - (ETX*L + Emp*L*(distance^4)); 

                    end 

                    if (distance <= do);%Direct path propagation 

                        S(gg).E = S(gg).E - (ETX*L + Efs*L*(distance^2)); 

                    end 

                end %gg~= zoneCH 

            end%gg=zone 

        end %(~isempty(zoneCH)) 

    end 

 

    CLUSTERHS_ZONE_M(round) = clustersHeadsPerRound; 

 

    %Plot and obtain desired stats 

 

    %obtain the energy variance and determine dead nodes 

    energyBar = zeros(1, n); 

    deadholder = 0; 

    for www = 1:n; 

        energyBar(www) = S(www).E; 

        if S(www).E <=0; 

            deadholder = deadholder+1; 

        end 

    end 

    DEAD_ZONE_M(round)=deadholder; 

 

    ENERGY_VARIANCE_ZONE_M(round) = var(energyBar); 

    ENERGY_ZONE_M(round)=sum(energyBar); 

 

    %plot a running bar chart of energy for animation 

    figure(1); 

    subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

    bar(energyBar); 

    ylim([0 0.51]); 

    xlim([-10 110]); 

    xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

    ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

    drawnow; 

 

    % Save the round to a string for display on plots 
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    roundString = num2str(round); 

 

    trackitAlive = 1; 

    trackitDead = 1; 

    %preallocate for speed 

    RoundDead = zeros(1, deadholder); 

    RoundDeadx = zeros(1, deadholder); 

    RoundDeady = zeros(1, deadholder); 

    EnergyDead = zeros(1, deadholder); 

    RoundAlive = zeros(1, n - deadholder); 

    RoundAlivex = zeros(1, n - deadholder); 

    RoundAlivey = zeros(1, n - deadholder); 

    EnergyAlive = zeros(1, n - deadholder); 

    RoundCHx = []; 

    RoundCHy = []; 

    RoundCHs = []; 

    NormalNode = []; 

    NormalNodex = []; 

    NormalNodey = []; 

 

    for hh = 1:n 

        if S(hh).E > 0; 

            RoundAlive(trackitAlive) = hh; 

            RoundAlivex(trackitAlive) = XR(hh); 

            RoundAlivey(trackitAlive) = YR(hh); 

            EnergyAlive(trackitAlive) = S(hh).E; 

            trackitAlive = trackitAlive +1; 

        end 

 

        if S(hh).E <=0; 

            RoundDead(trackitDead)= hh; 

            RoundDeadx(trackitDead)= XR(hh); 

            RoundDeady(trackitDead)= YR(hh); 

            EnergyDead(trackitDead) = 0; 

            trackitDead = trackitDead + 1; 

        end 

    end 

 

    %3D Stem Energy Plot 

    subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

    stem3(RoundAlivex, RoundAlivey, EnergyAlive, 'Fill', 'g', 'LineStyle','--'); 

    hold on; 

    if trackitDead > 1; 

        stem3(RoundDeadx, RoundDeady, EnergyDead, 'Fill', 'r', 'LineStyle','--'); 

    end 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    set(perimeter,'Color','r','LineWidth',1); 

    for bb = 1:z-1; 

        vertX = [xm/z*bb, xm/z*bb]; 

        vertY = [0 , ym]; 

        line(vertX,vertY, 'Color', 'r'); 
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    end 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

    set(get(gca,'xlabel'),'rotation',14); 

    set(get(gca,'ylabel'),'rotation',338); 

    axis([-1 xm+1 -1 ym+1 0 Eo]); 

    grid off; 

    hold off; 

    drawnow 

 

    subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

    plot(XR,YR, 'o'); 

    hold on; 

    text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

    text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

    plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

    if deadholder > 0; 

        plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

    end 

    plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor','g',... 

    'MarkerSize',10); 

    plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor','g',... 

        'MarkerSize',10); 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

    set(perimeter,'Color','r','LineWidth',1); 

    for bb = 1:z-1; 

        vertX = [xm/z*bb, xm/z*bb]; 

        vertY = [0 , ym]; 

        line(vertX,vertY, 'Color', 'r'); 

    end 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    hold off 

    drawnow 

 

 

    %turn every 5th frame into a movie 

    if mod(round,5)==0; 

        MOVIE_DIEOUT_ZONE_M = getframe(figure(1)); 

        writeVideo(myObj,MOVIE_DIEOUT_ZONE_M); 

    end 

 

 

    %find round first node dead 

    if(flag_first_dead == 0); 

        if (deadholder >= 1); 

            flag_first_dead = 1; 

            ROUND_FIRST_DEAD_ZONE_M = round; 

            fig1dead = figure(8); 
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            set(fig1dead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, ... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1) 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 

                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig1dead,'1_Node_Dead_grid_ZONE_M.bmp'); 

            saveas(fig1dead,'1_Node_Dead_grid_ZONE_M'); 

            saveas(fig1dead,'1_Node_Dead_Grid_Energy_ZONE_M'); 

            saveas(fig1dead,'1_Node_Dead_Grid_Energy_ZONE_M.bmp'); 

        end 

    end 

 

    %find the round when 10% of nodes are dead and save network figures 

    if(flag_10P_dead == 0); 

        if (deadholder >= 0.1*n); 

            flag_10P_dead = 1; 

            ROUND_10P_DEAD_ZONE_M = round; 

            fig10Pdead = figure(9); 

            set(fig10Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 
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            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 

                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig10Pdead,'10P_Node_Dead_grid_ZONE_M.bmp'); 

            saveas(fig10Pdead,'10P_Node_Dead_grid_ZONE_M'); 

            saveas(fig10Pdead,'10P_Node_Dead_Grid_Energy_ZONE_M'); 

            saveas(fig10Pdead,'10P_Node_Dead_Grid_Energy_ZONE_M.bmp'); 

        end 

    end 

 

    %find round when 50% of nodes are dead 

    if(flag_50P_dead == 0); 

        if (deadholder >= 0.5*n); 

            flag_50P_dead = 1; 

            ROUND_50P_DEAD_ZONE_M = round; 

            fig50Pdead = figure(10); 

            set(fig50Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, ... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 
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                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig50Pdead,'50P_Node_Dead_grid_ZONE_M.bmp'); 

            saveas(fig50Pdead,'50P_Node_Dead_grid_ZONE_M'); 

            saveas(fig50Pdead,'50P_Node_Dead_Grid_Energy_ZONE_M'); 

            saveas(fig50Pdead,'50P_Node_Dead_Grid_Energy_ZONE_M.bmp'); 

        end 

    end 

 

    %find round when 80% of nodes are dead and save network figure 

    if(flag_80P_dead == 0); 

        if (deadholder >= 0.8*n); 

            flag_80P_dead = 1; 

            ROUND_80P_DEAD_ZONE_M = round; 

            fig80Pdead = figure(11); 

            set(fig80Pdead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold'); 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 

                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig80Pdead,'80P_Node_Dead_grid_ZONE_M.bmp'); 

            saveas(fig80Pdead,'80P_Node_Dead_grid_ZONE_M'); 

            saveas(fig80Pdead,'80P_Node_Dead_Grid_Energy_ZONE_M'); 

            saveas(fig80Pdead,'80P_Node_Dead_Grid_Energy_ZONE_M.bmp'); 

        end 
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    end 

 

    if deadholder == n; 

        break; 

    end 

end 

 

close(myObj); 

 

ALIVE_ZONE_M = zeros(1,round); 

for ii = 1:round 

    ALIVE_ZONE_M(ii) = n - DEAD_ZONE_M(ii); 

end 

 

RoundDeadStats= [ROUND_FIRST_DEAD_ZONE_M ROUND_10P_DEAD_ZONE_M ... 

    ROUND_50P_DEAD_ZONE_M ROUND_80P_DEAD_ZONE_M]; 

 

 

fig2 = figure(2); 

set(fig2,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ALIVE_ZONE_M, 'LineWidth', 2); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Number of Nodes Alive','FontSize',12,'FontWeight','bold'); 

ylim([0 n+1]); 

saveas(figure(2), 'NodesAliveVsRound_ZONE_M'); 

saveas(figure(2), 'NodesAliveVsRound_ZONE_M.bmp'); 

 

fig3 = figure(3); 

set(fig3,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_ZONE_M(1:round), 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_ZONE_M(RoundDeadStats(1)), 'p',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_ZONE_M(RoundDeadStats(2)), 'd',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_ZONE_M(RoundDeadStats(3)), 's',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_ZONE_M(RoundDeadStats(4)), '^',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Total System Energy (J)','FontSize',12,'FontWeight','bold'); 

leg = legend('Total System Energy','1st Node Dead', '10% Nodes Dead',... 

    '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

hold off; 

ylim([-0.1 Eo*n+1]); 

saveas(figure(3), 'ENERGY_Zone_M'); 

saveas(figure(3), 'ENERGY_Zone_M.bmp'); 
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fig4 = figure(4); 

set(fig4,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_VARIANCE_ZONE_M(1:round), 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_VARIANCE_ZONE_M(RoundDeadStats(1)), 'p',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_VARIANCE_ZONE_M(RoundDeadStats(2)), 'd',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_VARIANCE_ZONE_M(RoundDeadStats(3)), 's',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_VARIANCE_ZONE_M(RoundDeadStats(4)), '^',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Energy Variance','FontSize',12,'FontWeight','bold'); 

leg = legend('Variance of Energy Disribution','1st Node Dead',... 

    '10% Nodes Dead', '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

hold off; 

saveas(figure(4), 'ENERGY_VARIANCE_ZONE_M'); 

saveas(figure(4), 'ENERGY_VARIANCE_ZONE_M.bmp'); 

 

fig5 = figure(5) ; 

set(fig5,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(CLUSTERHS_ZONE_M(1:round), 'LineWidth', 2); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Number Of Cluster Heads','FontSize',12,'FontWeight','bold'); 

hold off; 

saveas(figure(5), 'ClusterheadsPerRound_ZONE_M'); 

saveas(figure(5), 'ClusterheadsPerRound_ZONE_M.bmp'); 

 

save('ZONE_M_DATA') 

Published with MATLAB® R2013a 

8. Zone Clustering with Energy Efficient CH Election—Multi-gateway 

% User identified Multi Gateway Zone Protocol with Energy Efficient CH Election 

 

clc; 

clear all; 

close all; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Field Dimensions - x and y maximum (in meters) 
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xm=50; 

ym=50; 

 

x and y Coordinates of Sink1 

sink.x1 = 25; 

sink.y1 = -100; 

 

x and y Coordinates of Sink 2 

sink.x2 = 25; 

sink.y2 = 150; 

 

Packet size in bits 

L = 2000; 

 

Number of Nodes in the field 

n = 100; 

 

Number to zones to subdivide the field 

z = 5; 

 

Energy Model (all values in Joules) 

Initial Energy 

Eo=0.5; 

Eelec=Etx=Erx 

ETX=50*0.000000001; 

ERX=50*0.000000001; 

Transmit Amplifier types 

Efs=10*0.000000000001; 

Emp=0.0013*0.000000000001; 

Data Aggregation Energy 

EDA=5*0.000000001; 

 

maximum number of rounds 

rmax= 9999; 

 

%%%%%%%%%%%%%%%%%%%%%%         END OF PARAMETERS      %%%%%%%%%%%%%%%%%%%%% 

%%%%%%   **SUPPRESS ABOVE IF STARTING WITH COMMON WSN PARAMETERS**   %%%%%% 

 

%Computation of do 

do=sqrt(Efs/Emp); 

 

%Get the screensize so each figure can be normalized in a similar manner 

%for thesis writeup 

scrsz = get(0,'ScreenSize'); 

 

%Creation of the random Sensor Network 

fig = figure(1); 

set(fig, 'Position',[1 scrsz(4)*.25 scrsz(3)*.7 scrsz(4)*.75]); 

 

subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

hold on; 
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for i=1:n 

    S(i).xd = SensorX(i); 

    %     S(i).xd = rand(1,1)*xm; 

    XR(i)=S(i).xd; %copy of the x-coordinate outside of the S struct 

    S(i).yd = SensorY(i); 

    %     S(i).yd = rand(1,1)*ym; 

    YR(i)=S(i).yd; %copy of the y-coordinate outside of the S struct 

    S(i).E=Eo; 

    S(i).totalAsCH = 0; 

    plot(S(i).xd,S(i).yd,'o'); 

end 

 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

 

%plot the sink 

S(n+1).xd1=sink.x1; 

S(n+1).yd1=sink.y1; 

S(n+2).xd2=sink.x2; 

S(n+2).yd2=sink.y2; 

plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10); 

plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

    'g','MarkerSize',10) 

axis([-5 xm+5 sink.y1-5 sink.y2+5]) 

 

%plot horizontal boundaries of the sensor field 

bottomY=[0,0]; 

bottomX=[0,xm]; 

topY = [ym,ym]; 

topX = [0,xm]; 

 

%plot vertical extremes of the sensor field 

vertLeftX=[0,0]; 

vertLeftY=[0,ym]; 

vertRightX=[xm,xm]; 

vertRightY=[0,ym]; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

set(perimeter,'Color','r','LineWidth',1); 

 

%plot the vertical zone partitions 

for bb = 1:z-1; 

    vertX = [xm/z*bb, xm/z*bb]; 

    vertY = [0 , ym]; 

    line(vertX,vertY, 'Color', 'r'); 

end 

hold off; 

 

%start the plot for the node energy bar graph 

energyBar = zeros(1, n); 



 193 

for iii = 1:n 

    energyBar(iii) = S(iii).E; 

end 

 

subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

bar(energyBar); 

ylim([0 0.51]); 

xlim([-10 110]); 

xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

 

%Start the plot for 3D Energy Stem 

subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

stem3(XR, YR, energyBar, 'Fill', 'g'); 

hold on; 

perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

    vertRightX, vertRightY); 

set(perimeter,'Color','r','LineWidth',1); 

for bb = 1:z-1; 

    vertX = [xm/z*bb, xm/z*bb]; 

    vertY = [0 , ym]; 

    line(vertX,vertY, 'Color', 'r'); 

end 

axis([-1 xm+1 -1 ym+1 0 Eo]); 

xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

set(get(gca,'xlabel'),'rotation',14); 

set(get(gca,'ylabel'),'rotation',338); 

grid off; 

hold off; 

 

 

%Partition the field into zones, assign each point a zone starting from x = 

%0 and increasing to x max.  Zones are verticle zones in the field. 

for dd = 1:n; 

    S(dd).zone = ceil(S(dd).xd/(xm/z)); %each zone only corresponds to its x coordinate 

end 

 

%Set flags, preallocate arrays for speed 

 

ENERGY_E_ZONE_M = zeros(1, rmax); 

ENERGY_VARIANCE_E_ZONE_M = zeros(1, rmax); 

DEAD_E_ZONE_M = zeros(1, rmax); 

CLUSTERHS_E_ZONE_M = zeros(1, rmax); 

flag_first_dead = 0; 

flag_10P_dead = 0; 

flag_50P_dead = 0; 

flag_80P_dead = 0; 

roundString = '1'; 

 

myObj=VideoWriter('MOVIE_DIEOUT_E_ZONE_M.avi'); 
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open(myObj); 

 

for round = 1:rmax; % Perform zone based CH rotation every round 

    round 

 

    for ee=1:n; 

        if (S(ee).E <= 0); 

            S(ee).type = 'D'; 

        end 

        if (S(ee).E > 0); 

            S(ee).type='N'; 

        end 

    end 

 

    %Initialize arrays 

    ClusterHeads = []; 

    ClusterHeadsX = []; 

    ClusterHeadsY = []; 

 

    clustersHeadsPerRound = 0; 

 

    for jj = 1:z; %do it for every zone 

 

        %initialize arrays & variables that are used each round: 

        EnergyOfNodesInZone = []; 

        zone = []; 

        index = 1; 

        zoneCHx = 0; 

        zoneCHy = 0; 

        distance = 0; 

 

        for kk = 1:n; %first lets separate the nodes into their zones if 

            %they have energy 

            if(S(kk).zone == jj) && (S(kk).E > 0); %only nodes that have 

                %energy can be included in all calculations 

                zone(index) = kk; 

                EnergyOfNodesInZone(index)=S(kk).E; 

                index = index + 1; 

            end 

        end 

 

        %now there is a vector “zone” with the id's of members S in the zone 

        %randomly select a node from from the “zone” array to be a CH 

 

        %randomly select an array position in zone then identify what node 

        %was selected 

        if (length(zone)>1); %if (length(zone)>1) is required for when there 

            %is only 1 node left in a zone 

 

            [maxEinZone,IndexOfMax] = max(EnergyOfNodesInZone); 

 

            zoneCH = zone(IndexOfMax); %gives the original index of the CH 
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        else 

            zoneCH = zone; %there is only one node left in the zone so it must be a CH 

        end 

 

        if (~isempty(zoneCH)); 

 

            clustersHeadsPerRound = clustersHeadsPerRound + 1; 

 

            %if inside this if statement, that means there is at least one 

            %node in the current zone 

            %this must be in an if statement becasue otherwise there would 

            %be errors as one zone completely dies out but other zones have 

            %not. Thus if a zone has no remaining nodes with energy, it 

            %simply bypasses to the next zone 

 

            S(zoneCH).totalAsCH = S(zoneCH).totalAsCH + 1; 

            S(zoneCH).type = 'C'; 

            zoneCHx = S(zoneCH).xd; 

            zoneCHy = S(zoneCH).yd; 

            ClusterHeads(jj) = zoneCH; 

            ClusterHeadsX(jj)= zoneCHx; 

            ClusterHeadsY(jj)= zoneCHy; 

 

            %Identify the smaller distance to the Sink 1 or 2; 

            distance = min(sqrt((zoneCHx-S(n+1).xd1)^2 + ... 

                (zoneCHy-S(n+1).yd1)^2), sqrt((zoneCHx-S(n+2).xd2)^2 +... 

                (zoneCHy-S(n+2).yd2)^2)); 

 

            %energy cost for the CH in the zone to aggregate its own sensor data and and 

            %transmit the message to the basestation 

            if (distance > do); 

                S(zoneCH).E=S(zoneCH).E - ( (ETX+EDA)*(L) + Emp*L*( distance^4 )); 

            end 

            if (distance <= do); 

                S(zoneCH).E=S(zoneCH).E - ( (ETX+EDA)*(L)  + Efs*L*( distance^2 )); 

            end 

 

            %the total number of nodes under the CH is length(zone)-1 

            %then the CH will recieve length(zone)-1 messages 

 

            %energy cost for the CH to recieve and aggregate messages from its 

            %nodes. 

            S(zoneCH).E = S(zoneCH).E - (ERX+EDA)*L*(length(zone)-1); 

 

            %Now, for each node in the zone, except for the zone's CH, 

            %Let's deduct energy cost for each node to send the message to 

            %the CH 

 

            %Iterate through each node in the zone except for the 

            %cluster head node. 

            %Use the “zone” array since it is a vector for each node in 

            %the zone (but dont include the CH) 
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            for gg = zone; 

                %for each iteration, gg represents the ID of the node we are 

                %ranging to the CH 

 

                if (gg ~= zoneCH); 

                    %calculate the distance to the CH 

                    distance = sqrt( (S(gg).xd - zoneCHx)^2 + (S(gg).yd - zoneCHy)^2 ); 

 

                    %Energy cost to transmit L bits to CH 

                    if (distance > do); %Multipath Propagation 

                        S(gg).E = S(gg).E - (ETX*L + Emp*L*(distance^4)); 

                    end 

                    if (distance <= do);%Direct path propagation 

                        S(gg).E = S(gg).E - (ETX*L + Efs*L*(distance^2)); 

                    end 

                end %gg~= zoneCH 

            end%gg=zone 

        end %(~isempty(zoneCH)) 

    end 

 

    CLUSTERHS_E_ZONE_M(round) = clustersHeadsPerRound; 

 

    %obtain the energy variance and determine dead nodes 

    energyBar = zeros(1, n); 

    deadholder = 0; 

    for www = 1:n; 

        energyBar(www) = S(www).E; 

        if S(www).E <=0; 

            deadholder = deadholder+1; 

        end 

    end 

    DEAD_E_ZONE_M(round)=deadholder; 

 

    ENERGY_VARIANCE_E_ZONE_M(round) = var(energyBar); 

    ENERGY_E_ZONE_M(round)=sum(energyBar); 

 

    %plot a running bar chart of energy for animation 

    figure(1); 

    subplot 221; subplot('Position',[0.06 0.55 0.42 0.41]); 

    bar(energyBar); 

    ylim([0 0.51]); 

    xlim([-10 110]); 

    xlabel('Node Number','FontSize',12,'FontWeight','bold'); 

    ylabel('Energy (J)','FontSize',12,'FontWeight','bold'); 

    drawnow; 

 

    % Save the round to a string for display on plots 

    roundString = num2str(round); 

 

    trackitAlive = 1; 

    trackitDead = 1; 
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    %preallocate for speed 

    RoundDead = zeros(1, deadholder); 

    RoundDeadx = zeros(1, deadholder); 

    RoundDeady = zeros(1, deadholder); 

    EnergyDead = zeros(1, deadholder); 

    RoundAlive = zeros(1, n - deadholder); 

    RoundAlivex = zeros(1, n - deadholder); 

    RoundAlivey = zeros(1, n - deadholder); 

    EnergyAlive = zeros(1, n - deadholder); 

    RoundCHx = []; 

    RoundCHy = []; 

    RoundCHs = []; 

    NormalNode = []; 

    NormalNodex = []; 

    NormalNodey = []; 

 

    for hh = 1:n 

        if S(hh).E > 0; 

            RoundAlive(trackitAlive) = hh; 

            RoundAlivex(trackitAlive) = XR(hh); 

            RoundAlivey(trackitAlive) = YR(hh); 

            EnergyAlive(trackitAlive) = S(hh).E; 

            trackitAlive = trackitAlive +1; 

        end 

 

        if S(hh).E <=0; 

            RoundDead(trackitDead)= hh; 

            RoundDeadx(trackitDead)= XR(hh); 

            RoundDeady(trackitDead)= YR(hh); 

            EnergyDead(trackitDead) = 0; 

            trackitDead = trackitDead + 1; 

        end 

    end 

 

    %3D Stem Energy Plot 

    subplot 223; subplot('Position',[0.06 0.06 0.42 0.41]); 

    stem3(RoundAlivex, RoundAlivey, EnergyAlive, 'Fill', 'g', 'LineStyle','--'); 

    hold on; 

    if trackitDead > 1; 

        stem3(RoundDeadx, RoundDeady, EnergyDead, 'Fill', 'r', 'LineStyle','--'); 

    end 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    set(perimeter,'Color','r','LineWidth',1); 

    for bb = 1:z-1; 

        vertX = [xm/z*bb, xm/z*bb]; 

        vertY = [0 , ym]; 

        line(vertX,vertY, 'Color', 'r'); 

    end 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    zlabel('Energy (J)','FontSize',12,'FontWeight','bold'); 
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    set(get(gca,'xlabel'),'rotation',14); 

    set(get(gca,'ylabel'),'rotation',338); 

    axis([-1 xm+1 -1 ym+1 0 Eo]); 

    grid off; 

    hold off; 

    drawnow 

 

    subplot(2,2,[2 4]); subplot('Position',[0.55 0.06 0.42 0.9]); 

    plot(XR,YR, 'o'); 

    hold on; 

    text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

    text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

    plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

    if deadholder > 0; 

        plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

    end 

    plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

        'g','MarkerSize',10); 

    plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

        'g','MarkerSize',10); 

    perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, vertLeftY,... 

        vertRightX, vertRightY); 

    axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

    set(perimeter,'Color','r','LineWidth',1); 

    for bb = 1:z-1; 

        vertX = [xm/z*bb, xm/z*bb]; 

        vertY = [0 , ym]; 

        line(vertX,vertY, 'Color', 'r'); 

    end 

    xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

    hold off 

    drawnow 

 

    %turn every 5th frame into a movie 

    if mod(round,5)==0; 

        MOVIE_DIEOUT_E_ZONE_M = getframe(figure(1)); 

        writeVideo(myObj,MOVIE_DIEOUT_E_ZONE_M); 

    end 

 

    %find round first node dead 

    if(flag_first_dead == 0); 

        if (deadholder >= 1); 

            flag_first_dead = 1; 

            ROUND_FIRST_DEAD_E_ZONE_M = round; 

            fig1dead = figure(8); 

            set(fig1dead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 
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            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1) 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 

                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig1dead,'1_Node_Dead_grid_E_ZONE_M.bmp'); 

            saveas(fig1dead,'1_Node_Dead_grid_E_ZONE_M'); 

            saveas(figure(1),'1_Node_Dead_Grid_Energy_E_ZONE_M'); 

            saveas(figure(1),'1_Node_Dead_Grid_Energy_E_ZONE_M.bmp'); 

        end 

    end 

 

    %find the round when 10% of nodes are dead and save network figures 

    if(flag_10P_dead == 0); 

        if (deadholder >= 0.1*n); 

            flag_10P_dead = 1; 

            ROUND_10P_DEAD_E_ZONE_M = round; 

            fig10Pdead = figure(9); 

            set(fig10Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX, ... 

                vertLeftY, vertRightX, vertRightY); 



 200 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 

                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig10Pdead,'10P_Node_Dead_grid_E_ZONE_M.bmp'); 

            saveas(fig10Pdead,'10P_Node_Dead_grid_E_ZONE_M'); 

            saveas(figure(1),'10P_Node_Dead_Grid_Energy_E_ZONE_M'); 

            saveas(figure(1),'10P_Node_Dead_Grid_Energy_E_ZONE_M.bmp'); 

        end 

    end 

 

    %find round when 50% of nodes are dead 

    if(flag_50P_dead == 0); 

        if (deadholder >= 0.5*n); 

            flag_50P_dead = 1; 

            ROUND_50P_DEAD_E_ZONE_M = round; 

            fig50Pdead = figure(10); 

            set(fig50Pdead,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 

                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 
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            saveas(fig50Pdead,'50P_Node_Dead_grid_E_ZONE_M.bmp'); 

            saveas(fig50Pdead,'50P_Node_Dead_grid_E_ZONE_M'); 

            saveas(figure(1),'50P_Node_Dead_Grid_Energy_E_ZONE_M'); 

            saveas(figure(1),'50P_Node_Dead_Grid_Energy_E_ZONE_M.bmp'); 

        end 

    end 

 

    %find round when 80% of nodes are dead and save network figure 

    if(flag_80P_dead == 0); 

        if (deadholder >= 0.8*n); 

            flag_80P_dead = 1; 

            ROUND_80P_DEAD_E_ZONE_M = round; 

            fig80Pdead = figure(11); 

            set(fig80Pdead, 'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

            set(gcf,'Units','normal'); 

            set(gca,'Position',[.06 .06 .9 .9]); 

            plot(XR,YR, 'o'); 

            hold on; 

            text(xm-10,-10,'Round','FontSize',12,'FontWeight','bold') 

            text(xm-10,-17,roundString,'FontSize',12,'FontWeight','bold'); 

            plot(ClusterHeadsX,ClusterHeadsY, 'k *'); 

            if deadholder > 0; 

                plot(RoundDeadx, RoundDeady, 'r .', 'MarkerSize', 20); 

            end 

            plot(sink.x1,sink.y1,'o', 'MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10) 

            plot(sink.x2,sink.y2,'o','MarkerEdgeColor','k','MarkerFaceColor',... 

                'g','MarkerSize',10); 

            perimeter = plot(bottomX,bottomY,topX, topY, vertLeftX,... 

                vertLeftY, vertRightX, vertRightY); 

            axis([-5 xm+5 sink.y1-5 sink.y2+5]); 

            set(perimeter,'Color','r','LineWidth',1); 

            for bb = 1:z-1; 

                vertX = [xm/z*bb, xm/z*bb]; 

                vertY = [0 , ym]; 

                line(vertX,vertY, 'Color', 'r'); 

            end 

            xlabel('x-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            ylabel('y-Grid-Axis (m)','FontSize',12,'FontWeight','bold'); 

            hold off; 

            drawnow; 

            saveas(fig80Pdead,'80P_Node_Dead_grid_E_ZONE_M.bmp'); 

            saveas(fig80Pdead,'80P_Node_Dead_grid_E_ZONE_M'); 

            saveas(figure(1),'80P_Node_Dead_Grid_Energy_E_ZONE_M'); 

            saveas(figure(1),'80P_Node_Dead_Grid_Energy_E_ZONE_M.bmp'); 

        end 

    end 

 

    if deadholder == n; 

        break; 

    end 

end 
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close(myObj); 

 

ALIVE_E_ZONE_M = zeros(1,round); 

for ii = 1:round 

    ALIVE_E_ZONE_M(ii) = n - DEAD_E_ZONE_M(ii); 

end 

 

RoundDeadStats= [ROUND_FIRST_DEAD_E_ZONE_M ROUND_10P_DEAD_E_ZONE_M ... 

    ROUND_50P_DEAD_E_ZONE_M ROUND_80P_DEAD_E_ZONE_M] 

 

fig2 = figure(2); 

set(fig2,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ALIVE_E_ZONE_M, 'LineWidth', 2); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Number of Nodes Alive','FontSize',12,'FontWeight','bold'); 

ylim([0 n+1]); 

saveas(figure(2), 'NodesAliveVsRound_E_ZONE_M'); 

saveas(figure(2), 'NodesAliveVsRound_E_ZONE_M.bmp'); 

 

fig3 = figure(3); 

set(fig3,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_E_ZONE_M(1:round), 'LineWidth', 2); 

hold on 

plot(RoundDeadStats(1), ENERGY_E_ZONE_M(RoundDeadStats(1)), 'p',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(2), ENERGY_E_ZONE_M(RoundDeadStats(2)), 'd',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_E_ZONE_M(RoundDeadStats(3)), 's',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_E_ZONE_M(RoundDeadStats(4)), '^',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Total System Energy (J)','FontSize',12,'FontWeight','bold'); 

leg = legend('Total System Energy','1st Node Dead', '10% Nodes Dead',... 

    '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

ylim([-0.1 Eo*n+1]); 

hold off; 

saveas(figure(3), 'ENERGY_E_ZONE_M'); 

saveas(figure(3), 'ENERGY_E_ZONE_M.bmp'); 

 

fig4 = figure(4); 

set(fig4,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(ENERGY_VARIANCE_E_ZONE_M(1:round), 'LineWidth', 2); 

hold on; 

plot(RoundDeadStats(1), ENERGY_VARIANCE_E_ZONE_M(RoundDeadStats(1)), 'p',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 
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plot(RoundDeadStats(2), ENERGY_VARIANCE_E_ZONE_M(RoundDeadStats(2)), 'd',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(3), ENERGY_VARIANCE_E_ZONE_M(RoundDeadStats(3)), 's',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

plot(RoundDeadStats(4), ENERGY_VARIANCE_E_ZONE_M(RoundDeadStats(4)), '^',... 

    'MarkerSize', 15, 'MarkerEdgeColor','k','MarkerFaceColor','c'); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Energy Variance (J^2)','FontSize',12,'FontWeight','bold'); 

leg = legend('Variance of Energy Disribution','1st Node Dead',... 

    '10% Nodes Dead', '50% Nodes Dead', '80% Nodes Dead'); 

set(leg,'FontWeight','bold'); 

hold off; 

saveas(figure(4), 'ENERGY_VARIANCE_E_ZONE_M'); 

saveas(figure(4), 'ENERGY_VARIANCE_E_ZONE_M.bmp'); 

 

fig5 = figure(5) ; 

set(fig5,'Position',[1 scrsz(4)*.26 scrsz(3)*.7 scrsz(4)*.75]); 

plot(CLUSTERHS_E_ZONE_M(1:round), 'LineWidth', 2); 

set(gcf,'Units','normal'); 

set(gca,'Position',[.06 .06 .9 .9]); 

xlabel('Round','FontSize',12,'FontWeight','bold'); 

ylabel('Number Of Cluster Heads','FontSize',12,'FontWeight','bold'); 

set(leg,'FontWeight','bold'); 

hold off; 

saveas(figure(5), 'ClusterheadsPerRound_E_ZONE_M'); 

saveas(figure(5), 'ClusterheadsPerRound_E_ZONE_M.bmp'); 

 

save('E_ZONE_M_DATA') 

Published with MATLAB® R2013a 
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