

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution unlimited

GLOBAL COMBAT SUPPORT SYSTEM-MARINE
CORPS PROOF-OF-CONCEPT FOR DASHBOARD

ANALYTICS

by

Timothy J. Leonard
Philip Gallo

December 2014

Thesis Co-Advisor: Bryan Hudgens
Thesis Co-Advisor: Anthony Kendall

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Ar1ington, VA 22202-4302, and to the Office of Management and Budget, Paperwori< Reduction
Proiect (0704-0188) Washinaton DC 20503.

1. AGENCY USE ONLY (Leave blank) 1 2. REPORT DATE I 3. REPORT TYPE A ND DATES COVERED
December 2014 Master's Thesis

4. TITLE A ND SUBTITLE 5. FUNDING NUMBERS
GLOBAL. COMBAT SUPPORT SYSTEM-MARINE CORPS PROOF-OF-
CONCEPT FOR DASHBOARD ANAL YTICS
6. A UTHOR(S) Timothy J . Leonard and Philip Gallo

7. PERFORMING ORGANIZATION NAME(S) A ND ADDRESS(ES) 8. PERFORMING ORGANIZA TION
Naval Postgraduate School REPORT NUMBER
Monterev. CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) A ND ADDRESS(ES) 10. SPONSORING/MONITORING
Installation and Logistics, HQMC AGENCY REPORT NUMBER

11 . SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
offi cial policy or position of the Department of Defense or the U.S. Government. IRB Protocol number __ N/A __ .

12a. DISTRIBUTION I AVAILA BILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited A

13. ABSTRACT (maximum 200 words)

Global Combat Support System -Marine Corps (GCSS-MC) was created to combine both Logistics and
Supply capabilities into one system. The existing systems of Asset Tracking Logistics and Supply System
(Atlass) and PC Marine Corps Integrated Maintenance Management System (MIMMS) required external
interfaces to merge data. This new system was established to streamline the way the Marine Corps
allowed commanders to make logistic and supply decisions. Unfortunately, GCSS-MC was not
implemented with any Logistics or Supply Analytics, which required users to manipulate Microsoft Office
products such as Access and Excel to analyze data. The objective of this thesis was to design, develop,
and test a proof-of-concept prototype utilizing Oracle WebCenter to create dashboard analytics that allow
commanders at all levels to make informed near-real time decisions. This was achieved by using the
following: a modem design approach; the Model-View-Controller; a state-of-the-art development pattern ;
Oracle Application Development Framework; and powerful development tools such as Oracle JDeveloper
and Oracle WebCenter Portal Builder.

14. SUBJECT TERMS GCSS-MC, Oracle ADF, USMC, Readiness

17. SECURITY 18. SECURITY
CLASSIFICATION OF CLASSIFICATION OF THIS
REPORT PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF
PAGES

185

16. PRICE CODE

19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF ABSTRACT
ABSTRACT

Unclassified uu
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution unlimited

GLOBAL COMBAT SUPPORT SYSTEM-MARINE CORPS PROOF-OF-
CONCEPT FOR DASHBOARD ANALYTICS

Timothy J. Leonard
Major, United States Marine Corps

B.S., Embry Riddle Aeronautical, 2002

Philip Gallo
Captain, United States Marine Corps

B.A., American Military University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF BUSINESS ADMINISTRATION

from the

NAVAL POSTGRADUATE SCHOOL
December 2014

Authors: Timothy J. Leonard
 Philip Gallo

Approved by: Bryan Hudgens
Thesis Co-Advisor

Anthony Kendall
Thesis Co-Advisor

William Gates
Dean, Graduate School of Business

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Global Combat Support System – Marine Corps (GCSS-MC) was created to

combine both Logistics and Supply capabilities into one system. The existing

systems of Asset Tracking Logistics and Supply System (Atlass) and PC Marine

Corps Integrated Maintenance Management System (MIMMS) required external

interfaces to merge data. This new system was established to streamline the way

the Marine Corps allowed commanders to make logistic and supply decisions.

Unfortunately, GCSS-MC was not implemented with any Logistics or Supply

Analytics, which required users to manipulate Microsoft Office products such as

Access and Excel to analyze data. The objective of this thesis was to design,

develop, and test a proof-of-concept prototype utilizing Oracle WebCenter to

create dashboard analytics that allow commanders at all levels to make informed

near-real time decisions. This was achieved by using the following: a modern

design approach; the Model-View-Controller; a state-of-the-art development

pattern; Oracle Application Development Framework; and powerful development

tools such as Oracle JDeveloper and Oracle WebCenter Portal Builder.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND ... 1
B. OBJECTIVE ... 2
C. PROBLEM STATEMENT ... 3
D. SCOPE AND METHODOLOGY ... 3

1. Scope .. 3
2. Methodology .. 3
3. Primary Research Questions .. 4
4. Benefits of Study ... 4

E. ORGANIZATION OF THESIS .. 5

II. GLOBAL COMBAT SUPPORT SYSTEM – MARINE CORPS 7
A. GLOBAL COMBAT SUPPORT SYSTEM – MARINE CORPS 7
B. HOW DOES GCSS-MC WORK? ... 8

III. SYSTEM REQUIREMENTS’ ANALYSIS.. 9
A. XXMC R001 DATABASE ... 9
B. USE CASES ... 9

1. Readiness Report (Alpha) ... 10
2. Maintenance Effort Report (Bravo) 13
3. Secondary Reparable Report (Charlie) 15

a. Field Level ... 15
b. Depot Level .. 16

4. Cost Report (Delta) .. 17

5. GMRT Maintenance Production Report (Echo) 19
6. Document Number Report (Foxtrot) 20

IV. DEVELOPMENT METHOD AND ARCHITECTURE 23
A. ORACLE .. 23
B. ORACLE FUSION .. 24

1. Oracle Fusion Architecture ... 24
2. Oracle Fusion Applications .. 25
3. Oracle Fusion Middleware .. 26

C. MODEL-VIEW-CONTROLLER .. 27
D. ORACLE APPLICATION DEVELOPMENT FRAMEWORK (ADF) ... 28

1. Oracle ADF Overview .. 28
2. Oracle ADF Architecture ... 29

a. Business Services Layer .. 30
b. Model Layer ... 34
c. Controller Layer .. 35
d. View Layer ... 36

3. Oracle ADF Benefits .. 37

E. ORACLE JDEVELOPER ... 39
F. ORACLE WEBLOGIC SERVER .. 41

 viii

G. ORACLE SQL DEVELOPER ... 42

H. SUMMARY ... 44

V. APPLICATION DEVELOPMENT .. 45
A. INTRODUCTION .. 45
B. DEVELOPMENT PROCESS .. 45
C. APPLICATION DEVELOPMENT ... 45
D. FUNCTIONALITIES/SCENARIOS ... 46

1. Readiness Report (Alpha) Use Case 46
2. Maintenance Effort Report (Bravo) Use Case 50
3. Secondary Reparable Report (Charlie) Use Case 53
4. Cost Report (Delta) Use Case ... 55
5. GCSS-MC Maintenance Production Report (Echo) Use

Case .. 58

6. Document Number Report (Foxtrot) 61

VI. CONCLUSION .. 65
A. SUMMARY ... 65
B. LESSONS LEARNED .. 66
C. FUTURE AREAS OF RESEARCH .. 67

1. Security .. 67
2. XXMC Implementation ... 68
3. Additional Analytical Requirements’ Study 68

APPENDIX A. SQL SCRIPT AND SCREENSHOTS ... 69
A. READINESS REPORT (ALPHA) ... 69
B. MAINTENANCE EFFORT REPORT (BRAVO) 76
C. SECONDARY REPARABLE REPORT (CHARLIE) 79

D. COST REPORT (DELTA) .. 81
E. GMRT MAINTENANCE PRODUCTION REPORT (ECHO) 87
F. DOCUMENT NUMBER REPORT (FOXTROT) 89

APPENDIX B. IMPLEMENTATION STEPS .. 95
A. GENERAL STEPS ... 95
B. READINESS REPORT (ALPHA) ... 97
C. MAINTENANCE EFFORT REPORT (BRAVO) (VERSION 1 –

CONTAINS NULL VALUES) ... 106
D. MAINTENANCE EFFORT REPORT (BRAVO) (VERSION 2 – NO

NULLS) .. 114
E. CHARLIE: SECONDARY REPARABLES REPORT 122
F. DELTA: COST REPORT ... 128

G. ECHO: GMRT MAINTENANCE PRODUCTION REPORT 136

H. FOXTROT: DOCUMENT NUMBER REPORT 146
I. DASHBOARD (MAIN PAGE) .. 159

LIST OF REFERENCES .. 165

INITIAL DISTRIBUTION LIST ... 167

 ix

LIST OF FIGURES

Figure 1. GCSS-MC Login Dashboard. ... 8
Figure 2. GCSS-MC Equipment Status Report. ... 12
Figure 3. Tables for Readiness Dashboard. .. 13
Figure 4. Work Hours Screenshot. .. 14
Figure 5. GCSS-MC Maintenance Effort Proposed. .. 15
Figure 6. GCSS-MC Secondary Reparable Proposed. 17
Figure 7. GCSS-MC Cost Report Proposed. ... 18
Figure 8. GCSS-MC Maintenance Production Report Example. 20
Figure 9. GCSS-MC DASF Report. ... 21
Figure 10. GCSS-MC DASF Proposed Display. .. 21

Figure 11. Oracle Fusion Architecture, from [8]. .. 25
Figure 12. Oracle Fusion Middleware Solution Overview, from [9]. 27
Figure 13. The Model-View-Controller elements and interactions, from [11]. 28
Figure 14. Oracle ADF Architecture Layers, from [12]. .. 30
Figure 15. ADF Business Components: Entity objects, Entity associations,

View objects, View Links,and Application modules, from [14]. 31
Figure 16. Entity Object within the ADF Business Component Architecture,

from [14]. .. 32
Figure 17. View Object within the ADF BC Architecture, from [14]. 33
Figure 18. Application Module within the ADF Business Component

Architecture, from [14]. ... 34
Figure 19. ADF Bounded Workflow, from [14]. .. 36

Figure 20. Screenshot of Oracle JDeveloper workspace, from [17]. 40
Figure 21. SQL Developer New database connection, from [21]. 43
Figure 22. SQL Developer browsing the database with the table viewer, from

[21]. .. 43
Figure 23. Readiness Report (Alpha) TAMCN Class. .. 46
Figure 24. Readiness Report (Alpha) Activity Address Code Search. 47

Figure 25. Readiness Report (Alpha) TAMCN Class View. 48

Figure 26. Readiness Report (Alpha) Individual TAMCN View. 48
Figure 27. Readiness Report (Alpha) TAMCN NSN View. 49
Figure 28. Readiness Report (Alpha) Deadlines Items View. 49
Figure 29. Readiness Report (Alpha) Gauge View. ... 50
Figure 30. Maintenance Effort Report (Bravo) Search View. 51

Figure 31. Maintenance Effort Report (Bravo) Information View Top. 51

Figure 32. Maintenance Effort Report (Bravo) Information View Bottom. 52

Figure 33. Maintenance Effort Report (Bravo) Information View Side. 52
Figure 34. Secondary Reparables Report (Charlie) Search View. 53
Figure 35. Secondary Reparables Report (Charlie) Information View Top. 54

Figure 36. Secondary Reparables Report (Charlie) Information View Bottom. 54
Figure 37. Cost Report (Delta) search by Regional Activity Code View Top. 56
Figure 38. Cost Report (Delta) search by Regional Activity Code View Bottom. . 56

 x

Figure 39. Cost Report (Delta) Breakdown of Cost by NSN. 57

Figure 40. Cost Report (Delta) Unit Totals Tab. .. 58
Figure 41. Maintenance Production Report (Echo) View Top. 59
Figure 42. Maintenance Production Report (Echo) Tasks & Orders Tab Bottom

Page View. ... 60
Figure 43. Maintenance Production Report (Echo) Orders Status Details Tab

Bottom Page View. ... 61
Figure 44. Document Report Number (Foxtrot) Main Report View. 62
Figure 45. Document Report Number (Foxtrot) Main Report Bottom Page

View. ... 63
Figure 46. Document Report Number (Foxtrot) Orders by NSN Page View. 64
Figure 47. Readiness Report (Alpha) View Objects. ... 75
Figure 48. Readiness Report (Alpha) Tab Design 1. ... 75

Figure 49. Readiness Report (Alpha) Tab Design 2. ... 76
Figure 50. Maintenance Effort Report (Bravo) View Objects. 78
Figure 51. Maintenance Effort Report (Bravo)Tab Design. 79
Figure 52. Secondary Reparable Report (Charlie) View Objects......................... 81
Figure 53. Secondary Reparable Report (Charlie) Tab Design. 81
Figure 54. Cost Report (Delta) View Objects 1. ... 86
Figure 55. Cost Report (Delta) View Objects 2. ... 86
Figure 56. GMRT Maintenance Production Report (Echo) View Objects. 88
Figure 57. GMRT Maintenance Production Report (Echo) Tab Design 1. 88
Figure 58. GMRT Maintenance Production Report (Echo) Tab Design 2. 89
Figure 59. Document Number Report (Foxtrot) View Objects. 93
Figure 60. Document Number Report (Foxtrot) Tab Design 1. 93
Figure 61. Document Number Report (Foxtrot) Tab Design 2. 93

Figure 62. Top-level structure for the Alpha page. ... 98
Figure 63. Fully-expanded structure for the “Main Report” tab of the Alpha

page. .. 99
Figure 64. Fully-expanded structure for the “Deadlined Items” tab of the Alpha

page. .. 99
Figure 65. Top-level structure for the Bravo page (with nulls). 107
Figure 66. Detailed structure of the “Main Report” for the Bravo page. 108
Figure 67. Structure of horizontal Panel Splitters for the Bravo page. 109
Figure 68. Structure of PanelGroupLayout holding the graph components for

the Bravo page. .. 110
Figure 69. Top-level structure for the Bravo page (no nulls). 115
Figure 70. Structure of horizontal Panel Splitters for the Bravo page. 116

Figure 71. Structure of PanelGroupLayout holding the graph components for
the Bravo page. .. 116

Figure 72. Top-level structure for the Charlie page. .. 123
Figure 73. Detailed structure for the “Main Report” tab on the Charlie page. 124
Figure 74. Top-level structure for the Delta page. ... 129
Figure 75. Detailed structure of the “Main Report” tab of the Delta page. 130
Figure 76. Detailed structure of the “Unit Totals” tab. .. 131

 xi

Figure 77. Top-level structure for the Echo page. .. 137

Figure 78. Detailed structure within the “Main Report” tab of the Echo page. ... 138
Figure 79. Focusing on the PanelTabbed component. 139
Figure 80. Top-level structure for the Foxtrot page. ... 147
Figure 81. Structure of the “Main Report” tab of the Foxtrot page. 148
Figure 82. Detailed structure of the horizontal PanelSplitter in the “Main

Report” tab. .. 149
Figure 83. Structure of the “Orders By NSN” tab of the Foxtrot page. 149

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AAC Activity Address Code

ADM Acquisition Decision Memorandum

AIT Automated Identification Technology

ATLASS1 Asset Tracking, Logistics, and Supply System 1

COTS Commercial Off the Shelf

DAA Designated Approval Authority

DODAAD DOD Activity Address Directory

DOORS Dynamic Object-Oriented Requirements System

ERP Enterprise Resource Planning

FDR Functional Design Review

GCSS-MC Global Combat Support System – Marine Corps

IPR Interim Program/Progress Review

ITEM APPS Item Applications

ITV In Transit Visibility

LCM Logistics Chain Management

LMIS Logistics Management Information System

MAGTF Marine Air/Ground Task Force

MCCDC Marine Corps Combat Development Command

MCHS MC Hardware Suite

MCSC Marine Corps Systems Command

MCTFS Marine Corps Total Force System

MDR MERIT Data Repository

MDSS II MAGTF Deployment Support System II

MEF Marine Expeditionary Force

MERIT Marine Corps Equipment Readiness Information Tool

MIMMS Marine Corps Integrated Maintenance Management System

NMCI Navy/Marine Corps Internet

PMO Project Management Office

 xiv

SABRS Standard Accounting, Budgeting and Reporting System

SASSY Supported Activity Supply System

TO/E Table of Equipment

T/MR Table of Manpower Requirements

TFSMS Total Force Structure Management System

VO View Object

 xv

ACKNOWLEDGMENTS

We would like to thank our families for their sacrifice, patience, and

support through this entire experience. We would also like to thank our advisors,

Bryan Hudgens and Walter Kendall for their wisdom, guidance and continued

support, both in the classroom and in completing this project. Finally, we would

like to thank the interns whom provided the technical expertise utilizing Oracle

products and the GCSS-MC Program Office for their time and support invested in

our research. Thank you for all those that have supported us through our time at

the Naval Postgraduate School.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

In 2004, the Office of the Secretary of Defense (OSD) designated GCSS-

MC as an Acquisition Category (ACAT) 1AM special interest program. An ACAT

1AM Program is a Major Defense Acquisition Program; according to the Defense

Acquisition University,

an MDAP is a program that is not a highly sensitive classified
program and that is designated by the Under Secretary of Defense
for Acquisition, Technology and Logistics (USD(AT&L)) as a
MDAP; or that is estimated to require eventual expenditure
for research, development, test, and evaluation (RDT&E), including
all planned increments, of more than $480 million (Fiscal Year (FY)
2014 constant dollars) or procurement, including all planned
increments, of more than $2.79 billion (FY 2014 constant dollars).
[1]

GCSS-MC is the primary technology enabler for the Marine Corps

Logistics modernization strategy. It will replace a portfolio of 200 fragmented

legacy logistics systems that provide the backbone for all logistics information

required by the Marine Air Ground Task Force (MAGTF). The core is modern,

commercial-off-the-shelf enterprise resource planning (ERP) software (Oracle 11i

e-Business Suite). GCSS-MCs design is focused on enabling the warfighter to

operate while deployed with reach back from the battlefield. The systems

previously in use were created to support specific functional areas within the

Supply and Logistics fields. Most importantly, they were not designed to work in

austere environments.

Lessons learned from Operations Desert Storm and Iraqi Freedom

revealed that deployable, integrated technology is more than a “nice-to-have” for

the warfighter. Systems that could not communicate with each other resulted in

huge order-fulfillment lag times, redundant ordering, choked pipelines, and

warfighter uncertainty. Commanders compensated for lack of information by

stockpiling supplies to cover any eventuality and, as a result, sacrificed some of

 2

the agility and flexibility they needed to fight on a non-traditional battlefield.

Hauling huge amounts of inventory around equates to a reduction in combat

power [2].

The near-real time information GCSS-MC provides will give Marines vastly

improved asset visibility, reduced customer wait time, and a lighter, more mobile

fighting force. Timely, accurate data also enables faster, better decision making,

a prerequisite for improved combat effectiveness of the MAGTF. GCSS-MC can

go wherever Marines go and provide consistent, accurate information up and

down the supply chain [2].

In 2010, milestone C was completed and the initial fielding of GCSS-MC to

III Marine Expeditionary Force (MEF) had begun. During Milestone C,

recommendations are made and approvals to enter the Production and

Development phase are sought. The initialing field of Block 1 was completed in

December 2012, and all units have been cutover to GCSS-MC. GCSS-MC

Increment 1 provides five functional logistics capabilities of Request

Management, Supply, Maintenance, Financial, and System Administration. This

is further decomposed to address those supported logistics capabilities/business

process capabilities necessary to achieve the requirements outlined in the

GCSS-MC/Logistics Chain Management (LCM) Increment 1 (Block 1), Capability

Production Document (CPO). This includes Request Management, Order

Management, Inventory Planning, Demand Planning, Maintenance Management,

Inventory Capacity Operations, Warehouse Management, Distribution

Management, Procurement Management, Asset Management, Task

Organization, Customer Management, and Sourcing. Block 1 was the phasing in

of GCSS-MC to replace all legacy supply and logistic systems.

B. OBJECTIVE

The objective of this thesis was to design, develop, and test a proof-of-

concept prototype utilizing Oracle WebCenter to create dashboard analytics that

allow commanders to make near-real time logistical decisions. These decisions

 3

would incorporate readiness throughout the hierarchy of Marine Corps units as

well as equipment repair times for commonly deadlined equipment. This would

allow commanders to employ systems that are required for assigned missions

utilizing historical data generated through the dashboard.

C. PROBLEM STATEMENT

The timely and accurate reporting of unit supply and maintenance

readiness is the cornerstone of a unit’s operational capability. The current

infrastructure of GCSS-MC does not give unit commanders the ability to quickly

analyze their current readiness levels in real time. Users are exporting

information into external software, typically Microsoft Excel and Microsoft Access,

to generate analytics at the current time. Though these products have the ability

to present information requested, transferring data between systems is time

consuming. It is imperative that unit commanders have accurate information to

make decisions that can result in mission success. Without knowing the true

readiness of equipment, commanders will be unable to assign appropriate

missions to appropriate commodities. This research will provide commanders

some of the necessary tools to make these decisions without sorting through a

multitude of reports as is the current status quo with GCSS-MC.

D. SCOPE AND METHODOLOGY

1. Scope

This research is focused on the design and development of a dashboard

environment proof-of-concept web application to be utilized with GCSS-MC. This

dashboard will be centered around six individual Use Cases that will allow

commanders at all levels of operation control to make informed timely decisions

on unit supply and equipment readiness. Installation and Logistics (I&L),

Headquarters Marine Corps provided the historical data for this research.

2. Methodology

The methodology used for this research includes the following steps:

 4

 Conduct a literature review and evaluation of GCSS-MC and Oracle
WebCenter;

 Complete a requirements/gap analysis of current Marine Corps
logistics systems;

 Learn the Oracle tools used for development of application
framework;

 Utilize the Oracle Application Development Framework (ADF)
developed by Oracle to create dash board environment;

 Create analytics from data in the GCSS-MC database;

 Develop a conceptual model;

 Build the prototype;

 Assess the prototype;

 Capture shortcomings required by users;

 Revise dashboard and analytics based on user feedback.

3. Primary Research Questions

Can web-based application analytics using Oracle ADF and WebCenter

technology reduce the gap between the current limitations of GCSS-MC analytic

capabilities and the actual analytics needed by the GCSS-MC users? How well

can this application use and access existing logistics databases?

4. Benefits of Study

The current framework of GCSS does not display requested information

quickly and requires users to have detailed knowledge of information required to

pull reports. The successful implementation of a dashboard environment in

GCSS-MC will allow commanders to make real time decisions without the need

to pull and analyze required reports through Oracle Discovery Reports Users

module within GCSS-MC.

 5

E. ORGANIZATION OF THESIS

This thesis consists of six chapters:

 Chapter I: Introduction. This chapter gives a general outline of the
problem with a description of research scope and methodology,
and the organization of the thesis.

 Chapter II: GCSS - MC. This chapter discusses the background of
GCSS-MC.

 Chapter III: System Requirements’ Analysis. This chapter
discusses the application requirements’ analysis and defines the
data model and Use Cases.

 Chapter IV: Development Method and Architecture. This
chapter discusses the development approach used in this research,
the Oracle Application Development Framework, and the tools used
for development, including JDeveloper, SQL Developer, and
WebCenter.

 Chapter V: Application Development. This chapter describes the
elements of the system as well as the application features and
dashboard available to the users.

 Chapter VI: Conclusion. This chapter summarizes the key
findings and conclusions drawn from this thesis and offers
recommendations for future research areas.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. GLOBAL COMBAT SUPPORT SYSTEM – MARINE CORPS

A. GLOBAL COMBAT SUPPORT SYSTEM – MARINE CORPS

In December 2012, GCSS-MC became the system of record for the

Marine Corps Supply and Logistics community. The implementation of this

program replaces an approximately 30-year-old collection of programs used

within these communities. The previous programs of record, Asset Tracking

Logistics and Supply System (ATLASS)/Supported Activities Supply System

(SASSY) and Marine Corps Integrated Maintenance Management System

(MIMMS), which were the primary means of managing maintenance and supply

readiness, have since been retired. The inability of these two programs to give

real time information was a large factor in the decision to implement this new

software. GCSS-MC is the technology centerpiece of the Logistics Modernization

(LogMod) Program. LogMod focuses on integrating a new organizational

structure with streamlined processes and modern technology. GCSS-MC will use

Oracle’s E-Business Suite software for its application.

Only registered users who have an assigned Billet Identification Code

(BIC) for their unit can access. Once an individual is registered to access GCSS-

MC, the unit’s Using Unit Account Manager (UUAM) grants specific roles and

responsibilities within the system. The UUAM assigns all roles and

responsibilities for the expected tour length of the individual assigned.

Once an individual is granted access, roles, and responsibilities, he will be

able to access the user’s GCSS-MC dashboard, which is customizable to show

the user’s most often utilized links. This will allow for easier navigation of the

system. Figure 1 shows a generic user dashboard upon initial log on to GCSS-

MC.

 8

Figure 1. GCSS-MC Login Dashboard.

B. HOW DOES GCSS-MC WORK?

Oracle designed GCSS-MC using Commercial-Off-The-Shelf (COTS)

software and customizing it to meet the needs of the Marine Corps. GCSS-MC is

comprised of several relational databases that are managed by Space and Naval

Warfare Systems Command (SPARWAR). GCSS-MC is based on the

implementation of Oracle e-Business Suite 11i as the core software package.

This is the same infrastructure that Oracle WebCenter utilizes that allows for

ease of interface between the two programs. A database is used to store

information that allows for simple retrieval of stored information. Databases are

composed of tables with rows and columns of information. Data in a table can be

related according to primary keys or concepts, and the ability to retrieve related

data from a table is the basis for the term relational database.

 9

III. SYSTEM REQUIREMENTS’ ANALYSIS

A. XXMC R001 DATABASE

The XXMC R001 database, provided by the GCSS-MC program office,

contained the required information to obtain the analytics for the following Use

Cases. The XXMC R001 database is a daily extract from multiple existing

databases within GCSS-MC. Appendix A lists the relationships within the XXMC

R001 Database.

B. USE CASES

The primary purpose of this research topic is to provide business analytics

to unit commanders for the following six Use Cases. Each Use Case brings its

own decision making points to the forefront for commanders to act on to ensure

that supply and maintenance readiness is maintained for operational readiness.

Use Cases facilitated the development of this application. The Use Cases are

important because they define the parameters of data, which is required to pull

analytics from the existing XXMC R001 database. By analyzing Use Cases, we

were able to understand what information commanders would want to capture in

order to provide accurate decisions in the employment of their units. The

following six Use Cases were presented and analyzed to provide the required

analytics for this proof-of-concept:

 Unit Readiness Report: Displays unit maintenance readiness

 Maintenance Effort Report: Displays man-hours per Service
Request

 Secondary Reparable Report: Displays man-hours and trends of
Secondary Reparable repair times

 Cost Report: Displays financial data by unit for requisitions

 GCSS-MC Maintenance Production Report: Display all tasks
associated to individual service requests

 10

 Document Number Report: Displays both open and closed
requisitions in one report

The business analytics that are being presented in this proof-of-concept

are described next.

1. Readiness Report (Alpha)

This report allows the viewer to determine aggregated readiness over

time, specific equipment, unit, Major Subordinate Command (MSC), and Marine

Expeditionary Force (MEF). Unit readiness is the ability to provide capabilities

required by the combatant commanders to execute their assigned missions. This

is derived from the ability of each unit to deliver the outputs for which it was

designed. Unit readiness is reported by the military service [3]. Units report the

status for both equipment and supplies on hand (S-Rating) and equipment

condition (R-Rating). The S-rating is the material measurement of an

organization’s possessed equipment quantity against its designed requirement.

The R-rating indicates the material condition of the organization’s possessed

equipment [3]. The equipment selected for reporting will either be Mission

Essential Equipment (MEE) or principal end item (PEI). Marine Corps Bulletin

3000, which is published annually, lists all MEE and PEI required for reporting

purposes.

The Total Force Structure Management System (TFSMS) is the

authoritative source for obtaining a unit’s table of equipment (T/E) data for

ground equipment. The T/E-prescribed wartime requirement appears in the AAO

column, which will be changed in the future to read Unit T/E Requirement (UTR)

[3]. The On-Hand column on the units Mechanized Allowance Listing (MAL) is

the physical number of equipment on hand for each Table of Authorized Material

Control Number (TAMCN) and National Stock Number (NSN).

The information required from GCSS-MC and TFSMS to create a

readiness report includes the following:

 11

 TAMCN: Table of Authorized Material Control Number is a supply-
unique description code given to a Principal End Item consisting of
(1) Commodity Designator (A – E), and (2) Item Number

 T/E Qty: Table of Equipment Quantity generated by TFSMS

 MAL RQMT: Mechanized Allowance List Requirement generated
from TFSMS

 MAL AUTH: Mechanized Allowance List Authorized generated from
TFSMS

 MAL PLND: Mechanized Allowance List Planned generated from
TFSMS

 MAL UNFD: Mechanized Allowance List Unfunded generated from
TFSMS

 MAL SPALOW: Mechanized Allowance List Special Allowance;
approved from higher headquarters excess gear is authorized

 MAL CMDADJ: Mechanized Allowance List Command Adjusted;
Allowance approved by higher headquarters that differs from T/E

 MAL OH: Mechanized Allowance List On hand quantity

 IB OH: Install base On hand quantity

 01A OH: Perpetual inventory On hand quantity

 IB DL: Install Base deadlined equipment

 SR DL: Service request deadline equipment

Figure 2 is an example of an Equipment Status Report pulled from GCSS-

MC Discovery Report User.

 12

Figure 2. GCSS-MC Equipment Status Report.

Figure 2 shows the readiness of a unit by comparing the T/E On Hand

against the MAL On Hand to get the Unit Supply Readiness. It also shows the

Unit Equipment Readiness by comparing the MAL On Hand and the IB deadline

and SR deadline columns. GCSS-MC cannot display this information readily so

users generate it by running ad hoc reports in Discovery Reports Users,

exporting to an excel format, and then loading the exported report into a

Microsoft Access Database. These additional steps are time consuming and do

not allow real time results. All applicable information is located on records within

the GCSS-MC XXMC Tables that we will create the web-application to produce a

dashboard that will generate readiness based on certain pre-designated criteria.

Figure 3 displays the table organization that is being utilized to prepare

dashboard readiness display and the required fields within the R001 Database

that were utilized to pull these analytics. The primary fields that are being utilized

to search for the needed criteria are:

 13

 Service Request: Unique identifier that defines a customer profile
and the supplier of the appropriate goods and/or services and the
item needed

 MARES: Marine Automated Readiness Evaluation System

 Operational Status: Code stating status the equipment is in i.e.
(deadline, operational)

Figure 3. Tables for Readiness Dashboard.

2. Maintenance Effort Report (Bravo)

This report allows the viewer to determine how much effort was expended

on the maintenance performed (HOURS). It will identify by type of service

request (Maintenance, Preventive Maintenance Checks and Services (PMCS),

Modifications (MOD), Cannibalization, Selective Interchange, and Calibrations

(CAL)) the number of tasks and hours associated with the service request (Work

Performed) and categorize the work and effort into different types of service

requests and the tasks associated to them. Figure 4 displays the format within

GCSS-MC where work hours are entered into service requests.

 14

Figure 4. Work Hours Screenshot.

Currently within GCSS-MC users have to pull each service request

individually and then add manually all hours for each task that was completed

under the assigned requests. Service requests have a one-to-many relationship

with tasks. The purpose of this report is to provide an overall picture of the

amount of work hours performed for each task. Analysis will identify any

correlation between tasks that take the longest to fix and the time an item is

actually in the maintenance cycle. This report will also have the capability to

identify units that have adopted maintenance practices and procedures that may

be utilized to increase readiness among all units with the same echelon of

maintenance abilities. Figure 5 illustrates the tables and relationships that were

required to be pulled from the R001 Database to create the output for this Use

Case. It also displays the format that this report will be displayed once it is

created.

 15

Figure 5. GCSS-MC Maintenance Effort Proposed.

3. Secondary Reparable Report (Charlie)

Allows the viewer to determine the effort associated to repair secondary

reparable items. This report will identify the time associated to the repair, number

of times it has been in the maintenance cycles (intervals) and aggregated by

principle end item (TAMCN) or weapons system.

Secondary reparable items require more intense and time-consuming

maintenance to bring equipment back to an operational status. This report will

identify reoccurring issues with certain secondary reparable items that are

entering the maintenance cycle continually. The two levels of maintenance

(LOM) that perform work on secondary reparable are:

a. Field Level

Organizational Level (1st): This level sustains equipment in a mission

capable condition status and is both preventative and corrective in nature. The

responsibility of performing organizational maintenance is the assigned user’s

responsibility. This includes expeditious assessment and maintenance conducted

 16

under battlefield conditions. Tasks normally associated with organizational

maintenance are inspecting, servicing, adjusting, testing, and replacing parts and

components both major and minor assemblies [4].

Intermediate Level (2nd): The performance of intermediate level

maintenance requires higher levels of technical training, specialized tools, and

facilities performed by specially trained mechanics and technicians per individual

training standards and technical publications [4]. This includes inspection/in-

depth diagnosis, modification, replacement, adjustment, and limited repair or

evacuation/disposal of principal end items and their selected reparables and

components/subcomponents. Calibrations and repair of Test, Measurement and

Diagnostic Equipment (TMDE), welding, and software upgrades are also

performed at the intermediate level [4].

b. Depot Level

In this level, maintenance actions taken on material or software involve the

inspection, repair, overhaul, or the modification or reclamation (as necessary) of

weapons systems, equipment end items, parts, components, assemblies, and

sub-assemblies that are beyond field maintenance capabilities, and/or are

authorized and directed by DC I&L [4].

In this report, a reparable Item is “an item of supply subject to economical

repair and for which the repair (at either depot or field level) is considered in

satisfying computed requirements at any level” [3]. An NSN is “simply the official

label applied to an item of supply that is repeatedly procured, stocked, stored,

issued, and used throughout federal supply system” [5]. In an NSN, the specific

digits translate as:

 First Four Digits: The Federal Supply Class

 Digits 5 and 6: Country of origin

 Digits 7 to 13: Sequentially assigned and unique to each NSN

 17

Figure 6 illustrates the tables and relationships that were required to be

pulled from the R001 Database to create the output for this Use Case. It also

displays the format that this report will be displayed once it is created.

Figure 6. GCSS-MC Secondary Reparable Proposed.

4. Cost Report (Delta)

This report captures the service request cost associated to each service

request by Unit, MSC, and MEF.

Budget execution and the tracking of authorized funds are essential for all

units in the Marine Corps. GCSS-MC does not allow units to pull a consolidated

listing of all service requests and cost associated. Fiscal personnel have the

ability to pull a Budget Execution Report for their unit. The budget execution

report will give a listing of all document numbers and the total cost associated to

that document number. The way that it is provided, this report cannot be broken

down to identify which document number belongs to a certain service request.

Additionally, each time a user needs to pull this information requires logging in to

the Discovery Reports View in GCSS-MC and entering the required information

 18

and date range for the period requested. Timely quarterly reconciliation for

maintenance costs is difficult to complete since the required information is not

readily available. It is difficult to properly brief unit commanders on costs of

service request unless each individual service request is pulled and dollar values

are totaled individually. The information required to identify the proper allocation

of funds utilized by a unit to purchase parts are:

 OPBUD: Operating Budget

 MRI: Major Command Recipient Identifier

 WRI: Work Center Identifier

 BEA: Budget Execution Activity

 BESA: Budget Execution Sub-Activities

 COST JON: Job Order Number

 LOA: Line of Accounting

Figure 7 illustrates the tables and relationships that were required to be

pulled from the R001 Database to create the output for this Use Case. It also

displays the format that this report will be displayed in once it is created.

Figure 7. GCSS-MC Cost Report Proposed.

 19

5. GMRT Maintenance Production Report (Echo)

The current GMRT Maintenance Production report does not show analysts

the associated tasks for each defect identified within a Service Request or for

pending requisitions awaiting approval. The GMRT Maintenance Production

Report was designed to view maintenance related information (tasks and open

parts requirements) on one single report, which allows analysts to better identify

trends and pin-point procedural problems while assisting commanders and

commodity managers with a more accurate assessment of equipment

undergoing maintenance. This results in increased readiness reporting accuracy

and shorter maintenance cycle times.

The information on the Maintenance Production Report (MPR) is

processed and edited when Maintenance submits a Service Request. This report

will give maintenance managers at all levels the visibility of active Service

Requests in their shops. The purpose of this report is to provide the complete

history of an item in the maintenance cycle. Supply status on this report will

automatically update at the same time the DASF is updated. The Maintenance

Production Report is used by the maintenance personnel in the same ways in

which supply personnel uses the Due and Status File (DASF); it also contains

much of the same information.

As seen previously, to validate all parts on order for an individual service

request the user has to view each request individually and then export the

information to an excel spreadsheet to analyze. The approval process for parts

requisitions has multiple stages, and parts can be help-up by individuals if their

work queue is not checked on a daily basis. This report would allow maintainers

the ability to verify if parts have not been requisitioned in a timely manner by the

approving official. Figure 8 illustrates the tables and relationships that were

required to be pulled from the R001 Database to create the output for this Use

Case. It also displays the format that this report will be displayed in once it is

created.

 20

Figure 8. GCSS-MC Maintenance Production Report Example.

6. Document Number Report (Foxtrot)

This report is designed to focus on all outstanding repair part requisitions

for OPEN and CLOSED service requests. The report may be used to indicate

trends in faulty parts, changes in repair procedures, whether debriefs to parts are

being performed prior to closure of a service request, and supply problems. It

also provides a general idea of the usage volume for particular parts by NIIN and

whether or not these parts are seriously hindering the repair cycle. This report

can be very beneficial in the reconciliation and validation process between the

maintenance and supply commodities.

The Due and Status File (DASF) is a computerized record of all

outstanding requisitions and stock replenishment requisitions within the

command and their most recent status. Reconciliations are done on a bi-weekly

schedule between the supply and the maintenance clerks utilizing both the MPR

and the DASF. Figure 9 illustrates the report layout that is currently being utilized

by units to view Due and Status file information. The image is unable to display

both open and closed document numbers by service request.

 21

Figure 9. GCSS-MC DASF Report.

Figure 10 illustrates the tables and relationships that were required to be

pulled from the R001 Database to create the output for this Use Case. It also

displays the format that this report will be displayed in once it is created.

Figure 10. GCSS-MC DASF Proposed Display.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. DEVELOPMENT METHOD AND ARCHITECTURE

This chapter gives a description of the development methods used in the

creation of our web-based application. It starts with a brief history of Oracle and

Oracle fusion, which is the structure and encompasses all of the instruments we

will be using. Next, we will describe our method of development. The Model-

View-Controller and Oracle Application Development Framework (ADF) is the

framework that we chose to build this proof-of-concept. We examine the four

layers of Oracle ADF: Business layer, Model layer, Control layer, View layer. We

also provide key benefits of Oracle ADF. We describe the main integrated

development platform, Oracle JDeveloper and the Oracle WebLogic server.

Then, we provide a description of the main components of Oracle WebCenter. To

conclude, we explain both the modeling tool Oracle Structured Query Language

(SQL) Development Data Modeler and the graphical management tool Oracle

SQL Developer.

A. ORACLE

The corporation was founded by Larry Ellison, co-founded by Bob Miner

and Ed Oates in 1977. This publicly traded company (NYSE: ORCL) is

headquartered in Redwood City, California, and specializes in database software

and hardware products [6]. Once only known for their database abilities, though

the years, Oracle has expanded throughout the technology industry providing

services ranging from servers, storage, financial, human resources (HR),

enterprise resource planning (ERP), customer relationship management (CRM),

supply chain management (SCM), and cloud computing. They have expanded

through timely acquisitions. Since 2005, Oracle has grown very rapidly by

acquiring 76 companies [6]. The acquisition of these companies brought cutting-

edge technology and new products into Oracle. These new technologies coupled

with the leadership at Oracle have propelled the company into an industry leader.

 24

B. ORACLE FUSION

1. Oracle Fusion Architecture

Oracle Fusion Architecture (OFA) is the overall framework for building

applications. This common architecture allows new applications to be built rapidly

by reusing the common services. With this architecture, we can create

applications from current services and not have to rely on coding every

application [7]. As depicted in Figure 11, the Oracle Fusion Applications are built

in the Oracle Fusion Middleware stack and utilize the Oracle Database [8].

 25

Figure 11. Oracle Fusion Architecture, from [8].

2. Oracle Fusion Applications

Oracle Fusion Applications are 100 percent open standards-based which

were designed from the ground up to meet their customers’ global demands. The

open standard foundation reduces risk for implementation and integration. These

 26

new applications were created to work with other enterprise and industry

applications to support better business decision-making and to automate

business procedures. Oracle has seven core product enterprise applications:

 Customer Relationship Management (CRM)

 Financial Management

 Governance, Risk, and Compliance (GRC)

 Human Capital Management (HCM)

 Procurement

 Project Portfolio Management (PPM)

 Supply Chain Management (SCM)

3. Oracle Fusion Middleware

Oracle Fusion Middleware is the software layer that connects the fusion

applications. The Fusion Middleware is the infrastructure that facilitates creation

of business applications and provides framework for service-oriented architecture

(SOA) [9]. Oracle Fusion Middleware includes Web servers, application servers,

content management systems, and support for development and deployment and

management of applications. This collection of open standards-based software

includes Java Enterprise Edition 5 compliant environment, developer tools,

integration services, business intelligence, collaboration, and content

management [9]. Figure 12 provides a summary of Oracle Fusion Middleware.

 27

Figure 12. Oracle Fusion Middleware Solution Overview, from [9].

C. MODEL-VIEW-CONTROLLER

The basic tasks which a Fusion Application performs are: Data Access,

Business logic implementation, User interface display, User interaction, and

Application page flow. The Model-View-Controller groups the basic building

blocks of a Fusion Application into three separate elements. This design pattern

provides the architecture for graphical user interface (GUI). The three elements

are: the model, the view, and the controller. Each of these elements performs a

distinct role: [10]

 Model: The model represents data and the rules that govern
access to and updates of this data and business logic
implementation.

 View: It provides the user interface display to the application and
raises events to the controller. It specifies exactly how the model
data should be presented on the page.

 28

 Controller: It manages application flow. The controller translates
the user's interactions with the view into actions that the model will
perform [Rob Eckstein].

Figure 13 illustrates the three elements.

Figure 13. The Model-View-Controller elements and interactions,

from [11].

D. ORACLE APPLICATION DEVELOPMENT FRAMEWORK (ADF)

1. Oracle ADF Overview

ADF is an end-to-end application framework that builds on Java Platform,

Enterprise Edition (Java EE) standards, and open-source technologies [12]. Java

EE is a standard, robust, and secure platform that many of today’s enterprise

applications utilize. Java EE, however, is very complex and requires significant

coding requirements. Oracle ADF framework provides integrated infrastructure

solutions and simplifies Java EE development by minimizing code writing. Oracle

ADF accelerates development by adhering to Java EE standard patterns and

practices allowing the developers to focus on the logic of application creation,

which greatly reduces the amount of coding requirements. Oracle ADF is the

framework and is directly supported by Java development tool Oracle

 29

JDeveloper. The Oracle ADF framework can be used to implement enterprise

solutions that search, display, create, modify, and validate data using web,

wireless, desktop, or web services interfaces [12].

Oracle ADF is based on the MVC design pattern. Utilizing the Model-View-

Controller design pattern, application development and maintenance

requirements are minimized. Oracle ADF framework provides solutions for the

individual Model-View-Controller layers and integrates the layers together with

customization and security [13]. Oracle ADF makes it simple to develop agile

applications creating a user experience that is as straightforward as dragging-

and-dropping the desired business service onto a visual page designer within

JDeveloper. The integrated solutions cover areas such as: Object/Relational

mapping, data persistence, reusable Controller Layer, rich Web user interface

framework, and data binding to user interface. Oracle ADF is also integrated with

the Oracle Service Oriented Architecture (SOA) and WebCenter Portal

framework, which simplifies the creation of complete composite applications [8].

MVC makes model classes reusable without additional modifications. MVC

patterning can be very complex and difficult to implement in smaller software

applications. The alternative to MVC is Object-Oriented design, which is the

process of planning a system of interacting objects for the purpose of solving a

software problem.

2. Oracle ADF Architecture

Oracle ADF is based on the Model-View-Controller pattern explained in

the previous section and separates the Model Layer from the business services.

This enables Service Oriented Architecture (SOA) development of applications.

Therefore, the Oracle ADF architecture has four layers. The four layers are:

Business Service Layer, Model Layer, Controller Layer, and View Layer. The

Model Layer holds and integrates the many elements of Java EE. Figure 14

illustrates the four layers and developers options for which technology they could

use in each layer when developing ADF applications.

 30

Figure 14. Oracle ADF Architecture Layers, from [12].

a. Business Services Layer

The Business Service Layer is the component that mediates between an

MVC application and a data source. The Business Services layer is responsible

for retrieving data, represent the data as Java objects, and Implement business

rules. Execution of the Business Services layer is streamlined by ADF Business

Components. ADF Business Components create reusable data-aware business

services, which minimizes developer coding. Visual editors and wizards are used

to create ADF business Components without having to write the applications

Java code. The ADF Business Components consist of five main components:

entity objects, entity associations, view objects, view links, and application

modules [14]. Figure 15 shows the relationship between the ADF Business

Components.

 31

Figure 15. ADF Business Components: Entity objects, Entity

associations, View objects, View Links,and Application
modules, from [14].

 Entity Objects

ADF Entity objects can represent any business component that captures

data as shown in Figure 16. Entity objects map to single objects in the data

source such as tables, views, or snapshots in a database. Examples of Entity

objects are: regions, divisions, departments, sections, sales, invoices,

employees, or equipment.

 32

Figure 16. Entity Object within the ADF Business Component
Architecture, from [14].

 View Objects

ADF view objects are business components that collect data from the data

source, shape that data for use by clients, and allow clients to change that data

in the ADF Business Components cache [9]. The View Layer represents the user

interface of the application and its main role is to give an application-specific view

of records queried into underlying entity objects. View Objects map to Entity

Objects which embed SQL to filter or manipulate the data in the Entity Objects.

As shown in Figure 17, the view object shapes and defines the data for an

application by defining an SQL statement that selects only the attributes

associated with the underlying entity objects. View objects can be read-only, one,

or many-entity objects [9]. In order to manipulate data, one must create an ADF

Business Components entity object that accesses and updates the data.

 33

Figure 17. View Object within the ADF BC Architecture, from [14].

 Application Modules

The Application Module is the final step in arranging those view objects in

a data model. This data model view objects is an application module and

represents particular application tasks. The typical application model will contain

one or more application modules. The application provides data model for task

by aggregating the view objects for the task as shown in Figure 18. Application

Modules can be used in three ways: service object, reusable object for nesting,

or shared application module [14]. Examples of an application module are:

updating customer information or creating new orders.

 34

Figure 18. Application Module within the ADF Business Component

Architecture, from [14].

b. Model Layer

The ADF Model is a declarative framework and central part of ADF. A

Declarative framework program is declarative if it describes what something is

like, rather than how to create it. This layer enables the user to create ADF

applications based on different types of business services. The Model layer is

between the business services and view and controller layers. The Model layer

standardizes the interactions between each layer. ADF Model consists of two key

components [14]:

 Data controls: Abstract the implementation technology of a
business service by using standard metadata interfaces to describe
the service’s operations and data collections, including information
about the properties, methods, and types involved.

 35

 Declarative bindings: Used to bind services that are exposed by
data controls to user interface components. They provide a way to
call from the View Layer into the Model Layer using code.

c. Controller Layer

The Controller layer manages the applications’ flow and handles user

inputs. The Controller’s key feature is the task flow. Task flows provide a modular

approach for defining control flow in a Fusion web application. Instead of

representing an application as a single large JSF page flow, it is broken up into

multiple task flows, each of which contains a portion of the application's

navigational graph [14].

Task flows consist of activity nodes, which are operations such as

displaying a page or executing application logic. Task flows can be created

visually using the diagram editor in JDeveloper. There are two types of task

flows: bounded and unbounded. A fusion web application consists of a single

ADF unbounded task flow and several bounded task flows. An unbounded task

flow is the parent task flow from which an application is launched and any page

within the task flow can be the starting page of the application [14]. As shown in

Figure 19, a bounded task flow represents a reusable application flow that can be

referenced from any other task flow. Bounded task flows have a single point

entry and zero or more exit points, and they contain their own set of private

control flows rules, activities, and managed beans [14].

 36

Figure 19. ADF Bounded Workflow, from [14].

d. View Layer

The ADF View Layer can be used to take an application to a higher level

with an assortment of different user interfaces. The View Layer represents the

user interface of the application. In this layer, Oracle uses ADF Faces framework

to build rich user interfaces. The ADF faces is a set of more than 150 Rich

Internet Application (RIA) components built on top of the standard Java Server

Faces (JSF) application programming interfaces (API), that use the newest

technologies to provide interactive user interface. Benefits of using ADF Face

are: large set of fully featured rich components, built in Ajax support, and limited

 37

need for developer to write JavaScript [14]. The categories of key ADF Faces

components are:

 General Controls

o Navigation components: Page navigation, buttons, and links

o Images and Icons: From pictures to video

 Text and Selection components

o Output components: Display text, graphics, and icons for

audio/video clips

o Input components: Allows users to enter data and upload files

 Data Views

o Table and Tree components: Sort and filter capability

o Data Visualization Components: Includes graphs, pivot tables,

Gantt Charts, maps, and timelines

o Query Components: Support multiple search criteria, adding

and deleting criteria, selectable search operators, and match

all/any selections

 Layout components

o Containers to determine the layout of the page; includes

interactive component that can show or hide content and

provide sections or lists

3. Oracle ADF Benefits

Oracle ADF offers key benefits while developing web applications. The

key features that make it attractive are:

 End-to-End Solution: Oracle ADF does not focus on just one layer
of the Java EE architecture. ADF provides an integrated and
complete solution for every Java EE layer from the View Layer and
data-bindings through the business services and data access; it

 38

also supports every development life-cycle phase from inception
through support [12].

 Development Environment: Oracle ADF has integrated support.
Oracle JDeveloper provides visual aid and a declarative approach
to minimize writing framework code [12].

 Platform Independence: Oracle ADF runtime is open source and
can be installed on various Java EE-compliant application servers.
Business services can connect to any SQL-92-compliant database
[12].

 Technology Choice: Oracle ADF supports multiple technologies
for each of the layers of the application and does not enforce a
specific technology or a specific development style on the
developer [12].

 Technology Commitment: Oracle ADF is the technology choice
for the Oracle next generation set of enterprise applications. The
product is used to develop portal applications, wireless
applications, and web applications; therefore it provides a
committed, supported, and consistent technology stack [12].

 Metadata-Driven: Oracle ADF framework offers declarative options
for development configured from XML metadata, while
accommodating custom coding wherever necessary. Users can
choose to use all or part of the framework in the applications they
build, making the application components much more reusable and
flexible. The use of metadata also enables rules for data bound
fields to be specified at the Model Layer. Labels, validation, and
tooltip properties can be specified in the metadata for ADF data
bindings—those properties are utilized independent of the user
interface implementation [12].

 Declarative Customization: Oracle ADF provides a unique
solution that allows an organization to use a single base application
and customize it to fit the requirements of different users [12].

 Enhanced Reusability: Oracle JDeveloper and Oracle ADF
provide support for superior reusability features including: JSF
templating, reusable task flows, task flow templating, reusable
business services, ADF libraries, and JSF fragment based regions
[12].

 Source availability: Oracle provides the source code for the ADF
framework to customers with a support license. Having the source

 39

available can help developers understand the underlying
mechanisms of the framework and debug problems in their
applications [12].

 Support and Training: Oracle provides around the clock support
from an established organization and provides training through
Oracle University which offers regular instructor-lead courses on
Oracle ADF and JDeveloper [12].

E. ORACLE JDEVELOPER

Oracle JDeveloper is a free tool that enables developers to build standard-

based enterprise applications. This free Oracle integrated development

environment (IDE) is the main platform for developing fusion applications within

Oracle. JDeveloper integrates development features for Java, HTML5, SOA,

Web, Mobile, Database, XML, and Web services which share structure into a

single development environment. JDeveloper is open source and can be

operated on Windows, Linux, Mac OS X, and other UNIX-based systems [15].

JDeveloper is a development environment that reduces the learning curve of

developers by simplifying the development process using a visual and

declarative development approach. JDeveloper provides the developer a visual

concept for tasks such as page flow design or page layout without preventing

access to the underlying source code. If the developer wishes, JDeveloper allows

access to the source code. JDeveloper eliminates tedious coding by using

property inspectors, structure panes, and visual editors to define components of

an application. Developers can design, generate, and visualize their codes with

Unified Modeling Language (UML), Java, and database diagrams [16].

Oracle JDeveloper covers the full development lifecycle from initial

analysis, design, coding, testing, and all the way to deployment. A WebLogic

server is integrated into JDeveloper to test, operate, and debug the application

within the development environment for Oracle databases as well as non-Oracle

databases [15].

 40

Figure 20 is a screenshot of Oracle JDeveloper and the most common

editor windows and tools. The general purpose of each window is explained next

[17].

Figure 20. Screenshot of Oracle JDeveloper workspace, from [17].

 Application Navigator: This window is used to create, edit, find
files for one’s application (Project panel), and to interact with the
database and other connections. The application navigator helps
manage the contents and associated resources of an application
[18].

 Application Resource Panel: This window displays the
application-level resources and configuration files. It offers access
to connections for the currently selected application (database or
application server) and descriptor files that are used to configure
the application. This includes database connection information
metadata files used to configure ADF Business Components [17].

 41

 Data Control Panel: The data control panel displays the data
collections, attributes, built-in operations, and business methods
from the business services exposed through a data control registry.
Items can be dragged and dropped from the data control panel on
the UI. This generates a metadata XML file to bind the business
data with the UI [17].

 Structure Window: The structure window displays a structural
view of the data in the document that is currently selected and
displays icons identifying type of object in the active window.
Structure window can be used to view or reorder the source code
using drag and drop components from any palette to the structure
window [17].

 Visual Editor: The visual editor window will help to visually build
the UI for ADF applications. The visual editor allows developers to
visually lay out the UI. JDeveloper synchronizes the selection in the
structure window with the visual editor and vice versa [17].

 Component Palette: The component palette window lists down
available components for designing a page. Components are
associated with the selected technology (Java Client, JSFJSP files,
or HTML files) that is being utilized to design pages or for defining
navigation [17].

 Property Inspector: A property is a named attribute of a class or
component that can affect its appearance or its behavior. The
property inspector displays the exposed properties of the
component selected in the structure window or in the visual editor
[17].

 Log Window: The log window displays the logs from various
components such as compiler, audit rules, debugger, and profiler
[17].

F. ORACLE WEBLOGIC SERVER

The purpose of the Oracle WebLogic Server is to deploy the web

application so end users can access the applications using a web browser. The

WebLogic server is a scalable, web application server which implements the

Java enterprise edition standards. The WebLogic server supports many types of

distributed applications and is an ideal foundation for building applications based

on service-oriented architectures. The WebLogic server complete implementation

 42

of the Java EE provides a standard set of application programming interfaces

that create Java applications that can access databases, email, and connections

to external enterprise systems [19]. The basic concepts of a WebLogic Server

are:

 WebLogic Domain Structure: A domain is a logically related
group of WebLogic Server resources that is managed as a unit.
There is a minimum of one administration server per domain; all
other servers are called managed servers. The administration
server is the central point of managing the WebLogic server domain
[20].

 Managed Servers: These are additional WebLogic servers that
deploy Web application, Enterprise Java Beans, Web Services, and
associated resources. When a managed server starts, it
synchronizes to the admin server to optimize performance [20].

 WebLogic Server Cluster: A cluster is a group of WebLogic
Server instances that work together to increase performance and to
provide scalability and availability for applications [20].

G. ORACLE SQL DEVELOPER

Oracle SQL Developer is a free graphical user interface integrated

development environment that simplifies database management and SQL

development tasks. SQL Developer can be run on Windows, Linux, and Mac OS

X. This productivity tool streamlines SQL development time and offers complete

end-to-end development of your PL/SQL applications. Developers can debug

and edit PL/SQL statements, create, modify and browse objects, run SQL

statements, run queries, and export data to a desired format such as XML, Excel,

HTML, and PDF [21].

The Key features of SQL developer are:

 Managing Connections: A simple wizard is used in SQL
Developer to create new database connections as shown in figure
21. Once connected, the developer can browse the database, run
reports, create schema objects and create, execute, and debug
PL/SQL [21].

 43

Figure 21. SQL Developer New database connection, from [21].

 Working with the SQL Worksheet: The SQL worksheet opens
when connection is established. Developers can create and run
SQL commands individually or together in the worksheet.
Developers can specify actions proceeded by the database such as
selecting data from a table, inserting data, creating a table, and
saving data to file [21].

 Browsing the Database: The connection navigator allows the
developer to browse through objects in the database schema
including tables, views, indexes, packages, procedures, functions,
queues, triggers, types, sequences, materialized views and
materialized view logs, synonyms and public synonyms, database
links, and directories as shown in figure 22 This allows the
developer to quickly retrieve information as it is displayed in an
easy to read tab window [21].

Figure 22. SQL Developer browsing the database with the table viewer,

from [21].

 Producing SQL Scripts: The connections navigator allows the
editing and updating of database objects. As the developer creates
new objects or edits existing ones, the data definition language
(DDL) is available for review [21].

 PL/SQL Development: This includes a full-featured editor for
PL/SQL program units, custom PL/SQL syntax highlighting, and
editing functions such as bookmarks, code completion, code
folding, and search and replace [21].

 44

 Database Reporting: SQL Developer provides many predefined
reports about the database and objects. SQL Developer allows
developers to create and save reports for repeated use [21].

H. SUMMARY

In this chapter, we discussed the development approach and described

Oracle products utilized in the development of XXMC reports proof-of-concept. In

Chapter V, we will describe the development process and describe the capability,

functionality, and features of the XXMC Reports.

 45

V. APPLICATION DEVELOPMENT

A. INTRODUCTION

In the previous chapters, we discussed the purpose of GCSS-MC Use

Cases that were analyzed, and we described the tools used for its design and

development. This chapter describes the ADF application implementation: how

the application user interface looks and what it can and cannot do. We first

describe the implementation process and then we discuss the application

features and functionalities, as well as some considerations related to the user

interfaces and application functions.

B. DEVELOPMENT PROCESS

As described in Chapter IV, numerous Oracle tools were used to develop

the XXMC Dashboard. The tasks performed using these tools are described in

the following two sections. The first section addresses the database

implementation, and the second discusses the process implementation.

C. APPLICATION DEVELOPMENT

In the design and development of the XXMC Reports Dashboard

application, there were several factors that were taken into consideration. The

user interface needed to be user friendly, easily understood, and graphically

simple. The design was created with an attempt to make user interaction easy to

navigate between all the Use Cases that were analyzed and developed. We

included search functions and drop down boxes to eliminate the need for users to

memorize all the different criteria that were searchable.

Figure 23 is a snapshot of the XXMC Reports Dashboard Homepage. This

page has six buttons that corresponds to each individual Use Case. Each page

can be opened simultaneously on separate tabs to run concurrently, or each can

be run individually.

 46

Figure 23. Readiness Report (Alpha) TAMCN Class.

The XXMC Reports Dashboard Homepage is utilized to navigate between

pages; it provides no ability to modify any information that is being accessed

through the XXMC R001 database that is being utilized to pull information for

analytics. The following section will provide a scenario of each Use Case to

demonstrate the functionality of this proof-of-concept.

D. FUNCTIONALITIES/SCENARIOS

Understanding the functionality of the application is best understood by

utilizing Use Case scenarios. In this section, we will describe all six Use Cases,

the steps required, and the products produced. These Use Cases can be used

by Marines at all levels of Supply and Maintenance.

1. Readiness Report (Alpha) Use Case

This Use Case provides the user with the ability to pull maintenance

readiness numbers for individual units (Figure 24). When a user accesses the

Alpha Use Case page, he has the ability to search by Activity Address Code

which is unique to each unit in the Marine Corps. Once this page displays all

requested information, the user is unable to edit any information that is

presented. This page also contains six navigation buttons that can be utilized to

return to the Dashboard homepage or to navigate directly to another Use Case.

A user will access the XXMC Reports Dashboard Homepage and select

Use Case Alpha. After cl icking on the Alpha Tab, the user simply inputs his or

her Activity Address Code and then cl icks the search button to execute the

search. The user has the ability to reset the search page by cl icking on the reset

button . Figure 24 displays the search pane for Readiness Report (Alpha).

Input Activity Address code

Figure 24. Readiness Report (Alpha) Activity Address Code Search.

Once the user queries the readiness report by cl icking on the search

button, the analytics will be displayed (Figure 25).The initial view displays the

aggregated unit readiness by TAMCN Class (Figure 25). This view shows the

unit's aggregated readiness percentage which is calculated by dividing total

deadline by total on hand. The user now has the ability to select any TAMCN

Class. Then, the information will drill down to show each individual TAMCN

associated with the above TAMCN Class. This information is displayed to show

each major end item and its readiness rating (Figure 26).

47

 48

Figure 25. Readiness Report (Alpha) TAMCN Class View.

Figure 26. Readiness Report (Alpha) Individual TAMCN View.

Once this information is displayed, each individual TAMCN number under

a selected TAMCN class and its Readiness percentage is illustrated. Users are

able to further drill down by clicking on a TAMCN that has a deadline number

greater than zero. Once a user clicks on a selected TAMCN, the information

displayed will contain all NSNs associated with the selected TAMCN (Figure 27).

 49

This view displays all required information concerning each deadlined item

by NSN and Serial Number.

Figure 27. Readiness Report (Alpha) TAMCN NSN View.

Users are able to display all deadlined items for a selected Activity

Address Code by clicking on the Deadline Items tab once the initial search of

Activity Address Code is performed. This view will display all deadlined items

sorted by TAMCN class and NSN for a rollup of all equipment within a selected

unit (Figure 28).

Figure 28. Readiness Report (Alpha) Deadlines Items View.

 50

Use Case Readiness Report (Alpha) utilizes gauges on all views of

deadlined equipment. These gauges were placed on overall readiness levels:

Green Greater than 95%, Yellow 85% to 94%, and Red Under 85% (Figure 29).

This readiness percentage can be modified to fall in line with appropriate Marine

Corps Orders and directives.

Figure 29. Readiness Report (Alpha) Gauge View.

2. Maintenance Effort Report (Bravo) Use Case

This Use Case is designed to allow users to search for any Activity

Address Code within GCSS-MC and, additionally, specific Service Request

Types. This search will be utilized to manage repair times for equipment inducted

into the maintenance cycle. Over time it can be analyzed to determine trends in

man-hours utilized to repair end items.

Once the user accessed the Maintenance Effort Report (Bravo) search

page, the user is able to enter any Activity Address Code and select from a pre-

determined drop down box of Maintenance types (Figure 30).

..... ~,.,. -......,. ------- .. ~-~·

Figure 30. Maintenance Effort Report (Bravo) Search View.

Upon submission of Activity Address Code and Service request type, the

query will be run and the information will be displayed in the format in Figures

(31), (32), and (33).

Malnttnanct Effort Report (B'llvo)

~ReqUESt He~~dess

~ .
s...-~1 g;::u-.1,..;.,;- ~~«'tty~~~~ - '"""' J·~~\W'Oe I."l71~Hl n- -~··Sl! "'1::11! .l,':l/J)!Ol

"""' ~ tu "1)1:61 :tc~ 1/)i{i:lll

'""'" ,.,.,~~SI..ii /l(ll.lSl)l\:~~ l/l.'if))tl
l1SC438 IWI~t·!l.'l M)~~ ,,~.zn 1,'3!/lCtl

"'"" 1¥\l:Jill ~C.-fobl,.zh. .t.'3!,'21JU
~·:H. k$!~·,e·~J ('ltJ .:.t!) ~~'=lil~
;-ta<G~ ~~,·!1.3 "'"" ~:Ol~ , I<.YI~-<~·fl.3' M)J:i} <'.~1201Z ,.,..,.. ~~-·n·:st~ """" :)4~....,~ ~':1•41.1U .,,,, - ·3.> , .., "- _,.
<!'49lo1U "'"'' 31C..<~~J..n

,_.......,. •. ~s lo.:ll:lll ,..,·:en:
::".J)I!~ "'-'~•·!13 "f)l:9l : ·;;~ 'J/lf,'!Jll
N14il4 ,...~~-S!.l /l(ltlS! l*C~""" l,'~Q)IZ
:-tihl• IW!k'!IW(e· t.' t.et»l "~llft .-;l,i:J)lZ
.S+r.'li Hlln~t·Sll ~1lln l?l::!lll
.•m~S~ l 'CiWw-c ~~,m~

' >]i

" ..
... ..

,,
"

91'1 '"""tt~I'C$

&..'\bliOIII.....,Tfi:W -.\WI-.~$U

~~'!""I'IT.Iri"OG~ I01 C.<tw~
~-'~Ce!'Of~ l

trtr'l&t:II1Nt<ll11(1 ~'
~Tt..e:llobo1 t

~IIV. IV1
,!II:!Orctal ~•-;;tll;:

e.looO..od
i..Met>OIM~w1~!

f.WIOoC..,...III'!!).C>II ~1';.1)~
~ie't)V"(~,Gllle "-

(h..oolo>._j St.. c--.._.,j .c.;_.
:>s~rrtro•<l~ I

~:a._.- l:t•«auas
ttmco..t~IIA'O'r 6'WJ1G

t .. u~~~EJI
Uttl~ "((l2f)4f'(~~t.f~"fii ,. ll {II,JJ)

Figure 31. Maintenance Effort Report (Bravo) Information View Top.

51

Figure 32. Maintenance Effort Report (Bravo) Information View Bottom.

Figure 33. Maintenance Effort Report (Bravo) Information View Side.

Maintenance Effort Report (Bravo) allows the user to individually select a

Service Request (SR) Number to see all associated maintenance history and the

52

 53

estimated and actual effort-hours associated to each service request. This

information will allow quick analysis of historical trends of equipment that is

exceeding estimated hours and can allow for new procedures to be put into place

to fix any discrepancies with man-hours. All gauges that are utilized can be

customized during the initial creation of the page template.

3. Secondary Reparable Report (Charlie) Use Case

This Use Case shows trends in faulty secondary reparable parts that are

fixed at different echelons of maintenance. These parts consist of items such as

generators, engines, and circuit boards that typically cannot be completed at the

primary user level of maintenance.

Users are required to enter the Activity Address code to search for items

assigned to their unit. If they have criteria readily available, users can also search

by a TAMCN number or Record NSN to limit their search (Figure 34).

Figure 34. Secondary Reparables Report (Charlie) Search View.

Upon submission of the search criteria, the information will be displayed in

the format in Figures 35 and 36.

 54

Figure 35. Secondary Reparables Report (Charlie) Information View Top.

Figure 36. Secondary Reparables Report (Charlie) Information View

Bottom.

 55

This information is displayed so users can individually select a Record

NSN to see all information available. The bottom portion of the view will show

each service request number for a Record NSN that has had repairs completed.

This Use Case allows for trend analysis of faulty Secondary Reparables as well

as man-hours required to complete these repairs. As with the Maintenance Effort

Report (Bravo), these analytics can be utilized to change maintenance

procedures when dealing with the repair times of Secondary Reparables.

4. Cost Report (Delta) Use Case

This page allows the user to pull financial information in several ways.

There are two tabs that users can select from the Delta page. The main report

tab and unit totals tab. From the main report tab, a user can pull information by

searching for a service request number or a Record NSN. Users may also search

by individual unit or by regional activity such as an MSC and MEF. From the unit

totals tab, users can search for an individual unit or all units—the costs are

displayed. This report will be utilized to observe how resources are being

expended at every level. Over time, analytics can be developed to reveal what

products are driving command’s overall costs.

Upon submission of any of the above search criteria, the information will

be displayed in the format in Figures 37 and 38.

 56

Figure 37. Cost Report (Delta) search by Regional Activity Code View

Top.

Figure 38. Cost Report (Delta) search by Regional Activity Code View

Bottom.

 57

The information is displayed so users can easily select any record in the

top view. When a user selects a service number row in the top view, he will see

that the bottom view is automatically populated with all financial information for

that service request. A pie chart is automatically created; it depicts a breakdown

of cost by NSN as shown in Figure 39.

Figure 39. Cost Report (Delta) Breakdown of Cost by NSN.

Figure 40 displays what the user will see when he selects both the unit

totals tab and a regional activity. The top pie chart displays all the regional

activities and their percentages of the total repair parts’ cost. The bottom pie

chart displays all of the subordinate commands within the regional activities and

their percentages of the total costs of that regional command.

 58

Figure 40. Cost Report (Delta) Unit Totals Tab.

5. GCSS-MC Maintenance Production Report (Echo) Use Case

The Maintenance Production Report is designed to view maintenance-

related information. This page has three tabs: Main Report, Tasks & Orders, and

Order Status Details. A user may search all service requests by unit activity code

or further filter the service requests by type of service request (examples: Supply,

Maintenance, or Calibration). Figure 41 displays the main report and what the

user will see when filtering by unit activity code and by supply service request.

 59

Figure 41. Maintenance Production Report (Echo) View Top.

When a user selects any row, the information about that service request

will be displayed within the Tasks & Orders tab on the bottom half of the page.

The information is displayed so the user can see the tasks by service request.

The user then may select a task by service request; then all order information will

be displayed pertaining to that task on the bottom right side of the page as shown

in Figure 42.

 60

Figure 42. Maintenance Production Report (Echo) Tasks & Orders Tab

Bottom Page View.

The Order Status Detail tab allows users to view the orders by service

request. Once a user selects a row on the main report, the orders for that

particular service request will automatically populate in the bottom view of the

page along with the entire order status history for that particular document

number. Figure 43 displays how this page will appear.

 61

Figure 43. Maintenance Production Report (Echo) Orders Status Details

Tab Bottom Page View.

6. Document Number Report (Foxtrot)

This page is designed to allow the user to view all outstanding and fulfilled

repair part requisitions for open and completed service requests. This page has

two tabs: Main Report and the Orders by NSN. These tabs allow the users to

select how they want to conduct their searches for document numbers. The main

report allows the user to search service request data based on the unit activity of

the service request, the Record NSN, or the document number associated with

an order. As shown in Figure 44, the table displays all service requests that

match the user’s search.

 62

Figure 44. Document Report Number (Foxtrot) Main Report View.

A user may select a service request and, then, the details of that service

request will populate on the bottom half of the page. All document numbers

associated with a service request will be shown whether or not the requisition

has been received. A status indicator also shows the percentage of completed

orders for a service request. Figure 45 shows how the page will be displayed.

 63

Figure 45. Document Report Number (Foxtrot) Main Report Bottom

Page View.

The user may select the Orders by NSN tab to display repair part

requisitions directly without having to navigate through a specific service request.

The user can search based on the organization that will be receiving the part or

based on the Record NSN of the part. The Orders by NSN page is depicted in

Figure 46.

 64

Figure 46. Document Report Number (Foxtrot) Orders by NSN Page

View.

 65

VI. CONCLUSION

This chapter summarizes this thesis’ research including the proof-of-

concept prototype, analysis, design, and implementation of the XXMC

dashboard. There are several lessons learned that will benefit follow-on research

and future development for GCSS-MC business analytics. This chapter also

recommends potential research opportunities for the Marine Corps.

This chapter is organized as follows: Section A summarizes this thesis;

Section B offers lessons learned; and Section C proposes future research

opportunities.

A. SUMMARY

This thesis discussed the need for commanders at all levels of command

to have rapid access to status reports and logistical data in order to make

decisions that will enhance their unit readiness. We also discussed the way that

current GCSS-MC Reports are generated utilizing the current Discovery Report

Viewer application. Although some information can be generated and analyzed

utilizing Discovery Report viewer, this information cannot be analyzed without

being exported to external software. This process becomes time consuming and

requires additional manipulation of the data retrieved. We believe that the XXMC

Reports, the prototype application we designed and built, has the ability to pull

and analyze any data that it can access. The ADF Framework that we utilized

allows for manipulation of requested information by allowing trained individuals to

modify the template that was generated. Additional Use Cases can also be

created to analyze new requirements or refinements to the Use Cases used in

this thesis.

The requirements’ analysis was divided into two main parts: the XXMC

R001 Database and the Use Case requirements. The XXMC R001 Database

was required to be modified to normalize data utilized during the Use Case. The

SQL scripts required to complete this are found in Appendix A. Next, the Use

 66

Cases were analyzed to identify what fields from what XXMC R001 table were

required to generate the analytics produced through the XXMC Dashboard. Once

all Use Cases were analyzed, we were able to begin creating the relationships

utilizing the ADF framework to create the prototype.

After the requirements’ validation, we developed XXMC Dashboard using

Model View Controllers as the design pattern and Oracle ADF, which implements

MVCs as the development framework. We utilized many Oracle tools in the

application of this prototype. Oracle SQL Developer Data Modeler, and Oracle

SQL Developer were used for the database modeling and implementation.

Oracle JDeveloper is the main Integrated Development Environment (IDE), and it

was used to develop and deploy (using the integrated WebLogic server) the

application for testing. The use of these tools allowed for the implantation of the

final XXMC Dashboard prototype.

The user interface of the application was designed to reflect a single

dashboard and six individual pages that identify each Use Case. The layout was

created for ease of use and allowed for quick transaction between Use Cases

and dashboard. The search function that was implemented on each individual

Use Case page allows users to quickly filter through information contained in the

XXMC R001 database. Drop down boxes were created with a pre-defined set of

scenarios that are typically analyzed for maintenance reports.

B. LESSONS LEARNED

This section summarizes the lessons learned during this thesis

development that will benefit future researchers in this area. Lessons learned

are:

 Working with the sponsor to provide detailed Use Cases ensured a
focused development effort and provided us with an understanding
of what analytics the sponsor imagined.

 The database received from GCSS-MC had several duplicate and
orphan entries that had to be cleaned out before developing the
web application in JDeveloper.

 67

 There was incomplete data in several key database fields
(example: actual man-hours on work requests were not filled out
and left blank). These fields can be required entries in order to
process a service request using Oracle Forms.

 There were no primary or foreign keys in the R001 database extract
received from GCSS-MC. These foreign keys are present in the
complete GCSS-MC database and, since the R001 is an extract,
the foreign keys are removed.

 Getting Oracle training via online courses was very helpful in
learning the development process. Many other materials are
available through the Oracle website, Oracle books, and forums.

 Since a large portion of building an application is modifying and
exposing database tables, having minimum knowledge of basic
SQL and databases would help with the developing experience.

 JDeveloper features can be extended or overwritten using Java.
Thus, having someone proficient in Java would help development.

 Computers with at least 8 GB of RAM and a high-speed processor
would increase the development efficiency.

C. FUTURE AREAS OF RESEARCH

In our research, we conducted a system requirements’ analysis and

designed a proof-of-concept XXMC prototype dashboard that is the initial stage

in building readily available analytical reports from Marine Corps supply and

logistical data. This relevant work can be broadened through additional research

to many areas. Recommend areas of future research are security, fleet-wide

XXMC implementation, and additional analytical requirements. We now discuss

these proposed research areas.

1. Security

An in-depth analysis of XXMC security requirements in deploying an

XXMC application would be a beneficial research area. This research could

consist of examining Oracle security features to determine the soundest security

settings and policies for follow-on versions of XXMC dashboard.

 68

2. XXMC Implementation

XXMC fleet-wide implementation was outside the range and scope of this

thesis. The next step would be to actually deploy this application on a server in a

controlled environment that can be remotely accessed by several authorized

users. The users can provide feedback, asses the applications effectiveness, and

guide adjustments for enhancements.

3. Additional Analytical Requirements’ Study

A potential research area would provide detailed requirements’ analysis

that closely involves the GCSS-MC users and stakeholders. This analysis would

document critical requirements, feedback, information, and concerns. This

analysis could be used to design a future XXMC model that produces the precise

logistical information that commanders desire.

 69

APPENDIX A. SQL SCRIPT AND SCREENSHOTS

Figures 47 to 61 illustrate the View Object relationships and the tab design

for all Use Cases analyzed.

A. READINESS REPORT (ALPHA)

1. View Objects
a. ATamClassVO

SELECT SUBSTR(ItemmasterTblEO.TAMCN, 1, 1) AS TAMCN_CLASS,

SUM(InventoryTblEO.QUANTITY_ONHAND) AS TOTAL_ONHAND,

InventoryTblEO.ACTIVITY_ADDRESS_CODE FROM

XXMC_R001_INVENTORY_TBL InventoryTblEO,

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO

WHERE ItemmasterTblEO.TAMCN is not null and

InventoryTblEO.RECORD_NSN = ItemmasterTblEO.RECORD_NSN and

(ItemmasterTblEO.MARES_CATEGORY

= 'MARES MEE' or ItemmasterTblEO.MARES_CATEGORY = 'MARES

NON-MEE') and InventoryTblEO.QUANTITY_ONHAND > 0

and SUBSTR(ItemmasterTblEO.TAMCN, 1, 1) in ('A', 'B', 'C', 'D', 'E') and

InventoryTblEO.ACTIVITY_ADDRESS_CODE is not null

GROUP BY SUBSTR(ItemmasterTblEO.TAMCN, 1, 1),

InventoryTblEO.ACTIVITY_ADDRESS_CODE

b. ATamcnDisplayVO

SELECT SUBSTR(ItemmasterTblEO.TAMCN, 1, 1) AS TAMCN_CLASS,

SUM(InventoryTblEO.QUANTITY_ONHAND) AS TOTAL_ONHAND,

InventoryTblEO.ACTIVITY_ADDRESS_CODE, itemmasterTblEO.TAMCN

FROM XXMC_R001_INVENTORY_TBL InventoryTblEO,

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO WHERE

ItemmasterTblEO.TAMCN is not null and InventoryTblEO.RECORD_NSN

=ItemmasterTblEO.RECORD_NSNand(ItemmasterTblEO.MARES_CATE

 70

GORY = 'MARES MEE' or ItemmasterTblEO.MARES_CATEGORY =

'MARES NON-MEE') and InventoryTblEO.QUANTITY_ONHAND > 0

and SUBSTR(ItemmasterTblEO.TAMCN, 1, 1) in ('A', 'B', 'C', 'D', 'E') and

InventoryTblEO.ACTIVITY_ADDRESS_CODE is not null

GROUPBYItemmasterTblEO.TAMCN,InventoryTblEO.ACTIVITY_ADDRE

SS_CODE

c. AHeadersDisplayVO

 SELECT SrheadersTblEO.BATCH_ID,

 SrheadersTblEO.CREATED_BY,

 SrheadersTblEO.CREATION_DATE,

 SrheadersTblEO.DATE_CLOSED,

 SrheadersTblEO.DATE_RECEIVED_IN_SHOP,

 SrheadersTblEO.DEADLINED_DATE,

 SrheadersTblEO.DEFECT_CODE,

 SrheadersTblEO.ECHELON_OF_MAINT,

 SrheadersTblEO.EQUIP_OPER_TIME_CODE,

 SrheadersTblEO.ERROR_MESSAGE,

 SrheadersTblEO.EXTERNAL_APPLICATION,

 SrheadersTblEO.FLIGHT_STATUS,

 SrheadersTblEO.HOLD_UNIT_IDENT_CODE,

 SrheadersTblEO.ITEM_DESIGNATOR_NUMBER,

 SrheadersTblEO.JOB_ORDER_NUMBER,

 SrheadersTblEO.JOB_STATUS_CODE,

 SrheadersTblEO.JOB_STATUS_DATE,

 SrheadersTblEO.LAST_UPDATE_DATE,

 SrheadersTblEO.LAST_UPDATED_BY,

 SrheadersTblEO.MAINT_CATEGORY_CODE,

 SrheadersTblEO.MASTER_PRIORITY_CODE,

 SrheadersTblEO.METER_READING,

 SrheadersTblEO.MILITARY_LABOR_HOURS,

 71

 SrheadersTblEO.NSN_IN_MAINTENANCE,

 SrheadersTblEO.OPENED_DATE,

 SrheadersTblEO.OPERATIONAL_STATUS,

 SrheadersTblEO.OWNER_UNIT_ADDRESS_CODE,

 SrheadersTblEO.PROBLEM_SUMMARY,

 SrheadersTblEO.PROCESS_STATUS,

 SrheadersTblEO.QUANTITY_INDUCTED,

 SrheadersTblEO.RECORD_ID,

 SrheadersTblEO.REGIONAL_ACTIVITY_CODE,

 SrheadersTblEO.REQUEST_ID,

 SrheadersTblEO.SERIAL_NUMBER,

 SrheadersTblEO.SERVICE_REQUEST_TYPE,

 SrheadersTblEO.SR_NUMBER,

 SrheadersTblEO.SR_OPENED_BY,

 SrheadersTblEO.SR_XREF,

 ItemmasterTblEO.TAMCN,

 SrheadersTblEO.TASK_NAME,

 SrheadersTblEO.TOTAL_CIV_LAB_EXPENSE,

 SrheadersTblEO.TOTAL_EQUIP_OPER_TIME,

 SrheadersTblEO.UNIT_ISSUE_CODE,

 SrheadersTblEO.UNIT_NAME,

 SUBSTR(ItemmasterTblEO.TAMCN, 1, 1) as TamClass

FROM XXMC_R001_SRHEADERS_TBL SrheadersTblEO,

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO

WHEREItemmasterTblEO.RECORD_NSN=

SrheadersTblEO.NSN_IN_MAINTENANCE

and SrheadersTblEO.OPERATIONAL_STATUS = 'Deadlined' and

SrheadersTblEO.NSN_IN_MAINTENANCE in

(SELECT UNIQUE(InventoryTblEO.RECORD_NSN)

FROM XXMC_R001_INVENTORY_TBL InventoryTblEO,

 72

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO

WHERE InventoryTblEO.RECORD_NSN =

ItemmasterTblEO.RECORD_NSN and ItemmasterTblEO.TAMCN

is not null and (ItemmasterTblEO.MARES_CATEGORY = 'MARES MEE'

or ItemmasterTblEO.MARES_CATEGORY = 'MARES NON-MEE')

and InventoryTblEO.QUANTITY_ONHAND > 0)

d. AHeadersUniqueVO

SELECT XxmcR001SrheadersTbl.NSN_IN_MAINTENANCE,

XxmcR001SrheadersTbl.SERIAL_NUMBER,

MAX(XxmcR001SrheadersTbl.QUANTITY_INDUCTED)asQuantity,

ItemmasterTblEO.TAMCN, SUBSTR(ItemmasterTblEO.TAMCN, 1, 1) as

TamClass, XxmcR001SrheadersTbl.OWNER_UNIT_ADDRESS_CODE

FROM XXMC_R001_SRHEADERS_TBL XxmcR001SrheadersTbl,

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO

WHERE ItemmasterTblEO.RECORD_NSN=

XxmcR001SrheadersTbl.NSN_IN_MAINTENANCEandXxmcR001Srhead

ersTbl.OPERATIONAL_STATUS='Deadlined'and

XxmcR001SrheadersTbl.SERIAL_NUMBER is not null and

XxmcR001SrheadersTbl.NSN_IN_MAINTENANCE in

(SELECT UNIQUE(InventoryTblEO.RECORD_NSN)

FROM XXMC_R001_INVENTORY_TBL InventoryTblEO,

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO

WHERE InventoryTblEO.RECORD_NSN =

ItemmasterTblEO.RECORD_NSN and ItemmasterTblEO.TAMCN is not

null and (ItemmasterTblEO.MARES_CATEGORY = 'MARES MEE' or

ItemmasterTblEO.MARES_CATEGORY = 'MARES NON-MEE') and

InventoryTblEO.QUANTITY_ONHAND > 0)

GROUPBYXxmcR001SrheadersTbl.SERIAL_NUMBER,

XxmcR001SrheadersTbl.OWNER_UNIT_ADDRESS_CODE,

 73

XxmcR001SrheadersTbl.NSN_IN_MAINTENANCE,

ItemmasterTblEO.TAMCN

union all SELECT XxmcR001SrheadersTbl.NSN_IN_MAINTENANCE,

XxmcR001SrheadersTbl.SERIAL_NUMBER,

XxmcR001SrheadersTbl.QUANTITY_INDUCTEDasQuantity,

ItemmasterTblEO.TAMCN,SUBSTR(ItemmasterTblEO.TAMCN, 1, 1) as

TamClass, XxmcR001SrheadersTbl.OWNER_UNIT_ADDRESS_CODE

FROM XXMC_R001_SRHEADERS_TBL XxmcR001SrheadersTbl,

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO

WHERE ItemmasterTblEO.RECORD_NSN=

XxmcR001SrheadersTbl.NSN_IN_MAINTENANCE and

XxmcR001SrheadersTbl.OPERATIONAL_STATUS = 'Deadlined' and

XxmcR001SrheadersTbl.SERIAL_NUMBER is null and

XxmcR001SrheadersTbl.NSN_IN_MAINTENANCE in

(SELECT UNIQUE(InventoryTblEO.RECORD_NSN)

FROM XXMC_R001_INVENTORY_TBL InventoryTblEO,

XXMC_R001_ITEMMASTER_TBL ItemmasterTblEO

WHERE InventoryTblEO.RECORD_NSN =

ItemmasterTblEO.RECORD_NSN and ItemmasterTblEO.TAMCN

is not null and (ItemmasterTblEO.MARES_CATEGORY = 'MARES

MEE' or ItemmasterTblEO.MARES_CATEGORY = 'MARES NON-

MEE') and InventoryTblEO.QUANTITY_ONHAND > 0)

2. Transient Attributes
a. Total Deadlined

Groovy expression:

if(adf.object.AHeadersUnique.sum("(Quantity == null || Quantity == 0) ? 1 :

Quantity") == null) {0} else {adf.object.AHeadersUnique.sum("(Quantity ==

null || Quantity == 0) ? 1 : Quantity")}

b. Total Deadlined (2)

Groovy expression:

 74

if(adf.object.AHeadersUnique.sum("(Quantity == null || Quantity == 0) ? 1:

Quantity") == null) {0} else {adf.object.AHeadersUnique.sum("(Quantity ==

null || Quantity == 0) ? 1: Quantity")}

c. Readiness Percentage

Groovy expression:

if(TotalDeadlined != null && TotalOnhand != null)

{(1-(TotalDeadlined/TotalOnhand))*100} else {null}

d. Readiness Percentage (2)

Groovy expression:

if(TotalDeadlined != null && TotalOnhand != null){(1-

(TotalDeadlined/TotalOnhand))*100} else {null}

3. View Object and Page Display

 75

Figure 47. Readiness Report (Alpha) View Objects.

Figure 48. Readiness Report (Alpha) Tab Design 1.

 76

Figure 49. Readiness Report (Alpha) Tab Design 2.

B. MAINTENANCE EFFORT REPORT (BRAVO)

1. View Objects
a. BHeadersViewVO

SELECT *FROM NOTNULLATTEMPT BHeadersViewEO

WHERE BHeadersViewEO.SERVICE_REQUEST_TYPE = ‘Maintenance

– CAL’ or BHeadersViewEO.SERVICE_REQUEST_TYPE = ‘Maintenance

– MOD’ or BHeadersViewEO.SERVICE_REQUEST_TYPE =

‘Maintenance – CM’ or BHeadersViewEO.SERVICE_REQUEST_TYPE =

‘Maintenance – PM’ or BHeadersViewEO.SERVICE_REQUEST_TYPE =

‘Maintenance – MISC’ or BHeadersViewEO.SERVICE_REQUEST_TYPE

= ‘Maintenance – SL3’ or BHeadersViewEO.SERVICE_REQUEST_TYPE

= ‘Maintenance – SRP’

SELECT *FROM XXMC_R001_SRHEADERS_TBL headers

Where headers.SR_NUMBER IN(

SELECT t1.SR_NUMBER FROM (SELECT h.SR_NUMBER ,

count(t.TASK_NUMBER) AS NUMTASKS

FROMXXMC_R001_SRHEADERS_TBLh, XXMC_R001_SRTASKS_TBLt

WHEREh.SR_NUMBER=t.INCIDENT_NUMBERANDt.ACTUAL_EFFORT

is not null AND t.planned_effort is not null GROUP BY h.SR_NUMBER)

t1,(SELECT h.SR_NUMBER , count(t.TASK_NUMBER) AS NUMTASKS

FROMXXMC_R001_SRHEADERS_TBLh, XXMC_R001_SRTASKS_TBLt

 77

WHERE h.SR_NUMBER = t.INCIDENT_NUMBERGROUP BY

h.SR_NUMBER) t2 WHERE t1.SR_NUMBER = t2.SR_NUMBER and

t1.NUMTASKS = t2.NUMTASKS)

b. SrTasksTblVO

SELECT* FROM XXMC_R001_SRTASKS_TBLXxmcR001Srtasksbl

2. Transient Attributes
a. ActualEffortHours

Groovy expression:

if(ActualEffortUom == "MN"){ActualEffort*720} else if(ActualEffortUom ==

"HR") {ActualEffort} else if(ActualEffortUom == "DY") {ActualEffort*24} else

if(ActualEffortUom == "WK") { ActualEffort*168} else if(ActualEffortUom ==

"MIN") {ActualEffort* (1/60)} else{null}

b. PlannedEffortHours

Groovy expression:

if(PlannedEffortUom=="MN"){PlannedEffort*720} else if(PlannedEffortUom

== "HR") {PlannedEffort} else if(PlannedEffortUom == "DY")

{PlannedEffort*24} else if(PlannedEffortUom == "WK")

{PlannedEffort*168} else if(PlannedEffortUom == "MIN") {PlannedEffort*

(1/60)} else{null}

c. EffortDifference

Groovy expression:

 if (ActualEffortHours == null || PlannedEffortHours == null) {null} else {

ActualEffortHours – PlannedEffortHours}

d. TotalHoursPlanned

Groovy expression:

adf.object.SrtasksTbl.sum(“(PlannedEffortHours == null) ? 100000:

PlannedEffortHours”)

e. TotalHoursActual

Groovy expression:

 78

adf.object.SrtasksTbl.sum(“(ActualEffortHours == null) ? 100000:

ActualEffortHours”)

f. TotalHoursPlannedFinal

Groovy expression:

if (TotalHoursPlanned >= 100000) {null}else{TotalHoursPlanned}

g. TotalHoursActualFinal

Groovy expression:

if (TotalHoursActual >= 100000) {null}else{TotalHoursActual}

h. NumberofTasks

Groovy expression:

adf.object.SrtasksTbl.count(“TaskNumber”)

3. View Object and Page Display

Figure 50. Maintenance Effort Report (Bravo) View Objects.

 79

Figure 51. Maintenance Effort Report (Bravo)Tab Design.

C. SECONDARY REPARABLE REPORT (CHARLIE)

1. View Objects
a. CNsnDisplayVO

SELECT XxmcR001ItemmasterTbl.TAMCN,

XxmcR001ItemmasterTbl.RECORD_NSN,

inventory.ACTIVITY_ADDRESS_CODE,

XxmcR001ItemmasterTbl.NOMENCLATURE,

SUM(inventory.QUANTITY_ONHAND) as QOH FROM

XXMC_R001_ITEMMASTER_TBLXxmcR001ItemmasterTbl,XXMC_R001

_INVENTORY_TBLinventory WHERE

XxmcR001ItemmasterTbl.RECORD_NSN = inventory.RECORD_NSN and

XxmcR001ItemmasterTbl.FLOAT_IND='F' and (inventory.RECORD_NSN,

inventory.ACTIVITY_ADDRESS_CODE)in

(SELECTheaders.NSN_IN_MAINTENANCE,

headers.OWNER_UNIT_ADDRESS_CODE

FROM XXMC_R001_SRHEADERS_TBL headers

WHERE headers.MILITARY_LABOR_HOURS is not null)

 80

GROUPBYXxmcR001ItemmasterTbl.RECORD_NSN,

inventory.ACTIVITY_ADDRESS_CODE,

XxmcR001ItemmasterTbl.TAMCN,

XxmcR001ItemmasterTbl.NOMENCLATURE

b. CHeadersDisplayVO

SELECT *FROM XXMC_R001_SRHEADERS_TBL SrheadersTblEO

WHERE SrheadersTblEO.NSN_IN_MAINTENANCE in

(SELECTUNIQUE(XxmcR001ItemmasterTbl.RECORD_NSN)

FROM XXMC_R001_ITEMMASTER_TBL XxmcR001ItemmasterTbl,

XXMC_R001_INVENTORY_TBL inventory

WHEREXxmcR001ItemmasterTbl.RECORD_NSN

inventory.RECORD_NSN and

XxmcR001ItemmasterTbl.FLOAT_IND = 'F'

GROUPBYXxmcR001ItemmasterTbl.RECORD_NSN,

inventory.ACTIVITY_ADDRESS_CODE,

XxmcR001ItemmasterTbl.TAMCN,

XxmcR001ItemmasterTbl.NOMENCLATURE)

2. Transient Attributes
a. NumbersOfSR

Groovy expression:

adf.object.CHeadersDisplay.count(“SrNumber”)

b. TotalManHours

Groovy expression:

adf.object.CHeadersDisplay.sum(“MilitaryLaborHours”)

c. NumSRNotNull

Groovy expression:

adf.object.CHeadersDisplay.count(“MilitaryLaborHours”)

d. PercentMissing

Groovy expression:

 81

if (NumberOfSR == null){null}else{(1 – (NumSRNotNull / NumberOfSR))

*100}

3. View Object and Page Design

Figure 52. Secondary Reparable Report (Charlie) View Objects.

Figure 53. Secondary Reparable Report (Charlie) Tab Design.

D. COST REPORT (DELTA)

1. View Objects
a. DheadersviewVO

SELECT *FROM XXMC_R001_SRHEADERS_TBL h

 82

WHERE h.sr_number in(SELECT head.sr_number

FROMXXMC_R001_SRHEADERS_TBLhead,XXMC_R001_REPAIRPAR

TS_TBLr,XXMC_R001_ITEMMASTER_TBLitemWHEREhead.sr_number

=r.sr_numberandr.parts_charge>0andr.quantity_required>=1and

r.record_nsn= item.record_nsnand item.stores_account_cd = 1 and

r.document_numberin(SELECTd.document_numberFROMXXMC_R001_

DUEIN_TBLdWHEREd.document_identifier_code='A0A'or

d.document_identifier_code=

'A01'unionallSELECTh.document_numberFROMXXMC_R001_HIST_DUE

IN_TBL hWHERE h.document_identifier_code= 'A0A' or

h.document_identifier_code= 'A01'))

b. RepairpartsTblVO

SELECT RepairpartsTblEO.SR_NUMBER,

RepairpartsTblEO.TASK_NUMBER,

RepairpartsTblEO.SERVICE_ACTIVITY,

RepairpartsTblEO.ORG_CODE,

RepairpartsTblEO.RECORD_NSN,

RepairpartsTblEO.QUANTITY_REQUIRED,

RepairpartsTblEO.PARTS_CHARGE,

RepairpartsTblEO.DOCUMENT_NUMBER,

RepairpartsTblEO.STATUS_DATE,

RepairpartsTblEO.DATE_RECEIVED_CANCELLED,

RepairpartsTblEO.DEMAND_CODE,

RepairpartsTblEO.SUPP_STATUS_DIC,

RepairpartsTblEO.SUPPLY_STATUS_CODE,

RepairpartsTblEO.SIGNAL_CODE,

RepairpartsTblEO.FLIGHT_STATUS,

RepairpartsTblEO.ERROR_MESSAGE,

RepairpartsTblEO.PROCESS_STATUS,

RepairpartsTblEO.RECORD_ID,

 83

RepairpartsTblEO.CREATED_BY,

RepairpartsTblEO.CREATION_DATE,

RepairpartsTblEO.LAST_UPDATED_BY,

RepairpartsTblEO.LAST_UPDATE_DATE,

RepairpartsTblEO.REQUEST_ID,

RepairpartsTblEO.BATCH_ID,

RepairpartsTblEO.EXTERNAL_APPLICATION,

itemmaster.NOMENCLATURE,

itemmaster.STORES_ACCOUNT_CD

FROM XXMC_R001_REPAIRPARTS_TBLRepairpartsTblEO,

XXMC_R001_ITEMMASTER_TBL itemmaster

WHERERepairpartsTblEO.PARTS_CHARGE>0AND

RepairpartsTblEO.QUANTITY_REQUIRED>=1and

itemmaster.RECORD_NSN=RepairpartsTblEO.RECORD_NSN and

itemmaster.STORES_ACCOUNT_CD=1and

RepairpartsTblEo.DOCUMENT_NUMBER in

(SELECT d.document_numberFROM XXMC_R001_DUEIN_TBL d

WHEREd.document_identifier_code='A0A'or d.document_identifier_code=

'A01'unionallSELECTh.document_numberFROMXXMC_R001_HIST_DUE

IN_TBLhWHEREh.document_identifier_code='A0A'or

h.document_identifier_code= 'A01')

c. DRACTotalsVO

SELECT Dheadersview.REGIONAL_ACTIVITY_CODE,

sum(r.PARTS_CHARGE * r.QUANTITY_REQUIRED) as TotalCost

FROMDHEADERSVIEWDheadersview,XXMC_R001_REPAIRPARTS_TB

Lr ,XXMC_R001_ITEMMASTER_TBLitemmasterWHEREr.PARTS_CHAR

GE>0and r.QUANTITY_REQUIRED >= 1 and itemmaster.RECORD_NSN

= r.RECORD_NSN and itemmaster.STORES_ACCOUNT_CD = 1 and

Dheadersview.SR_NUMBER=r.SR_NUMBERandDheadersview.REGION

AL_ACTIVITY_CODE is not null and r.DOCUMENT_NUMBER

 84

in(SELECTd.document_numberFROMXXMC_R001_DUEIN_TBLdWHER

E d.document_identifier_code = 'A0A' or d.document_identifier_code=

'A01'unionallSELECTh.document_numberFROMXXMC_R001_HIST_DUE

IN_TBLhWHEREh.document_identifier_code='A0A'or

h.document_identifier_code='A01')GROUPBY

Dheadersview.REGIONAL_ACTIVITY_CODE

d. DOUACTotalsVO

SELECT Dheadersview.OWNER_UNIT_ADDRESS_CODE,

Dheadersview.REGIONAL_ACTIVITY_CODE,sum(r.PARTS_CHARGE*r.

QUANTITY_REQUIRED)asUnitTotalCost FROMDHEADERSVIEW

Dheadersview,XXMC_R001_REPAIRPARTS_TBLr,XXMC_R001_ITEMM

ASTER_TBLitemmasterWHEREr.PARTS_CHARGE>0andr.QUANTITY_R

EQUIRED>=1anditemmaster.RECORD_NSN=r.RECORD_NSNanditemm

aster.STORES_ACCOUNT_CD=1 and Dheadersview.SR_NUMBER =

r.SR_NUMBERandDheadersview.REGIONAL_ACTIVITY_CODEisnotnull

andDheadersview.OWNER_UNIT_ADDRESS_CODE is not null and

r.DOCUMENT_NUMBERin(SELECTd.document_numberFROM

XXMC_R001_DUEIN_TBL dWHERE d.document_identifier_code = 'A0A'

ord.document_identifier_code='A01'unionallSELECTh.document_number

FROMXXMC_R001_HIST_DUEIN_TBLhWHEREh.document_identifier_c

ode='A0A'orh.document_identifier_code='A01')GROUPBYDheadersview.

OWNER_UNIT_ADDRESS_CODE,Dheadersview.REGIONAL_ACTIVITY

_CODE

e. DPieChartVO

SELECT RepairpartsTblEO.RECORD_NSN,

RepairpartsEO.SR_NUMBER,SUM(RepairpartsTblEO.QUANTITY_REQU

IRED*RepairpartsTblEO.PARTS_CHARGE)asPartsCostFROMXXMC_R0

01_REPAIRPARTS_TBLRepairpartsTblEO,XXMC_R001_ITEMMASTER_

TBLitemWHERERepairpartsTblEO.PARTS_CHARGE>0and

RepairpartsTblEO.QUANTITY_REQUIRED>=1and

 85

RepairpartsTblEO.RECORD_NSN=item.RECORD_NSNand

item.STORES_ACCOUNT_CD=1and

RepairpartsTblEO.DOCUMENT_NUMBER in

(SELECT d.document_numberFROM XXMC_R001_DUEIN_TBL d

WHEREd.document_identifier_code='A0A'or d.document_identifier_code=

'A01'unionallSELECTh.document_numberFROM

XXMC_R001_HIST_DUEIN_TBL hWHERE h.document_identifier_code=

'A0A'orh.document_identifier_code='A01')GROUPBY

RepairpartsTblEO.RECORD_NSN, RepairpartsTblEO.SR_NUMBER

2. Transient Attributes
a. PartsCost

Groovy expression:

PartsCharge*QuantityRequired

b. TotalCost

Groovy expression:

adf.object.RepairpartsTbl.sum(“PartsCost”)

c. NumberOfAssociatedRepairParts

Groovy expression:

adf.object.RepairpartsTbl.sum(“QuantityRequired”)

 86

3. View Objects and Page Design

Figure 54. Cost Report (Delta) View Objects 1.

Figure 55. Cost Report (Delta) View Objects 2.

 87

E. GMRT MAINTENANCE PRODUCTION REPORT (ECHO)

1. View Objects
a. EHeadersDisplayVO

 SELECT*FROM XXMC_R001_SRHEADERS_TBLSrheadersTblEO

WHERESrheadersTblEO.SR_NUMBERin(SELECTt.INCIDENT_NUMBER

FROM XXMC_R001_SRTASKS_TBL t WHERE t.TASK_TYPE = 'Supply'

AND(t.TASK_STATUS != 'Completed' AND t.TASK_STATUS !=

'Approved' AND t.TASK_STATUS != 'Closed' AND t.TASK_STATUS !=

'Cancelled' AND t.TASK_STATUS != 'Rejected'))

b. ETasksVO

SELECT *FROM XXMC_R001_SRTASKS_TBL SrtasksTblEO

WHERE(SrtasksTblEO.TASK_STATUS!='Completed'AND

SrtasksTblEO.TASK_STATUS!='Approved'AND

SrtasksTblEO.TASK_STATUS!='Closed'AND

SrtasksTblEO.TASK_STATUS!='Cancelled'AND

SrtasksTblEO.TASK_STATUS != 'Rejected')

c. DueinTblVO

SELECT *FROM XXMC_R001_DUEIN_TBL DueinTblEO

d. DueinStatTblVO

SELECT *FROM XXMC_R001_DUEIN_STAT_TBL DueinStatTblEO

2. Transient Attributes
a. Number of Tasks

Groovy expression:

adf.object.ETasks.count(“TaskNumber”)

b. Number of Orders

Groovy expression:

adf.object.DueinTbl.count(“RecordID”)

 88

3. View Objects and Page Design

Figure 56. GMRT Maintenance Production Report (Echo) View Objects.

Figure 57. GMRT Maintenance Production Report (Echo) Tab Design 1.

 89

Figure 58. GMRT Maintenance Production Report (Echo) Tab Design 2.

F. DOCUMENT NUMBER REPORT (FOXTROT)

1. View Objects
a. FheadersviewVO

SELECT*FROMXXMC_R001_SRHEADERS_TBLWHERE

Sr_numberin(SELECTsr_numberFROMXXMC_R001_DUEIN_TBLGROU

PBYsr_numberunionSELECTsr_numberFROMXXMC_R001_HIST_DUEI

N_BL GROUP BY sr_number)

b. FDueinAll

SELECT 1 as SOURCE_TABLE

ADVICE_CODE,

APPROVED_DATE,

BACK_ORDERED_QTY,

BATCH_ID,

CANCELLED_QTY,

CONDITION_CODE,

CREATED_BY,

CREATION_DATE,

DEMAND_CODE,

DESTINATION_SUBINVENTORY,

DISTRIBUTION_CODE,

DOCUMENT_IDENTIFIER_CODE,

DOCUMENT_NUMBER,

ERROR_MESSAGE,

 90

FLIGHT_STATUS,

JOB_ORDER_NUMBER,

LAST_STATEMENT_DATE,

LAST_UPDATE_DATE,

LAST_UPDATED_BY,

NEXT_FOLLOW_UP,

ORDER_NUMBER,

ORDERED_QTY,

PRIORITY_CODE,

PROCESS_STATUS,

PROJECT_CODE,

PURPOSE_CODE,

RAC,

RECORD_ID,

RECORD_NSN,

REQUEST_ID,

REQUIRED_DELIVERY_DATE,

RIC,

SHIP_FROM_ORG,

SHIP_RECEIVED_QTY,

SHIP_TO_ORG,

SIGNAL_CODE,

SR_NUMBER,

SUPPLEMENTAL_ADDRESS,

TASK_NUMBER,

TRANSACTION_TYPE,

UNIT_OF_ISSUE,

UNIT_PRICE

FROM DueinTblEO

UNION ALL

 91

SELECT 2 as SOURCE_TABLE

ADVICE_CODE,

APPROVED_DATE,

BACK_ORDERED_QTY,

BATCH_ID,

CANCELLED_QTY,

CONDITION_CODE,

CREATED_BY,

CREATION_DATE,

DEMAND_CODE,

DESTINATION_SUBINVENTORY,

DISTRIBUTION_CODE,

DOCUMENT_IDENTIFIER_CODE,

DOCUMENT_NUMBER,

ERROR_MESSAGE,

FLIGHT_STATUS,

JOB_ORDER_NUMBER,

LAST_STATEMENT_DATE,

LAST_UPDATE_DATE,

LAST_UPDATED_BY,

NEXT_FOLLOW_UP,

ORDER_NUMBER,

ORDERED_QTY,

PRIORITY_CODE,

PROCESS_STATUS,

PROJECT_CODE,

PURPOSE_CODE,

RAC,

RECORD_ID,

RECORD_NSN,

 92

REQUEST_ID,

REQUIRED_DELIVERY_DATE,

RIC,

SHIP_FROM_ORG,

SHIP_RECEIVED_QTY,

SHIP_TO_ORG,

SIGNAL_CODE,

SR_NUMBER,

SUPPLEMENTAL_ADDRESS,

TASK_NUMBER,

TRANSACTION_TYPE,

UNIT_OF_ISSUE,

UNIT_PRICE

FROM HistDueinTblEO

2. Transient Attributes
a. Received

Groovy expression:

 if (SourceTable == 1) {“No”} else {“Yes”}

b. Number of Associated Documents

Groovy expression:

adf.object.FDueinAll.sum(“(SourceTable == 2) ? 1: SourceTable”)

c. Number of Closed Documents

Groovy expression:

(adf.object.FDueinAll.sum(“(SourceTable == 1) ? 0: SourceTable”)) / 2

d. Percent of Documents Closed

Groovy expression:

(NumberOfDocumentsClosed / NumberOfAssociatedDocuments) * 100

3. View Objects and Page Design

 93

Figure 59. Document Number Report (Foxtrot) View Objects.

Figure 60. Document Number Report (Foxtrot) Tab Design 1.

Figure 61. Document Number Report (Foxtrot) Tab Design 2.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX B. IMPLEMENTATION STEPS

Figures 62 through 83 demonstrate screen shots of the implementation

steps for all six Use Cases.

A. GENERAL STEPS

1. Create a connection in JDeveloper to a clean copy of the database.

2. Use the Create Business Components from Tables’ wizard to create a

default Entity Object and View Object in JDeveloper based off of each of

the relevant database tables.

3. For each report:

a. Create relevant (read-only) View Objects for the report using one of

the following methods:

i. Edit a default View Object if that database table will only be

used once in the application.

ii. Create a new Entity-Object-based View Object if the SQL is

based on one or two specific tables and only requires adding

a WHERE clause. If the SQL is more complex, one may be

able to create an Entity-Object-based View Object and then

edit the Query in Expert Mode.

iii. Create a Query-based View Object using the Create

Business Components from Tables’ wizard if the View

Object will not retain the primary key from at least one of the

database tables that it is based off of (i.e., if the object will be

created using a Group By statement).

iv. Implement the SQL statement in SQL Developer if it is very

complex. Then go through the Create Business Components

from Tables’ wizard to create an Entity Object and a default

View Object based off of this database view.

 96

b. Add view links between each of the View Objects for the report.

Usually these will connect one attribute in each View Object;

however, there are cases where a link between two objects will

connect two or three attributes in each.

c. Create the appropriate transient attributes in each view object. If a

transient attribute is accessing data in another View Object (i.e., for

a Master-Detail relationship), make sure to utilize the correct View

Accessor name (found in the view link).

d. For any tables that will be linked directly to a Query Panel (usually

the Master table for the report), create a View Criteria with items for

each of the attributes that should be searchable. Each View Criteria

item should be set to equal a Literal, with the value field of that

Literal left blank.

e. Set the Tuning for each View Object under the General tab of the

editor, and set the UI Hints (especially the Label) for each attribute

under the Attributes tab.

i. The Range Size in the Tuning section of the View Object

should be equal to the Range Size that is set for the table(s)

based off of that View Object. The field that says “in batches

of” in the Tuning section should be set to Range Size + 3.

f. Create an application module for the Use Case and add all relevant

View Objects. If one table is a Detail of another, it should be added

underneath the Master table. If multiple Detail tables will be shown

under one Master table, these should all be added under the same

instance of the Master table.

g. Create a new page for the report.

i. If the report will display multiple levels of data and requires a

Query Panel, the Query Panel should be added separately

(rather than as an ADF Query Panel with Table).

 97

1. Note: For all Query Panels in this application, the

following settings were changed in the Property

Inspector: ModeChangeVisible = False and

SaveQueryMode = Hidden.

ii. Once the Query Panel is added, the Master-Detail table

should be put in separately by dragging the Detail table onto

the page.

1. The ID field of the Master table should then be

entered into the Query Panel Property Inspector in the

ResultComponentID field.

2. For all tables, one column should be set in the

Property Inspector so that RowHeader = unstyled.

3. All tables should also have a value in the Summary

field of the Property Inspector to avoid warnings in

JDeveloper.

iii. Additional Detail or Sub-detail (under the Detail table) tables

can be added to the page by dragging the instances of these

tables that are under the same instance of the Master table

that is already on the page. By doing this, the tables will

automatically sync up with the selected row in the Master

table.

iv. Adjust the page layout with different ADF Faces

components.

v. Add charts as desired. All charts and gauges must have a

value in the Summary field in the Property Inspector.

4. Create a main page and implement navigation between this and the

various report pages.

B. READINESS REPORT (ALPHA)

Page Layout

 98

The “Main Report” ShowDetailItem for this report is structured with two

vertical PanelGroupLayouts inside of a main PanelGroupLayout (PGL) that is set

to scroll. The first PGL holds the Query Panel, while the second holds three

PanelHeaders (separated by spacers) with each of the relevant report tables.

The “Deadlined Items” ShowDetailItem also contains a PanelGroupLayout

set to scroll. Inside this is a single vertical PGL that contains one PanelHeader

(holding the Query Panel) and a table.

Figure 62. Top-level structure for the Alpha page.

 99

Figure 63. Fully-expanded structure for the “Main Report” tab of the

Alpha page.

Figure 64. Fully-expanded structure for the “Deadlined Items” tab of the

Alpha page.

Basic Steps

 100

1. Create all view objects, view links, and transient attributes (note: the

transient attributes related to TotalDeadlined should all be based on

AHeadersUniqueVO rather than AHeadersDisplayVO).

a. Set labels in the UI Hints tab for each of the three view objects that

will be displayed to the user (ATamClassVO, ATamcnDisplayVO,

AHeadersDisplayVO).

b. In the General tab, adjust the tuning for each of these.

i. ATamClassVO:

1. Range Size = 5

2. in batches of = 8

ii. ATamcnDisplayVO:

1. Range Size = 10

2. in batches of = 13

iii. ANsnDisplay:

1. Range Size = 20

2. in batches of = 23

2. Create two view criteria.

a. In ATamClassVO:

 101

b. In AHeadersDisplayVO:

 102

3. Create a new application module for Alpha as shown next:

 103

4. Create a new page based on the XXMC Reports template and enter the

useCaseTitle.

a. Construct the page’s toolbar.

5. Add a PanelTabbed component to the mainContent window and name the

ShowDetailItem “Main Report.”

6. Add a PanelGroupLayout within the main tab and set it to scroll.

a. Add a spacer within this.

7. Drag the named criteria ATamClassVOCriteria (located under ATamClass

in the Data Control) onto the page below the spacer as a Query Panel.

a. Change the text of the PanelHeader for this Query Panel and adjust

the Query Panel settings as described in the “General Steps”

section of this document.

8. Drag the instance of ATamcnDisplay under ATamClass onto the page

below the PanelGroupLayout for the Query Panel as a Master-Detail table.

a. Copy the ID of the Master table and paste it into the

ResultComponentID field in the properties of the Query Panel.

b. Change the text of the PanelHeaders for both tables.

c. Re-order the columns for both tables and enable sorting and

filtering on the Detail table.

9. Drag the instance of AHeadersDisplay under ATamcnDisplay under

ATamClass into the PanelGroupLayout containing the other two tables.

 104

a. Choose the relevant attributes.

b. Surround this table with a PanelHeader by right-clicking it in the

Structure Pane and choosing the “Surround With” option.

10. Add spacers between each of the PanelHeaders within the

PanelGroupLayout that holds the tables.

11. Set the range sizes of the tables to:

a. Master – 5

b. Detail – 10

c. Sub-detail – 20

12. Add a Gauge column to the Master table.

a. Open the editor (click the pencil button) for the Master table and

add a new column, based on the ReadinessPercent attribute. There

will now be two columns showing ReadinessPercent.

b. Exit the editor and drag a Gauge component from the Component

Palette onto the second Readiness Percent column.

i. Choose an LED style gauge with no title or key.

c. Right-click the outputText attributes under the second Readiness

Percent column (where the gauge now is) in the Structure Pane

and delete it.

d. Configure the gauge:

i. Set the Value field in the Property Inspector to #{row.

ReadinessPercent} using the Expression Builder.

1. Under the Gauge Data section in the Property

Inspector, put in a MinValue of 0 and a MaxValue of

100.

2. Use the InlineStyle field to change the size of the

gauge: “width:35px;height:35px”

ii. Go to the Metric Label component under the Gauge in the

Structure Pane and for Position select LP_NONE.

 105

iii. Expand the dvt:thresholdSet component under the Gauge in

the Structure Pane.

1. In the first dvt:threshold component, set the FillColor

to red (#d90000) and the ThresholdMaxValue to 85.0.

2. In the second, set the FillColor to golden yellow

(#ffd642) and the ThresholdMaxValue to 94.0.

3. In the third, set the FillColor to green (#00a500) and

the ThresholdMaxValue to 100.0.

iv. Click on the column with the gauge in it in the Structure

Pane, and under the Appearance tab of the Property

Inspector, set the Align property to “Center.”

1. Set the column Width to 75.

a. Also change the width of the columns Total On

Hand, Number Deadlined and Readiness

Percent.

2. Set the column HeaderText to “ReadinessMeter.”

13. Repeat the above steps to insert gauge components into the Tamcn table

(1st detail level). The only difference will be the setting in the InlineStyle

field of the Gauge component, where height and width should be 25

instead of 35.

14. Add a new ShowDetailItem to the PanelTabbed component of the page

and title it “Deadlined Items.”

a. Add a Panel Group Layout with layout set to Scroll.

b. Drag the named view criteria AHeadersDisplayVOCriteria under

AHeadersDisplay into the Panel Group Layout as a Query Panel

with Table.

i. Enable sorting, filtering, and single row selection in the table

and choose which attributes will be displayed.

c. Change the text of the Panel Header and the settings of the Query

Panel.

 106

C. MAINTENANCE EFFORT REPORT (BRAVO) (VERSION 1 – CONTAINS
NULL VALUES)

Page Layout

The “Main Report” ShowDetailItem for this report is structured with a

vertical PanelSplitter inside of a main PanelGroupLayout (PGL) that is set to

scroll. The 1st facet of the PanelSplitter contains a scroll PanelGroupLayout

surrounding a spacer and two vertical PGLs. The first vertical PGL is for the

PanelHeader with the page’s Query Panel. The second holds two horizontal

PanelSplitters separated by a spacer.

1. The 1st facet of the upper PanelSplitter contains a PanelHeader holding

the Master table for the report. The 2nd facet contains a PanelFormLayout

that shows a detailed view of the information in the Master table. This

PanelFormLayout is situated inside of a PanelGroupLayout, which is

inside of a PanelHeader, which is inside another PanelGroupLayout (note:

This nested structure of Panel Group Layouts was originally created to

allow spacers to be inserted in order to achieve the desired positioning of

the PanelFormLayout on the page. We later discovered that the Padding

attribute of the PanelHeader could be used to achieve the same effect –

therefore, the structure of Version 2 of this page is simpler and more

efficient and should be used in place of this structure).

2. The 1st facet of the lower PanelSplitter contains a PanelHeader holding

the Detail table for the report. The 2nd facet contains a PanelGroupLayout

holding a Gauge component and an OutputText component (which

displays the value of the gauge).

The 2nd facet of the outermost vertical PanelSplitter contains a horizontal

PanelGroupLayout holding the graph components for the page. Inside this

PanelGroupLayout are two PanelHeaders, the first holding a PieGraph and the

second holding a BarGraph.

 107

Figure 65. Top-level structure for the Bravo page (with nulls).

 108

Figure 66. Detailed structure of the “Main Report” for the Bravo page.

 109

Figure 67. Structure of horizontal Panel Splitters for the Bravo page.

 110

Figure 68. Structure of PanelGroupLayout holding the graph components

for the Bravo page.

Basic Steps
1. Create all view objects.

a. SrtasksTbl is simply the default view object created by JDeveloper

from the SrtasksTbl entity object. BHeadersDisplayVO is a new

object but can easily be created using a wizard; it is based on

SrheadersTblEO and has a WHERE clause which is shown in the

“Overview of Pages” documentation.

2. In SrtasksTblEO (entity object), create the two transient attributes listed in

the “Overview of Pages” documentation.

a. In the Attribute page of SrtasksTblVO (view object), click the plus

button to “Add Attribute from Entity” and add in the two transient

attributes that were just created in SrtasksTblEO.

3. Create all remaining view links and view-object-level transient attributes.

a. Set labels in the UI Hints tab for both view objects.

i. In BHeadersDisplayVO, set TotalHoursActual and

TotalHoursPlanned to “Hide” instead of “Display.” These

 111

attributes are only used as part of an intermediate

calculation.

b. In the General tab, adjust the tuning for each of these.

i. BHeadersDisplayVO:

1. Range Size = 20

2. in batches of = 23

ii. SrtasksTblVO:

1. Range Size = 10

2. in batches of = 13

4. Create a read-only view object named BSrHeadersTblVVO using the

Create Business Components from Tables wizard.

a. Go to the wizard page that says “Query-Based View Object” and

create one based on SrheadersTbl.

b. Exit the wizard and go to the Attributes tab of the view object.

i. Delete all attributes except ServiceRequestType.

c. Go to the Query tab and delete all of the other attributes from the

SQL as well.

i. Add a Group By statement to the query to group based on

ServiceRequestType.

ii. Add a WHERE clause to the SQL to get only the

ServiceRequestTypes that are relevant to this Use Case

(Maintenance – CAL, Maintenance – MOD, Maintenance –

PM, Maintenance – CM, Maintenance – MISC, Maintenance

– SL3, and Maintenance – SRP).

5. Create a read-only view object named MPCListVVO using the Create

Business Components from Tables wizard.

a. Go to the wizard page that says “Query-Based View Object” and

create one based on SrheadersTbl.

b. Exit the wizard and go to the Attributes tab of the view object.

i. Delete all attributes except MasterPriorityCode.

 112

c. Go to the Query tab and delete all of the other attributes from the

query as well, and add a statement to Group By

MasterPriorityCode.

6. Under the Attribute tab of BHeadersDisplayVO, select the

ServiceRequestType attribute.

a. Go to the LOV tab for this attribute and click to add a new LOV.

i. Within the wizard, click to add a new view accessor which

points to the ServiceRequestType attribute in

BSrHeadersTblVVO. The ServiceRequestType field should

now show up in forms as a drop-down menu with options.

b. Do the same for the MasterPriorityCode attribute to add an LOV

based on the MasterPriorityCode attribute in MPCListVVO.

7. Create a view criteria in BHeadersDisplayVO:

 113

a. In the UI Hints section of the View Criteria editor, click on the

ServiceRequestType item and check the “Support Multiple Value

Selection” box.

8. Create a new application module for Bravo (Version 1) as shown next:

 114

9. Follow the steps listed below for Bravo Version 2 to create the page (the

layout in this page is more efficient than the layout used in Version 1).

Whenever the steps say to use “BHeadersViewVO,” instead use

“BHeadersDisplayVO.”

D. MAINTENANCE EFFORT REPORT (BRAVO) (VERSION 2 – NO
NULLS)

Page Layout

The “Main Report” ShowDetailItem for this report is structured with a

vertical PanelSplitter inside of a main PanelGroupLayout (PGL) that is set to

scroll. The 1st facet of the PanelSplitter contains a vertical PanelGroupLayout

with a PanelHeader (for the Query Panel) and two horizontal PanelSplitters.

1. The 1st facet of the upper PanelSplitter contains a PanelHeader holding

the Master table for the report. The 2nd facet contains a PanelFormLayout

that shows a detailed view of the information in the Master table. This

PanelFormLayout is situated inside of a PanelGroupLayout, which is

inside of a PanelHeader.

2. The 1st facet of the lower PanelSplitter contains a PanelHeader holding

the Detail table for the report. The 2nd facet contains a PanelGroupLayout

holding a Gauge component and an OutputText component (which

displays the value of the gauge).

 115

The 2nd facet of the outermost vertical PanelSplitter contains a horizontal

PanelGroupLayout holding the graph components for the page. Inside this

PanelGroupLayout are two PanelHeaders, the first holding a PieGraph and the

second holding a BarGraph.

Figure 69. Top-level structure for the Bravo page (no nulls).

 116

Figure 70. Structure of horizontal Panel Splitters for the Bravo page.

Figure 71. Structure of PanelGroupLayout holding the graph components

for the Bravo page.

 117

Basic Steps
1. Create a database view, BHeadersView, and add an entity object and

a default view object in JDeveloper based off of this view. Edit the view

object to add a WHERE clause, which is given in the “Overview of

Pages” documentation.

2. Create all other view objects, view links, and transient attributes (note:

If Version 1 of Bravo has already been created, the SrtasksTblVO will

already exist and does not need to be re-created. If Version 1 has not

been created, SrtasksTblVO can be created by editing the default view

object based off of SrtasksTblEO).

a. Set labels in the UI Hints tab for both view objects.

b. In the General tab, adjust the tuning for each of these.

i. BHeadersViewVO:

1. Range Size = 20

2. in batches of = 23

ii. SrtasksTblVO:

1. Range Size = 10

2. in batches of = 13

c. Under the Attribute tab, select the ServiceRequestType attribute.

i. Go to the LOV tab for this attribute and click to add a new

LOV.

1. Within the wizard, click to add a new view accessor

which points to the ServiceRequestType attribute in

BSrHeadersTblVVO. The ServiceRequestType field

should now show up in forms as a drop-down menu

with options (note: There are steps on how to create

BSrHeadersTblVVO in the documentation for Version

1 of Bravo).

d. Do the same for the MasterPriorityCode attribute to add an LOV

based on the MasterPriorityCode attribute in MPCListVVO.

 118

3. Create a view criteria in BHeadersViewVO:

a. In the UI Hints section of the View Criteria editor, click on the

ServiceRequestType item and check the box to enable multiple

selections.

4. Create a new application module for Bravo (Version 2) as shown next:

 119

5. Create a new page based on the XXMC Reports template and enter the

useCaseTitle.

a. Construct the page’s toolbar.

6. Add a PanelTabbed component to the mainContent window and name the

ShowDetailItem “Main Report.”

7. Add a PanelGroupLayout within the main tab and set it to scroll.

a. Add a spacer within this.

8. Add a vertical PanelSplitter within the PanelGroupLayout.

a. Set properties:

i. PositionFromEnd: True

ii. SplitterPosition: 350

iii. Collapsed: False

9. Drag the Named Criteria BHeadersViewVOCriteria under BHeadersView

into the 1st facet of the PanelSplitter as a Query Panel.

a. Change the PanelHeader text and the Query Panel settings.

10. Add a Master-Detail table to the page under the query panel within the

outer PanelGroupLayout by dragging the instance of SrTasks that is

underneath SrHeadersView from the Data Control onto the page.

a. Edit each table to choose the desired attributes to display.

i. Turn off “Filterable” for the Service Request Type column in

the Master table by selecting the column and using the

Property Inspector.

 120

ii. Change the Range Size in the master table’s property

inspector to 20.

b. Put the ID of the Master table into the ResultComponentID field of

the Property Inspector for the Query Panel.

c. Change the names of the PanelHeaders that enclose both tables.

11. Add a spacer between the two PanelHeaders that hold the Master and

Detail tables (take the tables out of the PanelGroupLayout they come in).

12. Drag a PanelSplitter below the PanelHeader that holds the Query Panel

and set layout to Horizontal.

a. Drag the Master table into the 1st facet of the PanelSplitter.

b. Drag the BHeadersView from the Data Control panel into the 2nd

facet of the PanelSplitter and create a read-only ADF form.

c. Set the Splitter Position in the Property Inspector.

13. Surround the PanelFormLayout in the 2nd facet of the PanelSplitter that

holds the Master table with a PanelGroupLayout (by right-clicking the

component in the Structure Pane) and set its layout to vertical.

a. Put a spacer in the PanelGroupLayout before the

PanelFormLayout.

b. Surround the PanelGroupLayout with a PanelHeader and change

the title.

i. Set the PanelHeader to have Left Padding = 120px

(approximately) in the Property Inspector.

14. Add graphics to the page.

a. In the bottom panel of the outermost PanelSplitter for the page

(which is vertical), drag the detail Srtasks table under the

corresponding BHeadersView table as a Pie Chart.

i. In the Pie Chart wizard, include the Actual Effort attribute as

the “pie,” and the Task Number and Task Name attributes as

the “slices.”

b. Surround the pie chart with a PanelGroupLayout (horizontal).

 121

i. Drag the same detail Data Control based off of SrtasksTbl

into this PanelGroupLayout to create a Bar Chart.

1. In the Bar Chart wizard, add Actual Effort and

Planned Effort for the bars. Add Task Number and

Task Name for the x-axis.

c. Surround each graphic with a PanelHeader to give them titles.

i. Add a spacer in between the two graphs and adjust its width

as necessary.

15. Add a gauge next to the Detail table on the page.

a. Add a PanelSplitter to the Structure Pane above the Detail table but

under the spacer below the Panel Splitter holding the Master table.

i. Drag the Detail table into the 1st facet of this PanelSplitter.

ii. Set the Splitter Position.

b. Add a Gauge to the 2nd facet of the PanelSplitter by dragging the

EffortDifference attribute of the SrTasks table that is underneath the

BHeadersDisplay data control onto the page.

i. Choose a half-circle style gauge component with no lower

title and no legend.

1. In the wizard, set the metric label to not show.

2. Set the minimum value to -50 and the maximum to

50.

3. Set thresholds so that the gauge is red from (-50,-25),

yellow from (-25,-10), green from (-10,10), yellow from

(10,25), and red from (25,50).

ii. Set the padding on the left side of the gauge component to

approximately 30 in the Property Inspector.

1. Set the height and width of the gauge to 120 px using

the InlineStyle field.

c. Surround the Gauge with a horizontal PanelGroupLayout.

 122

i. Insert an OutputText field that shows the value of the Gauge

by dragging and dropping the EffortDifference attribute from

the detail SrTasks Data Control into the PanelGroupLayout.

1. Change the FontWeight to bold in the Property

Inspector.

E. CHARLIE: SECONDARY REPARABLES REPORT

Page Layout

The “Main Report” ShowDetailItem for this report is structured with two

vertical PanelGroupLayouts inside of a main PanelGroupLayout (PGL) that is set

to scroll. The first vertical PGL holds a PanelHeader with a Query Panel, while

the second holds two PanelHeaders (separated by a spacer) with each of the

relevant report tables.

Charlie.jspx- Structure

Q, A
1±1 ·Q Issues (5)

9 0 jsp:root
:···· (9 jsp:directive.page
8-~ f:view

r3 ·~ af:dorument- Char6e.jspx
! c:Q af:messages
e··§ af:form
. 9-00 af:pageTemplate

;... ··liD) f:attribute
B··CJ Template facets

$-83 f:facet- mainContent
. 8 ·· Cj af:paneiTabbed

S Q af:showDetaJ1Item -Main Report
t?···~ af:paneiGrouplayout -scroll
~ f ·O af:spacer- 10
l ~· ~ af:panelGrouplayout -vertical
1 $ · ~ af:paneiGrouplayout
! rD LJ Panel Group layout facets

! ffi ·D Show Deta~ Item facets
e- ffi!WW¢§1®1

ffi-·D Document facets

Figure 72. Top-level structure for the Charlie page.

123

 124

Figure 73. Detailed structure for the “Main Report” tab on the Charlie

page.

Basic Steps
1. Create all view objects, view links, and transient attributes.

a. Set labels in the UI Hints tab for both of the view objects.

b. In the General tab, adjust the tuning for each of these.

i. CNsnDisplayVO:

1. Range Size = 15

2. in batches of = 18

ii. CHeadersDisplayVO:

1. Range Size = 15

2. in batches of = 18

c. Click on the RecordNsn and Tamcn attributes in the editor for

CNsnDisplay and set their Width properties to 20 characters.

2. Create a view criteria in CNsnDisplayVO:

 125

3. Create a new application module for Charlie as shown next:

 126

4. Create a new page based on the XXMC Reports template and enter the

useCaseTitle.

a. Construct the page’s toolbar.

5. Add a PanelTabbed component to the mainContent window and name the

ShowDetailItem “Main Report.”

6. Add a PanelGroupLayout within the main tab and set it to scroll.

a. Add a spacer within this.

7. Add a Query Panel to the page by dragging and dropping the Named

Criteria CNsnDisplayVOCriteria (from the Data Control in a folder

underneath CNsnDisplay) below the spacer in the PanelGroupLayout.

a. Adjust the PanelHeader text and the Query Panel settings.

8. Add a Master-Detail table to the page by dragging the instance of

CHeadersDisplay underneath CNsnDisplay and dropping it below the

Query Panel PanelHeader.

a. Change the text of the Panel Headers for the two tables.

b. Put the ID of the Master table into the ResultComponentId field of

the Query Panel in the Property Inspector.

c. Select the relevant attributes to be included in each table by

clicking the “Edit” (pencil) buttons in their Property Inspectors and

enable sorting and single row selection.

d. Add a spacer in between the Panel Headers for the Master and

Detail tables.

9. Add a Gauge column to the Master table to indicate missing data.

 127

a. In the Master table editor (reached by clicking the pencil button in

the Property Inspector), add another column based on the

PercentMissing attribute (there will now be two identical columns).

b. Drag a Gauge component from the Component Palette onto the

column.

i. From the menu, select a circular LED gauge with no title or

key.

ii. Delete the outputText attribute (in the Structure Pane) from

under the column where the Gauge was just inserted.

c. Configure the Gauge:

i. Set the Value field in the Property Inspector to

#{row.PercentMissing} using the Expression Builder.

1. Under Gauge Data, put in a MinValue of 0 and a

MaxValue of 100.

2. Use the InlineStyle field to change the size of the

gauge: “width:15px;height:15px.”

ii. Go to the Metric Label component under the Gauge in the

Structure Pane and for Position select LP_NONE.

iii. Expand the dvt:thresholdSet component under the Gauge in

the Structure Pane and delete one of the dvt:threshold sub-

components.

1. In the first remaining dvt:threshold component, set the

FillColor to white and the ThresholdMaxValue to 0.0.

2. In the second, set the FillColor to orange (#ff8400)

and the ThresholdMaxValue to 100.0.

iv. Click on the Master table column with the Gauge in it, and

under the Appearance tab of the Property Inspector, set

Align to Center.

1. Set the column Width to 75.

 128

2. Set the column HeaderText to “Incomplete Data

Warning.”

F. DELTA: COST REPORT

Page Layout

The “Main Report” ShowDetailItem for this report is structured with a

vertical PanelGroupLayout and two horizontal PanelSplitters inside of a main

PanelGroupLayout that is set to scroll. The inner PanelGroupLayout holds a

PanelHeader with a Query Panel. Below this, the first PanelSplitter has a

PanelHeader holding the Master table in its 1st facet. In its 2nd facet is a

PanelHeader holding a PanelFormLayout with a detailed view of the data from

the Master table. The second PanelSplitter has a PanelHeader holding the Detail

table in its 1st facet and a PanelHeader holding a Pie Graph in its 2nd facet.

The “Unit Totals” ShowDetailItem also contains a PanelGroupLayout set

to scroll. Inside this are two horizontal PanelGroupLayouts. The first horizontal

PGL contains a PanelHeader with the page’s Master table, followed by a Pie

Graph based on the same view object. Similarly, the second horizontal PGL

contains a PanelHeader with the page’s Detail table, along with a Pie Graph.

 129

Figure 74. Top-level structure for the Delta page.

 130

Figure 75. Detailed structure of the “Main Report” tab of the Delta page.

 131

Figure 76. Detailed structure of the “Unit Totals” tab.

Basic Steps
1. Create the Dheadersview view in the database using SQL Developer and

then create a default entity and view object based on this view.

2. Edit RepairpartsTblVO (the default view object based off of

RepairpartsTblEO) so that its query matches the one shown in the

“Overview of Pages” documentation.

3. Create the remaining three view objects, along with all view links and

transient attributes.

a. Set labels in the UI Hints tab for all five view objects.

b. In the General tab, adjust the tuning for each of these (except

DPieChartVO, which is never displayed as a table).

i. DheadersviewVO:

1. Range Size = 15

2. in batches of = 18

ii. RepairpartsTblVO:

1. Range Size = 15

 132

2. in batches of = 18

iii. DRACTotalsVO:

1. Range Size = 10

2. in batches of = 13

iv. DOUACTotalsVO:

1. Range Size = 20

2. in batches of = 23

c. Click on the OwnerUnitAddressCode, RegionalActivityCode, and

SrNumber attributes in the editor for DheadersviewVO and set their

Width properties to 25. Do the same for RecordNsn in

RepairpartsTblVO.

4. Create a view criteria in DheadersviewVO:

 133

Note: The RecordNsn attribute must be accessed by first creating a new View

Criteria Item based on “RepairpartsTbl.” This will generate automatically

generate a group with an Item inside it, and the inner item can then be set to any

attribute from RepairpartsTblVO.

5. Create a new application module for Delta as shown below. Make sure

that there is an instance of DPieChart and an instance of RepairpartsTbl

under the same instance of Dheadersview. This is the instance of

Dheadersview that should be used on the page.

 134

6. Create a new page based on the XXMC Reports template and enter the

useCaseTitle.

a. Construct the page’s toolbar.

7. Add a PanelTabbed component to the mainContent window and name the

ShowDetailItem “Main Report.”

8. Add a PanelGroupLayout within the main tab and set it to scroll.

a. Add a spacer within this.

9. Add a Query Panel underneath the spacer by dragging and dropping the

named view criteria that is under Dheadersview in the Data Control.

a. Adjust the PanelHeader text and the settings of the Query Panel.

10. Add a Master-Detail table to the page under the Query Panel (within the

outer PanelGroupLayout) by dragging the instance of RepairpartsTbl that

is underneath Dheadersview.

a. In both tables, include only the relevant attributes and enable

sorting and filtering.

i. Change the Range Size in the Master table’s Property

Inspector to 15.

b. Enter the ID for the Master table into the ResultComponentID

section of the Query Panel’s Property Inspector.

c. Change the names of the PanelHeaders that enclose both tables.

 135

11. Drag a PanelSplitter into the outer PanelGroupLayout, just below

PanelGroupLayout that holds the Query Panel.

a. Set layout to Horizontal and adjust the Splitter Position.

b. Drag the PanelHeader with the Master table into the 1st facet of the

PanelSplitter.

12. Add a spacer below the PanelSplitter.

13. Drag Dheadersview from the Data Control panel into the 2nd facet of the

PanelSplitter and create an ADF read-only form.

a. Surround the PanelFormLayout with a PanelHeader (right click and

choose “surround With”) and change the PanelHeader’s title.

b. Set the Padding Left for the PanelHeader so that there is sufficient

space between it and the Master table.

14. Add another horizontal PanelSplitter under the spacer that is directly

below the first PanelSplitter.

a. Set the Splitter Position and, under the Behavior section of the

Property Inspector, set the splitter’s Disabled property to True.

b. Drag the Detail table into the first facet of this PanelSplitter (only

the PanelHeader part of the table) and delete the

PanelGroupLayout that used to surround it.

15. Insert a Pie Chart into the 2nd facet of the PanelSplitter containing the

Detail table by dragging the instance of DPieChart that falls under

Dheadersview (the same Dheadersview that had RepairpartsTbl under it).

a. In the Pie Chart wizard, set the “Pie” to PartsCost and the “Slices”

to RecordNsn.

b. Surround the chart with a PanelHeader and set the text.

i. Set the Padding Left of the PanelHeader to around 80px.

16. Add a new ShowDetailItem to the PanelTabbed component in the

mainContent facet of the page and title it “Unit Totals.”

a. Drag DOUACTotalsVO (under DRACTotalsVO in the Data Control)

onto the page as a Master-Detail table.

 136

i. Set the layout of the PanelGroupLayout that is automatically

added with this component to Scroll.

ii. Change the text of both PanelHeaders.

b. Surround each PanelHeader (by right-clicking and choosing

“Surround With”) with a horizontal PanelGroupLayout.

i. Drag DRACTotals from the Data Control panel into the first

PanelGroupLayout (under the existing table’s PanelHeader)

as a Graph -> Pie Chart.

1. In the Pie Chart wizard, set the “Pie” to TotalCost and

the “Slices” to RegionalActivityCode.

ii. Drag the instance of DOUACTotals that is underneath

DRACTotals in the Data Control into the second horizontal

PanelGroupLayout as a Graph -> Pie Chart.

1. In the Pie Chart wizard, set the “Pie” to UnitTotalCost

and the “Slices” to OwnerUnitAddressCode.

2. Change the height and width using the InlineStyle

field in the Property Inspector:

“height:300px;width:300px.”

iii. Set SeriesRolloverBehavior in the Property Inspectors of

both pie charts to be RB-HIGHLIGHT.

iv. Set an appropriate Padding Left for both charts.

G. ECHO: GMRT MAINTENANCE PRODUCTION REPORT

Page Layout

The “Main Report” ShowDetailItem for this report is structured with one

PanelHeader and one PanelSplitter inside of a main PanelGroupLayout that is

set to scroll. The PanelHeader holds the page’s Query Panel. Below this, the 1st

facet of the vertical PanelSplitter contains a PanelGroupLayout, which surrounds

the PanelHeader holding the Master table of the report. The 2nd facet contains a

PanelGroupLayout holding a PanelTabbed component.

 137

The PanelTabbed component includes two ShowDetailItems. The first is

titled “Tasks & Orders,” and holds a PanelSplitter (inside a PanelGroupLayout).

Each facet of this horizontal PanelSplitter holds one Detail table inside a

PanelHeader. To the left is a table displaying tasks, while to the right is a table

displaying open parts orders.

The second ShowDetailItem, “Order Status Details,” contains a vertical

PanelGroupLayout with two PanelHeaders, each separated by a spacer. The first

PanelHeader holds a second copy of the orders Detail table, while the second

holds a Sub-Detail table.

Figure 77. Top-level structure for the Echo page.

 138

Figure 78. Detailed structure within the “Main Report” tab of the Echo

page.

 139

Figure 79. Focusing on the PanelTabbed component.

Basic Steps
1. Create all view objects.

a. Note: DueinTblVO and DueinStatTblVO are simply the default view

objects generated by JDeveloper from the DueinTbl and

DueinStatTbl entity objects. ETasksVO is a new view object, but

can easily be created from SrtasksTblEO using a wizard (must add

a WHERE clause).

b. Create a read-only view object named ESrTypeListVVO using the

Create Business Components from Tables wizard.

 140

i. Go to the wizard page that says “Query-Based View Object”

and create one based on SrHeadersTbl.

ii. Exit the wizard and go to the Attributes tab of the view

object.

1. Delete all attributes except ServiceRequestType.

iii. Go to the Query tab and delete all of the other attributes

from the SQL as well.

1. Add a Group By statement to the query to group

based on ServiceRequestType.

2. Create all view links and transient attributes.

a. Set labels in the UI Hints tab for all four view objects.

b. In the General tab, adjust the tuning for each of these.

i. EHeadersDisplayVO:

1. Range Size = 15

2. in batches of = 18

ii. ETasksVO:

1. Range Size = 20

2. in batches of = 23

iii. DueinTblVO:

1. Range Size = 20

2. in batches of = 23

iv. DueinStatTblVO:

1. Range Size = 10

2. in batches of = 13

c. Under the Attribute tab of EHeadersDisplayVO, select the

ServiceRequestType attribute.

i. Go to the LOV tab for this attribute and click to add a new

LOV.

1. Within the wizard, click to add a new view accessor

which points to the ServiceRequestType attribute in

 141

ESrTypeListVVO. The ServiceRequestType field

should now show up in forms as a drop-down menu

with options.

3. Create a view criteria in EHeadersDisplayVO:

Note: The DocumentNumber attribute must be accessed by first creating a new

View Criteria Item based on “DueinTbl.” This will generate automatically generate

 142

a group with an Item inside it, and the inner item can then be set to any attribute

from DueinTblVO.

4. Create a new application module for Echo as shown below. Make sure

that DueinTbl (with DueinStatTbl beneath it) and Etasks are both placed

under the same instance of EHeadersDisplay. This is the instance of

EHeadersDisplay that should be used on the page.

5. Create a new page based on the XXMC Reports template and enter the

useCaseTitle.

a. Construct the page’s toolbar.

6. Add a PanelTabbed component to the mainContent window and name the

ShowDetailItem “Main Report.”

7. Add a PanelGroupLayout within the main tab and set it to scroll.

a. Add a spacer within this.

8. Add a Query Panel to the page by dragging the Named Criteria

BHeadersDisplayVOCriteria (under BHeadersDisplay in the Data Control)

onto the PanelGroupLayout beneath the spacer.

a. Adjust the PanelHeader text and Query Panel settings.

9. Add a Master-Detail table to the page under the Query Panel’s

PanelHeader by dragging the instance of ETasks that is underneath

EHeadersDisplay in the Data Control.

 143

a. Input the ID of the Master table into the ResultComponentID field in

the Query Panel’s Property Inspector.

b. Choose the attributes for each table and enable sorting and filtering

in the Master table.

i. Change the Range Size in the Master table’s Property

Inspector to 20.

c. Change the names of the PanelHeaders that enclose both tables.

10. Add a second Detail table to the page by dragging the instance of

DueinTbl that is under EHeadersDisplay (the same EHeadersDisplay that

ETasks is under) and dropping it below the existing tables.

a. Surround this with a PanelHeader and set its title.

11. Add a vertical PanelSplitter to the page directly under the Query Panel’s

PanelHeader.

a. Adjust the Splitter Position.

b. Drag the PanelHeader holding the Master table into the 1st facet of

this PanelSplitter and make sure it is enclosed in a vertical

PanelGroupLayout.

c. In the 2nd splitter facet, insert a vertical PanelGroupLayout.

i. Add a PanelTabbed component inside this.

12. Title the existing ShowDetailItem of the PanelTabbed component “Tasks &

Orders” and put a vertical PanelGroupLayout inside it.

a. Add a spacer, followed by a horizontal PanelSplitter.

i. Adjust the Splitter Position.

b. Drag the PanelHeader containing the tasks (ETasksVO) Detail

table into the 1st facet of the horizontal PanelSplitter.

c. Drag the PanelHeader containing the orders (DueinTblVO) Detail

table into the 2nd facet.

13. Add a second ShowDetailItem to the PanelTabbed component and

change the text to “Order Status Details.”

 144

a. In the “Order Status Details” tab, add a Master-Detail table by

dragging the instance of DueinStatus that is underneath DueinTbl

(which is also underneath EHeadersDisplay) onto the page.

b. Add a spacer between the PanelHeaders of the two tables and a

second spacer above the Master table’s PanelHeader.

c. Change the text of the two PanelHeaders.

d. Edit the attributes in both tables and enable sorting and filtering.

14. Add highlighting functionality, so that when the user clicks a task in the

Detail table, the related orders in the second Detail table will automatically

be selected.

a. Copy the code for the 3 Java classes (ADFUtils.java,

GenericTableSelectionHandler.java, JSFUtils.java) used in the

sample project on this website:

http://technology.amis.nl/2012/02/06/adf-11g-fancy-master-detail-

or-how-to-highlight-related-detail-records/

i. Create three new Java classes in JDeveloper (with the same

names as above) within the “utils” package under the

“Application Sources” folder in the ViewController portion of

the application. Paste the appropriate code into each class.

 145

b. Create a new Java class called HighLightBean with directory

“beans” so that it will be located under ViewController -> Application

Sources -> beans.

i. Copy the code for this from the same project.

1. At the beginning of the code, adjust the package

appropriately.

2. Under the method onCountryTableSelect, change the

name of the iterator to the iterator of the Tasks table

used on the Echo page (you will have to look this up).

3. Under the method matchEM, change the name of the

attribute that will be matched on to “TaskNumber.”

c. Open the adfc-config.xml file under ViewController and add a new

managed bean with the following settings (and the appropriate

directory):

i. Scope: pageFlow

ii. Name: HighLightBean

d. Go into the Page Source for Echo and find the part relating to the

first Detail table (based on ETasks). Change the following lines:

 146

i. selectionListener=”#{pageFlowScope.HighLightBean.onCou

ntryTableSelect}”

ii. rowSelection=”single”

e. Select the second Detail table (based on DueinTbl) in the Structure

Pane and then go to the Advanced section of the Property

Inspector.

i. Set the Binding field:

#{pageFlowScope.HIghLightBean.locTable}

ii. Set the Row Selection field to “multiple.”

H. FOXTROT: DOCUMENT NUMBER REPORT

Page Layout

The “Main Report” ShowDetailItem for this report contains only a vertical

PanelSplitter. Within this, the 1st facet holds a PanelGroupLayout (PGL) set to

scroll. This PGL contains a spacer followed by a vertical PGL, a horizontal

PanelSplitter, and another vertical PGL. In the first vertical PGL is a PanelHeader

holding the Query Panel. The second contains a PanelHeader holding the Detail

table that displays parts orders. Between these, the PanelSplitter has the Master

table in its 1st facet, and a vertical PanelSplitter in its 2nd facet.

The 1st facet of the vertical PanelSplitter holds a PanelHeader with a

PanelFormLayout used for displaying details about the Master table. Its 2nd facet

contains a horizontal PanelGroupLayout with a spacer, an OutputText

component, and a Gauge.

Note: The 2nd facet of the outer (vertical) PanelSplitter was not actually

used to hold any content. Therefore, this PanelSplitter does not need to be

present; the “Main Report” tab could simply be created with a PanelGroupLayout

set to scroll.

The “Orders by NSN” ShowDetailItem on this page contains a

PanelGroupLayout with orientation set to scroll. Within this are two vertical

 147

PanelGroupLayouts, the first surrounding the Query Panel’s PanelHeader and

the second surrounding a results table.

Figure 80. Top-level structure for the Foxtrot page.

 148

Figure 81. Structure of the “Main Report” tab of the Foxtrot page.

 149

Figure 82. Detailed structure of the horizontal PanelSplitter in the “Main

Report” tab.

Figure 83. Structure of the “Orders By NSN” tab of the Foxtrot page.

 150

Basic Steps
1. Create a database view, Fheadersview, and add an entity object and a

default view object in JDeveloper based off of this view.

2. Create the view object FDueinAll as a Query-based view object in

JDeveloper.

3. Create all view links and transient attributes.

a. Set labels in the UI Hints tab for both of the view objects.

b. In the General tab, adjust the tuning for each of these.

i. FheadersviewVO:

1. Range Size = 20

2. in batches of = 23

ii. FDueinAll:

1. Range Size = 20

2. in batches of = 23

c. Click on the RecordNsn attribute in the editor for FDueinAll and set

its Width property (under UI Hints) to 20.

i. Similarly, change the Width of OwnerUnitAddressCode in

Fheadersview to 20.

4. Create two view criteria.

a. In FheadersviewVO:

 151

Note: The DocumentNumber attribute must be accessed by first creating a

new View Criteria Item based on “FDueinAll.” This will generate automatically

generate a group with an Item inside it, and the inner item can then be set to any

attribute from FDueinAll. Once this is done, a second item can be added to this

same group for the RecordNsn attribute.

b. In FDueinAll:

 152

5. Create a new application module for Foxtrot as shown here.

6. Create a new page based on the XXMC Reports template and enter the

useCaseTitle.

a. Construct the page’s toolbar.

 153

7. Add a PanelTabbed component to the mainContent window and name the

ShowDetailItem “Main Report.”

8. Add a PanelGroupLayout within the main tab and set it to scroll (note: In

the existing page, there is a PanelSplitter in the main tab, and the

scrollable PanelGroupLayout is inside this. However, because the 2nd

facet of this outer PanelSplitter was never used, the component ended up

being unnecessary).

a. Add a spacer within this.

9. Add a Query Panel below the spacer by dragging and dropping the named

criteria FheadersviewVOCriteria under Fheadersview in the Data Control.

a. Change the PanelHeader text and the Query Panel settings.

b. Surround the PanelHeader with a vertical PanelGroupLayout (by

right-clicking this component in the Structure Pane and choosing

“Surround With”) if it was not automatically put in one.

i. Add a spacer to this PanelGroupLayout beneath the

PanelHeader.

10. Add a Master-Detail table to the page under the Query Panel within the

outer PanelGroupLayout (the one set to scroll) by dragging the instance of

FDueinAll that is underneath Fheadersview.

a. In both tables, include only the relevant attributes and enable

sorting and filtering.

i. Change the Range Size in the Master table’s Property

Inspector to 20.

b. Change the names of the PanelHeaders that enclose both tables.

c. Copy the ID of the Master table and paste this into the

ResultComponentID attribute in the Property Inspector of the Query

Panel.

11. Drag a Panel Splitter into the scroll PanelGroupLayout, directly below the

vertical PanelGroupLayout that contains the Query Panel.

a. Set layout to Horizontal and adjust the Splitter Position.

 154

b. Drag the PanelHeader with the Master table into the 1st facet of the

PanelSplitter.

c. Add a second PanelSplitter to the 2nd facet of the horizontal

PanelSplitter, and set its orientation to vertical.

i. Set Splitter Position change Disabled to true in the Property

Inspector.

ii. Adjust the Top Padding and Left Padding properties as

needed.

12. Drag Fheadersview from the Data Control panel into the 1st facet of the

innermost (vertical) PanelSplitter and create an ADF read-only form.

a. Surround the PanelFormLayout with a PanelHeader and change its

title.

13. Put a Gauge component in the 2nd facet of the innermost (vertical)

PanelSplitter by dragging the PercentOfDocumentsClosed column from

underneath FHeaderview in the Data Control.

a. In the menu that appears, choose a horizontal status meter with no

titles and no thresholds.

b. In the wizard, make sure “Percent of Documents Closed” is listed

as the metric.

i. Set the minimum value to 0 and the maximum to 100.

ii. Leave other settings as they are.

c. Go to the Property Inspector and in the InlineStyle field, enter

“width:150px;height:60px.”

14. Surround the Gauge component with a horizontal PanelGroupLayout.

a. Insert a spacer in the PanelGroupLayout before the Gauge and

adjust its Width property.

b. Add an OutputText component after the spacer and before the

gauge and set its Text property to “Status.”

15. In the second ShowDetailItem of the PanelTabbed component add a

PanelGroup ayout with layout set to scroll.

 155

16. Drag the named view criteria under the FDueinAll into the

PanelGroupLayout as a “Query Panel with Table.”

a. Adjust the text on the Panel Header that surrounds the Query Panel

and change the Query Panel settings.

b. For the results table, change the Range Size to 20.

i. Adjust the attributes in the results table to match those in the

Detail table in the other tab.

c. Rearrange the Query Panel and table so that each is in its own

vertical PanelGroupLayout within the scrollable PanelGroupLayout.

i. In JDeveloper, view objects based only on a SQL query do

not automatically add filter fields to tables, so, if filtering is

desired, this must be done manually.

1. In the Structure Pane, go to the results table and

expand any columns that you want to be able to filter

on.

a. Drag an InputText component into the “Filter”

facet of each of these and set its value to be

#{vs.filterCiteria.nameOfAttribute}.

17. Adjust the Query Panel so that it will automatically collapse once the user

hits the “Search” button, leaving more room for the table of results.

a. Set the Disclosed property of the Query Panel using the expression

builder #{bindings.Fheadersview1.estimatedRowCount lt 1}.

PAGE LAYOUT

 156

Basic Steps
1. Open the wizard to create a new ADF Page Template.

a. On the first page of the wizard, enter these settings:

i. Name: ReportPage

 157

ii. Type: JSP XML (must be saved as jspx or you will not be

able to use it when creating pages).

b. On the second page of the wizard, select “blank template.”

c. On the remaining pages of the wizard, add the following items:

i. Facet Definitions

1. mainContent

2. Toolbar

ii. Attributes

1. useCaseTitle

2. Start the page with a vertical PanelSplitter:

a. In the Property Inspector, set Splitter Position to 150

(approximately).

i. Under the Behavior section, set the Disabled property to

“True.”

3. Put another vertical PanelSplitter in the bottom facet of the first one:

a. Set Splitter Position to 28 and Disabled to “True.”

b. Add a Facet Ref component (referring to Toolbar, which was

defined in the Page Template wizard) in the top panel of this

PanelSplitter.

4. Insert another PanelSplitter in the top (1st) facet of the outer PanelSplitter

with Orientation = Horizontal and Splitter Position = 150 and Disabled =

True:

a. Insert an Image component into the left (1st) facet of this

PanelSplitter, which displays the Marine Corps logo:

http://learn.shorelineschools.org/shorewood/bbaseball/images/mari

nes.jpg

i. In the Property Inspector, under the Layout tab of the Style

section, set the Height and Width to “auto.”

 158

1. Under the Border/Outline tab of the Style section, set

the Border Color to Navy (#000052) and the Border

Radius 80px.

b. Drag an OutputText component into the right (2nd) facet of this

PanelSplitter:

i. In the Property Inspector, under the Font/Text tab of the

Style section, set Color=White, Font Size=800%, Font

Family = Arial, and Font Weight = Bold.

1. Under the Border/Outline tab of the Style section, add

a left border (Border Color = Navy) to achieve

appropriate spacing from the logo.

5. Add a PanelStretchLayout to the bottom (2nd) facet of the inner vertical

PanelSplitter (the one in the bottom facet of the outer PanelSplitter):

a. Insert Spacers in the Start, End, and Bottom facets of the

PanelStretchLayout.

b. Put a Facet Ref component (referring to mainContent, which was

defined in the Page Template wizard) in the center portion of the

PanelStretchLayout.

c. In the Top facet of the PanelStretchLayout, add an OutputText

component.

i. Put in these settings:

1. Value: #{attrs.useCaseTitle}

2. Font Family: Arial

3. Color: Dark navy (#000052)

4. Font Size: Large

5. Font Weight: Bold

6. Add a left border under the Border/Outline tab of the

Property Inspector’s style section:

a. Border Left Color: White

b. Border Left Style: Solid

 159

c. Border Left Width: 20px

7. Add a top border under the Border/Outline tab of the

Property Inspector’s style section:

a. Border Left Color: White

b. Border Left Style: Solid

c. Border Left Width: 10px

I. DASHBOARD (MAIN PAGE)

Page Layout

 160

Basic Steps
1. Create a new JSP XML page titled Dashboard.jspx based on the XXMC

Reports template.

2. Click on the af:pageTemplate component in the Structure Pane, and in the

Property Inspector enter spaces for the UseCaseTitle (essentially leaving

it blank).

3. Do not include anything in the Toolbar facet of the template.

4. Drag a PanelGroupLayout onto the mainContent facet of the template and

set its layout to be vertical.

a. Drag two other PanelGroupLayouts (horizontal) inside this one:

i. Put three Button components into each of these, with

spacers in between:

1. For each Button, go into the Property Inspector and

set the Height to 100px and Width to 180px:

a. Change the text to be Size = x-large, Font

Family = Arial, and Font Weight = bold.

b. Set Text Color to be navy (#000052).

c. Set the Text Align property to Center.

d. Set Line Height to be 80px.

e. Under the Border/Outline tab of the Style

section, set the border on the button to have

Border Width = Thick and Border Color = Navy

(#000052).

2. Give each of the buttons a label, Alpha through

Foxtrot

 161

Navigation
Page Layout

Basic Steps

1. Open the adfc-config.xml file that is created with the application (under

ViewController).

a. Drag each of the eight pages (two of which are for the Bravo Use

Case) associated with the project onto the diagram (note: There will

be nine pages if you create a BravoSelect page, which just displays

two buttons to let the user to choose whether he wishes to see

service requests with null labor hour fields or not in Bravo. This will

direct them to either the normal BravoQuery page or the Bravo2 no-

null page).

 162

i. For each of the page icons on your diagram, drag a Wildcard

Control Flow Rule from the Component Palette onto the

diagram (note: If the user has a BravoSelect page, he only

needs one Wildcard Control Flow Rule for all three pages

related to Bravo—it should always direct the user to this

gateway page).

ii. Drag a Control Flow Case arrow onto the diagram to connect

each Wildcard Control Flow Rule to a page (see previous

diagram; the Wildcard Control Flow Rule for Bravo should

connect to the BravoSelect page).

1. Name each of these arrows with the name of the Use

Case page it is pointing towards (in lowercase).

iii. Drag a Control Flow Case arrow onto the page so that it

points from BravoSelect to BravoQuery (the page with nulls)

and give it a name.

iv. Drag a second Control Flow Case arrow onto the page so

that it points from BravoSelect to Bravo2 (the page that

filters out service requests with null data) and give it a name,

like “nonull.”

2. Open each report page that is part of the application and click on each of

the navigation buttons on the page in turn (these will be in the Toolbar

facet at the top of the page).

a. Go to the Property Inspector for the selected button and set the

Action property. There should be a drop-down menu that will list the

names of all of the Use Case pages in lowercase; choose the one

that corresponds to the text on the button, which indicates which

page that the button should navigate to (note: Any buttons labeled

“Bravo” should direct to the BravoSelect page by selecting Action =

bravo). Each page should also have a button labeled “Dashboard,”

and its Action property should be set to “dashboard.”

 163

3. Do the same for each of the six buttons on the main Dashboard page.

4. Open the BravoSelect page, and set the Action property for the two

buttons on the page so that one directs to BravoQuery (Action = blank)

and the other directs to Bravo2 (Action = nonull), as appropriate.

 164

THIS PAGE INTENTIONALLY LEFT BLANK

 165

LIST OF REFERENCES

1. Acquisition Category (ACAT). (n.d.). ACQupedia.[Online], Available:
https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=a896cb8a-
92ad-41f1-b85a-dd1cb4abdc82. Accessed Nov. 21, 2014.

2. Global Combat Service Support-Marine Corps. (n.d.). USMC. [Online].
Available: http://www.marcorsyscom.usmc.mil/sites/gcss-
mc/index.aspx/benefits. Accessed Nov. 21, 2014.

3. Marine Corps Coordinated Secondary Reparable Management (CSM)
Program, MCO 4400.200, Commandant of the Marine Corps (I&L),
Washington, DC, 2012, pp. 1–7.

4. Ground Equipment Maintenance Program (GEMP), MCO 4790.25,
Commandant of the Marine Corps (I&L), Washington, DC, 2014, pp. 4–24.

5. The National Stock Number (NSN), The Gear that Keeps the Supply
Chain Running, Defense Logistics Agency (DLA), Battle Creek, MI, 2010,
pp. 1–12.

6. Oracle’s History Innovation Leadership Results. (2014, June 9). Oracle
Corporation. [Online]. Available:
http://www.oracle.com/us/corporate/history/index.html

7. M. Blackmore., et al. (2010, June). Building Agile Applications Using
Fusion Development and Oracle Enterprise Architecture Principles. Oracle
Corporation. Redwood City, CA. [Online]. Available:
http://www.oracle.com/technetwork/topics/fusion-development-oea-
091563.html

8. Oracle Fusion Applications Administrator's Troubleshooting Guide, 11g
Release 1 (11.1. 4), Oracle Corporation, Redwood City, CA, [Online].
Available:
https://docs.oracle.com/cd/E28271_01/doc.1111/e25450/toc.htm

9. L Jamen. (2011, Jan.). Oracle Fusion Middleware: Concepts Guide 11g
Release (11.1.1), Oracle Corporation, Redwood City, CA. [Online].
Available: http://docs.oracle.com/cd/E17904_01/core.1111/e10103.pdf

10. R. Eckstein. (2007, Mar.). Java SE Application Design With MVC. [Online].
Available: http://www.oracle.com/technetwork/articles/javase/index-
142890.html#2

 166

11. L. Akel. (2007, April). A. D. F. 11g Primer, Introduction to the building
blocks of a Fusion Web application: An Oracle White Paper. Oracle
Corporation. Redwood City, CA. [Online]. Available:
http://www.oracle.com/technetwork/testcontent/oracle-adf-11g-primer-
154277.pdf

12. S. O’Brien and S. Shmeltzer. (2011, June). Oracle Application
Development Framework Overview: An Oracle White Paper. Oracle
Corporation. Redwood City, CA. [Online]. Available:
http://www.oracle.com/technetwork/developer-tools/adf/adf-11-overview-1-
129504.pdf

13. Oracle ADF Data Sheet. Oracle Corporation, Redwood City, CA. [Online].
Available: http://www.oracle.com/technetwork/developer-tools/adf/adf11g-
data-sheet-1-133847.pdf

14. R. Gordon., et al. (2011, Aug.). Oracle Fusion Middleware—Fusion
Developer's Guide for Oracle Application Development Framework 11g
Release 1 (11.1. 1.5.0), Oracle Corporation, Redwood City, CA. [Online].
Available: https://docs.oracle.com/cd/E25054_01/web.1111/b31974.pdf

15. G. Ronald, Quick Start Guide to Oracle Fusion Development: Oracle
JDeveloper and Oracle ADF. New York, NY: McGraw-Hill, 2010, pp.31–
32.

16. Oracle JDeveloper Data Sheet. Oracle Corporation, Redwood City, CA.
[Online]. Available: http://www.oracle.com/technetwork/developer-
tools/jdev/jdeveloper11g-datasheet-1-133040.pdf

17. J. Purushothaman, Oracle ADF Real World Developer's Guide.
Birmingham, UK: Packt Publishing Ltd., 2012, pp. 19–20.

18. D. Mills, P. Koletzke, and A. Roy-Faderman. Oracle JDeveloper 11g
Handbook. McGraw-Hill, Inc., New York City, 2010, pp. 62–65.

19. Oracle Fusion Middleware: Understanding Oracle WebLogic Server 12c
(12.1.3). Oracle Corporation. Redwood City, CA. [Online]. Available:
http://docs.oracle.com/cd/E24329_01/web.1211/e24446/toc.htm

20. M. Schildmeijer. (2001). Oracle WebLogic Server 11gR1 PS2:
Administration essentials. Packt Publishing Ltd., Mumbai, India, pp. 12–
13, 58–59, 162–164.

21. S. Harper. (2008, Sept.). Oracle SQL Developer for Database Developers:
An Oracle White Paper. Oracle Corporation. Redwood City, CA. [Online].
Available: http://www.oracle.com/technetwork/developer-tools/sql-
developer/sqldeveloperwhitepaper-v151-130908.pdf

 167

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

