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ABSTRACT 

This thesis considers the use of acoustic communications in reducing position uncertainty 

for collaborating autonomous underwater vehicles. The foundation of the work relies on 

statistical techniques for accurate navigation without access to GPS, known as 

Simultaneous Localization and Mapping (SLAM). Multiple AUVs permit increased 

coverage, system redundancy and reduced mission times. Collaboration through acoustic 

communications can minimize navigational uncertainty by permitting the group to benefit 

from locally discovered information. However, the propagation of acoustic 

communications can be used to counter detect the system during naval operations. 

 The thesis gives explicit consideration to tactical security in acoustic 

communications for a multi-AUV SLAM system. It provides initial techniques and 

analysis for minimizing communications between AUVs. The reduction is accomplished 

through a statistical method that allows for the estimation of the updated covariance 

matrices. Normally, SLAM techniques use expropioceptive (sonar and cameras) sensors 

and computer vision algorithms for the detection and tracking of navigational references. 

We propose a novel use of the acoustic modem as another sensor. It leverages the 

physical characteristics of underwater acoustic transmissions and the information 

transmitted in the signal to provide an additional measurement. We believe this is the first 

emphasis on minimizing communications within a multi-vehicle SLAM approach.  
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I. INTRODUCTION  

A. MOTIVATION 

Few naval powers possess the ability to challenge the United States Navy in deep 

water or effectively deny us access to anywhere we wish to sail. The rise of cheap, 

effective, asymmetric anti-access and area denial (A2/AD) systems represents the best 

possible solution to denying the United States access to a region without the need to be 

able to conventionally confront maritime forces in Mahanian naval combat. The United 

States experienced this problem first hand on April 14, 1988, when the USS Samuel B. 

Roberts (FFG 58) struck a mine in the Persian Gulf while escorting tankers as part of 

Operation Earnest Will. The subsequent transport back to the United States and repairs 

cost taxpayers $89.5 million [1]. 

The mere threat of a naval minefield can effectively stop maritime traffic and 

commerce in a port or strategic chokepoint, such as the Strait of Hormuz where the USS 

Samuel B. Roberts was operating. The low cost and advancing technology of naval mines 

makes them particularly well-suited for A2/AD applications. The United States must 

possess the ability to rapidly and covertly map and neutralize a minefield in order to 

assure access and ensure the free flow of maritime trade in the global commons. The 

present means of mine countermeasures largely reside on surface ships and are neither 

covert nor rapid. Autonomous underwater vehicles (AUV) have the ability to map the 

environment in a covert manner that does not necessarily require an overt presence. They 

do not require real time human control and are difficult to detect. Multiple AUVs permit 

a wider area to be searched and mapped more efficiently than any present means. The use 

of multiple AUVs will be required to keep minefield mapping and clearance both covert 

and efficient. At present, the use of AUVs in minefield mapping is in its infancy and 

AUVs lack the ability to collaboratively complete a mission; each vehicle would operate 

essentially independently. Recent research has enabled multiple AUVs to begin 

coordinating their efforts. This body of research has significant operational value for 

undersea operations.  
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B. PROBLEM STATEMENT 

The underwater environment presents significant challenges to both navigation 

and localization since the vehicles must operate without the benefit of the global 

positioning system (GPS). This environment necessitates a more accurate means of 

navigation for AUVs to ensure that they can remain underwater and undetected. 

Obtaining a GPS fix for an AUV is a highly inefficient part of the overall mission profile 

as it necessitates the AUV rising from deep water, loitering on the surface where the 

threat of collision or counter-detection is greater, submerging back to its programmed 

search depth, and reacquiring its position with respect to the underwater environment. 

Underwater beacon systems have been developed and fielded, but deployment of these 

beacon fields requires both prior warning and time that may not be available. AUVs must 

have the ability to localize their position without the need for external navigation aids. 

The development of simultaneous localization and mapping (SLAM) [2] allowed 

autonomous vehicles to both localize their position and map their environment at the 

same time. This field provides a major operational capability for accurate underwater 

navigation and mapping. Many of the Navy’s undersea warfare missions would benefit 

from advances in SLAM, including mine countermeasures. Research into SLAM 

algorithms has exploded in recent years as researchers and end users search for a way to 

make these robots reliant on their onboard systems only and make them more capable to 

accurately navigate in difficult terrain and environments. However, only a small 

percentage of the field has tried to solve the problems of multiple AUV coordination in a 

SLAM environment. Collaborative SLAM between multiple AUVs permits improved 

coverage, greater accuracy, and faster, more efficient operations. In the given minefield 

mapping scenario under current employment constructs, a fleet of AUVs tasked to map a 

minefield would be operating in the same space, but independently. The reduction of 

their position uncertainty from either SLAM or a GPS fix cannot be shared with other 

vehicles for their benefit. The ability for a single AUV to share its position, or state, 

information following a reduction in its position uncertainty, whether through a GPS fix 

or through SLAM, with the other AUVs conducting SLAM operations would prolong 
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submerged operations and minimize disruptions to mapping operations while potentially 

improving the overall quality of the maps produced.  

This thesis will consider the role of acoustic communications in multiple-AUV 

operations. Multiple-AUV SLAM (MVSLAM) is the ability for multiple AUVs to 

simultaneously conduct SLAM operations and share their information with other AUVs 

to improve the overall performance of the group. This thesis will explore the value of 

acoustic communications to MVSLAM in reducing position uncertainty, and tangentially, 

map accuracy. Since the acoustic communications present a real threat to counter-

detection, this thesis will heuristically balance performance improvements with tactical 

security considerations. It will explore strategies for minimizing communications while 

maintaining navigational accuracy.  

Tactical security concerns, an issue unique to the military, will underpin this 

thesis to ensure that the developed solution keeps with the strong desire to remain covert 

and undetected. This viewpoint is conspicuously absent from the present body of research 

and will be a major contribution to it. Current approaches rely on frequent 

communication between vehicles to pass information; whether it is position information, 

maps, or command and control functions is immaterial. The frequencies of the acoustic 

modems used in this thesis will propagate, under typical sound conditions, omni-

directionally for several kilometers and correspond to frequencies that active sonar 

intercept receivers can detect. Minimizing the number of messages required to be 

transmitted and the intervals at which they need to be transmitted directly correlate with a 

reduction in the probability of counter-detection.   

C. APPROACH  

The overall objective of this thesis is to adapt the Second Generation Incremental 

Smoothing and Mapping (iSAM2) algorithm [3] for use in multiple-AUV SLAM. To 

accomplish this, this thesis will be organized as follows. Chapter II will describe the 

equipment used in this research and review the literature of sound propagation in 

seawater and acoustic ranging and localization methods. Chapter III will review current 

approaches to MVSLAM, the fundamental mathematics behind position uncertainty in 
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robotics, and provide a detailed description of iSAM2. Chapter IV will discuss the 

development of a hybrid approach to MVSLAM using the mathematical concept of a 

Bayesian inference coupled with a novel use of acoustic communications to reduce 

position uncertainty. We will show that this solution can be applied to n-number of 

AUVs. Chapter V will validate these changes through simulation, along with an 

exploration of the value of acoustic communications to MVSLAM. Tactical security 

considerations will be heuristically incorporated. Chapter VI will discuss the major 

results, contributions, and conclusions from this work, as well as propose significant 

areas for future work.  
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II. ACOUSTIC COMMUNICATIONS AND RANGING 

Communication is fundamental to the success of MVSLAM operations. In the 

underwater environment, only acoustic communications have the necessary range to 

enable communications between vehicles. Underwater communication is challenging 

because of the highly uncertain nature of sound propagation, the low data rate in the 

communications channel, and the significant losses the signal incurs during interactions 

with water molecules. Despite these challenges, understanding how acoustic rays 

propagate through the water provides information that can be used in improving 

navigational accuracy. This section will discuss the equipment used in this thesis, the 

propagation of sound in the ocean, and a method of acoustic ranging.  

A. MODIFIED REMUS-100 AUV 

This thesis exclusively utilizes the Hydroid REMUS-100 AUV for SLAM 

operations. NPS owns two REMUS AUVs and has modified them extensively to support 

various research aims. This section will detail both the general characteristics of the 

REMUS 100 AUV as well as the specific modifications that NPS has made to the 

vehicles. Figure 1 shows the NPS REMUS AUV during a photo opportunity during the 

National Aeronautics and Space Administration (NASA) Extreme Environments Mission 

Operations (NEEMO) off the coast of Key Largo, Florida, in September 2013. The 

mission used the REMUS vehicles to map a simulated asteroid environment and a 

tethered hovering AUV as a guidance and astronaut-assistance platform.  

 



Figure 1. Two NASA astronauts hold the NPS-modified REMUS 100 AUV 
during a photo opp01tunity at the Aquarius Reef Base dm1ng the NEEMO 

mission off the coast of Key Largo, Florida, in September 2013. 

The REMUS 100 is a man-p01iable, lightweight AUV designed primm·ily for 

smvey-type operations. Table 1 outlines the basic specifications. 

Table 1. Specifications and operating characteristics of the NPS-modified 
Hydroid REMUS-100 AUV with the Blue View f01ward looking 

sonm· and cross body thmsters attached. 

Specifications ofthe REMUS-100 AUV 

Length Approx. 8 ft 

Diameter 7.5 in 

W eight 95 lbs 

Maximum Depth lOOm 

Speed Up to 4.5 kts 

Endurance 8-10 hours 

6 
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The REMUS 100 is a highly modular system that can be easily customized to 

complete a wide variety of underwater tasks. For the type of research that NPS conducts 

with these vehicles, we have the following sensors and systems installed: 

 Kearfott KN-6051 SEADeViL inertial navigation system (INS) with a 
Doppler Velocity Log (DVL) and GPS 

 Fore and aft cross-body thrusters from Hydroid  

 Woods Hole Oceanographic Institute (WHOI) Acoustic Micromodem 

 YSI CT-600-XL Conductivity-Temperature-Depth (CTD) Sensor 

 Marine Sonic Technology, Ltd. Side Scan Sonar 

 Teledyne BlueView MB2250 3D Microbathymetry Sonar 

 Teledyne BlueView FL450X 2D Forward Looking Sonar (FLS) 

 Acoustic Doppler Current Profiler (ADCP) 

The remainder of this section will describe the INS, acoustic modem, and forward 

looking sonar in greater detail since they are fundamental to this thesis.  

1. Kearfott KN-6051 SEADeViL INS 

The KN-6051 is a military-grade INS that combines inputs from onboard sensors, 

such as the DVL, with external measurements from GPS when they can be acquired. The 

ring laser gyro-based system has an overall accuracy of 0.5% error per unit distance 

traveled. This equates to a 5-meter error per kilometer. This error is in terms of the 

circular error probable (CEP) rate, which translates to a 50% probability of being within 

that circle. For heading, the INS is accurate to 5 mils, or 0.28 degrees. The GPS, with 

DVL aiding, is only accurate to a 10-meter CEP [4]. However, since it is an external 

position source, it is a community standard practice to assume no error in that position 

and take it as truth.  

2. WHOI Acoustic Micromodem 

WHOI developed this acoustic micromodem for their research purposes and it has 

quickly become an industry-leading piece of equipment. The device requires very little 

power. It idles and receives at approximately 158 mW on the 12V system, and requires 

less than 100 W for a five second burst transmission—very low power. The modem 
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transmits at approximately 25 kHz. Acoustic communications in seawater are very low 

data rate channels compared to electromagnetic or radio communications in air, and are 

on the order of bytes to a few kilobytes per second [5].   

3. Teledyne BlueView FL450X FLS 

The sonar systems installed come as a specially-engineered module from 

Teledyne BlueView to include both the FLS and microbathymetry sonar in the same 

housing. Since this thesis does not require the use of microbathymetry information, we 

will discuss only the performance of the FL450X FLS. The sonar operates at 450 kHz 

and has a field of view of 130 degrees horizontally and 45 degrees vertically. The sonar 

can detect objects in this field of view out to 280 meters, but between 5–100 meters is 

optimal. The object detection software supplied with the sonar can detect objects with an 

accuracy of 1 m in the range direction and 1.2 degree accuracy in bearing [6].   

B. SOUND PROPAGATION IN THE OCEAN 

1. Overview  

The ocean is an incredibly complex environment and sound propagation in the 

ocean can be exceedingly difficult to model and predict. Simplifications and assumptions 

about sound propagation in one area of the world may not hold true for another area 

simply based on physical conditions such as bottom type, presence of biological 

organisms, salinity content, and more. However, basic models of sound propagation and 

sound speed equations will function adequately over the limited physical ranges that 

multiple-AUV SLAM will encompass. This section will discuss the basic mechanisms of 

sound propagation, the factors that influence sound speed, and the factors affecting 

transmission loss from a radiated source. 

2. Sound Speed 

Three principle factors govern sound speed in water: salinity, pressure, and 

temperature. In the littoral waters where minefields would likely be placed, salinity and 

temperature dominate the sound speed profile. Pressure does not normally affect the 

change in sound speed until the depth is below the main thermocline, which generally 
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occurs only in deep water. Several researchers have attempted to create an equation to 

predict the speed of sound in seawater. The equation developed by Del Grosso [7] and 

updated by Dushaw et al. [8]7 has been accepted as the most accurate and useable 

equation by the acoustics community. Equation (2.1) shows the Del Grosso equation with 

the modifications from [8]. The numerical constants (Cxx) for each term are provided in 

Appendix A. The physical properties are measured in degrees Celsius for temperature 

(T), parts per thousand (ppt) for salinity (S), and kg/cm2 (gauge) for pressure (P).  

000

000

2 3
1 2 3

3
1 2

2 3
1 2 3

2 2 2 3
2 2 2 3

3 2 2 3 2
3 2 2 2 2

[ / ]

1402.392

...

STP T S P STP

T T T T

S S S

P P P P

STP TS TP T P TP TP

T P S P T S TS P TSP

C m s C C C C C

C

C C T C T C T

C C S C S

C C P C P C P

C C TS C TP C T P C TP C TP

C T P C S P C T S C TS P C TSP

        


   

  

   

      

   

 (2.1) 

The equation performs extremely well in both deep and shallow water. Reported 

accuracy, verified in [8], shows the equation to be accurate to within 0.3 meters per 

second (m/s) with a standard deviation of 0.05 m/s across the range of likely input values 

for temperature, salinity, and pressure. Equation (2.1) will be used onboard the REMUS 

vehicle to calculate sound speed as sensor measurements become available for the 

purpose of acoustic ranging.  

3. Sound Propagation in the Ocean 

In an isovelocity sound profile, sound propagates linearly and spreads in a 

spherical manner until it interacts with a boundary layer, such as the air-ocean or ocean-

bottom interfaces. However, isovelocity sound profiles are unlikely to exist in a dynamic 

ocean environment; and therefore, the sound propagates in a curvilinear manner, 

refracting incrementally as governed by Snell’s Law, given below in Equation (2.2), 

where c is the sound speed in a given layer and   is incident angle of the sound ray [9], 

[10]. The curvilinear behavior results from incremental changes in temperature, pressure, 



and salinity in the vettical water column, as a qualitative examination of Equation (2.1) 

shows. 

Figure 2. 

cos 81 cos 82 --=-- (2.2) 

Depiction of Snell's Law where c1 and c2 are the sound speeds in the 

given water layer and 81 and 82 are the grazing angles of the acoustic rays 

from the horizontal plane dividing the two water layers in question. 

Figure 2 and Equation (2.2) show the relationship between how changes in the 

speed of sound in the vett ical water column produce cmv ilinear ray propagation. Figure 3 

shows how sound propagates horizontally for several non-isovelocity sOlmd speed 

profiles. 

10 
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Figure 3.   A collection of sound propagation plan views for varying sound speed 
profiles, from [11]. 

Over the ranges that AUVs with the WHOI acoustic modem can communicate, 

the propagation paths will be either curvilinear direct path, with no boundary interactions, 

as would likely be the case in deep water, or will reflect off the bottom, surface, or both, 

resulting in greater losses and shorter ranges, as we would expect in a very shallow water 

littoral environment. Snell’s Law provides a convenient way of thinking about sound 
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propagation at the conceptual level, but the formula does not capture sufficiently the 

complexity of the propagation. The differential equation form, independent of frequency, 

can be iteratively solved through computer-based numerical methods, such as finite 

element analysis.  

 

Figure 4.   On the left (a), the canonical Munk sound speed profile, ending at 100 
meters depth. On the right (b), the ray trace diagram from a source radiating 

omni-directionally in (a) at 30 meters depth with no accounting for 
transmission losses. The red and blue rays simply indicate whether the initial 

transmission angle was above or below the horizontal plane [12]. 

Figure 4 shows how busy the acoustic picture can become with an 

omnidirectional source radiating in the ocean at a given depth. Each ray shown is an 

individual ray transmitted from the source at a specified angle. The sum of these rays 

reflects the behavior of an omnidirectional source. The ray traces provide no information 

regarding the strength of the acoustic signal at any point since transmission loss varies 

with multiple parameters. Since the degradation of an acoustic signal and the length of 

time it takes to propagate from the source to the receiver are of vital interest to this thesis, 

a discussion of the sonar equation and its subordinate loss terms is therefore warranted. 

Additionally, Figure 4 provides an initial insight into the uncertainty that we face in 

developing acoustic ranging equations, given the inability to know which ray we 

received, how that particular ray interacted with the ocean bottom and surface, or how the 



local effects of the seawater it passed through affected it, to name a scant few of the 

variables at play here. 

4. The Passive Sonar Equation 

In its simplest form, the passive sonar equation relates the received signal level to 

the level required for signal detection and is generally rep01i ed in decibels (dB), 

referenced to 1 j.lPa in seawater. I From somce to operator, the signal lmdergoes a 

number of losses. For ease of representation, we present them in a tabular f01mat in Table 

2. 

Table 2. The major te1ms of the sonar equation and their defmitions [9], [10]. 

Parameter Symbol Description 

SL Somce level: the radiated intensity of 

the acoustic somce, referenced to 1 

yard from the somce, by convention. 

TL 

NL 

DI 

DT 

Transmission losses: includes 

spreading and attenuation, one-way 

Noise level: includes ambient and self-

noise at the receiver 

Directivity index: the ability of the 

anay to detect the signal 

Detection threshold: the ability of the 

system to detect the signal 

I All signal values in the remainder of this paper will be referenced to 1 JIPa in seawater, so we shall 
drop the additional text. 

13 
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These terms combine to form the passive sonar equation [10]:  

 SL TL NL DI DT     (2.3) 

The right hand side of Equation (2.3) relates the technical performance of the 

sonar system in its immediate environment, in this case the acoustic modem receiver on 

the AUV in seawater. The detection threshold and directivity index, closely tied to signal 

processing, are immaterial to this thesis and will not be discussed further. The noise level 

consists of the noise at the receiver, which comes from two parts: first, the self-noise 

within the receiver itself, and, second, the ambient or background noise at the receiver 

from biologics, shipping, seismic movements, weather, etc. At the frequency of the 

WHOI acoustic modem, 23–27 kHz, the background noise is primarily wind-driven with 

some biologic activities [13]. The source level of the WHOI acoustic modem is a fixed 

quantity related to the 100W transmission power, which equates to approximately 190 dB 

[5]. The remaining term, transmission losses, consist of spreading and absorption effects 

and losses at the boundaries. They will occupy the remainder of this section since they 

drive the operating range of the acoustic modem and form the core of acoustic ranging 

methods.  

5. Spreading and Absorption 

Sound radiates from the acoustic modem in a roughly spherical manner until it 

interacts with a boundary layer, whether the surface or the bottom. While travelling, each 

of the rays follows a curvilinear path as previously discussed in Section II.B.3. If, at the 

point of transmission, we consider the acoustic message to be a sphere with a finite 

amount of energy, the energy at the wave front decreases proportionally to the increase in 

the surface area of the sphere, which can be approximated as the square of range (r). The 

same amount of energy must cover this larger area and thus the intensity weakens. 

However, if we assume that we are operating in shallow water and that the acoustic 

transmission will interact with a boundary layer, the spreading becomes cylindrical and 

reduces the loss rate, in dB, by half, as shown below [10]. 
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 Absorption results from three separate phenomena: shear viscosity, ionic effects, 

and pressure (depth). Transmission loss due to absorption is substantially worse in 

seawater than in pure water due to the ionic equilibria. We need not dive into each 

phenomenon in detail, but the cumulative effects of absorption at the frequency of 

interest amount to 5–10 dB per kilometer, assuming a constant pressure (depth) and 

depending on the temperature and salinity of the seawater [10].  

6. Losses at the Boundary Layer 

As Figure 4 showed, a sound signal from the acoustic modem can reflect off the 

surface and bottom multiple times before reaching a receiver. Each of these bounces will 

incur losses. At the air-ocean interface, nearly all the sound is reflected, vice transmitted 

through the boundary, so the loss is smaller, though rough surfaces can result in 

additional losses from scattering. At the ocean bottom, the losses are governed primarily 

by Snell’s Law, including the ray grazing angle ( ) , sound speed (c), and the density 

( ) of both the ocean floor and water layer directly above it [14]. 
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 (2.5) 

The porosity of the ocean bottom and the grazing angle drive the losses, with 

additional input from the sedimentary layers, surface roughness, presence of biological 

materials, air bubbles, and other attenuation effects. Providing a single, shorthand 

calculation, as we did for cylindrical spreading losses, is not possible. However, Urick 

[10] reports that bottom losses can range from 0–30 dB per bounce.  
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C. ACOUSTIC RANGING, ONE WAY TRAVEL TIME 

One-way travel time (OWTT) is the most widely accepted model for acoustic 

ranging in the field today [15]-[19]. This method reduces the complexities presented in 

the preceding sections into the standard kinematic formula of speed multiplied by time. 

The advances in the field have largely revolved around the timing aspect of the equation, 

through characterization of precision clocks, as in [17], and the programmatic and 

algorithmic details of reducing uncertainty in the actual time of flight (TOF) 

measurement. Discussions of the sound speed aspect of the equation have remained 

largely unaddressed, with researchers assuming an isovelocity sound speed profile and, 

therefore, straight line, vice curvilinear, ray paths. These ranges underestimate the actual 

range because of the effects of Snell’s Law as previously discussed. However, the 

accuracy is within acceptable margins (<1 m) for the range of interest and the 

calculations are not computationally expensive to run, so the OWTT framework makes 

logical sense. Accounting for transmission losses in acoustic ranging explicitly adds 

several orders of magnitude in difficulty given the variability of the factors to weather, 

geography, salinity, bottom type, etc., and therefore will not be addressed in the OWTT 

formula or further in this thesis.  

The OWTT equation will be calculated using the standard kinematic formula: 

 ( )sound arrival transmissionRange V t t   (2.6) 

Calculating the time of flight will be accomplished through the timestamps that 

the WHOI acoustic modem applies to the incoming and outgoing messages. The speed of 

sound will be calculated from the corrected Del Grosso sound speed equation discussed 

in Section II.B.2 using measurements from the onboard CTD sensor. In terms of 

uncertainty calculations, empirical testing of the clocks onboard the REMUS vehicles at 

NPS indicates no clock drift over eight hours. Similar results from [16], [17], [19], and 

[20] validate this conclusion. Therefore, we will neglect any uncertainty added from time 

synchronization issues. For the uncertainty of sound speed, the results from [21] that 

show the Del Grosso sound speed equation to have an assumed Gaussian distribution 

with a mean of 0.3 m/s and a standard deviation of 0.05 m/s, assuming perfect sensor 
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inputs for pressure, temperature, and salinity. To put the uncertainty into physical 

perspective, two AUVs 500 meters apart would see an acoustic range error of 0.0996 ± 

0.0332 meters to two standard deviations (2 ) . Integrating this equation into the system 

model needed for MVSLAM will be done in Section IV.  

This section presented the equipment used in this thesis, reviewed sound 

propagation in an ocean environment, and discussed a simple, widely-used technique for 

acoustic ranging. We can use the highly uncertain nature of sound propagation to help 

reduce position uncertainty in an AUV. The implementation of that concept is the focus 

of both the existing SLAM literature and algorithms, presented next in Section III, and in 

the proposed use of acoustic communications for navigational accuracy developed later 

in Section IV.  
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III. SIMULTANEOUS LOCALIZATION AND MAPPING 

This section builds the case for probabilistic robotics from first principles by 

examining adaptation of stochastic elements into traditional control system formulations. 

It will then discuss, in depth, the development of iSAM2, the SLAM algorithm used on 

the REMUS vehicles at NPS, and will illustrate the performance of the algorithm with a 

small example. iSAM2 will play a foundational role in the development of a distributed, 

collaborative SLAM framework in Section IV.  

A. INTRODUCTION 

1. Position Uncertainty in Robotics 

Smith, Self, and Cheeseman [22] first postulated positioning in robotics as a 

stochastic, rather than deterministic, problem. This fundamental shift in perspective 

allowed engineers and scientists to incorporate positional uncertainty in the design of the 

robotic system instead of simply coping with the degradation in quality that could result. 

The incorporation of probability into this process stems from the realization that no 

sensor or system is perfect in its sensing or movements, respectively. For example, with 

the REMUS 100 vehicle, the BlueView forward looking sonar can only sense objects to 

an accuracy of 0.1 meters in the range direction and 1.2 degrees in the bearing direction. 

The onboard control system can command the electrical motor to spin the propeller at 

2500 RPM, but the known and unknown characteristics of the system may result in the 

propeller only spinning 2480 RPM, for example. The difference results in slightly less 

speed, which forces the uncertainty about the vehicle’s position to grow. The 

mathematical representation of a system expanded from the dynamics model to include a 

system covariance matrix that shows the probabilistic relationship between the state 

variables.  

To ground the work, we discuss the approach to SLAM algorithms from its roots 

in control systems theory. In Equation (3.0), shown in the canonical discrete state-space 

form, the first row constitutes the system process or dynamics model, and the second the 

measurements by the system [23]. These are matrix equations resulting in assumed linear 



 20

relationships. The position at the next time step, 1kx  , is a function of the dynamical 

model, such as dead reckoning navigation of an AUV, with additive noise k . Unless 

explicitly known to be otherwise, all system noise is assumed to be independent and 

identically distributed (i.i.d.), zero-mean and Gaussian, also known as Gaussian white 

noise. The measurements of the system, kz , from acoustic ranging via a beacon, for 

example, are also subject to Gaussian white noise .k  An illustration of this in the 

context of SLAM will be beneficial.  

 1k k k k

k k k k

x x

z H x




   
 

 (3.0) 

2. Sources of Uncertainty 

The combination and propagation of the process and measurement noise, k  and 

k  respectively, results in a probabilistic distribution of the vehicle’s position. That 

distribution is assumed to be Gaussian since all components of the uncertainty terms are 

Gaussian as well. The vehicle has a calculable probability of being at a given point from 

the mean position. The same can be applied to the position uncertainty of landmarks. For 

ease, we define the position uncertainty (PUC) as a Gaussian ellipsoid and it is the 

graphical estimate of the position uncertainty of the vehicle at a given time. The ellipsoid 

can be projected onto the horizontal plane, as an ellipse, to show the area that the AUV 

may be in. We assume that all ellipses represent a 95% probability (two standard 

deviations) of being inside the ellipse. The PUC size changes over time as the errors 

compound.  

From an inertial navigation-only perspective, the PUC will grow over time as the 

errors in the INS compound. These errors stems from the engineering tolerances of the 

gyros and accelerometers in the INS, the ability to precisely sense the position of the 

inertial measurement units or motion of the accelerometers, and the precision with which 

the software can extrapolate the estimated position from that noisy data. The inputs into 

that calculation, such as the commanded vehicle speed, gyrocompass heading, the current 
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data from the ADCP, etc., all introduce additional errors. The magnitude of the error for a 

given time step is relatively constant, usually varying with physical parameters, such as 

current, but over time, those errors are additive. For the Kearfott INS installed on the 

REMUS, the error can be summarized as approximately 0.5% per distance traveled, as 

previously stated. In Equation (3.0), these uncertainties manifest in the k  term.  

Since we will be examining SLAM, which relies on the ability of the vehicle to 

sense environmental features, the errors within the sensing systems must also be 

considered. For example, a forward looking sonar mounted on the front of the AUV 

provides image data up to 5 Hz relative to the AUV’s position. A detection and tracking 

procedure can be used to resolve the relative bearing and range to the vehicle’s nose. That 

procedure will have uncertainty associated with it, manifesting as uncertainty in bearing 

and range, which can be transformed to the AUV’s local coordinate system for 

incorporation. The errors from the sensing equipment reside in the k term of Equation 

(3.0). A small example in the next section provides additional insight into this area.  

3. SLAM as a Stochastic Process 

SLAM, as the name suggests, is the ability to map an area and navigate off of that 

map in real time. With the implementation of SLAM onto a mobile robot, we can 

consider the robot conducting two primary evolutions to accomplish this: sensing the 

environment and movement within that environment. In some robotic applications, the 

robot must stop to sense, while in others, such as underwater, the vehicle is continually in 

motion while sensing, to include hovering or station-keeping. However, the discretization 

of the latter case removes the complications associated with that motion.  

Using the REMUS vehicle as an example, we can see how these probabilistic 

relationships function in a SLAM environment. The REMUS vehicle uses a twelve 

variable state vector, or pose (x), in Equation (3.1) that provides six degrees of freedom 

in movement since it contains both linear (x,y,z) and angular ( , , )    position and rates 

(u,v,w for linear, and p,q,r for angular). The associated covariance matrix, or relationship 



between each of the state variables, is, by defmition, a 12xl 2 matrix. Or more generally, 

an n-dimensional state vector will have an n-by-n covariance matrix, ~(x). 

X cr2 
X 

y cr2 
y 

z cr2 
z 

u cr2 
u 0 

v cr2 
v 

w 2 

X = ~(x) = 
crw (3 .1) 

¢ cr2 
¢ 

e cr2 
8 

If/ 0 cr2 
'I' 

p cr2 
p 

q cr2 
q 

r cr2 
r 

The off diagonal tenns in the covariance matrix represent the cross-con elation 

between the individual state variables. 

The robot begins by sensing a landmark from its cunent position. At this point, 

the robot has defined a PUC, as indicated by the red circle in Figure 5. 

Feature 

FLS Measurement and En or 

AUV 

Direction of Motion 

Figme 5. The robot, with a finite PUC, senses a landmark and takes a sensor 
measurement. The uncertainty of the feature and the AUV are the blue ellipse 

and red circle, respectively. 
22 



The sensor measm ement of the landmark will have llllCeiiainty associated with it, 

as previously stated. In the simplest sense, the enor from the measmement of the 

landmark can be superposed onto the vehicle and combined with the vehicle 's cunent 

PUC through a Bayesian inference to produce a new PUC. The mathematical 

implementation of the Bayesian inference will be covered in Section IV. C. I. The vehicle 

then moves and takes another measm ement of the same landmark, shown in Figm e 6. 

) 

Figm e 6. The robot, with an updated PUC, has moved a fixed distance and takes 
a measm ement of the same landmark. The initial PUC is in light red for 

compan son. 

The incorporation of the sensor measm ement is again superposed onto the vehicle 

and algorithmically combined to f01m a new PUC measm ement. In Figme 7, we see the 

result after the second time step. 
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Figure 7. After two measurements of the same landmark, the robot 's PUC, the 
red ellipse is substantially smaller than it was at the beginning. The initial 
ellipse is in light red to show the reduction. The updated uncertainty of the 
feature is shown as the light blue ellipse, and is markedly smaller than the 

initial, shown in dark blue. 

We can see visually that using sensor measurements of environmental features 

allowed us to reduce the AUV's PUC significantly. Simultaneously, all measurements of 

the feature are integrated through a Bayesian inference or other statistical methods. The 

resulting positionallmceiiainty of the AUV and the feature is smaller than if only a single 

measurement had been taken. The end result of the SLAM process is that the AUV has 

constrained its navigational unce1iainty, which improves map accuracy, while creating a 

map of the environment. 

This simple example showed the basic process for SLAM. The effects on each of 

the twelve individual state variables may or may not be related to the SLAM process, 

depending on the inf01mation obtained with the measurements. In most implementations 

in the unde1water environment, the SLAM process only affects linear position in the 

horizontal plane ( x, y ) and heading (If/ ) . The rest of the state variables are generally a 

function of the vehicle control systems and physical system design. For notational 

convenience, they will be 01nitted going f01ward in this thesis. 

This example also highlights the challenges associated with SLAM. While not 

discussed in the context of the example, several other algorithms are vitally imp01i ant for 

24 
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SLAM operations. First, the detection and tracking of features is not an exact science, as 

discussed in Section III.A.2. Increasing the performance of that algorithm will improve 

navigational and map accuracy. Second, this example assumed the ability to 

unambiguously differentiate between features. Only one feature was presented in this 

example, but features may appear close together and associating measurements with the 

correct feature is crucial to ensuring stable algorithm performance and maintaining map 

accuracy. This process of correlating measurements with features is known as data 

association. Lastly, the ability to return to a previously detected feature and recognize it 

as previously detected is known as loop closure. Loop closure is a vital aspect of making 

SLAM algorithms with operational utility.  

4. Optimal Estimation 

Rudolf Kalman’s [24] seminal paper in 1960 proving the optimality of his new 

linear filter opened a new field known as optimal estimation, in which we attempt to 

estimate uncertain processes such as AUV motion. Kalman filters assume the system is 

linear and the noise is Gaussian i.i.d and optimally balance the dynamic uncertainty 

inherent in process and measurement models. The linear Kalman filter has spun off into 

several new fields of filtering: particle filters, extended Kalman filters (EKF), which 

considers non-linear motion, extended information filters, and smoothing filters, to name 

a few of the major ones. Most robotic systems use an EKF, or a variant thereof, in SLAM 

for computational efficiency. But some, such as the filter implemented on the NPS 

REMUS vehicles, use a smoothing filter.  

EKFs consider the information at a given time step, with all previous information 

summarized in the prior state estimate. The EKF incorporates any sensor measurements 

and linearizes the equations of motion at the current time step to produce a updated 

estimate of the robot pose. Smoothing filters, on the other hand, consider all prior 

information at each time step without summarizing. While they have historically been too 

computationally inefficient for most real time applications, faster smoothing filters have 

emerged concurrently with processing power and hardware advances, iSAM2 being one 

of them. Using iSAM2 provides a more accurate estimate than a traditional EKF-based 
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SLAM approach since it revisits all previous estimates of features and navigation 

estimates at each time step, which is highly desirable in the underwater environment.  

C. INCREMENTAL SMOOTHING AND MAPPING 

1. Process and Measurement Models 

Developed by Kaess and Dellaert [3], [25], iSAM2 fulfills the core goals of any 

SLAM process: exactness and computational efficiency. An EKF, essentially a non-linear 

Kalman Filter, linearizes about a point at a given time step, which is then incorporated 

into the prior state estimate, unable to be changed in the future. iSAM2 provides for fluid 

variable relinearization, which seems complex, but is very efficient since in SLAM 

applications, the information matrix underlying the feature map that we are trying to 

linearize about is at all times sparse [25].2  

A SLAM process is affected by both the executed vehicle trajectory and a map of 

the features, which as previously stated, are both uncertain. Kaess starts with the 

assumption of a non-linear model and converts this into a least squares problem, which 

allows us to estimate all unknowns given the available measurements through a maximum 

a priori (MAP) estimate. We begin by stating that SLAM follows a basic process and 

measurement model, akin to the state-space model provided in Equation (3.0): 

 
x Ax Bu

z Hz




  
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 (3.2) 

 and   are the zero-mean, i.i.d. Gaussian noise associated with process and 

measurements, respectively. In this case, the A and B matrices, the equations concerning 

dynamics and control inputs, can be collapsed into a single function that describes the 

dynamic motion of the vehicle—the process model. The measurement equations can be 

similarly adjusted to account for the measurement of landmarks and the subsequent data 

association. Equation (3.2) thus reduces as shown below:  
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 (3.3) 

                                                 
2 All information and equations in this section, for subsections 1-5, are from [25] unless explicitly 

cited otherwise.  
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l  is the landmark that has been sensed and factors into the measurement model, z, 

of Equation (3.2). The explicit time dependencies of the system have been omitted for 

simplicity, known as discretization, but these equations do vary with time, and multiple 

landmarks can exist. 

2. Linearization 

 The construction of the MAP estimate through least squares requires the 

linearization of both the process and measurement models around the current estimates. 

We accomplish this through a Taylor series expansion of the two equations in Equation 

(3.3), which yields the resulting three Jacobian matrices.  
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 (3.4) 

These matrices are collected into a larger matrix A  along with a fourth special 

matrix,G , that allows us to not consider the dx
dx terms. These matrices are oriented in 

the A matrix as follows: 

 

0 0 0

0 0

0 0

0 0

G

F H
A

F H

J J

 
 
 
 
 
 

 (3.4) 

The least squares process can be qualitatively described as seeking the minimum 

of a given argument consisting of squared terms. In this case, the four Jacobian matrices 

and the navigation (process) and measurement prediction error terms, a and c , 

respectively, can be arranged to represent the least squares estimation problem: 
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1 1
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      
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   (3.5) 
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After some algebraic manipulation, it can be proven that Equation (3.5) reduces as 

follows:  

 
2* arg min A b


    (3.6) 

Equation (3.6) is now in the standard form for linear least squares (LLS) 

estimation, where   is the concatenation of the vehicle pose and the landmark variables 

and b  is the concatenation of the navigation prediction and measurement prediction 

errors. *  becomes the new prediction. This LLS problem can be solved using standard 

methods, such as QR factorization or Cholesky decomposition. Kaess opts for QR 

factorization since it paves the way for computationally easier incremental updates to the 

A matrix, which grows over time. The unique solution to the LLS problem is also termed, 

in this application, the square root information matrix (SQIM). iSAM2 updates the SQIM 

as new information becomes available. It gains efficiency by using the previous solution 

and only performing the calculations on the new measurements.  

3. Variable Reordering 

Variable reordering is a linear algebra technique that reorders the columns of the 

information matrix. Kaess applies it in blocks, each of which conforms to a single pose 

node or landmark [3]. This method reduces the duplication of landmarks if the robot 

revisits a previously sensed landmark, or closes the loop in community standard 

language. Failing to recognize loop closure events in SLAM problems leads to 

duplication of previously visited landmarks, and, for iSAM2 in particular, the appearance 

of non-zero entries in the R  matrix following QR factorization—a highly undesirable 

result. Kaess solves this problem through the application of a common linear algebra 

technique, column approximate minimum degree (COLAMD), to blocks in the R matrix 

that correlate to previous AUV positions and landmark positions.  

4. Process Results 

The process described in the preceding sections is conducted each time the AUV 

senses a new landmark. Additional measurements of the same landmark only provide 



amplifying inf01mation for an existing entry in the A mau·ix and thus are not added. The 

detection of a new landmark creates a new set of enu·ies for the LLS process: 1) the 

position of the landmark, 2) the consu·aint, or line, between the AUV position and the 

landmark, and 3) the vehicle position at the time of the first measurement. The latter 

entry is defined as a pose node in commlmity standard language. The LLS process solves 

the entire SLAM problem, consisting of all pose nodes and landmark enu·ies since the 

mission began. This adds the benefit of being able to linearize at each pose node instead 

of hy ing to choose a single linearization point for all previous data as an EKF would. 

5. Mathematical Example 

To provide additional insight into the inner workings of the iSAM2 algorithm, 

consider the simplified example provided in Section III.A.3, revised slightly for clarity. 

The evolution of the iSAM2 computations will be shown over the time step to show each 

process individually. We begin by applying a coordinate frame to Figure 8, with the AUV 

stmiing at the origin, with a f01ward velocity of u = 1 m!s, no side slip velocity, and 

heading 090°, along the x-axis. For simplicity, we have set the time increment,dt, at 25 

seconds. 

Figure 8. 

[50,10] 

[0,0] 

The example problem from Section III.A.3 now with a coordinate 
system overlaid. 
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After the first time step, the AUV is now at (25,0) and has detected the feature, 

shown in Figure 9. The sonar system identifies the feature and passes the inf01mation to 

iSAM2, which mns an algorithm called Joint Compatibility Branch and Bound for data 

association to produce an estimate of the feature 's position [26]. If the feature has not 

been previously detected, iSAM2 adds the feature to its feature database and stores the 

inf01mation. Subsequent sensor measurements of the feature reduce the position 

uncertainty of both the feature and vehicle. 

[50,10 

[25,0] 

Figure 9. AUV position after one 25-second time step. The AUV has detected 
the feature at [50,10] and made the pose to landmark constraint in iSAM2. 

iSAM2 solves the non-linear LLS problem to produce the estimate of both the 

AUV's traject01y, inclusive of all pose nodes, and all features detected. Graphically, this 

can be represented through a visual sparsity pattem plot, or spy plot, which shows which 

elements of a matrix have non-zero entries. In this example, we show the A and 

R mau·ices to show how QR factorization supp01is fluid variable reordering. Figure 10 

shows the spy plot for the A mau·ix with the two calculated pose nodes and measurements 

of the single landmark. Figure 11 shows the R mau·ix following QR factorization of the A 

mau·ix. 
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Figure 10.   The visual sparsity pattern of the A matrix after a single 25-second 
time step with one feature detected. 

 

Figure 11.   The visual sparsity pattern of the R matrix following QR factorization 
of the A matrix. Some of the entries may have changed during QR 

factorization as a result of applying Givens rotations to specific entries in the 
lower half of the A matrix. 
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The addition of a new measurement yields faster results when using incremental 

updating. Instead, as previously stated, of factoring the entire A  matrix gain, the new 

measurement is simply added to the bottom of the R  matrix and Givens rotations applied 

to make the new matrix, *R , upper triangular again. In this example, that savings in 

computational efficiency would not be noticed, but in larger data sets, this approach 

yields significantly faster results.  

 Unlike the qualitative example provided at the beginning of this section, 

recovering the uncertainty values to display them as an ellipse is not straightforward. 

Unlike an EKF, where the covariance matrix is clearly identifiable throughout the 

process, the uncertainty information is more hidden in iSAM2. In a small case such as 

this, we can recover the covariance information through from Equation (3.7). However, 

once the R  matrix becomes large, this equation becomes computationally burdensome 

and a different method must be used [27].  

   1TP R R


  (3.7) 

In this example, Equation (3.7) produces an 8x8 matrix with the following values. 

These show the covariance information associated with the vehicle pose estimates and the 

detected landmark. It should be noted that after one time step, the uncertainty here is still 

rather small and should not be viewed as typical, especially for underwater problems 

where.  

0.01 0 0 0.01 0 0 0.01 0

0 0.01 0 0 0.01 0 0 0.01

0 0 0.01 0.25 0 0.01 0.5 0.1

0.01 0 0.25 6.2695 0.0011 0.2497 12.5105 2.4989

0 0.01 0 0.0011 0.0171 0 0.0011 0.0129

0 0 0.01 0.2497 0 0.01 0.5003 0.1001

0.01 0 0.5 12.5105 0.0

0 0.01 0.1 2.4989
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 
  
 

  

 (3.8) 

While equation (3.8) looks cluttered, we are only concerned with, for this 

example, with the values in elements [1, 1] and [2, 2], which represent the position 
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uncertainty of the AUV in both x  and .y  The position uncertainty of the landmark is in 

the lower right quadrant. This information is highly valuable from a mapping perspective. 

This chapter discussed the algorithmic applications of managing the stochastic 

nature of robotics. It took a close look at the iSAM2 algorithm developed by Kaess and 

Dellaert [3], [25] and illustrated the algorithm with a simple example. NPS uses iSAM2 

onboard the REMUS AUVs for research work and the algorithm will be the primary 

platform for integrating information from acoustic communications for collaborative 

SLAM.   
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IV. COLLABORATIVE MULTIPLE AUV SLAM 

A. RECENT WORK  

We begin the development of an MVSLAM algorithm with a review of the recent 

literature focused on this area. The existing body of work can be loosely partitioned into 

five separate areas: centralization and hierarchy, beacon-aiding, cooperative SLAM, and 

dynamic SLAM.  

1. Centralization and Hierarchy 

Early approaches to the MVSLAM problem focused on creating a centralized 

solution onboard a single vehicle, as in [28], or a joint map between all vehicles with 

common nodes that facilitates cooperative loop closure, as in [29]. Moratuwage, Vo, and 

Wang [30] focus on the creation and communication of individual submaps, which can 

then be used by other vehicles for measurements or additional data association. Finally, 

Moratuwage et al. [31] proposes a single EKF SLAM algorithm for multiple vehicles.  

Alternate approaches began to emerge as researchers postulated highly 

decentralized MVSLAM solutions, which facilitated more efficient use of processing 

power and allowed each vehicle to maintain estimates of the whole group. These 

researchers began to embrace the difficulty of having all robots communicate with all 

other robots at each of the prescribed times. Leung, Barfoot, and Liu [32] propose a 

framework that creates a centralized-equivalent solution in a sparsely-communicating and 

dynamic environment. Nerurkar and Roumeliotis [33] explore creating centralized-

equivalent estimates in an asynchronous network. Bahr, Walter, and Leonard [34] 

explored the possibility of an individual vehicle utilizing a bank of filters to track 

measurements and cooperatively localize other vehicles through trilateration. Hua et al. 

[35] present a communications-heavy approach in which all robots share their local 

sensor data. All receiving robots can then process all information and arrive at the same 

estimates, increasing robustness to individual failures. Most recently, Walls and Eustice 

[36] reframe the problem in terms of client-server relationships and transmit poses to 

allow all client vehicles to reproduce central estimates, explicitly developed for highly 
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bandwidth-limited underwater communications. However, the authors note that their 

method does not solve for loop closure, making the approach impractical for our 

purposes.   

2. Beacon-Aided SLAM 

A classic approach to reducing position uncertainty, beacon systems can be either 

mobile or static and rely on precise position information which is supplied to robots 

through queries or constant communications. Ultra-short baseline (USBL) systems are 

very common implementations of beacon-aided navigation. This focuses on beacon-

aiding for SLAM operations and is most closely related to the work in this thesis in terms 

of algorithmic implementation of acoustic communications. Erol et al. [37] offers an 

approach whereby mobile sensors periodically ascend to the surface for a GPS fix and 

communicate their exact position upon descent to the other nodes in the network, which 

localizes all sensors in a multi-stage algorithm. Bahr, Leonard, and Fallon [38] provide 

another very similar approach; however, the communication between vehicles and the 

follow-on algorithm serve primarily for trajectory selection vice reducing position 

uncertainty. Bahr, Leonard, and Martinoli [39] present another very similar approach that 

seeks to use one vehicle as a dedicated beacon vehicle, surfacing at proscribed intervals 

and transmitting its position information to the rest of the network. Intra-vehicle range 

estimates complete the picture. This approach is the most related to the work of this 

thesis, but is not appropriate based on the required frequency of surfacing and acoustic 

communications being counter to the principles of tactical security.  

3. Behaviors and Cooperative SLAM 

This emerging branch of MVSLAM focuses on maximizing certain information 

or other parameters through vehicle orientations, trajectories, or even path planning. 

Stipes et al. [40] offers an approach to MVSLAM that utilizes distributed control 

algorithms to adapt individual robot behaviors in real time to maximize SLAM yields and 

improve robustness. Pham and Juang [41] propose an algorithm that disperses robots 

intelligently to achieve a prescribed minimum SLAM accuracy as well as adaptively 
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balance the needs of both localization and exploration in a communications-limited 

environment.  

4. Dynamic Features in SLAM 

Perhaps the most recent branch of SLAM research, dynamic problems refer to the 

alteration of maps over time, such as in warehouse inventory problems, or the tracking of 

moving targets. Traditional SLAM architectures only work with static features. 

Movement of landmarks would severely degrade system performance and potentially 

cause the operative SLAM algorithm to collapse. Lee, Clark, and Salvi [42] present a 

first-generation algorithm that can estimate both static and dynamic features in addition 

to the vehicle pose. They accomplish this through the use of probability hypothesis 

density filters and relate all features to the vehicle location at each time step. Abrate et al. 

[43] provides an approach that bridges traditional SLAM with the environments 

envisioned in [42] through the use of a map updating technique with the aim of long term 

mapping operations in the same physical location.  

B. PROPOSED APPROACH 

The current approaches to MVSLAM in the literature all rely on frequent 

communications between robots to alter behaviors, estimate the full state of a group of 

robots, or transmit precise positioning information from a position source such as GPS. 

While our proposed approach will be most closely related to beacon-aided SLAM 

operations, these approaches in the present body of SLAM literature are not appropriate 

for this work because of our explicit consideration of tactical security. We instead focus 

on minimum acceptable performance, not perfect or optimal performance, in order to 

minimize acoustic communications and vehicle surfacing, thus maximizing tactical 

security. Thus, if the individual SLAM solution is acceptable, the AUV will not 

communicate. This heuristically-evaluated cost function will rely on inferential solutions 

using Bayesian methods. Additionally, unlike many of the algorithms presented in the 

previous section, we do not require the compilation of a global feature map on all 

vehicles. We instead leave the construction of the global map to post processing, where 

planners can then decide how best to navigate through or neutralize the minefield.  
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The remainder of this section will proceed as follows. First, we will derive and 

demonstrate the principles and utility of a Bayesian inference. Second, we will discuss 

the value that acoustic communications can add in reducing position uncertainty. Finally, 

we will qualitatively describe and develop the algorithm that will produce updated 

covariance estimates and show that using acoustic communications as an additional 

measurement provides significant added value. Finally, we will discuss the performance 

metrics that will be needed to evaluate system performance. Simulation results and the 

analysis of algorithm performance will be reserved for Chapter V.  

C. INFERRING COVARIANCE 

In this section we discuss the application of a Bayesian inference as a way to 

reduce position uncertainty for n-number of AUVs. This section will present the relevant 

equations with supporting examples and provide first-order insight into the value of 

acoustic communications and ranging to uncertainty reduction, as well as explore the 

major factors that we must consider when using inferential methods.   

1. The Bayesian Inference 

Bayesian inferences use Bayes’ Theorem to update a probability estimate for a 

state as additional measurements are taken. Equation (4.1) shows Bayes’ Theorem, read 

as the probability of B given A is equal to the probability of A given B multiplied by the 

probability of A occurring all divided by the probability of B occurring. A and B can be 

any event that can be described by a probability density function.  

 
( | ) ( )

( | )
( )

P A B P A
P B A

P B
  (4.1) 

For the purposes of robotic mapping, we assume that our sensors have noise that 

can be approximated as a Gaussian or normal distribution about a given mean, μ, usually 

zero, with a specified covariance, σ2. The position uncertainty for an autonomous vehicle 

is initially assumed to be a Gaussian spheroid, which will iteratively change into a 

Gaussian ellipsoid as additional measurements of the surrounding environment are taken 

assuming linear dynamic and measurement models. The standard formula for a Gaussian 

distribution is as follows: 
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Qualitatively, a Bayesian inference makes an assumption about the likelihood of a 

given measurement being accurate through the use of a weighting formula that is then 

multiplied by the prior state. The following equations are evaluated using a two-

dimensional example, which closely approximates the problem at hand.  

 
( | ) ( )

( | ) ( | ) ( )
( )

P y P
P y cP y P

P y

      (4.3) 

  is the set of parameters that define the Gaussian distribution and y  is the 

measurement. The constant, c, is a normalization constant. Since we cannot measure the 

position of the AUV directly to estimate the updated state, we are instead interested 

primarily in the inferred covariance term, which we can feed back into the host AUV’s 

iSAM2 algorithm to reduce the closed loop position uncertainty. For clarity, the variance 

of the updated distribution, denoted as the covariance at time k+1 given the covariance 

matrices at time k, is expressed as a function of n-number of input covariance matrices:  
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 (4.4) 

a. A Numerical Example 

Consider a two-dimensional problem, akin to AUV localization problems, with 

two AUVs. Their positions are not relevant to the example, but they have the following 

covariance information at time k:  
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 (4.5) 

In this case, the first AUV has greater positional uncertainty than the second 

AUV, and would benefit from the second’s better localization. The first AUV needs to 
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reduce its positional uncertainty and has an acoustic communications link with the second 

AUV. The second AUV shares its covariance information at time k with the first. 

Ignoring, for the moment, the uncertain effects of acoustic communications, we can 

calculate the inferred covariance at k+1 using equation (4.4) and see how the application 

of a measurement reduces the value of the covariance matrix. Using Equation (4.4), we 

find:  
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 (4.6) 

These numbers signify the uncertainty in the x- and y-directions as well as the 

cross-correlation between them. The result in Equation (4.6) reveals a crucial point. The 

updated result is smaller than the two prior covariance matrices, which means that any 

measurement, regardless of the precision or presence of noise, will reduce the updated 

uncertainty.  

To further emphasize the utility of the Bayesian inference, we can think of the 

covariance in a visual manner. In a Gaussian distribution, the variance represents the 

expected value of the squared deviation from the mean. The square root of the variance, 

the standard deviation, can be viewed as a confidence interval—the probability that the 

true value lies within those bounds. One standard deviation on either side of the mean 

equates to a 68.2% confidence interval, two equate to 95.4%, and three to 99.7%. For the 

position uncertainty of an AUV, we choose a 95% confidence interval (2 )  to govern 

the size of the ellipse, meaning that the AUV has a 95% probability of being somewhere 

inside that ellipse at the given moment in time. Constructing the ellipse requires radius 

values for both the semi-major and semi-minor axes as well as the rotation angle from a 

standard Cartesian coordinate system. From Equation (4.4), the semi-major and semi-

minor axes are the square root of the entries on the main diagonal. We find the rotation 

angle as follows [44]: 
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Thus, from Equations (4.4) and (4.7) we can visually represent the position 

uncertainty for our example problem in terms of 95% confidence ellipses, as shown in 

Figure 12.   

 

Figure 12.   A priori 95% confidence ellipses for two AUVs centered at the origin 
in (a) and after the mathematical integration of the two through a Bayesian 

inference in (b) with the updated 95% ellipse shown in magenta. 

Figure 12 shows the benefit of this mathematical technique in terms of reducing 

the position uncertainty of an AUV. This example included two AUVs with covariance 

matrices aligned in generally the same manner. Altering the geometry to place these two 

ellipses perpendicular to each other will produce a much small updated ellipse, as we will 

see in the next section.  

2. Value of Acoustic Communications and Ranging 

This section will discuss the value of acoustic communications and ranging from 

the aspect of reducing position uncertainty. From the acoustic transmission we can gain 
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two independent measurements, with associated uncertainties, to reduce the position 

uncertainty of an AUV. These measurements constitute the creation of a temporary 

feature within the SLAM framework. First, the acoustic message contains the sending 

AUV’s state information, which includes position, heading, and position uncertainty 

(covariance). Second, the acoustic transmission, regardless of message content, has a 

known time of flight, which we can use to calculate range, as discussed previously in 

Section II.C. While the WHOI micromodem does not have the ability to discern bearing 

from incoming messages, we can make a few well-founded assumptions about the nature 

of acoustic communications to exploit the additional measurement from acoustic 

transmissions.   

For short-range navigation and tracking applications, many different industries 

use an ultra-short baseline system, which consists of a transceiver and transponders that 

track vehicles using acoustic transmissions. Most commercial USBL systems are accurate 

to within 0.2% for a slant range from the transponder to the AUV and within 0.1 degrees 

in bearing, out to several kilometers. That bearing accuracy, already obtainable in 

multiple commercial systems, will be the core assumption needed to extract the acoustic 

transmission measurement. We will make similar assumptions with respect to using the 

acoustic modem in creating a temporary feature.  

From the acoustic message we can ascertain the bearing of the acoustic 

transmission by finding the range and relative bearing between the two AUVs. Using the 

calculated TOF and error from the DelGrosso sound speed equation, we can determine 

the error in range as follows, where rand indicates a randomly selected value from a 

Gaussian distribution to account for the uncertainty.  

 
 
 0.3 0.05

range ss ss

range

rand TOF

rand TOF

  



   

   
 (4.8) 

Assuming a bearing accuracy of 0.1 degrees, we can finish constructing the 

covariance matrix to characterize the uncertainty of an acoustic transmission:  



 43

 
 2 2

2 2

0 0.3 0.05 0

0 0 0.1
range

acomms
bearing

rand TOF


     
     

    
 (4.9) 

a. Numerical Example Revisited 

Returning to the example from the previous section, we can show the effect of 

incorporating this second measurement. Using a baseline sound speed of 1506.16 m/s, we 

add a measure of Gaussian uncertainty from the parenthetical expression in Equation 

(4.8) , 0.343 m/s, for a final sound speed of 1506.503 m/s.3 If we assume the two AUVs 

are 1000 meters apart and bear 45° relative to each other, we calculate a TOF for the 

acoustic transmission of 0.6637 seconds. We apply the sound speed uncertainty and TOF 

to equation (4.9) to produce a covariance matrix for the acoustic measurement, in polar 

notation: 

 
0.1511 0

0 0.01acomms
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 (4.10) 

We now apply Equation (4.4) for the three matrices, the two from the previous 

section and the acoustic covariance matrix just derived, after rotating by the relative 

bearing, matrix R, to find the covariance at time k+1. Since acoustic communications 

adds additional information to the measurement (the position of the second AUV), the 

acoustic communications covariance matrix will add to the second matrix, as shown in 

Equation (4.11). Equation (4.12) shows the numerical example recalculated with acoustic 

communications.  
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 (4.11) 

                                                 
3 This value was obtained by calculating equation (2.1) with the following inputs: T = 15 °C, S = 34 

ppt, and P = 400 kg/cm3. 



 44

 

1

2 2 2 2
1|

1|

20 5 10 1 0.707 0.707 0.1511 0

5 20 1 10 0.707 0.707 0 0.01

6.697 1.011

1.011 6.636

x x
k k

k k

I I







  
  
             

         
          
 

   
 

 (4.12) 

To better understand the magnitude of reduction provided by the acoustic 

transmission, we introduce the Frobenius norm, which provides a scalar value of the 

covariance matrix through a root-sum-square approach, and thus will show the effect of 

noise or additional measurements more easily.  

 ( )TA trace A A  (4.13) 

Applying this equation to the results obtained in equations (4.6) and (4.12), we 

see similarities more clearly.  
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 (4.14) 

Equation (4.14) clearly shows that acoustic communications do not significantly 

alter the uncertainty information and can thus be used to create temporary features in a 

SLAM framework. The example problem used in this section is somewhat contrived in 

that the positional uncertainties of AUVs using SLAM algorithms will likely not be that 

large, and the governing assumptions of the acoustic transmission must be tended 

carefully. The values were chosen to make the results of a Bayesian inference explicitly 

clear. 

b. Determining Relative Performance 

The reduction in position uncertainty with the application of acoustic 

communications with USBL-based assumptions is predicated on how USBL systems are 

physically implemented. The USBL transceiver is usually mounted on a stable surface 

craft with access to a precise positioning system, such as GPS with an onboard INS. The 
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accurate transceiver position is what allows the relative accuracy of USBL solution. In 

this case, the simulated USBL system is mounted on an AUV with not-insignificant 

position uncertainty, meaning that the correlation of the acoustic measurements to highly 

accurate position estimates can no longer be assumed. However, an AUV does provide a 

stable platform from which to conduct acoustic communications and ranging operations.  

The stability of the platform allows us to consider the relative performance 

between vehicles as a criterion for transmitting acoustic messages. We formalize this 

arrangement with application of Kullback-Leibler divergence, a concept in information 

theory that calculates the relative entropy gain between two probability density functions 

to indicate the relative value of the two systems. Kullback-Leibler divergence can be 

expressed as shown in Equation (4.15). 

 
( )

( )

p x
KL

q x
  (4.15) 

We adapt the Kullback-Leiber concept of relating probability density functions 

examine the relative performance between two vehicles. Equation (4.16) shows the 

relationship between two AUVs at time k. We reduce the covariance matrix into a unitary 

value by taking the sum of the elements on the main diagonal, or the trace. 
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 (4.16) 

Equation (4.16) does not have an explicit temporal component, but it is time 

varying since the covariance matrices in both the numerator and denominator both vary 

with time as the vehicles navigate and detect features. 

c. Aspect Dependence 

The example used thus far included covariance matrices for the two AUVs that 

were nearly collinear, as can be seen visually in Figure 12 with the semi-major and semi-

minor axes of each ellipse being approximately aligned. The results obtained were unique 

to the geometry of this simple problem. Consider the relative difference between the 
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principle axis angles, which we can use to determine the degree of orthogonality,  , 

derived from equation (4.7) and shown in equation (4.17): 
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 (4.17) 

In the example we have used thus far, the evaluation of Equation (4.17) with the 

covariance values in Equation (4.5) yields a principle axis angle of 45-degrees for both 

ellipses, thus a difference of zero, meaning the ellipses are oriented along the same 

principle axis.  

To show the effect on the norm of the updated covariance matrix, consider the 

following three covariance matrices, with the latter two being the same size but oriented 

along opposite axes: 
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 (4.18) 

Using Equations (4.4) and (4.13) we can test the combination of covariance 

ellipses 1–2 and 1–3 to show the full effect of aspect on the updated and how particular 

geometries reduce the position uncertainty better than others. The results are shown in 

Figure 13. 
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Figure 13.   (a) The inferential results of two orthogonal, 95% ellipses as compared 
to (b) two collinear, 95% ellipses. The updated covariance matrix in (a) 

showed significant reduction (~93% by matrix norm) whereas the reduction in 
(b) is much more modest (66% by matrix norm) and still exhibits greater 

directional uncertainty in the x-direction. 

Looking at the matrix norm indicates just how significant the reduction in position 

uncertainty is for the orthogonal case: 
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 (4.19) 

The orthogonal geometry produced a 93.4% reduction in matrix norm, compared 

to a 66.6% reduction in the collinear case. This simple example highlights the impact of 

geometry on position uncertainty reduction, which we can exploit to further our tactical 

security aims by only requiring aiding AUVs to transmit when the perceived reduction in 

position uncertainty for the other AUV exceeds a particular threshold.  
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D. ALGORITHM DEVELOPMENT AND INTEGRATION 

Consider the postulated operational scenario of multiple AUVs mapping a 

minefield. At present, each AUV would be operating independently of the others to 

accomplish their assigned portion of the overall mission. There is no centralized control 

of the AUVs and each AUV is responsible for minimizing its own position uncertainty, 

thus maximizing local map accuracy. In the framework proposed below, the AUVs would 

have the ability to communicate acoustically to share position uncertainty information, 

enabling all AUVs to collaboratively keep position uncertainty low for the overall map of 

the area. The basic premise considers maximizing the information gain in that if an AUV 

exceeds a specified threshold, it will broadcast a message requesting assistance. The other 

AUVs will determine if their uncertainty information can assist the broadcasting AUV 

and transmit a reply if a threshold is met. This algorithm is fully distributed and 

decentralized. This section will describe the algorithm and its construction from a broad, 

operational-level view, and the key design features that optimize the relationship between 

position uncertainty and tactical security. 

1. System Representation and Objectives 

We begin with a schematic representation, Figure 14, which shows how we will 

use acoustic transmissions to reduce position uncertainty.    
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Figure 14.   A schematic representation of the proposed algorithm to reduce 
position uncertainty through acoustic communications with an emphasis on 

tactical security concerns in Steps 3 and 4.  

This recursive algorithm will operate in the following steps, external to the 

mechanics of iSAM2. This allows this algorithm to operate on a much broader set of 

SLAM algorithms.  

1. The algorithm begins with the AUV pose and information matrix 

 ˆ ,k kx R at time .k  

2. The information matrix kR  is sent to this algorithm for evaluation. 

3. kR  is converted back into a standard covariance matrix. We extract the 

position variances and calculate the Frobenius norm. The norm is then 

compared to a moving average to determine the rate of position 

uncertainty growth over time. If it exceeds a specified threshold, the AUV 
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broadcasts a message requesting assistance from any autonomous vehicles 

in the area including its position and uncertainty information.  

4. An AUV receives the broadcasted message, processes it, and determines if 

the inferential results of the two covariance matrices with the additional 

acoustic communications measurement covariance information will 

exceed a specified threshold for relative gain. If it does, it transmits a reply 

with its position and uncertainty information.  

5. The broadcasting AUV receives the replies and processes them 

sequentially. Time domain multiple access (TDMA) considerations for 

deconflicting acoustic message transmission are assumed to be in place.4 

The received information is processed into the correct format to infer a 

updated covariance, which is then transformed back into an information 

matrix.  

6. The updated information matrix is then reinserted into iSAM2 to be 

incorporated when the next pose node is created.   

7. The process repeats.  

The following subsections will elaborate on several of the design features of this 

algorithm and explain how the inferred information matrix will be integrated with 

iSAM2.  

2. Measuring Covariance Growth and the Broadcasting 
 Threshold 

After the creation of a new pose node in iSAM2, we recover the covariance 

matrix using Equation (3.7) and extract the 2x2 matrix corresponding to the most recent 

pose node created, which correspond to position uncertainty, to form a new 2 2x  

covariance matrix. We calculate the matrix norm with Equation (4.13) and store the 

values in an array.  

                                                 
4 At this stage we may ignore the TDMA concerns based on the construction of the simulation model, 

but the issue of communications scheduling must be examined in future work to ensure that the assumption 
holds. Changes to the TDMA structure would not fundamentally alter the algorithm being developed here.  
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Once the length of the array includes thirty entries, we begin a moving average 

calculation between two windows of fifteen entries each, using the most recent thirty 

entries. The value was heuristically derived. The variable t  indicates the current time 

step.  
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1 1
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  
 (4.20) 

Selecting an array length of thirty allows the initialization routines of the AUVs to 

settle out and the vehicle to travel a modest distance before enabling the remainder of the 

algorithm. Additionally, it provides a modicum of smoothing to prevent a single 

erroneous sensor measurement from triggering an acoustic transmission. Both aspects 

enhance tactical security be preventing excessive transmissions.  

We then calculate the percent change between the moving averages: 

 1 2
|( 30)

1
t t t

window window

window


    (4.21) 

If the percent change exceeds a specified threshold, the AUV will broadcast a 

message requesting assistance from other autonomous vehicles in the area. We will test 

for this threshold in simulation in Section V.  

3. Threshold for an Informed Reply 

Using the approach developed in Section IV.C.2, all receiving AUVs calculate the 

updated covariance matrix using information received in the broadcasted acoustic 

message, acoustic ranging data, and current uncertainty on the host vehicle. The AUV 

then calculates Equation (4.16) to determine the relative gain that the broadcasting AUV 

would realize if the host AUV’s information were transmitted in reply. If the relative gain 

exceeds a given threshold, the AUV will transmit an acoustic message in reply. This 

approach reduces the number of vehicles transmitting while providing assistance to the 

broadcasting AUV and aids in deliberate or adaptive path planning to exploit the aspect 

dependence properties of the Bayesian inference.  
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4. Acoustic Message Construction and Packet Loss 

The primer on ocean acoustics in Chapter II revealed the difficulties that we 

encounter in trying to communicate underwater. Paull, Seto, and Leonard [45] report that 

packet loss of 20–50% is not uncommon in this domain. Given our goal for minimizing 

the number of transmissions, the acoustic messages must be constructed to be more 

robust to packet loss, thus preventing additional transmissions. This aspect of the work 

will not be explicitly tested in the simulation framework presented in Section V, but 

contributes to the discussion on the use of acoustic communications for multi-AUV 

operations.  

To account for this, each acoustic message will contain three copies of the 

information, including the timestamp, shown in Equation (4.22). Given the stochastic 

nature of acoustic communications, we heuristically deem it unlikely that two of the three 

values in any set of information will be corrupted, thus rendering the message unusable, 

otherwise the message would need to contain more than three repetitions of the same 

piece of information. While we prefer the message size to be less than 32 bytes for 

efficiency, we leave the analysis of this messaging technique to packet construction for 

future work.  
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The receiving AUV can then process the received message and format it for 

further use in this algorithm as follows: 
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 (4.23) 

The WHOI micromodem will append the time of arrival (TOA) to the message, 

along with received signal characteristics (omitted from Equation (4.23) since it is not 
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relevant to this thesis). The AUV will then take the mode of each of the three information 

elements to build the message needed for follow-on processing.  

5. Covariance Reduction 

The estimation of the updated covariance proceeds according to the TDMA 

schedule in use. We apply Equation (4.11) to each message, forwarding the updated 

covariance after the first message into the next set of calculations. After each application 

of Equation (4.11), the algorithm will store the broadcasting AUV’s pose and updated 

covariance information for reintegration with iSAM2. The use of iSAM2, a smoothing 

filter that considers all previous data during each iteration, allows for the insertion of 

these temporary features into the A matrix at the correct point in times, alleviating the 

framework from time latency issues.  

6. Reintegration with iSAM2 

For each AUV that replies, we can treat that transmission and its associated 

uncertainty as a feature node. In order to keep the map accurate, the communications 

nodes will be maintained in a separate database from the feature nodes. This allows the 

normal NLLS process to continue without requiring a new formulation of the system of 

equations.  

However, at the time of publication, we have been unable to overcome technical 

difficulties encountered in the iSAM2 algorithm in MATLAB despite a concerted effort 

to do so and extensive dialogue with Dr. Michael Kaess. These issues stemmed from the 

conversion of the iSAM2 code from its native C++ environment into MATLAB that had 

heretofore gone undiscovered. As a result, we will still utilize the iSAM2 framework for 

SLAM operability, such as navigation and mapping. Reintegration of covariance 

reduction will be demonstrated through the use of a generic covariance function that 

mirrors SLAM performance.  

 

Section IV described the algorithmic framework for using acoustic 

communications to reduce position uncertainty of a requesting AUV. It considered the 



 54

operational level implementation and discussed the various aspects of the algorithm from 

a systematic approach. It introduced the concept of a Bayesian inference as a way of 

fusing two measurements into an updated estimate of covariance and discussed 

measuring the relative value or performance of two covariance matrices using an 

application of Kullback-Leibler divergence from information theory.  
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V.  SIMULATION AND ANALYSIS 

A. OVERVIEW  

This thesis considers the value of acoustic communications in MVSLAM 

operations in reducing position uncertainty of a particular vehicle. To test the theoretical 

framework proposed in the previous section, we will conduct simulations to collect the 

data necessary to answer the following research questions.  

 How can we minimize acoustic communications while achieving 

acceptable performance in terms of position uncertainty? What constitutes 

acceptable performance in light of tactical security considerations? 

 What should the threshold be for transmitting an acoustic message, both in 

broadcast for assistance and in replying to broadcasts? 

 Can we minimize the need for GPS fixes? 

 What is the value of acoustic communications for underwater MVSLAM? 

 

B. EXPERIMENTAL CONSTRUCTION 

1. Operational Area 

To make this work readily adaptable for in-water testing, we have selected a 

simulation area that corresponds geographically to the marina in Monterey Bay, shown in 

Figure 15.    
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Figure 15.   A satellite image of the public marina in Monterey Bay, California, 
with hypothetical vehicle tracks overlaid.  

We utilize a traditional search pattern, colloquially known as a “lawnmower” 

pattern to ensure that we fully search and map an area. We utilize four AUVs, but the 

approach described in this thesis should scale to n-number of AUVs.5 The simulation 

area shown in Figure 15 has been translated into a simulated MATLAB environment, 

shown in Figure 16. It consists of a four square kilometer area partitioned into one square 

kilometer search areas. Track spacing for the AUVs is set at 20 meters to ensure 100 

percent FLS coverage in the search area, with approximately 15 percent overlap.   

                                                 
5 In theory the application of the Bayesian inference will scale to n-number of AUVs, but this will 

operationally be limited by the TDMA schedule in place. TDMA concerns are not relevant to this thesis but 
will factor into the operational implementation of this framework for large numbers of AUVs.  



Simulation Plot for Multiple AUV SLAM with Acoustic Communications 
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Figure 16. A map of the simulated search enviromnent with the navigation tracks 
for 4 AUVs overlaid. The red tracks indicate a search in progress. Each of the 
four labeled quadrants has a different feature density. The feature density will 

be vat·ied across simulations. 

2. Simulation Variables 

The simulation employed in this thesis maps the notional operational area. All 

AUVs are considered to be identical to the REMUS 100 AUVs outline in Section ILA. 

Future work can and should consider the variation of vehicle-specific parameters, such as 

57 



INS or FLS accuracy, on this framework. However, for this thesis, we only consider a 

few independent variables, presented in Table 3 with brief explanations. These 

parameters will remain at the given values unless stated otherwise. 

Table 3. The independent simulation control variables as related to 
detennining the perfmmance of acoustic communications in 

MVSLAM operations. 

Variable 

Time Delay 

The time elapsed before the acoustic 
communications framework becomes 

active for the AUVs. 

Reset Time 

The time required to elapse between 
acoustic broadcasts to allow for system 

stabilization. 

Reply Threshold 

The required reduction in position 
uncertainty required to transmit a reply to 

an acoustic broadcast.6 

Minimum rms Average 7 

The minimum, average nns value 

required to enable acoustic broadcasts. 

Moving Window Size 

The number of rms average values to be 
included for percent growth calculations 

to trigger an acoustic transmission. 

Initialized Value 

200 seconds 

50 seconds 

20-90 percent 

0.5 meters 

90 seconds 

6 The reduction is based on the application ofKullback-Leibler divergence discussed in Section 
IV.C.2.b. 

7 The nns average of the time-indexed covariance matrix nol111S. This pru·ameter w ill be more fully 
discussed in the next section. 
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3. Measures of Effectiveness and Performance 

Interpreting the change or rate of change in a covariance matrix requires the 

considered reduction of a four-element matrix into a single value. Equation (4.13) 

provides the reduction using the Frobenius norm. However, to monitor performance over 

time and reduce the impact of oscillations in algorithm performance, we must also 

consider a more time-weighted metric. To achieve this, we calculate the rms average of 

the stored, time-indexed Frobenius norm values. This approach yields two principal 

benefits. First, it dampens localized oscillations within the algorithm and thus provides a 

better indication of system performance over time. Second, it provides a mechanism by 

which we can define the system performance trade space and make direct comparisons to 

INS-only solutions, with GPS fixes at various finite intervals. The rms average should be 

thought of as a single number characterizing the average position uncertainty at time k. 

Going forward, the rms average of the time-indexed covariance matrix norms will be 

truncated in writing as the rms average. 

4. Simulation Plan 

This simulation plan creates the framework to collect the empirical data needed 

for answering the research questions posed in Section I and again at the start of this 

section. The answers to the research questions need to be derived from two distinct 

bodies of data, and thus the simulation plan is partitioned into two phases in order to test 

the appropriate variables and extract the necessary data.  

First, we must understand the performance of current systems, including both 

SLAM and INS-only algorithms. Defining this trade space allows us to determine what 

constitutes acceptable performance in this field. At a minimum, the results of this thesis 

must be no worse than the existing operational constructs. To establish this performance 

baseline, we will serially vary two parameters: GPS fix interval and feature density. The 

GPS fix interval will establish the INS-only system performance. We examine six 

different GPS fix intervals: 15, 30, 45, 60, 90, and 120 minutes. Varying the feature 

density from featureless to well-featured will establish the range of the performance 

metrics for the existing iSAM2 SLAM architecture. The feature density will range from 
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0–42 features per square kilometer in 6-feature increments. The GPS data, since it does 

not depend on a random process, will be collected through two simulation runs with each 

quadrant utilizing a different fix interval. For the feature density analysis, we will 

conduct multiple simulations, varying the feature map with randomly-distributed features 

each time. Each feature density will have twelve simulation runs.8 The collection of data 

on these two parameters will define the upper and lower bounds on system performance 

needed to evaluate the contribution of this thesis.  

Second, with the results of the first phase of simulation testing in mind, we must 

systematically test the communications architecture to produce the maximum acceptable 

performance whilst maximizing tactical security by minimizing the frequency of acoustic 

communications. To accomplish this, we will vary the variables presented in Table 3 

specifically the reply threshold to produce heuristically-optimal performance. The 

broadcast threshold will be set on logic-based condition of two parameters: the rms 

average performance of the vehicle compared to the INS-only solution and the rms 

average performance being above the minimum rms average value.  

At this stage of the research, the qualitative nature of tactical security precludes 

the use of numerical optimization techniques and thus an analytically-derived answer for 

broadcast-reply settings will be used. The performance of the AUVs between the two sets 

of simulations will inform the tactical security analysis. These simulations will be 

conducted in environments with randomly-distributed features to significantly reduce 

unintentional correlations of system performance with a particular feature layout.  

C. SIMULATION CONSTRUCTION 

1. Performance Baseline Determination 

We begin the experimental plan by determining the trade space that AUVs 

conducting SLAM operations function in. By bounding this trade space, we allow for a 

more accurate assessment of acceptable performance for broadcast-reply thresholds. 

Table 4 shows the feature density and GPS fix interval assigned to each quadrant for each 

                                                 
8 A true Monte Carlo simulation would be best, but time constraints did not permit a sizable number of 

trials to be conducted.  



of the two simulation sets. Each set will be nm 12 times to ensure sufficient 

randomization of features. 

Table 4. The assignment of feature densities and GPS fix intervals for the first 
two sets of simulation nms. The 1uns will collect the perfonnance 
metrics necessa1y to defme the trade space for SLAM operations. 

Quadrant Feature Density [#/km2] GPS Fix Interval [min] 

Set 1 

1 0 15 

2 6 30 

3 12 45 

4 18 60 

Set 2 

1 24 90 

2 30 120 

3 36 Not Required 

4 42 Not Required 

To give a perspective on how the feature density manifests in the simulation area, 

Figure 17 and Figure 18 are provided to show the feature densities for the first and 

second simulation 1uns given in Table 4. 
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Figure 17.   The simulation plot with varying feature densities by quadrant. 
Quadrant 1 is featureless, Quadrant 2 has 6 features, Quadrant 3 has 12 

features, and Quadrant 4 has 18 features.  
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Figure 18.   The simulation plot with varying feature densities by quadrant. 
Quadrant 1 has 24 features, Quadrant 2 has 30 features, Quadrant 3 has 36 

features, and Quadrant 4 has 42 features. 

2. Threshold Determination 

The second aspect of the simulation plan explores the threshold for replying to a 

broadcast for help. Our emphasis on tactical security requires this analysis. To 

accomplish this, we will fix the feature density and GPS intervals as shown in Table 4 

and Figure 19.   



Table 5. The fixed simulation parameters of feature density, by quadrant, and 
GPS fix intetval for the threshold determination tuns. 
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Figure 19. The simulation plot for the threshold evaluation with the given feature 
densities. Quadrant 1 is featureless, Quadrant 2 has 12 features, Quadrant 3 

has 30 features, and Quadrant 4 has 42 features. 
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This feature density arrangement was chosen to force one AUV, in quadrant 1, to 

communicate periodically. The absence of features will drive an INS-only SLAM 

solution. The remaining feature densities were selected to explore the relationship 

between feature density and the ability to effectively reduce another AUV’s position 

uncertainty. We will conduct three simulations for each of the threshold values.  

The broadcasting AUV will transmit when the average rms value is greater than 

0.50 meters and the rms average approaches or exceeds the INS-only value. As explained 

in Section IV.D.3, any AUVs receiving a broadcast for assistance will process the 

message and calculate the percentage reduction that would occur if the receiving AUV 

transmitted a reply. Therefore, we set this part of the experimental plan to evaluate the 

various transmission thresholds for an informed reply. We will evaluate in increments of 

10 percent from 20–90 percent possible reduction.  

D. RESULTS AND PERFORMANCE ANALYSIS 

1. Performance Baseline Determination  

We evaluated the GPS fix interval and feature densities using the simulation 

model described previously. This section will discuss the applicable performance 

parameters of both the GPS fix interval and feature density analyses and their 

implications for threshold determination.  

For GPS fix interval, the performance overtime will resemble a sawtooth pattern 

as the uncertainty grows over time and is eventually reduced with a GPS fix. The rms 

average of this sawtooth pattern, a partial consideration for the threshold determination in 

the next section, as a mathematically closed-form answer: 

 
3

rms

Amplitude
avg   (5.1) 

We tested this analytical solution in simulation using fix intervals of 15, 30, 45, 

60, 90, and 120 minutes, shown in Figure 20.   
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Figure 20.   The rms average of the time-indexed covariance matrix norms for six 
GPS fix intervals: 15, 30, 45, 60, 90, and 120 minutes. The values converge or 

begin to show convergence to the predicted analytical solutions for the rms 
average of a sawtooth wave. 

Figure 20 shows the rms averages converging to the analytical solution in 

Equation (5.1) as expected. This data aids in defining the trade space that we will work 

from to heuristically determine the threshold values. The GPS fix interval for the NPS 

REMUS vehicles can be manually set to any interval. We default to 30 minutes in 

practice. 

Second, we evaluated SLAM algorithm performance across eight feature densities 

to assess performance in terms of both covariance, which correlates directly with map 

accuracy, and the rms average of the covariance matrix norm, which provides a more 

stable indicator over time. Figure 21 and Figure 22 show the averaged results of the 12 

simulation runs in terms of covariance and the rms average of covariance, respectively.  
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Figure 21.   Average covariance matrix norms from 12 simulation runs in each of 
eight different feature densities.  

 

Figure 22.   The rms average value of the covariance matrix norms from 12 
simulations runs in each of eight different feature densities.  
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Figure 22 provides significant insight into SLAM performance across different 

feature densities. We can see that the performance does not improve appreciably once the 

number of features exceeds 30 features per square kilometer. In the future this will allow 

for adaptive search planning by multiple AUVs to ensure that search areas can be 

adaptively reassigned to allow balancing of features between AUVs. This will stabilize 

the overall position uncertainty for the AUV flight and improve map and navigational 

accuracy since each AUV will individually have better SLAM solutions following area 

reassignment.   

To determine what constitutes acceptable performance, we combined the results 

from the GPS fix interval and feature density analyses into a common plot. Figure 23 

shows the rms average of the covariance matrix norms over time for four feature densities 

and four GPS fix intervals.  

 

 

Figure 23.   The rms average values of the covariance matrix norms for four 
feature densities and four GPS fix intervals. The feature densities are 6, 18, 

30, and 42 square kilometers and the GPS fix intervals are 30, 60, 90, and 120 
minutes. This figure defines the performance trade space for a reply threshold 

determination. 
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As stated previously, the goal is to provide acceptable, not optimal, performance. 

The 30-minute fix interval represents the lower bound in Figure 23. This fix interval is 

operationally burdensome in a well-featured area, akin to the SLAM results for 30 and 42 

features per square kilometer, since the vehicle will have to cease mapping, surface, 

obtain a GPS fix, submerge, and regain track. In the context of a minefield neutralization 

problem, this means the vehicle also has to reacquire the field and localize itself to ensure 

the correct mine is targeted. Given that burden, we relax the GPS fix interval to 60 

minutes to provide greater flexibility and accommodate a wider range of feature 

densities. The rms average for the 60-minute fix interval provides the upper bound on the 

acceptable performance envelope. Thus, SLAM performance with an rms average greater 

than 0.8 meters we reject as unacceptable.  

The lower bound will govern the minimum uncertainty threshold for 

broadcasting. To prevent excessive acoustic communications, a tactical security concern, 

we set the minimum rms value for transmission at an rms average of 0.5 meters or 

greater. SLAM performance may achieve better results than this, meaning the AUV will 

not need to communicate because the SLAM performance alone meets or exceeds our 

acceptable performance standard.  

We will implement the upper and lower bounds algorithmically by using logical 

comparisons. The broadcasting AUV will transmit an acoustic message requesting 

assistance from other AUVs in the area if the following two conditions are met: 1) the 

time-indexed rms average of the broadcasting AUV’s covariance matrix norm is greater 

than the specified minimum rms value of 0.5 meters; and 2) if the time-indexed rms 

average is greater than the INS-equivalent rms average minus 0.25 meters.  

An additional result to those presented in this section involves the standard 

practice of using finite GPS fix intervals. Figure 22 and Figure 23 show that, as long as 

the AUV is detecting features periodically, defining a modestly-featured environment, the 

performance in terms of position uncertainty will be acceptable. In this case, the GPS fix 

interval can and should be shifted from a finite interval to a variable interval based on the 

predicted position uncertainty. This will provide greater operational efficiency by 
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minimizing the time spent ascending and descending for GPS fixes and reduce the 

probability of counter-detection when the AUV is at the surface.  

2. Broadcast-Reply Performance 

The reply threshold is based on the possible percent reduction for the broadcasting 

AUV if the replying AUV were to transmit its position and covariance information. In an 

effort to minimize acoustic communications and still achieve acceptable performance, we 

varied the reply thresholds in ten percent increments from 20–90 percent and measured 

the performance parameters. We consider the performance of the broadcast-reply 

threshold in terms of the average number of acoustic transmissions by an AUV for the 

given threshold value and by the average percent reduction achieved for the given 

threshold value.  

Intuitively, we would expect the number of transmissions to increase with a lower 

threshold for reply. However, as Figure 24 shows, the number of transmissions actually 

increases as the threshold for reply gets larger. This results from the fact that the replying 

AUVs may not be able to meet the higher threshold, leaving the broadcasting AUV 

transmitting acoustic messages more often requesting assistance.  

 

Figure 24.   Average number of acoustic transmissions by possible percent 
reduction threshold value for each AUV. The average is across three 

simulations for each threshold value. 
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In terms of the percent reduction, we again analyze the average percent reduction 

by threshold value from the three simulations. The results are shown in Figure 25.   

 

Figure 25.   Average percent reduction from acoustic communications by possible 
percent reduction threshold value. The average is across three simulation runs 
at each threshold value. In poorly featured environments (red and blue lines), 
the trend is clear. In modest to well-featured environments (magenta line), the 

small number of simulations did not smooth the data sufficiently to draw 
conclusions. The black line represents the fourth AUV, which did not 

communicate. 

We again see overall higher percent reduction at the lower threshold, especially 

for the AUVs operating in poorly featured environments, the red and blue lines in Figure 

25.  The small number of simulations did not provide sufficient smoothing of the data for 

the two AUVs operating in the well-featured environments, but their performance as 

previously been defined as acceptable and thus do not factor into this analysis.  

The decreasing trend in Figure 25 can be attributed to the greater capacity for an 

individual AUV to reply to the broadcast for assistance. As we demonstrated in Section 

IV.C.2 on the utility of the Bayesian inference, the greater number of replies will result in 

a higher overall reduction. The higher threshold value thus bars other AUVs that could 
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provide meaningful reduction from assisting the broadcasting AUV, limiting the 

effectiveness of the acoustic communications framework presented here.  

The performance of the AUVs at the 20 percent reply threshold is given in  

Figure 26.   

 

Figure 26.   RMS average values of the time-indexed covariance matrix norms for 
four AUVs using a broadcast-reply acoustic communications scheme with a 

20 percent possible reduction reply threshold.  

In comparing Figure 26 to Figure 22 and Figure 23 we can see that this acoustic 

communications framework produced acceptable performance as we previously defined 

it. AUV 4 was in a well-featured area and did not require acoustic communications to 

reduce position uncertainty. However, the other three AUVs all benefitted from the 

acoustic communications framework and were able to improve their position uncertainty 

to values greater than the SLAM algorithm alone would have produced for each of the 

feature densities.  

E. VALUE OF ACOUSTIC COMMUNICATIONS 

The results of the simulations indicate unequivocally the efficacy of the acoustic 

communications framework proposed in this thesis. We recommend setting the reply 
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threshold at the lowest possible value to allow the greatest number of AUVs to render 

assistance while minimizing acoustic communications. This is in keeping with the 

principles of tactical security that require us to limit acoustic communications in order to 

prevent counter detection of the acoustic signals and maintain the operation covert.  

 

Section V articulated the simulation model and plan and presented and discussed 

the results. We sought to answer the questions posed at the beginning of the section on 

how to minimize acoustic communications while achieving acceptable performance, 

minimizing the need for GPS fixes, and determining the informed threshold for reply in 

the broadcast-reply framework developed in Section IV. We found that acoustic 

communications do add significant value to multiple-AUV operations. Additionally, we 

explored the effect of feature density on SLAM operations and discovered the possibility 

of gaining greater operational efficiency by shifting from finite to variable GPS fix 

intervals.  
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VI. CONCLUSIONS AND FUTURE RESEARCH 

A. CONCLUSIONS 

1. Major Results 

The simulations and analysis of the proposed acoustic communications 

framework shows the validity of a multi-vehicle distributed system approach to reducing 

position uncertainty in underwater navigation. We traded optimal performance for 

acceptable performance and constructed the acoustic communications broadcast-reply 

framework based on that metric. Through simulation we determined that a low threshold 

of informed reply produces fewer acoustic transmissions while giving the greatest percent 

reduction of position uncertainty. We also gained greater insight into the effect of feature 

density on the performance of SLAM algorithms and found a potential ability to shift 

from finite to variable GPS fix intervals.  

Additionally, the framework developed in this thesis can be extrapolated to a 

large number of AUVs, thus providing greater flexibility to operational commanders.9 A 

system of AUVs has the ability to share position information and collaboratively reduce 

their own position uncertainty and increase map accuracy. This increases mission 

effectiveness by increasing coverage, reducing mission time, and improving system 

robustness through the use of multiple AUVs. 

2. Contributions 

SLAM frameworks have traditionally only utilized expropioceptive sensors for 

measurements. The use of the acoustic modem indicates that there may other non-

traditional sensors that can help improve SLAM algorithm performance by adding 

temporary features. We evaluated the SLAM algorithms through the lens of tactical 

security. The tactical aspects of acoustic communications are an important parameter for 

multi-vehicle collaborative navigation and operations. This aspect of acoustic 

communications and SLAM has, to this author’s knowledge, never been explored before. 

                                                 
9 As previously mentioned, this conclusion is predicated on handling the TDMA scheduling concerns. 
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We developed an information-theoretic framework consistent with optimal estimation for 

minimizing system navigation and mapping errors that is not reliant on external beacon 

or positioning systems. Lastly, we developed a simulation model to address the various 

model parameters that affect the effective deployment of a multi-vehicle system engaged 

in underwater navigation and mapping operations. This included a brief analysis of aspect 

dependence as a means of achieving greater uncertainty reduction and is a key parameter 

for adaptive search and path planning in future work.   

3.  Limitations and Issues 

The simple acoustic communications framework developed and presented here 

does have several limitations. First, the framework can only succeed when AUVs are 

within communications distance of each other. Second, the use of another AUV’s 

covariance information to reduce position uncertainty does introduce cross-correlation 

into the global covariance matrix. The introduction of cross-correlation terms will 

jeopardize the independence assumption that underpins the probabilistic framework. That 

was not accounted for in this thesis and must be analyzed as a matter of future work. We 

did not construct the architecture to allow for other reply AUVs to reduce their position 

uncertainty from other received replies. The omnidirectional nature of acoustic 

communications means that each AUV that replies has the ability to receive the other 

replies and use those messages to reduce their own position uncertainty, even if it meets 

or exceeds the acceptable performance standard defined in this thesis.  

B. FUTURE WORK 

This thesis considered a very narrow segment in the nexus between acoustic 

communications and underwater MVSLAM operations. Given that narrow scope, we 

necessarily leave several next steps to future researchers.  

 How is the independence of covariance matrices affected by acoustic 

communications between vehicles? 

 How can we use this implementation to induce loop closure in SLAM? 
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 What are the proper contents for the acoustic message to keep the size 

under 30 bytes while still achieving the required single-transmission 

success metric? 

 How can this implementation evolve adaptive path planning and mapping? 

 How can we leverage any transmissions to create a communications map 

of the environment? 

 How can we use acoustic communications to distribute highly accurate 

position information to a group of AUVs, such as when a single AUV 

obtains a GPS fix?  

C. APPLICATIONS 

The algorithm for acoustic communications in support of underwater MVSLAM 

operations applies specifically to the operational environments detailed in Section I, but 

we can also draw greater value by expanding the view of this thesis to a much broader 

level. This thesis implemented the novel consideration of an acoustic transmission as an 

independent measurement, not simply a communications path. The value taken from both 

the transmission itself and the information contained in the transmission enabled us to 

reduce the position uncertainty of an AUV, thus enabling greater operational flexibility 

and enhancing tactical security. Taking this idea more abstractly, we can see the inherent 

value of using non-traditional sensors to better localize a ship’s position in an A2/AD 

environment. In the future, this may consist of a ship launching an AUV to obtain a 

precise position fix in a well-featured or contoured environment that the ship cannot enter 

into or a submarine utilizing other sensors, such as a fathometer, mapping sonar, or 

periscope, to obtain position information and thus reduce position uncertainty. The ability 

of our forces to sufficiently localize their position in an A2/AD environment will be a 

crucial warfighting requirement in the future, and conceptualizing various non-traditional 

sensors as possible sources of position information constitutes a modest first step in that 

direction.  
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APPENDIX A: SOUND SPEED EQUATION CONSTANTS 

1TC  10.50110939883 10  

2TC  10.550946843172 10   

3TC  30.221535969240 10  

1SC  10.132952290781 10  

2SC  30.128955756844 10  

1PC  00.156059257041 10  

2PC  40.244998688441 10  

3PC  80.883392332513 10   

TSC  10.127562783426 10   

TPC  20.635191613389 10  

2 2T PC  70.265484716608 10  

2TPC  50.159349479045 10   

3TPC  90.522116437235 10  

3T PC  60.438031096213 10   

2 2S PC  80.161674495909 10   

2T SC  40.968403156410 10  

2TS PC  50.485639620015 10  

TSPC  30.340597039004 10   
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