
The DASH Network Communication Architecture

David P. Anderson
RobenWahbe

November 8, 1988

ABSTRACI'

DASH is an experimental distributed system intended for large high-performance net
works connecting heterogeneous and mutually distrustful hosts. The DASH network
communication architecture is based on the Parameterized Message Channel abstraction.
It also includes a subtranspon layer that incorporates many host-to-host functions, and a
remote operation facility that provides request/reply communication. At higher levels, a
service access mechanism and a global naming system together provide uniform global
access to logical resources.

This repon describes and discusses the DASH network communication architecture, and
the DASH kernel implementation of this architecture.

Sponsored by the California :MICRO program, AT&T Bell Laboratories, Digital Equipment Corpora
tion, illM Corporation, Olivetti S.p.A, and the Defense Advanced Research Projects Agency (DoD) Arpa
Order No. 4871. Monitored by Naval Electronic Systems Command under Contract No. N00039-84-C-
0089.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 NOV 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
The DASH Network Communication Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
DASH is an experimental distributed system intended for large high-performance networks connecting
heterogeneous and mutually distrustful hosts. The DASH network communication architecture is based on
the Parameterized Message Channel abstraction. It also includes a subtransport layer that incorporates
many host-to-host functions, and a remote operation facility that provides request/reply communication.
At higher levels, a service access mechanism and a global naming system together provide uniform global
access to logical resources. This report describes and discusses the DASH network communication
architecture, and the DASH kernel implementation of this architecture.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

60

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. INTRODUCTION
DASH is an experimental distributed system intended for large, high-performance net
works; an overview is given in [3]. DASH includes a) an architecture for network com
munication, and b) a portable operating system kernel that implements this architecture.
This report describes the network communication architecture and its implementation in
the DASH kernel. [24, 25] describe other aspects of the DASH kernel.
The design of DASH is guided by the likely hardware advances of the next 5 to 10 years:
• Wide-area networks with low delay (30 milliseconds coast-to-coast) and high

bandwidth (1 gigabit/second).

• Shared-memory multiprocessor workstations with 10 to 100 MIPS processing capa
city.

• Large memory sizes, ranging from gigabyte workstation main memories to terabyte
mass storage devices.

These advances will create the possibility of a new type of distributed system we call a
very large distributed system (VLDS), spanning a large number (thousands or millions)
of hosts, owned by many organizations and by individuals. A VLDS will support a range
of new applications, such as:

• Very large scale distributed parallel computation: the set of processors on a VLDS
will provide a ''processor bank'' numbering perhaps in the millions, and capable of
supporting parallel computation at many levels of granularity.

• Very large scale communication applications: a VLDS will allow a variety of com
munication applications to be integrated into a single system: commercial applica
tions (advertising, sales, and remote banking), interpersonal communication (mail,
telephone, facsimile, and video conferencing), and distribution of digital audio and
video entertainment and news. ·

• High-bandwidth interfaces to distant resources: many network services will offer
graphics/audio-based interfaces. Such services will use data pipelining and caching
to achieve the needed performance in the presence of inherently high network
delays.

The communication architecture of DASH is designed to provide the basic facilities
needed for these types of applications. The architecture spans multiple levels, from the
network level up to naming and service access. The architecture uses the abstraction of a
Parameterized Message Channel (or simply channel). A channel is a simplex message
stream with several performance, reliability, and security parameters. The interface to
the network-dependent communication layer is based on channels, and the channel
abstraction appears at higher levels of the DASH system as well. Channels are the basis
for a request/reply communication facility called the Remote Operation Facility (ROF).
The report is organized as follows: Section 2 is an overview of the DASH communica
tion architecture. Section 3 presents the parameterized message channel abstraction.
Section 4 lists the local kernel-level object types underlying the network communication
abstractions, and Section 5 describes the mechanism for remote references to these
objects. Sections 6 and 7 describe the network and subtransport levels. Sections 8
through 10 describe the Remote Operation Facility, the Service Access Mechanism, and
the global naming system. Appendix I describes the DASH Message Language (DML),

2

used for specifying network messages.

2. ARCHITECTURE OVERVIEW
We begin by giving an overview of the DASH network communication architecture. The
structure of this architecture is shown in Figure 2.1.

2.1. The Network Layer

The DASH communication architecture can be implemented on multiple networks. Each
network to which a DASH host is connected is represented in its kernel by a software
module with a prescribed channel-based interface. These network objects provide host
to-host network channels. They encapsulate network-specific protocols for channel crea
tion, deletion, and transmission, and other tasks such as routing and network manage
ment. The DASH network layer is the collection of these networks and the network
objects.

stream
protocols

Q
I

·----)-

network channel
STchannel
function calls

or local !PC

physical media

Figure 2.1: The DASH Communication Architecture.

3

2.2. The Subtransport Layer
The subtranspon layer (ST) provides the basic form of inter-host process-level commun
ication. All higher-level network communication in DASH passes through ST, and ST is
the only direct client of the network layer. ST supports ST channels, which are "value
added" versions of network channels. ST provides communication security, does frag
mentation and reassembly, multiplexes ST channels onto network channels, and arranges
for ''fast acknowledgement'' of messages sent on ST channels.
In most existing protocol architectures, the functions of STare done at higher levels (e.g.,
security is provided at the transport level). The DASH architecture has the advantage
that these functions are consolidated into a single per host II?odule. For example, we
argue in [2] that a single secure channel between hosts is sufficient for authentication and
privacy, rather than one per operation, session, or network.

2.3. Transport Protocols
The Remote Operation F acUity (ROF) supports request/reply communication. It uses a
set of ST channels called the ROF connection. Processes can also directly establish ST
channels for stream-mode communication. The design of channel-based stream transport
protocols is an area of future study.

2.4. Service Access
Certain remotely-accessible logical resources in a DASH system are called services.
They can be accessed by clients through the service access mechanism (SAM). SAM
provides replication transparency, location transparency, and failure transparency. It
allows clients to use temporary capabilities (''service tokens'') to reduce name-resolution
overhead.

2.5. Global Naming
A goal of the DASH communication architecture is that resources should be accessible
from any host in the system. To satisfy this goal, a global naming system is used to name
long-lived entities such as hosts, services, and owners. The system uses a tree-structured
name space. Names are location independent in that 1) they do not imply the location of
the named entity, and 2) they are the same regardless of the location or identity of the
entity using the name.
The DASH global naming system and SAM are integrated. The global naming system is
implemented as a set of services, and SAM uses the naming system for service location
and authentication.

3. PARAMETERIZED MESSAGE CHANNELS
The DASH distributed system is intended to run on multiple types of computer architec
tures and communication networks. A large part of the DASH network communication
system is network independent, and is based on a network-dependent part that has a
network-independent interface.
In most existing distributed systems, the interface to the network level typically provides
a simple abstraction such as unreliable, insecure datagrams. Upper layers then use this
facility to provide higher-level abstractions such as reliable request/reply message-

4

passing [7], reliable and secure typed message streams [20], or reliable byte streams (17].
Because the bottom-level abstraction (e.g., datagrams) is simple, it is easy to pon the sys
tem to different network types. However, this approach suffers from several basic prob
lems, stemming from the simplicity of the abstraCtion:
• Communication clients cannot express their performance, reliability and security

needs to the communication provider. This results in wasted work. For example,
data integrity is often a mandatory pan of communication primitives, and is pro
vided by software checksumming. This work is wasted for applications that do not
require data integrity. Conversely, network interfaces may do data checksumming
in hardware, but if this is concealed from upper layers, then checksumming may be
redundantly done in software.

• Simple abstractions do not allow the communication provider to impose static limits
on client behavior, such as the amount of client data outstanding within the network.
The problem of congestion must then be attacked by methods (such as ICMP' s
source-quench messages [18]) that are often ineffective.

• No provisions are made for real-time performance guarantees. Such guarantees are
needed for interactive high-bandwidth traffic such as digitized audio [4] and video.

In an attempt to solve these problems, the DASH network communication system is
based on an abstraction called a parameterized message channel, or simply a channel.
This decision is motivated by the projections summarized in Section 1. Current networks
and protocol architectures do not directly suppon channels. However, our approach is
capable of exploiting future advances in communication technology.
A channel links a sender to a receiver. It carries messages, which are untyped byte
arrays. The sender invokes send operations on the channel. The receiver is typically a
passive object such as a pon; a message is considered delivered when it is queued on the
pon or given to a process waiting at the pon. The sender and receiver are channel
clients. The hardware and software system supponing the creation and use of channels is
the channel provider. A channel client of one level may be an channel provider to a
higher level.

A channel can be deleted by either client A channel fails when one of the clients' hosts
crashes, or when a failure or resource scarcity in the network makes it impossible to con
tinue sending messages on the channel. When a failure occurs no funher messages are
delivered, and the surviving channel clients are notified of the failure. A channel is said
to be closed when either it fails or it is deleted.

3.1. Channel Parameters
A channel has the following security and performance parameters. Some parameters
represent guarantees by the channel provider; others are restrictions on the channel client.
The form and meaning of some of the channel parameters depends on the type of the
channel (see Section 3.2).

(1) Authentication: if true1, then impersonation (delivery of a message not sent by the

1 The authentication and privacy parameters are Boolean. They could instead be continuous, perhaps
representing the strength of the underlying encryption system.

5

sender) is impossible.2 This implies that the bit error rate (see below) is unaffected
by the presence of malicious or malfunctioning hosts.

(2) Privacy: if true, then eavesdropping (access to a message by a host or process other·
than the receiver) is impossible.

(3) Sequenced: if true, messages are never delivered out of order.
(4) Capacity: an upper bound on the number of bytes of data outstanding (i.e., sent but

not yet delivered) within the channel at any time. The clients are responsible for
enforcing the channel capacity. If they fail to do so, the provider's guarantees are
voided; messages may be delivered beyond the channel delay bounds or discarded.

(5) Maximum message size: an upper bound on the size of individual messages. This
limit cannot be greater than the channel capacity.

(6) Delay paramete~: message delay is the elapsed real time between the start of the
send operation and the moment of delivery. The components of this delay may
include network transmission delay, queueing and processing delays at the sender
and at intermediate switches, and processing at the receiver. Depending on the
channel type, several parameters might be used. For example, a deterministic
guarantee might use two parameters A andB, representing a delay bound of

A+ B*(message size).

(7) Workload parameters: some channel types require parameters (such as average
load and burstiness) describing the workload.

(8) Message loss rate parameters: a set of parameters describing the probability that a
given message is successfully delivered. Messages may fail to be delivered because
of 1) buffer overrun in the receiver host or in network switches, and 2) discarding
due to checksumming. The form and meaning of the parameters depends on the
channel type. The loss rate may be constant or load-dependent, and it may or may
not depend on the message size. The loss rate does not take into account malicious
or malfunctioning hosts. The channel abstraction does not specify freedom from
denial of service.

(9) Average bit error rate: of the messages that are delivered, the fraction of bits that
are correct. This parameter reflects the combination of 1) the error rate of the
underlying transmission medium, and 2) the effectiveness of the checksumming
algorithm. It is guaranteed by the channel provider.

(10) Failure reporting delay bound: this parameter is an upper bound on the interval
between when the channel fails (see below) and when the surviving clients are

2 ''Impossible'' assuming an unbreakable encryption scheme.
3 Alternatively, a channel could have a "guaranteed bandwidth" parameter. However, this parame

ter is less convenient from the point of view of implementation, and it is determined by the current parame
ters as follows. If M is the maximum message size, Dis the maximum delay of a message of size M, and C
is the channel capacity, then a client can send a message of size M every DMIC seconds without violating
the capacity rule, since at any point at most CIM messages (of total size C) will have been sent within the
previous D seconds, and all earlier messages are guaranteed to have been delivered already. This will pro
vide a bandwidth of about CID bytes per second. The actual maximum bandwidth may either be lower (be
cause of errors and protocol overhead) or higher (if actual delays are smaller than the upper bound).

6

notified of the failure.

A set of channel parameters is described by the following structure:
enum CHANNEL_TYPE {

DETERMINISTIC,
STATISTICAL,
BEST EFFORT

} ;

struct CHANNEL PARAMS
CHANNEL_TYPE
BOOLEAN
BOOLEAN
BOOLEAN

} ;

U32
U32
DELAY PARAMS
WORKLOAD P ARAMS
LOSS_RATE_PARAMS
U32
U32

type;
authenticated;
private;
sequenced;
capacity;
max_m.sg_size;
delay_params;
workload_params;
loss_rate_params;
bit_error_rate;
failure_delay_bound;

The meaning and form of delay_params, workload_params, and
loss_rate_params is type dependent (see blow). The channel client is responsible
for obeying the channel capacity and workload parameters; the channel provider is not
responsible for detecting violations. In the event of a violation, the channel delay and
message-loss parameters are voided, but the other parameters remain valid.

3.2. Channel Types

As indicated above, there are different channel types. A channel type consists of
• Parameterizations of the delay distribution, the workload, and the message loss rate.
• A partial order < on the space of possible parameter values. For parameter values X

andY, X< Yiff Y "dominates" X, i.e., Y is acceptable to a client whenever X is.
The following are examples of possible channel types:
Deterministic: the delay bounds are "hard"; only a channel failure will cause them to be
violated. System resources (buffer space, media bandwidth) are allocated to individual
channels. The channel provider rejects a channel request if its worst-case demands can
not be met with free resources.

Statistical: the delay bounds are statistical, perhaps involving its mean and variance4.
The workload parameters include average load and burstiness. A channel creation
request is rejected if either its expected message delay or its expected bit error rate
(which is affected by the possibility of buffer ovem.ms) is unacceptably high.
Best-Effort: channel creation requests are never rejected, and there are no workload
parameters. Delay bound parameters are used only to schedule resources based on mes
sage delivery deadlines (see Section 3.5).

4 Appropriate parameterizations of the delay distribution and of the workload are currently being in
vestigated.

7

3.3. Channel Creation and Ownership
The creator of a channel (which may be either the sender or the receiver) owns the chan
nel. It is "billed" for the channel if such a notion exists. Either side may delete the
channel.

A set A of actual channel parameters is said to be compatible with a set R of requested
parameters if
(1) the Boolean security parameters of A include those of R;

(2) the capacity and maximum message size parameters of A no less than those of R,
and

(3) the performance parameters of A dominate (in the sense defined by the channel
type) the parameters of R.

A channel creation request includes desired and acceptable parameter sets. 5 A channel
creation succeeds only if the actual parameters of the resulting channel are compatible
with the request's acceptable parameters. Furthermore, the channel provider nies to
match the desired parameters as closely as possible.

3.4. Parameterized Message Channel Examples
As an example of the use of channel parameters, consider the case of a DASH client (say
a transpon protocol serving a user program) that requires data privacy. The protocol
requests an ST channel (see Section 3.3). The desired and acceptable parameter sets both
have the private flag set ST creates the new ST channel, routing it through a net
work channel. Depending on the parameters of the network channel, several different
situations are possible:
(1) Privacy is provided by ST-level data encryption.
(2) If the network has link-level encryption hardware, ST learns this from the network

channel parameters, and does no data encryption.
(3) The network is considered secure, so no data encryption need be done at any level.
In any case, the optimal mechanism is used for privacy. If a client does not require
privacy, no mechanism is used (which is again optimal). Without the channel security
parameters, this optimization would not be possible. A similar situation exists for data
integrity: the optimal checksumming mechanism can be used based on the values of the
relevant channel parameters.
The following examples show the uses of the channel capacity and performance parame
ters:

• Initial request and reply messages in a request/reply protocol [5] should be sent on
channels with a low delay bound. The precise delay bound and the delay bound
type are determined by application needs. The channel capacity required may be
large, unless it is known that request or reply messages will be small and infrequent.

• Request/reply retransmissions can be sent on channels with higher delay bounds.

5 The current design allows only one "acceptable" parameter set. This could be extended to allow
multiple sets.

8

• A stream protocol for bulk data transfer should use a high capacity, high delay
channel for data [10].

• Reliability acknowledgements (for both request/reply and stream communication)
should use low capacity, hieh delay channels.

• Flow control acknowledgements should use a low delay, low capacity channel.
• Digitized voice should use a high capacity, low delay channel, perhaps with a sta

tistical delay bound [22]. A high bit error rate may be acceptable.
• Communication involving a human user interface traffic (such as for network win

dow systems [11]) can tolerate a moderate amount of delay because of human per
ceptual limitations. The channel from user to application cani.es mouse and key
board events, and can have low capacity. The channel in the opposite direction car
ries graphic information, and generally requires higher capacity.

In all these cases, the provider's knowledge of client needs increases the likelihood that
they can be accommodated. For example, if packet queueing in an internetwork gateway
is done using channel-specified deadlines, then a low-delay packet can be sent before
high-delay packets that would otherwise cause it to be delivered late. A network may be
capable of providing low delay or high capacity, but not both.

3.5. Process and Interface Scheduling
When an upper-level channel is created, its total delay is divided among its various
stages (send protocol processing, ST channel delay, network channel delay, and receive
protocol processing). When a message is sent on a channel, there is a deadline by which
it must be handled (i.e., processed by a protocol, sent on a lower-level channel, or
transmitted on a network medium). This deadline is the current real time plus the delay
allocated to the next stage of the channel.
For channels whose delay includes processing time, these deadlines are used by the
kernel's process scheduler to determine the execution order of protocol or user processes.
For network channels, the deadlines are used to determine the order in which packets are
queued for transmission on a network interface.

3.6. Issues in the Subtransport Layer
This section discusses issues that arise in building high-level channels on top of low-level
channels. This is most directly relevant to the DASH subtranspon layer.

3.6.1. Channel Caching and Multiplexing
ST caches network channels; i.e., it may retain a network channel even while it is not
being used by any ST channel. This caching is motivated by two assumptions: 1) during
a given time period a host will tend to communicate repeatedly with a small set of remote
hosts; 2) it is slow and costly to create network channels.
ST does upwards multiplexing of multiple ST channels onto a single network channel
(see Figure 3.2) 6. This multiplexing can reduce overhead and delay compared to a

6 It would also be possible to downwards-multiplex an ST channel across several network channels.
If there were multiple networks paths between the hosts, this technique could be used to increase capacity

---~-.

I

9

sr channel

multiplexing demultiplexing

network channel

Figure 3.2: Channel Multiplexing

policy of creating a network channel for each ST channel.
The type and parameters of an ST channel may be different than those of the network
channel on which it is multiplexed. In some cases ST can offer "better" parameters than
those of the network channel. However, some parameters cannot be improved; multi
plexing is subject to the follow restrictions:

• A deterministic ST channel can only be multiplexed onto a deterministic network
channel, and a statistical ST channel can be multiplexed only onto a deterministic or
statistical network channel.

• The delay bound parameters of an ST channel must be at least those of its network
channel.

• The capacity of a network channel must be at least the sum of the capacities of its
ST channels.

Algorithms for multiplexing decisions, in particular those involving statistical types and
mixed types, remain to be studied.

3.6.2. Increased Maximum Message Size
At the network level, a message size limit is imposed by hardware restrictions, channel
capacity, nonzero bit error rate, or the need for bounded delay and fairness. For example,

beyond that available in a single network channel. However, this has not been included in the DASH
design because the expected gain may not outweigh the additional ST protocol complexity.

10

the Ethernet has a 1.5KB packet size limit [14]; future networks may have a limit of
64KB or so. It is an issue whether ST should offer larger maximum message sizes to its
clients than those provided by the network layer. The following choices exist:
• The maximum message size of an ST channel is that of its network channel.
• The ST channel has a much larger size than its network channel (e.g., many mega

bytes). ST must incorporate a retransmission-based reliability mechanism; other
wise the message loss rate would increase exponentially with the ST message size.
Because messages can exceed the capacity of the network channel, a flow-control
mechanism also must be used. This general approach is taken in VMTP [8].

• The maximum message size of the ST channel may be larger than that of its net
work channel, but no greater than the capacity of the network channel, and not so
large that a reliability mechanism is needed. This might be one or· two orders of
magnitude more than the network channel maximum message size (e.g., 64KB on
an Ethernet).

ST uses the third option. This choice has the advantages of reducing the number of
high-level messages (and hence protocol processing and scheduling overhead) without
significantly adding to the complexity of ST, or requiring that it assume the role of a tran
sport protocol.

ST chooses a maximum message size with the goal of maximizing potential throughput
based on the combination of network channel error rate bound, ST channel error rate
bound, and context switch time. ST does fragmentation and reassembly to support this
larger message size. It does not retransmit fragments; if a message is incomplete when a
fragment of the next message arrives, the partial message is discarded.

3.6.3. Failure Detection and Handling
If an ST channel has a smaller failure reporting delay bound than its network channel, ST
must use "pinging" messages on the network channel to learn of host, process or net
work failures within the specified bound.
The handling of a network channel failure may vary. If the ST channel is best-effort, it
may be possible to establish a new network channel (or switch to another existing net
work channel) and continue the ST channel service without interruption. For other ST
channel types, the delay in establishing a new network channel might make this impossi
ble.

3.6.4. Security and Reliability
If the ST channel has stricter security or reliability requirements than the network chan
nel, techniques such as encryption and checksumming may be used to bridge the gap.
These are discussed in Section 7 .2.1.

If the ST channel is sequenced and the network channel is not, ST can include sequence
numbers with messages and, depending on the other channel parameters, either reorder
messages before delivery or simply discard messages that arrive out of order.

11

3.7. Flow Control and Channel Capacity Enforcement
At points where there can be speed mismatches, a communication system may do buffer
ing to avoid message loss. Flow control can be used to avoid performance loss due to
buffer overrun and dropped packets. Flow control mechanisms are often necessary even
for minimal performance levels. On the other hand, flow control mechanisms may not be
needed in certain situations (for example, if the speed of the sender is sufficiently low)
and in that case may impose an unnecessary overhead.
The endpoints of communication are called the data source and sink. The source of data
may be an I/0 device (such as a disk, a main memory cache, or a real-time audio/video
digitizer) or a computation (e.g., a process generating text or graphic images). It is useful
to factor communication system buffers into three groups (see Figure 3.3):
(1) Buffers between the data source and the send side of the transpon protocol.
(2) Buffers in the sender's kernel, the network switches and gateways, and in the

receiver's network interface and low-level driver.
(3) Buffers between the receive side of the transpon protocol and the data sink.
In a system based on parameterized message channels, these buffer groups can be treated
separately. Cases in which no flow control is needed for one or more of the buffer groups
can be identified, and a better transpon protocol (simpler, faster or fewer messages) may
be possible. In contrast, existing systems generally require end-to-end flow control [19].

data source data sink
send buffer

receive buffer

j send protocol receive protocol

RMS capacity enforcement
sender flow control "{- - - - - - - - - - - - - - - - - 't-

"{- - - - - - - - - - 't- receiver flow control

*----------------------------~

RMS capacity enforcement + receiver flow control
~----------------------------~

Figure 3.3: Types of Flow Control.

12

3.7.1. Channel Capacity Enforcement
The capacity parameter of a channel prevents overrunning buffers in group 2. In con
trast, the flow control of TCP does not protect gateway buffers; ICMP source quench
messages [15, 18] provide an ad hoc and often ineffective solution to this flow control
problem.

The channel approach assumes that these buffers do not shrink spontaneously. If they
do, it may be necessary for the channel provider to delete the channel, and for the clients
to create a new channel.

As described in Section 3.1, capacity enforcement is the responsibility of the channel
client; there are no capacity-enforcement mechanisms in the DASH ST or network
layers. Depending on the channel parameters and the source and sink speeds, capability
enforcement may not be needed. If it is needed, the following approaches are possible:
• Rare-based: using timers, the sender ensures that during any time period of duration

A + CB, the number of bytes sent does not exceed C. This approach is pessimistic
in the sense that it assumes the maximum delay for all messages.

• Acknowledgement-based: the sender receives flow control acknowledgements for
messages received. This may achieve higher maximum throughput at the cost of
the reverse message traffic.

These mechanisms, if needed, can be implemented by transport protocols. The same
mechanisms may possibly be used to provide receiver flow control (see below).

3. 7 .2. Receiver Flow Control
If the receive transport protocol and data sink can process incoming data at a faster aver
age rate than its arrival, it is possible that no flow control for buffer group 3 is needed 7.
If this condition does not hold, the protocol must stop sending data when the limit of the
receive buffer is reached. A receiver flow control mechanism such as a sliding window
protocol [17] can be used. The need for this flow control mechanism is independent of
the need for channel capacity enforcement; if both are needed they could be integrated
into a single protocol.

3. 7 .3. Sender Flow Control
If the data source can produce data faster than it can be sent on the ST channel (because
of capacity enforcement, receiver flow control, or both) then there must be a sender flow
control mechanism to protect buffer group 1. This is done in the DASH kernel using a
flow controlled local IPC port for message-passing between the sender and the send pro
tocol [24]. A sender blocks when a port queue size limit is reached. The sending tran
sport protocol stops reading messages from the port while it is prevented from sending
because of channel capacity enforcement or receiver flow control.

4. KERNEL STRUCTURE FOR NETWORK COMMUNICATION
Several abstractions (e.g. messages and message-passing objects) are used throughout the
DASH network communication architecture. The objects which represent these

7 A large receive buffer may be needed; the size is determined by several factors, including the varia
bility of the receiver's speed.

13

abstractions are local to a host, and might be implemented in different ways on different
hosts. In defining the network architecture, it is convenient to use language-level
specifications in which these abstractions are represented by specific procedural inter
faces.

In this section, we briefly describe the procedural interfaces that are used in the prototype
DASH kernel to represent these abstractions. The DASH kernel is being written in C++,
an object oriented language [21]. Therefore the interfaces are presented as class
definitions. However, the architecture does not rely on an object oriented implementa
tion, nor on the precise details of the interfaces.

4.1. Messages and Message-Passing Objects
Local communication is assumed to follow a message-passing paradigm (the DASH local
message-passing system is described in [24]).
• A MESSAGE object represents data sent or received. either locally or remotely.

The abstraction is an array of bytes, together with a header which includes an
integer type field and a flags bitmask (for MP options).

• A STREAM_MPO object is a message-passing object (MPO) with unidirectional
asynchronous semantics. Its basic operations are send () and receive () .

• A REQ_REPLY_MPO object is a message-passing object for synchronous
(request/reply) operations. Its operations are request_reply () for the client,
and get_request () and send_reply () for the server.

4.2. NAMED_ENTITY Objects
Entities with global names (see Section 1 0) are represented by objects of the base class
NAMED_ENTITY. The following classes are derived from NAMED_ENTITYi

• An OWNER object represents an owner in the DASH global name space (see Sec
tion 10). Its data include the owner's public key (see Section 10) and, in some
cases, the owner's private key.

• A HOST object represents a host, i.e., an endpoint of physical network communica
tion. Its data include a list of the hosts network addresses, and the host's pu~lic key.

Other classes derived from NAMED ENTITY will be introduced as needed.

5. REMOTE REFERENCES
The remote reference mechanism allows DASH hosts to refer to temporary entities (e.g.,
message-passing objects) in other hosts. A remote reference is created by a host to refer
to an object within itself, and is issued to a holder, which may be either
• a particular host,
• all hosts on a particular network to which the host is connected, or
• all other hosts

A remote reference is a fixed-size (64-bit) datum; the issuing host determines the internal
structure of the datum. Between crashes, a host must never issue the same remote refer
ence twice (i.e., referring to two different objects) to a given holder.

14

The following remote reference values are reserved:
• 0 (NULL REF) is the equivalent of a NULL pointer, i.e. no object is referenced.
• 1 (ROF _NOTIFY_MPO) refers to an MPO used to notify the ROF module of the

creation or failure of ST channels.

• 2 (ST_NOTIFY_MPO) refers to an MPO used to notify the ST layer of the creation
or failure of network channels. In the DASH kernel, the only client of the network
layer is ST and ST_NOTIFY_MPO is not needed. However, by having the
notification MPO specified, other network layer implementations, after bootstraping
the connection using this well-known reference, may suppon multiple notification
ports and clients.

5.1. Implementation of Remote References

A host must maintain the set of remote reference it has issued, the holders to which they
were issued, and the type of the object to which the remote reference refers. The
mechanism to authenticate the source of a message provided by ST can be used to insure
that remote references are used only by those who have permission to do so. Hosts that
allow objects to be deleted must also have a mechanism for detecting "dangling" remote
references. This can be done using unique IDs' (see below).
In the DASH kernel, a remote reference is represented as a pair <unique object identifier
(UID), session identifier> of 32-bit numbers. The UID is a sequence number assigned
when a remotely-referenced object is created, and stored with the object. The session
identifier is used to detect stale remote references.

Each entity to whom remote references are issued manages those entries using a
REMOTE_ REF_ MGR object. The REMOTE_ REF_ MGR class provides the following
interface:

struct REMOTE_REF {

} ;

enum

U32 object_uid;
U32 session_id;

STREAM MPO_TYPE,
OUT_NET_CHANNEL_TYPE,
IN_NET_CHANNEL_TYPE,
OUT_ST_CHANNEL_TYPE,
IN_ST_CHANNEL_TYPE,
HOST_TYPE,
OWNER_TYPE,
NO TYPE

OBJECT_ TYPE;

15

BOOLEAN
REMOTE_REF_MGR::add_entry

) ;

SHARED_OBJECT* ob~ect_pointer,
OBJECT_TYPE object_type,
PTR_OR_INT d~ta

PTR_OR_INT*
REMOTE REF*

existing_ data
remote ref

SHARED OBJECT*
REMOTE_REF_MGR::get_entry

REMOTE_REF* remote ref,
OBJECT_TYPE object_type,
PTR_OR_INT* existing_data

) ;

II TRUE implies a new entry

II pointer to object
II object type
II data associated with entry if new
II returned if not a new entry
II returned

II NULL if then entry does not exist

II returned

Duplicate remote references in the table are not allowed; if an entry for the object already
exists, it is returned. There are also functions to delete entries and change the data asso
ciated with an entry.

6. THE NETWORK LAYER
In DASH terminology, a network is an abstract entity that connects a set of hosts and pro
vides parameterized message channel service between pairs of these hosts. Different net
works need not be physically or logically disjoint. For example, the DARPA Internet
and a local Ethernet (with the addition of support for channels) could be two separate
DASH networks, although they might share host interfaces and network media.
Each DASH host is connected to one or more networks, and must implement the channel
protocols of those networks. A host has one or more network addresses in each network
to which it is connected. In the current design, there is no mechanism to connect chan
nels of different networks. A pair of DASH hosts can communicate directly only if they
belong to a common network.
In the DASH kernel, the network layer consists of a set of objects derived from the base
class NETWORK. Each of these objects corresponds to a network to which the host is
connected. A NETWORK object has the following Boolean attributes:

All hosts trusted: true if this kernel trusts the kernels of all the hosts on the net
work. This does not imply that the network is physically secure.
Physical broadcast network: true if the network has the property that any message
completely received by any node is received by all nodes. LAN' s such as Ethernet
[14] have this property.

Network objects should support only those channel security and reliability properties for
which it has hardware support (such as by hardware checksumming or encryption in the
network interface) or that hold by virtue of trust properties (e.g., that the network is phy
sically secure). The gap between these properties and those required by clients is bridged
by ST.

6.1. Network Channel Endpoint Objects
A network channel is represented, in each of the kernels it connects, by an endpoint
object. An endpoint is active on the host that created the channel, and passive on the

16

other end. It is outgoing or incoming depending on the data direction relative to an end
point. There are two network endpoint base classes, OUT NET CHANNEL and
IN_NET_CHANNEL. For each type of network, there are network channel endpoint
classes derived from these base classes. The classes are derived from a base class con
taining a type field that is used to distinguish between the endpoint types in operations
such as NETWORK: :delete () that take generic pointers.

6.2. Network Channel Creation: Active End
The NETWORK class provides the following virtual function to create a set of network
channels:

NET CHANNEL_CREATE_STATUS
NETWORK::create channel (

HOST* destination,
NETWORK_ADDRESS network_address,
U32 to_peer,
U32* frorn_peer,
int desc_count,
NET CHANNEL_REQUEST(] descs

) ;

struct NET_CHANNEL_REQUEST {
CHANNEL DIRECTION direction;
CHANNEL PARAMS* desired;
CHANNEL PARAMS* acceptable;
STREAM MPO* data_rnpo;
STREAM_MPO* closure_rnpo;
U32 closure_data;
CHANNEL ENDPOINT* endpoint;

} NET_CHANNEL_REQUEST;

enurn NET CHANNEL CREATE STATUS
CREATE_ACCEPTED,
CREATE_ FAILED,
CREATE REJECTED

} ;

II destination host
II network address to use
II opaque data delivered to peer
II opaque data returned from peer
II number of channels requested
II list of requests descriptors

II CHANNEL IN or CHANNEL_OUT

II for incoming channels only
II closure notification MPO
II delivered in closure notification
II endpoint object (returned)

II request succeeded
II request failed
II request rejected by peer ST

NETWORK: :create channel () attempts to establish a set of network channels.
Either the entire set of channels is created or none are. Each channel in the request is
described by a NET_CHANNEL_REQUEST structure. The actual parameters of the
resulting channels are not returned, but are public data of the endpoint object.

6.3. Network Channel Creation: Passive End
ST is notified of network channel creation by request/reply notification operations
directed from the network layer to the ST_NOTIFY_MPO. These operations inform the
passive ST (the host receiving the request) of a network channel creation request. It may
either accept or reject the request. The request message format is:

17

struct NET_NOTIFY_CREATE_REQUEST {

} ;

HOST*
U32
U32

source;
opaque_ data;
desc_count;

NET CREATE_REQUEST_DESC[) descs;

struct NET_CREATE_REQUEST_DESC {
CHANNEL DIRECTION direction;
CHANNEL PARAMS actual_params;
CHANNEL ENDPOINT* endpoint;

} ;

The reply message format is:
struct NET NOTIFY CREATE_REPLY {

BOOLEAN accepted;
U32 opaque_data;
NET_CREATE_REPLY_DESC[) descs;

} ;

struct NET_CREATE_REPLY_DESC {
STREAM MPO* data_mpo;
U32 closure_data;
STREAM MPO* closure_mpo;

} ;

6.4. Network Channel Deletion

II active host
II from NETWORK::create_channel()
II number of channels in request
II array of descs

II CHANNEL IN or CHANNEL OUT
II parameters of this channel
II local channel endpoint

II FALSE ••> rejected
II returned to peer ST
II present only if accepted

II for incoming channels only
II included in closure notification
II closure notification MPO

The NETWORK class provides the following virtual function to delete network channels:
void
NETWORK: :delete

U32 to_peer,
int endpoint count,
CHANNEL_ENDPOINT[] endpoints

II delivered to peer
II number of channels to be deleted
II list of local net channel endpoint

This deletes the specified network channels and their associated endpoints on the local
host. Network channels may be deleted by either client.

6.4.1. Closure Notification
ST is informed of channel closure (both failures and deletions by the peer) by messages
delivered to the channel's closure MPO. Failure notifications are guaranteed to be
delivered within the failure_delay_bound channel parameter. Network channel
closure notification messages have their type field set to NET_CLOSE_TYPE, and
have the following format:

struct NET NOTIFY CLOSE

) ;

- -
NET CLOSE REASON
CHANNEL ENDPOINT*
U32
U32

close_reason;
local_endpoint;
my_opaque;
peer_opaque;

II reason channel was closed
II local network channel endpoint
II data supplied upon channel creatic
II data supplied by peer

enum NET CLOSURE REASON

) ;

- -
DELETED_BY_PEER,
PEER_CRASH,
NETWORK_FAILURE,

18

My _opaque is the closure_data supplied locally when the channel was created. If
the channel was deleted by the peer, peer_ opaque is the data supplied by the
NETWORK: :delete () operation of the peer. ST is responsible for eventually deleting
the network channel endpoint objects after receiving the notification message; this
prevents any "dangling pointer" problem.

6.5. Network Channel Data Messages
The OUT_NET_CHANNEL base class provides the following virtual function to send a
message:

OUT_NET_CHANNEL::send (
MESSAGE* message

) ;

The header of message contains a DEADLINE flag. If set, the header contains a
deadline for message transmission; this should not precede the current real time plus the
guaranteed delay of the channel. This allows the client to specify that a message has less
stringent delay parameters than that normally associated with the channel. The deadline
is used for queueing when the network interface has a nonempty transmission queue.
Each network channel has an associated data MPO to which data messages are delivered.
Data messages have their type field set to NET DATA TYPE to distinguish them
from closure notification messages.

6.6. Security Considerations
A single host may be connected to both secure and insecure networks. To insure that
messages from an insecure network do not interfere with authenticated channels, each
network maintains a table of valid MPO's and will deliver messages only to these.8

If a network is not physically secure, its channel establishment protocol will be insecure,
and channel creation notification messages may have false remote host names. Such a
"spurious" channel does not represent a security violation; it will be detected and
rejected by ST.

7. THE SUBTRANSPORT LAYER
All network communication in DASH (except for network-internal tasks such as routing
and network management) passes through the subtransport (ST) layer. ST enhances the
channel service provided by the network layer in the following ways:
• ST multiplexes ST channels onto network channels and caches idle network chan

nels.

8 We currently assume that each network uses a sperate network interface. Having networks share in
terfaces is currently under investigation.

19

• ST uses encryption and/or checksumming mechanisms to improve security and
error rate parameters, as needed.

• ST does fragmentation and reassembly so that the maximum message sizes avail
able to its clients can exceed that offered by the network layer.

• ST provides "fast acknowledgements" that clients can use to provide flow control
and capacity enforcement.

The clients of ST include stream transport protocols and the remote operation facility
(ROF).

7.1. ST Client Interface
Clients interact with ST through a combination of procedure calls and message-passing
operations. The procedural interface allows clients to initiate operations such as channel
creation (for the remainder of this section "channel" refers to ST channels only, not net
work channels). The message-passing interface is used to inform clients of events such
as channel creation and closure, and to allow them to send and receive messages on exist
ing channels.

The interface for creating and closing channels involves the following objects (see Figure
7.1):

• The ST layer is represented by the SUBTRANSPORT module. Its operations
include channel creation and deletion.

r
client layer

active client

create_channel()
delete_channel ()

subtransporr (ST) layer

l

passive client

get_request ()
send (eply ()

I
J. l
notification

tvfi>O

request_ reoly ()

Figure 7.1: Client Interface for Creating and Deleting Channels.

20

• Notification of channel creation is done by performing request/reply operations on
client-specified notification MPO' s.

The interface for interactions with existing channels involves the following objects (see
Figure 7.2):

• A channel endpoint is represented on its local host by an endpoint object. An ST
endpoint is active on the host that created the channel, and passive on the other end.
It is outgoing or incoming depending on the data direction relative to an endpoint.
There are two ST endpoint base classes, OUT ST CHANNEL and
IN ST CHANNEL. OUT ST CHANNEL is derived from the STREAM MPO - - - -base class. Both endpoint classes are derived from a base class that includes a
type field, so their types can be determined from generic pointers.

• Each channel has an associated stream~ mode data MPO at its receiving end. Client
messages are sent to this MPO by default.

• Each channel has an associated stream-mode closure MPO at each end. In the event
of channel closure, a message is sent to this l\.1PO.

• Each channel has an associated stream-mode acknowledgement MPO at its outgoing
end. Fast acknowledgement messages are sent to this l\.1PO.

The stream-mode messages sent by ST include a value in the type field of the message
header. These values include

j client layer

receive()

send {) send {)

l subtransport (ST) layer

send{)

send{) send{)

Figure 7.2: The Client Interface for Channel Usage.

21

ST DATA TYPE: the message is channel client data. - -
ST REDIRECTED DATA TYPE: if a channel client data message is directed to a
MPO other than the defauit data MPO, but the MPO remote reference is invalid, it
is assigned this type and delivered to the default data MPO.

ST_CLOSURE_TYPE: the message is a notification of channel closure.
ST_ACK_TYPE: the message is a fast acknowledgement.

The presence of this type field allows clients to use a single MPO to handle multiple mes
sage types. For example, a single MPO may serve as both the data MPO and closirre
MPO for an incoming channel.

7.1.1. Channel Creation: Active End
The SUBTRANSPORT module provides the following operation for creating ST chan
nels:

ST CHANNEL CREATE STATUS - -SUBTRANSPORT::create_channel(

) ;

HOST*
REMOTE REF*
U32
U32*
int
ST_CREATE_DESC[]

struct ST_CREATE_DESC {
CHANNEL_DIRECTION
CHANNEL PARAMS*
CHANNEL PARAMS*
CHANNEL ENDPOINT*
U32

} ;

U32
STREAM MPO*
STREAM MPO*
U32
STREAM MPO*

destination,
notify_mpo,
to _peer,
from_peer,
desc_count,
descs

direction;
desired;
acceptable;
endpoint;
to_peer;
from_peer;
data_mpo;
closure_mpo;
closure data;
ack_mpo;

enum ST_CHANNEL_CREATE_STATUS
CREATE_ ACCEPTED,
CREATE_FAILED,
CREATE REJECTED
INVALID NOTIFY MPO

) ;

II who to notify at peer
II passed to peer in notification
II returned from peer
II number of channels to create
II array of per-channel descriptors

II CHANNEL IN or CHANNEL OUT

II channel endpoint object (returned)
II passed to passive client
II returned from peer
II incoming only
II MPO for closure notification
II opaque data in closure message
II outgoing only

II request succeeded
II request failed
II request rejected by peer
II invalid notify mpo was specified

SUBTRANSPORT:: create_channel () is used to create a set of channels to the
specified host. Either the entire set is created or none are. The peer is notified at
notify_mpo. To_peer is passed to the passive client in the notification message; it
can be used to identify the request. If the peer rejects the request, from peer can be
used to provide an error code. Each channel is described by an ST_CREATE_DESC
structure. If the operation succeeds, a pointer to the channel endpoint object is returned
in endpoint. The to_peer and from_peer fields in the ST CREATE DESC
allow clients to exchange a word of data associated with each channel. The actual

22

parameters of the channel are public data of the object. Data_rnpo, for incoming
channels, specifies the data MPO (for outgoing channels, the data MPO is specified by
the passive ST client). Qosure notification messages will be written to
closure_rnpo. For outgoing channels, ack_rnpo specifies a stream MPO to which
fast acknowledgements (see Section 7 .1.6) are to be sent

7.1.2. ST Creation: Passive End
ST notifies the passive client of attempts to create channels by doing a request/reply
operation on a notification MPO. The passive client may either accept or reject the crea
tion request. If it accepts, the reply message specifies data, acknowledgement, and clo
sure MPO's for each channel. The passive client is also notified when an attempted ST
channel creation request fails, e.g., because a network channel of sufficient capacity
could not be created. Notification request messages have the following structure:

struct ST_NOTIFY_REQUEST {
HOST* source;
BOOLEAN success;
int desc_count;
ST NOTIFY REQ_DESC(] descs;

} ;

struct ST_NOTIFY_REQ_DESC {
BOOLEAN direction;
void* endpoint;
U32 opaque_data;

} ;

Notification reply messages have the following form:
struct ST_NOTIFY_REPLY {

BOOLEAN accepted;

II active host
II was the creation successful?
II number of channels
II defined only if successful

II true iff outgoing
II local channel endpoint object
II from create_channel() call

ST_NOTIFY_REPL_DESC(] descs; II present only if accepted
I ;

struct ST NOTIFY REPL_DESC {
U32 opaque;
STREAM MPO* data_mpo;
STREAM MPO* ack_mpo;
STREAM MPO* closure_mpo;

} ;

II for closure message
II incoming only
II outgoin~ only
II where to deliver closure message

The data items returned by the passive client in its ST_NOTIFY_REPLY message are
analogous to those supplied by the active client m the
SUB TRANSPORT: :create channel () call above.

7.1.3. ST Channel Creation Scenarios
The first ST channels established to a given host are those created by the ROF module
when it first invokes a remote operation on that host. The establishment of subsequent
channels follows this scenario:

(1) The active client contacts the passive client via ROF. The passive client creates a
notification MPO and obtains a remote reference for it, which is included in the
ROF reply message.

23

(2) The active client receives the ROF reply message.
(3) The active client calls SUB TRANSPORT: : create_channel (), and the two

ST modules set up the requested channels.
(4) When the char,nels have been created, the passive ST does a request/reply operation

on the notification MPO. If the channel group is rejected, the channels are deleted.
(5) The call to SUBTRANSPORT:: create_ channel () returns at the active end

with the appropriate status information.

7 .1.4. ST Channel Deletion

The SUBTRANSPORT module provides the following operation for deleting ST chan
nels:

void
SUBTRANSPORT::delete_channel(

U32* opaque,
int endpoint_count,
CHANNEL_ENDPOINT[] endpoints

II array of opaque data
II number of channels to delete
II endpoint objects

This deletes the specified channels and the corresponding local endpoint objects. The
peers may be on different remote hos{$. For each channel, a closure message (of type
ST CLOSURE TYPE) containing the corresponding element of opaque is delivered
to the peer's closure MPO if possible. The client is responsible for the deleting the end
point after receiving the closure notification message. Having the client delete the end
point solves any "dangling pointer" problem. A closure message has the following
structure:

struct ST_CLOSURE {

} ;

CHANNEL_ENDPOINT* endpoint;
ST_CLOSURE_REASON reason;
U32 my_opaque;
U32 peer_opaque;

enum ST CLOSURE REASON
DELETED_BY_PEER,
PEER_CRASH,
NETWORK FAILURE

l ;

7.1.5. ST Channel Data Messages

II local endpoint object

II supplied at channel creation
II defined only for PEER CLOSE

A data message can be sent on an outgoing channel using the
STREAM_MPO: :send () operation on its endpoint object. The message header con
tains a bitmask with the following flags:

AUTHENTICATE SENDER

This is meaningful only on a host-authenticated ST channel. The message header
contains a pointer to an OWNER object. On delivery, the incoming message will
include a pointer to a corresponding OWNER object in the peer kernel. If the source
kernel is security correct [1] (i.e., if it provides privacy and authentication locally)
the receiver knows that the message originated from OWNER. If the source kernel

24

is not security correct, it knows only that the source kernel possesses the private key
of OWNER.

AUTHENTICATE RECEIVER

This is meaningful only on a host-authenticated ST channel. The outgoing message
header contains a pointer to an OWNER object. ST will verify that the owner is
present on the destination host before sending the message.9 However, there is no
guarantee that the message is actually delivered to that owner.

DESTINATION MPO

The message header contains a remote reference to an MPO on the remote host; the
message is to be delivered to this MPO (instead of the default data MPO).

ACK_REQUESTED

The message header contains a 32-bit message ID; ST sends an acknowledgement
message containing this ID to the acknowledgement MPO when this message is
delivered.

DEADLINE

The message header contains a deadline for transmission. This deadline should not
precede the current real time plus the guaranteed delay. This allows the client to
specify that a message has less stringent delay parameters than those normally asso
ciated with the channel. This deadline determines the message's queueing priority
at the network level.

If the DESTINATION_ MPO flag is not set in a STREAM_MPO: :send () operation, or
if an invalid remote reference if given, the message will be delivered to the channel's
default data MPO (in the latter case the message is assigned type
ST_REDIRECTED_DATA_TYPE). This facility is used by ROF to handle retransmitted
replies sent to MPO's that have been deleted.
The header of a message delivered by ST includes a copy of the flags bitmask sup
plied by the sender. If the AUTHENTICATE_SENDER flag was set, the header will
include a pointer to an OWNER object representing the sender.

7.1.6. Fast Acknowledgements
If a message is sent with the ACK_REQUESTED flag set, ST will (unreliably) send an
acknowledgement message to the channel's acknowledgement MPO after the original
message has been delivered. The acknowledgement message has its type set to
ST_ACK_TYPE, and has the following format:

struct ST NOTIFY_ACK_REPLY {
U32 message_id;

} ;

This facility can be used for acknowledgement-based flow control. ST-level ack
nowledgements may be preferable to higher-level acknowledgements, since the ack
nowledgement can be sent earlier. The facility does not replace higher-level reliability
acknowledgements.

9 We have not yet defined precisely what it means for an owner to be present on a host

25

7.2. The Subtransport Protocol
This section describes the DASH Subtranspon Protocol. This protocol is used for com
munication between ST layers, and must be implemented on all DASH hosts. The proto
col consists of two related subprotocols: The ST Control Protocol is used for secure
channel establishment, owner certification, ST channel creation and deletion, fast ack
nowledgements, and pinging. The ST Data Protocol is used for conveying client mes
sages.

7.2.1. Security Encapsulations
Recall from Section 3.1 that the parameters of a channel include the following:
• Private: true if eavesdropping is impossible.
• Host-authenticated: true if impersonation by another host is impossible.
• Bit error rate: the long-term average bit error rate.
In addition, a given network has the parameters
• All Hosts Trusted: this flag is true if this host trusts the kernels of all hosts on the

network. This trust simplifies owner certification, but is orthogonal to network
security; it does not imply that the network is private or host-authenticated.

• Physical Broadcast Network(PBN): this flag is true if any message received com-
pletely by any host on the network is received by its addressee.

The messages sent by ST have varying security and error rate requirements. Indeed, the
requirements may vary between the different fields of a message. ST uses the following
mechanisms:

• Cleartext: the message is sent verbatim, with no additional data.
• Encryption: part or all of the message is encrypted using DES single-key encryp

tion [16]. A channel key shared by the two hosts is used. The 64-bit remainder of
the encryption is appended to the cyphenext This provides privacy, authentication
and error detection.

• Cryptographic Checksumming: part or all of the message is sent in cleartext, but
the 64-bit remainder from its DES encryption is appended. The provides a ''crypto
graphic checksum" having the propeny that it is virtually impossible to modify the
data without modifying the checksum, so this mechanism provides both error detec
tion and authentication.

• Checksumming: part or all of the message is sent in cleartext, but is followed by a
32-bit checksum. This provides error detection. However, it does not provide
authentication (even if the checksum were encrypted) because it is possible to
modify the data in such a way that the checksum is unchanged.

• Encrypted Trailer: this technique is used only when communicating on a PBN. A
64-bit trailer, encrypted with the channel key, is appended to the entire message
(not just to the part being authenticated). The trailer is a 32-bit sequence number
followed by a 32-bit timestamp in seconds. The receiver decrypts the trailer, and
accepts the message if it lies within an acceptable range (in terms of both sequence
number and time) of the previous packet received. This provides authentication.

26

These properties are summarized in Table 7 .1.

technique privacy authentication error detection
cleartext
encryption
checksum
cryptographic checksum
encrypted trailer

no
yes
no
no
no

no
yes
no
yes
yes

Table 7.1: Properties of Security Mechanisms.

no
yes
yes
yes
no

The combination of mechanisms used for a particular message (or part of a message) is
called its security encapsulation. The ST can use any combination of the above mechan
isms to achieve the needed properties. The choice depends on what is provided by the
network layer. The first four techniques are mutually exclusive. Encrypted trailers may
be used alone or in combination with checksumming.
ST is free to use any security encapsulation that has the needed properties. The choice
may depend on the architecture (processor and encryption/checksumming hardware).
Assume that 1) in order of increasing cost, the techniques are

cleanext
encrypted trailer
checksum
cryptographic checksum
encryption

2) that the cost differences are all nonnegligible, and 3) that techniques can be intermixed
within a message with no additional cost. With these assumptions, the most efficient
security encapsulation can be determined as follows:

27

if (ST channel is private and network channel is not private)
use encryption;

else {
if (ST channel is authenticated and network channel is not authenticated)

if (network is PBN) {

else

if (ST channel error rate < network channel error rate) {
use encrypted trailers and checksumming;

else {
use encrypted trailers;

else
use cryptographic checksumming;

if (ST channel error rate < network channel error rate) {
use checksumming;

else {
use cleartext

7.2.2. Mixed Encapsulations
The security and reliability requirements for the header of ST data messages (see Section
7 .2.6) may differ from those of the data part. Therefore different security encapsulations
may be used for the two parts. For example, a message might have the form

ST header (cleartext)
cryptographic checksum of ST header
user data (cleartext)
checksum of user data

Checksums (regular or cryptographic) of the two parts are not merged. If both parts use
an encrypted trailer, only one is appended to the message.

7.2.3. Encapsulation Type is Implicit
There is no need to encode the security encapsulation of each message within the mes
sage itself. The ST can deduce the encapsulation as follows.
• Control and data messages can be distinguished because they arrive on different

network channels, and hence on different MPO's.
• The encapsulation of control messages is determined when the control connection is

established.

• The header encapsulation of data messages is determined when the network channel
is established. From the ST channel remote reference contained in the header (see
Section 7 .2.6), the ST can determine the ST channel for which the message is des
tined. The data encapsulation for an ST channel is determined when the channel is
established.

28

7.2.4. Security Considerations
Recall from Section 6.6 that network channel data messages are inherently network
authenticated. There is therefore no problem in mixing secure (i.e., private and authenti
cated) and insecure networks in the same host. For example, suppose a host is connected
to network A, which is secure, and network B, which is insecure. If a secureST channel
is established using a network channel on network A, then no encryption will be used. A
malicious host on network B can indeed send forged messages, but they will not interfere
with the secure ST channel.

7.2.5. The ST Control Protocol
The ST control protocol from host A to host B consists of a sequence of synchronous
request/reply operations from A to B10

• Operations from B to A may overlap these opera
tions. A simple retransmission protocol is used for reliability. The control protocol also
includes fast acknowledgements, which are unreliable unidirectional messages.
An ST control connection between two hosts consists of a pair of network channels
between the hosts, one in each direction, each created by its sending end. All ST control
messages are sent on these channels. The ST control protocol involves relatively small
and infrequent messages. Hence the network channels can have a small capacity, but
should have minimal delay.
A host A may initiate the creation of a control connection to a host B simply by creating
the initial network channel to B. B may accept the connection by creating a network
channel to A, or may reject it by rejecting the original channel creation request. No syn
chronization problem arises if two hosts simultaneously create a control connection to
one another.

A subtransport secure connection exists between two ST modules A and B if:
• A and B have a means for sending private and host-authenticated messages. In

some cases this can be done by using private or host-authenticated network chan
nels. More generally, the ST modules must have agreed upon a common secret
encryption key.

• A and B have a means for cenifying to each other what owners (kernel clients) they
represent They have this means if 1) they have agreed upon on a pair of owner
certification strings that can be used to prove the possession of owner private keys,
or 2) they trust each other.

A secure connection is an extension of a control connection; it is established only after a
control connection has been established, and ceases to exist if the control connection
fails. Secure connection establishment is done by message exchange using Diffie
Hellman public-key encryption [2]. Once the secure connection has been established,
DES single key encryption is used. The first operation on a control connection is secure
connection establishment This operation is always initiated by the host with the lexico
graphically greater name. To establish a secure connection to host B, host A generates a
random channel secret key S and sends the following request message:

10 If experiments prove this serialization to be a performance bottleneck, the protocol will be changed
to allow parallel requests.

29

msg_typedef struct
SKE KEY key;
BYTES dest_name;
CERT STRING cert_string;
SECURITY_ENCAPSULATION encapsulation;
CHECKSUM checksum;

ESTABLISH_SECURE_CHANNEL_REQUEST;

msg_typedef struct {
enum { CLEARTEXT,

} data_mode;

CHECKSUM,
CRYPTO_CHECKSUM,
ENCRYPTED

flags {encrypted_trailer};
SECURITY_ENCAPSULATION;

II the connection secret key
II name of destination host

Key and dest_name are encrypted with A's private key. Cert_string is a ran
dom string which will be used to certify owners from B to A (see Section 7.2.5.2).
Encapsulation indicates the type of security encapsulation to be used for future con-
trol messages and data message headers from A to B.11 The entire request is then
encrypted with B 's public key.
The reply message has the form:

msg_typedef struct {
SKE KEY key; II the channel key
BYTES dest_name; II the name of the destination
CERT STRING cert_string;
SECURITY ENCAPSULATION encapsulation;
CHECKSUM checksum;

ESTABLISH_SECURE_CHANNEL_REPLY;

Key and dest_name are encrypted with B's private key. Cert_string is a ran
dom string which will be used to certify owners from A to B (see Section 7.2.5.2).
Encapsulation indicates the type of security encapsulation to be used for future con
trol messages from B to A. The entire reply message is encrypted with A's public key.
In both the request and reply messages, the presence of the destination name encrypted
with the sender's private key provides authentication, while the encryption of the entire
message with the receiver's public key provides privacy. This use of slow public key
encryption allows the ST to "bootstrap" into the faster single-key encryption using the
connection key.

7.2.5.1. Control Message Structure
For control messages other than secure connection establishment, the security encapsula
tion depends on the parameters of the underlying network channel. The bit error rate for
control messages must satisfy an upper bound determined by the two hosts. In addition,
control messages are host-authenticated. They may also be private; this is a parameter of
the host.

11 There could also be a negotiation between A and B to determine the encapsulations of control mes
sages and data message headers, perhaps independently. This could also be done on a per-network-channel
basis.

30

The following header is common to all ST control protocol messages:
msg_typedef enum {

CERTIFY ASK
CERTIFY_OFFER,
CERTIFY ASK AGAIN
CREATE_ CHANNEL,
DELETE_CHANNEL,
FAST_ACK,
PING

} ST_CONTROL OP;

msg_typedef struct
flags {request};
ST_CONTROL_OP operation;
U32 my_seqno;
U32 your_seqno;

} ST_CONTROL_HDR;

II true iff request; else reply

My_ seqno is the sequence number of the next operation to be generated by the sender
(or the current operation, in the case of a request message). Your_seqno is the
sequence number of the next operation expected from the peer (or the operation being
replied to). This header is followed by a message body whose structure depends on the
message type.

The ST control protocol uses a simple retransmission policy. A request message is
periodically retransmitted until a reply is received. Duplicate request messages are
ignored. There are no reply acknowledgements. A reply message is retransmitted only if
a message is received with a sequence number indicating that the reply was lost.

7.2.5.2. Owner Certification
An owner 0 is said to be certified from host A to host B if B believes that A possesses O's
private key. An owner 0 becomes certified from A to B if either
(1) B trusts A, and A informs B that it has O's private key, or
(2) A has proved to B that it possesses O's private key. To do this, A encrypts the pair

<R.B> with the O's private key, where R is the certification string provided by Bon
secure connection establishment.

7.2.5.3. Certification Caching
When an owner 0 has been certified from A to B, both A and B will each have an
OWNER object for 0, and each will have issued a remote reference to the other for their
version of this object. A's remote reference table entry for this object has flags indicating
whether 0 has been certified 1) from A to B, and 2) from B to A. These entries serve as
an owner certification cache. Subsequent operations requiring that 0 be certified from A
to B can simply consult this cache.

Each remote reference entry also contains an invalid time beyond which the cenification
from the peer (if any) is no longer valid (this value is obtained from the name service
entry for the owner). If a reference is made beyond this time, then the owner must be
recenified. If the user public key has not changed or the owners are mutually trustful,
then recertification is not done.

31

7 .2.5.4. Certification Messages

The CERTIFY_OFFER operation is used to offer an (unsolicited) certificate to another
host

msg_typedef struct {
ST CONTROL HDR
REMOTE REF
BYTES
CERTIFICATE

CERTIFY_OFFER_REQ;

msg_typedef struct {
ST_CONTROL_HDR
flags
REMOTE REF

CERTIFY_OFFER_REPLY;

header;
owner_ref;
owner_name;
certificate;

header;
{accepted} ;
ref;

If the sender already has a remote reference to the owner, it is passed in owner_ref
and owner_name is empty; otherwise owner_reef is NULL_REF and the owner
name is passed explicitly, in which case a remote reference is returned in the reply.
Certificate is the certification string, encrypted with the owner's private key, or
empty if the peer trusts this host.

The CERTIFY_ASK operation is used to request that the peer authenticate an owner.
msg_typedef struct {

ST CONTROL HDR
REMOTE REF
BYTES

CERTIFY_ASK_REQ;

msg_typedef struct
ST CONTROL HDR
enurn {OK, FAILED}
REMOTE REF
CERTIFICATE

CERTIFY_ASK_REPLY;

header;
owner_ref;
owner_name;

header;
status;
owner_ref;
certificate;

II owner remote reference (if known)
II symbolic owner name

The CERTIFY_ASK_AGAIN operation is used to request re-certification of an owner.
msg_typedef struct {

ST CONTROL HDR header;
REMOTE_REF owner_ref;

CERTIFY_ASK_AGAIN_REQUEST;

msg_typedef struct {
ST CONTROL HDR
enurn {OK, FAILED}
CERTIFICATE

CERTIFY_ASK_AGAIN_REPLY;

7.2.5.5. ST Channel Creation

header;
status;
certificate;

Each ST channel is multiplexed onto an existing network channel. An ST module can
create an ST channel only on a network channel that it owns.

A channel creation request supplies the following parameters for each channel being
requested:

32

msg_typedef struct {
CHANNEL_DIRECTION direction; II CHANNEL_OUT or CHANNEL IN
CHANNEL PARAMS params;
REMOTE REF net_channel_ref;
REMOTE REF st_channel_ref;
U32 opaque_data; II passed from active to passive

} ST_CONTROL CHANNEL_DESC;

Net channel ref indicates which data network channel is to be used for the ST - -
channel; it must be a channel owned by the sender. St channe 1 ref is a reference
to the local channel endpoint object.

The create request message has the following structure:
msg_typedef struct {

ST_CONTROL_HDR header;
U32 opaque_data;
ENCAPSULATION TYPE encapsulation_type;
REMOTE REF notification_mpo;
U32 number;

} ST CONTROL CREATION_REQUEST;

This is followed by a sequence of ST CONTROL CHANNEL DESC fields.
Opaque_data will be included in the notification message delivered on the passive
side to the notification_mpo.

The reply message has the following structure:
msg_typedef struct {

ST CONTROL HDR - -enum {ACCEPT, REJECT}
U32

} ST_CONTROL CREATION REPLY;

header;
status;
opaque_data; II from passive to active

If the request was accepted, this is followed by a sequence of REMOTE REF and U3 2
fields, referring to the ST endpoint objects at the passive end and the opaque data passed
from the passive to active client for each channel.

7.2.5.6. ST Channel Deletion

The DELETE_CHANNEL operation uses the following messages:
msg_typedef struct {

ST CONTROL HDR
U32

) DELETE_CHANNEL_REQUEST;

msg_typedef struct {
ST CONTROL HDR

} DELETE_CHANNEL_REPLY;

header;
number;

header;

The request message is followed by a list of remote references to the ST channels to be
deleted.

7.2.5.7. Fast Acknowledgements
A fast acknowledgement message has the following structure:

msg_typedef struct {
ST_CONTROL_HDR
REMOTE REF
032

FAST_ACK;

33

header;
st_channel_ref;
opaque_data;

Such a message acknowledges the receipt of a client message with the given opaque data
on the ST channel identified by st channel ref.

7 .2.6. The ST Data Protocol
The ST data protocol uses a set of network channels disjoint from the control connection
channels. There are two types of ST data messages:
• A simple message: used to send one ST client message.
• A fragment message: used to send a fragment of an ST client message. This is

needed when the client message (with headers) exceeds the network channel max
imum message size.

An ST data message consist of an ST header followed by user data. The security encap
sulation is determined as follows: the ST header must have a bit error rate below a
system-defined value, and must be authenticated. The user data must satisfy the ST .
channel parameters. The ST header of a simple data message has the following structure:

msg_typedef struct {
ST_DATA_TYPE type; II SIMPLE in this case
flags {fast_ack, auth_sender}

U32
032
REMOTE REF
REMOTE REF
REMOTE REF
U32

} ST_DATA_SIMPLE;

message_flags;
st_seq_num; II a unique ID for this message
ack_id; II for fast acks
dest_st_channel;
dest_mpo;
sender;
data_size;

Dest_st_channel refers to the receiving ST channel endpoint object. Dest mpo
refers to the MPO to which the message is to be delivered. If it is NULL_ REF, the mes
sage is delivered to the default MPO. The optional sender refers to the OWNER
object responsible for sending the message.
The header of a fragment message has the following structure:

msg_typedef struct {
ST DATA TYPE
U32
U32
032
032
REMOTE REF
REMOTE REF
REMOTE REF
032

ST_DATA_FRAG;

type;
total_frags;
frag_num;
st_seq_num;
ack id;
dest_st_channel;
dest_mpo;
sender;
data_size;

II FRAGMENT in this case
II number of fragments in message
II number of this fragment
II a unique ID for this message
II for fast acks

34

8. THE REMOTE OPERATION FACILITY
The DASH Remote Operation Facility (ROF) provides host-to-host request/reply com
munication. It supports higher-level request/reply communication (such as service
access by user processes), as well as direct kernel communication. The following are the
most important features of ROF:
• The channel approach is used: low-delay channels are used for critical-path mes

sages such as requests and replies, and high-delay channels are used for other mes
sages such as retransmissions and acknowledgements.

• There is no restriction on the number of outstanding remote operations between two
DASH hosts. This removes a possible limit on the parallelism within a multiproces
sor host.

• ROF does not dictate any mechanism for accessing messages (e.g.,
serialization/deserialization). Clients and servers access messages directly using
DML, the DASH Message Language (see Appendix 1).

8.1. Reliability
ROF provides three semantics for remote operations:
Exactly Once

In the absence of machine or network failures, operations are executed exactly once,
and in any case are not executed more than once. Operations may have reply mes
sages.

At Least Once

In the absence of machine or network failures, operations are executed at least once,
and possibly more than once. Operations may have reply messages. This operation
type can be used for idempotent operations.

Mcrybe

Operations are executed 0 or 1 times; the client is not told which. There can be no
reply message. This operation type can used to distribute hints or other non-critical
information.

8.2. Remote Operation Opcodes
A remote operation (RO) is identified by a 32-bit RO opcode. The set of RO opcodes is
divided as follows:
• Mandatory operations that must be supponed on all DASH hosts.
• Optional operations whose semantics are globally defined, but that need not be

implemented on all hosts.
• Non-standard operations, which are specific to a panicular kernel type.

8.3. Invoking a Remote Operation
ROF is represented by an ROF module, which provides the following interface for
invoking an RO:

RO_STATUS
ROF::ro call

HOST*

) ;

U32
MESSAGE*
MESSAGE**
RO TYPE

enum RO STATUS
OK,

35

destination,
ro_opcode,
request,
reply,
ro_type

II RO opcode- discussed above
II request message
II reply message (optional)
II EXACTLY_ONCE, AT_LEAST_ONCE, MAYBE

INVALID_OPCODE,
OPCODE_NOT_SUPPORTED,
NO_CONNECTION,
ERROR_OTHER,

II unable to establish a ROF connection

} ;

If the reply is NULL and the status is OK, there was no reply. ROF clients may use the
AUTHENTICATE_SENDER and AUTHENTICATE_RECEIVER flags in request and
reply messages (See section 7.1.5).

8.4. ROF Server Interface
A REQ_ REPLY_ MP 0 object is associated with each RO opcode using the following
operation:

void
ROF::register_ro_mpo

U32
REQ_REPLY_MPO*

) ;

ro_opcode,
ro_mpo

When a request is received, the ROF module looks up the RO opcode. If it is invalid or
is an operation the server does not support, ROF sends a reply message with the
appropriate error code. Otherwise, a request_reply () operation is performed on
the associated MPO.

8.5. ROF Connection Parameters
Communication between peer ROF modules uses a dedicated set of ST channels (see
Section 8.6). ROF does not support fragmentation of request or reply messages. The
maximum request and reply message size is detennined by the maximum message size of
the ST channels that ROF is using. The following functions return these sizes:

int
ROF: :max_request_message

HOST* remote host
) ;

int
ROF::max_reply_message (

HOST* remote host
) ;

II destination host

II destination host

ROF client and servers may have differing security (authentication and privacy) needs.
For simplicity, ROF uses private and host-authenticated channels.

36

8.6. The ROF Protocol

8.6.1. ROF Connections
All ROF communication between a particular client/server host pair uses a dedicated set
of ST channels called the ROF connection. The connection is created by the client ROF
module. A ROF connection is directional; it is outgoing relative to the client, incoming
relative to the server. If two ROF modules are each acting as a server for the other, then
there must be two ROF connections between them.
Separate fast and slow channels are used in each direction in order to reflect the relative
deadlines of messages. A ROF connection consists of four channels: the
FAST REQUEST CHANNEL and SLOW REQUEST CHANNEL go from the client to
the server, and the FAST_REPLY_CHANNEL and SLOW_REPLY_CHANNEL go from
the server to the client. Initial request and reply messages always use the fast channels,
while retransmissions and acknowledgements use the slow channels.
The channels in a ROF connection are "logical" in that
• They may not be distinct: the fast channel and the slow channel in a given direction

may actually be the same channel.
• There may be more than one actual channel for each logical channel; this might be

necessary if the capacity of one ST channel is insufficient.
• The channels may change over the life of a ROF connection; if one of them is

closed (e.g., because of network failure), the ROF module may create a new channel
without breaking the ROF connection.

The client ROF module creates the ROF connection to a peer host when it has a request
for that host and a ROF connection does not already exist. This occurs, for example,
after one of the hosts comes up from a crash. ST notification messages are sent to the
ROF notification port, which has a well-known remote reference (see Section 5).
ST allows the creator of an ST channel to pass opaque data in the notification message.
ROF uses this to allow the server to distinguish between the different channels of the
ROF connection; there is a different code for each of the four channels. In addition, a bit
is used to specify whether or not this is a new connection. This is necessary to support
reestablishment of individual channels of the ROF connection.
The ROF client owns the channels in the ROF connection, and it may delete the connec
tion. It does so by using SUBTRANSPORT:: delete_channel () to delete the
channels. No messages need to be passed between the ROF modules. The server may
request to delete the ROF connection. This may be necessary if the server is going down.

8.6.2. ROF Messages
A remote operation (RO) may involve a request message, a reply message, and various
retransmissions and acknowledgement messages. An ROF transaction is the set of all
messages associated with a single RO.
ROF messages are of two types: ROF client messages sent by the ROF client, and ROF
server messages sent by the ROF server. A ROF message consists of two parts: a header
containing control information, optionally followed by data. The two parts are sent
together as a single message on an ST channel.

37

There are two header formats, one for client messages and one for server messages. To
simplify message handling, each header type is fixed-size, regardless of the actual fields
used.

8.6.2.1. Client Message Header Format
Client messages headers have the following format:

msg_typedef flags {
EXACTLY_ONCE_REQUEST,
AT_LEAST_ONCE_REQUEST,
MAYBE_REQUEST,
EXP_ACK_REQUESTED,
PING_REQUEST,
REPLY_ACK,
DELETE ACK

CLIENT_FLAGS;

msg_typedef struct
CLIENT FLAGS
U32
U32
REMOTE REF

} ROF_CLIENT HEADER;

client_flags;
ro_opcode;
seqno;
client_mpo;

I I message type
II which operation
II ROF transaction ID
II where to send reply

Sequence numbers are generated by the client to identify each ROF transaction. The first
transaction on a ROF connection may have any sequence number. Subsequent transac
tions must have strictly increasing sequence numbers. Sequence numbers may not
repeat. Client_mpo is the remote reference to the MPO where the reply message is
to be delivered to the client.

8.6.2.2. Server Message Header Format
Server message headers have the following format:

msg_typedef flags {
REPLY,
REQUEST_ACK,
DELETE_REQ

SERVER FLAGS;

msg_typedef enum
SUCCESSFUL,
INVALID_RO_OP,
RO_OP_NOT_SUPPORTED,

) RO_STATUS;

msg_typedef struct
SERVER FLAGS
RO STATUS
U32

ROF_SERVER_HEADER;

server_flags;
status;
seqno;

8.6.3. ROF Protocol Specifications

The ROF exactly-once protocol uses implied request acknowledgements; that is, a reply
acknowledges the corresponding request. Other systems such as Sprite [23] and Cedar

38

[5] also use implied reply acknowledgements (i.e., a request message acknowledges the
previous reply). Implied reply acknowledgements are not used in ROF.
Tables 7.1 and 7.2 specify the ROF exactly once protocol. Tables 7.3. and 7.4 specify
the ROF at least once protocol. It is assumed, for simplicity, that the ROF connection
has already been established, and that there are no machine or network failures.

9. THE SERVICE ACCESS MECHANISM
Services are a class of remotely-accessible logical resources in the DASH distributed sys
tem architecture. The DASH service access mechanism (SAM) allows clients to name
services and communicate with them in a uniform way. The goals of SAM are:
• To provide replication transparency. A service may consist of multiple instances

running on different hosts. A client need not know which instance handles a partic
ular request or session.

• To provide location transparency in the sense that service names do not specify or
limit the location of the servers.

• To provide failure transparency: If a service instance fails, SAM may, without
client involvement, locate and begin using a second instance of the service.

• To provide a flexible framework for client/service communication protocols. Ser
vices may provide interfaces that have real-time communication performance
requirements, or that use special-purpose stream protocols.

Event
Current State Receive Receive

Tuneout Reply ACK
STATE 1
Initial Request SeriL Send Reply ACK. Send Duplicate RequesL

No explicit ACK requested. Goto State 4. NA. Ask For Explicit ACK.
Go to state 2.

STATE2
Duplicate Request SenL Send Reply ACK. Send Duplicate Request.

Explicit ACK Requested. Goto State 4.
Goto State 3. Explicit ACK Requested

Goto State 2.

STATE3
Request SenL Send Reply ACK.

Goto State 3. Send Ping Message.
ACK of Request Received. Goto State 4. Goto State 3.

STATE4

Received Reply. Send Reply ACK.
~A. NA. Goto State 4

Table 7.1: Client State Table, ROF Exactly-Once Protocol.

39

Event

CUITent State Receive Receive Receive Receive Finish

Request Request
Reply ACK PING Request Executing

ACK Reauested RO
STATE 1

ExecuteRO. Send Request ACK.
Idle. Goto State 2. ExecuteRO. NA. NA. NA.

Goto State 2.

STATE2
Send Send Send Send Reply.

Executing RO. Request ACK. Request ACK. NA. Request ACK.
Goto State 3. Goto State 2. Goto State 2. Goto State 2.

STATE3
Reply Sent. Send Send Send

No ACK Received. Reply. Reply. Goto State 4. Reply. NA.
Goto State 3. Goto State 3. Goto State 3.

STATE4
R 0 transactioo

NA. NA. NA. NA. NA. Complete.

Table 7.2: Server State Table, ROF Exactly-Once Protocol.

Event
Current State Receive Receive

Ttmeout Reolv ACK
STATE 1
Initial Request SenL Send Reply ACK. Send Duplicate Request.

No explicit ACK requested. Goto State 4. NA. Ask For Explicit ACK.
Goto State 2.

STATE2
Duplicate Request SenL Send Reply ACK. Send Duplicate Request.

Explicit ACK Requested. Goto State 4. Goto State 3. Explicit ACK Requested
Goto State 2.

STATEJ
Request SenL Send Reply ACK.

Goto State 3. Send Ping Message.
ACK of Request Received. Goto State 4. Goto State 3.

STATE4
Received Reply.

NA. NA. NA. RO Transaction Complete.

Table 7.3: Client State Table, ROF At-Least-Once Protocol.

40

Event

Current State Receive Receive Receive Finish

Request Request
PING Request Executing

ACK R~uested RO
STATE 1

ExecuteRO. Send Request ACK.
Idle.

Goto State 2. ExecuteRO. NA. NA.
Goto Slate 2.

STATE2
Send Send Send Send Reply.

Executing RO. Request ACK. Request ACK. Request ACK. Goto State 1. Goto State 2. Goto State 2. Goto State 2.

Table 7.4: Server State Table, ROF At-Least-Once Protocol.

9.1. The Service Abstraction
A DASH service is a set of instances that together form a logical resource. Each instance
resides on a single host An instance may consist of a process, a set of processes, or a
''registration'' with the host kernel that causes a process to be created as needed. Infor
mation about the services on a host are kept in stable storage (e.g., a configuration file) so
that they survive crashes.
A replicated service may provide an abstraction of consistent data, in which case it needs
to ensure consistency between its instances. DASH does not supply nor dictate any
method for this, or for ensuring the atomicity or permanence of operations on services.
Such mechanisms must be supplied by the services themselves, perhaps in cooperation
with a higher-level transaction manager.
A DASH host may provide a kernel service, allowing access to resources that are
inherently local to that host, such as its physical devices.
Services can be accessed in two basic modes:
Request/Reply mode

Operations are request/reply. Operations are conveyed to remote service instances
via ROF.

Session mode

SAM uses ROF to contact an instance of the service and set up a communication
channel between the client and server. 12 This allows clients and servers to commun
icate using specialized, dynamically configurable protocols.

9.1.1. Service Tokens

A service may issue a service token representing a name or object within the service.
The token can thereafter be supplied in lieu of a name in subsequent operations on the
service. A service token may be used only in accessing the service instance that issued

12 The design for session mode access is not complete.

41

the token.

A service token has an associated set of operations, specified (by a bitmask) when the
token is requested; the token provides the right to perform this set of operations on the
object to which it refers, bypassing any underlying protection mechanism. A token ma~·
have no access rights, in which case it serves only as a name abbreviation.
The use of service tokens can improve performance in two ways: 1) it eliminates the
need for the service to do per-operation authorization checking; 2) it eliminates the need
for the service to do per-operation name translation. The DASH service token mechan
ism is related to the V system's UIO interface [9].
Service tokens can serve as capabilities (albeit transient ones), and therefore must be pro
tected. There are two possible approaches:
• The token includes a large random part, is secret, and must be encrypted in network

messages.

• The token need not be encrypted in network messages, and may be a small integer.
The service accepts a token only from its original recipient.

DASH uses the second approach. A service maintains, in per-host tables, the set of ser
vice tokens it has issued.

-service tokens may be discarded at any time by a service. This may be done either to
limit table size, or to force periodic reauthorization in support of an ''eventual revoca
tion" policy. The client (or the client kernel) holding the token must store information
(name and operation set) used to obtain the token, and must be prepared to issue another
token request if the original token is invalidated by the service. In addition, the client
can ''release'' the token, providing a hint to the service that it discard the token.
A token does not have associated with it any session context (e.g., position within a file).
Two tokens representing the same name and having the same rights are interchangeable.
Tokens are usable only during a crash-free period on both the client and the service
instance. When a host loses a secure channel to a remote host, all tokens associated with
services running on the remote host are discarded.

9.2. Client Interface to SAM
SAM is represented by a SAM module. SAM provides the following function to per-
form an operation:

SAM STATUS
SAM:: operation

NAMED ENTITY*
char*

) ;

OWNER*
MESSAGE*
MESSAGE**

prefix, // NAME_SERVICE, SERVICE, SERVICE TOKEN
extension, // relative to prefix
owner,
request,
reply

enurn SAM_STATUS {
OK,

) ;

SERVICE_ FAILURE,
INVALID_ PREFIX,
INVALID_EXTENSION,
NO_SUCH_EXTENSION,
NO_AUTHORIZATION,

42

II operation was successful
II service was unavailable
II prefix was invalid
II syntactically invalid extension
II could not resolve name
II authorization failure

Names are specified using prefix and extension. Prefix may point to a
NAMED_ENTITY object or be NULL. Extension is relative to prefix. If
prefix is NULL, then extension is a complete name. Because services may do
authorization based on the owner name, the owner requesting the operation is specified in
owner.

Service tokens are represented in the client kernel by objects of class
SERVICE_TOKEN (derived from NAMED_ENTITY). SAM provides the following
operation for creating these objects:

SAM STATUS
SAM::get_service_token(

NAMED_ENTITY*
char*
OWNER*
char*
SERVICE TOKEN**

) ;

prefix,
extension,
owner,
operations,
token

II NAME_SERVICE, SERVICE, SERVICE TOKEN
II relative to prefix
II used for authorization
II operations associated with token
II new token

The meaning and format of operations is service-specific. The new service token is
returned in token.

9.3. Server Interface to SAM
Each instance of a service is identified by a pair consisting of
• The name of the host on which it runs.
• An instance JD, a 32-bit ID unique among service instances on that host.
Services have symbolic names in the DASH global name space (see Section 10). Each
service name is mapped (by the DASH name service) to a list of (host name, instance !D)
pairs. A service may have several different names. Only those instances of a service that
are intended for remote access need be listed in the name service entry. For example, a
file service may have local instances on work stations. These local instances might do
local caching, and never be accessed remotely.
The steps in offering a service that will run as a user process on the DASH kernel are as
follows:

(1) Write a program that implements the local control protocol (see Section 9.4).
(2) Make versions of this program for the hosts on which instances are to be run.
(3) Register the service with the SAM module on each of these hosts (see below).
(4) Register the service with the DASH name service.
Services can be registered and unregistered using:

43

SAM: :register (
REQ_REPLY_MPO*
SVC_IO

service_ mpo,
instance id

) ;

SAM::unregister(
SVC ID instance id

) ;

Service_mpo is a request/reply MPO to which requests to the service will be
delivered. Depending on the nature of the service, this object may:
• Perform a function call within the kernel.
• Deliver the message to a user-level server process, perhaps creating a VAS and a

process if necessary.
The SAM module maintains a table of service registrations, mapping service ID's to
request/reply MPO's.

9.4. SAM Protocols
There are three protocols involved in service access:
(1) A protocol between peer SAM modules, layered on top of ROF. This is called the

SAM network control protocol.

(2) A protocol between a server-side SAM module and a local service instance. This is
called the SAM local control protocol.

(3) The service-specific end-to-end protocol between a client and a service, defining the
format and semantics of the service's operations. This is called the SAM
client/service protocol.

9.4.1. Network Control Protocol
The SAM network control protocol consists of remote operations using the ROF facility.
In the DASH kernel, these operations are generated and handled by SAM modules. In
specialized server machines, they might be handled by the service itself. The SAM net
work protocol uses the following set of ROF opcodes:

SVC_TOKEN_REQUEST
SVC OPERATION

The SVC_OPERATION operation is used to perform an operation on a service. The
request message has the following structure:

msg_typedef struct {
U32 service_id;
U32 service_token;
BYTES extension;
BYTES request;

) SVC_OPERATION_REQUEST;

Service_token is a service token previously issued by the service, or NULL.
Extension is a name extension beyond that of the token, or beyond the name of the
service if no token is used.

44

The reply message is either an operation result from the service, an error return, or a
REDIRECT message forwarding this request to another service instance. In this case the
message contains a (host name, instance ID) pair, which is a hint for which instance to
try next.

The SVC_TOKEN_REQUEST operation is used to obtain a service token. It uses the
following messages:

msg_typedef struct {
U32 service_id;
U32 old_token;
BYTES extension;

} SVC_TOKEN_REQUEST;

msg_typedef struct {
TOKEN_REPLY_STATUS
U32

} SVC_TOKEN_REPLY;

status;
new_token;

In the request message, old token is an optional service token to which exten
sion is relative.

9.4.2. Local Control Protocol
The protocol between a server-side SAM module and a service instance uses the same
request/reply messages as the SAM protocol, except:
• Messages are in host byte order instead of network byte order.
• Some error codes (e.g., NO_SUCH_ID) are not used.

10. GLOBAL NAMING

A primary goal of the DASH communication architecture is that resources (data and
computational) should be uniformly and securely accessible from any host. This requires
a facility for naming and locating the resources, and for naming and authenticating
resource owners and clients. These functions are provided by the DASH global naming
system.

10.1. Name Space Structure

The DASH global naming system uses a single tree-structured name space, similar to that
described in [6]. Conceptually, a name is a list of components, each of which is a string
of printable ASCII characters not containing the character "/". In practice, a name is
represented as a single ASCII character string consisting of a sequence of components
separated and preceded by "/". For example,

/usa/uc-berkeley/computer-science/filer

is a name with four components. A "/" by itself constitutes a name with zero com
ponents; this is the name of the root of the naming tree.

10.2. Entity Types

The system is used to name four types of entities: hosts, owners, services and name ser
vices. The internal nodes of the tree represent name services, and the leaves of the tree
represent the other entity types. The entity types, and their associated attributes, are as

45

follows:

• An owner represents an individual human user or a ''role'' such as that of system
manager. Its attributes include its public key.

• A !wst is an endpoint of physical network communication. Its attributes include a
list of its network addresses, and the name of its owner.

• A service is a logical resource provided by set of programs or processes. Its attri
butes include 1) a list of (host name, instance ID) pairs each specifying an instance
of the service (see Section 9.1) and 2) the name of the owner of the service. Ser
vices that are not name services (see below) are called general services.

• A name service is a special type of service that manages a single directory. Each
entry in a directory has a name component, a type, and a set of attributes. The attri
butes of a name service include those of general services (i.e., the service owner and
the set of hosts on which instances exist), but also include the attributes of the hosts,
the attributes of the host owners, and the attributes of the owner of the name service.
This extra information is included to avoid infinite recursion in the name resolution
process (see Section 10.5.3).

In addition to the mandatory attributes listed above, each name service entry may have
an arbitrary-length character string for auxiliary information. This typically would be ·
structured as a set of name=value string pairs. It could be used to store attributes such as
the real-life name, US mail address, electronic mail server address, phone number of an
owner, or the access protocol used by a service.
Each name service entry also has a "cache time" field indicating the maximum amount
of time for which it should be cached by clients (kernels or other name services). There
is no cache consistency protocol, so resolutions may be incorrect during the cached
period. Any intermediate agent (e.g., another name server or a kernel) that caches name
entries should maintain the amount of time for which it has held each entry and invali
date the entry when the cache time expires. If a name server releases the entry to another
agent, it should replace the cache time field with a suitably reduced value.

10.3. Intra-Service Naming
SAM allows services other than name services to extend the global name space below
their own name. Hence they can provide global names for the objects they manage.
Such a name has the form

service-name/intra-service-name

where service-name is the name of a general service. For example, a file service might
provide hierarchical naming of its files, so that the name

/usa/uc-berkeley/cs/filer/anderson/foo

refers to the file
/anderson/foe

within the file service
/usa/uc-berkeley/cs/filer

This feature removes the need to distinguish the two levels of naming, and makes it pos
sible for services to provide named "sub-services". In addition, services can provide

46

non-hierarchical intra-service naming. For example, a file service supporting attribute
based naming might provide a name of the form

lusaluc-berkeleylcslfiler21anderson.dash.kernel.c-source.scheduler
specifying a file (or group of files) with attributes anderson, dash, kernel, c-source, and
scheduler.

10.4. The Interface to Naming in the DASH Kernel
In the DASH kernel, the interface to the global naming system is provided by the NAM
ING module. The basic function of this module is name resolution. That is, given a glo
bal name N, it finds the longest prefix of N that names a standard entity (owner, host,
general service, or name service), and returns 1) the attributes of that entity, and 2) the
remainder of N beyond the name of the standard entity. The interface for resolving a
name is:

NAMING STATUS
NAMING: :resolve

NAME SERVICE*
char*
OWNER*
NAMED ENTITY**
char**

) ;

enum NAMING_STATUS {
OK,

prefix,
extension,
owner,
result_prefix,
result extension

II a NAME SERVICE or NULL
II relative to prefix
II used for authorization
II standard entity (returned)
II name remainder, could be NULL

NO_SUCH_NAME,
INVALID_NAME,
NO_AUTHORIZATION,
NAME_SERVICE_FAILURE,

II resolution was successful
II no such name is known
II syntactically invalid name
II name service authorization failure
II a name service was unavailable

} ;

Names are specified using a prefix and an extension. Prefix, if non-NULL,
points to an object (returned by a previous call to NAMING: :resolve ())represent
ing a name service. Extension extends the name represented by prefix. If
prefix is NULL, extension is a global name. Owner specifies the owner on
whose behalf the name is being resolved. This is relevant if authorization is used by any
of the name services involved. If the resolution is successful, the results are placed in
result_prefix and result_extension. Resolution fails if 1) the name is syn
tactically invalid, 2) a directory lookup fails, 3) an authorization failure occurs, or 4) a
name service fails.

10.5. The Name Service Protocol
This section specifies the minimal set of operations that must be supponed by a DASH
name service. These operations may be invoked by other name services acting on behalf
of their clients, or by the clients themselves. A name service may provide other opera
tions as well, such as those needed for administration or authorization changes.

47

10.5.1. Name Resolution
Every name service may be asked to resolve any name. In addition to various error
returns, the following results are possible:
(1) If this resolution is successful, the attributes of the standard entity with the longest

prefix are returned.
(2) If the queried name service is unable to authenticate the requesting owner to a pro

tected intermediate name service (i.e., because it does not have the owner's private
key), the entry for the intermediate name service is returned. The client's kernel
must then contact this name service directly.

The name resolution messages are 13 :

msg_typedef struct {
SERVICE TOKEN prefix;
BYTES extension;
RESOLVE_REQ_FLAGS flags;

NAMING_RESOLVE_REQUEST;

msg_typedef struct
U32
U32
NS ENTRY

NAMING_RESOLVE_REPLY;

status;
component_num;
entry;

II see below

II OK or AUTHORIZATION ERROR
II where resolution finished
II attributes of entry

msg_typedef flags {
no cache II do not use cached information

} RESOLVE_REQ_FLAGS;

10.5.1.1. Name Tokens
Global names are potentially very long. Even with caching in name services,
component-by-component resolution may yield unacceptable performance. To confront
this problem, name services may supply service tokens (Section 9.1.1) representing
names. This particular type of service token is called a name token. Name tokens have
no associated access rights. The same token may be issued to any number of clients, but
is valid only for the name service instance that issued it. Typically, a name service
would use a name token as a reference into its cache.
Unlike other service tokens, a name token does not represent a name that extends that of
the issuing name service. Rather, it represents a global name.
In the DASH kernel, the NAMING module uses the name token mechanism internally to
speed name resolution. This is done transparently to the clients of NAMING.

10.5.2. Scan Operations
Scan operations are used to read the set of entries in a name service's directory. This
facility can be used to provide for resolution based on incomplete information, ''wild
card" queries, and so on.

13 NS _ENTRY is not specified. See Section 10.2 for a list of the attributes for each type of named en-
tity.

48

Using flags passed in the request message, the operation can be limited to a subset of the
entry types. Also using flags, the information returned for each entry can be limited to its
type.

Since the number of entries in a directory may be large, the scan operation may return a
subset of the entries. The operation can specify an initial entry number, and the client
can make a sequence of scan operations to scan the entire directory.
The following messages are used to scan directories:

msg_typedef struct {
U32 start_index;
flags {

services,
name_services,
hosts,
owners,
return_ types,
return_ names,
return_attrs

flags;
SCAN_REQUEST;

II return
II return
II return
II return
II return
II return
II return

msg_typedef struct
·scAN_STATUS
U32
SCAN_ENTRY

status;

SCAN_REPLY;

msg_typedef struct
BYTES name;
union

NS ENTRY

num_entries;
entries(];

NS ENTRY TYPE
ns_entry;
type; - -NULL;

) ;

SCAN_ENTRY;

entries of type SERVICE
entries of type NAME SERVICE
entries of type HOST
entries of type OWNER
type of each entry
name of each entry
complete attributes

II see below
II number of entries in reply.
II array of information

II complete attributes requested
II only entry type requested
II only name was request

rnsg_typedef enum
OK, II scan was successful
NO AUTHORIZATION

SCAN_STATUS;
II did not have correct authorization

10.5.3. A voiding Infinite Loops in Name Resolution
The attributes of a general service include 1) a list of (host name, instance !D) pairs for
each instance of the service, and 2) the name of the owner of the service. The attributes
for a name service include those of a general service, but also include the attributes of the
hosts where there are instances of the service, the attributes of these host's owners, and
the attributes of the owner of the name service.
To see why it is necessary to include this extra information, consider the following
scenario. Assume that the name service I e du Ida vis has only one instance, which
runs on the host I edu/ davis /host 1. A client on the host whose parent name ser
vice is /edu tries to resolve the name /edu/davis/hostl. The host asks /edu
to resolve /edu/davis/hostl. /edu has an entry for /edu/davis. If /edu

49

returned only the service attributes for davis (e.g., a list of host names and instance
ID's), the next step in the resolution process would be to resolve the name
/edu/davis/hostl, which the original request. The extra information outlined
above solves this problem.

11. ACKNOWLEDGEMENTS
The following people have contributed to this work: Kevin Fall, Shin-Yuan Tzou, Raj
V aswani, and Giuseppe Facchetti.

so

REFERENCES

1. D.P. Anderson and P. V. Rangan, "A Basis for Secure Communication in Large
Distributed Systems'', IEEE Symposium on Security and Privacy, Apr. 1987.

2. D. P. Anderson, D. Ferrari and P. V. Rangan, "Subtransport Level: The Right
Place for End-to-End Security Mechanisms", Technical Report No.
UCB/Computer Science Dpt. 871346, Computer Science Division, EECS, UCB,
Berkeley, CA, Mar. 1987.

3. D. P. Anderson and D. Ferrari, "The DASH Project: An Overview", Technical
Report No. UCB/Computer Science Opt. 88/405, Computer Science Division,
EECS, UCB, Berkeley, CA, Feb. 1988.

4. M. Bastian, "Voice-Data Integration: An Architecture Perspective", IEEE
Commun. Mag. 24, 7 (July 1986), 8-12.

5. A. Birrell and B. Nelson, "Implementing Remote Procedure Calls", ACM
Transactions on Computer Systems 2, 1 (Feb. 1984), 39-59.

6. A. D. Birrell, B. W. Lampson, R. M. Needham and M. D. Schroeder, "A Global
Authentication Service without Global Trust", IEEE Symposium on Security and
Privacy, 1986.

7. D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its
Performance for Diskless Workstations", Proc. of the 9th ACM Symp. on
Operating System Prin., Bretton Woods, New Hampshire, Oct. 10-13, 1983, 128-
140.

8. D. R. Cheriton, ''VMTP: A Transport Protocol for the Next Generation of
Communication Systems", 1986 SIGCOMM Symposium, Aug. 1986,406-415.

9. D. R. Cheriton, "UIO: A Uniform I/0 System Interface for Distributed Systems",
Trans. Computer Systems 5, 1 (Feb. 1987), 12-46.

10. D. D. Clark, M. L. Lambert and L. Zhang, "NETBLT: A High Throughput
Transport Protocol", SIGCOMM87,, 353-359.

11. J. Gettys, "Problems Implementing Window Systems in UNIX", Proceedings of
the 1986 Winter USENIX Conference, Denver, Colorado, January 15-17, 1986,
89-97.

12. J. B. Jones and R. F. Rashid, "Mach and Matchmaker: Kernel and Language
Support for Distributed Object-Oriented Systems", OOPSLA Conference
Proceedings, 1986.

13. B. Lyon, "Sun Remote Procedure Call Specification", Sun Microsystems, Inc.
Technical Report, 1984.

14. R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed Packet Switching for
Local Computer Networks", Comm. of the ACM 19,7 (July 1976), 395-404.

15. J. Nagle, "Congestion Control in IP!fCP Internetworks", Internet RFC 896, Jan.
1984.

51

16. "Data Encryption Standard", PIPS Publication 46, Washington, D.C., 1977.
17. J. Postel, "Transmission Control Protocol", DARPA Internet RFC 793, Sep. 1981.
18. J. Postel, "Internet Control Message Protocol", DARPA Internet RFC 792, Sep.

1981.

19. J. H. Saltzer, D. P. Reed and D. D. Clark, "End-To-End Arguments in System
Design", Trans. Computer Systems 2, 4 (Nov. 1984), 277-288.

20. R. D. Sansom, D. P. Julin and R. F. Rashid, "Extending a Capability Based
System into a Network Environment", 1986 SIGCOMM Symposium,, 265-274.

21. B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1986.
22. D. B. Terry and D. C. Swinehart, "Managing Stored Voice in the Etherphone

System", Trans. Computer Systems 6, 1 (Feb. 1988), 3-27.
23. B. Welch, "The Sprite Remote Procedure Call System", Technical Report No.

UCB/Computer Science Dpt., Computer Science Division, EECS, UCB, Berkeley,
CA, July 1986.

24. "The DASH Local Kernel Structure", UCB/Computer Science Dpt. Technical
Report, in preparation, August 1988.

25. "The DASH Virtual Memory System", UCB/Computer Science Dpt. Technical
Report, in preparation, August 1988.

52

APPENDIX I·· THE DASH MESSAGE LANGUAGE

1. Introduction

Local and remote interprocess communication in DASH is based on messages. The
transport mechanism views a message as a logical array of bytes. For the sending and
receiving clients, however, a message (or a portion of a message) may be interpreted as a
collection of typed data items. A structured message is a (logically) contiguous portion
of a DASH message that possesses a well-defined structure, or type.
This section describes the DASH facilities for structured messages. Specifically, it
includes:

• The definition of a DASH Message Language (DML) for the specification of
message structure. DML is not a general-purpose type definition facility, but rather
is tailored to the limited needs of kernel-level clients.

• A message representation standard that dictates how messages with DML
specifications are to be represented.

• A description of a preprocessor that converts a limited set of DML type definitions
into a set of macros that facilitate building and accessing messages of those types.

This facility is related to components of RPC systems such as those of Mesa [5], Mach
[12] and Sun UNIX [13]. The main difference between DML and these systems is that
DML clients (message producers and consumers) are expected to access messages
directly, rather than serialize and deserialize them. This is because the clients are DASH
kernels, which demand efficiency rather than a transparent programming interface.

2. Message Type Definitions

DML is used to define named message types. The definition of a new type has the form
ms g_ t ypede f type-definition type-name ;

where type-definition is either the name of an existing type (such as the base types listed
below) or one of the various type constructors defined in subsequent sections. A type
name (or other user-assigned name in DML) may be any valid C identifier provided it
does not contain two consecutive underscores and does not conflict with DML's
keywords.

The following sections describe DML's base types and type constructors, and their
associated representations as messages.

3. Base Types

The following set of base types is predefined:
enum {namel, name2, ... }
flags {namel, name2, ... }
U32, U64
S32, S64
BYTES
NULL

53

En urn is similar to the enum type in C. F 1 a g s denotes a set of up to 32 Boolean flags.
U32 and U64 denote 4- and 8-byte unsigned integers, and S32 and s 64 denote
signed integers. BYTES denotes a variable-length array of bytes. NULL denotes an
empty message; it is typically used as a union element.
The base types are represented as follows. The U and S types have length 4 or 8 bytes
as appropriate. For network messages, the bytes are stored in network byte order (the
highest order byte has the lowest address). The enum type is represented as a 32-bit
unsigned integer, with values beginning from zero. The flags type is represented as a
4-byte word; bits are used from low-address to high-address byte, and from low to high
order bits within a byte. The BYTES type is represented as a 32-bit count and the data
bytes, padded to a 4-byte boundary.

4. Structures
DML structs are a restricted form of structures (i.e., catenated labeled subtypes). The
restrictions make it simpler to generate macros for building and accessing the structs.
The facility is typically used to define the portions of messages (such as headers and
trailers) that are accessed by a particular protocol level.

A struct is defined as follows:
struct {

typel labell;
type2 label2;

Each type is either a base type or a previously defined struct type.
A struct is a mixed sequence of fixed-size fields and variable-length byte arrays. The
representation (as a byte-array message) is as follows:
• If there are any BYTES fields, the first word of the message is the total length of

the message.

• The fixed-size fields are placed together, in the order of their declaration, at the start
of the message (after the total length word, if present).

• The fixed-size fields are followed by a vector of (offset, length) pairs for each of the
BYTES fields, except for the first one (whose offset and length are implied by other
information). The offset field is the distance in bytes from the start of the
message to the beginning of the real bytes field; the length field is the length of
the byte field (including possible padding).

• Each BYTES field is represented by the data bytes, padded (by unspecified bytes)
to a 4-byte boundary.

Hence a struct with n fixed-size fields and m BYTES fields is represented as in Figure 1.

5. Preprocessor-Generated Macros
We will specify the output of the macro preprocessor by giving an example. Consider
the following type definitions:

54

total size(optional)

first fixed-size field

second fixed-size field

n-th fixed-size field

offset of second BYTES field

of second BYTES field

offset of m-th BYTES field

length of m-th BYTES field

of first BYTES field

i
- first byte array

l
i

second byte array

l

i
m-th byte array

~~lmlii~m1
Figure 1: Internal Representation of a Structured Message.

expand REQ_MSG;

rnsg_typedef U32 SEQ_NO;

rnsg_typedef enurn (OK, FAILURE) STATUS;

rnsg_typedef flags {SECURE, DEADLINE) MSG_FLAGS;

rnsg_typedef struct {
SEQ_NO seq_no;
MSG_FLAGS msg_flags;
BYTES name;

MSG_HEADER;

msg_typedef struct
MSG_HEADER header;

ss

enum {EXACTLY_ONCE, MAYBE} mode;
BYTES info;

REQ_MSG;

The expand declaration specifies the message types for which macros are to be
generated (in this example, only REQ_ MSG will be expanded).

The representation of a REQ MSG message is as shown in Figure 2 (where n is the
length of the name field, rounded up to a multiple of 4).

The DML preprocessor is given an input file, and a flag indicating whether the target
machine uses network byte order, Hit is run with the above definitions as input, it will.
generate the following macros.

offset: 0 total size

4

8

12 mode

16 offset of 'info'

20 of 'info'

24 of 'name'

28 i
data of 'name'

l.
28+n i

data of 'info'

l

Figure 2: The Representation of a REQ_MSG Message.

56

5.1. Enum and Flag Definitions
The following macros define enum and flag values:

#define
#define

#define
#define

STATUS OK 0
STATUS FAILURE 1

MSG FLAGS __ SECURE 1
MSG FLAGS DEADLINE - -- 2

#define
#define

REQ_MSG __ mode __ EXACTLY ONCE 0
REQ_MSG __ mode __ MAYBE 1

5.2. Size Computation
Both the sender and the receiver of a message need to compute the total length of the
message they are handling. This length depends on the size of the fixed-length fields
(which can be calculated by the DML preprocessor) and on the variable length BYTES
fields. If there are no variable-length fields, the total size of the message is a constant. If
there are BYTES field, DML generates a macro

#define REQ_MSG __ size(i, j) (28 + mult4(i) + mult4(j))

used by the sender to determine the size of the message as a function of the lengths of the
BYTES fields, and a macro

#define REQ_MSG __ get~ize (d) * ((U32 *) (d))

used by the receiver to get the total length stored in the message itself.
REQ_MSG_size computes the total size of a message instance, given values for the
lengths of all BYTES fields. It uses a predefined macro

#define mult4 (i) ((i+3) &Oxfffffffc)

which computes the smallest multiple of 4 at least as large as its argument.
The argument of REQ_MSG_getsize is a pointer to the data part of a MESSAGE
object. This function computes the size of the REQ_MSG instance occurring in the
message. The message need not be contiguous, and is assumed to be in host byte order.
If there are no BYTES fields in the message, then the total length is a constant. In this
case the two macros above expand to a constant value.

5.3. Initialization of Structural Information
This macro initializes the "bookkeeping" fields of a message (total length of the
message and lengths and offsets of BYTES fields), given the lengths of its BYTES
entries. If there are no BYTES entries, this macro is empty.

#define REQ_MSG __ format(p, i, j) \
* (U32 *) (p) = 28 + mult4 (i) + mult4 (j); \
* (U32 *) ((p) + 24) = (i); \
* (U32 *) ((p) + 16) 28 + mult4 (i); \
*(U32 *) ((p) +20) = (j);

5.4. Message Field Access
Given a contiguous message with bookkeeping data already in place, the following
macros compute the address of the named field, and recast it to the proper type.

57

#define REQ_MSG_header_seq_no (p) ((U32 *) ((p) + 4))
#define REQ_MSG_header_msg_flags(p) ((U32 *) ((p) + 8))
#define REQ_MSG_header_name(p) ((char*) ((p) + 28))
#define REQ_MSG_header_mode(p) ((U32 *) ((p) + 12))
#define REQ_MSG_header_info (p) ((char *) ((p) + * ((U32 *) ((p) +16))))

If REQ_MSG had contained structs having fixed size (that is, without any BYTES
fields), then macros for accessing those structs would have been generated, too (with no
recasting of pointers, though). This kind of macro is useful, for example, when the
programmer needs to pass the address of a struct as a parameter in a function call.

S.S. BYTES Field Lengths

The following macros compute the actual length of each of the BYTES fields contained
in the message.

#define REQ_MSG_header_name_length(p) (* (U32 *) ((p) + 24))
#define REQ_MSG_header_info_length(p) (* (U32 *) ((p) + 20))

These values, retrieved from the bookkeeping information of the message itself, show the
actual space used by those BYTES fields, that is, they do not include the rounding to the
next multiple of 4.

5.6. Byte Order Conversion
This macro converts a message instance to or from network byte order. Its argument is
of type char*, and points to the message, which must be contiguous. If the target
machine is big-endian (i.e., uses network byte order), this _byteorder macro is
empty. On a little-endian machine, the macro is:

#define REQ_MSG_byteorder(p) \
BYTE_SWAP(p); \
BYTE_SWAP ((p) + 4); \
BYTE_SWAP ((p) + 8); \
BYTE_SWAP ((p) + 12); \
BYTE_SWAP ((p) + 16); \
BYTE_SWAP ((p) + 20); \
BYTE_SWAP ((p) + 24);

This macro is a sequence of calls to the predefined macro BYTE_ SWAP, which convens
a 32-bit word between host and network byte order (the same function goes both ways).

5.7. Example

The following operations must be performed in order to build a message using DML:

(1) Compute its length using _size.

(2) Initialize the bookkeeping fields using _f o rrna t.

(3) Fill in the data fields.

(4) Immediately before sending a message to the network, and after receiving it from
the network, use _byteorder ().

6. Other Type Constructors

DML provides other type constructors. These are for documentation purposes only; they
are checked for syntactic correctness, but no macros are generated for these types. They

58

must appear at the end of a message definition.

6.1. List

A list, like a struct, represents a set of named subtypes. A list, however, places no
restrictions on these subtypes. It is defined by:

list {
typel label2;
type2 label2;

A list is represented by the catenation of its entries.

6.2. Union

A union (like a C union) represents a choice of one type out of a set of types. It is
defined by

union
typel labell;
type2 label2;

The representation of a union is simply the representation of one of the subtypes. This
differs from the C language, where the representation of a union is large enough to
accommodate all subtypes.

6.3. Arrays
An array is a list of entries of a single (perhaps variable-size) type. It is defined by

type[const]
type [J

The first declares a fixed-length array, the second an array of indeterminate length. An
array is represented by the catenation of its elements.

