
The DASH Virtual Memory System

David P. Anderson
Shin-Yuan Tzou
G. Scott Graham

November 8, 1988

ABSTRACI'

The DASH project has defined the network communication architecture for a large,
high-performance distributed system. We are now designing a portable operating system
kernel for the nodes of this system. The kernel is designed to run on shared-memory
multiprocessors, and to exploit the performance potential of such machines.

This report describes the DASH kernel's virtual memory (VM) system. The following
are key features of the VM system:

• A virtual address space is partitioned into three regions, each providing a specific
function: 1) private memory, 2) read-only shared memory, and 3) interprocess com­
munication (IPC) buffers.

• The IPC region uses VM remapping to provide data movement between virtual
address spaces. Software copying is minimized.

• Tasks such as page zeroing and pageout are done by processes that can execute con­
currently with other activities.

• Most of the VM system implementation is machine-independent. The interface of
the machine-dependent part is designed to allow efficient implementation on a
range of architectures.

Sponsored by the California MICRO program, AT&T Bell Laboratories, Digital Equipment Corpora­
tion, IBM Corporation, Olivetti S.p.A, and the Defense Advanced Research Projects Agency (DoD) Arpa
Order No. 4871. Monitored by Naval Electronic Systems Command under Contract No. N00039-84-C-
0089.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 NOV 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
The DASH Virtual Memory System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The DASH project has defined the network communication architecture for a large, high-performance
distributed system. We are now designing a portable operating system kernel for the nodes of this system.
The kernel is designed to run on shared-memory multiprocessors, and to exploit the performance potential
of such machines. This report describes the DASH kernel’s virtual memory (VM) system. The following
are key features of the VM system: * A virtual address space is partitioned into three regions, each
providing a specific function: 1) private memory, 2) read-only shared memory, and 3) interprocess
communication (IPC) buffers. * The IPC region uses VM remapping to provide data movement between
virtual address spaces. Software copying is minimized. * Tasks such as page zeroing and pageout are done
by processes that can execute concurrently with other activities. * Most of the VM system implementation
is machine-independent. The interface of the machine-dependent part is designed to allow efficient
implementation on a range of architectures.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

35

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. INTRODUCTION

The DASH project has defined a network communication architecture for large, high­
performance distributed systems [31]. We are now designing an operating system kernel
for the nodes of this system. The DASH kernel impleme:nts the network communication
architecture, and allows services and their clients to run in protected virtual address

spaces (VAS's). This report describes the design of the DASH kernel's virtual memory.
(VM) facility. The remainder of the kernel design is described in separate reports
[30, 31].

The report is organized as follows: Section 2 lists the goals and assumptions of the VM
system design, Section 3 is an overview of the VM facilities, Sections 4 through 6
describe the three regions of a VAS, and Section 7 describes the interfaces to the
machine-dependent part of the system and to backing store services. Sections 8 through
10 document the VM system implementation. Section 11 describes the organization of
the kernel VAS. Section 12 summarizes our design decisions and the reasoning behind

them.

2. GOALS AND ASSUMPTIONS OF THE VM SYSTEM DESIGN

2.1. Functionality Requirements

The DASH VM system provides the following features:

• A mechanism, based on VM remapping, is provided for moving bulk data between
VAS's (user/kernel and user/user). The efficiency of this mechanism is significantly
greater than that of software copying. This allows data servers (e.g., file servers) to
be implemented as user-level processes without a large performance loss.

• Large sparse VAS's are supported, with no expense for unused portions of the VAS
and little expense for the non-resident portions.

• The VM system provides a pageable kernel VAS. This is needed because the
DASH kernel caches information on remote services, owners, and hosts. If a host
interacts with numerous other hosts and owners, these caches may become too large
for physical memory.

Future versions of the VM system will provide a framework in which user-defined back­
ing store servers can provide single-level store, network shared memory, and transaction
management systems. This is not in the current design.

2.2. Software Engineering and Portability Requirements

The VM system is designed to be extensible and maintainable. It has an object-oriented
strUcture that encapsulates data strUctures, implementation details, and machine depen­
dencies. Rhe VM system is designed to be portable to a range of shared-memory mul­

tiprocessors architectures. For example, the design does not require a hardware mechan­
ism for maintaining consistency of translation look-aside buffers (TLB 's). Such a
mechanism is not present in some architectures [9].

1.3. Assumptions

The DASH VM system design is based on the following assumptions, which are based on

current technological trends:

2

• The average host will have enough physical memory to satisfy the short-term
demands of all its processes. Therefore the emphasis on the use of physical
memory is shifted from short-term concerns (e.g., LRU page replacement) to long­
term concerns (e.g., maintaining frequently-used programs and libraries in physical
memory).

• The approximate size of backing store (implemented either with local disk, or a
remote server with a disk and a main-memory cache) will increase at about the
same rate as physical memory size. Therefore it is feasible to maintain structures in
physical memory whose size is proportional to the size of backing store.

• Processor and network speeds will increase faster than bus and memory access
speeds. Therefore software memory copying will be a bottleneck in the movement
of data between VAS's, and must be replaced by VM remapping where possible.

3. VM SYSTEM OVERVIEW

Figure 3.1 depicts the overall structure of the DASH VM system. The top pan of it
shows the abstraction provided by the VM system. The system supports multiple virtual

address spaces (VAS's), each of which consists of three regions (described in Section
3.1). The middle pan of the picture shows the core of the VM implementation, which is
independent of hardware architectures and backing store services. It consists of a set of
objects and processes (see Section 8). The lower pan of the picture shows the rest of the

implementation. The class VAS_ MD encapsulates VM hardware architectures. Its
implementation depends on hardware, but its interface does not. The class
BACKING STORE encapsulates backing store services. Its implementation varies with
the nature of backing store services, but its interface does not.

3.1. The Virtual Address Space Abstraction

Process execution (user or kernel) takes place in a VAS. Multiple processes can execute

concurrently in a single VAS. There is a single kernel VAS on a given host 1, and multi­
ple user VAS's may exist as well. At the lowest level of partitioning, a VAS is divided
into logical pages, or simply pages. The logical page size must be a power-of-two multi­
ple of the hardware page size. At the highest level of partitioning, a VAS is divided into
three regions, each of which fulfills a particular role:

General region

This region contains data that is private to a VAS, such as stacks, heaps, and
memory-mapped files. There is no sharing between VAS's in this region.

Shared Segment region

This region contains shared read-only named segments (e.g., programs, libraries,
and databases). Physical pages containing these segments are shared between
VAS's, and may be retained even when no VAS is using them.

Inter-Process Communication (/PC) region

1 The kernel VAS is a separate, full-fledged VAS; it is not (as in most current UNIX implementations)

a subset of each user VAS, visible only in kernel mode [2, 10].

3

virtual address space~

,' general
I shared segment

abstraction IPC

VAS
I
l ~s_H __ s_E_G __ M_G_R ____ ~I I IPC REGION MGR

I PHYS_PAGES

machine-independent
implementation

Implementation Dependent
on VM Hardware

VIRT PAGES

~~~~-------------------------· 
BACKING STORE 

Implementation Dependent on 
Backing Store Services 

Figure 3.1: An Overview of the DASH VM System. 

This region contains data to be moved between VAS's using VM remapping. Inter­
space messages are created, sent, and received in this region. This region is shared 
by all VAS's, subject to protection; each VAS sees a subset of the region via a 
separate memory map. 

Each region occupies the same range of virtual addresses in all VAS's. 

3.2. Kernel-Level Structure and Interfaces 

The DASH kernel is being implemented in an object-oriented language, C++ [26]. The 
VM system therefore consists of a set of objects, each of which encapsulates data in a 
procedural interface. The code and data of these objects reside in the kernel VAS, and 



4 

operations on them are invoked by performing procedure calls; this can be done directly 
only by processes in kernel mode. Each object belongs to a C++ class. Some classes 
have only a single state instance; these are called modules. Others have multiple 
dynamically-created instances. For example, a VAS is represented by a dynamically­
created object of class VAS. 

Together, the VM system objects offer an external interface supporting the creation, 
manipulation, and deletion of VAS's. This interface is used directly by kernel processes, 
and indirectly (via system calls) by user processes. Not all operations on VM objects are 
part of the external interface; some provide internal interfaces accessed only by the VM 
system objects themselves. 

The C++ interfaces in this report use the following machine-dependent types: 

VIRT ADDR // a virtual address 
VIRT SIZE // a size of a virtual address range 
PHYS ADDR // a physical address 

3.3. User-Level Structure and Interfaces 

The facilities for local (intra-host) user process communication and kernel requests are 
described in detail in [30]. Briefly, these facilities are: 

• User processes can refer to kernel-level objects by user object references (UOR's), 
which are capabilities issued by the kernel for use by processes in a particular user 
VAS. 

• User processes interact with other processes, and with the DASH kernel, exclusively 
by message passing operations. Both request/reply and stream mode (unidirec­
tional) operations are supported. These operations are performed by trapping to the 
kernel, passing 1) a pointer to one or more message buffers, and 2) a UOR to a 
message-passing object (MPO). 

• System calls are performed by performing request/reply operations on a particular 
MPO, called the system call pon, for which a UOR is well-known. These request 
messages must conform to a fixed set of formats. Most system calls request an 
operation on (or the creation of) a kernel object. The request message contains a 
UOR for the object and the arguments to the operation. If the arguments include 
references to other kernel objects, these are passed as UOR 's. 

The system call object dispatches the message to an interface function of the 
appropriate class. This function disassembles the request message, does error 
checking on the arguments, and calls a regular member function to perform the 
operation. On return, the interface function prepares a reply message and returns it 
to the system call object, which returns it to the user process. 

3.4. Levels of Memory Mapping 

A mapping of a VAS describes, for each virtual page in the VAS, 1) the logical-to­
physical address translation of the page (if any), and 2) the allowable types of references 
to the page (read, write, and execute). Various data structures can be used to describe 
mappings. Some of these structures (e.g., a linked list of descriptors) might be accessed 
only by software, while others (e.g., a page table) might be used by VM hardware as 
well. 

• ::l 



s 

The DASH VM design uses three levels of VAS mappings: 

• High-level mapping. This is described by machine-independent objects. Operations 
on these objects are serialized by locks, so a VAS has a single consistent high-level 
mapping even on a multiprocessor. 

• Low-level mapping. This is described by machine-dependent VAS_ MD objects. It 
is also consistent between processors. 

• Hardware mapping. This is described by structures internal to VAS_ MD objects. 
On a multiprocessor, each CPU has its own hardware mapping. When a hardware 
mapping is in effect on a processor, it defines the memory locations that the proces­
sor can access without a page fault. 

For increased performance, the VM system allows two types of inconsistency between 
the mappings for a VAS. Venical inconsistency is a difference between mappings at dif­
ferent levels. Horizontal inconsistency is a difference between the hardware mappings 
on different processors. These inconsistencies are allowed only if they do not violate the 
security semantics of the VM system. Sections 6.5 and 7.1 contain further discussion of 
inconsistencies between mappings. 

3.5. Trust Types 

Two types of trust appear in the VM system design: 

• A VAS can be designated as locally trusted. A process in a trusted VAS is assumed 
to behave correctly (e.g., to only access pages in the high-level mapping of the 
VAS). Incorrect behavior may not be detected by the VM system. 

The kernel VAS is always locally trusted. The right to create locally trusted VAS's 
is restricted to kernel processes and user processes in existing locally trusted VAS's. 

• When a page is remapped from one VAS to another (see Section 6), the destination 
VAS may indicate that it trusts processes in the source VAS to not write to the page 
after it has been transferred. If this trust is present, the VM system can defer or 
eliminate the work of making page inaccessible to processes in the source VAS. 

3.6. Constructing VAS Objects 

A VAS is created using the following constructor: 
VAS: :VAS ( 

) ; 

OWNER* 
BOOLEAN 

owner, 
locally_trusted 

For purposes of security, the VAS is associated with the given owner. This association 
is used by the DASH service access and network communication systems (see [31]) for 
authentication and privacy. It may also be used by the VM system to allow pages from 
one VAS to be "recycled" for use in a different VAS without zero-filling; for privacy, 
this is done only if the two VAS's have the same owner. 

4. THE GENERAL REGION 

The general region of a VAS contains its private data (stacks, heap, static variables, 
memory-mapped files, and so forth). There is no sharing among the general regions of 



6 

different VAS's. 

At present, the main goal of the general region design is to support large sparse address 
spaces efficiently. Future versions of the VM system will provide support for user­
defined backing store for the general region, supporting applications such as transactional 
access to memory-mapped files, and network shared memory. 

A general region contains a set of disjoint subregions, each of which is a contiguous 
range of virtual pages. A VAS has some preexisting subregions (e.g., for the shared­
segment facility described in Section 5). Other subregions are created in response to sys­

tem calls. A subregion exists until either it is explicitly deleted or the VAS is deleted. A 
page in the general region that is not part of a subregion is unallocated. A reference to 

such a page generates an exception. 2 

A page in a subregion· may be associated with a page of data in physical memory or 
backing store. Allocated pages are not always associated. Hence a process may reserve 
a large, contiguous region of its VAS without consuming a proportional amount of physi­
cal memory or backing store. 

Each subregion has a BACKING_STORE object (see Section 7.4) that is used by the VM 
system to store or retrieve pages. This may be either the default system-supplied backing 
store object, or a client-supplied object. 

4.1. Subregion Parameters 

Each subregion has a size, a base address, and the following attributes: 

BOOLEAN 
BACKING STORE 
BOOLEAN 
BOOLEAN 

pageable; 
*backing_store; 
zero_fill; 
associate_on_reference; 

If pageab1e is true, the VM system can page out associated pages (write them to 
backing store and reuse the physical pages) at any time. Otherwise they are flushed only 
in response to the VAS:: f1ush_subregion () and VAS:: f1ush_page () 

operations (see below). 

If client-supplied backing store is used, dirty pages in the subregion are written to the 
backing store object when the VAS is deleted. The values of newly-referenced pages are 

obtained from the backing store object. All pages in the subregion are considered to be 
associated. The zero_fi11 and associate_on_reference flags are not used. 

If system-supplied backing store is used, the data in the subregion is discarded when the 

VAS is deleted. If an unassociated page in the subregion is accessed and the 
associate_on_reference flag is false, an exception is generated. Otherwise the 
page becomes associated and is assigned an initial value as specified by the 
zero_ f i 11 attribute: if true, the value is all zeroes; otherwise the value is unspecified. 

In either case, if an operation on the backing store object fails, an exception is generated. 

2 If the exception-generating process is in user mode, the process is stopped and an exception mes­

sage is delivered to the exception MPO of its VAS (see [30]). If the process is in kernel mode, the system 

is stopped via a call to panic () . 



7 

4.2. The General Region Interface 

Each subregion is represented by an object of class SUBREGION DESC. The following 
operation on VAS objects allocates a subregion: 

VAS::allocate_subregion( 
int 
VIRT ADDR* 
int 
BACKING STORE* 

) ; 

npages, 
base_addr, 
flags, 
backing_ store 

This creates a subregion in the given VAS consisting of npages contiguous virtual 
pages. The starting address of the subregion is returned in base_addr. If 
backing_ store is not NULL, it points to a client-supplied backing store object; oth­
erwise system-supplied backing store is used. The Boolean subregion attributes (see Sec­
tion 4.1) are specified in flags. 

VAS::deallocate_subregion( 
VIRT ADDR base addr 

) ; 

This deallocates the subregion starting at base addr. 

VAS::associate_page( 
VIRT ADDR addr, 
BOOLEAN zero fill 

) ; 

This associates the virtual page at addr with a physical page. Zero fill deter­
mines the content of the physical page. 

VAS: :flush_page( 
VIRT ADDR addr, 
BOOLEAN- invalidate 

) ; 

VAS: :flush_subregion( 

) ; 

VIRT ADDR base_addr, 
BOOLEAN invalidate 

These cause a page (or all the pages in the subregion) to be flushed to backing store. 
Pages that are known to be unmodified are not flushed. If invalidate is true, the 
page(s) become unassociated. 

5. THE SHARED SEGMENT REGION 

Each VAS has a region containing shared segmentSJ. Shared segments are read-only4, 

and can be used to contain programs, libraries, or read-only databases. Each shared seg­
ment has a symbolic name in the DASH global name space [31]. The name consists of 
the name of a service (e.g., a file service) followed by an extension specifying an object 

3 The tenn segment simply refers to a contiguous range of virtual space; hardware support for seg­

ments is not assumed. 
4 The shared segment facility does not provide write-sharing, e.g., as in Multics [16]. In DASH, mul­

tiple processes can share a single VAS, and the general region of this VAS can be used for writing-sharing 
between those processes. 



8 

within the service. 

The design goals of the shared segment facility include: 

• To provide efficient program loading and execution. Frequently-executed programs 
should remain in memory, if possible, even while not ir, use. 

• To save space by avoiding duplication of segment contents in physical memory, and 
by eliminating the need for program files to contain libraries. 

• To support dynamic loading of code. This could be used to provide a Cedar-like 
environment [27] within a protected VAS. 

For a shared segment to be accessible to a VAS, it must be included in that VAS. When 
a segment is included in a VAS, a segment initialization routine is executed in that VAS. 
This routine may initialize the segment's private data block (see Section 5.2) and may 

create processes. 

virtual address spaces 

A B c 

library 2 

r 
homogeneous 

library 1 

1 
program 2 

program 1 

Figure 5.1: Structure of the Shared Segment Region 



9 

5.1. The Homogeneous and Heterogeneous Subregions 

A shared segment appears at the same address in all VAS's in which it is included. The 
shared segment region is statically divided into two "subregions" (see Figure 5.1 ): 

• A homogeneous subregion in which all VAS's have the same high-level mapping. 
A segment in this subregion is readable by all VAS's, even those that have not 
included it Public libraries and programs can be placed in this subregion. 

• A heterogeneous subregion in which each VAS has a separate high-level mapping. 
This subregion must be used for segments to which access is protected. In addition, 
it provides better error-detection than the homogeneous region, because uninten­
tional references to non-included segments are detected. 

5.2. Private Blocks 

A shared segment may have an associated private block of non-shared read/write 
memory in each VAS that includes it. The private block might, for example, contain 
static variables for a program or library; these must be writable, and must have a separate 

instance in each VAS. 

Private blocks for all shared segments are contained in a single general subregion (see 
Section 4). This private block subregion is preallocated in each VAS. Its size is fixed 
when the system is configured, imposing an upper bound on the total size of private 

blocks of all shared segments. 

The base address and size of a segment's private block is static. Hence, all references to 
the private block can use absolute addresses. If necessary, the shared segment can obtain 
additional private memory by allocating a separate subregion at run time. This memory 
can then be referenced via a pointer in the private block. 

5.3. Base Addresses and Inter-Segment References 

The base address and size of a shared segment is static, as are the base address and size 
of its private block. The assignment of addresses is done in advance, perhaps by a cen­
tral administrator. Within the heterogeneous subregion, different shared segments may 
be assigned overlapping address ranges. The processes in a VAS are responsible for not 

including overlapping segments. 

Inter-segment references use absolute addresses. Since the base address of a shared seg­
ment is assigned in advance, all inter-segment references can be resolved at link time. 

5.4. The Shared Segment Region Interface 

A shared segment manager object (SH_SEG_MGR) manages all shared segments in the 
system, and has the following interface: 

SH_SEG_MGR::include_segment( 
VAS* vas, 
NAMED ENTITY* prefix, 
char* extension, 
U32 opaque_data 

) ; 

This includes a shared segment in the given VAS. Prefix and extension specify 
the name of the segment (see [31]). Opaque data is passed as an argument to the 



10 

segment's initialization routine. 

SH_SEG_MGR: : include_segment () is called in two situations: 

• Internal inclusion: a process may include a shared segment in its own VAS via a 

system call. Th~ initialization routine of the segment is called in the context of the 

requesting process. 

• External inclusion: a process may include a shared segment in another VAS. This 

is typically used to include the first segment of a new VAS. The kernel creates a 

new process in the target VAS to execute the initialization routine. The stack of this 

process is allocated from the general region of the target VAS; the size is given in 

the shared segment file. 

A segment in the homogeneous subregion is readable in the high-level mapping of all 

VAS's, but a VAS wishing to access it must first include it using 

SH_SEG_MGR::include_segment(). 

SH_SEG_MGR::exclude_segment( 
VAS* vas, 
VIRT ADDR loaded address 

) ; 

This removes a shared segment from the high-level mapping of a VAS. If the segment is 

in the homogeneous subregion, this has no effect. 

5.5. Programs and Libraries 

UNIX-style program execution (creating a new VAS and running the program in it) is 

done by creating a VAS and including a shared segment externally. Pilot/Cedar-style 

program execution (loading and running a program in an existing VAS) is done by 

including a shared segment internally. In this approach, multiple programs may be 

included from multiple files and executed concurrently in a VAS, as long as their code 

segments and private blocks do not overlap. 

The shared segment facility does not distinguish between programs and libraries. They 

have the same file format, and use the same inclusion mechanism. A program is respon­

sible for including a library before accessing it. This inclusion is typically done in the 

initialization routine of the program. (The set of libraries used by a program can be 

determined at link time.) 

5.6. Shared Segment File Format 

A shared segment is represented by a file (an entry in a service that offers the DASH file 

access protocol [31]). The name of the file serves as the name of the segment. 

A shared segment file contains 1) a header, and 2) a segment image. This may be fol­

lowed by other information, such as symbol tables for the linker and debugger. The 

structure of the header is 



struct SH_SEG_FILE_HDR { 
VIRT_SIZE header_size; 
VIRT ADDR segrnent_addr; 
VIRT SIZE segrnent_size; 

11 

VIRT ADDR private_block_addr; 
VIRT SIZE private_block_size; 
VIRT ADDR init_routine; 
VIRT SIZE init_routine_stack_size; 

} ; 

6. THE IPC REGION 

The !PC region contains page-size buffers that can be moved between VAS's by VM 
remapping. This facility is used by the DASH message-passing system [30] when mes­

sages are moved between VAS's. The design goals of this facility are: 

• To move data between VAS's more efficiently than by software copying 5. This 
reduces a potential bottleneck in network communication and 1/0, and reduces the 
performance penalty incurred by placing services at the user level. 

• To be portable to a large class of hardware architectures, including shared-memory 
multiprocessors with no hardware support for TLB consistency. 

The IPC region is used only for moving data between VAS's. It is not used for for 
read/write sharing or for address space inheritance. Forcing it to include these functions 

would increase its complexity and reduce its performance. 

6.1. Access to the IPC Region 

A virtual page in the IPC region is called an !PC page. All data to be moved between 
VAS's must be placed in IPC pages. There is a single "meta-level" mapping from IPC 
pages to physical pages. The high-level mapping of the IPC region in each VAS is a sub­
set of this mapping; some pages may be read-only or not accessible. If multiple VAS's 
all have a particular IPC page in their high-level mappings, they share the same physical 

page. 

IPC pages are moved between VAS's by changing the access rights to the page in the 
high-level mappings of the VAS's. Hence "remapping" involves changing protection, 
not address mappings. An IPC page appears at the same virtual address in both the 
source and the destination VAS. This reduces overhead in several ways: 

• No allocation is done when remapping a page. The virtual page in the destination 

VAS is predetermined, and is always free. 

• Since remapping does not change the virtual address of a page, no pointer adjust­
ment is needed. This simplifies moving structured data, e.g., a message containing 

pointers to data pages. 

• To improve performance, the VM system can include the entire meta-level mapping 
of the IPC region in the high-level mapping of locally trusted VAS's (e.g., the ker­
nel VAS). If this is done, little work is needed to move a message from a user VAS 

to the kernel VAS. 

5 VM remapping is not necessarily faster than copying; for example, it was slower in Accent [8]. 



12 

6.2. IPC Page Ownership 

Protection of IPC pages is based on the notion of ownership. An ownership has three 

elements: a VAS, a virtual page, and an access right. A page may have multiple owner­
ships, i.e., it may be owned by multiple VAS's, and by one VAS multiple times. The 

number of ownerships of a page determines the access right. When the number is one, 

the page can be both read and written by its owner (i.e., by processes in the owning 

VAS); otherwise the page can only be read by its owners. 

An IPC page may be transferred from a source VAS to a destination VAS. This is typi­

cally done by a message-passing operation ([30]). When a page is transferred, the source 

VAS loses an instance of ownership of the page, and the destination VAS gains it. 

When multiple VAS's own an IPC page at the same time, they share the corresponding 

physical page. However, the purpose of this sharing is not for exchanging data between 
VAS's; the page is read-only for all the VAS's. Instead, this mechanism is used for 
duplicating a page for retransmission. A typical scenario is as follows: a VAS duplicates 
the ownership of an· IPC page and gives away one ownership. This is done by communi­

cation protocols and by services (e.g., name services) that often send out large data that is 

to remain cached. 

6.3. Page Ownership and Hardware Mapping 

The VM system use hardware mapping to enforce page ownership. Each VAS has a 

separate hardware mapping for the IPC regions, except that locally trusted VAS's may 
share the same mapping. 

The cost of changing hardware mappings varies between machine architectures. To 

unmap a page, the VM system may have to invalidate data in the virtual address cache or 

remove the page table entry in the memory management unit. In a shared memory mul­
tiprocessor, this must be done on all processors on which this page is mapped, and thus 
requires interprocessor requests and synchronization. 

Unmapping a page asynchronously may reduce the overall cost because the operations 

can be hatched, and because they can be done when the system is not busy. 

The DASH VM system design avoids unmapping pages at the hardware level when pos­
sible. When unmapping is needed, it is done asynchronously if possible. The IPC region 
interface is designed to allow these cases to be discriminated. 

The efficiency of unmapping operations is of great concern only in the IPC region. This 

is because unmapping may be in the critical path of moving a page between VAS's. If it 

is done synchronously, the efficiency of data movement may suffer. In the general and 

shared-segment regions, a page is unmapped only when it is paged out, when a VAS is 

deleted, when a general subregion is deleted, when a general subregion or page is 

flushed, and when a shared segment is excluded. In all these cases, the unmapping 

operation can be done asynchronously. 

6.4. The IPC Region Interface 

An IPC region manager object (IPC_REGION_MGR) manages the IPC region of all 

VAS's, and has the following member functions. 



13 

6.4.1. Allocating IPC Pages 
IPC_REGION_MGR::get_ownership( 

VAS* vas, 
BOOLEAN zero_fill, 
VIRT ADDR* virt addr 

) ; 

This allocates a new IPC page for a VAS and returns the address of the page. A flag 
specifies whether to zero-fill the newly allocated page. 

IPC_REGION_MGR::release_ownership( 
VAS* vas, 
VIRT ADDR virt addr 

) ; 

This releases an instance of ownership of an IPC page from a VAS. 

6.4.2. Transferring IPC Pages 

The transfer operation is divided into two parts: a function that starts the operation, and a 
function that completes it. 

IPC_REGION_MGR::start_transfer( 
VAS* source, 
VAS* destination, 
VIRT ADDR virt_addr, 
BOOLEAN trust 

) ; 

This starts the transfer operation, which may include an operation that unmaps the page 
from the source VAS. This function may return before the remapping operation is com­
pleted. Trust is true if the source VAS believes that the destination VAS trusts it. If 
so, the unmapping operation is not time-critical, so it can be done in a way which has 
higher latency but greater total efficiency. For example, on a shared-memory multipro­
cessor, the operation can be "batched" to reduce the number of interprocessor interrupts. 

IPC_REGION_MGR::finish_transfer( 
VAS* destination, 
VIRT ADDR virt_addr, 
BOOLEAN trust, 
BOOLEAN immediate use 

) ; 

This is called by message-receiving operations. It ensures that the destination VAS is 
protected from security violations, e.g., subsequent modifications by the sender. If 
trust is false, all unfinished unmapping operations of the IPC page are completed 
(except for those operations that unmap a read-only page). If imrnediate_use is 
true, the page is mapped into the hardware mapping of the destination VAS. 

6.4.3. Sharing IPC pages 
IPC_REGION_MGR: :duplicate( 

VAS* vas, 
VIRT ADDR virt addr 

) ; 

This increases the ownership of an IPC page in a VAS by one. If the access right to the 
page was read/write, it is changed to read-only. This change is made asynchronously in 



14 

the hardware mapping of the VAS; Typically, an instance of the duplicated page will be 
transferred to another VAS later. The finish_transfer () function will ensure 
that the reprotection operation started by duplicate () is completed. 

IPC_REGION_MGR::make_writable( 

) ; 

VAS* vas, 
VIRT ADDR old virt addr, 
VIRT-ADDR* new-virt-addr - - -

This makes an IPC page writable; if the page has multiple ownerships, it is copied it to a 
new page. It returns a pointer to a writable copy of the page. 

6.5. Inconsistency in the IPC Region 

This section summarizes possible types of inconsistency between IPC page ownership 
(i.e., high-level mapping) and hardware mapping. By tolerating these inconsistencies, 
the DASH VM system improves performance without sacrificing security. 

• Deferred mapping. A VAS may own an IPC page without having it mapped in its 
hardware mapping. This can be corrected by the page fault handler if the page is 
accessed. A later hardware unmapping is avoided if the page is transferred out 
without being accessed. 

• Transient inconsistency. If the ownership count of a page is one, between 
IPC_REGION_MGR:: transfer_start () and 
IPC_REGION_MGR:: transfer_finish () the source VAS has lost the own­
ership of the page, but may still have the page in its hardware mapping. The source 
VAS may modify the page during this period, but the effect is equivalent to 
transferring the page after the modification. If the page is read-only, 
IPC_REGION_MGR: :transfer_finish () does not finish all asynchronous 
unmapping operations of this page immediately. The source VAS may read the 
page after it has lost its ownership, but the contents will necessarily be the same as 
they were before the transfer. 

• Trust of the source VAS. If the destination VAS trusts the source VAS, the page 
may continue to be writable in the source VAS's hardware mapping even after 
IPC_REGION_MGR: :transfer_finish () returns. 

• Locally trusted VAS. The unmapping operation from a locally trusted VAS may be 
completely omitted. All locally trusted VAS's can share one hardware mapping for 
the IPC region, and have all IPC pages mapped read/write. 

7. MACHINE-DEPENDENT PARTS OF THE VM SYSTEM 

This section describes the interfaces to the machine-dependent parts of the VM system. 
Implementations of these interfaces depend on the VM hardware architecture and on the 
details of the backing store mechanism; however, the interfaces do not. 

7.1. VAS MD Objects 

The class VAS_ MD encapsulates the machine's hardware-level mapping facility. A 
VAS _MD object represents the low-level mapping for a single VAS. This mapping is 
specified by a sequence of map and unmap operations on the VAS_ MD object. 



15 

The difference between a high-level mapping, a low-level mapping, and a hardware map­
ping was discussed in Section 3.4. This section further explains the difference between a 
low-level mapping and a hardware mapping. 

A processor's hardware mapping depends not only on the VAS in effect, but also on the 
mode (user or kernel) of the processor. When a processor is in kernel mode, the 

hardware mapping must contain a set of pages of the kernel VAS that we denote roo~ 
pages. These pages include the code and data accessed by interrupt handlers before 
switching to and after switching from the kernel VAS_ MD object They also include the 
code and data for VAS_MD:: switch_ to () and VAS_MD: :map () (see below). 

Besides this, the hardware mapping of a processor does not have to be identical to the 
low-level mapping of the VAS in effect on that processor, but must obey the following 
rules. 

• For a VAS that is not locally trusted, the hardware mapping must be a subset of the 
low-level mapping. 

• For a locally trusted VAS (including the kernel VAS), the hardware mapping must 
agree with the low-level mappings on all pages where the low-level mapping is 
defined. The hardware mapping may also contain superfluous mapped pages. It is 
the responsibility of the processes in the VAS to not access these pages. 

7.1.1. Creation and Miscellaneous Operations 

A VAS_ MD object has the following operations: 
VAS_MD: :VAS_MD ( 

) ; 

BOOLEAN 
BOOLEAN 

locally_trusted, 
kernel 

VAS_MD: :switch_to(); 

VAS_MD:: switch_to () causes the low-level mapping defined by the object to be 

put in effect on the calling processor. 
VAS_MD:: share ( 

) ; 

int sharing_id, 
VIRT ADDR start_addr, 
VIRT ADDR end addr 

This declares that the given address range is to be associated with the given 
sharing_id, and made available for sharing by other VAS's. This is used for the 
shared segment region. The VAS_ MD' s that have called this operation with the same 
sharing_id form a group. A mapping or unmapping operation on any VAS_MD 

object in a group affects the entire group. The start_addr and end_addr are 
ignored if the sharing_id is already in use. This operation overrides preyious 

declarations on that address range. The sharing_id has two special cases: 1) when it 
is zero, the address range is shared by all VAS _MD' s; 2) when it is -1, sharing is can­
celed for this particular VAS MD. 



16 

7.1.2. Mapping and Unmapping Operations 
VAS_MD: :map ( 

VIRT ADDR virt_addr, 
phys_addr, PHYS ADDR 

en urn {READ, WRITE, ~XECUTE} type 
) ; 

This adds the page to the low-level mapping of the VAS_ MD object. If the page is 
shared, this operation affects all VAS _MD objects sharing the page. It also adds the page 
to the hardware mapping of the calling processor if the VAS MD object is currently in 
effect on that processor. The page fault handler normally calls this function before 
returning from the fault, at a point when the VAS_ MD object is in effect on the processor 
(see Section 10). 

VAS_MD::synch_unrnap( 
VIRT_ADDR addr, 
BOOLEAN read_only 

) ; 

When read_only is false, this removes the page at addr from the low-level map­
ping of the VAS MD object. Otherwise it changes the access right to the page from 
read/write to read-only. If the page is shared, this operation affects all VAS_ MD objects 
sharing the page. If necessary, it also updates hardware mappings to ensure that they are 

a subset of the low-level mapping. It is "synchronous", and does not return until the 
necessary changes have been made in the hardware mappings on all relevant processors. 

Unmapping operations can also be done asynchronously (Section 6.3 discusses the 

motivation for this): 
VAS_MD::asynch_unrnap( 

VIRT ADDR addr, 
STREAM MPO* mp_object, 
MESSAGE* message, 
BOOLEAN fast, 
BOOLEAN read_only 

) ; 

This is similar to VAS_MD: : synch_unmap () except that it may return while the 

unmapping is still in progress. If so, the given message will be sent to the given 

message-passing object 6 when the unmapping is completed. If fast is false, the opera­
tion is not time-critical and can be done in a way that has higher latency but greater total 
efficiency. For example, the unmapping can be postponed and hatched with other 
unmapping operations. 

The VAS MD class encapsulates machine dependencies, including issues related to mul­
tiprocessors. For example, if a low-level mapping is in effect on more than one CPU at 
once, it may be desirable to maintain, for each page, the set of CPU's on which the page 

is present in the hardware mapping. If so, this is done by the VAS_ MD object rather than 
in the machine-independent part of the VM system. 

6 The :MP object may be either dual-process or uniprocess [30]. In the latter case, the send operation 

is equivalent to a procedure call. 



17 

7.1.3. Page Status Operations 

The following operations are used to detect modified pages: 

BOOLEAN 
VAS_MD::is_dirty( 

VIRT ADDR addr 
) ; 

VAS_MD::clear_dirty( 
VIRT ADDR addr 

) ; 

VAS_MD: : is_dirty () returns true if the page has (or may have) been modified since 
the time it was added to the low-level map, or since the last call to 
VAS_MD:: clear_dirty (),whichever is later. 

Currently, the interface does not support the checking and clearing of reference bits. 

7.1.4. Configuration Parameters 

The following function returns the machine-dependent configuration parameters of the 
VM system. 

struct VM CONFIG 

) ; 

VIRT SIZE 
VIRT SIZE 
VIRT ADDR 
VIRT SIZE 
VIRT ADDR 
VIRT SIZE 
VIRT ADDR 

logical_page_size; 
physical_page_size; 
user_general_region_addr; 
user_general_region_size; 
kernel_general_region_addr; 
kernel general region size; 
ipc_region_addr; -

VIRT SIZE ipc_region_size; 
VIRT ADDR sh_homo_subregion_addr; 
VIRT SIZE sh_homo_subregion_size; 
VIRT ADDR sh_hetero_subregion_addr; 
VIRT SIZE sh_hetero_subregion_size; 
VIRT ADDR sh_private_subregion_addr; 
VIRT_SIZE sh_private_subregion_size; 
BACKING STORE* default_backing_store; 

VM CONFIG* 
VAS_MD::configuration(); 

The machine-independent part of the VM system calls this function once at initialization, 
and maintains a pointer to the result. 

7 .2. The Interface to Backing Store 0 bjects 

There can be many different providers of backing store. Each is encapsulated in an 
object whose class is derived from BACKING STORE. The VM system assumes that a 
backing store service can efficiently support "holes" caused by writing pages sparsely. 

Backing store could be provided using a local disk; this particular object would be 
machine-dependent. Alternatively, backing store can be provided by a network service 
that supports the DASH file service access protocol. The constructor for this class is 



18 

SVC_BACKING_STORE::SVC_BACKING_STORE( 
SERVICE TOKEN* token 

) ; 

The token is obtained by calling the DASH service access mechanism (see [31]). For 

user-supplied backing store for a subregion of the general region, a user obtains the token 

and passes it to the kernel. 
BACKING_STORE::read_page( 

int bs_offset, 
int desired_access, II read, write, execute flags 

VIRT PAGE DESC* page 
) ; 

This reads a page from the backing store at bs_offset. Information about the page 

(e.g., its physical address and its access rights) is passed and returned in the 

VIRT PAGE DESC object (see Section 8.2). The operation is synchronous; it returns 

after the read operation has completed. 

BACKING_STORE::write_page( 
int bs_offset, 
VIRT_PAGE_DESC* page 

) ; 

This synchronously writes a page to the backing store at bs offset. 

8. IMPLEMENTATION: OVERVIEW 

This section is an overview of the implementation of the DASH VM system. It discusses 

the object structure of the system, and sketches the implementation of some of these 

objects. The details of other parts of the system (physical memory management and page 

fault handling) will be covered in Sections 9 and 10. 

The DASH VM system implementation is structured as a set of objects. Some of these 

objects (VAS, SH_SEG_MGR, and IPC_REGION_MGR) are part of the client interface, 

and have already been described. Others are internal to the VM system, and are 

described in the following subsections. 

8.1. The Physical Pages Object 

The physical pages module (PHYS_PAGES) provides a descriptor (PHYS_PAGE_DESC) 

for each page of physical memory. The descriptor is used for various purposes, depend­

ing on the state of the page. Most commonly, it stores pointers by which physical pages 

are linked into lists. The structure of a descriptor is: 

class PHYS PAGE DESC : DLINK { 
VIRT_PAGE_DESC* vpd; 

} ; 

The base class DLINK contains forwards and backwards links. Vpd points to a "vir­

tual page descriptor"; see Section 8.2. 

The interface of the P HY S _PAGES object is: 

PHYS PAGE DESC* 
PHYS_PAGES: :lookup( 

PHYS ADDR addr 
) ; 

This locates the PHYS_PAGE_DESC for the given physical page. 



19 

8.2. The Virtual Pages Object 

The virtual pages object (VIRT_PAGES) maintains descriptors (VIRT_PAGE_DESC) 

for virtual pages in the general or shared-segment region of a VAS and that satisfy either 

(1) the page currently has a high-level mapping to a page of physical memory, or 

(2) the page is in the general region, is non-resident, and is backed by system-supplied 
backing store. · 

A page in the shared segment region may be shared by multiple VAS's, but has at most 

one VIRT_PAGE_DESC entry. Information on IPC pages is kept in a separate structure 
(see Section 8.4). The structure of a virtual page descriptor is as follows: 

class VIRT_PAGE_DESC { 

} ; 

SPINLOCK lock; 
VIRT ADDR virt_addr; 
void* obj; 
PHYS ADDR phys_addr; 
PAGE STATE state; 
DLINK process; 

enum PAGE STATE 
IN_USE, 
CLEAN, 

} ; 

BEING_ WRITTEN, 
BEING_READ, 
BEING_UNMAPPED, 
NOT_PAGEABLE, 
PAGED OUT 

II lock_for this descriptor 
II virtual address of the page 
II pointer to VAS or SH_SEG_DESC object 
II physical address, NULL if none 
II values listed below 
II sleep queue during paging IIO 

II see Section 9.1 

The interface provided by the VIRT PAGES module is: 

VIRT PAGE DESC* 
VIRT_PAGES::create( 

VIRT ADDR virt_addr, 
void* obj 

) ; 

VIRT PAGE DESC* 
VIRT_PAGES::lookup( 

VIRT ADDR virt_addr, 
void* obj 

) ; 

VIRT_PAGES::destroy( 
VIRT PAGE DESC* 

) ; 

entry 

VIRT PAGES: :create () adds a descriptor for the given (page, object) pair (such a 
descriptor must not exist already). VIRT_PAGES:: lookup () returns a pointer to 
an existing descriptor for the given (page, object) pair, and returns NULL if none exists. 
VIRT _PAGES: :delete () deletes a descriptor. 

The VI RT PAGEs object is implemented as a hash table. The arguments to the hash 
function are the virtual address and a pointer to the VAS or SH_SEG_DESC object 



20 

containing the page. Collisions are handled by chaining. The size of the hash table is 
proportional to the size of system-supplied backing store. 

8.3. Implementation of the General Region 

A VAS object contains information describing the high-level mapping of the general 
region. The VAS object maintains a linked list of descriptors, one for each allocated 
subregion. The VAS: : allocate_subregion () operation searches for space 
within the general region that is large enough to accommodate the new subregion. The 
structure of a subregion descriptor is: 

class SUBREGION DESC DLINK { 

VIRT ADDR virt addr; II starting virtual address 
VIRT SIZE length; II length in bytes 
int attributes; II pageable, etc. 
BACKING STORE* backing_ store; II ptr to backing store object 
DLINK assoc_pages; II pages in VIRT PAGES 

} ; 

Assoc_pages is a list of VIRT_PAGE_DESC entries for a subregion, and is used 
during the deletion or flushing of the subregion. 

8.4. Implementation of Shared Segments 

The shared segment manager object SH_SEG_MGR maintains a table of "active" 
shared segments. Each shared segment is represented by a descriptor: 

class SH SEG DESC { 

} ; 

SPINLOCK 
VIRT ADDR 
VIRT SIZE 
VIRT ADDR 
VIRT SIZE 
BACKING STORE* 
int 
LOCAL OWNER* 

int 
DLINK* 

lock; 
start; 
size; 
init; 
stack_size; 
backing_ store; 
ref_count; 
owners; 

sharing_id; 
pages; 

SH SEG DESC* - -
SH_SEG_MGR::lookup_segment( 

NAMED_ENTITY* prefix, 
char* extension, 
LOCAL OWNER* owner 

) ; 

SH_SEG_MGR::delete_segment( 
SH SEG DESC* entry 

) ; 

II base address 
II size in bytes 
II initialization routine 
II size of stack for init routine 
II backing store object 
II number of including VAS's 
II list of authorized owners 
II NULL if public accessible 
II used in VAS_MD::share() 
II list of virtual page descriptors 
II used during deleting a segment 

Each shared segment is assigned a unique sharing id. It is passed to 
VAS_ MD: :share () when the segment is included in a VAS. 



21 

SH_SEG_MGR:: lookup_segment () checks if the given segment is in the table. If 

it is, and is authorized for this owner, the segment descriptor is returned immediately. 

Otherwise an authorization operation is performed on the service token of the segment's 

BACKING_STORE object. If the segment is not present, a service token is obtained, the 

segment description data is read, the SH_SEG_DESC object is initialized, and a sharing 

ID is assigned. Segments in the homogeneous and heterogeneous subregion are handled 

similarly, except that the sharing_id of a homogeneous segment is always zero. 

SH_SEG_MGR:: delete_segment () deletes a descriptor from the table. It may be 

called when the segment is not included in any VAS. 

Each VAS object maintains a linked list of descriptors of shared segments included in 

that VAS. The page fault handler searches this list to determine the SH SEG DESC 

object corresponding to the faulting virtual address. 

8.5. Implementation of the IPC Region 

In the current DASH VM system design, the IPC region is not pageable; i.e., an IPC page 

is present in physical memory if it is owned by a VAS. This makes the design simpler 

and more efficient, but it limits the way in which IPC pages can be used. To avoid using 

unbounded amounts of physical memory, processes must not own unbounded numbers of 

IPCpages. 

Future versions of the VM system may have a pageable IPC region. This will allow 

processes to store long-lived data structures (such as data caches) in the IPC region, from 

which they can be transferred to other VAS's efficiently. This change will not affect the 

IPC region interface. 

The IPC region is implemented as follows. An IPC_REGION_MGR object maintains 

an array of descriptors (IPC_PAGE_DESC) for IPC pages. 

class IPC PAGE DESC : DLINK { 

SPINLOCK lock; 
int ownership_cnt; II ownership count 

PHYS ADDR phys_ addr; II physical address 

IPC PAGE OWNER DESC ownerl; II room for 2 owners 

IPC PAGE OWNER DESC owner2; - - -
DLINK* owners; II list of additional 

l . . ' 
The owner descriptor (IPC_PAGE_OWNER_DESC) stores the information about owner­

ship of the IPC page by a particular VAS. The IPC page descriptor reserves the room for 

two owner descriptors, so it is not necessary to allocate and deallocate owner descriptors 

in most cases. The structure of an owner descriptor is 

class IPC_PAGE_OWNER_DESC : DLINK { 
VAS* vas; II owner VAS 

int ownership_cnt; 
BOOLEAN separate_block; II for deal location 

BOOLEAN free; II for allocation 

BOOLEAN ever _mapped; 
BOOLEAN being_unmapped_fast; 

BOOLEAN being_unmapped_slow; 

} ; 

The last three flags maintain the status of the page in the low-level mapping. 

IPC_REGION_MGR::start_transfer(} calls VAS_MD::asynch_unmap(} 

owners 



22 

to unmap a page. This function may return asynchronously. In such a case, when the 
low-level unmapping operation is done, a message is delivered to a uniprocess message­
passing object maintained by IPC_REGION_MGR. The message handler function 
updates the flags and finishes the high-level unmapping. 

9. IM:PLEMENT ATION: PHYSICAL MEMORY MANAGEMENT 

The physical memory management part of the DASH VM system manages the allocation 
of physical memory pages. The interface is provided by the P HY S PAGE MGR 
module: 

PHYS ADDR 
PHYS_PAGE_MGR::allocate_any(); 

PHYS ADDR 
PHYS_PAGE_MGR::allocate_zero(); 

PHYS_PAGE_MGR::free( 
PHYS ADDR addr 

) ; 

PHYS PAGE_MGR:: allocate zero () returns a zero-filled page. 
Allocate_ any () returns a possibly nonzero page. Free () frees a previously allo­
cated page. 

To implement this interface, PHYS_PAGE_MGR maintains three lists of physical pages 
(see Figure 9.1). These lists are represented as doubly linked lists using 
PHYS PAGE DESC entries. 

• in_ use _1 i st: pages that are low-level mapped in some VAS or shared segment. 

• clean_list: pages that are not low-level mapped, may be high-level mapped in 
some VAS, and may be nonzero. 

• zero list: pages that are not high-level mapped in any VAS or shared segment 
and are zero-filled. 

Three types of processes manage the flow of physical pages among the lists (this flow is 
illustrated in Figure 9.1 and discussed in later subsections): 

• When the supply of allocatable pages is below a threshold, an unmapper process 
selects physical pages that are currently low-level mapped. It starts an asynchro­
nous unmapping operation on each page, arranging for a message to be delivered to 
an unmap notification port (the message contains information describing the page). 
It also removes the page from the in_use_list. 

• Multiple launderer processes receive messages from the unmap notification port. 
They write each page to backing store if necessary, then add it to the 
clean list. 

• Multiple zero-filler processes remove pages from the c 1 e an _1 is t, zero them, 
and add them to the zero list. 

9.1. Page States 

The following values of the state field of a VIRT_PAGE _DESC entry are relevant to 

physical memory management and page-fault handling: 



23 

._ paged in from backing store 
or newly associated 

unmapper process 

launderer processes 

PHYS_PAGE_MGR::free() 

PHYS_PAGE_MGR::allocate_any() 

zero-filler processes 

PHYS_PAGE_MGR::allocate_zero() 

Figure 9.1: The Flow of Physical Pages. 

IN_ USE: the page is low-level mapped in a VAS. 

BEING READ: the page is being read from backing store. 

BEING WRITTEN: the page is being written to backing store. 

CLEAN: the page is not low-level mapped, but it is still high-level mapped and its con­
tents have not been changed since it was low-level unmapped. Hence it can be low-level 



24 

mapped on reference. 

PAGED_ OUT: the page has been paged out to backing store. 

NOT_PAGEABLE: the page is not pageable. 

BEING_UNMAPPED: an asynchronous unmap operation is pending on the page. 

If a virtual page has no VIRT_PAGE_DESC entry, its state is considered PAGED_OUT, 

except when it is in a subregion with a system-supplied backing store object The transi­

tions between states are shown in Figure 9 .2. The remainder of this section concentrates 

on transitions not initiated by page faults; Section 10 treats those transitions in more 

detail. 

not associated 

' ' ' "' 
' "' 

selected to ' "' 
"' ,., 

be paged out "' ' "' ' 
"' ' 

"' ' 
"' ' 

"' clean 
"' 

__. page fault 

- - );.>- operation completed 

"' 

' 

.:r 

I 

physical page 
allocated for 
other use 

no page 
faults while 
being written 

0 

Figure 9.2: State Transitions of Virtual Pages. 



25 

9.2. The Unmapper Process 

Many algorithms are possible for selecting vinual pages to be unmapped, including the 

UNIX clock algorithm [2], the VMS second-chance FIFO algorithm [14], a working-set 

algorithTil [6], or a hybrid algorithm [4]. We assume that, because of large physical 

memory sizes, page replacement will be infrequent. Attempts to make intelligent choices 

(e.g., to approximate LRU) will not be needed; a random choice will probably be 

sufficient. It is possible that other readily available information (such as the recent CPU 

usage of processes in the VAS) may be useful in making a heuristic choice. 

For each page selected, the unmapper process locates the corresponding VAS_ MD 

object, and changes the state in the VIRT PAGE DESC from IN USE to 

BEING_UNMAPPED. It performs a VAS_MD: : asynch_unmap () operation with the 

slow _unmap flag set This operation will asynchronously unmap the page on all proces­

sors, and send a message to the unmap notification port. The message includes the page 

address, and pointers to the VIRT PAGE DESC and VAS_MD objects. 

9.3. Launderer Processes 

A launderer process receives unmap notification messages. If the state of the page is 

IN USE, the page was reclaimed during the unmap operation, and the message is 

ignored. Otherwise, the state of the page is BEING UNMAPPED. 

VAS_ MD : : is_ dirty ( ) is called to see if the page has been modified. If not, the state 

is set to CLEAN and the page is moved to the clean_list. If so, the page is "laun­

dered" by setting its state to BEING_WRITTEN, and writing it to backing store. 

When the write to backing store finishes, the process queue in the VIRT_PAGE_DESC 

is checked. If it is empty (meaning that the page was not referenced while being written), 

the state is set to CLEAN, and the page is moved to the clean list. Otherwise the 

state is set to IN_ USE and the sleeping processes are awakened. 

To allow multiple backing store write operations to proceed concurrently, there are mul­

tiple launderer processes. 

9.4. Zero Filler Processes 

Each CPU has one zero-filler process. Each process executes a loop in which it removes 

a page from the clean_list, zeroes it, adds it to the zero_list, and deletes its 

VIRT_PAGE_DESC entry. 

10. IMPLEMENTATION: PAGE FAULT HANDLING 

The page fault handler is a kernel routine that handles page fault traps. It is executed on 

the same processor as the faulting process. When invoked, it has the following informa­

tion available to it: 
VIRT_ADDR virt_addr; 
ACCESS_TYPE type; 
VAS* vas; 

II the virtual address of the faulting access 
I I type of memory access (read,- write, execute) 
II the VAS currently in effect 

The general sources of page faults are: 

• Reference to an invalid address (i.e., one not contained in the high-level mapping). 



26 

• Reference to an address that is valid, but whose page is not in the low-level map­
ping of the VAS. This occurs, for example, when the page has been paged out to 
backing store. 

• Reference to an address that is valid, and whose page is in the low-level mapping of 
the VAS, but is not in the hardware mapping of the processor generating the fault. 
This occurs 1) when the hardware mapping was unable to accommodate the low., 
level mapping, and 2) on a multiprocessor, when the reference occurs on a different 
processor than the earlier VAS _MD : :map ( ) . 

The details of page fault handling depend on which of the three regions contains 
vi rt _ addr. Initial error checking and processing are done as follows: 

• If virt addr is not in any region, an exception is generated. 

• If virt_addr is in the IPC region, the corresponding IPC_PAGE_DESC object 
is checked. If VAS is on the owner list and the type of request is valid (i.e., it is not 
a write request on a page with read-only ownership), VAS MD: :map () is called 

to establish the hardware-level mapping. Otherwise, an exception is generated. 

• If virt_addr is in the general region, the list of subregion descriptors in the 
VAS object is searched. If a SUBREGION_DESC containing virt_addr is 
found, processing continues on the VIRT_PAGE_DESC object (see below). Oth­

erwise, an exception is generated. 

• If virt_addr is in the shared segment region, an exception is generated if the 
access type is write. The rest of the processing is similar to the general-region 

case, except that the list of shared segment descriptors in the VAS object is 
searched. 

In the last two of these cases, if no error has been detected then the page fault handler 

calls VIRT_PAGES:: lookup() to obtain a VIRT_PAGE_DESC for the faulting 

address. The arguments are the virt_addr and either the VAS pointer (if in the gen­
eral region) or the SH_SEG_DESC pointer (if in the shared segment region). Subse­
quent actions depend on whether the VIRT_PAGE_DESC entry is present. 

10.1. Case 1: VIRT PAGE DESC Entry Absent - -
We first suppose that the VIRT_PAGE_DESC entry is absent. This is the case if the 
page was paged out or has never been referenced. Then the following steps are done: 

(1) A VIRT_PAGE_DESC entry is created and locked. 

(2) If virt_addr is in a subregion with a system-supplied backing store object and 
the associate on reference flag is set, a physical page is allocated (zero­

filled if the zero-filled flag is set). The state of the page is set to IN_USE. 

If the pageable flag for the subregion is set, the page is placed on the 
in_use_list. If the associate_on_reference flag is false, an exception 
is delivered. 

(3) Otherwise, the page is read from backing store. The page state is set to 
BEING_ READ, and the backing store object (pointed to by the 

SUBREGION_DESC or SH_SEG_DESC object) is invoked to synchronously read 

the page. The faulting process blocks during the read operation. The 
VIRT_PAGE_DESC entry is unlocked before the read is started, and locked again 



27 

after the read is completed. If the call fails, an exception is delivered to the process. 

The page state is then set to IN_ usE, and all processes on the sleep queue of the 

VIRT_PAGE_DESC entry are awakened. If the virt_addr is in the shared seg­

ment region or in a subregion with the pageable flag set, the page is placed on 

the in use list. - -
(4) The hardware mapping is restored by performing a map() operation on the 

VAS MD object. 

10.2. Case 2: VIRT_PAGE_DESC Entry Present 

We now suppose that the VIRT_PAGE_DESC entry is present The entry is locked; 

subsequent actions depends on the state: 

PAGED_ OUT: the procedure for reading in the page is identical to that described in 

the previous subsection. Usually, when a page is not in physical memory, its 

VIRT_PAGE_DESC entry is deleted. The entry is kept only for pages in a subre­

gion with a system-supplied backing store object. 

IN USE: no action is taken. 

BEING_READ: the faulting process sleeps on the VIRT_PAGE_DESC entry. Nei­

ther the page state nor the list it is on changes. The process will be awakened on 

1/0 completion. 

BEING_UNMAPPED: the state is set to IN_USE. The page is added to the 

in_use_list. This is an example of "reclaiming" a page (Figure 9.1). 

BEING_WRITTEN: the faulting process sleeps on the VIRT_PAGE_DESC entry; 

it will be awakened on completion of the page-out 1/0. Neither the page state nor 
the list it is on changes. 

CLEAN: the state is set to IN_USE. The page is removed from the clean_list 

and added to the in_use_list. This is another example of reclaiming a page. 

In each case, before returning from the page fault, the mapping is restored by performing 

a rna p ( ) operation on the appropriate VAS_ MD object. 

11. ORGANIZATION OF THE KERNEL VAS 

Like other VAS's, the kernel VAS consists of three regions. Currently, the kernel does 

not use the shared segment region, although it could do so without difficulty. The IPC 

region is used in the same way as other VAS's. 

The general region of the kernel VAS contains at least the following three subregions: 

(1) Static subregion: not pageable. This contains the kernel's code and static data. 

Physical pages are allocated during system initialization. 

(2) Resident data subregion: not pageable, associate_on_ref. This contains 
dynamically allocated data to which access is time-critical (i.e., that should not be 

paged out). 

(3) Pageable data subregion: pageable, associate on ref. This contains 

dynamically allocated data to which access is not time-critical. 

Each subregion is defined by a page-aligned virtual address, a size, and a set of flags (see 

Section 4.2). These parameters are machine-dependent. The kernel's general region 



28 

may also contain machine-dependent subregions, e.g., subregions for I/0 areas that must 
lie in a specific virtual address range. 

11.1. Subregion Page Allocators 

Subregions such as the resident and pageable data subregions are page allocatable; i.e., 
their virtual pages can be allocated and freed. Every such subregion has a 
SUBREGION_MGR object to perform this allocation. This object is created during sys­
tem initialization. 

VIRT ADDR* 
SUBREGICN_MGR::alloc_page( 

int cnt=l 
) ; 

SUBREGION_MGR::free_page( 
VIRT_ADDR* virt_addr, 
int cnt=l 

) ; 

SUBREGION_MGR:: alloc_page () allocates virtual pages from a subregion. It 
returns a pointer to a virtual page. When multiple pages are requested, contiguous pages 
are allocated. 

11.2. Memory Blocks and Pseudo-Permanence 

A KVMEM BLOCK object represents a virtual memory block of sub-page size. The 
object consists of a header followed by the memory block. KVMEM BLOCK's are allo­
cated from the subregions described above. The C++ runtime system in the kernel uses 
KVMEM_BLOCK's to store C++ objects created by the new statement. 

Some kernel objects have finite lifetimes: they are created and later deleted. These 
objects are often shared by several modules, each storing its own pointer to the object. 
When an object is deleted, these pointers become dangling pointers. It is difficult in gen-

eral to track down and notify the entities that share it 7
• To address this problem, the 

DASH kernel supports pseudo-permanent objects. Dangling pointers to such objects can 
be detected, so they can safely be deleted at any time. This facility is implemented as 
follows: 

• The header of a KVMEM _BLOCK contains a a non-zero unique ID and a spinlock 
[30]. These fields are initialized when the KVMEM _BLOCK is allocated. When the 
KVMEM_BLOCK is freed, the ID field is zeroed. 

• A reference to a pseudo-permanent object consists of a (pointer, ID) pair. The vali­
dity of a reference can be checked by comparing its ID component to the ID in the 
KVMEM _BLOCK header. This comparison must be done while the spin lock is held. 

• When a KVMEM _BLOCK is freed, its memory cannot be allocated for any other 
purpose. This ensures that its ID field cannot accidentally assume a value matching 
a previous ID. 

7 Some language systems use garbage collection to solve this problem: an object is not explicitly 
deleted, and continues to exist as long as there is a reference to it 



29 

11.3. Memory Block Allocation 

The allocation of KVMEM _BLOCK objects from a particular subregion is managed by a 
KVMEM _BLOCK_ MGR object. This is the only facility for allocating memory blocks. 
KVMEM _BLOCK_ MGR objects for the resident and pageable data subregions are created 
during system initialization. 

KVMEM BLOCK* 
KVMEM_BLOCK_MGR::alloc_block( 

int size 
) ; 

KVMEM_BLOCK_MGR::free_block( 
KVMEM_BLOCK* block 

) ; 

These functions allocate and free memory blocks. A KVMEM _BLOCK_ MGR maintains 
linked lists of free memory blocks of various sizes (e.g., 128, 256, 384, ... , up to page 
size), plus a list of partially-used pages. KVMEM_BLOCK_MGR:: alloc_block () 

uses the requested size to select a block list, and gets an entry from the list. If the list is 
empty, it allocates a block from a partially-used page. If no page has enough free space, 
it calls SUBREGION_MGR: : alloc_page () to allocate one or more complete pages. 
KVMEM_BLOCK_MGR:: alloc_block () assigns a unique ID to the memory block 
before returning. 

KVMEM_BLOCK_MGR:: free_block () sets the unique ID field to zero and inserts 

the block in the appropriate list. Memory blocks are not merged after they are released, 
and pages occupied by them are not returned to the SUBREGION MGR. 

12. SUMMARY 

This section summarizes the major design decisions in the DASH VM system, and the 
reasoning behind them. 

12.1. Specialized Mechanisms instead of Copy-on-Write 

Our design divides a VAS into three regions (general, shared segment, and IPC}, each of 
which provides a specific function. Other systems [1, 22] use a single copy-on-write 

mechanism for multiple purposes: data movement, VAS duplication, and read/write shar­
mg. We prefer our approach for the following reasons: 

• Copy-on-write requires more manipulation of hardware memory maps than does 
DASH. This manipulation is expensive on certain VM architectures. In particular, 
unmapping a page or changing the protection from read/write to read-only requires 

cache flushing on machines with a virtual address cache8 [10], and can cause TLB 

inconsistency on a shared-memory multiprocessor [28]. Furthermore, the virtual 
address synonyms (multiple virtual addresses for a physical word) created by copy­
on-write are not allowed on some shared-memory multiprocessors [11] and on 
machines with an inverted page table [12]. 

8 To avoid flushing virtual address caches, Sprite uses copy-on-reference instead of copy-on-write 

[18]. 



30 

• Many uses of the copy-on-write mechanism are not needed by DASH programs. In 

Accent [7, 8], copy-on-write is mainly used for copying address spaces when 

processes are created (44% of the data copied) and for file I/0 (55%). DASH does 

not copy a VAS when a new process is created. A process is created either in the 

same VAS as its creator, or in a new VAS. If a separate VAS is needed, the shared 

segment mechanism eliminates the need for copying the VAS. 

DASH supports memory-mapped file I/0 directly. A general subregion can be 

mapped to client-supplied backing store, and a shared segment is mapped to a 

shared segment file. Furthermore, we do not support write-sharing of mapped files 

(see Section 12.2), so copy-on-write is not needed. In DASH, a mapped file is 

either non-shared (in the general region) or shared in read-only mode (in the shared 

segment region). 

• DASH is targeted at high-performance communication such as real-time video data, 

and needs an efficient mechanism for moving large data between VAS's. In partic­

ular, we need to move memory-resident data efficiently since communication 

buffers are memory-resident. Like DASH, copy-on-write uses memory remapping 

to avoid software copying. However, it is difficult to optimize the performance of 

copy-on-write for a particular purpose (i.e., moving a resident page). For example, 

in Accent [7, 8], remapping a resident page is slower than copying it (1.1 msec vs. 

0.3 msec), though this is not important to Accent because 92.5% of the pages 

remapped are non-resident. 

In DASH, the IPC region is designed exclusively for moving large data between 

address spaces. With a limited usage, we are able to tailor the design toward high 

performance, and concentrate on reducing the overhead of flushing TLB 's and vir­

tual address caches. 

12.2. No Direct Support for Write-sharing of Mapped Files 

We do not directly support write-sharing of mapped files for three reasons: 

• Studies of real-world systems [16, 19] show that write-sharing occurs rarely. We 

are willing to sacrifice it to increase the performance and simplicity of the rest of 

the system. 

• Write-sharing is mainly used in database and transaction systems. Such applica­

tions generally have their own semantics for sharing [24, 25], so the semantics 

should not be imposed by the operating system kernel. 

• Our design has hooks for supporting write-sharing or transactions outside the ker­

nel. The design to use these hooks, to be included in a future version of the VM 

system, is as follows. A subregion of the general region is mapped to a backing­

store service rather than a file. The client contacts the service, specifies how the file 

is to be shared, and establishes the VM mapping using the service token (see [31]) it 

obtained from the service. The client also calls the service directly for special 

operations such as "commit". The kernel calls the service, on a page fault, to read, 

write, or change the access rights to a page. The VM-to-backing-store interface has 

parameters for the desired and granted access rights. The backing-store service 

calls the VM system back to flush and/or invalidate a page in the subregion using 

standard system calls. DASH system calls (local or remote) are performed on 



31 

objects, and a capability to the subregion object is passed to the backing-store ser­
vice on the previous read request. 

The above scheme is similar to several other systems. The Mesa file system [23] used 

the idea of call-back proced~s. but did not combine it with the VM system. The file 
server calls the client back using the routines supplied by the client when opening a file. 

In Mach, the interface between the VM system and the external pager is a two-way pro­
tocol based on asynchronous messages [29]. · 

12.3. No Direct Support for Shared Memory 

A shared memory mechanism allows programs to equate corresponding ranges of dif­
ferent VAS's, so that a change in one VAS is instantly visible in the others. Early sys­
tems like Multics [3,5] and Tenex [17] provide a sharing facility that is general but has 

poor performance. More recently, 8th Edition UNIX [21] and Sprite [20] provide 

simpler mechanisms with better performance. 

A DASH VAS may contain multiple processes, so we support shared memory between 
processes. We do not support shared memory between VAS's for two reasons: 

• DASH emphasizes security, and provides well-defined security semantics for 
message-passing operations between mutually distrustful VAS's. However, if two 
mutually distrusted VAS's share a memory segment, nothing prevents one VAS 
from corrupting the shared data at an unexpected time. 

• DASH is a distributed operating system. An application based on the shared 
memory abstraction works fine on a single host, but is hard to extend over the net­
work. The Apollo Domain system (13] and Li [15] extend the shared memory 
model to a network-wide single-level store. However, this approach is applicable 
only to homogeneous processors, and its performance depends heavily on locality of 
references. 

13. ACKNOWLEDGEMENTS 

We would like to acknowledge the contributions of Raj Vaswani, Robert Wahbe and 
Kevin Fall, who were involved with the VM system both as implementors and as clients. 



32 

REFERENCES 

1. M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian and M. 

Young, ''Mach: A New Kernel Foundation for UNIX Development'', Proceedings 

of the 1986 Summer USENIX Conference, Atlanta, Georgia, June 9-13, 1986, 81-

92. 

2. 0. Babaoglu and W. Joy, "Converting a Swap-Based System to do Paging in an 

Architecture Lacking Page-Reference Bits", Proc. of the 8th ACM Symp. on 

Operating System Prin., Pacific Grove, California, Dec. 14-16, 1981, 78-86. 

3. A. Bensoussan, C. T. Clingen and R. C. Daley, "The Multics Virtual Memory: 

Concepts and Design", Comm. of the ACM 15,5 (May 1972), 308-318. 

4. R. Carr and J. Hennessy, "WSCLOCK- A Simple and Effective Algorithm for 

Virtual Memory Management", Proc. of the 8th ACM Symp. on Operating System 

Prin., Pacific Grove, California, Dec. 14-16, 1981, 87-95. 

5. R. C. Daley and J. B. Dennis, "Virtual Memory, Processes and Sharing in 

Multics'', Comm. of the ACM 11,5 (May 1968), 306-312. 

6. P. J. Denning, "Working Sets Past and Present", IEEE Transactions on Software 

Engineering SE-6, 1 (Jan. 1980), 64-84. 

7. R. P. Fitzgerald, A Performance Evaluation of the Integration of Virtual Memory 

Management and Inter-Process Communication in Accent, Ph.D. Dissertation, 

CMU, Pittsburgh, PA, Oct. 1986. 

8. R. Fitzgerald and R. Rashid, ''The Integration of Virtual Memory Management 

and Interprocess Communication in Accent", Trans. Computer Systems 4, 2 (May 

1986), 147-177. 

9. D. D. Gajski and J. Peir, "Essential Issues in Multiprocessor Systems", IEEE 

Computer, June, 1985, 9-28. 

10. R. A. Gingell, J. P. Moran and W. A. Shannon, "Virtual Memory Architecture in 

SunOS", Proceedings of the 1987 Summer USENIX Conference, Phoenix, 

Arizona, June 8-12, 1987, 81-94. 

11. M. Hill, "Design Decisions in SPUR", IEEE Computer, Nov. 1986, 8-22. 

12. "IBM RT PC hardware technical reference", Order no. SV21-8024, IBM, Austin, 

TX, 1985. 

13. P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton, D. L. Nelson and B. L. 

Stumpf, "The Architecture of an Integrated Local Network", IEEE Journal on 

Selected Areas in Communication 1, 5 (Nov. 1983), 842-857. 

14. H. M. Levy and P. H. Lipman, "Virtual Memory Management in the VAXNMS 

Operating System'', IEEE Computer, Mar. 1982, 35-41. 

15. K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, Ph.D. 

Dissertation, YALEU/DCR-492, Yale University, Sep. 1986. 



33 

16. W. A. Montgomery, "Measurements of Sharing in Multics", Proc. of the 6thACM 
Symp. on Operating System Prin., West Lafayette, Indiana, Nov. 16-18, 1977, 85-
90. 

17. D. L. Murphy, "Storage Organization and Management in TENEX", Proc. of the 
Fall Joint Comp. Conf, AFIPS National Computer Conf Proc., 1972. 

18. M. Nelson and J. Ousterhout, "Copy-on-Write for Sprite", Porceedings of the 
1988 Summer USENIX Conference, San Franscisco, CA, June 20-24, 1988, 187-
202. 

19. J. Ousterhout, H. D. Costa, D. Harrison, J. Kunze, M. Kupfer and J. Thompson, "A 
Trace-Driven Analysis of the UNIX 4.2 BSD File System", Proc. of the 10thACM 
Symp. on Operating System Prin., Orcas Island, Eastsound, Washington, Dec. 1-4, 
1985, 15-24. 

20. J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, "The Sprite 
Network Operating System", IEEE Computer 21, 2 (Feb. 1988), 23-36. 

21. D. Presotto and D. Ritchie, "Interprocess Communication in the 8th Edition Unix 
System", Proceedings of the 1985 Summer USENIX Conference, Portland, 
Oregon, 1985, 309-316. 

22. R. Rashid and G. Robertson, ''Accent: A Communication-Oriented Network 
Operating System Kernel", Proc. of the 8th ACM Symp. on Operating System 
Prin., Pacific Grove, California, Dec. 1981, 64-75. 

23. L. G. Reid and P. L. Karlton, "A File System Supporting Cooperation Between 
Programs", Proc. of the 9th ACM Symp. on Operating System Prin., Bretton 
Woods, New Hampshire, Oct 10-13, 1983, 20-29. 

24. M. Stonebraker, "Operating System Support for Database Management", Comm. 
of the ACM 24,7 (July 1981), 412-418. · 

25. M. Stonebraker, D. DuBourdieux and W. Edwards, ''Problems in Supporting 
Database Transactions in an Operating System Transaction Manager", Operating 
Systems Review 19, 1 (Jan. 1985), 6-14. 

26. B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1986. 

27. D. C. Swinehart, P. T. Zellweger, R. J. Beach and R. B. Hagmann, "A Structural 
View of the Cedar Programming Environment", Trans. Pro g. Lang and Systems 8, 
4 (Oct. 1986), 419-490. 

28. S. Tzou, D. P. Anderson and G. S. Graham, "Efficient Local Data Movement in 
Shared-Memory Multiprocessor Systems", Technical Report No. UCB!Computer 
Science Dpt. 871385, Berkeley, CA, Dec. 1987. 

29. M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, 
D. Black and R. Baron, "The Duality of Memory and Communication in the 
Implementation of a Multiprocessor Operating System", Proc. of the 11th ACM 
Symp. on Operating System Prin., Austin, Texas, Nov. 8-11, 1987, 63-76. 

30. "The DASH Local Kernel Structure", UCB/Computer Science Dpt. Technical 
Report, in preparation, August 1988. 

31. "The DASH Network Communication Architecture", UCB/Computer Science 
Dpt. Technical Report, in preparation, August 1988. 


