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ABSTRACT 

Piezoelectricity is a material property that generates an electric charge proportional to the 

mechanical stress placed on the material. This phenomenon was first discovered by the 

Curie brothers in 1880. This material property gives the ability to turn vibrations into an 

electrical waveform, but power electronics is necessary to harness this low-level energy.  

AC power is often produced at the power plant level in modern society; however, 

low voltage AC power is widely available in vibrational form. The U.S. Navy may be 

able to utilize piezoelectric technology to harness wasted vibrational energy. Some of 

these applications include inserting a piezoelectric harvester in shoes to supply small 

amounts of power to cell phones or utilizing motion energy to provide power to iPod 

chargers. 

The power electronics that provides full bridge rectification and step down 

conversion, which achieves AC-DC power harvesting, is discussed. Also discussed is a 

breakdown of possible applications for such a device as well as the benefits of turning 

AC power into DC. A Linear Technology LTC-3588-1 integrated circuit was simulated 

in software and demonstrated in hardware. The hardware experiment showed that the 

software accurately predicted the performance of the chip. 
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EXECUTIVE SUMMARY 

AC energy harvesting has not been the focal point of industry in the last few years. This 

untapped sector has the potential to save the consumer money as well as save the power 

generation companies the need to build more power plants. The Department of Defense 

(DOD) has the opportunity to improve the reliability of components, create energy 

savings and develop an alternative option for backup power or secondary power. 

In the DOD as well as the private sector, with an ever growing energy demand, 

taking steps to capture wasted energy is essential for our energy security. We have seen 

such efforts in car manufacturing, such as the Prius, that returns energy to the battery 

through the use of its regenerative brake system. Power electronics is the critical 

technology that makes harvesting this unused energy possible. 

Piezoelectricity is a material property that generates an electric charge 

proportional to mechanical stress. This phenomenon was first discovered by the Curie 

brothers in 1880. This material property can be used to turn vibrational force into an 

electrical signal. While the low power level signals are useless by themselves, 

incorporating power electronics to transform this waveform into energy stored on a 

battery is useful. 

The technologies discussed in this research are the full-bridge rectifier, buck 

chopper, and hysteresis control of power conversion. Utilizing these techniques, we can 

transform an AC waveform into energy stored in a battery. The simulated source used for 

the research was a typical AC sine wave from a floating function generator. A simulated 

input allowed the designer the tools needed to identify the piezoelectric device behavior 

desired for a specific application.  

Applications of this device include storing vibrational energy in a battery and 

sensing a change in vibrational energy of a monitored device. In the case of motors, 

vibrations are an unwanted byproduct, and if abnormal vibrations are detected, it may 

indicate that maintenance should be performed prior to equipment failure. 



 xvi

A Linear Technologies Demonstration Board, 1459B, was used with a 

LTC3588EMSE-1 integrated circuit. The demonstration board was simulated in software 

to predict the performance and then tested in hardware. This link between software 

design and hardware verification is a stepping stone towards a cost efficient design. The 

more accurate the software design model is, the less money is wasted on building 

prototypes that do not work as desired when fabricated. 
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I. INTRODUCTION 

Vibrations are part of everyday life, from the vibrations of the engine when you 

drive to work to the ceiling fan that works twenty-four hours a day circulating the air in 

your house. Until the discovery of the piezoelectric phenomenon, this form of energy 

remained useless. This research into the performance of a piezoelectric harvester is 

intended to showcase the capabilities as well as verify the specification sheet describing a 

particular integrated circuit. Linear Technologies provided a simulation model of their 

product, and this model's performance is compared against hardware performance.  

A. AUTHORITY AND IMPORTANCE TO CONDUCT ENERGY 
RESEARCH 

The Secretary of the Navy’s concern for our energy security has prompted the 

release of SECNAV INSTRUCTION 4101.3 [1] and the establishment of the Task Force 

Energy Charter [2]. In the charter, the Deputy Chief of Naval Operations for Fleet 

Readiness and Logistics (CNO N4) is charged with developing a Navy Energy Strategy. 

This is done by the establishment of the seven working groups that focus on key mission 

areas. Research in energy is done on a partnership basis due to the vastness of the 

information age. According to the Secretary of the Navy, the Honorable Ray Mabus,  

The Navy’s partnership with the Naval Postgraduate School helps prepare 
our future leaders to integrate energy efficiencies and alternative energy 
into strategy and operations, which will strengthen our energy security. [3]  

This emphasis on the importance for energy research motivated this research.  

B. OBJECTIVE 

The Linear Technologies LTC3588EMSE-1 integrated circuit is the focal point  

of this research. This commercially available energy harvester is tested through a 

demonstration board integration structure (Demonstration Circuit 1459B). A piezoelectric 

source is simulated with a floating function generator to provide test case scenarios for 

various frequency and voltage inputs. Linear Technologies created the LTSpiceIV 

program to showcase their product in a simulation environment. A work bench test was 
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set up to compare the simulation results against hardware measurements to demonstrate 

the reliability of software design. 

C. PREVIOUS WORK 

Harvesting power from a solar cell source was considered in [4]. The research 

focused on testing the BQ25504 Texas Instruments chip that harvested power on a 

milliwatt (mW) scale. Miniature electromechanical generation via motion to create power 

was examined in [5]. Motion energy is something we see and use on a daily basis but not 

for storing energy for later electrical use, except in the case of wristwatches that already 

utilize piezoelectric technology. A third Naval Postgraduate School student experimented 

with vibrational energy, highlighting the advantage of piezoelectric properties for 

collecting vibrational energy [6]. The next logical step is to simulate an AC voltage 

source to use as input to the energy harvester, since the piezoelectric element can be 

tailored to the application. Power converters have been used to charge a battery using a 

piezoelectric energy source [7]. These converters are slightly different than the integrated 

circuit studied in this thesis. In [8], a piezoelectric source was used to charge a wireless 

remote power supply. In this thesis, a function generator is used to test the behavior of the 

integrated circuit. The purpose of this research is to bridge the previous thesis concepts 

together into an analysis of the Linear Technology LTC-3588-1 chip used to harvest 

piezoelectric energy from vibrations.  

D. THESIS ORGANIZATION 

The previous work and motivation for this research was covered in this chapter. 

The two key power electronic functions, full bridge rectification and buck converter 

operation, which makes this design viable, are covered in Chapter II. The simulation 

 is covered in Chapter III, with the simulation results and hardware measurements 

discussed in Chapter IV. The conclusion, as well as future work recommendations, are in 

Chapter V. 
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II. POWER ELECTRONICS THAT MAKES AC ENERGY 
HARVESTING POSSIBLE 

The piezoelectric energy conversion process produces DC power from an AC 

source, requiring the AC input to first be converted to a DC signal. The current draw by 

the DC load from the integrated circuit follows Ohm’s law V IR , since the load 

considered in this thesis is a resistive. The input to the LTC-3588-1 integrated circuit is a 

variable AC sine wave simulating a piezoelectric source. Voltage regulation is 

accomplished with a buck chopper. The buck chopper turns the current on and off with 

respect to the changing voltage in order to regulate the output voltage. 

A typical diode rectifier is shown in Figure 1a. The characteristics of voltage 

source sv , the current i , and the diode voltage dv  are shown in Figure 1b. This 

application is not very useful due to the large ripple; however, we see that both dv  and i 

have an average DC component.  

 

Figure 1.  Simple diode rectifier circuit and waveforms (from [9]). 

A more practical application is the full bridge diode rectifier shown in Figure 2 

with the equivalent circuit shown in Figure 3. In the equivalent circuit, we analyze the 
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state variables, the inductor current si  and the capacitor voltage dv . Referring to Figure 3, 

using Kirchhoff’s voltage law (KVL), when di  is not zero, we obtain 

	
| v | ,d

s s d s d

di
R i L v

dt
  

	 ሺ1ሻ	

and with Kirchhoff's current law (KCL), we obtain 

	
.d d

d d
load

dv v
i C

dt R
 

		 ሺ2ሻ	

Using PSpice simulation software to simulate the circuit in Figure 2, we obtain the output 

waveforms shown in Figure 4.  

 

Figure 2.  Practical full bridge rectifier (from [9]).  

 

Figure 3.  Equivalent circuit for Figure 2 (from [9]). 
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Figure 4.  PSpice waveform from full bridge rectifier in Figure 2 (from [9]). 

The end result of this full bridge rectifier is a DC voltage dv  as shown in Figure 4. Now 

that the voltage is DC, the next process is to step the voltage down to regulate the output 

voltage.  

A. BUCK CHOPPER 

One way to step down a voltage is to use a voltage divider, as shown in Figure 5. 

This approach has the cost of losses due to the resistors dissipating power. This approach 

also does not regulate the output voltage due to the resistor having a fixed value. The 

voltage divider output in Figure 5 is given by  

	

2

1 2

.in
out

V R
V

R R


 		 ሺ3ሻ	

This topology steps down voltage but, due to its inability to regulate the voltage, it only 

fixes one of the problems while causing excess power losses. The efficient, more modern, 

way to step down a voltage is by utilizing the circuit topology known as the buck 

chopper, also called a step-down converter. A buck chopper also regulates the output 

voltage.  
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Figure 5.  Typical voltage divider. 

A typical buck chopper is shown in Figure 6 [10]. Three basic elements make up 

the buck chopper: a switching element, a diode and an inductor. The input is a voltage 

source E. The output current Li divides between the load resistance R current Ri  and the 

filter capacitor C current Ci . The capacitive filter is in parallel with the load resistor R. 

This circuit maintains a fixed voltage utilizing feedback control of the duty cycle D of the 

solid state switch S. We pick a value of C large enough so that CV  has negligible AC 

ripple.  

 

Figure 6.  Conventional buck chopper (from [10]).  
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The two conduction modes of the buck chopper are continuous conduction mode 

(CCM) and discontinuous conduction mode (DCM). In order to be in CCM, the inductor 

current must never drop to zero, putting constraints on the ripple current. The values of 

the inductance L and resistance R must satisfy [10] 

 

	
(1 ),

2

R
L D

f
 

	 ሺ4ሻ	

where D is the duty cycle and f is the switching frequency. The duty cycle D is the 

proportion of a switching period 1/f that the switch is closed. 

The two cases of the buck chopper are with the switch either open or closed, as 

shown in Figure 7. When the switch is closed, ,L CE v V   and 

	
.C CL L

C L

E V E Vdi di
E L V di dt

dt dt L L

 
     

			 ሺ5ሻ	

Integrating both sides of (5) over one switching period yields 

	
max min

CE V
I I DT

L


 

		 ሺ6ሻ	

where maxI  is the maximum inductor current and minI  is the minimum inductor current.  

When the switch is open and the diode is conducting, 0,L Cv V   and  

	
0 .C CL L

C L

V Vdi di
L V di dt

dt dt L L
       

		 ሺ7ሻ	

Integrating both sides of (7) over one switching period yields 

	
min max (1 ) .CV

I I D T
L

   
	 ሺ8ሻ	
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Figure 7.  Buck chopper switch open (a), switch closed (b) (from [10]). 

The relationship between the output voltage and input voltage is calculated by 

equating (6) and (8): 

	
(1 )C CE V V

DT D T
L L


 

		 ሺ9ሻ	

which simplifies to    

	 .CV DE 	 ሺ10ሻ	

The output voltage regulation CV is based upon the duty cycle and the input voltage E. 

The average inductor current is the average of maxI  and minI  and equals the average load 

current 

	 ( ) ( )L Ravg i avg i 		 ሺ11ሻ	

where 

	

( )
( ) .C

R

avg V
avg i

R


	 ሺ12ሻ	

Figure 8 shows the relationship between duty cycle and current in continuous 

conduction mode.  
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Figure 8.  The relationship between the duty cycle and current (from [10]).  

In the DCM min 0I  , and maxI  is defined by (6). The peak current maxI is [10] 

	
max 2( )CV

I D D T
L

 
		 ሺ13ሻ	

where 2D  is the duty cycle of the discontinuous mode as shown in Figure 9. In the case 

of DCM, the DC inductor current is not large enough to stay in continuous conduction, 

and this causes the current to fall to zero for a period of time each switching period. This 

puts the converter into the DCM. The inductor current in the DCM is shown in Figure 9.  

 

Figure 9.  DCM current behavior of the inductor current (from [10]). 
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A graph of the voltage ratio versus the duty cycle for both the CCM and DCM is 

shown in Figure 10. The discontinuous region is nonlinear with respect to the duty cycle.  

  

Figure 10.  Buck chopper modes with respect to duty cycle (from [10]). 

This pulsed approach allows a buck chopper to regulate the output voltage more 

efficiently than the resistor divider architecture. With no resistors in the power 

conversion topology between the input voltage source and the load, the circuit is more 

efficient than a resistor divider.  

With the output voltage regulated, power can be harvested at the load. Integrating 

the rectifier concept and the buck chopper concept together converts an AC signal to a 

DC signal regulated to a predetermined voltage value. This is done with the LTC-3588-1 

piezoelectric energy harvester [11]. The LTC-3588-1 is mounted on an integrated circuit 

demonstration board 1459B [12]. This board was chosen due to the ability to swap out 

components as well as the availability of Linear Technology's simulation model for  

this board. 
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III. SIMULATION ANALYSIS OF PIEZOELECTRIC  
ENERGY HARVESTER  

The PSpice simulation of the demonstration board containing the energy 

harvesting integrated circuit is described in this chapter. Linear Technologies has created 

its own version of PSpice, called LTSpiceIV. This program is available from Linear 

Technologies’ website, along with a model demonstration board circuit 1459B, and a 

graphical user interface, as shown in Figure 11.  

 

Figure 11.  LTSpiceIV model of demonstration board (from [12]). 

The setup of the simulation includes a 500 Ω loadR  and a 6.0 V peak AC source at 

30 Hz connected to pins PZ1 and PZ2 of the integrated circuit simulation. The outputs of 

the simulation include the output voltage, the output voltage ripple, the switching 

waveforms and the output current. All parameters of this model can be modified except 

the LTC3588-1 chip. Both D0 and D1 pins are grounded to choose the 1.8 V regulation 
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operating mode. The inductor 1L  and capacitors 1C  and 2C  are set to match the 

demonstration board used in bench testing. The load current pulse is off for the 

simulations shown in this thesis and is not present on the demonstration board. The 

capacitor 1C , shown in Figure 11, is the DC bus capacitor after diode rectification of the 

AC input. The voltage source 2V  is the 5.0 V supply for the integrated circuit. 

A. SIMULATED OUTPUT VOLTAGE 

The simulated output voltage has a calculated ripple of 47.0 mV, as shown in 

Figure 12. The average simulated DC voltage is 1.81 V. The input, as shown in Figure 

11, is a sine wave at 30 Hz. The D0 and D1 jumpers are connected to ground, which puts 

the device in the 1.8 V output voltage setting. 

 

Figure 12.  The simulated output voltage with a 500 Ω load is measured at the outV  

test point, as shown in Figure 11. 

Modifying the jumpers D0 and D1 by connecting them to 0.0 V or 5.0 V produces 

four different output voltages, 1.8 V, 2.5 V, 3.3 V and 3.6 V, in the simulation. These 

different voltages are chosen based on the battery or device being charged with this 

energy harvester.  
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B. SIMULATED OUTPUT CURRENT 

The simulated output current into the 500 Ω load of the circuit shown in Figure 11 

is shown in Figure 13. The average DC current was measured to be 3.6 mA. The 

simulation shows a slight AC ripple in the output. Using P IV , we calculate a 

simulated power generation of 6.48 mW.  

 

Figure 13.  Simulated output current measured into the load resister  
shown in Figure 11. 

C. BUCK CONVERTER SWITCHING WAVEFORM 

The datasheet included oscilloscope waveforms showing the typical operation of 

the chip. The measured switching waveform from the datasheet is shown in Figure 14 

and matches the simulated waveforms shown in Figure 15 and Figure 16. We expect to 

get the same correlation between the simulation and our laboratory measurements. 
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Figure 14.  Switching waveform shown in the datasheet (from [11]). 

 

 

Figure 15.  Simulated switching waveforms from LTSpiceIV (measured voltage 
from SW pin and current through 1L  shown in Figure 11). 
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Figure 16.  Simulated switching current waveform (measured through 1L ) and 

output voltage (measured at the outV  PIN) shown in Figure 11. 
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IV. LABORATORY MEASUREMENTS OF PIEZOELECTRIC 
ENERGY HARVESTER 

The measurements and hardware used in the lab to observe the performance of the 

energy harvesting chip are described in this chapter. The initial laboratory procedures 

were done to verify the board was not defective and can be found in the specification 

sheet [12]. Test procedures from the quick start guide were first conducted to verify the 

board was operating to specifications [12], as shown in Figure 17.  

 

Figure 17.  Experimental setup to initially test the demonstration board operation 
setup (from [12]).  

The test equipment used to conduct the measurements is shown in Table 1. The 

lab bench setup is shown in Figure 18. A picture of the demo board is shown in  

Figure 19. The demonstration board schematic is shown in Figure 20. 

Table 1.   Test equipment used for demonstration board observations. 

Agilent 33220A 20 MHz function/arbitrary waveform generator 

Fluke 45 dual display meter 

Tektronix P5200 high voltage differential probe 

Tektronix TDS 3014B four channel color digital phosphor oscilloscope 

Tektronix TCPA300 amplifier, AC/DC current probe 
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Figure 18.  Laboratory bench configuration. 

The integrated demonstration board circuit shown in Figure 19 was assembled at 

Linear Technology. The integrated circuit mounted on the board is the size of a 

fingernail. This sleek, slim design makes it easy to transport and install.  

 

Figure 19.  Demonstration board configuration. 
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Figure 20.  Circuit schematic (from [12]). 

Optional capacitors 2C , 3C and resistors 1R , 2R  shown in Figure 20, were not 

utilized in this study.  

A. RECTIFICATION OF THE AC PIEZO INPUT TO THE ENERGY 
HARVESTING CHIP 

The first stage of the device rectifies the input signal from an AC sine wave into a 

DC waveform input to the buck chopper. A 30 Hz, 6.0 peakV  AC voltage representing the 

piezoelectric input is shown in Figure 21. This input voltage was chosen because it is the 

worst case scenario for voltage as well as frequency based on research of available 

piezoelectric material sources [11]. The test case scenario is the worst possible option, 

meaning any higher frequency or voltage produces better results. The input waveform 

from the floating function generator connects to the PZ1 and PZ2 connections of  

the schematic shown in Figure 20. The resulting input voltage waveform is shown in 

Figure 21. 
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Figure 21.  Input to pins PZ1 and PZ2 30 Hz 12 ppV  sine wave shown in Figure 20. 

To understand the next steps in the circuit, we must examine the LTC-3588-1 

chip, shown in Figure 22. 

 

Figure 22.  LTC3588-1 integrated circuit block diagram view (from [11]). 
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The input pins PZ1 and PZ2 are shown connected to a full-wave bridge rectifier 

represented by four diodes. An oscilloscope measurement was taken from pin 4 of Figure 

22, which correlates to pin 4 of Figure 20. The result is shown in Figure 23, where 

channel 4 is the output voltage of the rectifier with a measured ripple of 1.38 V. 

 

Figure 23.  Measured rectified voltage (Ch4) from pin 4 shown in Figure 20 and 
voltage (Ch1) from the load resistor. 

The average value of the rectified output is 3.31 V. The pk pk rippleV    is the 

maximum voltage of the ripple, and meanrectifiedV is the average voltage of the ripple. 

Calculating max ,rectifiedV  we get 

	
mean max2

pk pk ripple
rectified rectified

V
V V   

		 ሺ14ሻ	

which equals 4.0 V. We also know the piezoelectric peak input voltage is 

	 max 2 .pzinput rectified diodeV V V  		 ሺ15ሻ	

Rearranging (13), we get  

	 max 2 ,pzinput rectified diodeV V V  		 ሺ16ሻ	
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and we calculate a diodeV drop of 0.55 V for the 500  load case. This voltage drop is 

consistent with the datasheet voltage drop, as shown in Figure 24 [11]. The bridge current 

is estimated to be  

	
1.bridge

dv
I C

dt


		 ሺ17ሻ	

The resulting estimated current, 5.6 mA, and the temperature, 25 C, is used with Figure 

24 to find the diode bridge voltage drop of 1.1 V from the datasheet [11]. The bridge 

current path has two diodes in both the positive half-cycle and the negative half-cycle, 

resulting in two diode voltage drops. Dividing 1.1 V by 2.0, we calculate a 0.55 V drop 

per diode; this matches within a margin of error to the (16) result. Having two diodes 

means we expect the voltage drop to be 1.1 V total. Also shown on the input path  

in Figure 22 is a 20.0 V internal zener diode. This protects the circuit from going above 

20.0 V.  

 

Figure 24.  Total bridge rectifier drop vs bridge current (from 9). 

 The buck chopper component of the circuit is observed from pin 6 of Figure 20 

and Figure 22 and is displayed in Figure 23 on channel 1. A p-type metal-oxide-

semiconductor field-effect transistor PMOS switch from pin 3 and an n-type metal-oxide-
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semiconductor field-effect transistor NMOS switch from pin 7 is shown in Figure 22. An 

external capacitor at pin 4 that serves as an input voltage supply for the buck regulator is 

shown in Figure 20. This capacitor doubles as an energy reservoir that delivers energy 

during switching. The signal PGOOD on pin 10 was not utilized in this study.  

The measured DC value of the output voltage is 1.74 V and is shown in Figure 23. 

With D0 and D1 set to ground, this is the 1.8 V operation of the device.  

B. BUCK CHOPPER 

The Buck chopper output voltage of 1.74 V across the load resistor, shown in 

Figure 25, is the same 1.74 V DC buck chopper voltage shown in Figure 23 except the 

time axis is set to 100 µs per division. The DC signal is now more easily identified to 

show a 60 mV ripple with a 1.41 kHz switching frequency sF . Period is equal to 700 s 

as shown in Figure 25. 

 

Figure 25.  Buck chopper with 500 Ω load. Ch1 measured from load shows 700 µs 
between pulses. 
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Under different load conditions, the buck converter changes the switching 

frequency but maintains the waveform shape, as shown in Figure 26. The fundamental 

concept remains that the device pulses power to the load to maintain voltage regulation. 

The period at which this occurs changes depending on the load. We observed that loading 

down the circuit by a factor of two causes the frequency to increase by roughly a  

factor of two. 

 

Figure 26.  Buck chopper with 250 Ω load. Ch2 measured from load shows 403 µs 
between pulses. 

The effect of shedding the load, or increasing load resistance, is shown in Figures 

27, 28, and 29. This linear behavior follows the output load draw of the device. 

Increasing the load, or lowering the resistance, causes the device to compensate by 

increasing the frequency at which it turns regulation on and off. 
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Figure 27.  Buck chopper with 1 kΩ load. Ch2 measured from load shows 1.45 ms 
between pulses. 

 

Figure 28.  Buck chopper with 2 kΩ load. Ch2 measured from load shows 2.9 ms 
between pulses. 



 26

 

Figure 29.  Buck chopper with 4 kΩ load. Ch2 measured from load shows 5.78 ms 
between pulses. 

 

Figure 30.  Buck chopper waveform measured from pin 5 shown in Figure 20. 

The voltage applied to the inductor by the integrated circuit is shown in Figure 30 

with 4 µs per division. This signal is captured using the oscilloscope probe at pin 5 of the 
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circuit represented by Figure 20, which is the output side of the integrated circuit before 

the inductor. The buck chopper utilizes pulsed power switching to maintain the output 

voltage. When the input voltage falls below the under voltage lockout UVLO threshold, 

the buck converter shuts off. During this time, the output capacitor provides the load 

energy until it discharges.  

There is a sleep comparator shown in Figure 22 that monitors the output voltage. 

When the output voltage falls below the regulation point, the buck regulator wakes up 

and provides a burst of energy. This cycle repeats itself and is used to regulate the output 

voltage. 

The LTC-3588-1 device keeps the NMOS switch on during the comparator sleep 

threshold period; this prevents the conduction loss that normally occurs in the body 

diode. If the PMOS is on when the sleep comparator turns on, the NMOS turns on to 

drive the current down to zero. The NMOS is what makes the device energy efficient. 

The pulsing behavior of the LTC3588-1 is observed by changing the load values while 

observing pin 5 of Figure 20, as shown in Figures 31, 32, 33, and 34. 

 

Figure 31.  Chip voltage at pin 5 shown in Figure 20 with 250 Ω load. Ch2 shows 
4.0 µs between pulses. 
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Figure 32.  Chip voltage at pin 5 shown in Figure 20 with 500 Ω load. Ch2 shows 
7.3 µs between pulses. 

 

Figure 33.  Chip voltage at pin 5 shown in Figure 20 with 1 kΩ load. Ch2 shows 
1.43 ms between pulses. 
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Figure 34.  Chip voltage at pin 5 shown in Figure 20 with 2 kΩ load. Ch2 shows 
2.91 ms between pulses. 

The energy transfer to the load only occurs at times where there is sufficient 

energy at the input capacitor, and, thus, the time it takes to transfer the power to the load 

is much shorter than the time it takes the device to harvest the energy. This makes the 

device ideal for harvesting small amounts of energy for a longer period of time.  

The four selectable voltage outputs are controlled by the jumpers JP1 and JP2 in 

Figure 20. The four voltage options are 1.8 V, 2.5 V, 3.3 V, and 3.6 V.  

The resulting measurement of the circuit operation is shown in Figure 35. Unlike 

the simulation, we were unable to measure the inductor current because the inductor is a 

surface mounted part on the board. The simulation results shown in Figure 16 give a 

clearer picture of the voltage steps and the inductor current behavior. The added noise in 

the measurement shown in Figure 35 is due to equipment error, noise and calibration. The 

60.2 mV ripple shown in Figure 35 depicts the regulation of the buck chopper. Once the 

voltage reaches the regulation minimum, the chopper sends a pulse of power, reassesses, 

and sends another pulse of power if necessary to reach the cutoff voltage. Once the 
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voltage is regulated to the desired value, the buck chopper turns off and monitors the 

output voltage until it again reaches the minimum threshold. This process repeats.  

 

Figure 35.  Measured output voltage from switching and the pin 5 voltage shown 
in Figure 20 (Ch1) and load resistor voltage (Ch2).  

C. POWER OUTPUT 

The function generator serves as the voltage source for the energy harvester. The 

function generator voltage and current were measured, and the waveforms are shown in 

Figure 36. When the voltage and current are multiplied together, the average value is the 

estimate of the input electrical power. Measuring the voltage and current from the load 

resistor, we calculated the output power as shown in Figure 37. The output power was 

measured to be 5.3 mW, enough to power a GPS transceiver or other small power device.  
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Figure 36.  Input current (Ch1), voltage (Ch2) and output power (ChM) measured 
from the function generator. 

 

Figure 37.  The voltage (Ch1) and current (Ch3) of the load resistor and the output 
power (ChM).  
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The efficiency is estimated to be 54%.  This may be inaccurate due to 

instrumentation calibration errors. This number is not as important keeping in mind that 

this is free energy.  

D. CORRELATION BETWEEN HARDWARE, TEXTBOOK AND 
SIMULATION 

Putting the laboratory demonstration, textbook example and software simulation 

together, the LTC3588-1 performs to specification. The full-bridge rectification shown in 

Figures 38, 39, and 40 correlate between laboratory demonstration, textbook example and 

software simulation.  

 

Figure 38.  Rectification demonstration. 

 

Figure 39.  Textbook rectification example (from [9]). 
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Figure 40.  LTSpiceIV simulation with vs (green), vd (purple) and is (red). 

This correlation between textbook, demonstration and software simulation 

validates the use of software design to test product behavior prior to construction. The 

LTSpiceIV program is a reliable tool to predict the device performance. 
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V. CONCLUSION AND FUTURE WORK 

Two blocks of power electronics (full-bridge rectifier and buck chopper) were 

combined in this thesis to use a simulated piezoelectric voltage source and harvest the 

energy to a resistor load. 

A. CONCLUSION 

Simulation and laboratory demonstration both verify the ability of the LTC3588-1 

integrated circuit chip to harvest an AC waveform input and transfer power to a resistor 

load. Laboratory equipment calibration was needed prior to conducting measurements as 

well as floating the function generator. LTSpiceIV software was easy to download and 

install. The use of the LTSpiceIV software provided insight into circuit behavior, 

especially the case where the inductor current cannot be measured. The parameters for 

the simulated source input can be found from Piezo Inc [13]. 

B. FUTURE WORK 

The output pin PGOOD of the device was not used. According to the specification 

sheet, we see that this tells the user when the converter is in operation.  

This energy harvesting chip produces a small voltage DC power that can be used 

in many ways. A resistor was used as the load case in my research. Future work could 

connect a battery to the output to be charged. 

While 5.3 mW of power is not much, the LTC-3588-1 is smaller than a finger 

nail. Further study into combining several inputs and devices can be accomplished to 

investigate the ability to daisy chain either multiple sources or harvesters.  
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