

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SOFTWARE-DEFINED RADIO GLOBAL SYSTEM FOR
MOBILE COMMUNICATIONS TRANSMITTER

DEVELOPMENT FOR HETEROGENEOUS NETWORK
VULNERABILITY TESTING

by

Carson C. McAbee

December 2013

Thesis Co-Advisors: Murali Tummala
 John McEachen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
SOFTWARE-DEFINED RADIO GLOBAL SYSTEM FOR MOBILE
COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR
HETEROGENEOUS NETWORK VULNERABILITY TESTING

5. FUNDING NUMBERS

6. AUTHOR(S) Carson C. McAbee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The conversion from homogeneous global system for mobile communications (GSM) networks to heterogeneous
GSM/universal mobile telecommunications system (UMTS) networks is rapidly expanding. Previous research
identified vulnerabilities in the GSM network that were fixed in the UMTS standard; however, the mobile device
must successfully access the UMTS network to take advantage of security improvements. Therefore, a possible
vulnerability not addressed in either the GSM or UMTS standards is the potential for a malicious entity to prevent a
mobile device from handing over from a GSM to UMTS network, because the GSM network maintains the stand-
alone dedicated control channel (SDCCH) uplink time slots. The process of testing this vulnerability requires the
development of a device that monitors a GSM base transceiver station, identifies when a handover to UMTS message
is sent, tracks the time slots of the SDCCH uplink, and transmits a GSM handover-failure message. In this thesis, we
present an open-source coding scheme that utilizes parts of the OpenBTS source code to transmit a GSM handover-
failure message using the universal software radio peripheral. The method is validated through the collection of the
GSM transmitter messages by Airprobe’s GSM-receiver software.

14. SUBJECT TERMS GSM, UMTS, USRP, Airprobe, OpenBTS 15. NUMBER OF

PAGES
143

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SOFTWARE-DEFINED RADIO GLOBAL SYSTEM FOR MOBILE
COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR
HETEROGENEOUS NETWORK VULNERABILITY TESTING

Carson C. McAbee

Lieutenant, United States Navy
B.S., United States Naval Academy, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2013

Author: Carson C. McAbee

Approved by: Murali Tummala
Thesis Co-Advisor

John McEachen
Thesis Co-Advisor

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The conversion from homogeneous global system for mobile communications (GSM)

networks to heterogeneous GSM/universal mobile telecommunications system (UMTS)

networks is rapidly expanding. Previous research identified vulnerabilities in the GSM

network that were fixed in the UMTS standard; however, the mobile device must

successfully access the UMTS network to take advantage of security improvements.

Therefore, a possible vulnerability not addressed in either the GSM or UMTS standards is

the potential for a malicious entity to prevent a mobile device from handing over from a

GSM to UMTS network, because the GSM network maintains the stand-alone dedicated

control channel (SDCCH) uplink time slots. The process of testing this vulnerability

requires the development of a device that monitors a GSM base transceiver station,

identifies when a handover to UMTS message is sent, tracks the time slots of the SDCCH

uplink, and transmits a GSM handover-failure message. In this thesis, we present an

open-source coding scheme that utilizes parts of the OpenBTS source code to transmit a

GSM handover-failure message using the universal software radio peripheral. The

method is validated through the collection of the GSM transmitter messages by

Airprobe’s GSM-receiver software.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...1
B. RELATED WORK ..2
C. ORGANIZATION ...3

II. GSM VULNERABILITIES AND FUNDAMENTALS ..5
A. GSM VULNERABILTIES ..5

1. Rogue Base Station ..5
2. Weak A5/1 and A5/2 Encryption ..6
3. Solution in UMTS Networks ...6

B. HANDOVER TO UTRAN ..6
1. Handover to UTRAN Messaging ..6
2. Handover Failure Messaging ..7

C. GSM PHYSICAL AND LOGICAL CHANNELS ..9
1. Broadcast Channel (BCH) and Common Control Channel

(CCCH) ...12
2. Stand-Alone Dedicated Control Channel (SDCCH)13

D. GSM MESSAGING ...13
1. GSM Layer Three Messaging ...16
2. GSM Layer Two Messaging ..16

E. GSM BURST FORMING ...16
1. Block Coder ..16
2. ½-Rate Convolution Encoder ..18
3. Interleaver ..19
4. Burst Mapping ...19

F. GSM MODULATION ...20
1. Differential Encoder ..20
2. GMSK Modulation ..21

III. GSM TRANSMITTER DESIGN FOR VULNERABILITY TESTING23
A. HANDOVER TO UTRAN VULNERABILITY ...23
B. SYSTEM REQUIREMENTS FOR VULNERABILITY TESTING24
C. GSM TRANSMITTER ..25

IV. GSM TRANSMITTER ..29
A. BURST CREATOR ...29

1. Bit Ordering ...29
2. Fire Coder ...30
3. Convolution Encoder ...32
4. Interleaver ..32
5. Burst Mapping ...33

B. BURST MODULATOR ..34
1. Modulator ...35
2. Burst Scalar ..37

 viii

3. Table Filler ...38
4. Re-sampler ..39

C. BURST TRANSMITTER ...41
1. USRP Initialization Coding ...41
2. Transmission Coding ...42

V. TESTING AND EVALUATION ..45
A. BTS TRANSMISSION OF BCH ..46

1. Code Creation...46
2. Setup ..46

a. ASCOM TEMS GSM Message Collection46
b. Airprobe’s GSM-receiver ..47
c. Experiment Setup ..48

3. Results ...48
a. GNU Radio Collection ..49
b. Signal Analyzer Collection ...49
c. Wireshark Collection ..51

B. HANDOVER FAILURE MESSAGE TRANSMISSION53
C. QUEUEING THE HANDOVER FAILURE MESSAGE

TRANSMISSION ...54
1. Code Creation...54

a. Handover Failure Message Creation54
b. Transmission Queuing Using Packet Capture Library

(PCAP) Code ...55
c. Setup ..55

2. Results ...56
a. Wireshark Collection ..56
b. GNU Radio Collection ..57
c. Signal Analyzer Collection ...58

3. Timing Issues ..59

VI. CONCLUSIONS ..63
A. SIGNIFICANT CONTRIBUTIONS ..64
B. FUTURE WORK ...65

APPENDIX A. XGOLDMON ...67

APPENDIX B. BURST CREATOR AND GSM TRANSMITTER C++ CODE
REPLICATING BTS ...71
A. GSM_MESSAGE_HEXADECIMAL_TO_BINARY.PY71
B. GSM_BURST_CREATOR.CPP ..74
C. GSM_BTS_TRANSMITTER.CPP ..76

APPENDIX C. GSM TRANSMITTER C++ CODE FOR TRIGGERED
HANDOVER FAILURE MESSAGE ...107

LIST OF REFERENCES ..117

INITIAL DISTRIBUTION LIST ...119

 ix

LIST OF FIGURES

Figure 1. Sequence of operations when a mobile device is conducting a successful
handover from GSM to UMTS (after [8], [16] and [17]).7

Figure 2. Sequence of operations when a mobile device fails to hand over from
GSM to UMTS (after [8]). ...8

Figure 3. The structured format of a GSM RR handover failure message (after [7]).9
Figure 4. The structured format of a GSM LAPDm type B frame used to send GSM

RR messages (after [13]). ..9
Figure 5. A graphical depiction of all five GSM TDMA time slot burst formats

(after [19]). ...10
Figure 6. A diagram of the mapping process from logical GSM channels to physical

GSM channels (after [20]). ..12
Figure 7. Mapping scheme for the 51 frame long BCH and CCCH onto physical

time slot zero (after [20]). ..14
Figure 8. A diagram showing the mapping scheme for the 102 frame long SDCCH/8

onto physical time slot one (after [20]). ...14
Figure 9. A depiction of the downlink and uplink time slot spacing between the

SDCCH/8 channels (after [20]). ..15
Figure 10. The block diagram for the GSM fire coder process used for RR messages

(after [12]). ...17
Figure 11. The graphic depiction of the shift register model for the GSM ½-rate

convolutional encoder (after [12]). ..18
Figure 12. A diagram of the interleaving and burst mapping process used on

messages transmitted on the SDCCH or BCCH (after [12]).20
Figure 13. Diagram of the exploitation of a potential vulnerability initiated during the

handover to UTRAN process. ..25
Figure 14. Schematic diagram detailing the process flow within the GSM transmitter. ..26
Figure 15. Schematic diagram showing the Burst Creator sub-functions.29
Figure 16. Example of LSB8MSB() function converting the bit ordering from MSB

first to LSB first. ..30
Figure 17. Graphic depiction of how the hexadecimal numbers stored in variable

wCoefficients are equivalent to g(D), the generator polynomial from
Equation (1). ..31

Figure 18. Graphical depiction of the parity bit calculator used in the GSM
transmitter Fire Coder sub-function. ..31

Figure 19. The shift registers representation of the ½-rate convolutional encoder
created by the Convolution Encoder sub-function. ..32

Figure 20. The Interleaver sub-function processing diagram showing the interleaving
of bit number 449. ..33

Figure 21. Procedure of converting interleaved burst mI[0] to GSM TDMA time
slot Burst 0. ..34

Figure 22. Schematic diagram showing the Burst Modulator sub-functions.34

 x

Figure 23. Graphical depiction of a synchronization burst converted to a NRZ signal
using NRZ Converter task and then rotated using the Burst Rotator task.36

Figure 24. Graphical representation of the effects of convolving the in-phase and
quadrature phase samples from the Burst Rotator task with a Gaussian
pulse. ..37

Figure 25. Graphical illustration of the process of GSM TDMA time slot table filling. ..38
Figure 26. Graphical portrayal of the GSM TDMA time slot burst re-sampling

process conducted by the Re-sampler sub-function block where (a) shows
the procedure contained within the Concatenate Burst task, (b) displays
the poly-phase filter used in the re-sampling, and (c) illustrates the effect
of the Filter Burst task on the concatenated bursts. ...40

Figure 27. Block diagram showing the process flow of in-phase and quadrature phase
samples though the USRP transmitter (after [23]). ..43

Figure 28. Example capture of ASCOM TEMS message collection equipment
capturing (a) the System Information Type 1 RR message, and (b) the
message contents of the System Information Type 1 RR message.47

Figure 29. Photograph of the experimental setup used for testing the GSM transmitter
code sending mimicked GSM BTS messages to Airprobe’s GSM-receiver. ..48

Figure 30. Frequency spectrum plot collected by GNU Radio of the baseband signal
created by the GSM transmitter code mimicking the GSM BTS BCH prior
to USRP transmission. The blue signal shows the instantaneous frequency
spectrum while the green signal is the peak collected signal.49

Figure 31. A scope plot collected by GNU Radio of the in-phase samples, in blue (Ch
1), and quadrature phase samples, in green (Ch 2), created by the GSM
transmitter to mimic a GSM BTS BCH. ..50

Figure 32. Signal analyzer frequency spectrum collection showing the carrier center
frequency of the GSM transmitter’s modulated samples transmitter using
the N210 USRP. ...50

Figure 33. A screen capture showing System Information Type 1 RR message with
frame number five collected using Airprobe’s GSM-receiver and
displayed in Wireshark. ...51

Figure 34. A screen capture showing System Information Type 2 RR message with
frame number 56 collected using Airprobe’s GSM-receiver and displayed
in Wireshark. ..52

Figure 35. A screen capture showing a System Information Type 3 RR message with
frame number 107 collected using Airprobe’s GSM-receiver and displayed
in Wireshark. ..52

Figure 36. A screen shot of a Wireshark capture showing Airprobe’s GSM-receiver
successful collection of a handover failure message where (a) is the
captured packet using Airprobe’s GSM-receiver, (b) is the hexadecimal
representation of the transmitted handover failure message, and (c) is the
type B LAPDm frame structure. ..53

Figure 37. Photograph of the experimental setup used for testing the modified GSM
transmitter code which is programed to trigger the transmission of a

 xi

handover failure message based on the reception of a handover to UTRAN
message by the Samsung Galaxy S2 phone. ..56

Figure 38. A screen capture showing the Wireshark collection of a Samsung Galaxy
S2 phone receiving a handover to UTRAN RR message from its servicing
BSC. ...57

Figure 39. Scope plot, collected by GNU Radio, of the in-phase samples, in blue (Ch
1), and the quadrature phase samples, in green (Ch 2), of a modulated
handover failure message, created by the GSM transmitter code, prior to
USRP transmission. ...58

Figure 40. Signal analyzer frequency spectrum collection showing the carrier center
frequency of a transmitted handover failure message by our modified
GSM transmitter code after being triggered by a Samsung Galaxy S2.58

Figure 41. Stem plot of one-way ping times from the computer to the USRP over an
Ethernet cable. ..60

Figure 42. Histogram of elapsed time between receipt of a handover to UTRAN
message on the computer’s loopback address from a Samsung Galaxy S2
and the transfer of the first IP packet containing handover failure burst
samples to the USRP over an Ethernet cable. ..61

Figure 43. Samsung Galaxy S2 debug information settings tutorial where (a) shows
the ServiceMode Main Menu screen, (b) displays the ServiceMode
Common screen, and (c) shows the Service Mode Debug Info screen.68

Figure 44. Samsung Galaxy S2 settings tutorial where (a) shows the PhoneUtil screen
and (b) displays the SysDump screen. ...69

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. List of logical channels used by a GSM network (from [19]).11
Table 2. Common downlink channel combinations used by a GSM network (from

[19])..11
Table 3. Rotational direction of a GSM TDMA time slot burst symbol derived from

the previous and current symbols. ...35
Table 4. USRP variables and their values used during testing of GSM transmitter.42

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

3GPP 3rd Generation Partnership Project

BCCH broadcast control channel

BCH broadcast channel

BSC base station controller

BTS base tranceiver station

CCCH common control channel

FCCH frequency correction channel

GSM global system for mobile communications

LAPDm link access procedure on Dm channel

MSB most significant bit

MSC mobile switching center

NPS Naval Postgraduate School

NRZ non-return to zero

PCAP packet capture library

PCH paging channel

RR radio resource management

SCH synchronization channel

SDCCH stand-alone dedicated control channel

SDR software defined radio

TDMA time-division multiple access

UMTS universal mobile telecommunications system

USRP universal software radio peripheral

UTRAN universal terrestrial radio access network

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The increased usage of cell phones for data transmission has led to the deployment and

installation of universal mobile telecommunications system (UMTS) networks co-located

with traditional global system for mobile communications (GSM) networks. When the

UMTS standards were developed, they fixed a number of security flaws embedded in the

GSM standards but maintained the interoperability between the two standards. This

interoperability of standards exposed both networks to vulnerabilities exploitable by

malicious actors.

In this thesis, we (i) propose a potential vulnerability caused by the

interoperability of the GSM/UMTS standards, (ii) develop the structure needed to create

a device for testing GSM/UMTS network vulnerabilities, and (iii) provide the code for a

software defined radio (SDR) GSM transmitter. The vulnerability proposed in this thesis

prevents mobile devices from handing over from the GSM network to the UMTS

network by exploiting the GSM network message authentication procedures and the

weakness of the encryption algorithms used by the stand-alone dedicated control channel

(SDDCH). The testing of the vulnerability requires the creatation of a device capable of

transmitting and receiving GSM messages in accordance with the 3rd Generation

Partnership Project (3GPP) GSM standards.

Specifically, we need the testing device to collect the radio resource management

(RR) message sent from the GSM network to the mobile device instructing the mobile

device to hand over to the UMTS network, and we need the device to transmit the RR

handover failure message during a pre-determined time slot. Ideally, we would use cell

phones to act as our GSM/UMTS network vulnerability testing device, but their

manufacturers prevent the consumer from altering device firmware, making them

unconfigurable. The proprietary nature of the mobile device industry has, therefore,

necessitated the use of an SDR as our configurable GSM transmit and receive device in

this thesis. An SDR provides us the ability to create any GSM message, package those

messages into frames, encode the frames into bursts, and modulate the bursts in

accordance with the 3GPP GSM standards using only software we construct.

 xviii

GSM transmission and reception using an SDR is well established but poorly

documented. The OpenBTS project is an open source software package, which when

coupled with an SDR provides GSM service to commercial cell phones [1]. The

OpenBTS project, however, prevents users from transmitting any desired message,

making it inadequate for vulnerability testing. Therefore, in this thesis, we reverse

engineered and modified the OpenBTS code in order to create a GSM transmitter capable

of transmitting any GSM RR message.

The GSM transmitter we created in C++ code takes a link access procedure on

Dm channel (LAPDm) frame containing a RR message from data bits to modulated in-

phase and quadrature phase samples ready for transmission by a N210 universal software

radio peripheral (USRP). The C++ code we developed first block encodes the LAPDm

frame data bits, then passes the encoded bits through a ½-rate convolutional encoder,

interleaves the convolved bits and maps the bits to a normal burst. Once formed into a

normal burst, the code we developed diffentially encodes the burst, converts the burst bits

to () symbols, convolves the symbols using a Gaussian pulse, resamples the in-phase

and quadrature phase samples in order to transmit the burst at the N210 USRP sampling

rate and type converts the samples from C++ type float to type short in preparation for

sending the samples to the N210 USRP.

After confirming the GSM transmitter was capable of transmitting a GSM RR

message in accordance with the 3GPP GSM standards by collecting the sent RR

messages using Airprobe’s GSM-receiver software, we developed and demonstrated a

method for testing the forementioned GSM/UMTS interoperability vulnerability. The

method involved collecting a handover to UTRAN message using a Samsung Galaxy S2

phone coupled with xgoldmon code that triggers the GSM transmitter to send a GSM

handover failure message. Packet capture library (PCAP) functions were added to

faciliate the GSM transmitter code to listen to the computer’s loopback address and

trigger the transmission of a handover failure message.

Since our proposed testing method was unsuccessful at inserting the handover

failure message into the correct time slots on the base transceiver station, we explored the

code’s timing issues. We collected multiple runs of the GSM transmitter code triggered

 xix

by a handover to UTRAN message and found an inconsistency in the code runtime, which

confirmed the need for a timing function that synchronizes the receiver and transmitter

processes. Also, we found the maximum transmission time for samples from the GSM

transmitter to reach the N210 USRP, which must be taken into account to ensure the

samples are transmitted by the N210 USRP at the correct time.

LIST OF REFERENCES

[1] D. Burgess, H. Samra, R. Sevlian, A. Levy, and P. Thompson. (2013). OpenBTS

Public Release [Online software]. Available:
http://wush.net/svn/range/software/public

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

ACKNOWLEDGMENTS

Dr. Tummala and Dr. McEachen, thank you for your expertise and direction

throughout this thesis research process. Your guidance encouraged and challenged me to

test my intellectual limits.

Bob Broadston, Donna Miller, and Phil Hopfner, thank you for all the support and

extra work required in assisting me in acquiring testing equipment and troubleshooting

software.

Jesus Rodriquez, thank you for your assistance in setting up the cell phone

network on the Naval Postgraduate campus and ensuring its full functionality throughout

my research process.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The increased usage of cell phones for data transmission has led to the

deployment and installation of universal mobile telecommunications system (UMTS)

networks co-located with traditional global system for mobile communications (GSM)

networks. When the UMTS standards were developed, they fixed a number of security

flaws embedded in the GSM standards but maintained the interoperability between the

two standards. This interoperability of standards opened the flood gates for possible

malicious attacks. The testing of such vulnerabilities requires the creation of a

configurable device capable of both sending and receiving any GSM message.

Currently, cell phones are relatively cheap, making them a potentially perfect

choice for a GSM vulnerability testing device, but their manufacturers prevent the

consumer from altering device firmware, making them unconfigurable. The proprietary

nature of the mobile device industry has, therefore, necessitated the use of a software

defined radio (SDR) as our configurable GSM transmit and receive device.

A SDR provides us the ability to create any GSM message, package those

messages into frames, encode the frames into bursts, and modulate the bursts in

accordance with the 3rd Generation Partnership Project (3GPP) GSM standards because

all the processes are coded in software we construct. The only non-configurable portion

of the SDR is its hardware that transforms the modulated digital samples, created in

software, to a transmitted analog waveform at any desired carrier frequency.

A. THESIS OBJECTIVE

In this thesis, we propose and investigate a potential vulnerability caused by the

interoperability of the GSM and UMTS standards, which when exploited prevents mobile

devices from handing over from the GSM network to the UMTS network. This potential

vulnerability hinges on the weakness of the encryption algorithms employed by the GSM

standards and the ability to create a device capable of transmitting and receiving GSM

messages in accordance with the 3GPP GSM standards.

 2

The testing of the proposed vulnerability requires the creation of a device capable

of collecting and transmitting GSM radio resource management (RR) messages.

Specifically, we need the device to collect the RR message sent from the GSM network

to the mobile device instructing the mobile device to hand over to the UMTS network,

and we need the device to transmit the RR handover failure message during a pre-

determined time slot.

Since configurable devices capable of GSM RR message collection already exist,

the objective of this thesis is to develop an open source GSM transmitter using an SDR to

encode and transmit any RR message in accordance with the 3GPP GSM standards. In

addition to creating a GSM transmitter, we also propose an integration technique that

combines our GSM transmitter with a GSM receiver, resulting in a triggered GSM

transmitter capable of automatically sending a GSM message after reception of a pre-

determined GSM message from a base station controller (BSC).

B. RELATED WORK

GSM transmission and reception using an SDR is well established but poorly

documented. The OpenBTS project is an open source software package which, when

coupled with a SDR, provides GSM service to commercial cell phones [1]. The

OpenBTS project, however, prevents users from transmitting any desired message, thus

making it inadequate for vulnerability testing. The Airprobe [2] project, another open

source software project, uses GNU Radio [3] and an SDR to collect the base transceiver

station (BTS) downlink channel but, unfortunately, lacks the capability to transmit GSM

messages. In this thesis, we reverse engineer the OpenBTS code and re-package the code

to create a GSM transmitter capable of triggered transmission of any GSM RR message.

In addition to research involving the use of an SDR to transmit and receive GSM

messages, Southern [4] and Meyer [5] have examined the security impacts of

interoperating GSM and UMTS networks. Specifically, their works examined the

weakness of the GSM encryption algorithms discussed by Ekdahl [6] on GSM/UMTS

heterogeneous networks. In this thesis, we uncover a potential undocumented

 3

vulnerability caused by interoperating GSM and UMTS networks coupled with the weak

GSM encryption algorithms discussed in [6].

The 3GPP GSM standards [7]-[13] provide the technical specifications for

transforming the GSM message bits into a modulated burst. The C++ computer code

developed in this thesis for transforming the RR message bits into a modulated burst

specifically follows the 3GPP GSM standards.

C. ORGANIZATION

The aspects of the 3GPP standards that are pertinent to the development of the

GSM transmitter are outlined in Chapter II. The topics covered include known GSM

vulnerabilities, GSM to universal terrestrial radio access network (UTRAN) handover

procedures, GSM physical and logical channel structure, and the GSM burst transmission

processing from message creation to burst modulation.

The possible vulnerability of allowing handovers from the GSM network to the

UMTS network is explored in Chapter III, and a generic solution is developed for the

design of a device capable of testing the described vulnerability. Finally, a detailed

process diagram is presented containing all the functions and sub-functions needed to

create a GSM transmitter capable of RR message generation and transmission using the

Ettus N210 universal software radio peripheral (USRP).

The thorough desciption of how the GSM transmitter computer code we

developed transitions an RR message from a binary bit string into a GSM burst ready for

transmission by the N210 USRP is provided in Chapter IV. It begins with the

transformation of the data bits into GSM bursts, continues with the re-sampling and burst

scaling, and concludes with burst transmission using the N210 USRP.

The validation of the GSM transmitter’s capability to transmit an RR message is

demonstrated in Chapter V. Initially, the need for the GSM transmitter to mimic a GSM

BTS in order to confirm encoding and modulation techniques is discussed. Then testing

of the GSM handover failure RR message transmission is presented and results

 4

explained. Next, the GSM transmitter queuing process is described and tested. Finally,

timing issues caused by using an SDR as a GSM burst transmitter are analyzed.

Additional information about the xgoldmon software used in Chapter V is

contained in Appendix A, the C++ code developed for the GSM transmitter mimicking a

GSM BTS is listed in Appendix B, and the C++ code used for the queued transmission of

a handover failure message is displayed in Appendix C.

 5

II. GSM VULNERABILITIES AND FUNDAMENTALS

Heterogeneous networks composed of both GSM and UMTS networks continue

to increase rapidly as UMTS capable phones become the norm. Even though many of the

GSM vulnerabilities were fixed in the roll out of the UMTS networks, the backward

compatibility continues to allow malicious users to exploit unwitting cell phone users. A

brief overview of the current GSM vulnerabilities, the solutions incorporated in the

UMTS networks to fix the GSM security flaws, and a description of the GSM signal

messaging process from message generation through burst modulation are provided in the

following sections.

A. GSM VULNERABILTIES

Since the creation of GSM networks, researchers have been diligently working to

identify and correct any discovered vulnerabilities. Many of the current vulnerabilities

stem from the one-way authentication employed by a GSM phone and the weakness of

the encryption algorithms used for secure communication between GSM towers and

GSM phones.

1. Rogue Base Station

The vulnerability of one-way authentication between a GSM phone and the

servicing GSM network is often referred to as the rogue base station vulnerability. The

GSM standards only require the mobile device to authenticate itself to the GSM network

but not for the network to authenticate itself to the phone. Since the phone never

authenticates the servicing network, the phone is left vulnerable to malicious actors

creating fake base stations and luring unsuspecting users to attach to their network. Once

a user is attached, the malicious actor can capture the mobile device’s international

mobile subscriber identity (IMSI) and even force the mobile device not to use encryption

[5], [14].

 6

2. Weak A5/1 and A5/2 Encryption

When the GSM standards were first introduced, the encryption algorithms, A5/1

and A5/2, used for securing message signaling and protecting active call content were

kept secret from the public. This idea of security through obscurity backfired because in

1994 the A5/1 encryption algorithm was leaked to the public, and by 1999 both

algorithms had been reverse engineered by Briceno, Goldberg and Wagner [15]. Since

the discovery of the A5/1 and A5/2 encryption algorithm designs, myriad individuals

have created techniques for breaking the encryption to include an ability to crack the

algorithms in real time [4], [6].

3. Solution in UMTS Networks

Since the forementioned vulnerabilities exist in the GSM standards, when the

UMTS network standards were created, the developers changed the authentication

process and encryption algorithms. The UMTS standards require both the network and

phone to authenticate one another, which fixed the rogue base station vulnerability

prevalent in the GSM standards. Additionally, the UMTS standards changed the

encryption algorithm to use the block coder, KASUMI, and made the encrypting process

open source, which allowed the public to ensure the security of the algorithm [4].

B. HANDOVER TO UTRAN

Before we explore potential vulnerabilities associated with mixing GSM and

UMTS networks, we must first understand how they were designed to interoperate. The

handover to UTRAN procedure allows a mobile device to hand over from a GSM

network to a UMTS network. This process is accomplished through the sending and

receiving of RR messages between the GSM BTS and mobile device on the logical stand-

alone dedicated control channel (SDCCH) [8].

1. Handover to UTRAN Messaging

The successful execution of a handover from the GSM network to the UMTS

network involves a seven step process derived from [8], [16] and [17] and shown in

Figure 1. First the GSM network sends the Inter System to UTRAN handover command

 7

from the BSC through the BTS to the mobile device, which upon reception disconnects

from the GSM network and begins physical layer synchronization with the UMTS

network. Once the mobile device successfully connects to the UMTS network, it

transmits a Handover to UTRAN Complete message to the servicing radio network

controller (RNC) by way of the Node B, which communicates to the mobile switching

center (MSC) that the mobile device has successfully moved to the UMTS network.

Upon reception of the End Signal Request from the core network (CN), the MSC initiates

the clearing of resources previously used by the mobile device on the GSM network. The

average call interruption duration during a handover from GSM to UMTS is 200 ms [18].

Figure 1. Sequence of operations when a mobile device is conducting a successful
handover from GSM to UMTS (after [8], [16] and [17]).

2. Handover Failure Messaging

Should the handover to UTRAN process fail, the mobile device performs the five-

step process derived from [8] as shown in Figure 2. When the mobile device perceives it

cannot handover to the UMTS network, the mobile device transmits a handover failure

message in its original time slot on the SDCCH of the previously servicing GSM

network. Upon reception of the handover failure message, the MSC releases the UTRAN

channel(s) saved for the mobile device. The handover failure message, shown in Figure

 8

3, is a layer three RR message packaged into a type B link access procedure on Dm

channel (LAPDm) frame [7], [13]. The LAPDm type B frame contains a three-octet

header with fields containing the link protocol discriminator (LPD), the service access

point identifier (SAPI), the command/response (C/R), a transmitter-receive sequence

number N(R), a transmitter-send sequence number N(S), a more bit (M), and a length

indicator extension bit (EL). The structured format of the LAPDm type B frame and how

a layer three RR message is packaged within the frame is shown in Figure 4.

Figure 2. Sequence of operations when a mobile device fails to hand over from GSM to
UMTS (after [8]).

The values within the handover failure message are relatively constant. The skip

indicator is always set to hexadecimal value 0, and the protocol discriminator value,

which defines the layer three message type, is always set to hexadecimal value 6 for RR

messages. The message type field identifies the type of RR message. All possible RR

messages are listed in Table 9.1.1 of [7]. The hexadecimal value 40 indicates that the

message is a handover failure RR message. The final field, RR cause, allows the mobile

 9

device to inform the GSM network of the cause for the failed handover. A list of all

possible RR cause information elements is located in Table 10.5.2.31.1 of [7].

Figure 3. The structured format of a GSM RR handover failure message (after [7]).

Figure 4. The structured format of a GSM LAPDm type B frame used to send GSM RR
messages (after [13]).

C. GSM PHYSICAL AND LOGICAL CHANNELS

The GSM standard defines logical channels as either traffic channels (TCH) or

signaling channels transmitted in designated time slots on the physical channel. The

physical channel uses a combination of frequency and time-division multiplexing to

create time slots filled with one of the burst types shown in Figure 5. These time slots are

then modulated and transmitted over the air interface from the BTS to the mobile device

on the downlink channel or in the opposite direction for the uplink channel. The

 10

bandwidth allotted to either the uplink channel or downlink channel is 200 kHz. The

uplink and downlink channel center frequencies are separated by 45 MHz, and a time slot

on either channel has a period of 576.9 µs. Since the GSM sample rate is 270.833 kHz,

the number of bits per time slot is 156.25, and the bit period is 3.69 µs. Eight time slots,

labeled zero through seven, are combined to form a time-division multiple access

(TDMA) frame [19].

Figure 5. A graphical depiction of all five GSM TDMA time slot burst formats
(after [19]).

The list of logical channels used by the GSM network is shown in Table 1. The

list of a few combinations of logical channels mapped to time slots on the physical

channel and ultimately transmitted on the downlink channel is shown in Table 2. In this

thesis, we focus on the physical time slot zero downlink combination and the SDCCH

time slot combination.

 11

Table 1. List of logical channels used by a GSM network (from [19]).

 Group Channel Name Direction

Traffic
Channel
(TCH)

TCH
Full-rate TCH (TCH/F)

Half-rate TCH (TCH/H)

Signaling
Channels

Broadcast
Channel
(BCH)

Broadcast Control Channel (BCCH)

Frequency Correction Channel (FCCH)

Synchronization Channel (SCH)

Common
Control
Channel
(CCCH)

Random Access Channel (RACH)

Access Grant Channel (AGCH)

Paging Channel (PCH)

Notification Channel (NCH)

Dedicated
Control
Channel
(DCCH)

Stand-alone Dedicated Control Channel
(SDCCH)

Slow Associated Control Channel
(SACCH)

Fast Associated Control Channel
(FACCH)

Table 2. Common downlink channel combinations used by a GSM network
(from [19]).

Physical Time Slots on BTS Carrier
Frequency

Downlink Channels

1–7 1 TCH/F + SACH
1–7 2 TCH/H + SACCH
1–7 8 SDCCH + SACCH

0 1 FCCH + 1 SCH + 1 BCCH + 1 AGCH +
1 PCH

Finally, the mapping of logical channels to time slots within TDMA frames on the

downlink channel is shown in Figure 6. Additionally, the order of transmitted time slots

on the downlink channel is also included in Figure 6.

 12

Figure 6. A diagram of the mapping process from logical GSM channels to physical
GSM channels (after [20]).

1. Broadcast Channel (BCH) and Common Control Channel (CCCH)

The BCH is used by the GSM network to communicate the network

characteristics to the mobile device. It also aids in the time and frequency

synchronization of the mobile device with the GSM network. The BCH is transmitted

during time slot zero of the BTS and has a frame structure length of 51 TDMA frames as

shown in Figure 7. Each TDMA frame time slot contains one of the five different bursts

previously described and displayed in Figure 5. The first burst transmitted in frame zero

of the BCH is the frequency correction burst, which is one time slot long and contains

142 consecutive zero bits. When the frequency correction burst is modulated, it resembles

a sine wave 67.7 kHz above the center frequency, which allows the mobile device to tune

in frequency with the BTS [20].

The next transmitted burst is the synchronization burst, which is also one time slot

in length but contains the BTS identity code (BSIC), the reduced TDMA frame number

(RFN) and a 64 bit long training sequence instead of the normal 26 bit long training

sequence used in the normal burst [11]. The synchronization burst allows the mobile

device to synchronize in time with the BTS because of the extra-long training sequence

and the transmission of the current frame number [20].

 13

The broadcast control channel (BCCH) uses the normal burst structure for

transmitting the RR system information type messages. These system information type

messages sent on the BCCH help to inform the mobile devices of the GSM network’s

settings. The other type of burst shown in Figure 7 titled CCCH are made up of the

paging channel (PCH) and the access grant channel (AGCH) messages sent from the

network to the mobile device using the normal burst structure. Finally, the idle time slot

is filled with a predefined 142 bit long sequence called a dummy burst. Since the BTS

must transmit during every time slot, it transmits dummy bursts anytime it does not have

any other burst to send [20].

2. Stand-Alone Dedicated Control Channel (SDCCH)

The SDCCH is the logical channel responsible for RR messaging between the

network and mobile device. The SDCCH is usually transmitted in time slot one of the

uplink and downlink GSM TDMA physical channel. The frame structure used on the

SDCCH contains 102 TDMA frames as shown in Figure 8. The channel operates by

assigning a mobile device to a numbered time slot from zero to seven. During the mobile

device’s time slot on the downlink channel, the mobile device listens for any messages

sent to it by the BTS. The uplink channel operates identically to the downlink channel

except the mobile device transmits its RR messages, and the TDMA frames are shifted in

time by 15 time slots as shown in Figure 9 [20]. The time difference between the last bit

of the time slot burst being sent to the mobile device on the downlink SDCCH and the

first bit transmitted by the mobile device on the uplink channel is 55.0323 ms.

D. GSM MESSAGING

GSM messaging allows the network and mobile device to discover each other and

setup and teardown phone calls, along with myriad other functions resulting in the mobile

device successfully communicating on the GSM network.

 14

Figure 7. Mapping scheme for the 51 frame long BCH and CCCH onto physical time slot zero (after [20]).

Figure 8. A diagram showing the mapping scheme for the 102 frame long SDCCH/8 onto physical time slot one (after [20]).

 15

Figure 9. A depiction of the downlink and uplink time slot spacing between the SDCCH/8 channels (after [20]).

 16

1. GSM Layer Three Messaging

The GSM layer three signaling protocol consists of three sub-layers: radio

resource management (RR), mobility management (MM), and connection management

(CM). The RR messaging controls the handovers initiated by the GSM network through

the sending of messages over the SDCCH to the mobile device. These are the critical

messages for this thesis because we need to construct the RR handover failure message,

as shown in Figure 3, in order to test a possible vulnerability present in heterogeneous

GSM/UMTS networks. The layer three RR messages are packaged within a layer two

frame, called a LAPDm frame, prior to encoding and modulation [19].

2. GSM Layer Two Messaging

The GSM layer two messaging protocol is achieved through the use of the

LAPDm protocol, which provides successful transfer of signaling information between

the GSM network and the mobile device over the air interface. When the RR message is

packaged into a layer two frame, as shown in Figure 4, a three-octet layer two header is

used to communicate the address, type, and length of the frame. This information helps to

reassemble layer three messages and pass them to the correct service access point (SAP)

for further processing. Since the LAPDm frame is a constant 184 bits in length, fill bits

are used to ensure that the LAPDm frame is full prior to burst forming. The fill bits used

for empty octets have hexadecimal value 2B [13], [19].

E. GSM BURST FORMING

After the creation, formatting, and packaging of the GSM data message into a

LAPDm frame, it needs to be formed into a GSM TDMA time slot burst. The burst

forming process includes block coding, convolution encoding, interleaving, and burst

mapping.

1. Block Coder

The 3GPP GSM standard [12] uses a block coder called a fire coder to detect bit

errors in the GSM TDMA time slot bursts transmitted on the SDCCH and BCCH. The

 17

probability of a GSM receiver not detecting an error when the burst is coded using the

fire coder is 2–40 [19]. The fire coder uses the generator polynomial

     23 17 31 1g D DD D    (1)

to compute the 40 bit parity code where D represents the coefficients in g(D) equal to a

binary one while all other coefficients of g(D) are equal to zero when g(D) is converted to

a binary number. The 40 parity bits are computed through the division of the data bits,

with 40 zero bits appended, by g(D). The process of using the fire coder for a message

sent on the SDDCH is illustrated in Figure 10. The order of the output bit vector seen in

Figure 10 is

           Output Bit Vector d 0 , d 1 , , d 183 , p 0 , p 1 , , p 39 , 0, 0, 0, 0     (2)

where d(.) represents the 184 data bits, p(.) represents each of the 40 parity bits, and the

four trailing zeros are the tail bits. These 228 bits are now ready for encoding.

Figure 10. The block diagram for the GSM fire coder process used for RR messages
(after [12]).

The synchronization burst uses generator polynomial

 10 8 6 5 4 2
1() 1g D D D D D D D       (3)

 18

for its block coder instead of ()g D . Otherwise, the process for computing the

synchronization burst parity bits resembles the procedure shown in Figure 10 except only

25 input data bits enter the block coder and only 10 parity code bits are generated.

2. ½-Rate Convolution Encoder

The convolutional encoder defined in the 3GPP GSM standard [12] corrects bit

errors by adding redundancy to the transmitted bits. The specific convolutional encoder

used for the SDCCH is a ½-rate convolutional encoder, which creates two output bits for

every input bit using generator polynomials

   3 4
0 1 G D DD    (4)

 3 4
1() 1G D D D D    (5)

where D represents those coefficients equal to a binary one and all other coefficients are

zero. A graphical depiction of the ½-rate convolution coder, using Equations (4) and (5)

as the generator polynomials, is shown in Figure 11. The encoding process starts with all

five shift registers initialized to zero. Then each individual input bit shifts into the

encoder, and the modulo-2 addition is computed on the values in each tap, which are

defined by the generator polynomials from Equations (4) and (5). The outputs of the

modulo-2 additions are interleaved with the output from Equation (4) being first. This

process transforms the 228 input bit vector into a 456 output bit vector ready for

interleaving.

Figure 11. The graphic depiction of the shift register model for the GSM ½-rate
convolutional encoder (after [12]).

 19

3. Interleaver

The interleaving process used in the 3GPP GSM standard [12] protects messages

from burst errors caused by long and deep fading periods through the removal of any

statistical dependence on sequential bits [19]. The procedure of interleaving a SDCCH or

BCCH burst is different from a traffic channel burst because the coded bits c(n,k),

coming from the convolution encoder, are spread over four interleaving blocks instead of

eight. The mapping of the coded bits to interleaved blocks uses n, the data block number,

and k, the bit location within the data block, to compute i(B,j), the interleave location.

The values for B and j are calculated using

 = + 4 + (mod 4)0B B n k (6)

 = (2((49) mod 57) + ((mod 8) div 4)j k k (7)

where B is the interleave block number, j is the location within the interleave block, and

B0 is the starting interleave block number. Once i(B,j) is calculated, the value of c(n,k) is

stored in that location within the interleaved block. A diagram of this process is shown in

Figure 12.

4. Burst Mapping

The burst mapping process described in the 3GPP GSM standard [12] takes the

interleaved blocks and distributes the values into the correct locations within a GSM

TDMA time slot burst according to the following rules

         and for e B, j = i B, j e B,59+ j = i B,57+ j j =0,1,…,56 (8)

where e(B,j) is the calculated location within the 156.25-bit long TDMA time slot burst.

The mapping of GSM TDMA time slot Burst 0 is shown in Figure 12. The SDCCH uses

the normal burst for message passing and the dummy burst to fill empty time slots. The

BCH uses the frequency correction burst, synchronization burst, normal burst, and

dummy burst to commutate network information to mobile devices.

 20

Figure 12. A diagram of the interleaving and burst mapping process used on messages
transmitted on the SDCCH or BCCH (after [12]).

F. GSM MODULATION

After the creation of each GSM TDMA time slot burst, they are converted to

symbols through differential encoding and modulated using the Gaussian minimum-shift

keying (GMSK) scheme defined in the 3GPP GSM standard [10].

1. Differential Encoder

The differential encoder in the 3GPP GSM standard [10] forces the current

transmitted symbol to be dependent both on itself and the previous symbol and converts

the binary output of the differential encoder to a non-return to zero (NRZ) sequence (1

). The differential encoder accomplishes both functions by first encoding as

  1
ˆ (0,1)i i i id d d d   (9)

where  denotes modulo-2 addition and id represents the current input data bit. After

the differential encoding, the encoded data bits are converted as

  ˆ1 2 (1, 1)i i ia d a     (10)

 21

resulting in the NRZ sequence (1).

2. GMSK Modulation

The symbols from the differential encoder are sent through a frequency filter,

which generates the phase ()t of the modulated signal. This phase is computed as

 () ()
bt iT

i
i

t a g u du 




  (11)

where g(u) is the impulse response defined as the convolution of h(t), the impulse

response of a low-pass Gaussian filter, with a rectangular step function  / brect t T . The

variable  is the modulation index, which is 0.5 for a GSM signal for the purpose of

maintaining a maximum phase shift of / 2 between bit periods Tb. The rectangular step

function used to compute g(u) in Equation (11) is

1
 for

2

0 for
2

b

b

b b

T
t

Tt
rect

T T
t

     
   

 (12)

and the Gaussian filter h(t) has impulse response

 

2

2 2
exp

2 ln(2)
() , where = , =0.3

22

b
b

bb

t

T
h t BT

BTT




 

 
 
 


 (13)

where B represents the 3-dB bandwidth of the filter h(t). Finally, the computed phase

()t from Equation (11) is input to the phase modulator as follows

  0 0

2
() cos 2 () c

b

E
x t f t t

T
     (14)

where f0 is the center frequency, Ec is the energy per modulating bit, and 0 is a random

phase component, which remains constant for the duration of an entire GSM TDMA time

 22

slot burst. The output of Equation (14) represents the modulated GSM burst sample ready

for transmission at the GSM sample rate of 270.833 kHz.

A brief overview of the current vulnerabilities plaguing GSM networks along

with implemented solutions used on UMTS networks to correct the vulnerabilities were

explained in this chapter. Additionally, the GSM signal messaging for mobile device

handover from GSM to UMTS and handover failure were presented. Finally, GSM

message creation from the layer three messages to burst transmission on a physical

channel was discussed for an unencrypted GSM RR message.

 23

III. GSM TRANSMITTER DESIGN FOR VULNERABILITY
TESTING

As countries convert their homogeneous GSM networks to heterogeneous

GSM/UMTS networks, vulnerabilities are created in the mixing of the technologies

which must be addressed by the 3GPP standards. As discussed in Chapter II, many of the

GSM vulnerabilities were fixed in the 3GPP UMTS standards; however, the mobile

device must successfully access the UMTS network to take advantage of the

improvements. Therefore, a possible vulnerability not addressed in either the GSM or

UMTS standards is the potential for a malicious entity to prevent a mobile device from

handing over from a GSM to UMTS network because the GSM network maintains the

SDCCH uplink time slots. These time slots are maintained for use in the event a handover

failure occurs, yet their existence allows for potential exploitation due to the weakness in

the encryption algorithms used on the SDCCH to validate the authenticity of sent traffic.

In this thesis, we assume no encryption is used on the network. This is a valid assumption

because, as discussed in Chapter II, a primary vulnerability of GSM is the weakness the

of A5/2 and A5/1 encryption schemes.

A. HANDOVER TO UTRAN VULNERABILITY

The success and failure handover processes shown in Figure 1 and Figure 2

provide the basis for the hypothesis that vulnerability exists with the current handover to

UTRAN procedures described in Chapter II. During the handover to UTRAN process, the

GSM network continues to keep the mobile station’s four time slots vacant on the

SDCCH uplink channel in the event a handover failure occurs and the mobile station

must return to the original GSM network. The potential vulnerability, shown in Figure

13, results from the GSM network’s continuous collection and processing of any

appropriately formatted messages sent during the time slots of the mobile device coupled

with the network’s sole validation mechanism of sender authenticity being a known

breakable encryption algorithm.

 24

As displayed in Figure 13, upon receipt of the layer three RR message initiating a

handover to a designated UMTS network, the mobile device conducts a hard handover

and immediately attempts to establish communications with the new network.

Concurrently, during the attempted handover, a malicious device could transmit a

properly formatted and encrypted handover failure message in the time slots on the

SDCCH uplink channel reserved for the mobile device. If the BSC assumes the handover

failure message was sent from the mobile device, then it should process and transport the

message to the MSC. If the handover failure message reaches the MSC prior to the end

signal request message sent from the UMTS network, which the mobile device initiated

through the sending of a handover complete message to the RNC, then the MSC should

continue to send the mobile device’s traffic to the GSM network instead of the UMTS

network. The reserved UTRAN channel(s) should be released. Since the MSC released

the UTRAN channel(s), the mobile device should cease receiving traffic on the UMTS

network and conclude a handover failure occurred thereby returning to the original GSM

network.

As was explained in Chapter II, the elapsed time between the handover to UTRAN

message being sent by the BTS to the mobile device and the mobile device establishing

communication with the UTRAN Node B is on average 200 ms [18], while the time

frame between the handover to UTRAN message on the downlink SDDCH and the next

available time slot for the mobile device to transmit a handover failure message on the

SDDCH uplink is approximately 54 ms. Therefore, the handover failure message

receives an approximate 146 ms head start over the handover complete message in

reaching the MSC.

B. SYSTEM REQUIREMENTS FOR VULNERABILITY TESTING

The testing of the handover to UTRAN vulnerability requires the creation of three

processes. The first process collects the downlink of the BTS and identifies when a

mobile device receives a handover to UTRAN message. The second process constructs,

encodes, modulates, and transmits a GSM burst signal. Finally, the third process controls

 25

the timing within the first two processes to ensure the transmitted bursts are sent in the

correct time slots.

Figure 13. Diagram of the exploitation of a potential vulnerability initiated during the
handover to UTRAN process.

Currently, open source code exists [2] for controlling the USRP for GSM BTS

reception, but this code provides no capability for message generation and transmission.

OpenBTS [1] provides the open source code for message transmission and reception but

only in the capacity as a GSM BTS. Private companies like ASCOM and Epiq Solutions

have proprietary products on the market which collect GSM messaging but prevent the

user from modifying the code or transmitting a GSM RR message. Since multiple GSM

receivers already exist, in this thesis we focused on the creation of an open source GSM

transmitter capable of transmitting a GSM RR message without encryption.

C. GSM TRANSMITTER

The GSM transmitter we developed contains three functions: Burst Creator, Burst

Modulator, and Burst Transmitter. A schematic diagram of the GSM transmitter is

 26

displayed in Figure 14. The Burst Creator function takes the layer three and layer two

message bits and converts them from binary bits, with the most significant bit (MSB)

first, into four GSM TDMA time slot bursts. The Burst Modulator takes the raw bits from

the GSM TDMA time slot bursts and converts them into in-phase and quadrature phase

samples of C++ type short at the sample rate of 400 kHz. Finally, the Burst Transmitter

converts the in-phase and quadrature phase samples into an analog signal and transmits

the signal at the desired carrier frequency using a N210 USRP. Many of the functions of

the GSM transmitter code were borrowed from the transmission process of the OpenBTS

project code [1]. Currently, no documentation exists on how the OpenBTS code works;

therefore, we reverse engineered the code to identify the correct functions needed to

transmit any desired RR message at any specified time.

Figure 14. Schematic diagram detailing the process flow within the GSM transmitter.

 27

In this chapter, a potential vulnerability stemming from the interoperability of

GSM and UMTS networks coupled with weak GSM encryption on the SDCCH was

presented. This potential vulnerability denies mobile devices from successfully

completing a handover from a GSM to a UMTS network. Without the ability to hand

over to the UMTS network, a mobile device must continue to communicate on the GSM

network leaving it vulnerable to the security issues described in Chapter II. The proposed

vulnerability warrants testing, which requires the creation of a device capable of

receiving a handover to UTRAN message and transmitting a handover failure message.

The system requirements for such a device were proposed in this chapter along with the

schematic diagram of an open source GSM transmitter.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

IV. GSM TRANSMITTER

As explained in Chapter III, the GSM transmitter we designed uses a

conglomeration of C++ functions from the OpenBTS project to transmit any user defined

RR message [1]. The main source code of our GSM transmitter can be used to transmit a

GSM RR message on any SDR, but our code is optimized to run on the N210 USRP. The

GSM transmitter’s main functions, sub-functions, and signal processing flow are

described in this chapter.

A. BURST CREATOR

The Burst Creator block shown in Figure 14 uses five sub-functions to transform

a 184 bit LAPDm frame holding a RR message in binary MSB first format to four GSM

TDMA time slot bursts ready for modulation. The Burst Creator sub-functions and their

procedural flow are depicted in Figure 15. Throughout the burst creation process, a vector

type called BitVector is used to store arrays of bits as character strings. This vector

type is defined in the OpenBTS files BitVector.h and BitVector.cpp [1].

Figure 15. Schematic diagram showing the Burst Creator sub-functions.

1. Bit Ordering

When a RR message is packaged into a LAPDm frame, the bit ordering has the

MSB first. Since the MSB first format cannot be used by follow-on functions, the

LSB8MSB function is used in the Bit Ordering sub-function displayed in Figure 15 to fix

the ordering of bits by reversing every octet’s bit order. It is shown in Figure 16 how the

LSB8MSB function converts BitVector mD, from MSB first to least significant bit

(LSB) first.

 30

Figure 16. Example of LSB8MSB() function converting the bit ordering from MSB first
to LSB first.

2. Fire Coder

The computation of a 40 bit parity code on a properly ordered LAPDm frame

containing a RR message is accomplished next in the sub-function block Fire Coder

shown in Figure 15. This sub-function block computes 40 parity bits identical to the

block coder described in Chapter II by executing the following computer code:

 uint64_t wCoefficients = 0x10004820009ULL;
 unsigned wParitySize = 40;
 unsigned wCodewordSize = 224;
 Parity mBlockCoder(wCoefficients, wParitySize,
 wCodewordSize);
 BitVector mP(40);
 mBlockCoder.writeParityWord(mD, mP);
 BitVector mU(mD, mP);
 BitVector mUT(mU, mT);

where the first line of code defines the coefficients of the generator polynomial. A

graphic depiction is shown in Figure 17 of how the hexadecimal numbers stored in

variable wCoefficients are equivalent to g(D), the generator polynomial from

Equation (1). The second and third computer code lines contained in the Fire Coder sub-

function define the parity size and overall code word length that the block coder

calculates. The block coder is instantiated in the Fire Coder sub-function block in line

four using the previously defined coefficients and sizes in lines one through three. Line

five of the Fire Coder sub-function code creates BitVector mP, which is used by the

function writeParityWord in line six to store the 40 calculated parity bits. The

function writeParityWord computes the 40 parity bits by dividing mD, the 184 data

bits from sub-function Bit Ordering by Equation (1), the stored value in

wCoefficients. The parity bit calculation is shown in Figure 18.

 31

Figure 17. Graphic depiction of how the hexadecimal numbers stored in variable
wCoefficients are equivalent to g(D), the generator polynomial from

Equation (1).

Figure 18. Graphical depiction of the parity bit calculator used in the GSM transmitter
Fire Coder sub-function.

After the computation of the parity bits, the data bits, parity bits and four tail bits

are concatenated together with the execution of line seven and eight of the code within

the Fire Coder sub-function block. The end result of the Fire Coder sub-function block is

a BitVector mUT that holds a 228 bit string with the bit positions representing the

same bits as the Output Bit Vector from Equation (3).

The code computing the ten parity bits for the synchronization burst is similar to

the code contained in the Fire Coder sub-function block except the wCoefficients

variable is set to the hexadecimal representation of the generated polynomial from

Equation (2). Also mD, the input data bit string shown in Figure 18, contains only 25 bits,

and the parity BitVector mP is only 10 bits in length.

 32

3. Convolution Encoder

After block encoding, the 228 bits stored in mUT are convolved using a ½-rate

convolution encoder identical to the one described in Chapter II and shown in Figure 11,

which results in 456 encoded bits ready for interleaving and burst mapping. The ½-rate

convolution encoder implemented in the sub-function block Convolution Encoder seen in

Figure 15 contains the following computer code:

 const ViterbiR2O4 mVCoder;
 BitVector mC(2*mUT.size());
 mUT.encode(mVCoder, mC);

where the ½-rate convolution encoder mVCoder, created in line one, is represented in

Figure 19 as shift registers. The shift register taps displayed in Figure 19 are generated

using Equations (4) and (5) described in Chapter II. After initialization of mVCoder,

encoding of the bits stored in mUT begins with the execution of function encode in line

three of the Convolution Encoder sub-function block. The encode function passes the

input bits, mUT, through the ½-rate convolution encoder, mVCoder, and stores the newly

created bits in variable mC. The 465 encoded bits stored in mC are now ready for the

Interleaver sub-function.

Figure 19. The shift registers representation of the ½-rate convolutional encoder created
by the Convolution Encoder sub-function.

4. Interleaver

The process executed within the sub-function block titled Interleaver seen in

Figure 15 mimics the interleaving process described in Chapter II. The Interleaver sub-

 33

function block receives the bits stored in mC, the variable holding the 456 bits outputted

by the code in Convolution Encoder sub-function block, and re-arranges the bits into four

bursts of 114 bits long using the following computer code:

for (int k=0; k<456; k++) {
 int B = k%4;
 int j = 2*((49*k) % 57) + ((k%8)/4);
 mI[B][j] = mC[k];
}

where mI is the array storing the four newly created interleaved bursts. A graphical

depiction of how the computer code within the Interleaver sub-function block takes the

encoded bits and places them into mI is shown in Figure 20.

Figure 20. The Interleaver sub-function processing diagram showing the interleaving of
bit number 449.

5. Burst Mapping

The Burst Mapping sub-function displayed in Figure 15 takes the four bursts

created by the Interleaver sub-function and produces four GSM TDMA time slot bursts

through the execution of the following computer code:

 34

 Tail_Bits.copyToSegment(mBurst0,0);
 mI[0].segment(0,57).copyToSegment(mBurst0,3);
 mI[0].segment(57,57).copyToSegment(mBurst0,88);
 Training_Seq.copyToSegment(mBurst0,61);
 Stealing_Bit.copyToSegment(mBurst0,60);
 Tail_Bits.copyToSegment(mBurst0,145);

on each interleaved burst separately. The result of the Burst Mapping sub-function code

is the creation of four unencrypted GSM TDMA time slot bursts with the structure of

mBurst0 shown in Figure 21 and identical to the normal burst structure shown in

Figure 5.

Figure 21. Procedure of converting interleaved burst mI[0] to GSM TDMA time slot
Burst 0.

B. BURST MODULATOR

The burst modulation process consists of four stages that transform the raw bits of

a GSM TDMA time slot burst produced by the Burst Creator function and converts the

bursts into in-phase and quadrature phase symbols ready for transmission to the USRP

over an Ethernet cable. The sub-functions contained within the Burst Modulator are

shown in Figure 22.

Figure 22. Schematic diagram showing the Burst Modulator sub-functions.

 35

1. Modulator

The first sub-function within the Burst Modulator function schematic diagram

shown in Figure 22 is called Modulator, which converts the one and zero bits coming

from the Burst Creator function into a modulated burst ready for transmission at the GSM

sample rate of 270.833 kHz. The Modulator sub-function accomplishes the modulation

process using a single line of computer code:

 signalVector* modBurst = modulateBurst(TDMA_burst[0],
 *gsmPulse, 8 + (i % 4 == 0), samplesPerSymbol)

where the modulateBurst function initiates the execution of the three tasks shown in

Figure 22: Non-Return to Zero (NRZ) Converter, Burst Rotator, and Burst Shaper . The

GSM TDMA time slot burst crafted by the Burst Creator function is first converted from

bit values zero and one to symbols (1) in the NRZ Converter task. Next, the symbols

are transformed to in-phase and quadrature phase representations of the original symbols

while simultaneously being differentially encoded in the Rotate Burst task. Since the

rotation procedure conducted in the Rotate Burst task depends on the previous symbol as

shown in Table 3, the differential encoding process discussed in Chapter II is properly

accomplished. A graphical depiction of the effects of processing a GSM TDMA time slot

burst through the NRZ Converter and Burst Rotator tasks is shown in Figure 23 for a

synchronization burst.

Table 3. Rotational direction of a GSM TDMA time slot burst symbol derived from
the previous and current symbols.

Previous Symbol Current Symbol Rotation By π/2

1 1 Counter-Clockwise Rotation

1 +1 Clockwise Rotation

+1 +1 Counter-Clockwise Rotation

+1 1 Clockwise Rotation

 36

Figure 23. Graphical depiction of a synchronization burst converted to a NRZ signal
using NRZ Converter task and then rotated using the Burst Rotator task.

After the Burst Rotator task, the in-phase and quadrature phase components are

convolved with a Gaussian pulse during the Burst Shaper task. The Gaussian pulse is

created through execution of computer code:

 signalVector *gsmPulse =
 generateGSMPulse(symbol_length,
 mSamplesPerSymbol);

where the Gaussian pulse, created by the function generateGSMPulse with variable

symbol_length and mSamplesPerSymbol equaling two and one, respectively, is

shown in Figure 24. The magnitude values of W and Z, the pulses contained within the

Gaussian pulse plot shown in Figure 24, are 0.182762 and 0.966021, respectively. A

graphical depiction of the effects of the convolution process on a rotated synchronization

burst with the Gaussian pulse is also depicted in Figure 24. At the end of the Burst Shaper

sub-function process, a signal vector is formed representing the in-phase and quadrature

phase components of the GSM TDMA time slot ready for amplitude scaling.

 37

Figure 24. Graphical representation of the effects of convolving the in-phase and
quadrature phase samples from the Burst Rotator task with a Gaussian pulse.

2. Burst Scalar

The next stage of the Burst Modulator function, Burst Scalar, increases the

amplitude of the modulated GSM TDMA time slot burst through the multiplication of the

signal by 9600, the default value used by OpenBTS [1]. This scaling factor allows the

software to dynamically change the amplitude of the signal without having to change the

gain factor configured on the USRP. The ability to dynamically change the signal

amplitude allows the transmitter to match the power required to transmit the GSM

TDMA time slot burst from the USRP to the BTS. The code contained within the Burst

Scalar task block is:

 scaleVector(*modBurst,fullScaleInputValue);

where the variable fullScaleInputValue equals 9600.

 38

3. Table Filler

The code contained within the Table Filler sub-function of the Burst Modulator

function places the scaled GSM TDMA time slot bursts into the correct time slot of a

TDMA frame as shown in Figure 25 for a scaled synchronization burst. The array created

in the Table Filler sub-function represents the mapping of logical GSM channels to

physical GSM channels as described in Chapter II and shown in Figure 6. If the GSM RR

message contains four bursts, then the table filler array only requires four TDMA frames;

however, if the GSM transmitter is attempting to mimic a BTS, then 102 frames are

required. As described in Chapter II and shown in Figure 8, the SDCCH channel burst

mapping is based on two multi-frame cycles requiring 102 TDMA frames. As a result,

102 frames are needed in the table filler array. Despite the number of TDMA frames in

the table filler array, it always contains eight time slots to account for the eight time slots

per TDMA frame. Also, any time slot not containing a specific burst is filled with the

dummy burst shown in Figure 5. The GSM TDMA time slot bursts in the table filler

array are ready for transmission at the GSM symbol rate.

Figure 25. Graphical illustration of the process of GSM TDMA time slot table filling.

 39

4. Re-sampler

The Re-sampler sub-function process within the Burst Modulator function

schematic diagram shown in Figure 22 corrects the GSM symbol rate in preparation for

signal transmission using the N210 USRP. The non-configurable 100 MHz clock

employed for timing by the N210 USRP makes it impossible for that model of USRP to

transmit a GSM TDMA time slot burst at the sample rate of 270.833 kHz. In addition to

the USRP clocking issue, a GSM TDMA time slot burst length is not 156 bits but rather

156.25 bits. Therefore, our code must account for the extra symbol every four GSM

TDMA time slot bursts. The Re-sampler sub-function corrects both issues mentioned

with the use of three tasks: Concatenate Burst, Filter Burst, and Type Conversion. The

extra 0.25 symbols per burst is fixed by the Concatenate Burst task, which joins four

bursts together, three bursts with 156 symbols and one burst with 157 symbols. The two

different burst lengths are created during the Modulate sub-function block by providing

the modulateBurst function with the needed number of guard bits to create the

desired burst length. Next, a polyphase re-sampler is used during the Filter Burst task to

change the sample rate from 270.833 kHz to 400 kHz. The computer code conducting the

filtering process is defined in the OpenBTS signal processing library, which is initialized

with the computer code:

 sigProcLibSetup(samplesPerSymbol);

where the variable samplesPerSymbol equals one [1].

The combination of the Concatenate Burst task and Filter Burst task results in a

new burst vector, which when transmitted at 400 kHz mimics the characteristics of the

GSM TDMA time slot bursts, the output from the Table Filler sub-function, and

transmitted at 270.833 kHz. A graphical representation of the Concatenate Burst task

followed by the Filter Burst task is shown in Figure 26.

 40

Figure 26. Graphical portrayal of the GSM TDMA time slot burst re-sampling process conducted by the Re-sampler sub-function
block where (a) shows the procedure contained within the Concatenate Burst task, (b) displays the poly-phase filter used

in the re-sampling, and (c) illustrates the effect of the Filter Burst task on the concatenated bursts.

 41

The last task within the Re-Sample sub-function is Type Conversion, which

changes the C++ type float to C++ type short. During all the Burst Modulator sub-

functions until the Type Conversion task, all in-phase and quadrature phase samples are

of C++ type float, which means each phase sample is consisting of four bytes. These in-

phase and quadrature phase samples are converted to C++ type short, which consists of

only two bytes for each phase sample. This decrease in byte size used to represent each

sample allows the packaging of twice as many samples into the IP packets sent to the

USRP over an Ethernet cable. The end result of the type conversion is faster arrival rates

of samples at the USRP.

C. BURST TRANSMITTER

The Burst Transmitter function takes the in-phase and quadrature phase samples

from the Re-sampler sub-function and packages them into packets for transmission over

the Ethernet cable connecting the computer to the USRP. Once the IP packets reach the

USRP, the onboard digital up converter (DUC) interpolates the digital signal and

transitions the signal from digital to analog through the use of a 16-bit digital-to-analog

converter (DAC). Finally, the DAC output is filtered to prevent aliasing, amplified, and

transmitted as an analog waveform [21], [22].

1. USRP Initialization Coding

Prior to any modulation or transmission of any GSM TDMA time slot burst, our

code must first initiate communication with the USRP. The code establishing initial

communication and setting the starting parameters for the USRP is:

 uhd::usrp::multi_usrp::sptr usrp;
 usrp = uhd::usrp::multi_usrp::make(args);
 uhd::stream_args_t stream_args;
 stream_args.cpu_format = “sc16”;
 uhd::tx_streamer::sptr tx_stream = usrp->
 get_tx_stream(stream_args);
 usrp->set_tx_rate(tx_sample_rate);
 double actual_tx_rate = usrp->get_tx_rate();
 usrp->set_tx_gain(tx_gain);
 uhd::tune_result_t tr = usrp->set_tx_freq(tx_freq);
 double actual_tx_freq = usrp->get_tx_freq();

 42

 usrp->set_tx_antenna(ant);

where the values used for variables tx_sample_rate, tx_gain, tx_freq, and

ant used for testing our GSM transmitter code are displayed in Table 4. The reason for

the two different frequencies for the tx_freq variable is because we test our GSM

transmitter code by sending messages on both an uplink and downlink channel. The

particular downlink and uplink frequencies shown in Table 4 equate to the absolute radio-

frequency channel number (ARFCN) 17 for the downlink and ARFCN 3 for the uplink.

The Naval Postgraduate School (NPS) test range BTS uses ARFCN 3; therefore, we

chose that same channel for the uplink so we could attempt to have our transmitter code

send RR messages to the NPS BTS. We chose ARFCN 17 for the uplink in order to

minimize interference with the NPS BTS. After the initialization of the USRP, samples

can be transmitted from the computer to the USRP over the Ethernet connection.

Table 4. USRP variables and their values used during testing of GSM transmitter.

GSM Transmitter USRP Variables GSM Transmitter USRP Variable Values

tx_sample_rate 400 kHz

tx_gain 15 dB

tx_freq Downlink Channel = 938.4 MHz

Uplink Channel = 890.6 MHz

Ant “TX/RX”

2. Transmission Coding

The code, within the Burst Transmitter sub-function called Ethernet, which

packages up the in-phase and quadrature phase samples and transmits the packets over

the Ethernet connection is:

 size_t num_tx_samps = tx_stream->
 send(smpls_out + 192 * 2, num_resmpl – 192,
 md, uhd::device::SEND_MODE_FULL_BUFF)

where the first variable input to the function send identifies the starting location within

the array of complex samples coming from the Burst Modulator function that is sent to

 43

the USRP. The second variable input to the function send identifies how many complex

samples from the starting location are sent to the USRP. The purpose for the offset in the

start of the first sample is because the Re-sampler sub-function uses the last 384 samples

from the previously re-sampled concatenated bursts as input into the next newly created

burst. Since those 384 samples were previously transmitted, an offset is introduced prior

to sending the samples to the USRP. The SEND_MODE_FULL_BUFF input to the

function send in the Ethernet sub-function code informs the computer to fragment the

received samples for transmission to the USRP into the maximum sized packets in order

to minimize delay between the computer and USRP [21].

Once the packaged complex signal reaches the USRP, it is de-interleaved by the

field-programmable gate array (FPGA) in order to separate the in-phase and quadrature

phase components. Next, the individual phase components are digitally up-converted

converted to an analog signal and filtered in parallel. Finally, the signals are mixed to the

desired carrier frequency. A schematic of the signal flow through the USRP is shown in

Figure 27 [23].

Figure 27. Block diagram showing the process flow of in-phase and quadrature phase
samples though the USRP transmitter (after [23]).

A concise overview of all of the processes, sub-processes and tasks contained in

our GSM transmitter shown in Figure 15 was described in this chapter. First, we

described the Burst Creator block computer code, which transforms the 184 bit LAPDm

frame into four GSM TDMA time slot bursts ready for modulation. Next, we explained

the Burst Modulator block computer code and showed the procedure of transforming a

 44

GSM TDMA time slot burst into a re-sampled burst ready for the USRP to transmit at the

sample rate of 400 kHz. Finally, we explored the process the complex samples undergo

after entering the USRP.

 45

V. TESTING AND EVALUATION

The testing of the proposed GSM transmitter first requires a GSM receiver

capable of collecting, demodulating, and decoding a GSM message. Currently, the GSM

receivers with the aforementioned capabilities require a GSM transmitting device to

modulate all the bursts a BTS sends over its BCH because the GSM receivers

synchronize in time and frequency with the frequency correction bursts and

synchronization bursts prior to decoding any other messages. We demonstrate that our

GSM transmitter code properly transmits a GSM burst by first configuring the GSM

transmitter code to broadcast all the messages sent over a BTS BCH. Next, we test the

handover failure message transmission to validate that the message is encoded and

transmitted correctly by the GSM transmitter we developed. Finally, we implement a

queuing process within our code to trigger the sending of a handover failure message

after a handover to UTRAN message is received.

The equipment used in this thesis to create and evaluate the proposed GSM

transmitter includes: (i) a fully functioning GSM/UMTS network, (ii) the ASCOM TEMS

GSM/UMTS message collection equipment, (iii) an Agilient Technologies Signal

Analyzer, (iv) a Samsung Galaxy S2 smart phone and (v) Ettus N210 and B100 USRPs.

The GSM/UMTS network consists of a GSM BTS and a UMTS Node B, which are both

located on the NPS campus but connected to a BSC, RNC and MSC positioned at the

Yuma Proving Ground. This NPS GSM/UMTS heterogeneous network provided us a

fully functioning and commercial-equivilent network capable of UTRAN handovers.

The ASCOM TEMS GSM/UMTS message collection equipment gives us the

ability to collect and decode any GSM/UMTS layer two/three message, which we used to

correctly format GSM messages for the GSM transmitter to send. We also utilized the

Agilient Technologies Signal Analyzer to test that the USRP was transmitting at the

correct center frequency. The Samsung Galaxy S2 smart phone was used to collect the

Inter System to UTRAN handover command from the NPS BTS and pass it to the GSM

transmitter. Finally, the N210 USRP was used as the transmitter for the GSM transmitter

 46

code we developed, and the B100 USRP was utilized as the GSM receiver that collected

the messages sent by the GSM transmitter.

A. BTS TRANSMISSION OF BCH

The first proof-of-concept test involves transmitting the BCH and CCCH

messages shown in Figure 7. The devices available for GSM collection initialize all

collection off the frequency correction bursts and synchronization bursts. If a known

GSM collection device properly demodulates and decodes the broadcast messages

coming from our GSM transmitter code, then we have demonstrated the capability of our

GSM transmitter to correctly encode and modulate a GSM burst.

1. Code Creation

The code for the GSM transmitter must contain the ability to transmit the

frequency correction bursts, synchronization bursts, dummy bursts, and normal bursts in

order to successfully transmit the BCH and CCCH messages. All the aforementioned

burst types are modulated, re-sampled and transmitted as discussed in Chapter IV, but

only the normal burst uses Equation (1) as its generator polynomial in the block coding

process described in Chapter IV. The frequency correction bursts and dummy bursts are

not block coded, and the synchronization burst uses 1()g D from Equation (2) as its

generated polynomial. The C++ computer code generated for this experiment is shown in

Appendix B.

2. Setup

Prior to transmitting any GSM burst, we identified and created the BCCH

message bursts and the PCH bursts. We also found a GSM receiver capable of

demodulating and displaying the received messages from our GSM transmitter. The GSM

receiver we chose is Airprobe’s GSM-receiver.

a. ASCOM TEMS GSM Message Collection

The creation of properly formatted System Information Type 1, 2,

2quarter, 3 and 4 RR messages to transmit on the BCCH was a requirement because

 47

Airprobe’s GSM-receiver needs properly formatted messages to correctly reassemble the

contents. We used ASCOM TEMS Investigation hardware and software to collect the

Type 1, 2, 2quarter, 3 and 4 RR messages sent over the NPS GSM lab BTS BCH. The

collection of a System Information Type 1 RR message sent over the NPS GSM BTS

BCH is shown in Figure 28. Additionally, we collected PCH messages from the NPS

GSM BTS using the ASCOM TEMS equipment to transmit in the CCCH time slots.

Figure 28. Example capture of ASCOM TEMS message collection equipment capturing
(a) the System Information Type 1 RR message, and (b) the message contents

of the System Information Type 1 RR message.

b. Airprobe’s GSM-receiver

Next, we needed to find a GSM receiver capable of collecting our GSM

transmitter and providing viewable results. To accomplish this task we chose Airprobe’s

GSM-receiver software coupled with Wireshark as the message viewing software and the

B100 USRP as the radio frequency collection device. We chose Airprobe’s GSM-

receiver because it displays all the received transmitted messages, while comparable

 48

TEMS equipment only displays the messages sent to the phone. The B100 USRP was

used instead of the N210 USRP because the B100 USRP has a configurable clock and

Airprobe’s GSM-receiver software requires a 52 MHz clock.

c. Experiment Setup

The experiment was setup with the GSM transmitter, Airprobe’s GSM-

receiver, and Wireshark software simultaneously running on the same computer;

however, the transmitter and receiver codes controlled different USRPs. Airprobe’s

GSM-receiver controlled the B100 USRP, which was approximately three feet away from

the GSM transmitter controlled N210 USRP. We executed Airprobe’s GSM-receiver

code first followed by the GSM-transmitter code. A photograph of the setup is shown in

Figure 29.

Figure 29. Photograph of the experimental setup used for testing the GSM transmitter
code sending mimicked GSM BTS messages to Airprobe’s GSM-receiver.

3. Results

Since Airprobe’s GSM-receiver was configured to collect and output all GSM

messages to Wireshark, all collected message data is displayed in Wireshark. The

 49

transmitted signals were collected using both GNU Radio and a signal analyzer. The

GNU Radio collected the signal enroute to the USRP, while the signal analyzer collected

the signal after USRP transmission.

a. GNU Radio Collection

To ensure the GSM transmitter is transmitting the correct signal, we

collected the signal at baseband prior to sending the samples to the USRP. It can be seen

in Figure 30 that the GSM transmitter is correctly modulating the signal because the

frequency plot shows a spike at 67.7 kHz above the center frequency, which represents

the transmission of the FCCH burst as discussed in Chapter II. Additionally, it can be

seen in Figure 31 that the FCCH burst is correctly modulated because a sine wave is seen

prior to the dummy burst.

Figure 30. Frequency spectrum plot collected by GNU Radio of the baseband signal
created by the GSM transmitter code mimicking the GSM BTS BCH prior to

USRP transmission. The blue signal shows the instantaneous frequency
spectrum while the green signal is the peak collected signal.

b. Signal Analyzer Collection

After validating that the GSM transmitter is properly modulating the re-

sampled burst, we verified that the USRP is properly up-converting the baseband signal

 50

to the desired carrier frequency. As seen in Figure 32, the collected over-the-air signal

from the N210 USRP has the center frequency of 938.4 MHz, which matches the

downlink tx_freq in Table 4.

Figure 31. A scope plot collected by GNU Radio of the in-phase samples, in blue (Ch 1),
and quadrature phase samples, in green (Ch 2), created by the GSM

transmitter to mimic a GSM BTS BCH.

Figure 32. Signal analyzer frequency spectrum collection showing the carrier center
frequency of the GSM transmitter’s modulated samples transmitter using the

N210 USRP.

 51

c. Wireshark Collection

Finally, we validated that the GSM transmitter is correctly encoding and

modulating the GSM bursts by collecting the transmitted signal using an B100 USRP,

demodulating the signal with Airprobe’s GSM-receiver software, and displaying the

results in Wireshark. We anticipated the first System Information Type 1 RR message

transmitted over the BCH to have frame number five, the first System Information Type

2 RR message transmitted over the BCH to have frame number 56, and the first System

Information Type 3 RR message transmitter over the BCH to have frame number 107

because that was their order of transmission. As explained in Chapter II and shown in

Figure 7, the BCH/CCCH frame structure repeats every 51 frames; therefore, all BCCH

messages are separated by 51 frames. If Airprobe’s GSM-receiver software collects and

decodes the System Information Type 1, Type 2, and Type 3 bursts with their frame

numbers and hexadecimal data values equaling the expected values, then we have

demonstrated that our GSM transmitter works. The successful reception of all three

System Information Type RR messages is shown in Figure 33, Figure 34, and Figure 35.

All three System Information Type RR messages were received with the correct frame

number and contents correctly collected and decoded.

Figure 33. A screen capture showing System Information Type 1 RR message with frame
number five collected using Airprobe’s GSM-receiver and displayed in

Wireshark.

 52

Figure 34. A screen capture showing System Information Type 2 RR message with frame
number 56 collected using Airprobe’s GSM-receiver and displayed in

Wireshark.

Figure 35. A screen capture showing a System Information Type 3 RR message with
frame number 107 collected using Airprobe’s GSM-receiver and displayed in

Wireshark.

 53

B. HANDOVER FAILURE MESSAGE TRANSMISSION

After demonstrating the accuracy of the GSM transmitter to transmit BCH

messages, we next tested the transmission of a handover failure message. Since

Airprobe’s GSM-receiver is written as a GSM BTS collector, we sent the handover

failure message over the BCH by replacing a BCCH message with the handover failure

message. Since the handover failure message is not a typical message sent over the BCH,

we expected Airprobe’s GSM-receiver to properly collect the message but not properly

classify it as a handover failure message. We used the experimental setup described for

mimicking the BTS BCH and transmitted the handover failure message displayed in

Figure 3 and encapsulated in the type B LAPDm frame shown in Figure 4. The handover

failure message was successfully transmitted because the hexadecimal values displayed

in the Wireshark screen capture, shown in Figure 36, are identical to the hexadecimal

values transmitted by our GSM transmitter code.

Figure 36. A screen shot of a Wireshark capture showing Airprobe’s GSM-receiver
successful collection of a handover failure message where (a) is the captured
packet using Airprobe’s GSM-receiver, (b) is the hexadecimal representation
of the transmitted handover failure message, and (c) is the type B LAPDm

frame structure.

 54

C. QUEUEING THE HANDOVER FAILURE MESSAGE TRANSMISSION

Now that we knew our GSM transmitter was correctly encoding and transmitting

a GSM handover failure message, the next step was to transmit a GSM handover failure

message after receiving a handover to UTRAN message, as explained in Chapter III. This

task requires a device that can reliably collect a GSM handover to UTRAN message and

queue the GSM transmitter code to transmit the handover failure message. Currently,

Airprobe’s GSM-receiver cannot properly identify a collected RR handover to UTRAN

message; therefore, we decided to use a Samsung Galaxy S2 phone. This model of

Samsung phone coupled with open source debugging code from Tobias Engel called

xgoldmon [24] results in the signal messaging received by the phone on the downlink

channel to be sent over the phone’s universal serial bus (USB) connection to the

computer’s loopback address.

1. Code Creation

The GSM transmitter code was modified in three critical areas to achieve our

desired goal of sending a handover failure message after receiving a handover to

UTRAN message. The first change allows the software to transmit only a GSM handover

failure burst with the least amount of impact to any other users on the GSM network. The

second modification allows the triggering of the software by the Samsung Galaxy S2 for

signal transmission. The third modification included changing the tx_freq to the

uplink frequency shown in Table 4 because we want our GSM transmitter to send the

handover failure message to the NPS BTS. The modified GSM transmitter code for

sending a handover failure message after receiving a handover to UTRAN message is

included in Appendix C.

a. Handover Failure Message Creation

The first step in the process of sending a handover failure message is to

create a handover failure burst and place the four modulated bursts into the fill table array

described in Chapter IV. The difference this time is that the handover failure bursts

occupy time slot zero, and the remaining time slots are filled with dummy bursts. Since

the handover failure burst is only four GSM TDMA time slots long, the fill table is also

 55

only four TDMA time slots in length. Next, we minimize interference with other users on

the GSM network by only amplifying the handover failure bursts and dummy bursts

immediately before and after the handover failure bursts. We have to amplify the

surrounding dummy bursts because the resampling process uses those bursts in the

resampling of the handover failure bursts. If we chose not to amplify the surrounding

dummy burst, then the resampling process truncates the handover failure bursts.

b. Transmission Queuing Using Packet Capture Library (PCAP)
Code

PCAP provides us with the ability to listen on the loopback address of the

computer and analyze the GSM signaling messages sent from the Samsung Galaxy S2

phone to the computer. We identify that handover to UTRAN message was received by

the phone because the bytes in positions 122 to 126 of the message sent by the phone to

the computer’s loopback address equate to the hexadecimal values 0663. Once our GSM

transmitter code determines the handover to UTRAN message was received, it queues the

transmitter section of the code to immediately modulate the handover failure message

and transmit the bursts via the USRP.

c. Setup

The setup for transmission of a queued GSM handover failure message

starts with initialization of the Samsung Galaxy S2 phone and the xgoldmon code as

provided in Appendix A. Once the Samsung phone and xgoldmon code are running, the

next step is to start the modified GSM transmitter code, which initializes the N210 USRP

and begins waiting for the handover to UTRAN message. We encourage the phone to

conduct a handover to UTRAN by initializing the phone to use only the GSM network,

which is accomplished by changing the phone’s network configuration settings to GSM

only. After the phone establishes connection on the GSM network, we change the

phone’s network settings to allow connections to both the GSM and UMTS networks.

Immediately after changing the settings and while the phone is still associated with the

GSM network, we initiate a call on the GSM network. After call establishment, we wait

for the network to transition the phone to the UMTS network by sending a handover to

 56

UTRAN message to the phone. The experimental setup used during the testing of the

Samsung Galaxy S2 phone triggering the modified GSM transmitter code to send a

handover failure message is shown in Figure 37.

Figure 37. Photograph of the experimental setup used for testing the modified GSM
transmitter code which is programed to trigger the transmission of a handover
failure message based on the reception of a handover to UTRAN message by

the Samsung Galaxy S2 phone.

2. Results

We collected the messages sent from the Samsung Galaxy S2 phone to the

computer using Wireshark. We also collected all the burst samples created by the GSM

transmitter and sent to the USRP for modulation using GNU Radio. Finally, we collected

the transmitted burst from the USRP using a signal analyzer.

a. Wireshark Collection

Validation of the Samsung Galaxy S2 phone’s capability to receive the

handover to UTRAN message and send it to the computer’s loopback address is displayed

in the Wireshark capture shown in Figure 38. Since our GSM transmitter code uses the

 57

PCAP library, the code was successful in identifying the occurrence of this message and

triggering the transmission of the handover failure message.

Figure 38. A screen capture showing the Wireshark collection of a Samsung Galaxy S2
phone receiving a handover to UTRAN RR message from its servicing BSC.

b. GNU Radio Collection

After establishing that the Samsung Galaxy S2 could reliably collect the

handover to UTRAN message and that our GSM transmitter code could correctly identify

the message while simultaneously triggering the transmission of a handover failure

message, we next used GNU Radio to look at the transmitted bursts prior to USRP

transmission. It is shown in Figure 39 that our GSM transmitter code successfully

amplifies only the desired samples because only the in-phase and quadrature phase

samples of the handover failure bursts and their surrounding dummy bursts have

amplitude significantly greater than zero.

 58

Figure 39. Scope plot, collected by GNU Radio, of the in-phase samples, in blue (Ch 1),
and the quadrature phase samples, in green (Ch 2), of a modulated handover

failure message, created by the GSM transmitter code, prior to USRP
transmission.

c. Signal Analyzer Collection

Finally, we validated that the USRP was successfully transmitting the

handover failure burst at the correct carrier frequency by measuring the frequency

spectrum during the burst transmission. The frequency spectrum collected during the

handover failure burst, as shown in Figure 40, has the center frequency matching the

uplink frequency displayed in Table 4 of 890.6 MHz, which is the carrier frequency used

in our modified GSM transmitter code.

Figure 40. Signal analyzer frequency spectrum collection showing the carrier center
frequency of a transmitted handover failure message by our modified GSM

transmitter code after being triggered by a Samsung Galaxy S2.

 59

3. Timing Issues

Even though we successfully produced open source code that correctly

transmitted a GSM handover failure message after being queued by the reception of a

handover to UTRAN message, we were unsuccessful at placing the bursts in the correct

time slots on the uplink SDCCH because of timing issues. The reason for the issues with

timing stem from (i) inaccuracies when calculating the processing time of the Samsung

Galaxy S2 phone to receive, process and transfer the handover to UTRAN message to the

computer and (ii) inconsistences when measuring the processing time within our own

GSM transmitter code from reception of the handover to UTRAN message to the sending

of the first packet to the USRP. Since the time delay from reception of a handover to

UTRAN message on the downlink channel to the arrival of the first handover failure burst

on the uplink channel is approximately 54 ms, as discussed in Chapter III, we have plenty

of available processing time. However, the guard period time between GSM TDMA time

slots is only 8.25 bits, resulting in only 30.4 µs of buffer time before the burst arrives in

the wrong time slot. Therefore, it is imperative to have accurate time measurements for

all processes involved in receiving the handover to UTRAN message and transmitting the

handover failure message bursts.

First, we looked at the elapsed time between sending the first packet of in-

phase and quadrature phase samples from the computer to the USRP over the Ethernet

cable. The collection of the elapsed time was modeled by collecting ping times between

the computer and USRP and dividing the time by two since a ping time equates to the

round-trip time of a packet, and we only desired the one-way time. A stem plot of a

thousand collected one-way ping times is shown in Figure 41. The calculated average

one-way ping time is 0.534 ms. This time delay is easily overcome by sending the

samples to the USRP prior to the required transmission start time by more than the

maximum collected one-way ping time of 0.625 ms and appending the desired USRP

transmission start time to the first Internet protocol (IP) packet sent to the USRP.

 60

Figure 41. Stem plot of one-way ping times from the computer to the USRP over an
Ethernet cable.

Next, we collected the elapsed time between our modified GSM

transmitter code identifying that a handover to UTRAN message was received and the

first packet of burst samples sent to the USRP. We ran our modified GSM transmitter

code one hundred times to collect the forementioned elapsed time, and the results are

displayed in Figure 42. The elapsed times grouped themselves around two different

times, where the total range of values spans from 566 µs to 950 µs resulting in a time

difference of 384 µs. Since the span of values is significantly larger than the guard period

of 30.4 µs, it confirms the need for a separate timing function, as described in Chapter III,

to maintain the time synchronization between the receiver and transmitter codes

throughout message processing.

 61

Figure 42. Histogram of elapsed time between receipt of a handover to UTRAN message
on the computer’s loopback address from a Samsung Galaxy S2 and the

transfer of the first IP packet containing handover failure burst samples to the
USRP over an Ethernet cable.

In this chapter, we demonstrated the capabilities of our GSM transmitter. First, we

showed that our GSM transmitter is properly encoding and modulating a GSM RR

message by transmitting all the messages sent over the BCH/CCCH and successfully

collecting the messages using Airprobe’s GSM-receiver software. Next, we successfully

demonstrated the transmission and reception of a handover failure message. Finally, we

modified the GSM transmitter code to transmit a handover failure message after

receiving a handover to UTRAN message. Though we were unsuccessful at inserting the

transmitted burst into the correct uplink time slots, initial data collection provides the

foundation for future time synchronization code development needed between the

receiver and transmitter processes.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

VI. CONCLUSIONS

The integration of GSM and UMTS networks into heterogeneous networks

provides malicious individuals the potential to deny an unsuspecting user the ability to

access the UMTS network thereby preventing them from taking advantage of the security

enhancements incorporated in the UMTS standards. The validation of this potential

vulnerability requires the creation of a device that can collect and decode a BTS BCH,

identify the transmission of a handover to UTRAN message, and transmit a handover

failure message in the correct time slots on the SDDCH uplink channel.

In this thesis, a GSM transmitter capable of transmitting a GSM RR message

using a SDR was proposed and experimentally validated. The GSM transmitter we

created in C++ code takes a LAPDm frame containing a RR message from data bits to

modulated in-phase and quadrature phase samples ready for transmission by a N210

USRP. The C++ code we developed first block encodes the LAPDm frame data bits, then

passes the encoded bits through a ½-rate convolutional encoder, interleaves the

convolved bits and maps the bits to a normal burst. Once formed into a normal burst, the

code we created diffentially encodes the burst, converts the burst bits to () symbols,

convolves the symbols using a Gaussian pulse, resamples the in-phase and quadrature

phase samples in order to transmit the burst at the N210 USRP sampling rate and type

converts the samples from C++ type float to type short in preparation for sending the

samples to the N210 USRP.

After creating a GSM transmitter capable of transmission of a GSM RR message

in accordance with the 3GPP GSM standards, we developed and demonstarted a method

for collecting a handover to UTRAN message that triggers the GSM transmitter to send a

GSM handover failure message. A Samsung Galaxy S2 phone coupled with xgoldmon

code was configured to collect the handover to UTRAN message and send the message to

the computer’s loopback address. PCAP software functions were added to the GSM

transmitter code in order to listen to the computer’s loopback address and trigger the

transmission of a handover failure message.

 64

Finally, the timing issues involved in collecting a handover to UTRAN message

by a Samsung Galaxy S2 phone and the transmission of a handover failure message by

the GSM transmitter we developed were investigated. We collected multiple runs of the

GSM transmitter code triggered by a handover to UTRAN message and found an

inconsistency in the code runtime, which confirmed the need for a timing function that

synchronizes the receiver and transmitter processes. Also, we found the maximum

transmission time for samples from the GSM transmitter to reach the N210 USRP, which

must be taken into account to ensure the samples are transmitted by the N210 USRP at

the correct time.

A. SIGNIFICANT CONTRIBUTIONS

Three significant contributions were made in this thesis. First, we proposed a

potential vulnerability in the handover process from GSM to UMTS caused by the weak

encryption algorithms employed by the GSM standards. The proposed vulnerability in the

handover process from GSM to UMTS extends the ideas presented in [4] and [5] by

giving additional motivation for GSM networks to employ stronger encryption and

provides the developers of the 3GPP standards a reason to re-evaluate how the GSM and

UMTS networks interoperate.

Second, we created open source GSM transmitter computer code that takes the

data bits from any GSM RR message encapsulated within a LAPDm frame as its input

and outputs a radio frequency burst in accordance with the 3GPP GSM standards. The

open source computer code we created to transmit any RR message provides the

transmitter functionality described in Chapter III, which is vital for the creation of a GSM

vulnerability testing device. Additionally, the code can be incorporated with any SDR

provided the SDR can obtain a sample rate of either 273.833 kHz or 400 kHz.

Finally, we reconfigured our open source GSM transmitter code to start

transmitting only after being triggered by a message sent from a Samsung Galaxy S2

phone to the host computer’s loopback address. The integration of the Samsung Galaxy

S2 phone with the GSM transmitter code provides a concept model of how a GSM

receiver and GSM transmitter could be integrated to create a GSM vulnerability testing

 65

device. This type of integrated device is vital for testing the proposed vulnerability

discussed in Chapter III and the additional vulnerabilities described in [5] and [14].

B. FUTURE WORK

Even though we provided, in this thesis, an initial step toward the creation of a

GSM vulnerability testing device and gave the description of a potential vulnerability

involving handovers between GSM to UMTS networks, additional effort is required to

fully validate the vulnerability testing device and confirm the weakness of the handover

to UTRAN procedure.

In this thesis, we provided C++ computer code to transmit GSM RR message

bursts in accordance with the 3GPP GSM standards for encoding and modulation. The

primary limitation of the developed GSM transmitter is its inability to transmit the GSM

RR message in the correct SDCCH time slot on the uplink channel. The creation of

computer code to track the start of each burst on the downlink channel and use that

information to compute the wait time between the end of the last received message burst

on the SDCCH and the transmission start time for the first transmitted burst on the

SDCCH uplink channel is needed.

We also developed a methodology for reliably collecting the handover to UTRAN

message on the downlink channel and a technique for transmitting a handover failure

burst on the uplink channel. A limitation of our methodology stems from the device we

chose to use as our handover to UTRAN message receiver. We used the Samsung Galaxy

S2 as both our GSM receiver and as our trigger source for the handover failure

transmitter, which worked reliably in collecting a handover to UTRAN message sent by

the BTS to the phone but was incapable of collecting a handover to UTRAN message sent

to any other mobile device on the GSM network. A more robust GSM message receiver

and queuing source would be Airprobe’s GSM-receiver; however, as discussed in

Chapter V, source code changes are required in order for Airprobe’s GSM-receiver to

successfully decode a handover to UTRAN message. If Airprobe’s GSM-receiver code

were modified to identify the handover to UTRAN message, it would give us the ability to

 66

trigger the GSM transmitter to transmit the handover failure burst after any mobile device

had started transitioning from GSM to UMTS.

Finally, we presented a potential vulnerability involving handovers between GSM

to UMTS networks, which draws from previously reported issues in [4], [5] and [14].

This potential vulnerability requires further testing and validation. We suggest

implementation of timing code within the triggered GSM transmitter code developed in

Chapter V in order to fully realize the handover vulnerability described in Chapter III.

 67

APPENDIX A. XGOLDMON

This appendix contains the setup requirements and execution of the xgoldmon

code when using a Samsung Galaxy S2 phone. Prior to using the xgoldmon code, the

Samsung Galaxy S2 phone must first be configured to send all received messages from

the BTS over the USB to the computer. All the instructions for phone setup and

xgoldmon code execution originate from the readme file contained within the xgoldmon

source code [24].

The configuration of the Samsung Galaxy S2 is executed in the following three

steps. The first step involves changing the debugging settings on the phone. These

changes are accomplished by opening the phone’s call window and typing

##197328640#*#* into the window, which causes the ServiceMode Main Menu screen

to open as shown in Figure 43. From the ServiceMode Main Menu, we choose option six,

common, in order to bring up the ServiceMode Common screen. Finally, we pick option

two, debug info, which opens the ServiceMode Debug Info screen where we change the

PCM logging and I2S logging to ON. After changing these two settings, we exit the

ServiceMode menu.

The second step requires the changing of the PhoneUtil settings. The PhoneUtil

menu is initialized by typing *#7284# into the call screen. Then change the UART and

USB settings in the PhoneUtil menu from PDA to Modem as shown in Figure 44. The

third step requires changing the Ramdump Mode setting in the SysDump menu, which is

initialized by typing *#9900# into the call screen. Then we change the Ramdump Mode

Enabled to High as shown in Figure 44.

 68

Figure 43. Samsung Galaxy S2 debug information settings tutorial where (a) shows the ServiceMode Main Menu screen, (b) displays
the ServiceMode Common screen, and (c) shows the Service Mode Debug Info screen.

 69

Figure 44. Samsung Galaxy S2 settings tutorial where (a) shows the PhoneUtil screen
and (b) displays the SysDump screen.

After configuring the Samsung Galaxy S2 phone to work with the xgoldmon

code, we connect the phone to the computer using a USB cable, which creates several

new dev/ttyACM* devices. The /dev/ttyACM* device with the second lowest number is

the logging port, which we need to know for the proper execution of the xgoldmon code.

To execute the xgoldmon code, we open a new terminal window and enter the following

code from the xgoldmon root directory:

./xgoldmon –t ‘s2’ –l –v /dev/ttyACM*

 70

where the asterick after ttyACM is the second lowest number of the new dev/ttyACM

devices created after plugging the phone into the computer. Finally, open Wireshark

using a new terminal window and start collecting on the loopback address.

 71

APPENDIX B. BURST CREATOR AND GSM TRANSMITTER C++
CODE REPLICATING BTS

This appendix contains the code for transmitting the messages sent over a GSM

BTS BCH/CCCH. The first code is written in python and titled

GSM_message_hexadecimal_to_binary.py. This code is used to transition the

hexadecimal message values collected with the ASCOM TEMS software/hardware into

binary strings ready for encoding and burst mapping by the

GSM_Burst_Creator.cpp code. The GSM_Burst_Creator.cpp code takes the

binary output from the GSM_message_hexadecimal_to_binary.py code and

encodes, interleaves, and maps the bits onto a GSM normal burst with training sequence

number one. Finally, the GSM_BTS_Transmitter.cpp C++ code modulates, re-

samples, and transmits the GSM bursts created by the GSM_Burst_Creator.cpp

code.

Many of the functions in the GSM_Burst_Creator.cpp and the

GSM_BTS_Transmitter.cpp C++ codes were originally written in OpenBTS [1];

therefore, they require the following OpenBTS C++ source code files for proper

execution: sigProcLib.cpp, BitVector.cpp, GSMCommon.cpp, and

Timeval.cpp. The GSM_BTS_Transmitter.cpp code also requires the following

dependencies when using an Ubuntu Linux load: libboost-all-dev, libusb-1.0–0-dev,

python-cheetah, doxygen, and python-docutils. Finally, the

GSM_BTS_Transmitter.cpp code requires installation of Ettus UHD software.

A. GSM_MESSAGE_HEXADECIMAL_TO_BINARY.PY

#!/usr/bin/env python
#--
Name: GSM_message_hexadecimal_to_binary
Purpose: Convert a list of hexadecimal to a list of binary values
Author: Carson McAbee
Created: 21 JUL 2013
#--

 72

hex_to_binary function converts a hexadecimal value to binary list.

def hex_to_binary(input_hex):

 # Convert hexadecimal input values to binary output values
 input_binary = []
 zero = [0,0,0,0]
 one = [0,0,0,1]
 two = [0,0,1,0]
 three = [0,0,1,1]
 four = [0,1,0,0]
 five = [0,1,0,1]
 six = [0,1,1,0]
 seven = [0,1,1,1]
 eight = [1,0,0,0]
 nine = [1,0,0,1]
 ten = [1,0,1,0]
 eleven = [1,0,1,1]
 twelve = [1,1,0,0]
 thirteen = [1,1,0,1]
 fourteen = [1,1,1,0]
 fifteen = [1,1,1,1]

 q = 0
 while q < len(input_hex):
 if input_hex[q] == ‘0’ or input_hex[q] == 0:
 input_binary = input_binary + zero
 elif input_hex[q] == ‘1’ or input_hex[q] == 1:
 input_binary = input_binary + one
 elif input_hex[q] == ‘2’ or input_hex[q] == 2:
 input_binary = input_binary + two
 elif input_hex[q] == ‘3’ or input_hex[q] == 3:
 input_binary = input_binary + three
 elif input_hex[q] == ‘4’ or input_hex[q] == 4:
 input_binary = input_binary + four
 elif input_hex[q] == ‘5’ or input_hex[q] == 5:
 input_binary = input_binary + five
 elif input_hex[q] == ‘6’ or input_hex[q] == 6:
 input_binary = input_binary + six
 elif input_hex[q] == ‘7’ or input_hex[q] == 7:
 input_binary = input_binary + seven
 elif input_hex[q] == ‘8’ or input_hex[q] == 8:
 input_binary = input_binary + eight
 elif input_hex[q] == ‘9’ or input_hex[q] == 9:
 input_binary = input_binary + nine
 elif input_hex[q] == ‘A’ or input_hex[q] == ‘a’:
 input_binary = input_binary + ten
 elif input_hex[q] == ‘B’ or input_hex[q] == ‘b’:
 input_binary = input_binary + eleven
 elif input_hex[q] == ‘C’ or input_hex[q] == ‘c’:
 input_binary = input_binary + twelve
 elif input_hex[q] == ‘D’ or input_hex[q] == ‘d’:
 input_binary = input_binary + thirteen
 elif input_hex[q] == ‘E’ or input_hex[q] == ‘e’:
 input_binary = input_binary + fourteen

 73

 elif input_hex[q] == ‘F’ or input_hex[q] == ‘f’:
 input_binary = input_binary + fifteen
 else:
 input_binary = input_binary
 q = q + 1

 return(input_binary)

#---
Main Function
#---

if __name__ == ‘__main__’:

 SYSTEM_INFORMATION_TYPE_1_MESSAGE_HEX =
[5,5,0,6,1,9,0,2,0,2,0,4,1,0,0,0,1,0,4,0,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,4,9,’D’,0,0,0,0,2,’B’]

 SYSTEM_INFORMATION_TYPE_2_MESSAGE_HEX =
[5,9,0,6,1,’A’,1,0,
0,0,0,4,0,2,9,’D’,0,0,0,0]

 SYSTEM_INFORMATION_TYPE_2QUARTER_MESSAGE_HEX =
[0,5,0,6,0,7,’C’,0,1,’C’,8,9,0,0,2,1,1,0,3,9,5,4,’A’,1,0,3,9,8,1,4,5,’B
’,6,5,’E’,0,8,6,’C’,’B’,2,’B’,2,’B’,2,’B’]

 SYSTEM_INFORMATION_TYPE_3_MESSAGE_HEX =
[4,9,0,6,1,’B’,0,1,5,’F’,1,4,’F’,8,0,1,0,8,’B’,1,’C’,8,0,2,0,5,5,’F’,4,
5,0,5,9,’D’,0,0,0,0,3,8,2,’B’,2,’B’,2,’B’]

 SYSTEM_INFORMATION_TYPE_4_MESSAGE_HEX =
[3,1,0,6,1,’C’,1,4,’F’,8,0,1,0,8,’B’,1,4,5,0,5,9,’D’,0,0,0,0,2,’B’,2,’B
’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’]

 PAGING_REQUEST_HEX =
[1,5,0,6,2,1,0,0,0,1,’F’,0,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,
’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’]

 CCCH_FILL_HEX =
[0,1,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,
2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’]

 HANDOVER_FAILURE_MESSAGE_HEX =
[0,1,0,0,0,’D’,0,6,2,8,6,’F’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,
2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’]

 type_1_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_1_MESSAGE_HEX)
 type_2_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_2_MESSAGE_HEX)
 type_2quater_binary =
 hex_to_binary(SYSTEM_INFORMATION_TYPE_2QUARTER_MESSAGE_HEX)
 type_3_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_3_MESSAGE_HEX)
 type_4_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_4_MESSAGE_HEX)
 paging_request_binary = hex_to_binary(PAGING_REQUEST_HEX)
 ccch_fill_binary = hex_to_binary(FILL_HEX)
 handover_failure_binary = hex_to_binary(HANDOVER_FAILURE_MESSAGE)

 74

 type_1_binary_string = ‘‘.join(map(str,type_1_binary))
 type_2_binary_string = ‘‘.join(map(str,type_2_binary))
 type_2quarter_binary_string = ‘‘.join(map(str,type_2quater_binary))
 type_3_binary_string = ‘‘.join(map(str,type_3_binary))
 type_4_binary_string = ‘‘.join(map(str,type_4_binary))
 paging_request_binary_string =
 ‘‘.join(map(str,paging_request_binary))
 ccch_fill_binary_string = ‘‘.join(map(str,ccch_fill_binary))
 handover_failure_binary_string =
 ‘‘.join(map(str,handover_failure_binary))

Print binary strings of each message for input into
GSM_Burst_Creator.cpp
 print ‘BitVector type_1_burst “‘
 print type_1_binary_string
 print “\n”
 print ‘BitVector type_2_burst “‘
 print type_2_binary_string
 print “\n”
 print ‘BitVector type_2quarter_burst “‘
 print type_2quarter_binary_string
 print “\n”
 print ‘BitVector type_3_burst “‘
 print type_3_binary_string
 print “\n”
 print ‘BitVector type_4_burst “‘
 print type_4_binary_string
 print len(type_4_binary_string)
 print “\n”
 print ‘BitVector paging_request_burst “‘
 print paging_request_binary_string
 print “\n”
 print ‘BitVector ccch_fill_burst “ ‘
 print ccch_fill_binary_string
 print “\n”
 print ‘BitVector handover_failure_burst “ ‘
 print handover_failure_binary_string

B. GSM_BURST_CREATOR.CPP

#include “BitVector.h”
#include “Vector.h”

/***/
/* The functions utilized in this code were derived from the */
/* OpenBTS [1] source code. This code inparticular uses code from */
/* the GSML1FEC.cpp OpenBTS source code. */
/* */
/* The Naming convention of the bit vectors used in this code follow */
/* the GSM 05.03 Section 2.2 standard [12]. */
/* d[k] data */
/* u[k] data bits after first encoding step */
/* c[k] data bits after second encoding step */
/* i[B][k] interleaved data bits */

 75

/* e[B][k] bits in a burst */
/* B is the burst number [0–3] */
/* k is the bit location within the array */
/***/
int
main(int argc, char **argv){

/***/
/* Inputs to the code are the binary representation of RR bursts */
/* from the python script GSM_message_hexidecimal_to_binary.py */
/***/

BitV111ector handover_failure_burst =
“0000000100000000000011010000011000101000011011110010101100101011001010
11001010110010101100101011001010110010101100101011001010110010101100101
0110010101100101011001010110010101100101011”;

BitVector mBurst0(148);
BitVector mBurst1(148);
BitVector mBurst2(148);
BitVector mBurst3(148);
BitVector Tail_Bits = “000”;

// Using Training Sequence 1
BitVector Training_Seq = “00101101110111100010110111”;
BitVector Stealing_Bit = “1”;
BitVector mT = “0000”;

// Initialize Block Coder (Fire Coder)
uint64_t wCoefficients = 0x10004820009ULL;
unsigned wParitySize = 40;
unsigned wCodewordSize = 224;
bool invert = true;
const ViterbiR2O4 mVCoder;

BitVector mI[4];
for (int k=0; k<4; k++) {
 mI[k] = BitVector(114);
 mI[k].fill(0);
}
BitVector mD(handover_failure_burst);

// Bit Ordering
mD.LSB8MSB();

// Fire Coder
Parity mBlockCoder(wCoefficients, wParitySize, wCodewordSize);
BitVector mP(40);
mBlockCoder.writeParityWord(mD, mP);
BitVector mU(mD, mP);
BitVector mUT(mU, mT);

// Convolution Encoder
BitVector mC(2*mUT.size());
mUT.encode(mVCoder, mC);

 76

// Interleaver
for (int k=0; k<456; k++) {
 int B = k%4;
 int j = 2*((49*k) % 57) + ((k%8)/4);
 mI[B][j] = mC[k];
}
// Burst Mapping
Tail_Bits.copyToSegment(mBurst0,0);
mI[0].segment(0,57).copyToSegment(mBurst0,3);
mI[0].segment(57,57).copyToSegment(mBurst0,88);
Training_Seq.copyToSegment(mBurst0,61);
Stealing_Bit.copyToSegment(mBurst0,60);
Tail_Bits.copyToSegment(mBurst0,145);

Tail_Bits.copyToSegment(mBurst1,0);
mI[1].segment(0,57).copyToSegment(mBurst1,3);
mI[1].segment(57,57).copyToSegment(mBurst1,88);
Training_Seq.copyToSegment(mBurst1,61);
Stealing_Bit.copyToSegment(mBurst1,60);
Tail_Bits.copyToSegment(mBurst1,145);

Tail_Bits.copyToSegment(mBurst2,0);
mI[2].segment(0,57).copyToSegment(mBurst2,3);
mI[2].segment(57,57).copyToSegment(mBurst2,88);
Training_Seq.copyToSegment(mBurst2,61);
Stealing_Bit.copyToSegment(mBurst2,60);
Tail_Bits.copyToSegment(mBurst2,145);

Tail_Bits.copyToSegment(mBurst3,0);
mI[3].segment(0,57).copyToSegment(mBurst3,3);
mI[3].segment(57,57).copyToSegment(mBurst3,88);
Training_Seq.copyToSegment(mBurst3,61);
Stealing_Bit.copyToSegment(mBurst3,60);
Tail_Bits.copyToSegment(mBurst3,145);

// Prints out bursts for later input into GSM transmitter code
std::cout << “BitVector(“ << mBurst0 << “),” << “//
Handover_Failure_burst0” << std::endl;

std::cout << “BitVector(“ << mBurst1 << “),” << “//
Handover_Failure_burst1” << std::endl;

std::cout << “BitVector(“ << mBurst2 << “),” << “//
Handover_Failure_burst2” << std::endl;

std::cout << “BitVector(“ << mBurst3 << “),” << “//
Handover_Failure_burst3” << std::endl;

} // end main loop

C. GSM_BTS_TRANSMITTER.CPP

#include <uhd/utils/thread_priority.hpp>

 77

#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/exception.hpp>
#include <uhd/stream.hpp>
#include “sigProcLib.h”
#include “BitVector.h”
#include <boost/math/special_functions/round.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <boost/thread.hpp>
#include <iostream>
#include <complex>
#include <csignal>
#include <algorithm>
#include <fstream>
#include <time.h>

/**/
/* TDMA_burst Array */
/* List of all the types of bursts created by the */
/* GSM_Burst_Creator.cpp code, which are needed for mimicking */
/* a GSM BTS BCH. */
/**/
const BitVector
TDMA_burst[] =
{
BitVector(“00
000
00000000000000000”), // Frequency Correction Burst, No. 0

BitVector(“000111110110111011000001010010011100000100100010000000111110
10111000101110001011100010111110100101000110011001110011110100111110001
00101111101010000”), // Dummy Burst, No. 1

BitVector(“000101000000101111101010101000010100000010011011101000100000
10010110111011110001011011100101000000001011111010000000010000000000101
01110100000010000”), // Paging Request Burst0, No. 2

BitVector(“000001011101011111101010100100010101011101111110101000000101
10010110111011110001011011100101010101101110101010100100010101110111111
11010001000000000”), // Paging Request Burst1, No. 3

BitVector(“000000001000111110100010100100010000100011101110100000010100
10010110111011110001011011100010100010111010101010100000000000000011101
01010000000010000”), // Paging Request Burst2, No. 4

BitVector(“000010001001010001111101111010101010000101000111010111101010
10010110111011110001011011101000101101010101010111111010100010010101010
10111001011101000”), // Paging Request Burst3, No. 5

BitVector(“000100100010111111010000100010000101000001000000010100100001
10010110111011110001011011100100111010010101000010000000110011100010000
00111100000001000”), // System Information Type 1 Burst0, No. 6

 78

BitVector(“000100001011110101010100010001010101001011010100110010010101
10010110111011110001011011100000101010011100111010100000011100100001110
01010001010110000”), // System Information Type 1 Burst1, No. 7

BitVector(“000000001001110000000011000100001100000101000110101000001000
10010110111011110001011011100000100010110100101000001001000000000000010
00000010100010000”), // System Information Type 1 Burst2, No. 8

BitVector(“000000010001010010100000010001100000000110001010100011100101
10010110111011110001011011101000000111011000100000100100000010100001000
00001001001010000”), // System Information Type 1 Burst3, No. 9

BitVector(“000101100000110001010000100100000100100000000000000000000000
10010110111011110001011011100000100010000101000000100000010000000011000
00010001000000000”), // System Information Type 2 Burst0, No. 10

BitVector(“000100000011010001001000000000010000000000000000101010000001
10010110111011110001011011100000000000000100101000100001001000001100010
11000101100010000”), // System Information Type 2 Burst1, No. 11

BitVector(“000010000101010100100001000101000010001000000000000000000000
10010110111011110001011011100010000001000000001011000000000010000000000
00010010101000000”), // System Information Type 2 Burst2, No. 12

BitVector(“000010010000010010000010000000001010000000000010000001010000
10010110111011110001011011100010100001001000000101000100001011000100001
01011010100001000”), // System Information Type 2 Burst3, No. 13

BitVector(“000100110000111111101111011001010011001011000100001101111001
10010110111011110001011011101100001101100101010001100001100010000110010
11111100110101000”), // System Information Type 2quarter Burst0, No. 14

BitVector(“000001010001010000111000100000001001011111000101100000101011
10010110111011110001011011100001100001011010000001100001101100010111110
10111001011001000”), // System Information Type 2quarter Burst1, No. 15

BitVector(“000001110101100000111110000101101110111000100001000100111100
10010110111011110001011011101010100001111110110010100011110011000000101
11111010100100000”), // System Information Type 2quarter Burst2, No. 16

BitVector(“000010001001000011001101011010100111001111011110000101011011
10010110111011110001011011101100001111010101000100001001111011010010010
01000001100101000”), // System Information Type 2quarter Burst3, No. 17

BitVector(“000101000101111100110111010101011011000100111011011011001000
10010110111011110001011011101111000000000101111011000000000101010110010
10100111000011000”), // System Information Type 3 Burst0, No. 18

BitVector(“000101011110010100101111001111100001010001001111110000000101
10010110111011110001011011101100000001001001011100101000000101111101110
10011111111111000”), // System Information Type 3 Burst1, No. 19

 79

BitVector(“000000011000100111100100001011000101100001000101001010011011
10010110111011110001011011101001000010000000110100100011000000001001000
01101010011001000”), // System Information Type 3 Burst2, No. 20

BitVector(“000001001011001001101001010000001100100110011100100101101100
10010110111011110001011011101100001101000001110110011000111110101111110
01000101100101000”), // System Information Type 3 Burst3, No. 21

BitVector(“000101010010100111111010001000010101010000010001101000000000
10010110111011110001011011100000011010100001111100001001100101110000110
01111101010001000”), // System Information Type 4 Burst0, No. 22

BitVector(“000100001101000111111010101101000101110101000010111010101101
10010110111011110001011011100101010111001010111100001000000100011101111
11010001001110000”), // System Information Type 4 Burst1, No. 23

BitVector(“000000101011010110111010100100000000001001001011001000101000
10010110111011110001011011100101100011111111100010110000010010000101111
11010000111000000”), // System Information Type 4 Burst2, No. 24

BitVector(“000000101010000001010111010010111000101110010010010110101011
10010110111011110001011011101000001011000000010100011010100010010000010
01111011100101000”), // System Information Type 4 Burst3, No. 25

BitVector(“000100000010101011101010100001000000000000111110101010000000
10010110111011110001011011100000001010101010101000100001010000101010101
11010101000010000”), // CCCH Fill Burst0, No. 26

BitVector(“000101010111101110101010000101010101110111101010101010000001
10010110111011110001011011100101010111101110100010000001010101111111111
01010000001000000”), // CCCH Fill Burst1, No. 27

BitVector(“000000000010111010101010000100000010101011101010000000010100
10010110111011110001011011100010101010101010101000000000000000101011101
01000000001000000”), // CCCH Fill Burst2, No. 28

BitVector(“000000100000010101111111111010100000000000010101111111101010
10010110111011110001011011101000000101010101011110111010101000000101010
11101101110101000”), // CCCH Fill Burst3, No. 29
};

/***/
/* sync_burst_creator Function */
/* This function creates synchronization bursts in accordance with */
/* the GSM standard 05.03 [12]. This function was derived from the */
/* OpenBTS source code file GSML1FEC.cpp [1] */
/***/

const BitVector
sync_burst_creator(uint64_t Frame_Number)
{
 uint64_t sync_Coefficients = 0x0575;
 unsigned sync_ParitySize = 10;
 unsigned sync_CodewordSize = 25;
 const ViterbiR2O4 mVCoder;

 80

 BitVector mBurst(148);
 BitVector mtail_bits = “000”;
 uint64_t BSIC = 17;
 uint64_t FN = Frame_Number;
 uint64_t T1 = FN / (26*51);
 uint64_t T2 = FN % 26;
 uint64_t T3 = FN % 51;
 uint64_t T3p = (T3 - 1) / 10;
 static const BitVector xts(“1011100101100010000001000000111
 100101101010001010111011000011011”);
 xts.copyToSegment(mBurst, 42);
 BitVector mU(25+10+4);
 mU.fillField(35,0,4);
 BitVector mE(78);
 BitVector mD(mU.head(25));
 BitVector mP(mU.segment(25,10));
 size_t wp_0 = 0;
 mD.writeField(wp_0, BSIC, 6);
//size_t wp_6 = 6;
 mD.writeField(wp_0, T1, 11);
//size_t wp_17 = 17;
 mD.writeField(wp_0, T2, 5);
//size_t wp_22 = 22;
 mD.writeField(wp_0, T3p, 3);
 mD.LSB8MSB();

// Calculate 10 Parity Bits
 Parity mBlockCoder(sync_Coefficients, sync_ParitySize,
sync_CodewordSize);
 mBlockCoder.writeParityWord(mD, mP);

// Convolution Encoder
 mU.encode(mVCoder, mE);
 BitVector mE1(mE.segment(0,39));
 BitVector mE2(mE.segment(39,39));
 mtail_bits.copyToSegment(mBurst,0);
 mE1.copyToSegment(mBurst,3);
 mE2.copyToSegment(mBurst,106);

 return mBurst;
}

/**/
/* init_resampler Function */
/* This function initializes resampling signal vectors and was */
/* derived from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
void
init_resampler(signalVector **lpf, signalVector **buf,
 signalVector **hist, int tx)
{
 int P, Q, taps, hist_len;
 float cutoff_freq;
 P = 96 * 1;
 Q = 65 * 1;

 81

 taps = 651;
 hist_len = 130;

 if (!*lpf){
 cutoff_freq = (P < Q) ? (1.0/(float) Q) : (1.0/(float) P);
 *lpf = createLPF(cutoff_freq, taps, P);
 }
 if (!*buf){
 *buf = new signalVector();
 }

 if (!*hist){
 *hist = new signalVector(hist_len);
 }
}

/**/
/* concat Function */
/* This function concatenates signal vectors and was derived */
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
signalVector
*concat(signalVector *a, signalVector *b)
{
 signalVector *vec = new signalVector(*a, *b);
 delete a;
 delete b;

 return vec;
}

/**/
/* segment Function */
/* This function re-segments signal vector and was derived */
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
signalVector
*segment(signalVector *a, int indx, int sz)
{
 signalVector *vec = new signalVector(sz);
 a->segmentCopyTo(*vec, indx, sz);
 delete a;
 return vec;
}

/**/
/* resmpl_sigvec Function */
/* This function re-samples signal vector and was derived */
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
signalVector
*resmpl_sigvec(signalVector *hist, signalVector **vec,
 signalVector *lpf, double in_rate, double out_rate, int chunk_sz)
{
 signalVector *resamp_vec;

 82

 int num_chunks = (*vec)->size() / chunk_sz;

// Truncate to a chunk multiple
 signalVector trunc_vec(num_chunks * chunk_sz);
 (*vec)->segmentCopyTo(trunc_vec, 0, num_chunks * chunk_sz);

// Update sample buffer with remainder
 *vec = segment(*vec, trunc_vec.size(), (*vec)->size() -
trunc_vec.size());

// Add history and resample
 signalVector input_vec(*hist, trunc_vec);
 resamp_vec = polyphaseResampleVector(input_vec, in_rate, out_rate,
lpf);

// Update history
 trunc_vec.segmentCopyTo(*hist, trunc_vec.size() - hist->size(),
 hist->size());
 return resamp_vec;
}

/**/
/* sigvec_to_short Function */
/* This function converts a signal vector into a C++ type short */
/* array and was derived from the OpenBTS source code file */
/* radioIOResamp.cpp [1]. */
/**/
int
sigvec_to_short(signalVector *vec, short *smpls)
{
 int i;
 signalVector::iterator itr = vec->begin();
 for (i = 0; i < vec->size(); i++) {
 smpls[2 * i + 0] = itr->real();
 smpls[2 * i + 1] = itr->imag();
 itr++;
 }
 delete vec;
 return i;
}

/****************************/
/* Stop Signal Transmission */
/****************************/
static bool stop_signal_called = false;
void
sig_int_handler(int){
 stop_signal_called = true;
}

/**/
/* Main Function */
/**/
int
UHD_SAFE_MAIN(int argc, char *argv[])

 83

{
 uhd::set_thread_priority_safe();

/************************/
/* Initialize Variables */
/************************/
 bool repeat = true;
 std::string args = ““;
 double tx_sample_rate = 400e3;
 double tx_freq = 938400000; //ARFCN 17 downlink frequency
 float tx_gain = 1;
 double tx_bandwidth = 200000;
 std::string ant = “TX/RX”;
 int samplesPerSymbol = 1;
 int numARFCN = 1;
 double fullScaleInputValue = (32000)*(0.3);
 int mOversamplingRate = numARFCN/2 + numARFCN;

// Initialize Signal Processing Library
 sigProcLibSetup(samplesPerSymbol);

// Create GSM Pulse
 signalVector *gsmPulse = generateGSMPulse(2,1);

// Initialize vector which holds re-sampler’s low pass filter
 signalVector *tx_lpf = 0;

// Initialize vector which holds re-sampler’s history vector
 signalVector *tx_hist = 0;

// Initialize vector which holds re-sampler’s input buffer
 signalVector *tx_vec = 0;

// Initialize re-sampler
 init_resampler(&tx_lpf, &tx_vec, &tx_hist, true);

/*******************/
/* Initialize USRP */
/*******************/
 uhd::usrp::multi_usrp::sptr usrp;
 usrp = uhd::usrp::multi_usrp::make(args);

// Create transmit streamer
 uhd::stream_args_t stream_args;
 stream_args.cpu_format = “sc16”;
 uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);

// Set the transmit sample rate (Hz)
 usrp->set_tx_rate(tx_sample_rate);
 double actual_tx_rate = usrp->get_tx_rate();

// Set the transmit gain (dB)
 usrp->set_tx_gain(tx_gain);

// Set the transmit frequency (Hz)

 84

 uhd::tune_result_t tr = usrp->set_tx_freq(tx_freq);
 double actual_tx_freq = usrp->get_tx_freq();

// Set transmit bandwidth (Hz)
 usrp->set_tx_bandwidth(tx_bandwidth);

// Set transmit antenna
 usrp->set_tx_antenna(ant);

// Set initial time for USRP
 usrp->set_time_now(uhd::time_spec_t(0.0));

/**************************/
/* Terminate Burst Signal */
/**************************/
 std::signal(SIGINT, &sig_int_handler);
 if(repeat){
 std::cout << “Press Ctrl + C to quit ...” << std::endl;
 }

/**/
/* GSM Transmitter /
/**/
 uhd::tx_metadata_t md;
 uhd::time_spec_t current_usrp_time = usrp->get_time_now();
 short smpls_out[4680];
 int num_resmpl, num_chunks;
 signalVector* resamp_vec;
 signalVector* currentBurst;
 uint64_t Frame_Number = 0;
 bool type13_burst0 = true;
 bool type13_burst1 = true;
 bool type13_burst2 = true;
 bool type13_burst3 = true;
 bool type24_burst0 = true;
 bool type24_burst1 = true;
 bool type24_burst2 = true;
 bool type24_burst3 = true;
 bool type2quarter_burst0 = true;
 bool type2quarter_burst1 = true;
 bool type2quarter_burst2 = true;
 bool type2quarter_burst3 = true;

 do{
 signalVector *fillerTable[102][8];
 for (int i = 0; i < 8; i++) {
 for (int j = 0; j < 102; j++) {
 if(i==0){
 switch(j){ // Filling timeslot zero

case 0:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);

 85

 Frame_Number += 1;
 delete modBurst;
 break;
}
case 1:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 2:{ // System Information Type 1 or Type 3 (Burst0)
 if(type13_burst0){
 signalVector* modBurst = modulateBurst(TDMA_burst[6], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst0 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[18], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst0 = true;
 delete modBurst;
 break;
 }
}
case 3:{ //System Information Type 1 or Type 3 (Burst1)
 if(type13_burst1){
 signalVector* modBurst = modulateBurst(TDMA_burst[7], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst1 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[19], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst1 = true;
 delete modBurst;

 86

 break;
 }
}
case 4:{ // System Information Type 1 or Type 3 (Burst2)
 if(type13_burst2){
 signalVector* modBurst = modulateBurst(TDMA_burst[8], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst2 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[20], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst2 = true;
 delete modBurst;
 break;
 }
}
case 5:{ // System Information Type 1 or Type 3 (Burst3)
 if(type13_burst3){
 signalVector* modBurst = modulateBurst(TDMA_burst[9], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst3 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[21], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type13_burst3 = true;
 delete modBurst;
 break;
 }
}
case 6: { // CCCH Fill Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[26], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;

 87

}
case 7: { // CCCH Fill Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[27], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 8: { // CCCH Fill Burst2)
 signalVector* modBurst = modulateBurst(TDMA_burst[28], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 9: { // CCCH Fill Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[29], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 10:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 11:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 12: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;

 88

}
case 13: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 14: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 15: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 16: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 17: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 18: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}

 89

case 19: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 20:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 21:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 22: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 23: { // Paging Request Type 1 Burst1
signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 24: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}

 90

case 25: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 26: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 27: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 28: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 29: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 30:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 31:{ // Synchronization Burst

 91

 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 32: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 33: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 34: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 35: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 36: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 37: { // Paging Request Type 1 Burst1

 92

 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 38: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 39: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 40:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 41:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 42: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 43: { // Paging Request Type 1 Burst1

 93

 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 44: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 45: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 46: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 47: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 48: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 49: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,

 94

 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 50:{ // Idle Burst (Dummy Burst)
 signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
}
case 51:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 52:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 53:{ // System Information Type 2/2_quarter or Type 4 (Burst0)
 if(type24_burst0){
 if(type2quarter_burst0){
 signalVector* modBurst = modulateBurst(TDMA_burst[10], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst0 = false;
 type24_burst0 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[14], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst0 = true;
 type24_burst0 = false;

 95

 delete modBurst;
 break;
 }
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[22], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type24_burst0 = true;
 delete modBurst;
 break;
 }
}
case 54:{ // System Information Type 2/2_quarter or Type 4 (Burst1)
 if(type24_burst1){
 if(type2quarter_burst1){
 signalVector* modBurst = modulateBurst(TDMA_burst[11], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst1 = false;
 type24_burst1 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[15], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst1 = true;
 type24_burst1 = false;
 delete modBurst;
 break;
 }
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[23], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type24_burst1 = true;
 delete modBurst;
 break;
 }
}
case 55:{ // System Information Type 2/2_quarter or Type 4 (Burst2)
 if(type24_burst2){
 if(type2quarter_burst2){
 signalVector* modBurst = modulateBurst(TDMA_burst[12], *gsmPulse,

 96

 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst2 = false;
 type24_burst2 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[16], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst2 = true;
 type24_burst2 = false;
 delete modBurst;
 break;
 }
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[24], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type24_burst2 = true;
 delete modBurst;
 break;
 }
}
case 56:{ // System Information Type 2/2_quarter or Type 4 (Burst3)
 if(type24_burst3){
 if(type2quarter_burst3){
 signalVector* modBurst = modulateBurst(TDMA_burst[13], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst3 = false;
 type24_burst3 = false;
 delete modBurst;
 break;
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[17], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type2quarter_burst3 = true;
 type24_burst3 = false;
 delete modBurst;
 break;

 97

 }
 }
 else{
 signalVector* modBurst = modulateBurst(TDMA_burst[25], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 type24_burst3 = true;
 delete modBurst;
 break;
 }
}
case 57: { // CCCH Fill Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[26], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 58: { // CCCH Fill Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[27], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 59: { // CCCH Fill Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[28], *gsmPulse, 8 +
(i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 60: { // CCCH Fill Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[29], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 61:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;

 98

 delete modBurst;
 break;
}
case 62:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 63: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 64: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 65: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 66: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 67: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;

 99

 delete modBurst;
 break;
}
case 68: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 69: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 70: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 71:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 72:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 73: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;

 100

 delete modBurst;
 break;
}
case 74: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 75: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 76: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 77: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 78: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 79: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;

 101

 break;
}
case 80: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 81:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 82:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 83: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 84: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 85: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;

 102

 break;
}
case 86: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 87: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 88: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 89: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 90: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 91:{ // Frequency Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;

 103

}
case 92:{ // Synchronization Burst
 BitVector current_sync_burst = sync_burst_creator(Frame_Number);
 signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 93: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 94: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 95: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 96: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 97: { // Paging Request Type 1 Burst0
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;

 104

}
case 98: { // Paging Request Type 1 Burst1
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 99: { // Paging Request Type 1 Burst2
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 100: { // Paging Request Type 1 Burst3
 signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
 break;
}
case 101: { // Idle Burst (Dummy Burst)
 signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
}
default:{ // Default fills bursts with Dummy Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst,fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
}
} // end switch
} // end if

else{ // Fill remaining timeslot [1–7] with Dummy Burst
 signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 Frame_Number += 1;
 delete modBurst;
} // end else

 105

} // end inner for loop
} // end outer for loop

//Test to see if Frame Number needs to be reset
if(Frame_Number >= 2715647){
 Frame_Number = 0;
 return 0;
}

md.start_of_burst = false;
md.end_of_burst = false;
md.has_time_spec = false;

for(int j=0; j<102; j++)
{
 for(int i=0; i<8; i++)
 {
 signalVector* currentBurst = fillerTable[j][i];
 tx_vec = concat(tx_vec, currentBurst);
 num_chunks = tx_vec->size() / 585;
// Need 4 GSM bursts before num_chunks > 1

 if(num_chunks < 1){
 std::cout << “need more samples” << std::endl;
 }

 else{
// Re-sampler needs four GSM bursts before resampling process can start
 resamp_vec = resmpl_sigvec(tx_hist, &tx_vec, tx_lpf, 96, 65,
585);

// Conversion of re-sampled vector from float to short
 num_resmpl = sigvec_to_short(resamp_vec, smpls_out);

// Send re-sampled burst of type short to USRP
 size_t num_tx_samps = tx_stream->send(smpls_out + 192 * 2,
 num_resmpl - 192 , md,
uhd::device::SEND_MODE_FULL_BUFF);
 }
 }
 }
}while(not stop_signal_called and repeat);

/**/
/* Delete Vectors and Destroy Signal Processing Library */
/**/
 delete currentBurst;
 delete tx_hist;
 delete tx_lpf;
 delete tx_vec;
 delete gsmPulse;
 sigProcLibDestroy();
 std::cout << “success” << std::endl;
 return EXIT_SUCCESS;
} // end main loop

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

APPENDIX C. GSM TRANSMITTER C++ CODE FOR TRIGGERED
HANDOVER FAILURE MESSAGE

This appendix contains the code for the triggered GSM handover failure message

transmitter. Prior to using this code, the handover failure message must first be converted

from hexadecimal values to binary values by executing the

GSM_message_hexadecimal_to_binary.py code described in Appendix B.

Next, the binary output from the GSM_message_hexadecimal_to_binary.py

code is run through the GSM_Burst_Creator.cpp code to encode the data bits and

interleave them onto four GSM TDMA normal bursts. Finally, the four GSM TDMA

normal bursts are modulated, re-sampled and transmitted using the

GSM_Handover_Failure_Triggered_Transmitter.cpp code contained in

this appendix. Many of the functions in this code were originally written in OpenBTS [1];

therefore, it requires the following OpenBTS C++ source code files for proper execution:

sigProcLib.cpp, BitVector.cpp, GSMCommon.cpp, and Timeval.cpp. It

also requires the following dependencies when using an Ubuntu Linux load: libboost-all-

dev, libusb-1.0–0-dev, python-cheetah, doxygen, and python-docutils. Finally, the

GSM_Handover_Failure_Triggered_Transmitter.cpp requires installation

of Ettus UHD software.

A. GSM_HANDOVER_FAILURE_TRIGGERED_TRANSMITTER.CPP

#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/exception.hpp>
#include <uhd/stream.hpp>
#include “sigProcLib.h”
#include “BitVector.h”
#include <boost/math/special_functions/round.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <boost/thread.hpp>
#include <iostream>
#include <complex>
#include <csignal>
#include <algorithm>
#include <fstream>

 108

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pcap.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <map>

/**/
/* TDMA_burst Array */
/* A list of the handover failure bursts created by the */
/* GSM_Burst_Creator.cpp code is needed as an input in order */
/* to send a handover failure message. */
/**/
const BitVector
TDMA_burst[] = {
BitVector(“000111110110111011000001010010011100000100100010000000111110
10111000101110001011100010111110100101000110011001110011110100111110001
00101111101010000”), // Dummy Burst (No. 0)

BitVector(“000100000010001110111010100010000000001000101111101010000000
10010110111011110001011011100100000000101010101010001001000000000000111
11010100010100000”), // Handover Failure Burst0 (No. 1)

BitVector(“000101011101001110101010000001000101110101111110100000100000
10010110111011110001011011100101111101111010101010000101010101011100111
01010100000000000”), // Handover Failure Burst1 (No. 2)

BitVector(“000000000010101110101010100000010000000011101110100000000000
10010110111011110001011011100010101011101110100000000000000000001111101
01010000101010000”), // Handover Failure Burst2 (No. 3)

BitVector(“000000101001010001010101101011100000100100010111011111101110
10010110111011110001011011101010100101000101010100111010100000110001010
10101111011101000”) // Handover Failure Burst3 (No. 4)
};

/**/
/* init_resampler Function */
/* This function initializes resampling signal vectors and was */
/* derived from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
void
init_resampler(signalVector **lpf, signalVector **buf, signalVector
**hist,
 int tx)
{
 int P, Q, taps, hist_len;
 float cutoff_freq;
 P = 96 * 1;
 Q = 65 * 1;
 taps = 651;
 hist_len = 130;

 109

 if (!*lpf){
 cutoff_freq = (P < Q) ? (1.0/(float) Q) : (1.0/(float) P);
 *lpf = createLPF(cutoff_freq, taps, P);
 }
 if (!*buf){
 *buf = new signalVector();
 }

 if (!*hist){
 *hist = new signalVector(hist_len);
 }
}

/**/
/* concat Function */
/* This function concatenates signal vectors and was derived */
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
signalVector
*concat(signalVector *a, signalVector *b)
{
 signalVector *vec = new signalVector(*a, *b);
 delete a;
 delete b;

 return vec;
}

/**/
/* segment Function */
/* This function re-segments signal vector and was derived */
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
signalVector
*segment(signalVector *a, int indx, int sz)
{
 signalVector *vec = new signalVector(sz);
 a->segmentCopyTo(*vec, indx, sz);
 delete a;
 return vec;
}

/**/
/* resmpl_sigvec Function */
/* This function re-samples signal vector and was derived */
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */
/**/
signalVector
*resmpl_sigvec(signalVector *hist, signalVector **vec,
 signalVector *lpf, double in_rate, double out_rate,
 int chunk_sz)
{
 signalVector *resamp_vec;
 int num_chunks = (*vec)->size() / chunk_sz;

 110

// Truncate to a chunk multiple
 signalVector trunc_vec(num_chunks * chunk_sz);
 (*vec)->segmentCopyTo(trunc_vec, 0, num_chunks * chunk_sz);

// Update sample buffer with remainder
 *vec = segment(*vec, trunc_vec.size(), (*vec)->size() -
trunc_vec.size());

// Add history and resample
 signalVector input_vec(*hist, trunc_vec);
 resamp_vec = polyphaseResampleVector(input_vec, in_rate,
 out_rate, lpf);

// Update history
 trunc_vec.segmentCopyTo(*hist, trunc_vec.size() - hist->size(),
 hist->size());
 return resamp_vec;
}

/**/
/* sigvec_to_short Function */
/* This function converts a signal vector into a C++ type short */
/* array and was derived from the OpenBTS source code file */
/* radioIOResamp.cpp [1]. */
/**/
int
sigvec_to_short(signalVector *vec, short *smpls)
{
 int i;
 signalVector::iterator itr = vec->begin();
 for (i = 0; i < vec->size(); i++) {
 smpls[2 * i + 0] = itr->real();
 smpls[2 * i + 1] = itr->imag();
 itr++;
 }
 delete vec;
 return i;
}

/**/
/* Main Function */
/**/
int
UHD_SAFE_MAIN(int argc, char *argv[]){
 uhd::set_thread_priority_safe();

/************************/
/* Initialize Variables */
/************************/
 std::string args = ““;
 double tx_sample_rate = 400e3;
 double tx_freq = 890600000; //ARFCN 3 uplink frequency
 float tx_gain = 1;
 double tx_bandwidth = 200000;
 std::string ant = “TX/RX”;

 111

 int samplesPerSymbol = 1;
 int numARFCN = 1;
 double fullScaleInputValue = (32000)*(0.3);
 double oneScaleInputValue = (32000)*(0.3);
 double zeroScaleInputValue = 1;
 int mOversamplingRate = numARFCN/2 + numARFCN;

// Initialize Signal Processing Library
 sigProcLibSetup(samplesPerSymbol);

// Create GSM Pulse
 signalVector *gsmPulse = generateGSMPulse(2,1);

// Initialize vector which holds re-sampler’s low pass filter
 signalVector *tx_lpf = 0;

// Initialize vector which holds re-sampler’s history vector
 signalVector *tx_hist = 0;

// Initialize vector which holds re-sampler’s input buffer
 signalVector *tx_vec = 0;

// Initialize re-sampler
 init_resampler(&tx_lpf, &tx_vec, &tx_hist, true);

/*******************/
/* Initialize USRP */
/*******************/
 uhd::usrp::multi_usrp::sptr usrp;
 usrp = uhd::usrp::multi_usrp::make(args);

// Create transmit streamer
 uhd::stream_args_t stream_args;
 stream_args.cpu_format = “sc16”;
 uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);

// Set the transmit sample rate (Hz)
 usrp->set_tx_rate(tx_sample_rate);
 double actual_tx_rate = usrp->get_tx_rate();

/* set tx gain */
 usrp->set_tx_gain(tx_gain);

/* set tx freq */
 uhd::tune_result_t tr = usrp->set_tx_freq(tx_freq);
 double actual_tx_freq = usrp->get_tx_freq();

/* set tx bandwidth */
 usrp->set_tx_bandwidth(tx_bandwidth);

/* set tx antenna */
 usrp->set_tx_antenna(ant);

/***/
/* Create PCAP Listener */

 112

/* IP Address = LOOPBACK Address, UPD Listen Port = 4729 */
/***/
// Session handle
 pcap_t *handle;
// Sniff the Loopback Address
 char dev[] = “lo”;
// Error string
 char errbuf[PCAP_ERRBUF_SIZE];
// Compiled filter expression
 struct bpf_program fp;
// Filter, only what traffic using port 4729
 char filter_exp[] = “port 4729”;
// Our netmask
 bpf_u_int32 mask;
// Our IP Address
 bpf_u_int32 net;
// PCAP header storage
 struct pcap_pkthdr header;
// Pointer to beginning of packet received
 const u_char *packet;
 char const hex[16] =

{‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’};
 std::string gsm_handover_to_UTRAN_message = “0663”;

 if(pcap_lookupnet(dev, &net, &mask, errbuf) == -1) {
 fprintf(stderr, “Can’t get netmask for device %s\n,” dev);
 net = 0;
 mask = 0;
 }

 handle = pcap_open_live(dev, BUFSIZ, 1, 1000, errbuf);

 if(handle == NULL) {
 fprintf(stderr, “Couldn’t open device %s: %s\n,” dev, errbuf);
 return(2);
 }

 if(pcap_compile(handle, &fp, filter_exp, 0, net) == -1) {
 fprintf(stderr, “Couldn’t parse filter %s: %s\n,” filter_exp,
 pcap_geterr(handle));
 return(2);
 }

 if(pcap_setfilter(handle, &fp) == -1) {
 fprintf(stderr, “Couldn’t install filter %s: %s\n,” filter_exp,
 pcap_geterr(handle));
 return(2);
 }
/***/
/* GSM Transmitter */
/***/
 uhd::tx_metadata_t md;
 uhd::time_spec_t current_usrp_time = usrp->get_time_now();
 short smpls_out[4680];

 113

 int num_resmpl, num_chunks;
 signalVector* resamp_vec;
 signalVector* currentBurst;

 signalVector *fillerTable[4][8];
 for (int j = 0; j < 4; j++) {
 for (int i = 0; i < 8; i++) {
 if(i == 0){

if(j==0) { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 0)
 signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 delete modBurst;
}
else if(j==1) { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 1)
 signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 delete modBurst;
}
else if(j==2) { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 2)
 signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 delete modBurst;
}
else { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 3)
 signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, fullScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 delete modBurst;
}
} // end if(i == 0)
else if(i==1){ // Amplified Dummy Burst (Timeslot 1, TDMA Frame [0–3])
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, oneScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 delete modBurst;
}
else if(i==7){ // Amplified Dummy Burst (Timeslot 7, TDMA Frame [0–3])
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);
 scaleVector(*modBurst, oneScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 delete modBurst;
}
else{ // Un-Amplified Dummy Burst (Timeslot [2–6], TDMA Frame [0–3])
 signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse,
 8 + (i % 4 == 0), samplesPerSymbol);

 114

 scaleVector(*modBurst, zeroScaleInputValue);
 fillerTable[j][i] = new signalVector(*modBurst);
 delete modBurst;
}
} // end inner for loop
} // end outer for loop

 md.start_of_burst = false;
 md.end_of_burst = false;
 md.has_time_spec = false;

 for(;;){
 std::string str;
 packet = pcap_next(handle, &header);
 if(packet == NULL){
 continue;
 }
 for(int i = 0; i<header.len; i++) {
 const char ch = packet[i];
 str.append(&hex[(ch & 0xF0) >> 4], 1);
 str.append(&hex[(ch & 0xF)], 1);
 }
 std::string gsm_message;
 gsm_message.append(str.begin()+122,str.begin()+126);

 if(gsm_message == gsm_test_message){
 std::cout << “Recieved Handover to UTRAN Message” << std::endl;
 break;
 }
 }

// Set initial usrp time
 usrp->set_time_now(uhd::time_spec_t(0.0));

/**/
/* Set a wait time between receiving handover to UTRAN message */
/* and sending handover failure message so bursts arrive in correct */
/* timeslot of SDCCH. */
/**/
 boost::this_thread::sleep(boost::posix_time::milliseconds(38));

 for(int j=0; j<4; j++){
 for(int i=0; i<8; i++){
 signalVector* currentBurst = fillerTable[j][i];
 tx_vec = concat(tx_vec, currentBurst);
 num_chunks = tx_vec->size() / 585;

 if (num_chunks < 1){
 //std::cout << “need more samples” << std::endl;
 }

 else {
// Re-sampler needs four GSM bursts before resampling process can start
 resamp_vec = resmpl_sigvec(tx_hist, &tx_vec, tx_lpf, 96, 65,
 585);

 115

// Conversion of re-sampled vector from float to short
 num_resmpl = sigvec_to_short(resamp_vec, smpls_out);

// Send re-sampled burst of type short to USRP
 size_t num_tx_samps = tx_stream->send(smpls_out + 192 * 2,
 num_resmpl - 192 , md,
 uhd::device::SEND_MODE_FULL_BUFF);
 } // end else
 } // end inner for
 } // end outer for

/***/
/*Delete Vectors, Destroy Signal Processing Library, and Cleanup PCAP*/
/***/
 pcap_freecode(&fp);
 pcap_close(handle);
 delete tx_hist;
 delete tx_lpf;
 delete tx_vec;
 delete gsmPulse;
 sigProcLibDestroy();

 std::cout << “TRANSMIT SUCCESS” << std::endl;

 return EXIT_SUCCESS;
} // end main loop

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

LIST OF REFERENCES

[1] D. Burgess, H. Samra, R. Sevlian, A. Levy, and P. Thompson. (2013). OpenBTS
public release [Online software]. Available:
http://wush.net/svn/range/software/public

[2] P. Krysik. (2013). Airprobe [Online software]. Available:

https://svn.berlin.ccc.de/projects/airprobe

[3] E. Blossom, M. Ettus, T. Rondeau, and J. Blum. (2013). GNURadio [Online

software]. Available: http://www.gnuradio.org

[4] E. Southern, A. Ouda, and A. Shami, “Solutions to security issues with legacy

integration of GSM into UMTS,” International Conference for Internet
Technology and Secured Transactions, pp. 614–619, Dec. 11–14, 2011.

[5] U. Meyer and S. Wetzel, “On the impact of GSM encryption and man-in-the-

middle attacks on the security of interoperating GSM/UMTS networks,”
International Symposium on Personal, Indoor and Mobile Radio
Communications, vol. 4, pp. 2876–2883, Sept. 5–8, 2004.

[6] P. Ekdahl and T. Johansson, “Another attack on A5/1,” IEEE Trans. Information

Theory, vol. 49, no. 1, pp. 284–289, Jan. 2003.

[7] 3rd Generation Partnership Project Radio Resource Control Protocol Technical

Specification, 3GPP TS 44.018 (Release 11), 2012.

[8] 3rd Generation Partnership Project Mobile Radio Interface Layer 3 Technical

Specification, 3GPP TS 44.118 (Release 11), 2012.

[9] 3rd Generation Partnership Project Mobile Radio Interface Layer 3 Technical

Specification, 3GPP TS 04.18 (Release 99), 2006.

[10] 3rd Generation Partnership Project Modulation Technical Specification, 3GPP

TS 05.04 (Release 99), 2001.

[11] 3rd Generation Partnership Project Multiplexing and Multiple Access on the

Radio Path Technical Specification, 3GPP TS 05.02 (Release 99), 2003.

[12] 3rd Generation Partnership Project Channel Coding Technical Specification,

3GPP TS 05.03 (Release 99), 2005.

[13] 3rd Generation Partnership Project Data Link Layer Technical Specification,

3GPP TS 44.006 (Release 11), 2012.

 118

[14] L. Perkov, A. Klisura, and N. Pavkovic, “Recent advances in GSM insecurities,”

Proceedings of the 34th International Convention, pp. 1502–1506, May 23–27,
2011.

[15] I. Briceno, M. Goldberg, and D. Wagner, (2013, Oct.). A pedagogical

implementation of A5/1 [Online]. Available: http://www.scard.org/gsm/a51.html

[16] 3rd Generation Partnership Project UTRAN Functions and Examples on

Signaling Procedures Technical Report, 3GPP TR 25.931: (Release 11), 2012.

[17] G. Alsenmyr, J. Bergstrom, M. Hagberg, A. Milen, W. Muller, H. Palm, H.

Velde, P. Wallentin, and F. Wallgren, “Handover between WCDMA and GSM,”
Ericsson Review, vol. 80, no. 1, pp. 6–11, 2003.

[18] A. Mohammed, H. Kamal, and S. AbdelWahab, “2G/3G Inter-RAT Handover

Performance Analysis,” Second European Conference on Antennas and
Propagation, pp. 1, 8, 11–16, Nov. 2007.

[19] J. Eberspächer, H. Vögel, C. Bettstetter, and C. Hartmann, GSM Architecture,

Protocols and Services, 3rd ed. West Sussex, United Kingdom: John Wiley &
Sons Ltd, 2009.

[20] S. K. Das, Mobile Handset Design, Singapore: John Wiley & Sons (Asia) Pte Ltd,

2010.

[21] Ettus Research. (2013, Oct.). USRP N200/N210 networked series specifications

[Online]. Available: http//www.ettus.com

[22] D. Shen. (2013). Tutorial 4: The USRP board [Online]. Available:

http://radioware.nd.edu/documentation/hardware/the-usrp-board

[23] National Instruments. (2013, Mar.). An Introduction to software defined radio

with NI LabVIEW and NI USRP [Online]. Available:
ftp://ftp.ni.com/pub/events/campus_workshop/niusrp_hands_on_student_manual.
pdf

[24] T. Engel. (2013). Xgoldmon [Online software]. Available:

https://github.com/2b-as/xgoldmon

 119

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

