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ABSTRACT  
This report proposes the use of uncertainty management principles for processing 
combinations of aleatory and epistemic uncertainty forms through arithmetic operations to 
yield an output uncertainty margin as an extreme value interval. The method is demonstrated 
using some test equations from an Epistemic Uncertainty Workshop conducted in 2002 by the 
Sandia National Laboratories in the USA. The approach is robust, computationally efficient 
and does not require special assumptions. A comparison with the results of the workshop 
participants showed similar results to most workshop participants. The benefit of this 
approach is that it is a step-wise process for computation with no need for a large number of 
simulations nor complex sampling strategies. 
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Computing with Epistemic Uncertainty   
 
 

Executive Summary  
 
In computational models of real-world problems input measures for elements about which 
little data exists are sometimes subjectively estimated. Such input estimates are said to 
embed epistemic uncertainty due to the lack of knowledge about the elements. The 
presence of such epistemic uncertainty, especially in combination with probabilistic 
aleatory uncertainty, is known to present theoretical challenges when propagating 
uncertainty through mathematical equations in complex system models. We demonstrate 
the use of uncertainty management principles for processing mixed uncertainty forms 
through arithmetic operations to determine an output margin as an extreme value interval. 
In August 2002 Sandia National Laboratories in the US conducted an Epistemic 
Uncertainty Workshop where the participants were invited to quantify the amount of 
uncertainty in the outputs of two relatively simple equations, and the inputs contained 
both epistemic and aleatory uncertainty forms. The proposed method is applied to the 
Sandia Workshop problems and our results are compared with those of other approaches 
that have also been published for those problems. We conclude that our results are similar 
to those obtained by most workshop participants, and furthermore, that our approach 
lends itself to a stepwise process without the need for complex simulations as was the 
chosen approach by many researchers who have addressed those problems. 
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1. Introduction  

The presence of epistemic uncertainty, especially in combination with probabilistic 
aleatory uncertainty, presents a theoretical challenge when propagating uncertainty 
through mathematical equations. Towards finding improved methods and techniques for 
propagating hybrid uncertainty forms through system equations, Sandia National 
Laboratories in the USA have researched many theoretical approaches to the problem in 
relation to reliability and safety evaluation of nuclear products and facilities, as by Diegert 
et al. (2007). 
 
In 2002 Sandia conducted an Epistemic Uncertainty Workshop, described by Oberkampf et 
al. (2002), organised around a set of challenge problems where the participants were 
invited to quantify the amount of uncertainty in the outputs of two relatively simple 
equations, where the inputs contained both epistemic and probabilistic aleatory 
uncertainty. A summary of the workshop results by Ferson et al. (2004) indicated that a 
diverse range of approaches were applied. 

 
Since that workshop Sandia and others have conducted further exploratory analysis of 
alternative methods to propagate hybrid mixtures of uncertainty through mathematical 
equations, many of which applied simulation with various sampling regimes, e.g. Ferson 
and Hajagos (2004), Tonon (2004), Helton et al. (2004), Diegert et al. (2007), Rao et al. (2007), 
Eldred and Swiler (2009) and Helton and Johnson (2011). Many authors who applied 
simulation techniques were also required to invoke the Laplace principle of insufficient 
reason and assume a uniform probability distribution across the input epistemic intervals 
for sampling purposes.  

 
As an alternative to simulation and the complex computations required in the methods 
above, we propose a simple approach that avoids the complications and assumptions of 
other approaches while still yielding realistic outputs. As described by Helton and 
Johnson (2011), the stated objective of this hybrid uncertainty research at Sandia was to 
determine the margin of uncertainty in output values, and margin means range. Thus we 
focus only on the extreme points that will determine this range of output values of the test 
functions. The proposed approach to determine these extreme values is founded on some 
general uncertainty management principles combined with the application of interval 
arithmetic, as in Moore (1966), and standard function optimisation techniques using 
MATLAB. The only assumption underlying this approach is that any value that is explicit 
or implicit in the input information is possible.  

 
The structure of the paper is as follows. Section 2 describes the two broad classes of 
uncertainty and the general uncertainty management principles upon which the proposed 
approach is based. Section 3 introduces the Sandia workshop problems and the steps in 
applying the proposed approach. Section 4 then details the computations for the Sandia 
problems and Section 5 compares those results with other published results. Finally, 
Section 6 offers some conclusions. 
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2. Management of Hybrid Uncertainty 
 
The various forms of uncertainty in the input data used by computational models are often 
simplified into two main classes: aleatory and epistemic uncertainty. These may be present 
separately or in conjunction in various proportions which then comprise hybrid 
uncertainty combinations. First, we will outline descriptions of each main class from the 
Sandia workshop organisers, and subsequently, some general uncertainty management 
principles that support our approach. 
 

2.1 Aleatory uncertainty 
 
As described by Oberkampf et al. (2002): 
We use the term aleatory uncertainty to describe the inherent variation associated with the physical 
system.  …The mathematical representation most commonly used for aleatory uncertainty is a 
probability distribution. When substantial experimental data are available for estimating a 
distribution, there is no debate that the correct model for aleatory uncertainty is a probability 
distribution. 
In other words, this type of uncertainty concerns measure or value variations that are 
governed by a random process and computations are guided by well developed 
probabilistic methods. Aleatory uncertainty is sometimes called irreducible uncertainty 
because it originates from uncontrollable stochastic variations. 
 
2.2 Epistemic uncertainty 

Again, as described by Oberkampf et al. (2002): 
Epistemic uncertainty derives from some level of ignorance of the system or the environment. We 
use the term epistemic uncertainty to describe any lack of knowledge or information in any phase or 
activity of the modelling process. The key feature that this definition stresses is that the fundamental 
cause is incomplete information or incomplete knowledge of some characteristic of the system or 
environment. 
 
A lack of knowledge may have many causes but some examples may include: sparse 
evidence or data, lack of experience, incomplete understanding of the context or 
environment, a non-stationary context, a partial understanding of system elements, or 
unknown or even unknowable system parameter values. In the data for the Sandia 
workshop problems many estimates of the input parameter values are given as epistemic 
intervals of possible minimum and maximum values. Epistemic uncertainty is sometimes 
called reducible uncertainty, as it may be reduced with the supply of more data or 
information.  
 
2.3 Uncertainty management principles 

In the proposed computational approach, the guidance for each step will be provided by 
three uncertainty management principles as have been outlined by Klir (1990,1995). 
Although these are very simple, they can have a strong supervisory effect on 
computations. 
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2.3.1 Principle of maximum uncertainty 

The principle of maximum uncertainty (PMxU) supervises how different forms of input 
uncertainty should be combined into a uniform representation reflecting the highest form 
of input uncertainty.  Using that uniform representation, the maximum uncertainty in the 
inputs is propagated through computations and hence is truly reflected in the output 
uncertainty levels. Thus, when epistemic interval measures are to be combined with 
probabilistic data, the result should be an epistemic interval which may also embed some 
aleatory information. One example of a violation of this principle is when a uniform 
probability distribution is assumed to apply within an epistemic interval. Such an 
assumption adds information and consequently reduces the uncertainty in the input data.  
 
2.3.2 Principle of minimum uncertainty 

The principle of minimum uncertainty (PMnU) dictates that if alternative types of 
investigative analysis or information reduction techniques are applied to the source data, 
no new uncertainty should be added by the method adopted. An example of how this 
principle is violated is when a particular sampling strategy is applied in simulation. The 
reason for this is that there is an additional uncertainty associated with each sampling 
method since different sampling strategies may produce different results. 
 
2.3.3 Principle of uncertainty invariance 

The principle of uncertainty invariance (PInvU) dictates that no extra uncertainty is added 
or subtracted when transforming a quantity between the representations used by different 
uncertainty formalisms. The previous example of transforming an epistemic interval into a 
uniform probability distribution between the extremities violates this principle also 
because it adds information and thus reduces the original uncertainty. 
 
 
 

3. The Workshop Problems Overview 
 
The workshop presented two problems being two relatively simple functions as shown in 
Section 5. Applied to the first expression were twelve different sets of input data with 
hybrid uncertainty forms. The second problem concerned a mass-spring-damper system 
with a periodic force applied to the mass. An expression for the steady state magnification 
factor of the system was given based on the ratio of the mass lateral displacement and the 
maximum input force (and a spring constant). Only one input dataset with hybrid 
uncertainties was applied in the second problem. 
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4. The Proposed Approach 

4.1 The interval arithmetic operations 
 
The required interval operations, as described by Moore (1966), are as follows. In other 
cases, such as for exponentiation, the output interval is defined by the minimum across all 
combinations of the input interval values and the exponent interval values, and similarly 
the maximum across all combinations of those values. 
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4.2 The computation steps 

Since the epistemic input uncertainties are axiomatically a higher uncertainty form than 
the aleatory inputs, in accordance with the PMxU we use epistemic intervals as the 
medium by which we synthesise the input aleatory and epistemic information. Thus, there 
are three steps in the proposed approach. First, we determine the minimum and maximum 
parameter values that are possible from the epistemic data and aleatory data (at given 
confidence degrees where such are required). Next, we apply these input parameter 
extreme value intervals to the equations to determine a conservative range of output 
values for each function by interval arithmetic. The third step is then to determine the true 
output minimum and maximum values for the functions which exist within this 
conservative epistemic interval. To do this we apply standard methods and tools for non-
linear function optimisation subject to parameter constraints. 
 
4.3 Synthesis of the hybrid uncertainties 

The input data for the parameters in both challenge problems consists of a mixture of 
epistemic intervals, lognormal probability distributions, crisp triangular probability 
distributions (TPD), and fuzzy TPD where the three vertices are given as crisp epistemic 
intervals. The conversion of the input parameter information to epistemic intervals is as 
follows, with the parameter epistemic intervals subsequently processed through the 
equations by interval arithmetic.  
 
  

[ ] [ ] [ ], , ,a b c d a c b d+ = + +

[ ] [ ] [ ], , ,a b c d a d b c− = − −
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4.3.1 Converting the lognormal distributions to epistemic intervals 
 
For the lognormal parameter probability distributions a confidence level is applied to 
determine statistical confidence intervals for parameter values. And since aleatory 
information has less uncertainty than epistemic inputs, we can consider these limits as 
epistemic intervals where all values within the range are possible at the given confidence 
level. 

4.3.2 Converting the crisp TPDs to epistemic intervals 
 
The traditional type of confidence interval referred to above is associated with a given 
degree of probabilistic confidence. For a TPD the mean ± 2 standard deviations would then 
yield a 98% degree of confidence. However, unlike many other probability distributions 
the TPD has a discrete base which is the maximum range of values that is possible. Hence, 
by the PMxU the interval conversion for a crisp TPD is the size of the base of the TPD.  
 

4.3.3 Converting the fuzzy TPDs to epistemic intervals 
 
Again, to conform to the PMxU in these uncertainty transforms, the values from the input 
intervals for the base points determine the most extreme values and are selected as 
follows. 
The extreme base points:   
Min of left base point interval     =  a 
Max of right base point interval  =  b 
Then the final epistemic interval is simply [a, b]. 
 
 

5. The Problem Computations 

The solutions for Problem 1 data sets (i-xii) and Problem 2 by applying the uncertainty 
management principles with interval algebra and optimisation methods are as follows.  

 
5.1 Problem 1 computations 

For  .     (1) 
 

(i)  a =    [0.1, 1.0 ],  b = [0,  1.0] 

  

Lowest exponential value   =   0.11.0     =   0.1 
Highest exponential value   =  2.01.0        =   2.0 
 i.e.  y  =  [ 0.1,  2.0 ] is the epistemic constraint interval. 

 
However, 0.1 is not necessarily a true function minimum. The true minimum is found by 
taking the partial derivatives w.r.t. a and b and letting both equal zero. Since a ≥  0.1, the 

( )ay a b= +

[ ]

[0.1,1.0]

[0.1,1.0]

[ (0.1 0), (1.0 1.0) ]

0.1 , 2.0

= + +

=

y
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min must be when b = 0. Then the turning point of   is at a = e-1 and y = 0.6922. And 
since the function increases monotonically with b above this point, the maximum is 2.0 at 
the maximum of the epistemic constraint interval.  
 
Thus, the true extreme value interval is y  = [0.69,  2.0]. 

 
(ii) a =   [ 0.1, 1.0 ]  

b  =  [ 0.6, 0.8 ],  [ 0.4, 0.85],  [ 0.2, 0.9 ],  
         [ 0.0, 1.0 ]   

All equally credible so by PMxU: 
 b  =  [Min , Max ]  =  [ 0.0 , 1.0 ] 

 Thus a, b same as (i) and  y  =  [ 0.69,  2.0 ] 
 

(iii) a =   [ 0.1, 1.0 ]  
b  =  [ 0.6, 0.0 ],  [ 0.4, 0.8 ],  [ 0.1, 0.7 ],   
         [ 0.0, 1.0 ]   

 Thus Min and Max same as (ii) and   b  =  [0.0 , 1.0] 
Again     y  =  [0.69,  2.0] 

 
(iv) a =   [ 0.1, 1.0 ]   

b  =  [ 0.6, 0.8 ],  [ 0.5, 0.7 ],  [ 0.1, 0.4 ], 
        [ 0.0, 1.0 ]  

 Thus Min and Max same as (ii)  and   b = [ 0.0 , 1.0 ] 
 Again   y  =  [ 0.69,  2.0 ] 
 

(v)         a  =  [ 0.5, 0.7 ],  [ 0.3, 0.8 ],  [ 0.1, 1.0 ]  
b  =  [ 0.6, 0.6 ],  [ 0.4, 0.85 ],  [ 0.2, 0.9 ], 
         [ 0.0, 1.0 ]  

 a [ Min, Max ]  =   [ 0.1 ,  1.0 ] 
 b [ Min, Max ]  =   [ 0.0 ,  1.0 ] 

 Again   y  =  [ 0.69,  2.0 ] 
 

(vi)         a  =   [ 0.5, 1.0 ],  [ 0.2, 0.7 ],  [ 0.1, 0.6 ]  
b  =  [ 0.6, 0.6 ],  [ 0.4, 0.8 ],  [ 0.1, 0.7 ],  
          [ 0.0, 1.0 ]  
 a [ Min, Max ]  =   [ 0.1 ,  1.0 ] 

 b [ Min, Max ]  =   [ 0.0 ,  1.0 ] 
  Again   y  =  [ 0.69,  2.0 ] 
 

(vii)        a  =   [ 0.8, 1.0 ],  [ 0.5, 0.7 ],  [ 0.1, 0.4 ]  
 b  =  [ 0.8, 1.0 ],  [ 0.5, 0.7 ],  [ 0.1, 0.4 ],  
         [ 0.0, 0.2 ]  
 a [ Min, Max ]  =   [ 0.1 ,  1.0 ] 

 b [ Min, Max ]  =   [ 0.0 ,  1.0 ] 
 Again    y  =  [ 0.69,  2.0 ] 
 

(viii) a = [0.1, 1.0 ]  
and  b is given by a lognormal probability distribution  where ln b ~ N ( µ, σ ) 

= ay a
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  and  µ  =  [0.0, 1.0 ] and   σ = [0.1, 0.5 ]. 
For Normal distribution 99.7% Confidence interval,   CI   =  µ    ±   3  σ  
 
Thus by PMxU: 
      CI (Min)      =   µ  (Min)  -  3  σ  (Max) 
     =    0  -  3 (0.5) 
     =  - 1.5    

CI (Max)     =   µ  (Max)  +  3  σ  (Max) 
     =   1   +  3 (0.5) 
  =   2 .5 

 
CI (X)  =  [  -1.5,  2.5 ] 
 

 
For lognormal distribution,  b  =  eX 
Thus,    b (Max)  =  e2.5   =  12.182 
             b (Min)  =  e-1.5   =  0.223    
        i.e. b = [ 0.223, 12.182 ] 
 
Then,  y =  [  a  +  b  ]a   
 =  [[0.1, 1.0 ] + [ 0.223, 12.182 ]][0.1 , 1.0 ] 
 =   [ 0.323, 13.182 ][ 0.1 , 1.0 ] 
 =   [ Min , Max  ] 
 =   [ 0.323,  13.182 ]  
 

But again this lower interval boundary is not a true value for the function and the true 
lower boundary is the same as in the previous cases. However, the upper boundary is 
a true value due to the increased upper boundary of the b parameter for the 
monotonically increasing function. 
 Thus, y  =  [0.69,  13.18 ] 
 
(ix)   a   =  [ 0.5, 0.7 ],  [ 0.3, 0.8 ],  [ 0.1, 1.0 ]  

 and b is given by a lognormal probability distribution where ln b ~ N (µ, σ ) 
       and  µ  =   [ 0.6, 0.8 ],  [ 0.2, 0.9 ],    [ 0.0, 1.0 ]  
         and  σ  =   [ 0.3, 0.4 ],  [ 0.2, 0.45 ],  [ 0.1, 0.5 ]  
  
    By PMxU,  a  =  [ 0.1,  1.0 ],   

µ  =   [ 0.0, 1.0 ],   σ  =   [ 0.1, 0.5 ] 
 Values for a, µ and σ are same as (viii) and, 

 y  =  [0.69,  13.18 ]  
 

(x)    a  =  [ 0.5, 1.0 ],  [ 0.2, 078 ],  [ 0.1, 0.6 ]  
and b is given by a lognormal probability distribution  where ln b ~ N (µ, σ) 

       and  µ = [ 0.6, 0.9 ] , [ 0.1, 0.7 ] ,  [ 0.0, 1.0 ]  
        and  σ  = [ 0.3, 0.45 ], [ 0.15, 0.35 ], [ 0.1, 0.5 ]  
   
  By PMxU ,   a  =  [  0.1,  1.0 ],  

 µ  =  [ 0.0, 1.0,  and   σ  =  [ 0.1, 0.5 ] 
 Values for a, µ and σ are same as (viii) and, 



UNCLASSIFIED 
DSTO-TN-1394 

UNCLASSIFIED 
8 

  y  =  [0.69,  13.18 ]  
(xi)   a  =  [ 0.8, 1.0 ] ,  [ 0.5, 0.7 ] ,  [ 0.1, 0.4 ]  

and b is given by a lognormal probability distribution  where ln b ~ N (µ, σ ) 
       and  µ  =  [ 0.6, 0.8 ] ,  [ 0.1 , 0.4 ] ,   [ 0.0, 1.0 ]  
        and  σ  =  [ 0.4, 0.5 ] ,  [ 0.25, 0.35 ] , [ 0.1, 0.2 ]  
 
    By PMxU ,   a  =  [  0.1,  1.0 ], 

 µ  =  [ 0.0, 1.0 ]  and   σ  =   [ 0.1, 0.5 ] 
 Values for a, µ and σ are same as (viii)  and, 

 y  =  [0.69,  13.18 ]  
 

(xii)   a   =   [0.1 , 1.0 ]  
b is given by a lognormal probability distribution where ln b ~ N ( µ,  σ ) 

               and   µ  =  0.5  and  σ  =  0.5. 
 For Normal distribution 99.7% Confidence Interval,  CI  =  µ   ±   3  σ  
  
Thus by PMxU: 
      CI (Min)  =   µ  (Min)  -  3  σ  (Max) 
 =    0.5  -  3 (0.5) 
  =  - 1.0    

CI (Max)  =   µ  (Max)  +  3  σ  (Max) 
 =   0.5   +  3 (0.5) 

 =   2.0 
CI (X)      =  [ -1.0,  2.0 ] 

 
And for lognormal distribution,  b  =  eX 
Thus,    b (max)  = e2.0    =  7.389 
  b (min)  = e-1.0    =  0.368   

  i.e.  b = [ 0.368,  7.389 ] 
 

Then,  y =  [  a  +  b  ]a   
=  [[0.1 , 1.0 ] + [0.368 , 7.389 ]][0.1 , 1.0 ] 
=   [ 0.468,  8.389 ][ 0.1 , 1.0 ] 
=   [  Min , Max  ] 
=   [ 0.468,  8.389 ]  at  99.7% confidence  level. 

 
Again this lower interval boundary is not a true value for the function and the true lower  
boundary is the same as in the previous cases. However, the upper boundary is a true 
value due to the increased upper boundary of the b parameter for the monotonically 
increasing function. 

 Thus,  y  =  [0.69,  8.39 ] 
 
Caveat for the problems with lognormal data: 

Because the Normal distribution is asymptotic to the base and very small probabilities 
may occur over a large value range, 99.7% confidence limits are associated with the results 
for the lognormal data, unlike the problems with TPD or epistemic intervals which reflect 
100% confidence in the output interval. Thus there is still a small chance of a value beyond 
the output intervals for the lognormal data examples. 
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5.2 The Problem 2 Computations 

A simple linear oscillator system consists of a mass, spring and a damper with a periodic 
forcing function applied to the mass. The steady state magnification factor (DS) is given by 
the following expression as provided. The problem is to estimate the uncertainty in the 
estimate for DS.   

    
     (2) 

and 

        (3)  
 
…where, m = mass of cart,  k = spring constant,  c = linear damping coefficient,  Y and ω  = 
the amplitude and frequency of the sinusoidal excitation (Ycos ωt),  and  X = lateral 
displacement. 
 
As previously described, all inputs will first be reduced to intervals by the PMxU, and 
initially we estimate a conservative output interval by using interval arithmetic. The true 
minimum and maximum values within the output epistemic conservative interval are then 
determined by optimising a non-linear function with input parameters subject to 
constraints.  
 
 The Input parameter data: 

 m:    a crisp triangular probability distribution, 
    (min, mod, max) = (10, 11, 12) 

 
k:    Three independent sources estimate a fuzzy triangular probability distribution:  

Min =   [a1, a2 ],   Mod = [ h1, h2 ],    Max = [ b1, b2 ] 
  1:   [ 90, 100 ],   [ 150, 160 ],   [ 200,210 ] 
  2    [ 80, 110 ],   [ 140, 170 ],  [ 200,220 ] 
  3: [ 60, 120 ],   [ 120, 180 ],    [190,230 ] 

 
 c:     Three independent interval estimates for  
    [cmin, cmax],   1: [ 5, 10 ],  2: [ 15, 20 ],  3: [ 25, 25] 
 
 Y :  a single interval estimate:   [Ymin, Ymax ]  

 =  [ 70, 100 ] 
 
 ω:  a single fuzzy triangular probability distribution : 
   Min = [a1, a2 ],  Mod =  [h1, h2 ],   Max =  [b1, b2 ], 
  [ 2.0, 2.3 ],       [ 2.5, 2.7 ],  [ 3.0, 3.5 ]. 

 
  

S
XD Y
k

=
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5.2.1 Converting problem 2 data to epistemic intervals 
 
As in Problem 1, the input data consists of epistemic intervals, and crisp or fuzzy 
triangular probability distributions. Again, all input uncertainty representations will be 
reduced to epistemic intervals according to the PMxU.  
 
The m data: 
For the TPD, by the PMxU the extreme value interval is [10, 12 ].  
 
The k data: 
 From the 3 estimates the lowest Min  =  60 
 From the 3 estimates the largest max =  230 
By the PMxU the k interval with maximum value uncertainty is [ 60, 230 ]. 
 
The c data: 
From the 3 interval estimates, by the PMxU the combined interval is [5, 25 ]. 
 
The Y data :     Input is a single interval  [ 70, 100 ].     
 
The ω data:    
For the single fuzzy TPD the lowest base minimum in that interval estimate is 2.0 and the 
highest base maximum from that interval estimate is 3.5. Thus, the epistemic interval 
embedding the maximum value uncertainty is the base interval [ 2.0, 3.5 ]. 
 

5.2.2 The interval arithmetic operations 
 
Interval arithmetic is next applied to determine the large conservative output interval 
within which the true function extreme values must be found. 
The problem function is: 

 
   (3) 

 
 

=  [  [5, 25] . [2, 3.5]  ]2 

      =   [ 10, 87.5 ]2 

      =   [ 100.00, 7656.25 ] 
 

 =   [ 10, 12 ] . [ 2, 3.5 ]2 

      =   [ 10, 12 ] . [ 4, 12.25 ] 

      =   [ 40.00, 147.00 ]   
 

=  [ 60.00, 230.00 ]  - [ 40.00, 147.00 ]   
         = [ (60-147), (230-40)  ]   

        = [ -87.00, 190.00 ]   

( )2cω

2mω

2k mω−

( ) ( )
2 22

S
kD

k m cω ω
=

− +
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=  [ 7569,  36100.00 ]  

  
=    [ 7569, 36100.00 ]  + [ 100.00, 7656.25 ]  

 =    [ 7669.00,  43756.25 ]  
 

   =   [ 7669.00,  43756.25 ]0.5 
     =   [ 87.60,  209.18 ] 
 

 
Then inserting for DS, 

[ ]

[ 60.00, 230.00 ]
[87.60, 209.18 ]

60.00 230.00
,

209.18 87.60

0.29, 2.63

SD =

=

=

 
  

 

 
This is the conservative estimate of the possible output extreme values within which the 
true function minimum and maximum values must be found. 
 
5.2.3 The non-linear function optimisation 

The true minimum and maximum within the possible output DS interval is determined by 
following standard methods for the optimisation of non-linear functions of several 
variables under constraints. Using MATLAB mathematical software the function was 
found to be monotonically increasing within the DS interval constraint so the maximum 
within that PMxU output interval is 2.63. If the surface is cut at the value of 2.63 there may 
also be more than one parameter set to yield that value. One such set is shown below. 
 
Maximum DS =   2.63:  
 when k = 109.41,  m = 12,  c = 5   w = 3.5 
 (Occurs when 3 parameters are at input boundary points.) 
 
Minimum DS  =   0.49:   
 when k = 60, m = 12,  c = 25, w = 3.5  
 (Occurs when all parameters are at input boundary points.) 
 
Thus, the output extreme values are DS  =  [ 0.49, 2.63 ].  
 

6. Comparison with Other Approaches 

Some published results of workshop participants as summarised in Ferson et al (2004) and 
Ferson and Hajagos (2004), plus some subsequent explorations of alternative approaches 
by Helton et al. (2004), are compared with those of this author as shown in Tables 1 and 2. 
Table 1 lists the approximate maximum range across the results of the workshop 

( )22k mω−

( ) ( )
2 22k m cω ω− +
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participants for the output mean value range, as well as the output extreme value range 
for Problem 1. The approximate extreme values for the results of later exploratory 
investigations by Helton et al. (2004) were taken from the published cumulative 
distribution functions (CDF) for those investigations. If we then assume the upper extreme 
value is the most critical for each estimate of the margin of output uncertainty, the last 
column in the table shows where a significant difference occurs (and the approximate % 
difference) between the results of the proposed approach and the upper result of the 
various published investigations. Considering the maximum values that could be found in 
the published results, for Problem 1 there was no difference in half of the data sets (the 
simpler ones), and a 20-45% increase in the other data sets. 
 
Table 1: Summary of published results for Problem 1 
 

 
 
 
 

Workshop 
Participant 
Results: 
 
Mean Values 
 
 
[2, Table 1] 

Workshop 
Participant 
Results: 
 
Extreme  
Values 
 
[3, Figs.4,6,7,15] 

Alternative 
Explorations 
Results: 
 
Extreme 
Values  
 
[5, Figs.15-19] 

Proposed 
Method 
Results:  
 
Extreme  
Values 

Difference 
in 
Maximum 
of 
Extreme  
Values 

Dataset Number      
Original Current      

1 i [0.69, 2.00] [0.69, 2.00] [0.69, 2.0] [0.69, 2.0] No 

2a ii [0.84, 1.89 ] [0.69, 2.00] [0.69, 2.0] [0.69, 2.0] No 
2b iii [0.82, 1.85 ] [0.69, 2.00] [0.69, 2.0] [0.69, 2.0] No 

2c iv [0.69, 2.00 ] [0.69, 2.00] [0.69, 2.0] [0.69, 2.0] No 
3a v [0.83, 1.56 ] [0.69, 2.00] [0.69, 2.0] [0.69, 2.0] No 

3b vi [0.82, 1.44 ] [0.69, 2.00] [0.69, 2.0] [0.69, 2.0] No 
3c vii [0.69, 2.00 ] [0.69, 2.00] [0.69, 2.0] [0.69, 2.0] No 

4 viii [0.86, 4.42 ] [1.0, 11] [ 1, 5 ] [0.69, 13.2] Yes  
(+20%) 

5a ix [ 1.05, 3.79 ] [0.91, 10.9] [ 1, 5 ] [0.69, 13.2] Yes  
(+21%) 

5b x [ 1.03, 3.48 ] [0.91, 10.9] [ 1, 5 ] [0.69, 13.2] Yes 
 (+21%) 

5c xi [ 1.01, 4.08 ] [0.94, 9.10] [ 1, 5 ] [0.69, 13.2] Yes  
(+45%) 

6 xii [ 1.02, 2.89 ] [1.20, 7.00] [ 1, 5 ] [0.69, 8.39] Yes 
 (+20%) 

 
 
Table 2 next shows the mean and upper extreme value estimates of those authors who 
published results for Problem 2. The upper extreme value of 2.63 of the proposed method 
is approximately equal to the mean estimates of Tonon (2.13) and the maximum mean 
estimate of Helton et al. (2.8). However, our upper output value is significantly less than 
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the upper limits of Helton et al. (~4.0), Ferson and Hajagos (~8.0) and Tonon (~6), which 
occur at very low probabilities in the tails of their respective CDF of output values.  
 
Notably, with the proposed approach all the aleatory input information is not always 
required since epistemic uncertainty is a higher uncertainty form. For example, in 
workshop Problem 2 the probabilistic information within the triangular distribution 
boundaries was not needed to determine the extremities of the output DS epistemic 
interval. However, probability distribution parameters (mean and standard deviation) are 
used to derive statistical confidence intervals in some Problem 1 examples, and hence the 
output extreme values are associated with a certain confidence level in those examples. 

 
Table 2:  Summary of published results for Problem 2 
 

 Tonon 
[4] 

Ferson and 
Hajagos  [3] 

Helton 
et al. [5] 

Proposed 
Method 

 
 
Mean estimates 
 

 
2.13 

 
3.72 

 
2.8 

 
NA 

Upper extreme value ~ 6 ~ 8 ~ 4 2.63 
     

 
 

7. Conclusions 

A computationally simple method founded on uncertainty management principles has 
been proposed for synthesising and propagating hybrid uncertainties through 
mathematical equations. From our results we suggest that the application of uncertainty 
management principles to guide the synthesis and propagation of epistemic and aleatory 
uncertainty is a computationally efficient approach for determining output extreme values 
when propagating such hybrid uncertainty combinations through arithmetic operations. 
The overall effect of applying the uncertainty management principles is that no special 
techniques or assumptions have been applied that modified the input uncertainties in any 
way. And by avoiding the need for simulation, various assumptions and selection of 
specific sampling strategies that may affect results are also avoided. According with the 
Principle of Maximum Uncertainty, epistemic intervals represent the highest input 
uncertainty form and thus have been adopted as the single uncertainty representation to 
synthesise and propagate the hybrid input uncertainties and yield a potential extreme 
value range. The true function extreme values within that range were then determined by 
function optimisation techniques. Using two standard test equations, the results of 
applying the proposed method to compute extreme values were then compared with  
some other published approaches. One benefit of combining interval arithmetic with the 
Principle of Maximum Uncertainty is that the limits beyond which output values are 
impossible are clearly defined. This can then facilitate the interpretation of output 
cumulative probability distributions when simulation methods are applied. However, we 
consider the main benefit of the proposed approach is computational efficiency due to a 
discrete programmable process without the need for complex simulation procedures. 
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