INNOVATIVE INVERTED MAGNETRON EXPERIMENTS AND THEORY

Ronald Gilgenbach
UNIVERSITY OF MICHIGAN

06/01/2015
Final Report

DISTRIBUTION A: Distribution approved for public release.
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. **REPORT DATE (DD-MM-YYYY)**
 05-28-2015

2. **REPORT TYPE**
 Final Report

3. **DATES COVERED (From - To)**
 April 1, 2010 - Feb. 28, 2015

4. **TITLE AND SUBTITLE**
 Innovative Inverted Magnetron Experiments and Theory

5a. **CONTRACT NUMBER**
 FA9550-10-1-0104

5b. **GRANT NUMBER**
 AFOSR-BAA-2009-1

6. **AUTHOR(S)**
 Ronald M. Gilgenbach, Y.Y. Lau, John E. Foster

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Regents of the University of Michigan
 3003 S. State St
 Ann Arbor, MI 48109-1274

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 Air Force Office of Scientific Research
 875 N. Randolph St. Room 3112
 Arlington, VA 22203

10. **SPONSOR/MONITOR'S ACRONYM(S)**
 AFOSR

11. **SPONSOR/MONITOR'S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Distribution A - Approved for Public Release

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**
 Research at the University of Michigan has designed, simulated, fabricated, and characterized the Recirculating Planar Magnetron (RPM), a new type of High Power Microwave (HPM) device. Researchers have simulated the operation of the device in both a conventional and inverted magnetron geometry, and found the conventional geometry to be more practical. After significant computational iteration, several prototypes were fabricated and tested across a wide parameter space encompassing -250 to -300 kV, 0.18-0.3 T, and pulse lengths of 200-500 ns. To improve device operation, multiple cathode designs were simulated and tested, varying both geometry and material properties. The RPM demonstrated peak instantaneous electronic efficiencies as high as 32%, and peak powers of up to 150 MW at 1 GHz. A patent was filed and granted on this RPM device during this grant. A 1.89 GHz variant, the RPM-CACE, has been designed and optimized in collaboration with Air Force Research Lab. Its unique coupler design, the Coaxial All-Cavity Extractor (CACE), provides an efficient, broadband method of power extraction where axial power extraction is desired. In simulation, the RPM-CACE was up to 70% efficient, producing peak microwave powers of 420 MW.

15. **SUBJECT TERMS**
 High power microwaves,

16. **SECURITY CLASSIFICATION OF:**
 a. REPORT: U
 b. ABSTRACT: U
 c. THIS PAGE: U

17. **LIMITATION OF ABSTRACT**
 SAR

18. **NUMBER OF PAGES**
 36

19. **NAME OF RESPONSIBLE PERSON**
 Ronald M. Gilgenbach

19b. **TELEPHONE NUMBER**
 734 763 1261
INSTRUCTIONS FOR COMPLETING SF 298

1. **REPORT DATE.** Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. **REPORT TYPE.** State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. **DATES COVERED.** Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. **TITLE.** Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. **CONTRACT NUMBER.** Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. **GRANT NUMBER.** Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. **PROGRAM ELEMENT NUMBER.** Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. **PROJECT NUMBER.** Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. **TASK NUMBER.** Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. **WORK UNIT NUMBER.** Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. **AUTHOR(S).** Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J., Jr.

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES).** Self-explanatory.

8. **PERFORMING ORGANIZATION REPORT NUMBER.** Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. **SPONSOR/MONITOR'S ACRONYM(S) AND ADDRESS(ES).** Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. **SPONSOR/MONITOR'S REPORT NUMBER(S).** Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

11. **DISTRIBUTION/AVAILABILITY STATEMENT.** Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

12. **SUPPLEMENTARY NOTES.** Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

13. **ABSTRACT.** A brief (approximately 200 words) factual summary of the most significant information.

14. **SUBJECT TERMS.** Key words or phrases identifying major concepts in the report.

15. **SECURITY CLASSIFICATION.** Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

16. **LIMITATION OF ABSTRACT.** This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
AFOSR Final Performance Report

Award #: FA9550-10-1-0104

“Innovative Inverted Magnetron Experiments and Theory”

AFOSR Program Manager:
Jason Marshall
Air Force Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203

Principal Investigator:
Prof. Ronald Gilgenbach
rongilg@umich.edu
(734) 763 – 1261

Co-Principal Investigators
Prof. Y.Y. Lau
yylau@umich.edu
(734) 764-5122
Prof. John E. Foster
jefoster@umich.edu
(734) 764-1976

Nuclear Engineering and Radiological Science Department
University of Michigan
1911 Cooley Building
2355 Bonisteel Blvd.
Ann Arbor, MI 48109
Summary
A novel magnetron concept has been designed, simulated, fabricated, and characterized. Research at the University of Michigan has developed the Recirculating Planar Magnetron (RPM), a new type of High Power Microwave (HPM) device. Using HFSS, MAGIC, and ICEPIC, researchers have simulated the operation of the device in both a conventional and inverted magnetron geometry, and found the conventional geometry to be more practical. After significant computational iteration, several prototypes were fabricated and tested across a wide parameter space encompassing -250 to -300 kV, 0.18-0.3 T, and pulselengths of 200-500 ns. To improve device operation, multiple cathode designs were simulated and tested, varying both geometry and material properties. The RPM demonstrated peak instantaneous electronic efficiencies as high as 32%, and peak powers of up to 150 MW at 1 GHz. A patent was filed and granted on this RPM device during this grant¹. A 1.89 GHz variant, the RPM-CACE, has been designed and optimized in collaboration with Air Force Research Lab via an iterative design process. Its unique coupler design, the Coaxial All-Cavity Extractor (CACE), provides an efficient, broadband method of power extraction where axial power extraction is desired. In simulation, the RPM-CACE was up to 70% efficient, producing peak microwave powers of 420 MW.

Table of Contents

Summary .. 2
Table of Figures .. 4
Introduction .. 6
Methods, Assumptions, and Procedures .. 6
 Initial Design.. 6
 RPM-12a .. 7
 MCC-1 .. 10
 Analytic Theory Development... 11
 Simulation .. 14
 MCC-2 .. 16
Power Extraction Design ... 18
 PoP Coupler (DFA-650b) .. 19
 DFA-340e .. 19
Experimental Setups .. 21
 Phase Measurements .. 21
 Calibrated Power Measurements .. 22
 RPM-CACE .. 23
Experimental Results and Discussion ... 26
 Phase Measurements .. 26
 Power Measurements ... 28
Conclusions .. 31
Future Work ... 31
Patents ... 32
Publications .. 32
Support ... 35
Appendix ... 35
Table of Figures

Figure 1: 3D Solidworks renderings of each RPM embodiment including: A) Type (2) with cylindrical cavities, B) Type (2) with planar cavities, and C) Type (1) with planar cavities. .. 7

Figure 2: 2D simulation in MAGIC PIC of the initial L-band RPM prototype. The magnetic field points out of the paper. ... 8

Figure 3: Simulated magnetron operation (in MAGIC PIC) of the RPM-12a with solid cathode for varying stages of mode development including: A) Initial electron emission (19 ns), B) Brillouin flow and electron hub formation (24 ns), C) RF perturbations on laminar flow (43 ns), and D) Full pi-mode operation (60 ns) .. 9

Figure 4: Electric field configurations for the even and odd 5π/6 -modes (left) and π-modes (right) found using HFSS. ... 10

Figure 5: 2D representation of the Mode Control Cathode geometry in the RPM with: A) DC electric and magnetic fields as well as beam drift direction (shown in red), and B) RF electric field configuration .. 11

Figure 6: Single period of the RPM slow wave structure with MCC showing the three regions of vacuum: I) the AK gap, II) the gap in the cathode, and III) the resonant cavity. The horizontal axis, x = -h2, bisects the RPM into two halves. .. 12

Figure 7: Sample section of the RPM slow wave structure and MCC with arrows representing the normalized magnitude and direction of the ERF x B drift experienced by the particles as well as the spoke formation caused by these drifts (shaded red). ... 14

Figure 8: Dispersion relation including the mode control cathode for the even (Dashed-black) and odd (black) modes using the analytic model compared to the even (dashed-blue) and odd (blue) modes in the infinite cavity array in HFSS. ... 15

Figure 9: The MCC-1 cathode, mounted on the cathode stalk with the anode and vacuum chamber removed. It consists of five, 2.2 cm OD rods spaced 3.8 apart, resulting in an AK gap of 3.34 cm. ... 16

Figure 10: MCC-2 cathode with Glyptal paint coating. The emission regions in the center are left bare and given a high surface roughness to enhance emission .. 17

Figure 11: A comparison of all cathodes tested in the RPM-12a. a) LC-1 b) MCC-1 c) MCC-2 d) MCC-2 with Glyptal paint and velvet emitters ... 17

Figure 12: a) Cylindrical cross-section DFA, the simplest design. b) A rounded rectangular cross-section DFA. c) The elliptical cross section DFA. .. 18

Figure 13: Peak electric field of each coupler design as a function of input power. The elliptical design, while complex to manufacture, demonstrates excellent performance. 18

Figure 14: Longitudinal cross section of the PoP DFA, indicating the dimensions used for design and fabrication. A= 8.3 cm, B= 1.27 cm, C= 2.54 cm, D= 1.9 cm, E= 0.32 cm, F= 6.1 cm, G= 2.8 cm, H= 6.6 cm ... 19

Figure 15: A) Transverse cross section of the elliptical DFA with relevant dimensions, and B) Longitudinal cross section of the elliptical DFA with relevant dimensions shown in Table 1. 20

Figure 16: Transmission properties of the DFA-340e for both a perfect conductor (blue), and the actual fabrication material (black). .. 20
Figure 17: Cross-sectional top view of the experimental setup for initial phase measurements of the RPM-12a with LC1 and MCC-1 cathodes. Power is diffraction coupled out of the end of magnetron and sampled by an uncalibrated loop coupler. Oscillations on each slow wave structure are monitored with B-dot loops.

Figure 18: Cut-away top view of the experimental setup for calibrated power measurements. The proof of principle DFA-650b couplers launch a TE_{10} mode into the waveguide, where microwaves can be sampled by directional couplers and then terminated in an Ecosorb load.

Figure 19: Photograph of the experimental setup with the DFA-650b couplers, directional couplers, and Ecosorb loads installed on the end of the magnetron chamber.

Figure 20: A PIC simulation of the A6 magnetron with axial all cavity extraction, showing the geometry of the concept.

Figure 21: A 2D cross-section of an all-cavity extraction anode using standard rectangular waveguide on a planar RPM geometry.

Figure 22: Converting the waveguide geometry to a coaxial geometry. An oblique 3D perspective (top) shows that this is an extension of the double baffled waveguide concept. 2D transverse cross sections (bottom) provide an additional perspective.

Figure 23: Electric field configurations (arrows) for the RPM CACE for the: A) Transverse cross-section, and B) Longitudinal cross-section.

Figure 24: Solidworks model of the complete RPM-CACE. The vacuum chamber surrounding the anode and coaxial lines is removed for clarity.

Figure 25: An example of a raw microwave signal produced by the RPM with the MCC-1 installed. Phase locking is evident (left), and the FFT (right) shows no indication of mode competition.

Figure 26: RPM-12a shot demonstrating strong bi-modal operation with the LC-1 cathode. A) shot profile with relevant parameters, B) raw signal from heterodyne diagnostic, C) time-integrated Fourier transform, and D) time-frequency analysis (normalized white=1 and blue=0.5 and black=0).

Figure 27: Sample shots illustrating the two broad types of RPM-12a operation. a) High-power (> 100 MW), short duration shot using the MCC-2 with velvet emitters. b) a moderate-power (10's MW), long-duration shot using the MCC-2 with bare aluminum emitters.

Figure 28: Peak total power as a function of the difference in time between the peak output power of each waveguide.

Figure 29: Peak total power vs. magnetic field for RPM-12a shots with the MCC-2 cathode.
Introduction

Magnetrons are the “gold standard” for efficient microwave generation, providing robust operation in both military and commercial applications. High power magnetrons have operated for decades in the fields of radar, counter-electronics, communication, and commercial heating. Relativistic (cylindrical) magnetrons, operating in 0.1-1 μs pulses, have demonstrated peak powers of 4 GW and efficiencies of up to 35%.\(^2\,^3\) When operating in a space-charge limited regime, the available current is constrained by the cathode surface area. Consequently, the total power of the device is limited. For a given impedance, cathode surface area can be increased by increasing the size of the device, but this drives up the weight, total volume, and magnetic field volume (further driving up size, weight, and power requirements). In CW or repetitively pulsed designs, anode heat removal is also a relevant concern.

The Recirculating Planar Magnetron (RPM) is a crossed-field device that combines the advantages of recirculating devices with those of planar devices. The recirculating bends improve device efficiency, while the larger cathode and anode surface areas provide higher current and better heat removal, respectively. Additionally, the magnetic field volume grows only linearly with the number of cavities, N, rather than \(N^2\) for traditional cylindrical designs.

In this work, we have successfully designed, modeled, fabricated, and tested a RPM prototype. Using HFSS, MAGIC, and ICEPIC, we have simulated the operation of the device in both a conventional and inverted magnetron geometry, and have explored several cathode designs, varying both geometry and materials. A unique coupler, the Coaxial All-Cavity Extractor (CACE), has been designed to provide an efficient, broadband method of power extraction where axial power extraction is desired. It has been fielded on the a 1.89 GHz variant, the RPM-CACE, which has been designed and optimized in collaboration with Air Force Research Lab via an iterative design process.

Much of the work described herein was included in a recent University of Michigan Ph.D. dissertation funded by this grant\(^4\).

Methods, Assumptions, and Procedures

Initial Design

Initial RPM development work looked at several embodiments, as shown in Figure 1. While the “racetrack” geometries in A and B offered some distinct advantages (particularly for high frequency designs), the axial B field design in C was chosen for continued development. Initial simulations also investigated the possibility of operating the RPM in an inverted configuration,

with the cathode on the outside and the anode in the center, but concerns over microwave power extraction led to the use of a non-inverted design.

![Figure 1: 3D Solidworks renderings of each RPM embodiment including: A) Type (2) with cylindrical cavities, B) Type (2) with planar cavities, and C) Type (1) with planar cavities.](image)

The planar slow-wave structure utilizes π-periodic rectangular cavities to support the desired operating mode. Device dimensions were chosen to fit within existing hardware and develop π-mode oscillations at 1 GHz. The smoothbore cylindrical sections on the ends are designed to recirculate the beam, and provide minimal coupling between the top and bottom oscillators. More complex recirculating section geometries were investigated in simulation to provide more efficient beam recirculation, but were ultimately excluded from the prototype to reduce the complexity of the device.

Throughout the development process, we conducted simulations of this geometry using a 3-D PIC code, MAGIC\(^5\). Initial simulations and experiments used a 2 cm AK gap and a 5 cm thick hollow cathode, as shown in Figure 2. The anode cavities and vanes had a depth of 6.31 cm, a width of 1.92 cm, and an axial length of 11 cm, leading to a phase velocity of 0.26c. The radius of the cylindrical bends was set at 4.5 cm to maintain a beam velocity of 0.25-0.3c over the expected operating parameters. Later designs reduced the cathode thickness to increase the AK gap and reduce the effects of diode gap closure.

RPM-12a

After substantial iteration, we settled on a 12-cavity design with a 3.9 cm AK gap spacing and a solid, 1.27 cm thick, 24 cm long, 17 cm deep cathode, known as the LC-1. This RPM prototype is known as the RPM-12a. Figure 3 illustrates this geometry, as well the spoke formation when the device is simulated in MAGIC. The Michigan Electron Long Beam Accelerator with Ceramic stack (MELBA-C) was the pulsed power driver for the RPM prototype, and was capable of providing cathode voltages of -250-300 kV, 0.15-0.32 T axial magnetic fields, and 500 ns pulse durations. These parameters also influenced the design of the initial prototype.

In many instances, we show the RPM in a horizontal configuration, or refer to the anode structures as “top” and “bottom”. In practice, the device is actually operated with the cathode

\(^5\) http://www.mrcwdc.com/Magic/description.html
running vertically, due to the long moment arm of our cathode stalk. A slight cathode droop in the horizontal configuration leads to a smaller AK gap on the bottom, preferential current emission from that side, and increased change of gap closer on that side. In the vertical configuration, if the cathode sags slightly then it is closer to one of the recirculating bends, which has less of an impact on operation. One consequence of this orientation, however, is that any arcing from the end hats to the recirculating bends is likely to be on the bottom of the device.

Figure 2: 2D simulation in MAGIC PIC of the initial L-band RPM prototype. The magnetic field points out of the paper.
Figure 3: Simulated magnetron operation (in MAGIC PIC) of the RPM-12a with solid cathode for varying stages of mode development including: A) Initial electron emission (19 ns), B) Brillouin flow and electron hub formation (24 ns), C) RF perturbations on laminar flow (43 ns), and D) Full pi-mode operation (60 ns).
The finite element program, Ansoft’s High Frequency Structure Simulator (HFSS), was also used extensively in the design of the RPM to validate MAGIC cold tests and identify modes of operation. As shown in Figure 4, the initial RPM prototype had closely spaced even and odd π-modes, leading to mode competition and beating between each oscillator. The smoothbore recirculating sections do not keep the beam fully bunched, leading to weakly coupled top and bottom oscillators.

Figure 4: Electric field configurations for the even and odd $5\pi/6$-modes (left) and π-modes (right) found using HFSS.

MCC-1

To address this issue, we designed and implemented a Mode Control Cathode (MCC), which acts as a resonant electromagnetic coupler, as well as an emission priming structure, similar to the transparent cathode.\(^6\) Fundamentally, the MCC is an array of conductors that matches the vane-cavity periodicity of the RPM. The MCC increases the separation between the even and odd π-modes by altering the boundary condition along its horizontal axis of symmetry, where the differences between the even/odd modes are most pronounced (Figure 5).

Analytic Theory Development

As part of this work, we developed an analytical solution for the dispersion relation of the MCC7, and will summarize it here.

The dispersion relation for the MCC geometry is solved using the classic approach for an infinite cavity array.8 We represent the geometry with a single vane-cavity structure, shown in Figure 6, and apply the Floquet Theorem to replicate this structure as an infinite array. To obtain the resonant frequency, we decompose the structure into 3 distinct vacuum regions: 1) AK gap: vacuum region between cathode and anode, 2) Cathode space: vacuum region within the interior of the cathode, and 3) Resonant Cavity: vacuum region within the interior of the anode.

Figure 6: Single period of the RPM slow wave structure with MCC showing the three regions of vacuum: I) the AK gap, II) the gap in the cathode, and III) the resonant cavity. The horizontal axis, $x = -h_2$, bisects the RPM into two halves.

We then solve the EM fields of each region and use the solutions to match the RF fields along the 2 boundaries (1/2 at $x=0$ and 1/3 at $x=b$). It is assumed that the modes in regions 2 and 3 are TEM modes, as they the only important components for magnetron operation.

The two-fold symmetry of the RPM requires a unique boundary condition along the center line at $x = -h_2$. If this is categorized as a perfect E_y (null) boundary, there will be a 180° phase shift in E_y across the boundary and the odd mode solution will result. Similarly, a perfect H_z (null) boundary produces the even mode solution with a 0° phase shift in E_y across the boundary.

The resulting dispersion relation for the even modes:

$$U V = -YZ$$ \hspace{1cm} \text{Eqn 1}

$$V = \sin \left(\frac{\omega h_2}{c} \right) + \cos \left(\frac{\omega h_2}{c} \right) \sum_{n=-\infty}^{\infty} \frac{\omega}{\gamma_n c} \frac{w_2 L}{L} \text{sinc}^2 (\theta_2) \coth (\gamma_n b)$$ \hspace{1cm} \text{Eqn 2}

$$U = \cos \left(\frac{\omega h}{c} \right) - \sin \left(\frac{\omega h}{c} \right) \sum_{n=-\infty}^{\infty} \frac{\omega}{\gamma_n c} \frac{w_1 L}{L} \text{sinc}^2 (\theta_1) \coth (\gamma_n b)$$ \hspace{1cm} \text{Eqn 3}

$$Z = \frac{w_1 L}{L} \sum_{n=-\infty}^{\infty} \frac{\omega}{\gamma_n c \sinh (\gamma_n b)} \text{sinc} (\theta_2) \text{sinc} (\theta_1)$$ \hspace{1cm} \text{Eqn 4}
\[Y = \frac{w_2}{L} \sum_{n=-\infty}^{\infty} \frac{\omega \cos\left(\frac{\omega h_2}{c}\right)}{\gamma_n c \sinh(\gamma_n b)} \sin(\theta_2) \text{sinc}(\theta_1) \] \hspace{1cm} \text{Eqn 5}

Similarly, the odd-mode dispersion relation is:

\begin{align*}
U' &= \cos\left(\frac{\omega h_2}{c}\right) - \sin\left(\frac{\omega h_2}{c}\right) \sum_{n=-\infty}^{\infty} \frac{\omega w_2}{\gamma_n c L} \sin^2(\theta_2) \text{coth}(\gamma_n b) \\
V' &= \cos\left(\frac{\omega h}{c}\right) - \sin\left(\frac{\omega h}{c}\right) \sum_{n=-\infty}^{\infty} \frac{\omega w_1}{\gamma_n c L} \sin^2(\theta_1) \text{coth}(\gamma_n b) \\
Z' &= \frac{w_1}{L} \sum_{n=-\infty}^{\infty} \frac{\omega \sin\left(\frac{\omega h}{c}\right)}{\gamma_n c \sinh(\gamma_n b)} \sin(\theta_2) \text{sinc}(\theta_1) \\
Y' &= \frac{w_2}{L} \sum_{n=-\infty}^{\infty} \frac{\omega \cos\left(\frac{\omega h_2}{c}\right)}{\gamma_n c \sinh(\gamma_n b)} \sin(\theta_2) \text{sinc}(\theta_1) \\
&\hspace{1cm} \text{Eqn 6} \\
&\hspace{1cm} \text{Eqn 7} \\
&\hspace{1cm} \text{Eqn 8} \\
&\hspace{1cm} \text{Eqn 9} \\
&\hspace{1cm} \text{Eqn 10}
\end{align*}

When \(w_2 \) approaches zero, the system reduces to a solid cathode with a perfectly conductive boundary at \(x=0 \). Correspondingly, \(Y \) and \(U \) will go to zero. With \(U=0 \), Eqn 3 yields the known planar cavity array expression:

\[\cos\left(\frac{\omega h}{c}\right) = \sum_{n=-\infty}^{\infty} \frac{\omega w_1}{\gamma_n c L} \sin^2(\theta_1) \text{coth}(\gamma_n b) \] \hspace{1cm} \text{Eqn 11}
The electron self-focusing effect in each top/bottom cavity pair, was anticipated to greatly improve the coupling between the top and bottom oscillators, generate faster startup, and improve mode stability. The even/odd π-modes with a solid cathode were separated by only 2 MHz, as shown in Figure 4. The analytic and numerical dispersion relations for the MCC shown in Figure 8, however, demonstrate that it improves the mode separation to over 40 MHz. This separation continues to improve as the AK gap approaches zero, and asymptotically approaches zero as the AK gap is increased beyond 3 cm. Practical constraints of gap closure limit the AK gap to a minimum of 2 cm. Figure 8 also demonstrates excellent agreement between the analytic theory and simulation results for an infinite cavity array.
Figure 8: Dispersion relation including the mode control cathode for the even (Dashed-black) and odd (black) modes using the analytic model compared to the even (dashed-blue) and odd (blue) modes in the infinite cavity array in HFSS.

The first mode control cathode design, the MCC-1, was composed of 5 aluminum cylinders, each with a 2.22 cm diameter, spaced 3.8 cm apart, forming an AK gap of 3.38 cm. Each rod was press-fit into two 30 cm long, 5.1 cm diameter end caps spaced 17 cm apart. After issues with arcing from the end hats to the recirculating bends, the end hats separation was increased to 22 cm, as shown in Figure 9, and the cathode was denoted as the MCC-1L. A subsequent variant, the MCC-1Lg, was Glyptal coated to suppress emission outside of the interaction region.
Figure 9: The MCC-1 cathode, mounted on the cathode stalk with the anode and vacuum chamber removed. It consists of five, 2.2 cm OD rods spaced 3.8 apart, resulting in an AK gap of 3.34 cm.

While the MCC-1 did produce the desired phase-locking and mode purity, it was not highly reproducible. The large AK gap limited the cross-oscillator coupling, as the magnitude of the RF field on the cathode surface falls off with increased anode-cathode separation. The benefits of the MCC-1 were incorporated into its successor, which attempted to address its shortcomings.

MCC-2

The MCC-2, designed to reduce the effective AK gap of the RPM diode, was composed of 5 hollow, 1.9 x 3.8 cm rectangular structures, resulting in an AK gap of 2.6 cm; including the end caps, it was 23 cm in length (Figure 10). To suppress undesirable emission, the end caps of both MCCs were coated with Glyptal insulating paint. The final embodiment of the MCC-2 added 1.9 cm² velvet squares to the center of the cathode using conductive silver epoxy adhesive (Figure 11d).
Figure 10: MCC-2 cathode with Glyptal paint coating. The emission regions in the center are left bare and given a high surface roughness to enhance emission.

Figure 11: A comparison of all cathodes tested in the RPM-12a. a) LC-1 b) MCC-1 c) MCC-2 d) MCC-2 with Glyptal paint and velvet emitters.
Power Extraction Design

Power extraction for the RPM was a two-stage process, consisting of the Proof-of-Principle (PoP) coaxial extractor, and the Coaxial All Cavity Extractor (CACE). Extractor designs were largely constrained by the existing experimental setup and available space. Coaxial extraction was determined to be most promising, but additional hardware was required to convert the coaxial transmission line to an easily measured TE_{10} waveguide mode. This was accomplished using a distributed field adapter (DFA). The DFA is designed to minimize electric field enhancement on its surface by distributing the axial Poynting flux over a broad, smooth, conductive surface. Elongating the conductive structures distributes the power and extends the transitional TE_{11} mode in the axial direction. Two DFAs were manufactured for this experiment. The first, shown in Figure 12a, was used in the PoP coupler in WR-650 waveguide. The second, Figure 12c, was the basis for the RPM-CACE coupler in WR-340 waveguide.

![Figure 12: a) Cylindrical cross-section DFA, the simplest design. b) A rounded rectangular cross-section DFA. c) The elliptical cross section DFA.](image1)

![Figure 13: Peak electric field of each coupler design as a function of input power. The elliptical design, while complex to manufacture, demonstrates excellent performance.](image2)
PoP Coupler (DFA-650b)
The PoP coupler was designed to have a pass band at 0.93-1.08 GHz, exceeding the expected operating range of the RPM-12a and interfacing with the WR-650 waveguide components already in place. A dimensional schematic of this DFA is shown in Figure 12. Parameters A through E were set by the readily available materials sizes. Given these constraints and the pass-band target, the remaining parameters (F-H) were optimized through numerical iteration in an HFSS script. For simulated input powers of 100 MW, the peak fields in the coupler were 32 MV/m (Figure 13).

![Diagram of PoP DFA](image)

Figure 14: Longitudinal cross section of the PoP DFA, indicating the dimensions used for design and fabrication. A= 8.3 cm, B= 1.27 cm, C= 2.54 cm, D= 1.9 cm, E= 0.32 cm, F= 6.1 cm, G= 2.8 cm, H= 6.6 cm

DFA-340e
The DFA-340e, designed for use on the RPM-CACE at 1.9 GHz, expanded on the PoP coupler to provide greater power handling and improved bandwidth. Its elliptical profile, shown in Figure 15, was highly optimized via extensive HFSS simulation. While some iterations of the DFA-340 demonstrated bandwidths in excess of 35%, the final ‘e’ design was relatively narrow band, sacrificing bandwidth for improved transmission over the intended 1.85-1.95 GHz operating range, as shown in Figure 16.
Figure 15: A) Transverse cross section of the elliptical DFA with relevant dimensions, and B) Longitudinal cross section of the elliptical DFA with relevant dimensions shown in Table 1.

Table 1: Optimized dimensions of the DFA-340e for transmission and minimal electric field enhancement from 1.85 to 2 GHz.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (cm)</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>6.6</td>
<td>ε₁</td>
<td>0.33</td>
</tr>
<tr>
<td>b</td>
<td>6.2</td>
<td>ε₂</td>
<td>0.47</td>
</tr>
<tr>
<td>c</td>
<td>3.5</td>
<td>ε₃</td>
<td>1.00</td>
</tr>
<tr>
<td>d</td>
<td>1.36</td>
<td>ε₄</td>
<td>0.325</td>
</tr>
<tr>
<td>e</td>
<td>6.0</td>
<td>rm₁</td>
<td>1.7 cm</td>
</tr>
<tr>
<td>f</td>
<td>3.0</td>
<td>rm₂</td>
<td>3.2 cm</td>
</tr>
<tr>
<td>r₁</td>
<td>5.0</td>
<td>rm₃</td>
<td>0.75 cm</td>
</tr>
<tr>
<td>r₂</td>
<td>5.0</td>
<td>rm₄</td>
<td>3.0 cm</td>
</tr>
</tbody>
</table>

Figure 16: Transmission properties of the DFA-340e for both a perfect conductor (blue), and the actual fabrication material (black).
Experimental Setups
The Michigan Electron Long Beam Accelerator with a Ceramic insulator stack (MELBA-C) was used to operate the RPM-12a at voltages between -250 and -300 kV for pulselengths of 200–600 ns. Pulsed electromagnets were placed approximately 21.6 cm apart in a pseudo-Helmholtz configuration and centered over the anode region to create a nearly uniform axial magnetic field, which was varied on a per-shot basis from 0.1–0.34 T. The magnetron was housed within a cylindrical, 63.5 cm long, 39.4 cm diameter, #304 stainless steel vacuum chamber and was operated at vacuums between 10^{-6}-10^{-7} Torr. The MELBA-C voltage pulse was sampled by a CuSO$_4$ resistive divider and the current entering the RPM-12a was measured by a Rogowski coil embedded in the MELBA-C output port.

Phase Measurements
In the initial RPM-12a experiments, a calibrated power extraction scheme had not yet be implemented, and the experiments focused on phase measurements via 2 mm2 B-dot probes placed ~4 mm axially from the central open-ended cavity of the two slow wave structures (Figure 17). Signals from each B-dot loop were transmitted via identical N-type cables to 4 GHz, 20 GS/s Tek7404 oscilloscopes in a Faraday cage for measurement.

![Diagram](image_url)

Figure 17: Cross-sectional top view of the experimental setup for initial phase measurements of the RPM-12a with LC1 and MCC-1 cathodes. Power is diffraction coupled out of the end of magnetron and sampled by an uncalibrated loop coupler. Oscillations on each slow wave structure are monitored with B-dot loops.
Calibrated Power Measurements

Subsequent experiments to make calibrated power measurements replaced the Lexan vacuum window with a 1” thick aluminum flange, to which the couplers and outer coaxial conductors are mounted (Figure 18). A 1.5 cm OD aluminum rod connects to the center vane of each anode, as well as to the input of the DFA-650b. Directional couplers (-58 dB), are mounted to the output of each coupler, and terminate in Ecosorb loads (Figure 19). The output of the couplers is transmitted to a Faraday cage and attenuated with 20-25 dB of additional inline attenuation, then split with a two-way power divider to be directly sampled by the Tek7404 oscilloscope and rectified by calibrated Agilent 8427B low-barrier Schottky diodes, which are then sampled by 500 MHz, 1 GS/s Tek3054 oscilloscopes.

![Cut-away top view of the experimental setup for calibrated power measurements. The proof of principle DFA-650b couplers launch a TE_{10} mode into the waveguide, where microwaves can be sampled by directional couplers and then terminated in an Ecosorb load.](image-url)
RPM-CACE

While the coaxial design of the proof of principle experiment was a success, we wanted to design a more robust power extraction system. With the assistance of Air Force Research Lab, we were able to design and fabricate a 1.9 GHz RPM with a Coaxial All Cavity Extraction (CACE) system. The CACE is derived from the all cavity extractor concept developed by Dr. Greenwood at AFRL\(^9\). Originally designed for a double baffled waveguide on the A6 magnetron, it uses a slotted waveguide antenna excited by the orthogonal radiation pattern produced by the magnetron.

The natural extension of this concept to the planar geometry of the RPM is to “unfold” it to produce a structure similar to what is shown in Figure 21.

In this configuration, however, the guided wavelength for π-mode operation is equivalent to half the free-space wavelength, resulting in a minimum RF phase velocity of 0.5c. Accounting for realistic (non-zero) waveguide wall thicknesses and cutoff frequency, the minimum RF phase velocity is approximately 0.65-0.7c. Given that high (> ~0.35c) phase velocities have a negative impact on relativistic magnetron efficiency, we see that a simple unfolding of the all cavity extraction concept is not sufficient.

To address this, the CACE uses a two-stage mode conversion process, which couples the TEM mode of two open-face resonant cavities to an orthogonally directed TEM mode in a coaxial

transmission line, as shown in Figure 22. The high reflex angle ($\phi \approx 350^\circ$) of the CACE couples the TE$_{11}$ mode directly to excite the TEM mode within a distance of only a quarter the free space wavelength, substantially shorter than the several axial wavelengths required for a typical mode matched converter.

The initial stage of the CACE output transmission line, shown in Figure 23, is a single baffled waveguide composed of: an outer conductor (1), inner conductor (2) and baffle (3). Rectangular coupling slots (4) are used at the back-wall of adjacent cavities (5) to couple the RF electric field on either side of the anode vanes (6). Each periodic structure is repeated end to end to form a single slow-wave structure of the RPM-CACE. Top and bottom slow wave structures are separated by a distance determined by the AK gap (7) and the cathode (8) thickness. RF power coupled into the output transmission line is mono-directionally propagated in the axial direction, away from the magnetron, using a capacitively-matched shorting plate (9).

Figure 22: Converting the waveguide geometry to a coaxial geometry. An oblique 3D perspective (top) shows that this is an extension of the double baffled waveguide concept. 2D transverse cross sections (bottom) provide an additional perspective.

Figure 23: Electric field configurations (arrows) for the RPM CACE for the: A) Transverse cross-section, and B) Longitudinal cross-section.
To field this extraction system on the existing experimental equipment at the University of Michigan, the entire anode and extraction structure needed to fit within the 43.2 cm ID of the electromagnets. As such, the system was designed to have 12 cavities, 6 WR-340 waveguides and an operating frequency of 1.9 GHz. This kept the RF phase velocity to 0.35c, and operated 9% below the waveguide cutoff.

Using HFSS, ICEPIC, and the parallel computing resources available at AFRL, the dimensions shown in Figure 23 were optimized to produce operation at the target frequency, while maintaining a quality factor above the over-coupled value, determined to be ~15 by ICEPIC simulations. In simulation, the RPM-CACE was able to produce 420 MW, with a current of 2.3 kA, a voltage of 330 kV, for an efficiency of 50-70%, operating at a π-mode frequency of 1.89 GHz.

Experimental Results and Discussion

Phase Measurements

The initial tests of the RPM-12a, using the LC-1 and MCC-1 cathodes, were focused on analyzing the mode structure and spectral purity of the microwave signals generated by the RPM.

As described in the previous section, the phase measurements used a broadband load, and measured the phase of RF generated on each slow wave structure. Those signals were numerically low pass filtered (< 1.5 GHz) before frequency-locking analysis was performed. We
defined frequency-locking as a state of operation where the relative phase difference between the oscillators was static for more than 20 ns, with a +/− 10° margin of error. Using this metric, the resulting performance of each cathode designs is shown in Table 2. As this shows, each cathode demonstrated an improvement in the occurrence of frequency-locking.

<table>
<thead>
<tr>
<th>Cathode</th>
<th>% of Locked Shots</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-1</td>
<td>23</td>
</tr>
<tr>
<td>MCC-1</td>
<td>32</td>
</tr>
<tr>
<td>MCC-2</td>
<td>57</td>
</tr>
</tbody>
</table>

Despite generating many uniform pulses, such as the sample shown in Figure 25, the LC-1 cathode was still highly susceptible to intense mode competition (Figure 26), with only 23% of its shots demonstrating frequency-locked operation.

Figure 25: An example of a raw microwave signal produced by the RPM with the MCC-1 installed. Phase locking is evident (left), and the FFT (right) shows no indication of mode competition.

Figure 26: RPM-12a shot demonstrating strong bi-modal operation with the LC-1 cathode. A) shot profile with relevant parameters, B) raw signal from heterodyne diagnostic, C) time-integrated Fourier transform, and D) time-frequency analysis (normalized white=1 and blue=0.5 and black=0).
The MCC-1, designed specifically to improve microwave start-up and locking time, improved the percentage of frequency-locked shots to 32%, improved the average locking duration from 26 to 32 ns, and improved the average pulselength from 124 to 260 ns. The substantially improvement in pulse duration is expected to be largely due to a reduction in endloss current, courtesy of the cylindrical end caps. The MCC-1 also demonstrated faster startup and higher sampled diode power (this was an uncalibrated power measurement, but the MCC-1 had higher sampled power using the same load and power sampling setup).

The MCC-2 further improved this concept by narrowing the AK gap and improving cross-oscillator coupling, increasing the percentage of frequency-locked shots to 57%.

Power Measurements
A total of 93 shots were conducted on the RPM-12a using the configuration shown in Figure 18, allowing us to make calibrated power measurements. These shots were all conducted using the MCC-2 cathode. The initial set was with a 101 cm2 bare aluminum emission area (Figure 10), while the second set used 36 cm2 of velvet fabric for emission sites (Figure 11d). For these power measurements the voltage ranged from -250 to -300 kV, while the magnetic fields for the aluminum and velvet emitters were 0.23-0.27 T and 0.2-0.34 T, respectively. Typical currents at start-up for these shots ranged from 2-4 kA. An endloss current monitor was not fieldable on the power extraction setup (Figure 18), so precise endloss currents are unknown. Previous endloss measurements with the phase measurement setup (Figure 17) indicated endloss currents of less than 0.2 kA. Consequently, all quoted efficiencies are total efficiencies, rather than electronic efficiencies.

Figure 27 shows the two broad classes of shots encountered on the RPM-12a with MCC-2 cathode. Generally, the velvet emitters drew higher currents during the 100-150 ns voltage risetime. The onset of oscillations generally occurred near the peak voltage for both cathodes. After RF oscillations ceased, current continued to increase steadily due to AK gap closure, as can be seen in the figures below. Current is extinguished by a command or self-crowbar within the pulsed power driver. Damage to the anode structure occurs if the current is allowed to continue to increase as the plasma cathode expands.
Figure 27: Sample shots illustrating the two broad types of RPM-12a operation. a) High-power (> 100 MW), short duration shot using the MCC-2 with velvet emitters. b) A moderate-power (10’s MW), long-duration shot using the MCC-2 with bare aluminum emitters.

Generally, and regardless of which MCC-2 embodiment was utilized, the RPM-12a operated in either the high-power (> 100 MW), short-duration mode shown in Figure 27a, or the moderate-power (10’s MW), long-duration mode of Figure 27. As the experimental configuration in the previous section indicated, we extract power from each side of the RPM independently. Consequently, the peak total power correlated strongly with a small offset between the peaks of each waveguide, as shown in Figure 28. Also notable from this figure is the fact that, while the two emitters produced similar maximum peak powers, the aluminum emitter produced a moderate (< 100 MW) peak power much more often than the velvet emitter did.

Figure 28: Peak total power as a function of the difference in time between the peak output power of each waveguide.
As Figure 29 demonstrates, we observed no correlation between output power and magnetic field. The velvet emitter was operated at much higher magnetic fields, initially due to concerns over gap closure, and later as we found it operated best at the highest field we could manage. Our electromagnets were only capable of producing a magnetic field of 0.32 T, and the output power of the velvet cathode continued to improve as we approached this value, so it is possible that we have not yet reached its optimal operating parameters.

![Figure 29: Peak total power vs. magnetic field for RPM-12a shots with the MCC-2 cathode.](image)

The velvet emitter, on average, was also 50% more efficient than the bare aluminum emitter, with high power shots demonstrating peak instantaneous efficiencies of 12-32%. While some efficiency gains are expected as a result of operating at higher magnetic fields\(^\text{11}\), simulations have also shown more uniform emission and a larger emitting area can produce increases in efficiency\(^\text{12}\).

As shown in Table 3, the last metric we analyzed was the microwave start-up time. The reference time \((t = 0)\) was defined as the time at which the voltage pulse reached half its maximum value. Again, the velvet emitter as an improvement over the bare aluminum. The lower start-up time, coupled with lower current draw during the voltage ramp, suggests that the velvet emitter began emitting at lower electric fields than the bare aluminum cathode.

Table 3: Performance metrics for the MCC-2 cathode types tested.

| Emitter | % Shots with $|\Delta t| < 5$ ns | Mean Peak Efficiency [%] | Mean Time to Oscillations [ns] | Highest Peak Efficiency [%] | Highest Peak Power [MW] |
|---------|----------------------------------|--------------------------|------------------------------|-----------------------------|--------------------------|
| Bare Al | 21 | 10 ± 5 | 51 ± 21 | 20 | 129 |
| Velvet | 37 | 15 ± 8 | 23 ± 7 | 32 | 149 |

Conclusions

We have designed, simulated, fabricated, and characterized a novel magnetron concept, the Recirculating Planar Magnetron (RPM). Using HFSS, MAGIC and ICEPIC, we have simulated the operation of the device in both a conventional and inverted magnetron geometry, and found the conventional geometry to be more practical for extraction. After significant computational iteration, several prototypes were fabricated and tested. Initial phase measurements demonstrated mode competition between the two slow-wave structures, and poor cross-oscillator coupling through the recirculating bends. To improve coupling, and promote frequency-locked operation, the Mode Control Cathode was developed. Multiple cathode designs were simulated and tested, varying both geometry and material properties. Calibrated power diagnostics were fielded on the prototype. Ultimately, the MCC-2 cathode with velvet emitters proved to be the most effective design, demonstrating faster start-up, more consistent frequency-locking, higher mean efficiency, and more consistent high power operation than its predecessors. The RPM demonstrated peak instantaneous electronic efficiencies as high as 32%, and peak powers of up to 150 MW. A successor to the prototype, the RPM-CACE has been designed and fabricated. It has been simulated to produce 420 MW of peak power at an efficiency of 50-70%. As part of this design, a new type of coupler, the Coaxial All-Cavity Extractor, has been designed, fabricated, and tested. This coupler design allows for efficient, broad-band power extraction along the axis of a RPM with a limited diameter.

Future Work

Currently, we are adapting the RPM geometry to produce a Relativistic Planar Amplifier for the Air Force Office of Scientific Research. In the near future, the RPM-CACE will be tested and validated. In simulation, it was capable of producing RF pulses of 420 MW, a substantial power increase over what the prototype was able to demonstrate. We expect to field improve cathode materials, such as CsI-coated carbon fibers from ESLI, on all cathode designs. The use of these fibers should provide more uniform emission, faster start-up, and less plasma production, when compared to existing velvet emitters. Pending the award of a DURIP and acquisition of an Ultra-Fast Intensified Framing Camera, we aim to analyze the mode structure of the RPM via time and spatially resolved spectroscopy of RF Stark broadening. Attempts to identify the mode structure of the RPM have thus far been inconclusive. The RPM-12a will also be used as a test bed for 3D-printed HPM components, as we will be replacing its anode blocks with a metallized plastic. We are also increasing the capabilities of our electromagnets to explore the performance of the RPM above 0.32 T.
Patents

Publications

Refereed Archival Journals

Ph.D. Dissertations

AFRL Reports

Conference Papers
doi: 10.1109/IVELEC.2010.5503480

doi: 10.1109/PLASMA.2010.5534065

doi: 10.1109/IVELEC.2010.5503481

doi: 10.1109/PLASMA.2010.5534066

doi: 10.1109/PLASMA.2010.5533892

doi: 10.1109/PLASMA.2011.5993336

doi: 10.1109/PLASMA.2011.5993338

Hoff, B.W.; Franzi, M.; French, D.M.; Greening, G.; Gilgenbach, R.M., "A Pi-mode extraction scheme for the axial B-field recirculating planar magnetron," *Vacuum Electronics Conference*

“Passive mode control in the recirculating planar magnetron” Franzi, Matthew and Gilgenbach, Ronald and Lau, Y. Y. and Hoff, Brad and Greening, Geoff and Zhang, Peng, Physics of Plasmas (1994-present), 20, 033108 (2013), DOI:http://dx.doi.org/10.1063/1.4794967

doi: 10.1109/PLASMA.2013.6633278

doi: 10.1109/IVEC.2014.6857575

doi: 10.1109/IVEC.2014.6857650

doi: 10.1109/PLASMA.2014.7012355

34
Researchers Supported

Research Scientists supported on this grant: N.M. Jordan, P. Zhang and D. Chalenski

Students supported on this grant:

Undergraduate Students: Derek Hung, S. Richards, and R. Steinbock,
Appendix

Abstract
A novel magnetron concept has been designed, simulated, fabricated, and characterized. Research at the University of Michigan has developed the Recirculating Planar Magnetron (RPM), a new type of High Power Microwave (HPM) device. Using HFSS, MAGIC, and ICEPIC, researchers have simulated the operation of the device in both a conventional and inverted magnetron geometry, and found the conventional geometry to be more practical. After significant computational iteration, several prototypes were fabricated and tested across a wide parameter space encompassing -250 to -300 kV, 0.18-0.3 T, and pulselengths of 200-500 ns. To improve device operation, multiple cathode designs were simulated and tested, varying both geometry and material properties. The RPM demonstrated peak instantaneous electronic efficiencies as high as 32%, and peak powers of up to 150 MW at 1 GHz. A patent was filed and granted on this RPM device during this grant. A 1.89 GHz variant, the RPM-CACE, has been designed and optimized in collaboration with Air Force Research Lab via an iterative design process. Its unique coupler design, the Coaxial All-Cavity Extractor (CACE), provides an efficient, broadband method of power extraction where axial power extraction is desired. In simulation, the RPM-CACE was up to 70% efficient, producing peak microwave powers of 420 MW.
SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

GilgenbachForm 298F.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

GilgenbachAFOSR FinalReport15F.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

Changed from John Luginsland to Jason Marshall

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number
LRIR Title
Reporting Period
Laboratory Task Manager
Program Officer
Research Objectives
Technical Summary
Funding Summary by Cost Category (by FY, $K)
<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document
Report Document - Text Analysis
Report Document - Text Analysis
Appendix Documents

2. Thank You

E-mail user

May 28, 2015 15:01:43 Success: Email Sent to: rongilg@umich.edu