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measurements corresponding to 79 trauma patient records 
generated over 110,000 feature sets, which were used to 
develop, train, and implement the system. Comparisons 
among several machine learning models proved that a mul-
tilayer perceptron would best implement the algorithm in a 
hybrid system consisting of a machine learning component 
and basic detection rules. additionally, 295,994 feature sets 
from 82 h of trauma patient data showed that the system 
can obtain 89.8 % accuracy within 5 min of recorded lSIs. 
Use of machine learning technologies combined with basic 
detection rules provides a potential approach for accurately 
assessing the need for lSIs in trauma patients. the perfor-
mance of this system demonstrates that machine learning 
technology can be implemented in a real-time fashion and 
potentially used in a critical care environment.

Keywords Machine learning · artificial intelligence · 
Clinical decision support systems · life-saving 
interventions · trauma

1  Introduction

Hemorrhage continues to be the leading cause of pre-
ventable mortality in trauma patients. For many of these 
patients, the key to effective assessment begins with the 
accurate identification and diagnosis of injury type and 
severity in order to determine the appropriate and timely 
treatment options. In this environment, potential delays in 
performing a life-saving intervention (lSI) may compro-
mise a patient’s stability, complicate injuries, and lead to 
increased morbidity or mortality. although vital signs—
such as a patient’s body temperature, heart rate, blood pres-
sure, and respiratory rate—play significant roles in moni-
toring trauma patients and are generally used as means to 

Abstract accurate and effective diagnosis of actual 
injury severity can be problematic in trauma patients. Inher-
ent physiologic compensatory mechanisms may prevent 
accurate diagnosis and mask true severity in many circum-
stances. the objective of this project was the development 
and validation of a multiparameter machine learning algo-
rithm and system capable of predicting the need for life-
saving interventions (lSIs) in trauma patients. Statistics 
based on means, slopes, and maxima of various vital sign 
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assess patient condition, they alone may not identify patient 
destabilization until late and often irreversible changes in 
state take place. the utility of available field vital signs 
depends heavily on concomitant interpretation by an expert 
provider, and vital signs are only measured intermittently 
during patient care at both prehospital and hospital phases. 
Previous studies have shown that standard vital signs avail-
able from monitors are no better in determining true injury 
status and severity in trauma patients than a simple physi-
cal examination [9]. nonetheless, measurement and inter-
pretation of electronic vital signs have become routine dur-
ing prehospital and hospital care. In order to achieve more 
accurate diagnostic capabilities, new approaches based on 
the combinations of multiple vital signs, trends, and other 
information may be better suited for trauma diagnosis [5]. 
However, as approaches required for improving the sensi-
tivity of diagnosis become more complex, use by provid-
ers may become increasingly difficult without the use of 
adjuncts capable of deriving solutions based on compli-
cated mathematical formulas.

Because of the intricate relationships that exist between 
vital signs, time, and other factors, developing new 
approaches that take these items into account will also 
require the use of advanced information systems and com-
puter algorithms coupled with technologies capable of pro-
cessing and fusing multiple parameters, weight, and trends. 
these algorithms provide the capability to extract the maxi-
mum information content available from both single vital 
signs and combinations of multiple vital signs across time 
points. Machine learning (Ml) technology is one approach 
that has been studied recently as a potential approach 
and solution for the multivariate processing of vital signs 
required to accurately diagnose the patient condition in 
the critical care environment [2, 10, 11, 14]. In addition, 
because such an environment requires rapid, accurate deci-
sions within a short time frame, Ml technology can poten-
tially help describe possible interventions earlier. this 
approach uses information technology to mimic human 
decision making and provide an automated approach for 
processing vital signs and other patient data, with the aim 
of predicting needs rapidly for patient care. the use of Ml 
technology may facilitate the process of triaging patients 
to appropriate trauma centers where experienced personnel 
can rapidly perform lSIs. By providing diagnostic support, 
computers and Ml may fit well into a prehospital triage 
algorithm that focuses on lSIs as its optimal end point [3, 
7]. additionally, such technology may strengthen the abil-
ity to accurately triage trauma patients in the prehospital 
environment and hence improve the survival of patients 
that would have otherwise died.

the purpose of this study was to test and evaluate dif-
ferent types of artificial intelligence and Ml methods for 
modeling injury severity (as defined by the need for an lSI 

during prehospital and/or in the emergency department) of 
a set of retrospectively and prospectively collected trauma 
patients based on data collected over 5 years, most recently 
from the Wireless Vital Signs Monitor (WVSM, athena 
gtX, Des Moines, Iowa) trial. Methods were implemented 
as a real software application module capable of real-time 
processing in a computer system with moderate perfor-
mance specifications. a 90/10 cross-validation approach 
was used for designing the predictive capacity of the 
algorithm.

We hypothesized that because computers and Ml can 
process large amounts of disparate data continuously, 
quickly, and accurately, they would not only benefit trauma 
diagnosis, especially in the context of prehospital triage, 
but also integrate well into an electronic system that may 
perform lSI predictions in real time.

a novelty of this study was the development and valida-
tion of an Ml algorithm and hybrid system to predict the 
need for lSIs in trauma patients. While there have been 
numerous studies utilizing decision trees, conjunction 
rules, support vector machines, artificial neural networks, 
multilayer perceptrons, and logistic regression models in 
order to discriminate between different patient groups, to 
date, no study has investigated the possibilities of predict-
ing in real time the needs for lSIs in trauma patients. the 
ultimate goal of this work was to address this shortcom-
ing and provide physicians with a new tool for decision 
support.

2  Methods

this study was approved by the Institutional review 
Boards of the US army Institute of Surgical research, 
Fort Sam Houston, tX, USa, and the University of texas 
Health Science Center at Houston, Houston, tX, USa. We 
analyzed data from both the trauma Vitals (tV) database 
and the WVSM to generate datasets for training and vali-
dating an artificial intelligence model, respectively.

2.1  tV database and protocol

Data in the tV database include severe trauma patients 
with blunt and penetrating injuries transported from the 
scene by helicopter service to a level I trauma center in 
Houston, texas, or San antonio, texas. Patients were mon-
itored from the scene during transport using a Welch allyn 
Propaq 206 (Welch allyn, Skaneateles Falls, nY) monitor 
or Welch allyn PIC 50 (Welch allyn, Skaneateles Falls, 
nY) monitor. Propaq data were collected using a com-
puterized personal digital assistant (PDa) attached to the 
monitor during transport. Data were stored in a nonvola-
tile memory card in the PDa for use during the study. all 
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numeric Propaq data were stored at a rate of 1 Hz. Wave-
form data were recorded at a rate of 182 Hz. PIC 50 data 
were stored in a built-in flash memory card attached to the 
monitor. PIC 50 numeric data were stored at a rate of one 
measurement every 3 min, coinciding with the patient’s 
noninvasive blood pressure measurements. Waveform 
data were stored at a rate of 375 Hz. Data from the PDa 
and flash cards were extracted by research personnel and 
uploaded to the tV database for analysis. all nonelectronic 
data were manually recorded on the run sheet from the 
monitor’s screen by Emergency Medical Services medics, 
then collected on a standardized form, and entered into the 
tV database. these included demographic data, physical 
examination results, glasgow coma scores, and interven-
tions performed on the patients in the field. lSIs consisted 
of endotracheal intubations, transfusions, tube thoracosto-
mies, cardiopulmonary resuscitations, needle decompres-
sions, angio-embolizations, cricothyrotomies, thoracoto-
mies, and cardioversions.

Data for the Ml model were selected based on a generic 
population sample that would prevent the algorithm from 
training to only a subset of the general population (which 
would result in a nongeneralizable model). We selected 
over 30 h worth of data corresponding to 79 prehospital 
patient records from the tV database based upon three 
criteria necessary to maximize the input parameter val-
ues required to provide an optimal learning set to the Ml 
engine. these included (1) availability of vital signs and 
patient status summary scores (Murphy Factor, athena 
gtX, Des Moines, Iowa) with values from 0 to 5 for 
the patient on a second-by-second basis, (2) blood pres-
sure measurements over a minimum of 15 min that also 
changed from initial measurements (had a baseline shift to 
yield measurable slopes), and (3) heart rate measurements 
uncorrupted by electromechanical noise. lengths of patient 
records varied from approximately 15–30 min. records 
contained single episodes of data, sometimes missing one 
or more measurements from different vital signs over the 
episode’s duration. Standard vital signs used during trauma 
care for patient assessment included heart rate (Hr), sys-
tolic blood pressure (SBP), diastolic blood pressure (DBP), 
mean arterial pressure (MaP), respiratory rate (rr), 
and blood oxygenation (SpO2). Combinations of these 
vital signs were also used to derive other measurements 
including shock index (SI = Hr/SBP) and pulse pressure 
(PP = SBP − DBP). the Murphy factor is a patient sta-
tus summary alarm that provides the medic with decision 
support capability by combining all vital signs, trends, and 
pulse characteristics recorded by the monitor, and apply-
ing a multivariate sensor fusion algorithm that generates a 
combined index of the patient condition in ranges from 0 
to 5. results are interpreted as 0–1 in green, 2–3 in yel-
low, and 4–5 in red, indicating a patient who is in a normal, 

low-priority, and high-priority condition, respectively. a 
baseline shift was defined as a dataset with at least one 
change from initial measurement over the data-recording 
time. this provided a learning dataset required for the Ml 
algorithm to learn from changes in blood pressure during 
transport.

2.2  WVSM database and protocol

Because a limitation of the initial tV cohort was the fact 
that times of actual lSIs were not recorded and stored in 
the tV database, an additional 82 h worth of data corre-
sponding to 24 prehospital patient records were chosen 
based upon availability of times of recorded lSIs from the 
WVSM protocol. From June 27, 2011, to January 6, 2012, 
305 consecutive patients transported from the injury scene 
via the life Flight helicopter service to the Memorial Her-
mann Hospital, a level I trauma center in Houston, texas, 
were enrolled for this protocol. this included data captured 
from 104 patients wearing the WVSM system during trans-
port to the Houston level I trauma center.

Data in the WVSM database include severe trauma 
patients with blunt and penetrating injuries transported 
from the scene by helicopter service to a level I trauma 
center in Houston, texas. WVSM data were collected 
using a computerized server system that collected and 
stored all transport data from the WVSM device through 
a wireless connection once a patient arrived in the emer-
gency department. numeric data from the WVSM device 
were stored at a rate of 1 Hz. In addition, ECg waveform 
data from a single lead and pleth waveform data from 
a thumb-mounted pulse oximeter to the WVSM were 
recorded at the rates of 230 and 75 Hz, respectively. For 
trauma patients with concomitant lung injuries, respira-
tion waveform data were also recorded at a rate of 10 Hz. 
Standard vital signs used during trauma care for patient 
assessment included the same vital signs recorded in the 
tV database (Hr, SBP, DBP, MaP, rr, SpO2, SI, and 
PP). all nonelectronic data were manually recorded on an 
electronic run sheet (tablet PCr, Zoll Medical, Chelms-
ford, Ma, USa) by Emergency Medical Services medics, 
then collected on a standardized form, and entered into the 
WVSM database (OpenClinica). these included demo-
graphic data, physical examination results, glasgow coma 
scores, and interventions performed on the patients in the 
field. lSIs consisted of endotracheal intubations, transfu-
sions, tube thoracostomies, cardiopulmonary resuscita-
tions, needle decompressions, angio-embolizations, crico-
thyrotomies, thoracotomies, and cardioversions. Patients 
for analysis were selected based upon two criteria: (1) 
direct transport of the patient from the injury scene to the 
hospital and (2) an injury requiring hospital admission. Of 
these 104 patients, 32 received at least one lSI, while only 
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24 patients had both recorded lSIs and corresponding 
lSI predictions. actual lSIs were recorded only when the 
nurse/paramedic manually pressed a button on the WVSM 
data-capture-and-display interface. Only the start of each 
lSI was recorded. these 24 patients provided a validation 
set for this project. lengths of these records varied from 
approximately 3–4 h. records contained single episodes of 
data, sometimes missing one or more measurements from 
different vital signs over the episode’s duration.

2.3  Design, validation, and analysis

Design of a hybrid system for lSI predictions employed 
two components: (1) a simple rule-based algorithm that 
would serve as a front end to handle obtrusive cases involv-
ing measurements that clearly indicated the need for some 
interventions and (2) an Ml algorithm that would serve as 
an intelligent component to handle more obscure and com-
plex cases involving measurements unrecognized by the 
front end (see Fig. 1). this configuration was a novelty pro-
posed from our combined knowledge of Ml and medicine. 
If a patient’s vital signs were clearly abnormal according 
to a set of basic rules, the patient would be classified as 
needing an lSI (see rules below). rules were based on the 
analysis of data from the tV database. “normal” measure-
ments included those within the 95 % confidence interval 
of the database. On the other hand, if vital signs were not 
obviously abnormal, the data would be passed to the Ml 
algorithm. the basic detection rules were meant to filter 
out patients who required immediate attention. Order of 
the rules also reflected the relative importance of measure-
ments for discriminating patient instability and their poten-
tial for affecting system performance.

In addition, distributions of initial nonzero BP measure-
ments and mean non-BP measurements across all patient 

records in the tV database were used to formulate detec-
tion rules. First, identification of tail regions of BP-related 
distributions was combined with knowledge of expected 
BP ranges (normal SBP 90–120 mm Hg; normal DBP 
60–80 mm Hg; normal MaP: DBP + (SBP − DBP)/3 mm 
Hg) to derive lower-bound and upper-bound thresholds. 
Similarly, identification of tail regions of non-BP-related 
distributions was combined with knowledge of expected 
ranges (normal Hr 60–100 bpm; normal rr 12–20 breaths 
per minute; normal SpO2 94–100 % at sea level; normal 
SI 0.5–0.7 bpm/mm Hg) to derive thresholds. Decision 
tables, decision trees, and/or conjunction rules were then 
employed to tailor rules.

rates of change (slopes) and mean and maximum meas-
urements were used to train an Ml algorithm so that it 
could respond quickly to measured trends and disparities 
in a patient’s vital signs. We used linear regression to cal-
culate slope values, ignoring those values equal to zero to 
derive an estimate of the rate of change for numeric values 
across time. a sliding window of 180 s was used to calcu-
late slopes for all non-BP-related vital signs. Because BP-
related measurements were recorded every 3 min, a slid-
ing window of 540 s was used to calculate slopes for these 
measurements. Data were configured for input into an Ml 
modeler (WEKa, University of Waikato, new Zealand) to 
generate the Ml model [8].

the main criteria to train the Ml algorithm using the 
tV database were a strong correlation between inputs and 
outputs, preferably, with correlation coefficient greater than 
70 %, and a low mean absolute error, with values less than 
30 %. From a system perspective, the Ml algorithm needed 
to produce smooth continuous outputs (probabilities) 
between 0 and 1, indicating the need for an lSI. Because 
these outputs could not be binomial nor jump sporadi-
cally up and down with discontinuities, data corresponding 

Fig. 1  a hybrid system for predicting the need for life-saving inter-
ventions in trauma patients. to predict the need for life-saving inter-
ventions, a hybrid system could employ the following components: 
(1) a component that extracts features from the measurements of vari-
ous vital signs, (2) a simple rule-based algorithm that handles obtru-
sive cases (features) involving measurements that clearly indicated 
the need for some interventions, and (3) a machine learning algorithm 
(multilayer perceptron) that handles more obscure and complex cases 
(features) involving measurements unrecognized by the rule-based 

algorithm. If a patient’s vital signs were clearly abnormal according 
to a set of basic rules, the patient would be classified as needing a 
life-saving intervention. Standard vital signs used during trauma care 
for patient assessment often include heart rate (Hr), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), mean arterial pres-
sure (MaP), respiratory rate (rr), and blood oxygenation (SpO2). 
Combinations of these vital signs are also used to derive other meas-
urements including shock index (SI = Hr/SBP) and pulse pressure 
(PP = SBP − DBP)
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to patients with lSIs were not separated from data corre-
sponding to patients without lSIs. Visual assessment of the 
outputs was required to evaluate system performance.

to design our Ml algorithm, we used a tenfold cross-
validation approach [1, 6, 13]. Because standardizing the 
inputs improves the numerical condition of the data for 
training, we preprocessed the data before training the clas-
sifier by replacing all unknown or missing features for each 
given patient record in the dataset with zeros and normal-
izing all other features so that features fall within the range 
−1–1. In particular, we used a maximum–minimum nor-
malization rule as follows:

∀ i = 1, …, N, ∀ j = 1, …, M and j ⊂ Mi, where xi,j denotes 
the jth feature value of feature set i, N denotes the number 
of instances (feature sets) in the training data, M denotes 
the number of features in an instance, and Mi denotes the 
set of known features in the feature set i. In addition, we 
replicated each feature set, replacing unknown or missing 
feature values for each set with averaged values over all 
values in the training data and then normalizing all feature 
values using the rule above. this second set was only used 
for providing a confidence interval for outputs from the 
first dataset, not for model training.

the following features formed a feature set of our train-
ing data for designing the MlP: slope of SBP, current SBP, 
slope of DBP, current DBP, slope of MaP, current MaP, 
slope of SpO2, mean SpO2, slope of rr, mean rr, slope of 
Hr, mean Hr, slope of inverted SI, mean inverted SI, slope 
of PP, current PP, maximum SBP, maximum DBP, maximum 
MaP, maximum SpO2, maximum rr, maximum Hr, maxi-
mum inverted SI, and maximum PP. Moreover, classifica-
tions were obtained by remapping Murphy scores to a scale 
between 0 and 1, i.e., a nominal probability. the final train-
ing data consisted of over 110,000 feature sets. thus, these 
training data covered more than 30 h of data, ranging across 
different physiologic, temporal, and spatial conditions.

Validation involved the WVSM protocol and its patient 
records and was accomplished by determining the output of 
our hybrid system at the time of the recorded lSI and the 
maximum output of our system 60 s, 3 min, and 5 min prior 
to the recorded lSI. In other words, the observation win-
dow ended at the time of the recorded lSI. Further valida-
tion was done by sampling outputs during the first 5 min of 
each patient record and 5 min prior to the start of each lSI. 
an initial analysis classified prediction outputs (probabili-
ties) >30 % as true positives (tPs) and otherwise as false 
negatives (Fns). Similarly, a second analysis classified out-
puts >50 % as tPs and otherwise as Fns, respective of the 
analysis.

x̄i,j =
xi,j −

1
2

(

xi,jmax
+ xi,jmin

)

1
2

(

xi,jmax
− xi,jmin

)

3  Results

3.1  Model development

the demographics of the 79 patients included in this study 
are depicted in table 1; likewise, the demographics of the 
WVSM patients are shown in table 2. Quartiles were estab-
lished for age. race and age were not different between 
those patients who received at least one lSI and those who 
received none, nor did male gender predispose to an lSI. 
likewise, increasing patient age did not increase the fre-
quency of an lSI in this sample/study. Of the 79 patients, 24 
(30 %) did not require an lSI. the other 55 patients received 
a total of 124 lSIs. thirty-nine percent (48) of the lSIs were 
performed prehospital, 60 % (74) in the emergency room, 
and 1 % (2) elsewhere. Interventions consisted of the fol-
lowing: 42 endotracheal intubations, 42 transfusions, 18 tube 
thoracostomies, eight cardiopulmonary resuscitations, five 
needle decompressions, five angio-embolizations, two cri-
cothyrotomies, two thoracotomies, and one cardioversion. 
table 3 describes the hybrid system’s front-end component, 
that is, the basic detection rules that were used to identify 
patients who required immediate interventions. as a note, 
the value of 0.9 (90 %) in the table was arbitrary and only 
used to indicate the fact that abnormal measurements should 
alert the provider's attention to a strong need for an lSI. 

We trained and compared several Ml models, including 
decision trees, conjunction rules, support vector machines, 
artificial neural networks, multilayer perceptrons, and 
logistic regression models. Models were generated for the 
110,000+ feature sets using WEKa and binary and con-
tinuous classes. In order to develop a real-time hybrid sys-
tem to predict the need for lSIs, i.e., output a continuous 
probability, we limited comparisons to artificial neural net-
works, multilayer perceptrons, and logistic regression mod-
els and sought models that yielded highest correlation and 
lowest errors. Comparisons of top cross-validation results 
are shown in table 4.

Comparisons among several proposed models proved 
that a multilayer perceptron (MlP) would best imple-
ment the Ml algorithm in the novel hybrid lSI predic-
tion system. this Ml model consisted of 24 inputs, 12 
hidden nodes that each contained a set of 24 optimized 
weights, and one output that contained a set of 12 opti-
mized weights. the back-propagation algorithm (learn-
ing rate 0.05, momentum 0.2) was used to train the MlP 
(as well as all other algorithms in table 4). the activation 
function employed by the MlP was the sigmoid function. 
given 111,028 feature sets, the WEKa tool spent exactly 
10.3 h (36,861.2 s) to generate weights for the MlP nodes. 
In table 4, the high correlation coefficient of 0.8072 indi-
cates that the predicted probabilities of the MlP matched 
the desired probabilities reasonably well. In addition, the 
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Table 1  Demographics of 
selected patients from the 
trauma Vitals database

Variable all patients Patients with life-saving inter-
ventions (lSIs)

number of lSIs

number n Percentage n/79 number n Percentage n/n

all patients 79 100 55 72 124

gCS total*
Mean 10 ± 5

 3 22 28 22 100 53

 4 3 4 3 100 8

 5 1 1 1 100 1

 6 3 4 3 100 8

 7 2 3 2 100 4

 8 1 1 1 100 1

 10 1 1 0 0 0

 11 1 1 1 100 2

 12 2 3 2 100 4

 13 8 10 4 50 7

 14 13 16 3 23 10

 15 22 28 13 59 26

gender

 Female 29 37 19 66 44

 Male 50 63 36 72 80

race

 White/Caucasian 41 52 29 71 69

 Black 7 9 6 86 12

 Hispanic 19 24 12 63 24

 asian/Pacific 1 1 1 100 3

 not recorded 11 14 6 55 16

age
Mean 37 ± 15
Quartiles

 18–23 21 27 16 76 36

 25–35 19 24 15 79 34

 36–47 20 25 11 55 26

 49–86 19 24 13 79 28

Systolic BP*
Mean 79 ± 24

 0–66 20 25 18 90 47

 67–77 20 25 14 70 35

 80–94 20 25 16 80 36

 96–128 19 25 7 37 6

Diastolic BP*
Mean 43 ± 21

 0–32 20 25 17 85 43

 33–45 21 27 16 76 41

 46–58 18 23 14 78 30

 59–83 20 25 8 40 10

Heart rate*
Mean 112 ± 26

 74–100 13 16 6 46 12

 108–128 14 18 12 86 31
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MlP model achieved a relatively low mean absolute error 
of 0.1612, which equals the sum total of the absolute dif-
ferences between each desired probability and its predicted 
probability divided by the total number of instances during 
cross-validation.

Our Ml algorithm system was able to generate out-
puts commensurate with baseline changes in the patients’ 
vital signs in real time. through a graphical interface, we 
analyzed these results, and for selected records, we plot-
ted predicted probabilities against patient features in order 
to assess the influence of every feature on the prediction 
model. We illustrate our analyses by showing an example 
in Fig. 2.

When all vital signs were available, rr and SpO2 were 
most discriminative in detecting patient instability and 
affecting system performance. these results agreed with 
the fact that measurements outside of the 95 % confidence 
interval of measurement distributions (from the tV data-
base) would immediately trigger the basic detection rules 
of the hybrid system. When rr and SpO2 measurements 
were missing from the input set, BP-related vital signs 
(SBP, DBP, MaP, and PP) were most discriminative in 
detecting patient instability (see Fig. 2).

3.2  Validation

to validate the model, we employed an additional set of 
data derived from 305 patients of which 37.7 % required an 
lSI (table 3). Of the 199 lSIs, 90 (45 %) were performed 
prehospital and 109 (55 %) in the emergency department.

there were 295,994 feature sets from 82 h of real-world 
patient data to validate the hybrid classification system. 
table 5 shows confusion matrices for the initial analysis, as 
described in the “Design, validation, and analysis” section. 
Importantly, the system was able to obtain a sensitivity of 
89.8 % within 5 min of recorded lSIs when a probability 

>30 % was denoted as a tP. Moreover, the system achieved 
a positive predictive accuracy of 96.4 % for observation 
windows described in the previous section.

4  Discussion

although the application of Ml algorithms to datasets 
began over 50 years ago and now has roots in multiple 
disciplines [4, 12], only recently has this technology been 
introduced to trauma research. Furthermore, Ml technol-
ogy has rarely been applied to trauma diagnosis, deci-
sion support, or clinical practice for the trauma patient. 
this study was designed to advance trauma patient care 
through the development and validation of an Ml algo-
rithm and hybrid system to predict the need for lSIs in 
trauma patients. In previous work, only Ml and new 
vital signs were explored for their utility to discriminate 
between lSI and non-lSI patients [2]. neither stand-
ard vital signs nor trends were used for identifying lSI 
patients. likewise, numerous studies utilizing various 
Ml techniques in order to discriminate between differ-
ent patient groups have been conducted. However, to date, 
no study has investigated the possibilities of predicting in 
real time the needs for lSIs in trauma patients using Ml 
and other information.

By producing over 110,000 feature sets from vari-
ous vital sign measurements of a select cohort of trauma 
patients, we intended to capture the synergistic complexi-
ties among vital signs, derived statistics, time, and spa-
tial/environmental factors—complexities that may not be 
understood by the health practitioner in an emergency situ-
ation. Since feature sets retrospectively scored patients on a 
per-second basis, time became an integral part of real-time 
system design. Furthermore, unlike previous work [2, 10, 
11, 14], system design involved not only the development 

LSI life-saving intervention, 
GCS glasgow Coma Scale/
Score, BP blood pressure 
(mm Hg), heart rate (beats 
per minute), respiratory rate 
(breaths per minute), SpO2 
saturation of peripheral 
oxygenation (%)

* Entry values taken from the 
run sheet

Variable all patients Patients with life-saving inter-
ventions (lSIs)

number of lSIs

number n Percentage n/79 number n Percentage n/n

 135–185 5 6 5 100 13

 Unknown 47 60 32 68 68

respiratory rate*
Mean 20 ± 7

 6–10 8 10 8 100 18

 12–20 26 33 13 50 27

 21–38 25 32 14 48 29

 Unknown 20 25 20 100 50

SpO2*

 97 1 1 1 100 3

 100 1 1 1 100 3

 Unknown 77 98 53 69 118

Table 1  Continued
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of an Ml model but also formulation of basic detection 
rules.

In addition, we chose to develop a real-time Ml algo-
rithm system that incorporates an MlP based upon the abil-
ity to handle complex datasets and perform well on non-
linear data, especially missing data. Moreover, MlPs yield 
numerical outputs equivalent to probabilities, provide easy 
real-time implementation in software, and learn through 
conventional techniques (such as the back-propagation 
algorithm). an MlP has a major strength over a traditional 
artificial neural network in that it uses a hidden layer or 
layers of nodes and transforms every weighted sum using 
a nonlinear function before making any threshold compar-
isons. Hence, MlPs not only distinguish, if possible, the 

instances of classes in some feature space, but also join iso-
lated convex regions into a single class [13].

For this study, the term “prediction” denoted the proba-
bility that a patient needs an lSI at a particular time. While 
Ml may help predict whether a patient should receive an 
lSI, the accuracy of that prediction and its confidence 
interval depend upon the availability of measurements 
and their buffered histories. In other words, we expected 
that the longer our system could buffer measurements and 
calculate features, the more reliable our system would per-
form. as such, initial predictions would only make sense 
with respect to their place in time, and confidence intervals 
would only improve as time goes on. as a part of the design 
process, we explored the types and numbers of features that 

Table 2  Demographics of 
selected patients from the 
Wireless Vital Signs Monitor 
protocol

LSI life-saving intervention, BP 
blood pressure (mm Hg), heart 
rate (beats per minute)

* Entry values taken from the 
run sheet

Variable all patients Patients with lSIs Prehospital lSIs Hospital lSIs

#
n

%
n/305

#
n

%
n/n

#
i

%
i/90

#
j

%
j/109

all patients 305 100 115 38 90 100 109 100

gender

 Female 104 34 32 31 31 34 44 40

 Male 201 66 83 41 59 66 65 60

race

 White/Caucasian 191 63 71 37 58 64 62 57

 Black 30 10 12 40 10 11 13 12

 Hispanic 64 21 28 44 19 21 27 25

 asian/Pacific 3 1 2 67 1 1 5 5

 not recorded 17 5 2 12 2 3 2 1

age
Mean 39 ± 16
Quartiles

 18–26 76 25 30 40 30 33 37 34

 27–36 76 25 28 37 22 25 19 17

 37–50 76 25 26 34 17 19 27 25

 51–85 77 25 31 40 21 23 26 24

Heart rate*
Mean 95 ± 19
Quartiles

 53–80 76 25 21 28 16 18 18 17

 81–92 68 22 22 32 13 14 13 11

 93–105 72 24 20 28 17 19 19 17

 106–170 74 24 45 61 40 44 54 50

 Unknown 15 5 7 47 4 5 5 5

Systolic BP*
Mean 133 ± 26
Quartiles

 61–118 74 24 45 61 31 34 50 46

 120–133 73 24 24 33 19 21 11 10

 134–105 72 24 16 22 13 14 17 16

 106–170 74 24 25 34 22 25 27 25

 Unknown 12 4 5 42 5 6 4 3
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would best assist Ml. to add robustness to system design 
and validation, datasets included feature sets that contained 
missing vital sign measurements.

Interpretation of outputs during this study influenced use 
and performance of the hybrid prediction system; likewise, 
selection of outputs in a given time frame. When a prob-
ability >30 % was denoted as a tP, the system was able 
to obtain an accuracy of 89.8 % within 5 min of recorded 

lSIs. as this selection time frame was narrowed, the hybrid 
system achieved smaller accuracies. On the other hand, as 
the selection time frame increased, the simple rule-based 
algorithm played a greater role in indicating patient desta-
bilization. When a probability >50 % was denoted as a tP, 
the system was able to obtain an accuracy of 69.5 % within 
5 min of recorded lSIs.

4.1  limitations

this study had a number of limitations. the sizes of the 
training and validation datasets were small, i.e., they con-
tained less than 120 h of data from less than 110 patients 
in total. Moreover, the results were preliminary due to the 
dataset sizes, criteria for selecting the data, the training 
dataset used to design our Ml algorithm, and the fact that 
nonpresence of an lSI does not equate to a need for an lSI. 
therefore, we tended to err on the side that certain meas-
urements may indicate the possible need of an intervention 
rather than indicate an lSI is not required. this is the basic 
concept of overtriage that is a central tenet of trauma care. 
In order to trade off the requirement of low outputs (<10 %) 
that indicated stable measurements with the requirement 
of high outputs (>90 %) that indicated patient needs, we 
accepted the middle ground that a system would gravitate 
extremes toward the center, and we chose, instead, to add 
an offset to Ml outputs according to a power-law adjust-
ment (see table 6). In other words, outputs closer to 100 % 
were subtracted with a smaller power of 2, whereas outputs 
closer to 0 % were subtracted with a larger power of 2. this 
adjustment compensated for the bias in the training dataset 
so that the real-time Ml system could yield a wide range of 
values, including very small (e.g., 0 %) and very large (e.g., 
100 %) predictions.

lastly, this study did not investigate the impact of 
noise and artifacts in the measurements on the real-time 
performance of our system. although the training data-
set contained missing data and erroneous measurements 
and system design employed safeguards against abnormal 
measurements, future studies using larger datasets and 
noisy measurements will be required to test system perfor-
mance thoroughly and improve system robustness.

Table 3  Basic detection rules

if ((current SBP < 90 mm Hg) or (current SBP > 200 mm Hg))
then output = .9;

else if ((current DBP < 40 mm Hg) or (current DBP > 140 mm Hg))
then output = .9;

else if ((current PP < 20 mm Hg) or (current PP > 100 mm Hg))
then output = .9;

else if ((current MAP < 60 mm Hg) or (current MAP > 180 mm Hg))
then output = .9;

else if (mean SpO2 < 85)
then output = .9;

else if (mean HR > 130 bpm)
then output = .9;

else if ((mean SI < .2) or (mean SI > 1.6))
then output = .9;

else if (max SBP > 120 mm Hg) and (max DBP > 80 mm Hg) and 
(max MAP > 100 mm Hg) and (mean HR > 115  bpm) and 
(max SpO2 < 95) )

then output = .9;

else if ((current MAP > 131 mm Hg) and 
(max RR > 40 breaths per minute) )

then output = .9;

else if ((max SBP > 160 mm Hg) and (max DBP > 120 mm Hg) and 
(mean RR > 40 breaths per minute) )

then output = .9;

else
use machine learning algorithm

SBP systolic blood pressure (mm Hg), DBP diastolic blood pressure 
(mm Hg), PP pulse pressure (mm Hg), MAP mean arterial pressure 
(mm Hg), SpO2 saturation of peripheral oxygenation (%), HR heart 
rate (beats per minute), SI shock index (beats per minute/mm Hg), RR 
respiratory rate (breaths per minute)

Table 4  Comparisons of cross-
validation results for various 
machine learning models

Detail Multilayer perceptron Single logit Multilayer perceptron Single logit

Correlation coefficient 0.8072 0.5669 0.7790 0.5660

Mean absolute error 0.1612 0.3004 0.1395 0.3061

root mean squared error 0.2251 0.3867 0.1784 0.3897

relative absolute error,  % 44.4068 60.3197 58.7536 61.4533

root relative sq. error,  % 59.2866 77.4999 62.7230 78.0853

number of features 24 24 16 16

total number of instances 111,028 111,028 111,028 111,028
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In summary, we developed and validated an algo-
rithm and system to predict the probability of a trauma 
patient requiring an lSI. the system is composed of an 
MlP and rules for predicting the need for lSIs in both 

prehospital and emergency department trauma patients. 
the performance of our system demonstrates that Ml tech-
nology combined with basic detection rules may provide 
valuable support in assessing trauma patients within the 

Fig. 2  Plots of prenormalized features and predictions versus time 
for a trauma patient record. Standard vital signs used during trauma 
care for patient assessment included heart rate (Hr), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), mean arterial pres-
sure (MaP), respiratory rate (rr), and blood oxygenation (SpO2). 
Combinations of these vital signs were also used to derive other 
measurements including shock index (SI = Hr/SBP) and pulse pres-
sure (PP = SBP − DBP). the following features were extracted for a 
hybrid system in order to predict the need for life-saving intervention 
(lSI as a probability): slope of SBP, current SBP, slope of DBP, cur-
rent DBP, slope of MaP, current MaP, slope of SpO2, mean SpO2, 
slope of rr, mean rr, slope of Hr, mean Hr, slope of inverted SI, 
mean inverted SI, slope of PP, current PP, maximum SBP, maximum 

DBP, maximum MaP, maximum SpO2, maximum rr, maximum 
Hr, maximum inverted SI, and maximum PP. linear regression was 
used to calculate slope values, ignoring those values equal to zero to 
derive an estimate of the rate of change for numeric values across 
time. a sliding window of 180 s was used to calculate slopes for all 
non-BP-related vital signs. Because BP-related measurements were 
recorded every 3 min, a sliding window of 540 s was used to calcu-
late slopes for these measurements. For this particular patient, the 
hybrid system described in this paper yielded appropriate outputs cor-
responding to the input feature set. the region where the solid black 
line remained at 90 was a result of the rule-based algorithm of the 
hybrid system detecting BP-related measurements outside of “nor-
mal” range values

Table 5  Confusion matrices for 
the performance of the hybrid 
system

LSI life-saving intervention, TP 
true positive, max maximum 
value

recorded lSI true positive (tP ≥30 %)

lSI algorithm  
(at recorded time)

lSI algorithm  
(within 60 s)

lSI algorithm  
(within 3 min)

lSI algorithm 
(within 5 min)

Y n Y n Y n Y n

Y 41 18 45 14 52 7 53 6

n 10 108 5 113 3 115 2 116

24 tPs had max 
≥90 %

34 tPs had max 
≥90 %

36 tPs had max 
≥90 %

37 tPs had 
max ≥90 %
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critical care environment. Future studies will expand on the 
described approach utilizing assigned prediction probabili-
ties derived from this initial effort and include system vali-
dation in a clinical trial with both recorded lSIs and times 
of performance.
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