
A PERFORMANCE EVALUATION OF
THE DASH MESSAGE-PASSING SYSTEM 1

Shin-Yuan Tzou
David P. Anderson

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, California 94 720

tzou@ucbarpa.Berkeley.EDU
anderson@ernie.Berkeley .EDU

ABSTRACT

DASH is a distributed operating system kernel. Message-passing (MP) is used for local
communication, and the MP system uses virtual memory remapping instead of software
copying for moving large amounts of data between virtual address spaces. This design
eliminates a bottleneck in high-performance communication, and increases the feasibili­
ty of moving services such as file services into user spaces.

Other systems that have used VM remapping for message transfer have suffered from
high per-operation overhead, limiting the use of the technique. The DASH design is in­
tended to reduce this overhead. To evaluate our design, we measured the performance
of the DASH kernel implementation on Sun 3/50 workstations. Our throughput meas­
urements show that large messages can be moved between user spaces at a rate of more
than 30 MB/sec, an order of magnitude higher than with software copying. Further­
more, the per-operation overhead is low, so performance for small messages is not
sacrificed.

To further understand the performance of the DASH MP system, we then broke an MP
operation into short code segments and timed them with microsecond precision. The
results show the relative costs of data movement and the other components of MP opera­
tions, and allow us to evaluate several specific design decisions.

1 Sponsored by the California MICRO program, Cray Research, ffiM Corporation, Hitachi, Ltd., Olivetti S.p.A, and the De­
fense Advanced Research Projects Agency (DoD) Arpa Order No. 4871, monitored by Naval Electronic Systems Command under
Contract No. N00039-84-C-0089.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
A Performance Evaluation of the Dash Message-Passing System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
DASH is a distributed operating system kernel. Message-passing (MP) is used for local communication,
and the MP system uses virtual memory remapping instead of software copying for moving large amounts
of data between virtual address spaces. This design eliminates a bottleneck in high-performance
communication, and increases the feasibility of moving services such as file services into user spaces. Other
systems that have used VM remapping for message transfer have suffered from high per-operation
overhead, limiting the use of the technique. The DASH design is intended to reduce this overhead. To
evaluate our design, we measured the performance of the DASH kernel implementation on Sun 3/50
workstations. Our throughput measurements show that large messages can be moved between user spaces
at a rate of more than 30 MB/sec, an order of magnitude higher than with software copying. Furthermore,
the per-operation overhead is low, so performance for small messages is not sacrificed. To further
understand the performance of the DASH MP system, we then broke an MP operation into short code
segments and timed them with microsecond precision. The results show the relative costs of data movement
and the other components of MP operations, and allow us to evaluate several specific design decisions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

1. INTRODUCTION

The DASH project has defined the communication architecture for a large, high-performance dis­

tributed system [1]. We are now designing a portable operating system kernel to run on the nodes

of this system. The DASH kernel supports the distributed system architecture by providing

high-performance communication, support for user-level services, and transparent remote service

access.

DASH supports protected virtual address spaces (VAS's). Communication between VAS's is

done by message-passing (MP). The MP system is integrated with the--virtual memory (VM) sys­

tem: VM remapping is used to move large messages from one VAS to another. This approach is

an attractive alternative to software data copying because updating a page table entry is much fas­

ter than copying a page on most machines. By reducing software copying we hoped to increase

IPC performance, and thereby increase the feasibility of user-level data services.

However, the experience of other systems has been that combining the VM system with MP can

produce high per-operation overhead. For example, Accent takes 1.15 milliseconds to send a

short message without using VM remapping, and 10 milliseconds for a message with 1KB of data

remapped [2]. The sources of overhead include 1) buffer allocation, 2) manipulating VM system

data structures representing remapped objects, 3) adjusting the representation of a message to

reflect address changes due to remapping, and 4) remapping objects twice (from a user VAS to

the kernel, and from the kernel to another user VAS).

One goal of the DASH kernel design is to reap the benefits of VM remapping without incurring a

high per-operation cost. This paper studies the performance of the DASH MP system, with an

emphasis on its use of VM remapping. In addition to the overall performance, we study the sys­

tem behavior at a "microscopic" level by breaking down a user-level MP operation into short

segments and measuring their individual performance. The results are used to evaluate and refine

our design decisions.

The paper is organized as follows. Section 2 argues against software data copying in high­

performance communication. Section 3 describes the design of the DASH MP system. Section 4

describes the throughput measurements. Section 5 presents the microscopic cost breakdown of

an MP operation, and the measurement technique that was used on the Sun 3/50, which has a

low-resolution clock. Section 6 discusses the results and evaluates the DASH design. Finally,

section 7 summarizes and concludes the paper.

2. THE DATA COPYING BOTTLENECK

It has long been known that IPC systems should avoid unnecessary software copying of data.

Copying may be done in communication protocols for retransmission, in data transfer between

user and kernel VAS's, and in data transfer between two user VAS's on a single host [3, 4].

With current technological trends, copying is becoming a more severe bottleneck. Communica­

tion technology, particularly fiber optics, is advancing rapidly [5]. Gigabit bandwidths exist at

the link level, but a variety of bottlenecks prevent user processes from fully exploiting this

bandwidth. The system bus of the host computer is often such a bottleneck, since it limits the

rate at which data can be moved between the network interface and main memory [6].

Copying is especially undesirable because it is bus-intensive. For high-bandwidth data (e.g.,

real-time video), copying always produces heavy traffic on the system bus, even when the system

has cache memory or does I/0 directly to or from cache. This traffic slows down DMA devices

and the computations of other CPU's.

The copying problem is exacerbated by the trend in operating system design towards moving data

servers (file servers, transaction managers, etc.) from the kernel to user VAS's. Some examples

are V [7], Ridge [8], and QuickSilver [9]. A data access in such an organization usually involves

3

several data movements between VAS's. A file request from a user client process to a user-level

file server might be routed through a transaction manager and a network communication manager

at each end. If copying is used to move data between VAS's, this organization amplifies the

negative performance impact of copying.

In DASH, we use VM remapping to avoid memory copying. This reduces the bus bandwidth

used in high-performance communication, and reduces the performance impact of moving operat­

ing system services to the user level.

3. THE DESIGN OF THE DASH MESSAGE-PASSING SYSTEM

This section describes the design of the DASH kernel's MP system, with an emphasis on how a

large message is moved between VAS's.

A DASH kernel can support multiple VAS's. There is a single kernel VAS, and multiple user

VAS's. A VAS may contain any number of concurrent processes. A process is an execution

sequence; a VAS is the VM environment in which a process runs.

DASH MP is local; it handles communication between entities on a single host The MP system

does not handle network communication directly, but provides the interface between the various

entities (network drivers, protocols, etc.) that together support network communication.

3.1. Message-Passing Operations

The DASH kernel is written in C++ [10] and has an object-oriented internal structure. An MP

operation (such as send or receive) is invoked on a message-passing object (MPO). Each MPO is

bound to a particular VAS; only processes in that VAS can receive message from the MPO.

Processes in multiple VAS's may send messages to a single MPO. A VAS may have multiple

MPO's bound to it.

The MP system supports two modes of operation. In stream mode, the primitives are send ()

and receive () . The sender process may return before the message is delivered to the receiver

process. Outstanding messages are enqueued on the MPO. In request-reply mode, the primitives

are request_reply (), get_request (), and send_reply (). The client process

blocks until the server process has replied. An MPO may have multiple requests pending; these

requests are enqueued on the MPO.

MP operations that return a message (receive, request_reply, and get_request)

include a Boolean immediate access argument indicating whether the receiver plans on referring

to the message's data pages immediately. This flag is false for programs (e.g., file services and

user-level protocols) that forward data to their clients rather than accessing it themselves.

3.2. Data Transfer and Virtual Memory Support

A message is represented by a header, and separate data pages are linked to the header by

pointers. A small message has only a header and no separate pages. The header is moved

between VAS's by copying, and the sender and receiver processes handle the buffer management

by themselves. The data pages are moved by VM remapping.

Each VAS includes an /PC region, occupying the same address range in all VAS's. A virtual

page in the IPC region is called an /PC page. All data to be moved between VAS's without

copying must be placed in IPC pages. There is a single ''meta-level'' mapping from IPC pages

to physical pages. The memory mapping of the IPC region in a VAS is a subset of the meta-level

mapping; some pages may be read-only or not accessible. If multiple VAS's have a particular

IPC page in their memory mapping, they share the same physical page.

An IPC page is moved between VAS's by changing the access rights to the page in the memory

mappings of the VAS's. An IPC page appears at the same virtual address in both the source and

4

destination VAS. Hence "remapping" involves changing protection, not address mappings. No

allocation is needed because the virtual page in the destination VAS is predetennined, and is

always free. No pointer adjustment in the message header is needed because remapping does not

change the virtual address of a page. Moreover, since an MPO is bound to a VAS, the destination

VAS is detennined when the send operation is invoked. Therefore, pages in a message can be

directly remapped into the destination VAS, even before a receive operation is done.

If the immediate access argument to the MP operation is not set, the VM system does lazy remap­

ping. The representation of a VAS's memory map is divided into two parts. The high-level

memory map is independent of hardware architecture, and is always updated when a page is

transferred. The low-level memory map depends on hardware architecture, and may be expensive

to update. A page is mapped into the low-level memory map of a VAS on demand by the page

fault handler. Lazy remapping saves a pair of map and unmap operations if a page is mapped

into and out of a VAS without being accessed.

Message headers are stored in IPC pages, and are copied as follows. If a send precedes the

corresponding receive, the header is first copied to a temporary kernel buffer, and then to the

receive buffer. If the receive precedes the send, the receive buffer is known when the

send is done, and the header is copied directly. This is possible because the kernel has all IPC

pages mapped and can access both the send header and the receive header at the same time.

4. MEASUREMENTS OF MESSAGE-PASSING THROUGHPUT

This section presents the throughput measurements made with the Sun 3/50 DASH kernel. The

measurements show that VM remapping can be significantly faster than software copying in mov­

ing large data between VAS's, and that the per-operation overhead is low.

4.1. Experiment Setup and Basic Hardware Performance

We designed an experiment to measure maximum data throughput between user VAS's on a sin­

gle host. On an idle DASH system, two processes in separate user VAS's send a message back

and forth in either stream or request-reply mode. In stream mode, each pass through the loop

includes two context switches, two send operations, and two receive operations. In

request-reply mode, each pass through the loop includes two context switches, one

request_reply operation, one get_request operation, and one send_reply opera­

tion. The loop was executed 10,000 times, and the total time measured using a clock with 10

millisecond resolution. Variation between successive runs was negligible.

The Sun 3/50 has a MC68020 CPU running at 15 MHz. A null procedure call takes 4.3

microseconds; a procedure call with three arguments takes 8.1 microseconds. The memory

management unit uses 8KB pages. Page table entries are stored in a two-level hardware map

rather than in main memory. Updating a page table entry takes about 30 microseconds, while

copying an 8KB page takes 2.105 milliseconds.

4.2. Measurement Results

Table 1 shows the time needed to send a stream-mode message between user VAS's, measured as

1/2 of the average loop time. Each table entry includes the time of a user-level send operation,

a context switch, and a user-level receive operation. In the receive operation, the

immediate-access flag is not set. Hence an IPC page is mapped into the hardware memory map

of the receiver's VAS by the page fault handler when the receiver first accesses that page.

Table 2 shows the corresponding times when the immediate-access flag is set in the receive

operation. The hardware mapping of IPC pages is updated by the receive operation instead

of the page fault handler. A page fault is saved for each page accessed, but unnecessary map and

unmap operations are done for each page not accessed. This method perfonns better only when

5

Table 1: The average elapsed time (in milliseconds) of moving a message between two

user VAS's. The immediate-access flag is not set, so pages are mapped in on reference.

number of pages message size (number of 8KB pages)
accessed by the

receiver 0 1 2 4 8

0 0.957 1.077 1.163 1.334 1.679

1 1.248 1.334 1.506 1.851

2 1.500 1.673 2.020

4 2.008 2.354

8 3.026

Table 2: The average elapsed time (in milliseconds) in moving a message between two

user VAS's. The immediate-access flag is set, so pages are mapped in by the re­

ceive operation.

number of pages message size (number of 8KB pages)
accessed by the

receiver 0 1 2 4 8

0 0.957 1.186 1.387 1.790 2.596

1 1.194 1.392 1.798 2.603

2 1.400 1.804 2.609

4 1.815 2.621

8 2.645

the receiver accesses all message pages. The performance gain is about 11% for 64 KB messages.

Figure 1 plots some entries in Table 1 and 2. It shows that the time needed to move a message

between VAS's increases linearly with the number of pages in the message. The times needed

for data copying are included for comparison. In operating systems such as UNIX, moving a page

requires copying it twice (from sender to kernel, and from kernel to receiver). The dotted lines

represent only the cost of copying, i.e., the overll.ead of moving a null message is not included.

Table 3 lists the average incremental time needed to move an 8KB page between user VAS's.

The incremental time of the first page is slightly higher because of the initial overhead of loops.

VM remapping uses 87 to 291 microseconds per page, depending on whether, and how, the page

is accessed by the receiver.

Figure 2 shows the maximum data transfer throughput between DASH user VAS's using MP.

The numbers for VM remapping are derived from Table 1 and 2. The two horizontal lines

represent only the throughput of copying, i.e., the ovemead of moving a null message is not

included. This figure shows that. (at least on the Sun 3/50 architecture) VM remapping is

significantly faster than data copying for moving large amounts of data between VAS's.

6

Latency
(miliseconds)

4 1 /~ copy message once
I , •

1 ~ copy message twice

3 'I
I f

2 I f
I i
I f
I :

8 16 32 64
Message size in kilo-bytes

t:. pages are mapped on demand, but no pages are accessed
o pages are mapped by the receive operation
D pages are mapped on demand, and all pages are accessed

Figure 1: Measured latency of moving data between two user VAS's.

Table 3: The incremental cost of moving 8K-Byte pages between two user VAS's.

how the page is moved
time in milliseconds

first page subsequent pages

mapped on demand 0.120 0.087
but is not accessed

m<tpped b_y the receive operation 0.237 0.208

mapped on demand
0.291 0.254

and is accessed
copy once 2.105 2.105

copy twice 4.210 4.210

7

Throughtput
(Mega-bytes/sec) upto90M

when s1ze is infinite
40

30

20

10

"'

8 16 32 64
Message size in kilo-bytes

t:, pages are mapped on demand, but no pages are accessed
o pages are mapped by the receive operation
D pages are mapped on demand, and all pages are accessed

Figure 2: Measured throughput of moving data between two user VAS's.

Table 4 compares the performances of the two MP modes. In both cases, an 8KB message is

passed back and forth between two processes. The message is mapped on demand, and is
accessed by the receiver process. The reported numbers are the total elapsed time of a loop in
which a message is moved between VAS's twice. Request-reply mode is faster than stream mode

because two operations (send and receive) are combined into one (request_reply), and

a trap into the kernel is eliminated. A kernel process can perform an MP operation faster than a
user process because 1) it invokes the operation by a procedure call instead of by a trap, 2) many
checks are skipped, and 3) IPC pages are always mapped in the kernel VAS, so no unmapping
operation is needed and no page fault is generated.

5. MICROSCOPIC ANALYSIS OF MESSAGE-PASSING COST

This section studies the performance of the DASH MP system at a ''microscopic'' level. Instead
of measuring only the overall elapsed time, we now break up an MP operation sequence into code
segments (some as small as a few instructions) and measure the average elapsed time of each seg­
ment.

The following operation sequence is analyzed. A process in one user VAS sends an 8KB mes­

sage in stream mode to a process in another user VAS. The message is mapped into the receiver
VAS on demand, and is accessed by the receiver process. This sequence exercises most of the
components of the MP system. It is executed in a loop by two processes, which alternate sending
each other messages.

8

Table 4: Comparison of different MP modes. In each case, an 8KB message is passed
back and forth between two processes.

mode and orocess tvoes round trio time in milliseconds

two user processes, 2.496
stream mode

two user processes, 2.162
request-reply mode

a user and a kernel process, 2.085
stream mode

a user and a kernel process, 1.751
request-reply mode

5.1. Measurement Method and Its Accuracy

The average time of some code segments is only a few microseconds, and the Sun 3/50 has a
low-resolution clock (100Hz). Our measurements therefore use a statistical approach. We added

probe calls to both kernel and user code to divide the loop into 69 segments. Each probe call cal­
culates the difference between. the current clock reading and its previous reading, and accumu­

lates the difference into an array location. We ran the loop 1,000,000 times. At the end, we cal­
culated the length of each code segment by dividing its accumulated clock reading by 1 ,000,000,

multiplying the quotient by 10 milliseconds, and subtracting the overhead of the probe call
(measured separately) from the product.

To determine the accuracy of this method, we repeated the same experiment 10 times, and calcu­

lated the mean (JJ.) and standard derivation (cr) for each of the 69 time intervals. Figure 3 shows

the ~ ratio for these 69 intervals. The ratio is less than 5% for 59 intervals, which together
J..1.

account for 97% of the total loop time. Hence for most cases, the 95% confidence interval of a
time interval is within 10% of its mean.

An alternative measurement approach for low-resolution clocks uses a run-time profiler that
builds histograms from periodic samplings of the program counter (e.g., the UNIX gprojfacility

[11]). We did not use this technique because it reports statistics only at the granularity of a pro­
cedure call, while we are interested in code segments smaller than a procedure call. More than

two thirds of the code segments shown in Figure 4 are sub-procedure segments.

5.2. Results and Discussion

Figure 4 summarizes the results of the microscopic measurements. It represents one half the
loop, and includes the detailed costs of a user-level send operation, a user-level receive

operation, a context switch, and the handling of a page fault. Most of the individual operations
listed in the figure are explained below.

Trapping into and returning from the kernel mode:

A user process makes a kernel request by executing a trap instruction with parameters
passed in registers.

SD/mean

20%
0

0

0

9

3 intervals
totally 12 J.Lsec

10% -----------------------------------·---·-------------------------------

5%

8
0

0

00

7 intervals
totally 46 J.LSeC

..0---

20 40 60 80

59 intervals
totally 2438 J.LSeC

8 8

100 120

Mean of time intervals in microseconds

Figure: 3 The coefficient of variation for the 69 time intervals. The !!.. ratio is less than
J.1

5% for 59 intervals that together account for 97% of the total loop time.

10

1231 Total elapsed time

641 User-level send operation
34 trap into and return from kernel mode

49 switch to and from the kernel VAS

15 convert and check user object references

46 check the message header
7 dispatch to the send operation

490 kernel-level send operation
138 processing before message transfer

221 transfer the message
74 copy the message header

19 check a page descriptor in the message (A)
81 transfer a page between VAS's

32 look up and check memory maps (B)
26 invalidate a page table entry (C)

(this is not needed if the page hasn't been mapped)
23 miscellaneous (D)

47 miscellaneous

131 processing after message transfer

296 User-level receive operation
33 trap into and return from kernel mode

46 switch to and from the kernel VAS

16 convert and check user object references

46 check the header of the receive message

6 dispatch to the receive operation

98 kernel-level receive operation
91 processing before the process is blocked

7 processing after the process is awakened

51 complete the message transfer
24 copy header from temporary buffer to receive buffer, if needed

16 ensure that the page transfer is completed (E)
11 miscellaneous

120 Context switch between user processes

173 Access the received message
37 find the address of data in a structured message

134 handle a page fault
24 save states and get parameters of the fault (F)

55 look up and check memory maps (G)
32 update a page table entry (H)
23 return from fault (I)

2 miscellaneous

Figure 4: Breakdown (in microseconds) of the elapsed time for moving an 8KB mes­
sage between VAS's. Numbers are accurate to within ± 10%. Operations in boldface

are performed for every page in the message, while the others are independent of the
size of the message.

11

Switching to andfrom the kernel VAS:

In the Sun 3 architecture, a VAS switch is not done by the mode switch. The DASH kernel

switches to the kernel VAS at the beginning of the trap, and switches back to the caller's

VAS before returning from the trap.

Converting and checking user object references:

An MP object is stored in the kernel VAS. A user process refers to this object by an index

into the user object reference (UOR) table of its VAS. The trap handler checks the UOR

table to see whether "the requested MP operation is valid, and converts the index to the table

into a pointer to the object.

Checking the message header:

The trap handler checks whether the message header is valid. It locks the page containing

the header so that other processes in the same VAS will not send out the page while it is

being used by the MP system. The page is unlocked when the MP operation is completed.

Kernel-level send operation:

In this scenario, the receive operation always precedes the corresponding send opera­

tion. The send operation checks the MP object's reader queue, removes the receiver pro­

cess from the queue, and gets parameters from its context block. Then the message is then

transferred; the header is copied to the receiver's header, and the IPC pages are remapped

into the receiver VAS. The miscellaneous costs includes the overhead of a procedure call, a

loop and its initial assignments, and the check for whether a temporary header buffer is

necessary. Finally, the receiver process is awakened.

The MP system has several features (e.g., flow control and scheduling deadline assignment)

that are not used in this scenario. These contribute to the overhead, however, because of the

checks that are done to see if these features are being used.

Transferring an !PC page between VAS's:

The page descriptors in the message header are checked. The high-level memory map for

the IPC region is checked and updated. The page is unmapped from the low-level memory

map (i.e., the hardware page table) of the sender VAS if it has been mapped. The page is

not immediately mapped into the low-level map of the receiver VAS.

Kernel-level receive operation:

The message queue of the MP object is checked. It is always empty in this case, so the

receiver process blocks. The parameters of the operation are stored in the context block of

the receiver. Later a send operation will awaken the process as described above.

Completing the transferring of the message:

If the message header is in a temporary kernel buffer, it is copied to the buffer supplied by

the receiver (this does not occur in the present case). An IPC page is unmapped from the

low-level memory map of the sender VAS asynchronously. The receive operation

ensures that the unmapping is completed before returning.2

Context switch:

This includes saving the state of the current process, making a scheduling decision, and res­

toring the state of the new process.

Finding data in a structured message:

2 This mechanism is designed for shared-memory multiprocessors in which synchronous unrnapping is expensive because of

the inconsistency problem of translation lookaside buffers [12). On the Sun 3/50, this is pure ovemead.

12

This scans the descriptors in the message header, and finds the data address for a given

offset.

Handling a page fault:

Page fault handling consists of four parts, as listed in Figure 4. The hardware saves the

state of the processor and jumps to an assembler page fault handler, which in tum calls a

C++ handler. The C++ handler determines that the faulting address is in the IPC region,

checks whether the VAS of the faulting process is eligible to access the page, and finds the

physical address of the IPC page. The page table entry corresponding to the faulting

address is updated. Finally, the state of the CPU is restored, and the faulting instruction is

resumed.

5.3. Cross-Checking the Results

The results of the microscopic analysis are compatible with the throughput measurements

described in Section 4. As an example, we can compare the incremental cost per page under the

various access options.

• If a page is mapped on demand but not accessed, the incremental cost includes operations

A, B, D, and E in Figure 4.

• If a page is mapped by the receive operation, the incremental cost includes operations A - E,

G, and H.

• All of the operations from A to I are needed if a page is mapped on demand and accessed.

Adding up the costs from the microscopic analysis (Figure 4) we obtain incremental per-page

costs of 90, 205, and 250 microseconds for the above three cases. The corresponding costs

obtained from the throughput measurements (Table 3) are 87, 208, and 254 microseconds. The

differences are within the error tolerances of the measurements.

6. DISCUSSION AND EVALUATION

This section discusses the results in the previous sections, and uses them to evaluate the design of

the DASH message-passing system.

6.1. Data Movement Dominates the Cost for Large Messages

Figure 5 groups the numbers listed in Figure 4 by function. It shows that data movement takes

43.5% of the time spent in passing an 8KB message between VAS's, while control transfer (pro­

cess sleep/wakeup and context switching) takes only 39.6%. Furthermore, the cost of data move­

ment increases as the size of the message increases, but other costs do not. The incremental cost

of moving an 8KB page ranges from 87 to 254 microseconds (Table 3). If pages are mapped on

demand and accessed, data movement takes 65.5% of the total time for a 32KB message, and

77.1% for a 64 KB message. Therefore, data movement dominates the cost of moving large mes­

sages, even though we avoided software copying. This justifies our concern with the efficiency of

data movement.

6.2. The Effectiveness of the DASH Design

Because of the experience of Accent, we were concerned about the overhead introduced by com­

bining the VM system and the MP system. In order to reduce this overhead, we designed a spe­

cial IPC region, and special remapping semantics. The numbers in Figure 4 show that we have

avoided all the operations·we wanted to avoid. The message header is copied only once when a

receive precedes the corresponding send. Also, pages are remapped only once, from the

sender VAS directly to the receiver VAS. No buffer allocation is needed. Finally, the cost of

checking and updating the memory map for the IPC region is relative low. This is because the

13

39.6% Control Transfer
9.7% context switch

21.9% fixed overhead of the send operation
8.0% fixed overhead of the receive operation

43.5% Data movement
29.6% data transfer

7.5% check the message header
8.0% copy the message header
1.5% check a page descriptor in the message
8.1% transfer a page between VAS's
4.6% miscellaneous

13.9% data access
3.0% find the address of data in a structured message

10.9% page fault handler

15.6% User/kernel interface
5.4% trap into and returning from the kernel mode
7.7% switch to and from the kernel VAS
2.5% convert and check user object references
1.1% miscellaneous

Figure 5: Cost breakdown by function, showing that data movement dominates the cost
of the MP operation. Operations in boldface are performed for every page in the mes­
sage.

data structure for the IPC region is separated from the rest of the VM system, and is simple.

The overhead due to non-contiguous message organization is 148 microseconds. This includes
92 microseconds for checking the header, 19 microseconds for checking a page descriptor, and 37
microseconds for finding the location of data within a message. Placing a message header in the
IPC regions allows it to be copied directly from a source VAS to a destination VAS. Otherwise a
temporary kernel buffer and extra copying time are needed. The savings are about 70
microseconds for avoiding additional copying, and about 40 microseconds for not having to allo­
cate a fixed-size temporary buffer. The message structure also eliminates the need for allocating
buffers for the whole message; the savings are about 200 microseconds.

The benefit of lazy mapping (i.e., mapping data pages on demand) depends on how a message is
accessed, and the relative cost between manipulating the low-level memory map and handling a
page fault. Operations G and H in Figure 4 are needed to map a page into the low-level memory
map. If they are invoked by the receive operation instead of by the page fault handler, 47
microseconds (operations F and I) can be saved. In addition to G and H, operation C is needed to
manipulated the low-level memory map. Therefore, lazy mapping saves 113 microseconds (C, G
and H) if a page is not accessed, and wastes 47 microseconds if a page is accessed. We were con­
cerned about the overhead of handling a page fault because of the experience of other systems.
We therefore added the immediate-access flag to save page faults, and we optimized the page
fault handler. It turned out that the cost of handling a page fault is much lower than we expected,

14

and overriding lazy remapping is a win only when the number of pages accessed is at least three

times of the number of pages not accessed.

We believe that our main conclusions are applicable across a range of hardware architectures and

operating system designs. This is supported by the following claims: 1) that the cost of

hardware-level VM remapping is about the same on the Sun 3 as on other current architectures3;

2) that message-passing costs (including both the control transfer and data transfer parts) are

roughly comparable in DASH and in other current message-based operating systems.

In support of the second claim, Table 5 shows performance figures for message-passing in DASH

and other current systems: Accent [2], LYNX [13], Mach [14], Quicksilver [9], Topaz [15], and

the V system [16, 17].

7. SUMMARY

In DASH, the VM system is integrated with the MP system to avoid software copying when mov­

ing large amounts of data between VAS's. The purposes of this integration are 1) to eliminate a

bottleneck in high-performance network communication, and 2) to reduce the performance

penalty for moving data services into separate VAS's. For these purposes, the overhead of using

VM remapping must be low, and the bandwidth of moving data between VAS's must be high.

Some early systems (e.g., Accent) also integrate the VM system with the MP system. However,

they use this facility for such tasks as whole-file transfer and address space duplication, for which

per-operation overhead of remapping is not a major factor.

The major findings of our throughput measurements are:

• On the Sun 3/50, DASH can move data between VAS's at a rate of more than 30MB/sec,

an order of magnitude higher than the bandwidth of software copying.

• Although we emphasize large messages, we have not sacrificed performance for small mes­

sages. A null message can be moved between VAS's in less than one millisecond. This

Table 5: Performance comparison of several message-passing systems. DASH is com­

parable to other systems.

operating
hardware

request/reply time (milliseconds)

system two small messa~res one small one lame message

Accent PERQ 1.15 10.0 (lKB) 4

DASH Sun 3 (15 MHz MC68020) 1.59 2.16 (8KB each direction)

LYNX Butterfly (8MHz MC68000) 2.82 4.42 (lKB each direction)

Mach IBMRT/PC 4.0 5.1 (1KB)

Quicksilver IBMRT/PC 0.66 1.16 (lKB)

Topaz Firefly (DEC Micro VAX) 0.94 1.482 (1440 bytes)

V ~ystem 10 MHz MC68000 0.94 2.13 (lKB)

3 11ris argwnent may not hold on some shared-memory multiprocessors [12).

• These numbers are for a one-way send operation only, as reported in [2). The times for a receive operation are similar. A

request/reply operation would involve two send and two receive operations.

15

speed is comparable to that of other systems that do not use VM remapping.

• The initial overhead of using VM remapping is low. The incremental cost of adding the

first page to a message is only about 30 microseconds higher than that of adding a subse­

quent page. Therefore, remapping is beneficial even when a message contains only one

page.

We then did a "microscopic" analysis of the cost of an MP operation, using a statistical

approach. As expected, the results show that data movement dominates the cost of passing large

messages. The cost breakdown also explains how we reduced the overhead of using VM remap­

ping. Several important design decisions are:

• To avoid dynamic heap allocation while supporting variable-size messages.

• To remap pages from the source VAS to the destination VAS directly.

• To avoid adjusting pointers when pages in a structured message are remapped.

8. ACKNOWLEDGEMENTS

We would like to thank Domenico Ferrari for his involvement with the experiment design, and

suggestions on improving the presentation of the paper. We are also thankful to Heinz Beilner for

his assistance in developing the techniques for microscopic analysis, and Raj V aswani for imple­

menting the message-passing system.

16

References

1. D. P. Anderson and D. Ferrari, "The DASH Project: An Overview", Technical Report No.
UCB/Computer Science Dpt. 88/405, Computer Science Division, EECS, UCB, Berkeley,
CA, Feb. 1988.

2. R. P. Fitzgerald, A Performance Evaluation of the Integration of Virtual Memory
Management and Inter-Process Communication in Accent, Ph.D. Dissertation, CMU,
Pittsburgh, PA, Oct. 1986.

3. L. F. Cabrera, E. Hunter, M. Karels and D. Mosher, "A User-Process Oriented
Performance Study of Ethernet Networking Under Berkeley UNIX 4.2BSD' ', Technical
Report No. UCB/Computer Science Dpt. 84/217, Computer Science Division, EECS,
UCB, Berkeley, CA, Dec. 1984.

4. D. D. Oark, "Modularity and Efficiency in Protocol Implementation", DARPA Internet
RFC 817, July 1982.

5. H. Rudin, "Trends in Computer Communications", IEEE Computer, Nov. 1986.

6. R. Wilson, "Designers Rescue Superminicomputers From 1/0 Bottleneck", Computer
Design, Oct. 1987, 61-71.

7. D. R. Cheriton, ''The V Kernel: a Software Base for Distributed Systems'', IEEE Software
1, 2 (Apr. 1984), 19-43.

8. E. Basart, "The Ridge Operating System: High Performance through Message-Passing and
Virtual Memory", Proc. of the IEEE 1st International Conf on Computer Workstations,
San Jose, California, Nov. 11-14, 1985, 134-143.

9. R. Haskin, Y. Malachi, W. Sawdon and G. Chan, "Recovery Management in
QuickSilver", Trans. Computer Systems 6, 1 (Feb. 1988), 82-108.

10. B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1986.

11. S. L. Graham, P. B. Kessler and M. K. McKusick, "gprof: A Call Graph Execution
Profiler", Proc. of the SIGPLAN Notices '82 Symposium on Compiler Construction,
SIGPLAN Notices Notices 17, 6 (JUNE 1982), 120-126.

12. S. Tzou, D.P. Anderson and G. S. Graham, "Efficient Local Data Movement in Shared­
Memory Multiprocessor Systems", Technical Report No. UCB!Computer Science Dpt.
871385, Berkeley, CA, Dec. 1987.

13. M. L. Scott and A. L. Cox, "An Empirical Study of Message-Passing Overhead", 7th
International Conference on Distributed Computing Systems, Berlin, Sep. 1987, 635-643.

14. A. Z. Spector, J. L. Eppinger, D. S. Daniels, R. Draves, J. J. Bloch, D. Duchamp, R. F.
Pausch and D. Thompson, ''High Performance Distributed Transaction Processing in a
General Purpose Computing Environment'', CMU, Pittsburgh, PA Computer Science Dpt.
Technical Report, Sep. 9, 1987.

15. M. Burrows and M. Schroeder, "Perfonnance of Firefly RPC", Internal Report, Dec.
Systems Research Center, Nov. 1987.

16. W. Zwaenepoel, Message Passing on a Local Network, Ph.D. Dissertation, Computer
Science Dpt., Stanford Univ., Oct. 1985.

17. D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its Perfonnance for
Diskless Workstations", Proc. of the 9th ACM Symp. on Operating System Prin., Bretton
Woods, New Hampshire, Oct. 10-13, 1983, 128-140.

