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1. Introduction 

Security mechanisms can be introduced at various levels in a network protocol archi­

tecture. In special cases, introducing them at more than one level may be justified. How­

ever, to satisfy the two communication security goals of authentication of principals and 

message privacy, it is possible to add security mechanisms to only one layer in the protocol 

hierarchy. 

What layer should this be? Many authors argue that security should be at the tran­

sport level (e.g., [13] [5]) or in any event not below it (e.g., [16]). The three reasons men­

tioned by Saltzer et al. [16] for placing security mechanisms above the communication sub­

system (i.e., above the bottom three layers in the ISO Open Systems Interconnection model) 

are that 

(a) with security at a higher level, the communication subsystem need not be ''trusted to 

securely manage the required encryption keys;" 

(b) if the security mechanisms were in the communication subsystem, the data would be 

"in the clear and thus vulnerable as they pass into the target node and are farmed out 

to the target application;" 

(c) "the authenticity of the message must still be checked by the application." 

Argument (a) is also made, though in more general terms, by Diffie [13], who favors 

locating the mechanisms at the transport level, "the lowest point of full end-to-end com­

munication," since this provides the benefits of end-to-end security with a single mechan­

ism. Birrell [5] states that the "lowest layer at which we can provide an end-to-end 

guarantee is the network layer," but "in most communication architectures (including ours) 

it is not until the transport layer that end-to-end security is feasible. The transport layer 

is the lowest level at which enough state information is kept to establish the authenticity 

of incoming data in successive packets of an interaction." Voydock and Kent [18] state that 

one of the alternative ways in which end-to-end security can be achieved is the host-to-host 

solution, but add that end-to-end security measures "usually extend beyond the communica­

tion subnet." They also do not hide their predilection for association-oriented mechanisms, 

that "constitute a refinement of end-to-end measures," and are restricted to layers 4 

through 7 of the ISO OSI model. Tanenbaum [1 i] states that logically the encryption 

should be at the presentation layer and that "for historical reasons and implementation 

convenience, however, it is often put elsewhere, typically the transport layer or the data 

link layer". 

In this paper, we argue that end-to-end security is not only feasible at the host-to-host 

(or subtransport) level under generally satisfiable conditions, but that this solution can be 

more advantageous than the others in many respects, including that of performance, which 

is not usually referred to in the literature. To prove these claims, we introduce our model 

of communication security in Section 2, we describe a subtransport-level protocol called 

ADP (Authenticated Datagram Protocoll in Section 3, we show in Section 4 that ADP pro­

vides end-to-end security according to the model defined in Section 2, we discuss the advan­

tages of the subtransport approach in Section 5, and in section 6 we present some experi­

mental results that confirm the expected performance benefits of this approach. 

2. The Security Model 

The two goals of network security we are concerned with in this paper are message 

authenticity and message privacy. Both concepts can be defined by referring to the situa­

tion depicted in Figure 1. Each user process has an owner. Each kernel also has an owner. 

Owners are the security principals in our model. Each owner has a unique symbolic name 
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and a unique private-key/public-key pair. The owner of object 0 will be denoted in the 

sequel by (0). All communication protocols are assumed to be included in the box called 

"kernel" in Figure 1. 

When process Y receives a message that is alleged to have been sent by the owner of 

process X running on A, (Y) wants to be sure of its authenticity, that is, that it was really 

sent by (X), even though (Yl may not trust (A) or the network (since Y runs on B, we 

assume that (Y) trusts (B)). Note that "the network" in the previous sentence and in Fig­

ure 1 stands for the path (or paths) possibly including hosts and gateways a message from 

X has to go through in order to reach Y. 

When (X) wishes its message to (Y) to be private, it wants to ensure that the contents 

of the message can be read only by (Yl, or (if the message is not delivered or delivered in a 

corrupted state) it cannot be read by anyone, even though (X) may not trust (B) or the net­

work. 

Security mechanisms to be incorporated into a protocol layer in each kernel should 

provide end-to-end authentication and privacy as we have just defined them. In order to 

prove (as we shall do in Section 4l that it is possible to achieve end-to-end security by incor­

porating suitable mechanisms below the transport layer, we shall introduce the notions of 

security-correct kernel and kernel trust. 

Each kernel runs on a host. At any point in time, a host bas a kernel owner. The 

ownership of a kernel is established at boot time, before network communication takes 

place; it might be done manually or from a ROM. Kernel ownership may change over time, 

e.g., as different people boot a public workstation. A crash-free period under a single ker­

nel owner is called a kernel session. In the sequel, we shall occasionally use the terms 

"host" and "kernel" interchangeably, as this can be done without confusion during each 

kernel session. 

The kernel may support multiple user processes, each of which bas an associated 

owner, perhaps different from the kernel owner. Processes communicate with each other 

through messages. Each message has a message sender field containing the name of the 

owner of the sending process, and a message receiver field, containing destination informa­

tion. A kernel possesses the private keys of its kernel owner and of all owners of the user 

processes it bas executed or is executing. Figure 2 represents the organization of the ker­

nel. It consists of modules of code and private data. The passing of messages between 

modules is handled by a special kernel module called the message passing module. The net­

work security functions are handled by a module called the security module. Kernel 

modules which handle either an outgoing message before it is passed to the security module 

or an incoming message after it has been processed by the security module are called type-1 

modules. Protocol modules above the layer at which communication security functions are 

handled are examples of type-1 modules. Kernel modules which handle either an outgoing 

message after it has been processed by the security module or an incoming message after it 

has been processed by the security module are called type-2 modules. In a protocol architec­

ture where security functions are handled above the data link layer, a network driver is an 

example of a type-2 module. Kernel modules other than the security module, the message 

passing module, the type-1 modules, and the type-2 modules are called type-3 modules. The 

private keys are part of the private data storage of the security module. The security 

module, the message passing module, the type-1 modules, and the type-2 modules are 

together called critical modules. 

A kernel is security-correct if the following conditions bold: 

(1) The only way for a user process to communicate with the kernel is through messages. 

(2) When a user process sends a message to a kernel module, the message passing module 

sets the message sender field to be the owner of that process. Thereafter, the message 

passing module and the type-1 modules do not change (al the message sender field, or 

(b) the message receiver field, (c) the data part of the message. 
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(3) The message passing module does not deliver a message to a user process if the owner 
of that user process is different from that indicated in the message receiver field. 

(4) The private data storage of the security module is read or written by no other module. 

(5) The security module executes its algorithms (to be given later) correctly. 

(6) Type-2 modules do not directly communicate with type-1 or type-3 modules or user 
processes. 

All of these conditions re9uire some form of logical correctness on the part of the ker­
nel; methods of ensuring this are outside the scope of this paper (see [6]). 

An owner I is kernel-trustworthy if, whenever I owns a kernel, this kernel is security­
correct. 

If an owner I issues a command to execute a process (locally or remotely) on a kernel 
with owner J, we infer (and say) that I is placing kernel trust in J. 

3. The Authenticated Datagram. Protocol 

As mentioned in Section 1, ADP is a host-to-host datagram protocol that provides 
secure communications, i.e., authentication and, optionally, privacy of messages. ADP 
separates authenticated principals from the end-points of a secure channel across a net­
work. 

ADP makes use of an underlying network layer that provides an insecure datagram 
service. This service could vary according to the remote host involved; for example, the 
Internet Protocol might be used [19] for a distant host, while a simpler network protocol 
would suffice for a host on the same LAN. In some cases, ADP must handle fragmentation 
of long messages; this issue will not be considered here. 

ADP does not implement any particular authorization scheme, nor does it provide 
other security guarantees such as confinement or freedom from denial of service. With 
ADP as a basis, the kernel may provide higher-level services (e.g., authorization mechan­
isms) for user processes. 

3.1. Secure channel establishment 

The operation of ADP is based on a host-to-host secure channel that is established 
whenever a (user or kernel) process executing on a host wants to communicate with 
another process running on another host and such a channel does not already exist. 
Public-key encryption (PKE) [11, 15] is used to establish a secure channel: when a host A 
needs to establish a secure channel to a host B, the ADP module running on A sends a 
channel establishment request to B. This request contains random string S, encrypted with 
the public key of the (B), and random string T. S will be used as the secret single key of 
the secure channel, and Twill be used as a digital signature [1, 8, 10] to authenticate own­
ers from B to A. A marks the secure channel as being tentative until it receives an ack­
nowledgement. The secure channel request is included with ADP messages sent while the 
channel is still tentative. 

In the secure channel acknowledgement and in every ADP message until the first sig­
nature is received, B sends to A a random string R to be used for signatures sent from A to 
B, i.e., to authenticate owners from A to B. If the two hosts simultaneously try to establish 
a channel between themselves, the one with the lexicographically greater name determines 
the channel key S. 

In many cases, patterns of communication (in terms of local and remote owners and 
addresses) are predictable; for example, a workstation will always communicate with local 
file servers. It is then possible for a kernel to establish secure channels, and do 
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authentication on those channels, in advance of user demand (e.g., at boot time). 

3.2. Owner authentication 

When an owner I who has not sent any messages to B before wants to communicate 
from host A with an owner J on host B, and a secure channel between A and B has been 
established, public-key encryption is used to authenticate I to (B). The ADP module run­
ning on A encrypts string R with the private key of I and sends it in a message along with 
rs name; the ADP module on B decrypts it with the public key of I obtained from the name 
server, and compares the result to string R; if the two strings are identical, then B con­
cludes that the message is from I (or from a host that possesses /'s private key), and caches 
Fs name in the list of the owners authenticated from the other end that it maintains for 
that channel. A in turn caches the name of I in its list of owners authenticated to the 
other end of the channel (see Figure 3). 

When this operation has been done, both hosts are aware, and remember, that I has 
been authenticated to (B). This authentication caching means that expensive PKE-based 
authentication need be done only the first time an owner is invoh·ed as a sender or receiver 
on a particular secure channel. In all subsequent messages sent from I to J, the presence of 
rs name in the caches maintained by ADP on A and B is considered sufficient for the 
authentication of the messages. 

3.3. Messages 

As explained in [3], messages from I to J, when I has been authenticated to the host 
where the destination process belonging to Y resides, only require for the purposes of 
authentication either the encryption (with the secure channel's secret key S) of a message 
trailer that includes a sequence number or a cryptographic checksum [2, 9]. If privacy of 
the data is also desired, then the entire message may be encrypted with S. Thus, ADP uses 
a bootstrapping mechanism to combine the advantages of public-key [11, 15] and single-key 
[14] cryptography. As a basis for authentication in large distributed systems, public-key 
schemes have several advantages over single-key schemes. In those systems, replication is 
essential for performance, availability, and fault-tolerance. Key server replication 
increases the vulnerability of a single-key scheme to attack on secrecy, whereas it reduces 
the vulnerability of public-key systems [13]. Current public-key encryption algorithms are 
too slow to consider using them to encrypt any part of each message sent. On the other 
hand, single-key operations are fast enough to be employed for each message. 

Further reductions in encryption overhead can be achieved if ADP and its users recog­
nize the existence of messages that are not particularly urgent (e.g., most acknowledge­
ments, most writes to remote disk) and that can therefore be delayed and perhaps pig­
gybacked onto a later message to be transmitted over the same secure channel. In this 
case, one ADP message on the network may include a number of user messages. Only one 
sequence number will have to be encrypted, or only one cryptographic checksum will have 
to be computed, for each ADP message, thereby reducing the cost of encryption per user 
message. 

The urgency of a message will typically be determined by the process originating it: a 
message marked urgent will be shipped by ADP as soon as possible; one whose maximum 
delay is specified will have to be sent when this timeout expires, unless it will have already 
been piggybacked onto an urgent message; finally, one which neither is marked urgent nor 
has its maximum delay specified will be assigned by ADP a timeout, which will usually be 
a tunable parameter of ADP and the same for all such messages. Since delayed messages 
have to be kept in queues within ADP, another tunable parameter is the maximum size of 
each queue: the arrival of a non-urgent message which causes a queue to fill or to overflow 
will be treated as if it were the arrival of an urgent message. This maximum size will 
depend on the amount of buffer space available, and may be limited by the maximum size 

·~· ' :~; 

··.~.·~.·· ':;~ 

i 



1 • 
- 6 -

of the messages that can be accepted by the lower protocol layers. The one just described is 
the queue service discipline that has been implemented in the current version of ADP, but 
is by no means the only possible one, nor necessarily the best. 

4. End-To-End Security in ADP 

ADP provides an authenticated datagram service to transport-level protocols, and, 
optionally, message privacy over the network. To show that it does so according to the 
definitions given in Section 2, that is, that the authentication and privacy it provides are 
really end-to-end (i.e., owner-to-owner), it is useful to describe ADP's interfaces to the pro­
tocol layer above it. 

4.1. ADP interfaces 

4.1.1. Message reception 

ADP demultiplexes messages On the basis of ports, which are kernel-level communica­
tion endpoints. Each port has an ID that is unique over a kernel session. A client can 
indicate to ADP that it is willing to receive messages on a port using: 

register _port( 

port: port_ID; /* port being registered */ 

locaLowner: name; /* owner for port /* 

ADP can then deliver messages to the port. It will tag each such message with the 
name of its sender. On each host, there is a distinguished port that is owned by the kernel 
owner and has a well-known port ID. This port is used for request/reply style kernel-level 
communication that is used to set up other communication. 

4.1.2. Message sending 

The ADP primitive to send a message is: 

ADP_send( 
message: string; 
locaLowner: name; 
remote..host: name; 
remote_port: port.JD; 
privacy: boolean; 
max_delay: time; 

ADP _send sends the given message to the named remote port on the destination 
host. The max_delay argument is a hint to the kernel that the message can be buffered for 
up to that amount of time before it is transmitted. This is used to encourage piggybacking 
(see Section 3 .3). 

4.1.3. Other ADP primitives 

ADP also provides the following primitives: 

flag = establish_channel(remote _kerneLowner, remote_host: name;) 
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flag = locaLauthenticate(remote _owner, remote __host: name;) 

flag = remote_autbenticateOocal_owner, remote_host, remote_owner: name;) 

They can be used by the kernel to do boot-time "advance authentication." 

Establisb_cbannel returns true iff the remote owner claims ownership of the named host, 

and accepts a secure channel. LocaLauthenticate and remote_authenticate authenti­

cate a local owner to a remote -host; and vice versa. 

4.2. End-to-end security 

We now prove that ADP provides end-to-end security between two owners I and J if 

every owner 0 in whom I or J has placed kernel trust is kernel-trustworthy. 

If owner J has a process on a kernel B, since J has placed kernel trust in only kernel­

trustworthy owners, kernel B is security-correct. Thus when the ADP module on kernel B 

delivers to a port owned by J a me~sage tagged with the name of I, ADP _receive guaran­

tees that the message arrived on a secure channel on which a signature of I had been 

received at an earlier time. From the assumption that I has placed kernel trust in only 

kernel-trustworthy owners, it can be concluded that the kernel A which sent the signature 

is security-correct. Thus both ends of the secure channel are security-correct and hence only 

the ADP modules on the two kernels know the secret key of the channel. Since the mes­

sage was received on such a secure channel, it must have been sent by the ADP module on 

A. Since A is security-correct, the message must have resulted from some process owned by 

I on kernel A. Since receiving kernel B is also security-correct, the process owned by J with 

which the receiving port is associated is correctly informed about the identity of I. Thus, 

end-to-end authentication between owners, who are the security principals in our model, is 

guaranteed. 

If a process owned by I on a kernel A desires privacy for a message to be sent to J, it 

first invokes remote_autbenticate to make sure that J is actually on the remote host B. It 

then calls ADP _send with the privacy flag set. The authentication of J, together with the 

assumption that J has placed kernel trust only in kernel-trustworthy owners, guarantees 

that B is security-correct and that J has a process on B. Since I has placed kernel trust 

only in kernel-trustworthy owners, A is security-correct. The secure channel between the 

two security-correct kernels A and A guarantees privacy between the ADP modules on the 

two kernels. The security-correctness of A guarantees privacy from other owners having 

processes on A. The security-correctness of the receiving kernel guarantees privacy from 

other owners having processes on B. Thus we have end-to-end privacy between the two 

owners I and J. 

If a kernel is not security-correct, it can alter or publicize any data accessible to a user 

process. In such a case, there can be no security guarantees, and no additional security is 

obtained by doing encryption at higher protocol layers or in user processes. If a kernel is 

security-correct, doing encryption within higher layers or in user processes may change 

some type-1 modules into type-2 modules as defined in our security model. 

Obtaining process-to-process security from owner-to-owner security requires that, in 

addition to being security-correct, a kernel must limit the read'write access to a port (a 

message end-point) to the process which owns the port. Since this condition involves only 

processes on a single kernel, the special privileges of a kernel are sufficient to satisfy it. 

4.3. Trust domains 

The set of hosts in many distributed computing environments may contain subsets 

with the following property: within a subset, the hosts and the communication channels 

between them are physically secure, and owners with access to the hosts all place kernel-
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trust in one another. Across subsets, the communication links may not be physically 
secure, and owners in one subset may not trust those in the other. We call such subsets 
trust domains. Encryption-based security mechanisms are necessary only for communica­
tion across a trust domain boundary. Suppose also that all communication across a boun­
dary is routed through one or more hosts called domain gateways. Then it is possible to 
have a special subtransport protocol module on a domain gateway that handles packet for­
warding. This module can also handle secure channels and authentication on behalf of 
hosts within the domain, tran~parently to kernel and user level clients and to higher level 
protocols (however, owners are still the principals being authenticated on a domain-to­
domain secure channel). This has the following advantages: 

Efficiency: communication within the domain has no security overhead. Only the 
domain gateway does encryption, so only it need have encryption hardware. 

Flexibility: the domain's configuration may be changed at any time. Only the imple­
mentation of secure channels and owner authentication in the domain gateways 
changes. Kernel and user clients, and higher level protocols do not see any changes. 

5. Subtransport Versus Higher-Level Security 

It was shown in the previous section that putting security at the subtransport layer 
provides the desired end-to-end authentication and privacy. We now discuss the advan­
tages of putting security at the subtransport layer rather than at or above the transport 
layer. The advantages are grouped into the following three parts: 1) general advantages of 
subtransport layer security 2) specific advantages relative to transport layer security 3) 
specific advantages relative to putting security above the transport layer. 

5.1. General advantages of the subtransport approach 

Putting security at the subtransport layer has several advantages relative to putting 
it at higher protocol layers: 

It simplifies transport level protocols. When a host crashes, its secure channels are 
destroyed. Thus remote host crashes can be detected at the host-to-host level at the 
time of secure channel establishment, and transport level protocols do not have to 
employ elaborate timer mechanisms to detect them [7, 20]. This also means that 3-
way handshakes can often be eliminated from transport-level protocols. A short tran­
saction then requires just two messages in the best case, as opposed to at least six in 
TCP and four in secure RPC. 

At the subtransport level, security functions do not have to be duplicated as they have 
to be in higher layers. 

There are two public-key operations per owner per remote host per kernel session. 
Often these operations can be done at boot time or during idle periods. There are no 
per-process or per-operation public-key operations, resulting in a substantial perfor­
mance gain. 

• Since messages from all client processes and higher level protocols pass through the 
subtransport layer, a number of these messages destined to a common remote host can 
all be combined into a single datagram and authenticated once using the channel 
secret key. This can reduce the number of single key operations. 

As was shown in section 4.3, in the case of trust domains, separation of the authenti­
cated principals from the end-points of a secure channel, and having security at the 
host-to-host datagram level, allows heterogeneity in implementation of secure chan­
nels and flexibility to change this implementation without the need to change any of 
the higher level protocols. Since higher-level protocols (e.g., transport-level) establish 

j• t 
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associations between entities other than hosts (e.g., processes), if security mechanisms 

were placed at one of these layers, a trust domain would require an intermediate 

entity in the domain gateway to maintain separate higher-level associations (e.g., 

transport connections) with the entity within a domain and the entity outside the 

domain. In such a case, entities within a domain can never have secure connections 

directly with those outside and vice versa. 

5.2. Disadvantages of transport layer security 

Transport level protocols are used to implement a variety of communication para­

digms. Request/reply (RPC) [4] and full duplex byte streams [21] are two of the popular 

communication paradigms. We examine secure RPC [4] as an instance of security in a RPC 

protocol and secure TCP [13] as an instance of security in a full duplex byte stream proto­

col. Both secure RPC and secure TCP are transport level protocols. 

5.2.1. Secure RPC 

When a client issues its first· RPC request to a remote server, the RPC mechanism 

establishes a "secure conversation" between the two processes. This consists of agreeing on 

a secret conversation key to be used for encrypting RPC requests and replies. There are 

several disadvantages of such a scheme: 

For each conversation, the RPC system must maintain a long-term state consisting of 

a conversation ·key and sequence numbers of requests within a conversation. This 

converts simple stateless RPC into one with long-term state. 

A three-way handshake is necessary to agree upon the conversation key. The cost of 

this three-way handshake is small if it is amortized over many RPC's. If, however, 

there are lots of short-lived processes making just one or two remote procedure calls, 

the performance penalty due to a three-way handshake is substantial. This can 

reduce the efficiency of RPC for short transactions. 

If public keys are used to authenticate the client and the server processes to each 

other, there will be four public-key operations for each conversation. If the conversa­

tion consists of a single RPC, the relative cost is substantial 

There is a single-key encryption and a decryption for each RPC request, reply, and 

acknowledgement. Since messages from different processes use different secure chan­

nel keys, it is not possible to reduce the encryption cost by piggybacking messages 

from different processes that are all destined to the same host. 

5.2.2. Secure TCP 

TCP is a DARPA Internet transport protocol [21] providing full duplex byte stream 

connections between processes on different hosts. Secure TCP [13] requires an initial 

agreement upon a secret key to be used during the TCP connection after the end points are 

authenticated to each other. There are several additional disadvantages associated with 

this scheme: 

Four public-key operations are performed for each TCP connection. 

Encryption cost reduction by piggybacking is impossible since keys are not per host­

pair. 

5.3. Disadvantages of security above the transport layer 

There are several disadvantages in adding secure communication mechanisms above 

the transport level: 

Transport level protocols like TCP do connection establishment using three-way 

handshakes. If security mechanisms are above the transport layer, they require their 

l 



- 10-

own handshake to agree upon keys after the transport level has established a connec­

tion. This duplication of handshaking entails higher message overhead. 

Transport level protocols do error detection using (insecure) checksums. Secure com­

munication mechanisms above the transport layer must do their own cryptographic 

checksumming. This is an unnecessary duplication of effort as error detection at 

higher layers can be avoided if checksumming is done in the subtransport level. 

Transport levels employ seq~encing to eliminate duplicates and out-of-sequence mes­

sages. Since an intruder- could change the transport level headers and hence the tran­

sport level sequence numbers, security mechanisms above the transport layer must 

also do sequencing to detect such an intrusion, again resulting in an unnecessary 

duplication of effort. 

If an intruder sends a false message with the correct transport level sequence number, 

the transport level protocol will accept it as the next message and reject the true mes­

sage which may arrive later. The secure communication mechanisms above will reject 

the false message correctly, but will never get the true message. False acknowledge­

ments at lower levels can disrupt the sequencing. The only way to recover from such 

situation is to re-establish the connection at both the transport and the secure com­

munication levels. This has the potential for much unnecessary tearing down of con­

nections and the associated performance overhead. 

Unauthenticated messages are detected only at the level where security mechanisms 

are. These messages are unnecessarily processed at all lower levels of the protocol 

hierarchy. Thus if the security mechanisms are at a high level, the amount of this 

unnecessary work can be large. 

Public-key operations cannot be reduced because authentication is not per-host, and 

single-key operations cannot be reduced by piggybacking. 

6. Experimental Verification 

A prototype of ADP has been implemented in C++ as part of the DASH Project in 

the Computer Systems Research Group at the University of California at Berkeley. This 

implementation runs on Sun 3/50 workstations connected by a 10 Mb/s Ethernet. Trace­

driven experiments were performed using TCP and SUN NFS traces of network packets to 

verify some of the expected performance advantages over transport layer solutions for com­

munication security. TCP was chosen as an example of a full-duplex byte stream protocol, 

and SUN NFS as an example of a request/response protocol. The primary performance 

indices were: 

Latency L: the average delay incurred by a message between the instant it is given to 

the subtransport module for transmission and the instant it is delivered by another 

subtransport module to the destination process or to a higher-level protocol on the des­

tination host. To compute L, we average the delays of the messages in a given finite 

sequence. 

Throughput T: the maximum rate at which information can be transmitted by the 

subtransport layer and received by another subtransport layer on the destination host. 

In a throughput experiment, the messages in the trace are transmitted at the max-

imum possible rate. In the transport-level case, when the arrival raate of a message trace is 

increased, a decision must be made about whether and how the process creation rate should 

be modified. There are two extreme cases: (1) The process creation rate is kept constant. 

This is one end of the spectrum and represents the best possible case for a transport layer 

that uses process-to-process secure channels. The throughput for this scenario will be 

denoted by Tl. (2) The messages are assigned a priori to processes. Thus. when the mes­

sage transmission rate is increased to its maximum value, the process creation rate 
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increases linearly. This represents the worst case for security at the transport layer. The 

throughput for this scenario will be denoted by T2. These two cases are of interest only for 

transport-layer security. For subtransport layer security the two cases will yield the same 

results. 

Table 1 shows the latency and throughput values for the following cases: (1) security 

mechanisms in the subtransport layer (ADP), (2) security mechanisms in the TCP protocol, 

and (3) security mechanisms in the RPC protocol (NFSJ. The last two of these are 

instances of transport-layer security. From the table, we conclude that the performance 

gains of the subtransport-layer security over both instances of transport-layer security are 

substantial. The inferior performance of transport-layer approaches is to be attributed pri­

marily to the much higher rate of channel establishment operations that these approaches 

require with respect to that caused by ADP. Channel establishment is quite time­

consuming: we have measured in our system an average establishment time of 1.75 s. 

Figure 4 shows the effect of piggybacking at the subtransport level. The input trace 

consisted of a sequence of messages leaving a busy file server. Among the many experi­

ments we performed, an interesting one was intended to determine the variation of the 

latency as the arrival rate of messages in the input trace was progressively increased. Fig­

ure 3 shows that the effect of piggybacking is insignificant at low arrival rates. Without 

piggybacking, an increase in the message arrival rate causes a rapid increase in the 

latency. Table 2 shows the latencies and CPU idle times for an unmodified message trace 

(ALL) with an average message arrival rate of 250 messages/s, for the following cases: (1) 

without any communication security mechanisms, (2) without security mechanisms but 

with message piggybacking, (3) with subtransport-layer security but without message pig­

gybacking, and (4) with subtransport-layer security and with message piggybacking. The 

difference in performance between cases 1 and 2 is considerable. The performance of case 4 

is very close to that of case 2 whereas, the performance of case 3 is less than that of case 1. 

This shows that message piggybacking can keep the performance cost of encryption very 

small. 

7. Conclusion 

We have shown that, in communications between two parties whose processes run on 

kernels that are security-correct, it is possible to provide end-to-end authentication and 

privacy at the host-to-host (hence, subtransport) level. A constructive proof of this state­

ment has been provided: we have indeed described a subtransport protocol, ADP, and 

proved that it can guarantee these end-to-end security properties. 

We have also argued that the subtransport approach has a number of functional and 

performance advantages over the other, higher-level solutions. The performance benefits 

have been demonstrated by presenting some of the results of a comparison between ADP 

and a transport-level, process-to-process approach. Both the average latency of messages 

and the maximum throughput improve substantially when the security mechanisms are 

moved from the transport to the subtransport layer. These improvements are primarily 

due to the sharp decrease in the secure channel establishment rate. 
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Table 1 

Latency and throughputs of the TCP and NFS traces with the 

subtransport and transport approaches 

Latency (ms) Throughput (o) Throughput (oo) 

T1 (kB/s) T2 (kB/s) 

TCP NFS TCP NFS TCP NFS 

Subtransport 6 8 90 325 90 325 

Transport 30 42 76 305 18 152 

(o) constant process creation rate 

(oo) process creation rate linearly increasing with the arrival rate 



Table 2 

Latency and CPU overhead for the ALL trace 

Latency CPU 
(ms) Overhead 

No security mechanisms 67 39.9 
No piggybacking 

No security mechanisms 11 20.09 
Piggybacking present 

Subtransport security 107 59.79 
No piggybacking 

Subtransport security 11 20.3 
Piggybacking present 
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