
Subtransport Level: The Right Place for

End-to-End Security Mechanisms

David P. Anderson

Domenico Ferrari

P. V enkat Rangan

Report No. UCB/CSD 87/346

March 1987
PROGRES Report No. 87.2

Computer Science Division (EECS)

University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
Subtransport Level: The Right Place for End-to-End Security
Mechanisms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We argue that end-to-end authentication and privacy in loosely-coupled distributed systems are not only
achievable by mechanisms at the host-to-host (i.e., subtransport) level under generally satisfiable
conditions, but that this solution can be more advantageous than those based on security mechanisms at
higher levels of the protocol hierarchy in terms of both functionality and performance. We introduce a
model of communication security and a subtransport-level protocol called ADP (the Authenticated
Datagram Protocol), which provides end-to-end authentication and privacy consistently with the
definitions of the model. We then discuss the advantages of the subtransport approach, and present some
experimental results from the measurement of a prototype of ADP that confirm the expected performance
benefits of this approach.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Subtransport Level: The Right Place for

End-to.-End Security Mechanisms

David P. Anderson, Domenico Ferrari, and P. Venkat Rangan

Computer Systems Research Group

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract

We argue that end-to-end authentication and privacy in loosely-coupled distributed
systems are not only achievable by mechanisms at the host-to-host (i.e., subtransportl level
under generally satisfiable conditions, but that this solution can be more advantageous
than those based on security mechanisms at higher levels of the protocol hierarchy in terms
of both functionality and performance. We introduce a model of communication security
and a subtransport-level protocol called ADP (the Authenticated Datagram Protocol\, which
provides end-to-end authentication and privacy consistently with the definitions of the
model. We then discuss the advantages of the subtransport approach. and present some
experimental results from the measurement of a prototype of ADP that confirm the
expected performance benefits of this approach.

This research Willi supported by the Defense Advanced Research Projects Agency (DoDl, ARPA Order No.
4871, monitored by the Naval Electronic Systems Command under Contract No. N00039-84-C-0089, by
the IBM Corporation, by Olivetti S.p.A., by MICOM-Interlan, Inc., by CSELT S.p.A., and by the Univer­
sity of California under the MICRO Program. The views and conclusions contained in this document are
th011e of the authors, and should not be interpreted 1111 representing official policies, either expressed or
implied, of any of the sponsoring agencies or corporations.

'1
l
1

- 2 -

1. Introduction

Security mechanisms can be introduced at various levels in a network protocol archi­

tecture. In special cases, introducing them at more than one level may be justified. How­

ever, to satisfy the two communication security goals of authentication of principals and

message privacy, it is possible to add security mechanisms to only one layer in the protocol

hierarchy.

What layer should this be? Many authors argue that security should be at the tran­

sport level (e.g., [13] [5]) or in any event not below it (e.g., [16]). The three reasons men­

tioned by Saltzer et al. [16] for placing security mechanisms above the communication sub­

system (i.e., above the bottom three layers in the ISO Open Systems Interconnection model)

are that

(a) with security at a higher level, the communication subsystem need not be ''trusted to

securely manage the required encryption keys;"

(b) if the security mechanisms were in the communication subsystem, the data would be

"in the clear and thus vulnerable as they pass into the target node and are farmed out

to the target application;"

(c) "the authenticity of the message must still be checked by the application."

Argument (a) is also made, though in more general terms, by Diffie [13], who favors

locating the mechanisms at the transport level, "the lowest point of full end-to-end com­

munication," since this provides the benefits of end-to-end security with a single mechan­

ism. Birrell [5] states that the "lowest layer at which we can provide an end-to-end

guarantee is the network layer," but "in most communication architectures (including ours)

it is not until the transport layer that end-to-end security is feasible. The transport layer

is the lowest level at which enough state information is kept to establish the authenticity

of incoming data in successive packets of an interaction." Voydock and Kent [18] state that

one of the alternative ways in which end-to-end security can be achieved is the host-to-host

solution, but add that end-to-end security measures "usually extend beyond the communica­

tion subnet." They also do not hide their predilection for association-oriented mechanisms,

that "constitute a refinement of end-to-end measures," and are restricted to layers 4

through 7 of the ISO OSI model. Tanenbaum [1 i] states that logically the encryption

should be at the presentation layer and that "for historical reasons and implementation

convenience, however, it is often put elsewhere, typically the transport layer or the data

link layer".

In this paper, we argue that end-to-end security is not only feasible at the host-to-host

(or subtransport) level under generally satisfiable conditions, but that this solution can be

more advantageous than the others in many respects, including that of performance, which

is not usually referred to in the literature. To prove these claims, we introduce our model

of communication security in Section 2, we describe a subtransport-level protocol called

ADP (Authenticated Datagram Protocoll in Section 3, we show in Section 4 that ADP pro­

vides end-to-end security according to the model defined in Section 2, we discuss the advan­

tages of the subtransport approach in Section 5, and in section 6 we present some experi­

mental results that confirm the expected performance benefits of this approach.

2. The Security Model

The two goals of network security we are concerned with in this paper are message

authenticity and message privacy. Both concepts can be defined by referring to the situa­

tion depicted in Figure 1. Each user process has an owner. Each kernel also has an owner.

Owners are the security principals in our model. Each owner has a unique symbolic name

- 3 -

and a unique private-key/public-key pair. The owner of object 0 will be denoted in the

sequel by (0). All communication protocols are assumed to be included in the box called

"kernel" in Figure 1.

When process Y receives a message that is alleged to have been sent by the owner of

process X running on A, (Y) wants to be sure of its authenticity, that is, that it was really

sent by (X), even though (Yl may not trust (A) or the network (since Y runs on B, we

assume that (Y) trusts (B)). Note that "the network" in the previous sentence and in Fig­

ure 1 stands for the path (or paths) possibly including hosts and gateways a message from

X has to go through in order to reach Y.

When (X) wishes its message to (Y) to be private, it wants to ensure that the contents

of the message can be read only by (Yl, or (if the message is not delivered or delivered in a

corrupted state) it cannot be read by anyone, even though (X) may not trust (B) or the net­

work.

Security mechanisms to be incorporated into a protocol layer in each kernel should

provide end-to-end authentication and privacy as we have just defined them. In order to

prove (as we shall do in Section 4l that it is possible to achieve end-to-end security by incor­

porating suitable mechanisms below the transport layer, we shall introduce the notions of

security-correct kernel and kernel trust.

Each kernel runs on a host. At any point in time, a host bas a kernel owner. The

ownership of a kernel is established at boot time, before network communication takes

place; it might be done manually or from a ROM. Kernel ownership may change over time,

e.g., as different people boot a public workstation. A crash-free period under a single ker­

nel owner is called a kernel session. In the sequel, we shall occasionally use the terms

"host" and "kernel" interchangeably, as this can be done without confusion during each

kernel session.

The kernel may support multiple user processes, each of which bas an associated

owner, perhaps different from the kernel owner. Processes communicate with each other

through messages. Each message has a message sender field containing the name of the

owner of the sending process, and a message receiver field, containing destination informa­

tion. A kernel possesses the private keys of its kernel owner and of all owners of the user

processes it bas executed or is executing. Figure 2 represents the organization of the ker­

nel. It consists of modules of code and private data. The passing of messages between

modules is handled by a special kernel module called the message passing module. The net­

work security functions are handled by a module called the security module. Kernel

modules which handle either an outgoing message before it is passed to the security module

or an incoming message after it has been processed by the security module are called type-1

modules. Protocol modules above the layer at which communication security functions are

handled are examples of type-1 modules. Kernel modules which handle either an outgoing

message after it has been processed by the security module or an incoming message after it

has been processed by the security module are called type-2 modules. In a protocol architec­

ture where security functions are handled above the data link layer, a network driver is an

example of a type-2 module. Kernel modules other than the security module, the message

passing module, the type-1 modules, and the type-2 modules are called type-3 modules. The

private keys are part of the private data storage of the security module. The security

module, the message passing module, the type-1 modules, and the type-2 modules are

together called critical modules.

A kernel is security-correct if the following conditions bold:

(1) The only way for a user process to communicate with the kernel is through messages.

(2) When a user process sends a message to a kernel module, the message passing module

sets the message sender field to be the owner of that process. Thereafter, the message

passing module and the type-1 modules do not change (al the message sender field, or

(b) the message receiver field, (c) the data part of the message.

- 4 -

(3) The message passing module does not deliver a message to a user process if the owner
of that user process is different from that indicated in the message receiver field.

(4) The private data storage of the security module is read or written by no other module.

(5) The security module executes its algorithms (to be given later) correctly.

(6) Type-2 modules do not directly communicate with type-1 or type-3 modules or user
processes.

All of these conditions re9uire some form of logical correctness on the part of the ker­
nel; methods of ensuring this are outside the scope of this paper (see [6]).

An owner I is kernel-trustworthy if, whenever I owns a kernel, this kernel is security­
correct.

If an owner I issues a command to execute a process (locally or remotely) on a kernel
with owner J, we infer (and say) that I is placing kernel trust in J.

3. The Authenticated Datagram. Protocol

As mentioned in Section 1, ADP is a host-to-host datagram protocol that provides
secure communications, i.e., authentication and, optionally, privacy of messages. ADP
separates authenticated principals from the end-points of a secure channel across a net­
work.

ADP makes use of an underlying network layer that provides an insecure datagram
service. This service could vary according to the remote host involved; for example, the
Internet Protocol might be used [19] for a distant host, while a simpler network protocol
would suffice for a host on the same LAN. In some cases, ADP must handle fragmentation
of long messages; this issue will not be considered here.

ADP does not implement any particular authorization scheme, nor does it provide
other security guarantees such as confinement or freedom from denial of service. With
ADP as a basis, the kernel may provide higher-level services (e.g., authorization mechan­
isms) for user processes.

3.1. Secure channel establishment

The operation of ADP is based on a host-to-host secure channel that is established
whenever a (user or kernel) process executing on a host wants to communicate with
another process running on another host and such a channel does not already exist.
Public-key encryption (PKE) [11, 15] is used to establish a secure channel: when a host A
needs to establish a secure channel to a host B, the ADP module running on A sends a
channel establishment request to B. This request contains random string S, encrypted with
the public key of the (B), and random string T. S will be used as the secret single key of
the secure channel, and Twill be used as a digital signature [1, 8, 10] to authenticate own­
ers from B to A. A marks the secure channel as being tentative until it receives an ack­
nowledgement. The secure channel request is included with ADP messages sent while the
channel is still tentative.

In the secure channel acknowledgement and in every ADP message until the first sig­
nature is received, B sends to A a random string R to be used for signatures sent from A to
B, i.e., to authenticate owners from A to B. If the two hosts simultaneously try to establish
a channel between themselves, the one with the lexicographically greater name determines
the channel key S.

In many cases, patterns of communication (in terms of local and remote owners and
addresses) are predictable; for example, a workstation will always communicate with local
file servers. It is then possible for a kernel to establish secure channels, and do

- 5 -

authentication on those channels, in advance of user demand (e.g., at boot time).

3.2. Owner authentication

When an owner I who has not sent any messages to B before wants to communicate
from host A with an owner J on host B, and a secure channel between A and B has been
established, public-key encryption is used to authenticate I to (B). The ADP module run­
ning on A encrypts string R with the private key of I and sends it in a message along with
rs name; the ADP module on B decrypts it with the public key of I obtained from the name
server, and compares the result to string R; if the two strings are identical, then B con­
cludes that the message is from I (or from a host that possesses /'s private key), and caches
Fs name in the list of the owners authenticated from the other end that it maintains for
that channel. A in turn caches the name of I in its list of owners authenticated to the
other end of the channel (see Figure 3).

When this operation has been done, both hosts are aware, and remember, that I has
been authenticated to (B). This authentication caching means that expensive PKE-based
authentication need be done only the first time an owner is invoh·ed as a sender or receiver
on a particular secure channel. In all subsequent messages sent from I to J, the presence of
rs name in the caches maintained by ADP on A and B is considered sufficient for the
authentication of the messages.

3.3. Messages

As explained in [3], messages from I to J, when I has been authenticated to the host
where the destination process belonging to Y resides, only require for the purposes of
authentication either the encryption (with the secure channel's secret key S) of a message
trailer that includes a sequence number or a cryptographic checksum [2, 9]. If privacy of
the data is also desired, then the entire message may be encrypted with S. Thus, ADP uses
a bootstrapping mechanism to combine the advantages of public-key [11, 15] and single-key
[14] cryptography. As a basis for authentication in large distributed systems, public-key
schemes have several advantages over single-key schemes. In those systems, replication is
essential for performance, availability, and fault-tolerance. Key server replication
increases the vulnerability of a single-key scheme to attack on secrecy, whereas it reduces
the vulnerability of public-key systems [13]. Current public-key encryption algorithms are
too slow to consider using them to encrypt any part of each message sent. On the other
hand, single-key operations are fast enough to be employed for each message.

Further reductions in encryption overhead can be achieved if ADP and its users recog­
nize the existence of messages that are not particularly urgent (e.g., most acknowledge­
ments, most writes to remote disk) and that can therefore be delayed and perhaps pig­
gybacked onto a later message to be transmitted over the same secure channel. In this
case, one ADP message on the network may include a number of user messages. Only one
sequence number will have to be encrypted, or only one cryptographic checksum will have
to be computed, for each ADP message, thereby reducing the cost of encryption per user
message.

The urgency of a message will typically be determined by the process originating it: a
message marked urgent will be shipped by ADP as soon as possible; one whose maximum
delay is specified will have to be sent when this timeout expires, unless it will have already
been piggybacked onto an urgent message; finally, one which neither is marked urgent nor
has its maximum delay specified will be assigned by ADP a timeout, which will usually be
a tunable parameter of ADP and the same for all such messages. Since delayed messages
have to be kept in queues within ADP, another tunable parameter is the maximum size of
each queue: the arrival of a non-urgent message which causes a queue to fill or to overflow
will be treated as if it were the arrival of an urgent message. This maximum size will
depend on the amount of buffer space available, and may be limited by the maximum size

·~· ' :~;

··.~.·~.·· ':;~

i

1 •
- 6 -

of the messages that can be accepted by the lower protocol layers. The one just described is
the queue service discipline that has been implemented in the current version of ADP, but
is by no means the only possible one, nor necessarily the best.

4. End-To-End Security in ADP

ADP provides an authenticated datagram service to transport-level protocols, and,
optionally, message privacy over the network. To show that it does so according to the
definitions given in Section 2, that is, that the authentication and privacy it provides are
really end-to-end (i.e., owner-to-owner), it is useful to describe ADP's interfaces to the pro­
tocol layer above it.

4.1. ADP interfaces

4.1.1. Message reception

ADP demultiplexes messages On the basis of ports, which are kernel-level communica­
tion endpoints. Each port has an ID that is unique over a kernel session. A client can
indicate to ADP that it is willing to receive messages on a port using:

register _port(

port: port_ID; /* port being registered */

locaLowner: name; /* owner for port /*

ADP can then deliver messages to the port. It will tag each such message with the
name of its sender. On each host, there is a distinguished port that is owned by the kernel
owner and has a well-known port ID. This port is used for request/reply style kernel-level
communication that is used to set up other communication.

4.1.2. Message sending

The ADP primitive to send a message is:

ADP_send(
message: string;
locaLowner: name;
remote..host: name;
remote_port: port.JD;
privacy: boolean;
max_delay: time;

ADP _send sends the given message to the named remote port on the destination
host. The max_delay argument is a hint to the kernel that the message can be buffered for
up to that amount of time before it is transmitted. This is used to encourage piggybacking
(see Section 3 .3).

4.1.3. Other ADP primitives

ADP also provides the following primitives:

flag = establish_channel(remote _kerneLowner, remote_host: name;)

- 7 -

flag = locaLauthenticate(remote _owner, remote __host: name;)

flag = remote_autbenticateOocal_owner, remote_host, remote_owner: name;)

They can be used by the kernel to do boot-time "advance authentication."

Establisb_cbannel returns true iff the remote owner claims ownership of the named host,

and accepts a secure channel. LocaLauthenticate and remote_authenticate authenti­

cate a local owner to a remote -host; and vice versa.

4.2. End-to-end security

We now prove that ADP provides end-to-end security between two owners I and J if

every owner 0 in whom I or J has placed kernel trust is kernel-trustworthy.

If owner J has a process on a kernel B, since J has placed kernel trust in only kernel­

trustworthy owners, kernel B is security-correct. Thus when the ADP module on kernel B

delivers to a port owned by J a me~sage tagged with the name of I, ADP _receive guaran­

tees that the message arrived on a secure channel on which a signature of I had been

received at an earlier time. From the assumption that I has placed kernel trust in only

kernel-trustworthy owners, it can be concluded that the kernel A which sent the signature

is security-correct. Thus both ends of the secure channel are security-correct and hence only

the ADP modules on the two kernels know the secret key of the channel. Since the mes­

sage was received on such a secure channel, it must have been sent by the ADP module on

A. Since A is security-correct, the message must have resulted from some process owned by

I on kernel A. Since receiving kernel B is also security-correct, the process owned by J with

which the receiving port is associated is correctly informed about the identity of I. Thus,

end-to-end authentication between owners, who are the security principals in our model, is

guaranteed.

If a process owned by I on a kernel A desires privacy for a message to be sent to J, it

first invokes remote_autbenticate to make sure that J is actually on the remote host B. It

then calls ADP _send with the privacy flag set. The authentication of J, together with the

assumption that J has placed kernel trust only in kernel-trustworthy owners, guarantees

that B is security-correct and that J has a process on B. Since I has placed kernel trust

only in kernel-trustworthy owners, A is security-correct. The secure channel between the

two security-correct kernels A and A guarantees privacy between the ADP modules on the

two kernels. The security-correctness of A guarantees privacy from other owners having

processes on A. The security-correctness of the receiving kernel guarantees privacy from

other owners having processes on B. Thus we have end-to-end privacy between the two

owners I and J.

If a kernel is not security-correct, it can alter or publicize any data accessible to a user

process. In such a case, there can be no security guarantees, and no additional security is

obtained by doing encryption at higher protocol layers or in user processes. If a kernel is

security-correct, doing encryption within higher layers or in user processes may change

some type-1 modules into type-2 modules as defined in our security model.

Obtaining process-to-process security from owner-to-owner security requires that, in

addition to being security-correct, a kernel must limit the read'write access to a port (a

message end-point) to the process which owns the port. Since this condition involves only

processes on a single kernel, the special privileges of a kernel are sufficient to satisfy it.

4.3. Trust domains

The set of hosts in many distributed computing environments may contain subsets

with the following property: within a subset, the hosts and the communication channels

between them are physically secure, and owners with access to the hosts all place kernel-

- 8 -

trust in one another. Across subsets, the communication links may not be physically
secure, and owners in one subset may not trust those in the other. We call such subsets
trust domains. Encryption-based security mechanisms are necessary only for communica­
tion across a trust domain boundary. Suppose also that all communication across a boun­
dary is routed through one or more hosts called domain gateways. Then it is possible to
have a special subtransport protocol module on a domain gateway that handles packet for­
warding. This module can also handle secure channels and authentication on behalf of
hosts within the domain, tran~parently to kernel and user level clients and to higher level
protocols (however, owners are still the principals being authenticated on a domain-to­
domain secure channel). This has the following advantages:

Efficiency: communication within the domain has no security overhead. Only the
domain gateway does encryption, so only it need have encryption hardware.

Flexibility: the domain's configuration may be changed at any time. Only the imple­
mentation of secure channels and owner authentication in the domain gateways
changes. Kernel and user clients, and higher level protocols do not see any changes.

5. Subtransport Versus Higher-Level Security

It was shown in the previous section that putting security at the subtransport layer
provides the desired end-to-end authentication and privacy. We now discuss the advan­
tages of putting security at the subtransport layer rather than at or above the transport
layer. The advantages are grouped into the following three parts: 1) general advantages of
subtransport layer security 2) specific advantages relative to transport layer security 3)
specific advantages relative to putting security above the transport layer.

5.1. General advantages of the subtransport approach

Putting security at the subtransport layer has several advantages relative to putting
it at higher protocol layers:

It simplifies transport level protocols. When a host crashes, its secure channels are
destroyed. Thus remote host crashes can be detected at the host-to-host level at the
time of secure channel establishment, and transport level protocols do not have to
employ elaborate timer mechanisms to detect them [7, 20]. This also means that 3-
way handshakes can often be eliminated from transport-level protocols. A short tran­
saction then requires just two messages in the best case, as opposed to at least six in
TCP and four in secure RPC.

At the subtransport level, security functions do not have to be duplicated as they have
to be in higher layers.

There are two public-key operations per owner per remote host per kernel session.
Often these operations can be done at boot time or during idle periods. There are no
per-process or per-operation public-key operations, resulting in a substantial perfor­
mance gain.

• Since messages from all client processes and higher level protocols pass through the
subtransport layer, a number of these messages destined to a common remote host can
all be combined into a single datagram and authenticated once using the channel
secret key. This can reduce the number of single key operations.

As was shown in section 4.3, in the case of trust domains, separation of the authenti­
cated principals from the end-points of a secure channel, and having security at the
host-to-host datagram level, allows heterogeneity in implementation of secure chan­
nels and flexibility to change this implementation without the need to change any of
the higher level protocols. Since higher-level protocols (e.g., transport-level) establish

j• t

. 9 .

associations between entities other than hosts (e.g., processes), if security mechanisms

were placed at one of these layers, a trust domain would require an intermediate

entity in the domain gateway to maintain separate higher-level associations (e.g.,

transport connections) with the entity within a domain and the entity outside the

domain. In such a case, entities within a domain can never have secure connections

directly with those outside and vice versa.

5.2. Disadvantages of transport layer security

Transport level protocols are used to implement a variety of communication para­

digms. Request/reply (RPC) [4] and full duplex byte streams [21] are two of the popular

communication paradigms. We examine secure RPC [4] as an instance of security in a RPC

protocol and secure TCP [13] as an instance of security in a full duplex byte stream proto­

col. Both secure RPC and secure TCP are transport level protocols.

5.2.1. Secure RPC

When a client issues its first· RPC request to a remote server, the RPC mechanism

establishes a "secure conversation" between the two processes. This consists of agreeing on

a secret conversation key to be used for encrypting RPC requests and replies. There are

several disadvantages of such a scheme:

For each conversation, the RPC system must maintain a long-term state consisting of

a conversation ·key and sequence numbers of requests within a conversation. This

converts simple stateless RPC into one with long-term state.

A three-way handshake is necessary to agree upon the conversation key. The cost of

this three-way handshake is small if it is amortized over many RPC's. If, however,

there are lots of short-lived processes making just one or two remote procedure calls,

the performance penalty due to a three-way handshake is substantial. This can

reduce the efficiency of RPC for short transactions.

If public keys are used to authenticate the client and the server processes to each

other, there will be four public-key operations for each conversation. If the conversa­

tion consists of a single RPC, the relative cost is substantial

There is a single-key encryption and a decryption for each RPC request, reply, and

acknowledgement. Since messages from different processes use different secure chan­

nel keys, it is not possible to reduce the encryption cost by piggybacking messages

from different processes that are all destined to the same host.

5.2.2. Secure TCP

TCP is a DARPA Internet transport protocol [21] providing full duplex byte stream

connections between processes on different hosts. Secure TCP [13] requires an initial

agreement upon a secret key to be used during the TCP connection after the end points are

authenticated to each other. There are several additional disadvantages associated with

this scheme:

Four public-key operations are performed for each TCP connection.

Encryption cost reduction by piggybacking is impossible since keys are not per host­

pair.

5.3. Disadvantages of security above the transport layer

There are several disadvantages in adding secure communication mechanisms above

the transport level:

Transport level protocols like TCP do connection establishment using three-way

handshakes. If security mechanisms are above the transport layer, they require their

l

- 10-

own handshake to agree upon keys after the transport level has established a connec­

tion. This duplication of handshaking entails higher message overhead.

Transport level protocols do error detection using (insecure) checksums. Secure com­

munication mechanisms above the transport layer must do their own cryptographic

checksumming. This is an unnecessary duplication of effort as error detection at

higher layers can be avoided if checksumming is done in the subtransport level.

Transport levels employ seq~encing to eliminate duplicates and out-of-sequence mes­

sages. Since an intruder- could change the transport level headers and hence the tran­

sport level sequence numbers, security mechanisms above the transport layer must

also do sequencing to detect such an intrusion, again resulting in an unnecessary

duplication of effort.

If an intruder sends a false message with the correct transport level sequence number,

the transport level protocol will accept it as the next message and reject the true mes­

sage which may arrive later. The secure communication mechanisms above will reject

the false message correctly, but will never get the true message. False acknowledge­

ments at lower levels can disrupt the sequencing. The only way to recover from such

situation is to re-establish the connection at both the transport and the secure com­

munication levels. This has the potential for much unnecessary tearing down of con­

nections and the associated performance overhead.

Unauthenticated messages are detected only at the level where security mechanisms

are. These messages are unnecessarily processed at all lower levels of the protocol

hierarchy. Thus if the security mechanisms are at a high level, the amount of this

unnecessary work can be large.

Public-key operations cannot be reduced because authentication is not per-host, and

single-key operations cannot be reduced by piggybacking.

6. Experimental Verification

A prototype of ADP has been implemented in C++ as part of the DASH Project in

the Computer Systems Research Group at the University of California at Berkeley. This

implementation runs on Sun 3/50 workstations connected by a 10 Mb/s Ethernet. Trace­

driven experiments were performed using TCP and SUN NFS traces of network packets to

verify some of the expected performance advantages over transport layer solutions for com­

munication security. TCP was chosen as an example of a full-duplex byte stream protocol,

and SUN NFS as an example of a request/response protocol. The primary performance

indices were:

Latency L: the average delay incurred by a message between the instant it is given to

the subtransport module for transmission and the instant it is delivered by another

subtransport module to the destination process or to a higher-level protocol on the des­

tination host. To compute L, we average the delays of the messages in a given finite

sequence.

Throughput T: the maximum rate at which information can be transmitted by the

subtransport layer and received by another subtransport layer on the destination host.

In a throughput experiment, the messages in the trace are transmitted at the max-

imum possible rate. In the transport-level case, when the arrival raate of a message trace is

increased, a decision must be made about whether and how the process creation rate should

be modified. There are two extreme cases: (1) The process creation rate is kept constant.

This is one end of the spectrum and represents the best possible case for a transport layer

that uses process-to-process secure channels. The throughput for this scenario will be

denoted by Tl. (2) The messages are assigned a priori to processes. Thus. when the mes­

sage transmission rate is increased to its maximum value, the process creation rate

- 11 -

increases linearly. This represents the worst case for security at the transport layer. The

throughput for this scenario will be denoted by T2. These two cases are of interest only for

transport-layer security. For subtransport layer security the two cases will yield the same

results.

Table 1 shows the latency and throughput values for the following cases: (1) security

mechanisms in the subtransport layer (ADP), (2) security mechanisms in the TCP protocol,

and (3) security mechanisms in the RPC protocol (NFSJ. The last two of these are

instances of transport-layer security. From the table, we conclude that the performance

gains of the subtransport-layer security over both instances of transport-layer security are

substantial. The inferior performance of transport-layer approaches is to be attributed pri­

marily to the much higher rate of channel establishment operations that these approaches

require with respect to that caused by ADP. Channel establishment is quite time­

consuming: we have measured in our system an average establishment time of 1.75 s.

Figure 4 shows the effect of piggybacking at the subtransport level. The input trace

consisted of a sequence of messages leaving a busy file server. Among the many experi­

ments we performed, an interesting one was intended to determine the variation of the

latency as the arrival rate of messages in the input trace was progressively increased. Fig­

ure 3 shows that the effect of piggybacking is insignificant at low arrival rates. Without

piggybacking, an increase in the message arrival rate causes a rapid increase in the

latency. Table 2 shows the latencies and CPU idle times for an unmodified message trace

(ALL) with an average message arrival rate of 250 messages/s, for the following cases: (1)

without any communication security mechanisms, (2) without security mechanisms but

with message piggybacking, (3) with subtransport-layer security but without message pig­

gybacking, and (4) with subtransport-layer security and with message piggybacking. The

difference in performance between cases 1 and 2 is considerable. The performance of case 4

is very close to that of case 2 whereas, the performance of case 3 is less than that of case 1.

This shows that message piggybacking can keep the performance cost of encryption very

small.

7. Conclusion

We have shown that, in communications between two parties whose processes run on

kernels that are security-correct, it is possible to provide end-to-end authentication and

privacy at the host-to-host (hence, subtransport) level. A constructive proof of this state­

ment has been provided: we have indeed described a subtransport protocol, ADP, and

proved that it can guarantee these end-to-end security properties.

We have also argued that the subtransport approach has a number of functional and

performance advantages over the other, higher-level solutions. The performance benefits

have been demonstrated by presenting some of the results of a comparison between ADP

and a transport-level, process-to-process approach. Both the average latency of messages

and the maximum throughput improve substantially when the security mechanisms are

moved from the transport to the subtransport layer. These improvements are primarily

due to the sharp decrease in the secure channel establishment rate.

Acknowledgement

Many individuals have contributed to the research described in this paper, most not­

ably Gene Banman, Kevin Fall, Riccardo Gusella, Bob Lyon, Cherie Miller, Sechang Oh,

Marty Rattner, Jean Richter, Bruno Sartirana, Brad Taylor, and Shin-Yuan Tzou. The

authors wish to express their deep gratitude to all of them.

- 12 -

References

1. S. G. Akl, Digital Signatures: A Tutorial Survey, IEEE Computer, February 1983, 15-

24.

2. S. G. Akl, On the Security of Compressed Encodings, Advances in Cryptology: Proceed­

ings of Crypto '83, 209-230.

3. D. P. Anderson and P. V. Rangan, A Basis for Secure Communication in Large Distri­

buted Systems, Proc. IEEE Symp. on Security and Privacy, Oakland, April1987.

4. A. D. Birrell and B. J. Nelson, Implementing Remote Procedure Calls, ACM Trans.

Comput. Sys. 2, 1 (Feb. 1984), 39-59.

5. A. D. Birrell, Secure Communication using Remote Procedure Calls, ACM Trans.

Comput. Sys. 3, 1 (Feb. 1985), 1-14.

6. M. H. Cheheyl, M. Gasser, G. A. Huff and J. K. Millen, Verifying Security, Computing

Surveys 13, 3 (Sept. 1981), 279-339.

7. D. R. Cheriton, VTMP: A Trabsport Protocol for the Next Generation of Communica­

tion Systems, Proceedings of the Data Communications Symposium, August 1986,

406-415.

8. D. E. Denning, Protecting Public Keys and Signature Keys, IEEE Computer 16, 2

(Feb. 1983), 27-35.

9. D. E. Denning, Cryptographic Checksums for Multilevel Database Security, Proc. of

the Symp. on Security and Privacy, May 1984, 52-61. ·

10. D. E. Denning, Digital Signatures with RSA and Other Public-Key Cryptosystems,

Comm. of the ACM 27, 4 (Apr. 1984), 388-392.

11. W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Trans. Information

Theory IT -22, 6 (Nov. 1976), 644-654.

12. W. Diffie, Conventional Versus Public Key Cryptosystems, in G. J. Simmons, ed.,

Secure Communications and Asymmetric Cryptosystems, Westview Press, Boulder,

Colordo, 1982.

13. W. Diffie, Security for the DoD TCP, Advances in Cryptology: Proc. of Crypto '85, 1985,

208-227.

14. NBS, Data Encryption Standard, FIPS Publication 46, NBS, U.S. Dept. of Commerce,

Washington, D.C., 1977.

15. R. L. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems, Comm. of the ACM 21, 2 (Feb. 1978), 120-126.

16. J. H. Saltzer, D. P. Reed and D. D. Clark, End-to-End Arguments in System Design,

ACM Trans. Comput. Sys. 2, 4 (Nov. 1984), 277-288.

17. A. S. Tanenbaum, Network Protocols, Computing Surveys 13, 4 (Dec. 1981), 453-489.

18. V. L. Voydock and S. T. Kent, Security Mechanisms in High-Level Network Protocols,

Computing Surveys 15, 2 (June 1983), 135-171.

19. R. W. Watson, Timer-Based Mechanisms in Reliable Transport Protocol Connection

Management, Computer Networks 5, 1 (Feb. 1981), 47-56.

20. RFC 791: Internet Protocol, Information Sciences Institute, University of Southern

California, September 1981.

21. RFC 793: Transmission Control Protocol, Information Sciences Institute, University of

Southern California, September 1981.

Table 1

Latency and throughputs of the TCP and NFS traces with the

subtransport and transport approaches

Latency (ms) Throughput (o) Throughput (oo)

T1 (kB/s) T2 (kB/s)

TCP NFS TCP NFS TCP NFS

Subtransport 6 8 90 325 90 325

Transport 30 42 76 305 18 152

(o) constant process creation rate

(oo) process creation rate linearly increasing with the arrival rate

Table 2

Latency and CPU overhead for the ALL trace

Latency CPU
(ms) Overhead

No security mechanisms 67 39.9
No piggybacking

No security mechanisms 11 20.09
Piggybacking present

Subtransport security 107 59.79
No piggybacking

Subtransport security 11 20.3
Piggybacking present

/

~ss Process

X

Kernel Kernel

A B ______ .i

Network

Figure 1.

Communication between two remote processes.

Message Passing Module

Type-1 Modules

Type-3
Modules

l Security Module
:

I
I

!

Type-2 Modules

Figure 2.

Kernel Organization

owner

----~~---------11-------------1

kernel

(<SlpubB

(al)
T

I R
l~--

lbl (Rl .
1 pnv

(cl

<
<Tl _ J pnv

:>

owner

I I

. Riccardo,

kernel

------------------------------------- - -------------------------------

ADP

authenticated l Fred I
to other end I

authenticated Mary I
from other end Joe

J

host A

•
secure

channel

Figure 3.

I Mary II authenticated
1 Joe to other end
: J !

authenticated
from other end

host B

A schematic diagram of ADP operation ((a) secure channel estab­
lishment; (b) authentication of owner I to (B); (c) authentication
of owner J to (A). Messages exchanged in (b) and (c) as well as

during normal communication between I and J are partially (or,
optionally, totally) encrypted with channel key S. (W) denotes
string W encrypted with key z. z

ADP

•

•

200
190
180
170
160
150
140
130
120

··-····-·-·I·-······AY.~:r.~g~ __ L&enc] .L._fm§)I--~~
J

: . I :

....... ______ ····-----· ·············· ···········-··.1. ___1______ ___ ········----·-· ----·-··---1 1
: : : = : : I : :

i 1 : j ! i i I ! 1
-···········--T··-·····f··············· ·····~·········-~·-······· i -·····1 ······-·····-~·-···············r-···-····1 · i

: Q==o.ff · : : : Q==on : : :
···-····--····,-··-- ··-r· · ····· : ·········-····-r·······----r-··-··: ······· · ··-r· · · ····:···1···--·--·····--r----~

................ i .. ____ J............. .L - 1....... 1 -.L. JJ. 1
I ! ~ ! f i !

···------t---··--·l·------···· -+ ~----- -~ --!----------4---l
i i ~ i . i i ~

-·---·--·--··--r--------·r··-------- ·r--·--··----·r---·---· 1----- . ··--·-----·-·r-----------·· 1 1 ___ _
················i·····-······-f··········· --~················~---.. ··-· : ... ~ ·······--·····~·-···············i·············--~-------~

: : : : : : : : :

: : : : : : : : :

: : : : : : : : : :

···············f····---······-f·········· ····1·-·····:········r··-·· .. ·····i----···· r··-··········--·~---··············i··············- .. r··--···-1

11 o ·--·-··---·--···r·--------·---~---······ -·-··t··--··---···--··r···-·-·--··-j--------·-· ·t····--········--~----···----·----·;··---------··-··t·------:

1 E : :::::::::::;:: : ::.: .:::::::r::: ::::·:~:r:~:=:: c:=: ! : :::::: :I ::::~::.::~r::.:::~:::::! ~ -~~ !
70 --·------··--··t·---------· · --··--·--·-----r···----·-··-·-·t--·----------r---·---- -···r-····-·····----~-----------------;---------------·r-----·--··1

E ::::::._:_r:·~-~:······1:··: ::::·:J :·::·: : :·:[.:: ·::·::T . :::~'::::: :::: :::· : ::::::::_· ::::::::: :~,r ~-:~ -:~
·-···-r··-········-·--~----··--··-··-··r··--·---·---- i

ao ---···--···-··-r--- : t··--····---·--··t··----·-····-1' -----·-----~----····-···--··r·······-------·r·----------·--r··--------···:

20 --·-···-········ ·· ·---·····-~---··--··········t··-···------···-~------···--·--- ~ --------··--·t···----·--···--·t···-·--····---·--:------------·---r-··------·;

l 0 . ·-: ················:······--··----~----·-------··-~···--······--···:···-·--······--··:·-------··-------:-----------·--·'
~ ~ ~ E i ~

o~---+----~---r'--~~· --~-----~'--~
~: --~~--~---~

0 100 200 300 400 500 600 700 800
Arrival Rate R (~1essages per Second)

Figure 4.

900 }(XX)

Latency versus arrival rate for the ALL trace with

piggybacking/queueing Q on and off.

