
FAST PARALLE~ ALGORITHMS FOR FINDING H.AJvflLTONIAN

PATHS AND CYCLES IN A TOURNAMENT

ABSTRACT.

• Danny Soroker

Computer Science Division
University or California

Berkeley, CA 94720

A tournament is a digraph T=(V,E) in which, for every pair or vertices, u .t v, exactly one of

(u,v), (v,u) is in E. Two classical theorems about tournaments are that every tournament has

a Hamiltonian path, and every strongly connected tournament bas a Hamiltonian cycle. Further­

more, it is known how to find these in polynomial time. In this paper we discuss the parallel com­

plexity of these problems. Our main result is that constructing a Hamiltonian path in a general

tournament and a Hamiltonian cycle in a strongly connected tournament are both in NC. In

addition, we give an NC algorithm for finding a Hamiltonian path with one fixed endpoint. In

finding fast parallel algorithms, we also obtain new proofs for the theorems.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Fast Parallel Algorithms for Finding Hamiltonian Paths and Cycles in a
Tournament

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A tournament is a digraph T=(V, E) in which, for every pair of vertices, u & v, exactly one of (u, v), (v, u)
is in E. Two classical theorems about tournaments are that every tournament has a Hamiltonian path, and
every strongly connected tournament has a Hamiltonian cycle. Furthermore, it is known how to find these
in polynomial time. In this paper we discuss the parallel complexity of these problems. Our main result is
that constructing a Hamiltonian path in a general tournament and a Hamiltonian cycle in a strongly
connected tournament are both in NC. In addition, we give an NC algorithm for finding a Hamiltonian
path with one fixed endpoint. In finding fast parallel algorithms, we also obtain new proofs for the
theorems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

FAST PARALLEL ALGORITHMS FOR FINDING HAMILTONIAN

PATHS AND CYCLES IN A TOURNAMENT

1. Introduction

• Danny Soroker

Computer Science Division
University of California

Berkeley, CA 04720

A tournament is a directed graph T=(V,E) in which, for any pair of vertices, u ,v ,

either (u ,v)tE or (v ,u)tE but not both. This models a competition involving n players,

where every player competes against every other one. A trivial, but useful, fact is that any

induced subgraph of a tournament is also a tournament. If (u ,v)tE we will say that

u dominates v , and denote this property by u >v. Note that since the directions of the

arcs are arbitrary, the domination relation is not necessarily transitive. We extend the

notion of domination to sets of vertices: let A,B be subsets of V. A dominates B

(A> B) if every vertex in A dominates every vertex in B.

For a given vertex, v, we categorize the rest of the vertices according to their relation

with v : W(v) is the set of vertices that are dominated by v (i.e. vertices involved in

matches which v Won) and Mtl is the set of vertices that dominate v (matches which v

Lost).

Much work has been done on tournaments (see, e.g. [1] chapter 7). In this paper we

concentrate on two classical results: every tournament has a Hamiltonian path, and every

strongly connected tournament has a Hamiltonian cycle. These theorems are in contrast

with the fact that deciding if an arbitrary graph is Hamiltonian is NP-complete [4]. The

proofs or these theorems in the literature imply efficient algorithms for finding these

Research supported in part by Defense Advance Research Projects Agency (DoD) Arpa
Order No. 4871 Monitored by Naval Electronic Systems Command under Contract No.
N00039-84-C-0089

- 2-

objects, but since the proofs are by induction, the algorithms seem inherently sequential.

A natural question is - can Hamiltonian paths and cycles in tournaments be found quickly

in parallel! We answer in the affirmative by giving NC algorithms for both problems (see

[10) for a discussion of NC and fast parallel algorithms). In the process of giving the algo­

rithms we demonstrate new proofs of the theorems.

In the first, simpler, part we show how to find a Hamiltonian path. A similar algo­

rithm was discovered independently by Simeon and Joseph Naor [6). Our solution uses an

interesting technical lemma, which states that in every tournament there is a "mediocre"

player - one that has both lost and won many matches.

The second part discusses how to find a Hamiltonian cycle, which turns out to be

quite a bit more complicated. The main idea in the solution is defining a new problem -

that of finding a Hamiltonian path with one fixed endpoint- and solving it simultaneously

with finding a Hamiltonian cycle, using a "cut and paste" technique.

The notation we use is mostly standard (see e.g. [3]). We deal only with directed

graphs. For a graph, G, V(G) denotes the vertex set and E(G) denotes the arc set. For a

set of vertices, U, G (U) denotes the induced subgraph on U. For graphs A, B, {A, B}

means the union of the two graphs. For paths P, Q, (P, Q) means the concatenation of

the two paths.

2. Hamiltonian Path

We start by stating the theorem due to Redei (7] and its textbook proof ([8] page

487).

Theorem 1: Every tournament contains a Hamiltonian path.

Proof: By induction on the number, n, of vertices. The result is clear for n=2. Assume

it holds for tournaments on n vertices. Consider a tournament, T, on n + 1 vertices. Let v

be an arbitrary vertex of V(T). By assumption G(V-{v}) has a Hamiltonian path

v 1, v21 ... , Vn. If v >v 1 then v, v 11 ••• , v11 is a Hamiltonian path of T. Otherwise let i

be the largest index such that v, > v. If i =n then v 11 ••• , v", v is a Hamiltonian path. If

not, v 11 ••• , vi, v, Vi+v ... , V11 is the desired Hamiltonian path. D
It is not hard to see that the proof yields an efficient sequential algorithm for finding

a Hamiltonian path in a tournament. In order to obtain a parallel algorithm a different

method seems to be required. The approach we take is divide and conquer.

A simple-minded way is the following: (i) Split the tournament into two subgraphs,

T 11 T2, of roughly equal order. (ii) In parallel, find Hamiltonian paths H 1 in T1 and H2 in

T2. (iii) Connect H 1 and H2 to form a Hamiltonian path ofT.

The problem with this approach is that step (iii) is not guaranteed to succeed, since we

have no control over what the endpoints of H 1 and H 2 are.

. 3.

It turns out that a slightly modified approach does work. The key observation is the

following: let v be a vertex of T. Consider Hamiltonian paths 111 ••• , l~c of L(v) and

w 11 ••• , Wm of W(v). Since l~c >v and v >w 1 we have the following Hamiltonian path of

T: 111 ••• , 1," v, w 11 ••• , w,. Note that this provides an alternative, simpler proof of

theorem 1.

In order to derive an NC algorithm from the above idea, we need the following

technical lemma:

Lemma 1 (Mediocre player lemma): In a tournament, T, on n vertices there exists a

vertex, v, for which both L(v) and W(v) have at least l Tj vertices.

Proof: Let

-I = { U I din(U)> dout(U)}
0 =V-I.

Assume w .l.o.g that I I I > I 0 I . By the pigeonhole principle there exists a vertex, v,

whose out-degree in G(/) is no less that its in-degree in G(I). Thus

dout(v) > ll.fJ-J > l TJ

and din(v) > dout(v) > lT-J by definition. D

Remark: A simple construction shows that for every n there are tournaments on n ver­

tices for which each vertex has either in-degree or out-degree ln / 4J.

Using lemma 1 we obtain our algorithm:

procedure PATH(T)

(1) Let n =order ofT.

(2) If n=1 then return the unique vertex ofT.

(3) Find a vertex, vtT, whose in-degree and out-degree in Tare both at least ln/4J.

(4) In parallel find H 1=PATH(L(v)) and H 2=PATH(W(v)).

(5) Return the path (Hl> v, H 2).

end PATH.

By lemma 1 only 0 (logn) levels of recursive calls (step (4)) are required. The time

required for one level is O(logn) , So the total running time is O(log2n). \Vith careful

processor allocation the algorithm can be implemented to run using O(n 2flogn) processors

on an EREW PRAM. We will not go into details here. Note that this is quite efficient

since the size of the input is e(n 2).

- 4-

3. Hamiltonian Cycle and Restricted Path

The following theorem, due to Camion [2] (see [1] page 173), states exactly when a

tournament has a Hamiltonian cycle:

Theorem 2: A tournament is Hamiltonian if it is strongly connected.

Note that the converse is trivially true. The theorem is proven by induction, but

note that a similar proof to that of theorem 1 will not work here, since removal of aver­

tex from a strongly connected tournament might result in a tournament which is not

strongly connected. A classical proof, due to Moon [5) (see [1] page 173), proves a stronger

claim: a strongly connected tournament on n vertices has a cycle of length k, for

k=3,4, ... ,n. We omit the proof.

Again, the proof yields an efficient algorithm, which seems sequential in nature. For

our parallel solution we introduce a new notion - a restricted Hamiltonian path.

Definition: A restricted Hamiltonian path is a Hamiltonian path with a specified end­

point (either the first or the last vertex, not both).

A natural question is- when does there exist a Hamiltonian path starting (ending) at

a given vertex, v! The next theorem gives the precise condition.

Definition: Let T be a tournament and v be a vertex in T. v is a 8ource (8ink) ofT if

all vertices of T have directed paths from (to) v.

Theorem 3: A tournament, T, has a Hamiltonian path starting (ending) at vertex v if v

is a source (sink) ofT.

Proof: We prove the theorem for a source. The proof is symmetrical for a sink. The proof

is by induction on the n, the order of T. For n =1 the claim holds trivially. Assume the

claim for tournaments of n vertices. LetT be a tournament of order n+1, and let v be a

source of T. Using the inductive claim we need only show that W(v) contains a source of

G (V- { v}). By theorem 1, W(v) contains a Hamiltonian path starting at, say, u. Thus u

is a source of W(v). Furthermore, by assumption every vertex in L(v) can be reached

from some vertex in W(v). Thus u is a source of G (V- { v}). D
Once again the proof implies a sequential algorithm. Note that here, as in theorem 2, the

converse obviously holds.

The key idea for an NC algorithm for finding a Hamiltonian cycle in a strongly con­

nected tournament is to tie it to the problem of finding restricted Hamiltonian paths. The

idea is that each problem will be solved by recursive calls to the other. We start by giv­

ing an alternative proof for theorem 3, this time using theorem 2. But first, a small

lemma.

Lemma 2: Let T be a tournament and let C~t C2, • • ·, C~r be its strongly connected

components. Then for all i, j either C,>Ci or Ci>C,.

Proof: By definition of strongly connected components all arcs between c, and Cj go in

the same direction. Since T is a tournament all such arcs exist. D
Second Proof of theorem 3: Let Clt C 2, • • ·, C~r be the strongly connected com­

ponents ofT such that C 1>C2 > · · · >C~r. Since v is a source ofT, it must lie in C 1•

- 5 -

Since G1 is strongly connected, it contains a Hamiltonian cycle, H 1• Let H 2 be the path

obtained by deleting from H 1 the unique arc eri.tering v. We note that H 2 is a Hamil­

tonian path of G1 starting at v. Let H3 be a Hamiltonian path of {C2, G31 ••• , G,}. By

construction, the last vertex of H2 dominates the first vertex of H 3, so (H2, H3) is a

Hamiltonian path of T starting at v. D
Now we return to theorem 2 and prove it using theorem 3.

New Proof or theorem 2: Let T be a strongly connected tournament and let vtV(T).

Let L 1>L2> · · · >L9 be the strongly connected components of L(v) and

W1 <W2< · · · <Wp be the strongly connected components of W(v). Since Tis strongly

connected there must be some arc leaving W1• Every such arc must go to a vertex in L(v)

(Since, by definition, it cannot go to a vertex in w,, i > 1, or to v). Let

m=min{i I a >b for Borne atW11 btL;},

and let w 1tW11 l 1tLm be such that w 1>11• Symmetrically, there must be an arc entering

L 1 and let

k=min{i I a >b for Borne atWi, btL1},

w 2tW,, l 2tL 1 and w 2>12• The construction is shown in figure 1.

The existence of a Hamiltonian cycle of T is shown by demonstrating several paths

and the connections between their endpoints. These paths are shown in figure 2. The

paths are the following:

(1) A Hamiltonian path of wl ending at Wt·

(2) A Hamiltonian path of { Lm, Lm+lJ ... , L9 } starting at 11•

(3) The vertex v.

(4) A Hamiltonian path of {W,, Wk+v . .. , Wp} ending at w 2•

(5) A Hamiltonian path of L1 starting at 12•

(6) A Hamiltonian path of {W2, W3, •.• , W.~-~~ L2, L3, ... , Lm-t}

We claim that the concatenation of the paths above in the order (1),(2),(3),(4),(5),(6)

forms a Hamiltonian cycle of T. First we notice that each of the paths specified does, in

fact, exist. For the restricted paths ((1), (2), (4) and (5)) this is a consequence of theorem

3. The only other fact we need to verify is that the arcs between endpoints of the paths

are in the desired direction. The only non-obvious cases are the connections from path (5)

to path (8) and from path (8) to path (1). For showing this we recall that we chose Lm

and W1c in a way that implies that L2, L3, ••• , Lm_1 all dominate W1 and

W2, W3, .•• , W.~-1 are all dominated by L1• Thus the last vertex of path (5) must dom­

inate the first vertex of path (8). Similarly, the last vertex of path {6) must dominate the

first vertex of path (1). Notice that both endpoints of path (6) may be either in L(v) or in

W(v). 0

- 6-

L(v) W(v)

---- ----...... ----""
/ '·

/
\

Figure 1 : The construction used in the second proof of theorem 2.

Bold arrows denote all arcs from one component to another (domination or sets).

Dashed arrows denote single arcs (domination of vertices).

- 7-

Figure 2 : Demonstration of the Hamiltonian cycle described in the second proof of theorem 2.

Wiggly arrows denote Hamiltonian paths of the various components.

This new proof gives an approach for an NC algorithm - by selecting v to be a

"mediocre" vertex we break the problem into several subproblems of bounded size: sub-

graphs (1), (2), {3), (4) and (5) all have at most }n vertices. However, subgraph (6) (the

union of components W21 ••• , WA:-t and L21 ••• , Lm-d may be very large. In fact it

may contain all but five vertices of T, since v, w 11 w 2, 11 and 12 are the only vertices

guaranteed to be outside of this subgraph.

It turns out that this apparent obstacle is non-existent! The critical observation is

that the Hamiltonian path we need to find in (6) is not restricted. Therefor we can use

procedure PATH for finding this path, and need not worry about the size of this

- 8-

subproblem. Thus the problem of finding a Hamiltonian cycle (or restricted Hamiltonian

path) on n vertices breaks down into several similar problems, each on no more than }n

vertices, and one easier problem on at most n vertices.

The algorithms Cor Hamiltonian cycle and restricted path follow. Note that the solu­

tion to the Hamiltonian cycle problem is very symmetrical, as demonstrated in figure 2.

procedure RESTRICTED_PATH(T,endpoint ,u)

(1) Let n =order ofT.

(2) If n =1 then return the unique vertex ofT.

(3) Find strongly connected components C 1>C2> · · · >C11 oCT.

(4) IC endpoint='start' then

(4.1) In parallel find

H 1= CYCLE(Ct)

H 2= PATH({C'b ... ,C~c}).

(4.2) Let H 1= H 1-{ unique arc into u }.

(5) If endpoint='end' then

(5.1) In parallel find

H 1= PATH({Cu ... ,C~e-tl)

H 2= CYCLE(C~c)
(5.2) Let H 2= H 2-{unique arc out of u}.

(6) Return the path (H1, H 2).

end RESTRICTED_PATH.

procedure CYCLE(T)

(1) Let n =order ofT.

(2) If n =1 then return the unique vertex ofT.

(3) Find a vertex, vt.T, whose in-degree and out-degree in Tare both at least ln /4J.

(4) Find strongly connected components L 1> ... >L11 oC L(v) and W1 < ... <Wp of

W(v).

(5) In parallel find

m=min{i I a >b for some atW1, btL.},

k=min{i I a >b for some at.Wi, btL1},

and w 1t.Wt, 11t.Lm, w2tlV~e, l2tL1 such that w 1>11 and w2>l2.

- 9-

(6) In parallel find

H 1=RESTRICTED _ PATil(Wb 'end', w 1)

H 2=RESTRICTED_PA11l({Lm, .•. , L,}, 'start', 11)

H 3=RESTRICTED_PATlf({W," ... , W,}, 'end', w 2)

H 4=RESTRICTED_PATH(L1, 'start', 12)

Hs=PATH({W21 ... , W~c-1, L21 ... , Lm-1})

(7) Return the cycle (v, H 3, H 4, Hs, H11 H2, v)

end CYCLE.

The main computation required in one level of the recursion is finding strongly con­

nected components and related operations, which can be done in O(Iog2n) time using

O(n 3) processors (fast matrix multiplication techniques can be applied to reduce the

number of processors, e.g. O(n 2·81) using Strassen's method [9]). Again, there are O(logn)

levels, so the total time is O(log3n) on an EREW PRAM.

4. Further Research

We have shown that finding a Hamiltonian path and a restricted Hamiltonian path

in a tournament are both in NC. A natural question is: what is the complexity of finding

a doubly restricted Hamiltonian path, i.e a Hamiltonian path from a specified point, a,

to another specified point, b. We know how to solve this problem in NC if either of the

graphs T, T- {a } , T-{ b } or T- {a ,b } is not strongly connected. If all these graphs are

strongly connected, we do not know if the problem is solvable in polynomial time.

Acknowledgements

I would like to thank Prof. Richard Karp for suggesting the problem and for valuable dis­

cussions. Also thanks to Phil Gibbons for finding typing mistakes and for pointing out

that PATil can be implemented a sub-quadratic number of processors without increasing

the running time.

References

[1] Beineke, L.W. and Wilson, R.S. eds. , Selected Topics in Graph Theory

Academic Press, 1978.

- 10-

(2) Camion, P. , Chemins et Circuits Hamiltoniens des Graphes Complets

C.R Acad. Sci. Paris (A) 249 pp. 2151-2152 , 1959.

(3) Chartrand, G. and Lesniak, L. , Graphs & Digraphs 2nd ed.

Wadsworth & Brooks/Cole, 1986.

(4] Garey, M.R. and Johnson, D.S. , Computers and Intractabilitv

W.H Freeman and Company, 1979.

[5) Moon, J.W., Topics on Tournaments

Holt, Reinhart & Winston , 1968.

[6) Naor, J. , Two Parallel Algorithms in Graph Theorv

Hebrew University, Technical Report CS-86-6

[7) Redei, L. , Ein Kombinatorischer Satz

Acta Litt. Sci. Szeged 7 pp. 39-43 , 1934.

[8] Roberts, F.S. , Applied Combinatorics

Prentice Hall , 1984.

[9] Strassen, V., Gaussian Elimination is Not Optimal

Numerische Mathematik 13 pp. 354-356, 1969.

[10] Vishkin, U., Synchronous Parallel Communication - a Survev

TR 71, Dept. of Computer Science, Courant Institute, NYU, 1983.

